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EXECUTIVE SUMMARY 

This report was prepared for the U.S. Nuclear Regulatory Commission 
(NRC) to describe a use case of applying advanced condition monitoring (ACM) 
technologies to meet the current and future regulatory requirements for inservice 
testing (IST) of active systems and components. The ACM technologies 
considered in this work are advanced sensors and instrumentation, data analytics, 
machine learning and artificial intelligence (ML/AI), and physics-based models. 
This report provides a detailed examination of the implementation of ACM for 
Safety-Related Structures, Systems, and Components (SSCs) in nuclear facilities, 
with a focused case study on reactor coolant pumps (RCP). The RCP use case 
outlined in this report highlights the following key considerations in applying 
ACM for the IST of nuclear power plant components: 

• Identifying degradation mechanisms, monitoring parameters and ACM 
technologies in accordance with IST requirements 

• Designing and developing ACM technologies and capabilities to 
facilitate comprehensive monitoring, early degradation detection, and 
accurate prediction of degradation severity and potential failure 

• Model training and optimal model selection process for data analytics 
and ML/AI models utilized in ACM 

• Methodologies for rigorous verification and validation of data analytics 
and ML/AI models 

• Uncertainty quantification and propagation within monitoring data and 
their impact on model performance and outcomes 

• Integrating methodologies to address explainability and trustworthiness 
of ML/AI models within ACM 

There is considerable interest in utilizing ACM to address IST requirements 
and enhance the efficiency of operations and maintenance. The use case detailed 
in this report illustrates that integrating ACM with IST programs for nuclear 
power plant (NPP) components enables the differentiation between normal 
operational variations and early degradation signs with a quantifiable level of 
confidence. Additionally, ACM facilitates severity assessment and provides 
insights into fault progression which are crucial for prioritizing maintenance 
actions and managing risks. The findings in this report highlight ACM's potential 
to improve the safety, reliability, and efficiency of NPP operations. The NRC 
continues to evaluate the use of ACM technologies through research activities. 
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Technical Considerations in the Application of 
Advanced Condition Monitoring for Inservice Testing 

Program 
1. INTRODUCTION 

The Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC) has 
initiated an effort to assess the regulatory viability of using advanced technologies for condition 
monitoring of structures, systems, and components (SSCs) at nuclear facilities. This effort is led by Idaho 
National Laboratory in collaboration with The University of Illinois Urbana-Champaign. The objective of 
this project is the identification and evaluation of technical and regulatory considerations associated with 
advanced technologies when applied by an NRC applicant or licensee toward meeting the current and 
future regulatory requirements for the maintenance and condition monitoring of SSCs. Condition 
monitoring incorporates data from sensors and instrumentation into computer codes containing various 
models (e.g., analytic models) that can be used to assess the state of system or component health. Some of 
the advanced technologies being considered for these uses are data analytics, machine learning (ML) and 
artificial intelligence (AI), physics-based models, and digital twins (DT). (See previous NRC work on 
DT-enabling technologies and their nuclear energy application [1] [2].) 

The NRC regulations in Title 10 of the Code of Federal Regulations (10 CFR) Section 50.65, 
“Requirements for monitoring the effectiveness of maintenance at nuclear power plants” mandate that 
nuclear power plant (NPP) licensees monitor the performance or condition of specified SSCs to ensure 
they can perform their intended functions.a For inservice testing (IST) of NPP components, the NRC 
incorporates by reference the American Society of Mechanical Engineers (ASME) Operation and 
Maintenance of Nuclear Power Plants, Division 1, OM Code: Section IST (OM Code) in 10 CFR 50.55a, 
“Codes and standards.”b The ASME OM Code IST is integrated into 10 CFR 50.55a as a regulatory 
requirement for establishing and implementing IST programs for NPP components. IST programs at 
nuclear facilities consist of activities, such as condition monitoring, surveillance testing, preventive 
maintenance, and corrective maintenance, performed at periodic intervals. Traditional IST programs 
exhibit several limitations, notably the execution of maintenance activities at predetermined intervals 
irrespective of the actual condition of SSCs and labor- and time-intensive nature of certain monitoring 
and surveillance activities. The uses of advanced condition monitoring (ACM) technologies, such as 
advanced sensors and instrumentation, data analytics, ML, AI, physics-based models, and DT as part of 
the IST program, hold promise to address these limitations. 

