Sandia
National
Laboratories

Exceptional service in the national interest

Nathan Shoman
NRC Al Workshop 2025

September 2025

Sandia National Laboratories is a multimission laboratory managec
& Engineering Solutions of Sandia, LLC, a wholly owned subsidia
U.S. Department of Energy’s National Nuclear Security Admini

SAND2025-11641PE




FACILITY PHYSICAL PROTECTION SYSTEM DESIGN CAN BE SLOW AND
EXPENSIVE, BUT IMPORTANT

* Physical security can be a significant component of operation and maintenance costs for
nuclear power plants

= Consequently, optimizing for costs while retaining effective security is an ongoing
development priority

- Designing physical protection systems (PPS) can take considerable time and rely on expert
judgement

» PPS design can be thought of as a large-scale optimization problem

* New approaches and tools could accelerate the development cycle and resulting in cheaper,
but more effective designs
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DESIGN AND EVALUATION PROCESS OUTLINE (DEPO)
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DESIGN AND EVALUATION PROCESS OUTLINE (DEPO)
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“NEVER SPEND TIME DOING BY HAND WHAT YOU CAN AUTOMATE
WITH A COMPUTER”
(DR. PEVEY — UNIVERSITY OF TENNESSEE KNOXVILLE)
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LEARN BY PLAYING: REINFORCEMENT LEARNING
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REINFORCEMENT LEARNING HAS SEVERAL ADVANTAGES OVER
TRADITIONAL METHODS

- Reward structure can be changed to prioritize different goals (i.e., cost, physical footprint, etc)

« Agents can dynamically explore environments in real-time and react optimally under
different conditions (e.g., before/after detection)

- Reinforcement learning can explore different states of knowledge of adversaries (e.g., varying
knowledge of facility layout)

4 )

Project Goal: Develop designer and adversarial agents for physical protection systems
Designer agent will propose candidate PPS layouts depending on user-set criteria

- Adversarial agent will find optimal paths and severe vulnerabilities
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PPO IS SO YESTERDAY

- Initially tried both proximal policy
optimization (PPO) and option-critic for the
adversarial and planning agent respectively

- Didn’t have a lot of success so opted to
leverage the SOTA Dreamer family of models

» These approaches utilize world models
(recurrent state space models)

* Instead of the actor/critic(s) learning directly
from the environment, Dreamer algorithms
learn from imagined rollouts from the RSSM

« Dreamer algorithms are more sample
efficient and less brittle than past RL
algorithms, but harder to implement
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(a) Learn dynamics from experience (b) Learn behavior in imagination (¢) Act in the environment

Image credit: Hafner et al.
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SO WHERE DO WE START? THE ENVIRONMENT




WHAT’S THE OBJECTIVE? THE REWARD SPACE

* Collect as much value as possible (obviously)
* Specific objective varies by map

« Generally, agent is tasked with reaching
objective(s) without being intercepted

« Agent needs to learn the most effective
paths

 In some instances, secondary targets are
available
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AGENTS ADAPT TO CONDITIONS IN REAL-TIME (PENALTY AVOIDANCE)

 Avariety of emergent actions can be seen
when an agent is detected

= Reusing destroyed barriers to leave a
facility

= Attempting to leave if discovered
= Secondary target fall back acquisition

« Agents exhibit maximally destructive
behavior; secondary targets will be
attempted wherever possible
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VERY INTERESTING, BUT CAN WE GET THE COMPUTER TO DO
ITERATIVE DESIGN?

» Design is a much more difficult task

« Not simple to implement, less “out-of-the-box”
than adversarial

- Fewer literature examples

- Goal: leverage HRL with a worker/manager
scheme to perform “auto complete” on parts of
the design with human-in-the-loop

» Wasted some considerable time with option-
critic ("easier” to implement)

» Working with a modified Director architecture

Image credit: Hafner et al.

= Manager/worker architecture with shared
RSSM + goal encoder

= Custom encoder/decoders
= 20+ neural networks concurrently trained

« Director is nice w/ world model and single
reward
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SURELY THE ACTION SPACE FOR DESIGN IS MORE COMPLEX (ACTION)?

* Action space is much larger and complex

» Agent can change any tile to one of 22+ S
different objects o

- Action space rapidly gets out of hand
= Somewhat mitigated through a shared -
worker trunk with triple action head
» Procedural Content Generation via RL

(PCGRL) provides some candidate

= Narrow: agent is presented (x, y) and (a) Initial  (b) Narrow  (c) Turtle (d) Wide
must select a tile to place/change

Image credit: Khalifa et al.

= Turtle: agent exists in world, actions
change tile (must traverse)

= Wide: agent selects (x,y) and tile
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HOW DO WE EVEN ASSESS THE “GOODNESS” OF A LAYOUT
(ENVIRONMENT)?

- DEPO is an iterative process with multiple
analyses common metrics include:

= Probability of Interruption

= Probability of Detection

= Critical Detection Point

= Adversary Sequence Diagrams

 This work focuses on probability of
interruption

« A good layout balances (approximate) cost,
footprint, performance metrics, and
emergency requirements

- Initially we are focusing on the balance
between performance and (approximate)
cost
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HOW DO WE CALCULATE INCREMENTAL ACTIONS (REWARD)?

 Current state of practice: Run Dijkstra’s algorithm on a weighted graph, find the cheapest
path

- How can we determine the value of a single tile change in the context of tools usage and
probability of detection?

= If there's a wall instead of a sensor here, what value does that have? Both delay and
probability of detection are important

- Solution: Maintain two separate graph representations

= First graph represents the cost after detection (so functionally the smallest delay possible
for each item type)

= Second graph is the real, "working” graph calculates the cost if detected (from graph 1)
times the probability of detection

= Both graphs are run and updated when agent changes a tile
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HOW DO WE BALANCE DELAY AND COST?

r =S« (A(pathlength) _ sA(cost))

scale1 scale2

- Path length is averaged over the entire
maze to ensure a dense reward (every
edit does something)

 Costs informed by real world metrics
(fences cost less than reinforced steel
doors)

« Accelerate learning by randomly
generating mazes (sampled from a
pretrained VAE)

* Limiting edits to about 30% of tiles

 Future: Manager edit gate to learn when
to stop editing
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Al AGENTS CAN SUCCESSFULLY FUNCTION AS AN “AUTO-COMPLETE”

FOR PHYSICAL SECURITY DESIGN

Randomized layouts are provided as input

Agent tasked with maximizing “path length”
while balancing cost

Agent can access 22 different physical
security elements

“Pan-like” observation space could be
improved

Demonstrated on smaller scale problem (~5x
smaller than full facility)

Future: Patch-like rotation? How could this be
integrated with Director’s continuous
observation space expectation
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CONTINUING WORK AND OTHER INTERESTING PROJECTS &=

- " Ongoing: adversarial agent capabilities beyond state-of-practice
= ®® Partial observability
= @ Tool-specific traversal changes
= ® Region-based targets
= &l Human-in-the-loop evaluations
: ... and more!
« r Ongoing: planning agent
= « Completing a basic toy-level demonstration (full ruleset)
= 2 Scaling up to larger maze sizes

= {, Adding “immutable” objects
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