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Project Goals:  

• Prepare and evaluate a mock submission 
of an AI/ML safety application.

• Document an evaluation process to inform 
the regulator and industry. 

 ANL: Representative AI application

 SNL: Evaluation framework

Teams:

• ANL:  Akshay Dave, Tim Nguyen, Rick Vilim

• SNL:  Art Munson, Mike Smith, Chris Lamb

• NRC:  Matt Dennis, Taylor Lamb

AI/ML EVALUATION FRAMEWORK



AI USE CASE
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SODIUM PURIFICATION: A SAFETY SIGNIFICANT SYSTEM
METL is a semi-scale advanced reactor sodium facility at ANL

Sodium Purification System



• Physics-based 
diagnosis:

 Enables detection 
and diagnosis of 
component and 
sensor faults

 Provides robust 
treatment of 
uncertainty in the 
reasoning process
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T. N. Nguyen, et al. "A digital twin approach to system-level 
fault detection and diagnosis for improved equipment health 
monitoring." Annals of nuclear energy 170 (2022): 109002.

T. N. Nguyen, et al. "A physics-based parametric regression 
approach for feedwater pump system diagnosis." Annals of 
Nuclear Energy 166 (2022): 108692.

AUTOMATED REASONING FOR 
ONLINE MONITORING
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Fault Symptoms
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Probabilistic Reasoning Framework in PRO-AID



1. Physics-based model for Sodium Purification System (SPS) is calibrated against training data 
with sensor and model uncertainties calculated.

2. Fault information is implicit in divergence between physics model and measurements
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AUTOMATED REASONING: ONLINE MONITORING OF COLD TRAP

1. Model calibrated with training data 3. Monitoring output: Likelihood of faults, including for Cold Trap2. Fault symptoms as a divergence 
between model and measurements

TC 117

3. A probabilistic reasoning framework then 
generates a likelihood ranking of faults for SPS 
components and sensors.



EVALUATION
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TWO EVALUATION STEPS
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QUALITATIVE ACCEPTANCE CRITERIA (QAC)
IS THE SAR READY FOR REVIEW?
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Level 1
(not addressed)

Level 2
(basic)

Level 3
(systematic)

Level 4
(comprehensive)

Performance
Characterization

Unknown Low confidence, 
tested on broad 
benchmark

Medium 
confidence, tested 
on specific task

High confidence, 
tested on end user, 
strong UQ

Bias & 
Robustness

Quantification

Not considered Some 
consideration

Significant 
consideration, 
communicated to 
user

Continuous testing

Transparency Black box Coarse mental 
model

Useful mental 
model

Accurate mental 
model

Safety & Security Unknown Awareness of 
vulnerability, basic 
guardrails

Quantified 
vulnerability, broad 
guardrails

Confidential with 
high confidence in 
integrity

Usability None Basic Intuitive and well-
targeted

Intuitive and 
adaptive to 
user/task

Steinmetz et al. (2025). The Trust Calibration Maturity Model for Characterizing and Communicating Trustworthiness of AI Systems 

https://arxiv.org/abs/2503.15511


AI SYSTEM SAFETY EVALUATION

Pillar Summary
Performance How well does the model perform its task?

       * Dataset quality, model accuracy, prediction uncertainty

Bias & Robustness Will there be surprises when the model is deployed?
        * Stability, broken assumptions, retraining, …

Transparency Is the model correct?
Safety & Security Risks Can the model or infrastructure be subverted?

        * Data poisoning, model tampering, secure config files, …

Usability Potential for unsafe decisions?
        * Misinterpretation, too much trust in AI, …
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System View is Critical

• How does X affect the system’s safety?

• Most performant AI model might not be the safest AI-powered system.



Methodology

• How were data divided for train, tune, test?

• What is performance on test data?

• How were physics-based components 
verified?

Characterize AI Behavior

• How does accuracy vary as function of each 
input?

• What is impact from removing a faulty 
sensor?

Deployment & Operations

• What is performance acceptance criteria for 
deployment? 

• How to check if uncertainty est. calibrated?

• How to set detection threshold? 

• How to set prior probabilities? 

• How to decide if recalibration required 
during operational use?

• How to combine with standard operating 
procedures for maintenance?

• What is logic for deciding sensor is faulty?
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THEMES IN REQUESTS FOR ADDITIONAL INFORMATION



LESSONS LEARNED

• Opportunity to streamline AI safety evaluations:

 Consider adopting Qualitative Acceptance Criteria (QAC) as readiness checklist.

 Knowing regulatory evaluation criteria in advance helps applicant be thorough.

• Safety analysis should carefully evaluate deployment considerations during AI R&D.

 => Safety evaluations should pay close attention here.

• Future Work:

 Required AI accuracy should be derived from how it impacts system safety.

• Report publication anticipated in early 2026.

Interested in the project report?  Contact matthew.dennis@nrc.gov
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