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FACILITY PHYSICAL PROTECTION SYSTEM DESIGN CAN BE SLOW AND 
EXPENSIVE, BUT IMPORTANT

• Physical security can be a significant component of operation and maintenance costs for 
nuclear power plants

 Consequently, optimizing for costs while retaining effective security is an ongoing 
development priority

• Designing physical protection systems (PPS) can take considerable time and rely on expert 
judgement

• PPS design can be thought of as a large-scale optimization problem

• New approaches and tools could accelerate the development cycle and resulting in cheaper, 
but more effective designs
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DESIGN AND EVALUATION PROCESS OUTLINE (DEPO)
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“NEVER SPEND TIME DOING BY HAND WHAT YOU CAN AUTOMATE 
WITH A COMPUTER” 

(DR. PEVEY – UNIVERSITY OF TENNESSEE KNOXVILLE)
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LEARN BY PLAYING: REINFORCEMENT LEARNING
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REINFORCEMENT LEARNING HAS SEVERAL ADVANTAGES OVER 
TRADITIONAL METHODS

• Reward structure can be changed to prioritize different goals (i.e., cost, physical footprint, etc)

• Agents can dynamically explore environments in real-time and react optimally under 
different conditions (e.g., before/after detection)

• Reinforcement learning can explore different states of knowledge of adversaries (e.g., varying 
knowledge of facility layout)
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Project Goal: Develop designer and adversarial agents for physical protection systems

• Designer agent will propose candidate PPS layouts depending on user-set criteria

• Adversarial agent will find optimal paths and severe vulnerabilities



• Initially tried both proximal policy 
optimization (PPO) and option-critic for the 
adversarial and planning agent respectively

• Didn’t have a lot of success so opted to 
leverage the SOTA Dreamer family of models

• These approaches utilize world models 
(recurrent state space models)

• Instead of the actor/critic(s) learning directly 
from the environment, Dreamer algorithms 
learn from imagined rollouts from the RSSM

• Dreamer algorithms are more sample 
efficient and less brittle than past RL 
algorithms, but harder to implement

10

PPO IS SO YESTERDAY

Image credit: Michele Milesi/eclecticsheep

Image credit: Hafner et al.



ADVERSARIAL 
AGENT (DV3)
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SO WHERE DO WE START? THE ENVIRONMENT
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WHAT’S THE OBJECTIVE? THE REWARD SPACE

• Collect as much value as possible (obviously)

• Specific objective varies by map

• Generally, agent is tasked with reaching 
objective(s) without being intercepted

• Agent needs to learn the most effective 
paths

• In some instances, secondary targets are 
available
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ADVERSARIAL AGENT CAN LEARN THE MOST VULNERABLE PATH 
ENTIRELY THROUGH SELF PLAY



• A variety of emergent actions can be seen 
when an agent is detected

 Reusing destroyed barriers to leave a 
facility

 Attempting to leave if discovered

 Secondary target fall back acquisition

• Agents exhibit maximally destructive 
behavior; secondary targets will be 
attempted wherever possible
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AGENTS ADAPT TO CONDITIONS IN REAL-TIME (PENALTY AVOIDANCE)



PLANNER AGENT 
(DIRECTOR-DV3)
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• Design is a much more difficult task
• Not simple to implement, less “out-of-the-box” 

than adversarial
• Fewer literature examples 
• Goal: leverage HRL with a worker/manager 

scheme to perform “auto complete” on parts of 
the design with human-in-the-loop

• Wasted some considerable time with option-
critic (”easier” to implement)

• Working with a modified Director architecture
 Manager/worker architecture with shared 

RSSM + goal encoder
 Custom encoder/decoders 
 20+ neural networks concurrently trained

• Director is nice w/ world model and single 
reward
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VERY INTERESTING, BUT CAN WE GET THE COMPUTER TO DO 
ITERATIVE DESIGN?

Image credit: Hafner et al.



• Action space is much larger and complex

• Agent can change any tile to one of 22+ 
different objects

• Action space rapidly gets out of hand

 Somewhat mitigated through a shared 
worker trunk with triple action head

• Procedural Content Generation via RL 
(PCGRL) provides some candidate 

 Narrow: agent is presented (x, y) and 
must select a tile to place/change

 Turtle: agent exists in world, actions 
change tile (must traverse)

 Wide: agent selects (x,y) and tile

21

SURELY THE ACTION SPACE FOR DESIGN IS MORE COMPLEX (ACTION)?

Image credit: Khalifa et al.



• DEPO is an iterative process with multiple 
analyses common metrics include:

 Probability of Interruption

 Probability of Detection

 Critical Detection Point

 Adversary Sequence Diagrams

• This work focuses on probability of 
interruption

• A good layout balances (approximate) cost, 
footprint, performance metrics, and 
emergency requirements

• Initially we are focusing on the balance 
between performance and (approximate) 
cost
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HOW DO WE EVEN ASSESS THE “GOODNESS” OF A LAYOUT 
(ENVIRONMENT)?



HOW DO WE CALCULATE INCREMENTAL ACTIONS (REWARD)?

• Current state of practice: Run Dijkstra’s algorithm on a weighted graph, find the cheapest 
path

• How can we determine the value of a single tile change in the context of tools usage and 
probability of detection?

 If there’s a wall instead of a sensor here, what value does that have? Both delay and 
probability of detection are important

• Solution: Maintain two separate graph representations

 First graph represents the cost after detection (so functionally the smallest delay possible 
for each item type)

 Second graph is the real, ”working” graph calculates the cost if detected (from graph 1) 
times the probability of detection

 Both graphs are run and updated when agent changes a tile
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HOW DO WE BALANCE DELAY AND COST?

• r = S ∗ Δ pathlength
scale1

− εΔ cost
scale2

• Path length is averaged over the entire 
maze to ensure a dense reward (every 
edit does something)

• Costs informed by real world metrics 
(fences cost less than reinforced steel 
doors)

• Accelerate learning by randomly 
generating mazes (sampled from a 
pretrained VAE)

• Limiting edits to about 30% of tiles

• Future: Manager edit gate to learn when 
to stop editing
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• Randomized layouts are provided as input

• Agent tasked with maximizing “path length” 
while balancing cost

• Agent can access 22 different physical 
security elements

• “Pan-like” observation space could be 
improved

• Demonstrated on smaller scale problem (~5x 
smaller than full facility)

• Future: Patch-like rotation? How could this be 
integrated with Director’s continuous 
observation space expectation

25

AI AGENTS CAN SUCCESSFULLY FUNCTION AS AN “AUTO-COMPLETE” 
FOR PHYSICAL SECURITY DESIGN



CONTINUING WORK AND OTHER INTERESTING PROJECTS 

•  Ongoing: adversarial agent capabilities beyond state-of-practice

  Partial observability

  Tool-specific traversal changes

 Region-based targets

  Human-in-the-loop evaluations

  ... and more!

•  Ongoing: planning agent

  Completing a basic toy-level demonstration (full ruleset)

  Scaling up to larger maze sizes

  Adding “immutable” objects
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QUESTIONS?
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