As part of this ongoing effort, the NRC sponsored a virtual workshop, “Condition Monitoring and 
Structural Health Management for Nuclear Power Plants,” in November 2023 [3]. The workshop aimed to 
understand industry perspectives on advanced technologies for NPP component monitoring, exchange 
knowledge on online monitoring, predictive maintenance, and health management, and recognize the 
application of these technologies for condition monitoring and maintenance of plant SSCs. This effort has 
recently published two reports [1] [2]. The first focused on technical challenges and opportunities 
associated with the application of ACM technologies for meeting IST and inservice inspection (ISI) 
requirements [1]. The second report discussed the implementation of condition monitoring approaches 
using ACM through two use cases: reactor coolant pumps (RCPs) in pressurized water reactors and heat 
pipes in microreactors [2]. 

 
a. Requirements for monitoring the effectiveness of maintenance at nuclear power plants, 10 CFR 50.65. 

https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0065.html. 
b. Codes and standards, 10 CFR 50.55a. https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0055a.html. 
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This report presents the details of a use case developed to demonstrate the technical consideration of 
applying ACM to SSCs at nuclear facilities with a specific focus on pumps as an example. The example 
looks at ACM to capture the onset of thermal barrier leakage in RCPs and predict the severity of this 
leakage. Section 2 discusses the regulatory and technical aspects of the IST program with an emphasis on 
the application of ACM within the program. Section 3 presents a comprehensive use case illustrating the 
application of ACM to a specific degradation mechanism in RCPs. Section 3 also outlines a thorough 
analysis of various technical aspects of ACM, including data generation, model training, model selection, 
explainability, evaluation of model performance, and uncertainty quantification (UQ). It also describes 
insights and discusses the results and findings derived from the use case. Section 4 provides a summary 
and conclusion from this effort. 

2. ADVANCED CONDITION MONITORING 
2.1. Motivation for Condition Monitoring 

As discussed in the previous report [1], one of the regulatory drivers for the condition monitoring of 
components in NPPs stems from the regulations set forth by the NRC in 10 CFR 50.65. These regulations 
mandate that licensees must monitor the performance or condition of designated SSCs to provide 
reasonable assurance that they can perform their intended safety-related or non-safety-related functions. 
Furthermore, 10 CFR 50.65(a)(3) stipulates that condition monitoring and preventive maintenance 
activities—including but not limited to surveillance testing, post-maintenance testing, and both corrective 
and preventive maintenance—must be conducted at least once every refueling cycle or within a 24-month 
timeframe, whichever is shorter. The NRC incorporates by reference the ASME Operation and 
Maintenance of Nuclear Power Plants, Division 1, OM Code: Section IST (OM Code) [4] into 10 CFR 
50.55a as a regulatory requirement for the establishment and implementation of IST programs for NPP 
components. 

ACM is anticipated to be pivotal in shifting from traditional time-frequency-based inspection and 
testing to a condition-based maintenance framework, driven by these regulatory imperatives. This 
transition will facilitate early fault detection, prognostics, and the recommendation of corrective 
measures, ultimately leading to an optimized ISI and IST process, while maintaining sufficient safety and 
reliability [5]. In ACM, sensor data is utilized within an algorithm to evaluate the normal operating or 
fault-free state of a component. These estimations are subsequently compared with the actual measured 
values to determine performance and operational status [5]. Key technologies anticipated to play a crucial 
role in advancing condition monitoring include sensors, data storage solutions, preprocessing techniques, 
analytics, ML, AI, and physics-based simulators. These technologies enable the continuous 
synchronization of digital states with physical processes, particularly in identifying early signs and 
occurrences of degradation or faults in NPP components. In this report, the term “model” aligns with the 
definition of “modeling and simulation” as outlined in an NRC report [2], encompassing data analytics, 
AI, ML, physics-based models, data-informed models, and other modeling techniques. 

To ensure the effectiveness of condition monitoring systems designed for NPP component 
assessment, it is essential to identify the types of data that can be gathered to develop an ACM 
methodology. Various sensors, such as those measuring vibration and temperature, are instrumental in 
monitoring the different indicators of component condition and are vital for fault detection. For example, 
anomalies in the data collected from these sensors may serve as early warning signs of potential 
component failures or irregularities. For example, key parameters monitored for pumps by these sensors 
encompass inlet and outlet pressure, pump vibrations, flow rate, impeller speed, electric current, bearing 
temperatures, motor winding temperature, power consumption, and lubricant quality. Additionally, 
multiple sensors may be deployed at different locations to measure a single parameter. For instance, pump 
vibrations are typically assessed at a minimum of two locations, often in distinct orientations, to capture 
both horizontal and vertical vibrations on the pump shaft. Collecting this data in real time would be 
necessary to supply to analytics and/or ML algorithms that detect degradation/fault within the pump. 
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These analytics and the ML algorithm will be developed and trained with historic data and component 
data to ensure their capability in capturing any degradation or anomaly when real-time data is available. 
These concepts can also be applied for monitoring the performance of other NPP components. 

It is anticipated that sensors will generate a substantial volume of data requiring processing. 
Consequently, data storage is expected to be a critical enabling technology for ACM. Real-time sensor 
data can be used alongside historical information regarding plant and component modifications, including 
past work orders related to component deterioration, equipment data with design specifications, 
performance curves, and inventory records. Data preprocessing involves preparing and cleaning data into 
a usable format, which may encompass outlier characterization and elimination, noise reduction, and 
detrending. Additionally, it can be utilized to detect instances of sensor drift. Fault and degradation 
detection can be performed using both traditional analytical techniques and data-driven approaches, such 
as ML and AI. These models can also be employed to predict and identify faults in component data and 
classify the nature of faults within a component based on real-time data received. The primary advantage 
of ML and AI models over traditional analytical methods lies in their capacity to condense extensive 
amounts of data into concise relationships. 

2.2. IST Requirements 
Developing ACM for NPP components must consider its potential effects on the current condition 

monitoring program, including operational and economic factors, as well as its influence on the 
performance metrics of the plant or components [6]. For example, IST for pumps and associated 
activities, as mandated by the ASME OM Code [4], necessitate regular testing to ensure that a pump 
achieves its performance objectives [2]. ASME OM Code Case OMN-29, “Pump Condition Monitoring 
Program” [4] outlines alternative stipulations for the condition monitoring of NPP pumps as part of the 
IST program required by 10 CFR 50.55a. Various pump types are recognized, some of which may fall 
outside the purview of the ASME OM Code IST program. For instance, ASME OM, Division 2, Part 24 
[4] provides guidance on the condition monitoring of RCPs, detailing in situ monitoring techniques aimed 
at detecting or predicting degradation in pumps and drivers and identifying equipment faults before they 
lead to functional failures. As an example of condition monitoring activities for NPP components, this 
report will concentrate on IST and condition monitoring for NPP pumps. 

IST activities for pumps within the scope of the IST program are required to be conducted once every 
3 months [4]. Pumps that are utilized more frequently than this interval are exempt from testing, provided 
it can be demonstrated that they have operated under reference conditions and that the measured 
parameters have been assessed in accordance with the ASME OM Code [4]. Each IST activity conducted 
on a pump must have a minimum duration of 2 minutes and must include at least one measurement of 
each type specified in the ASME OM Code [4]. Furthermore, these tests should be carried out under the 
most stable conditions that the system allows. For instance, during an IST activity, the pump’s flow rate 
may be adjusted until the differential pressure is as close as possible to the reference point [4]. The 
resulting flow rate is then measured and compared to the reference value. By adhering to the acceptance 
criteria and testing conditions specified in the ASME OM Code, a license holder can establish an IST 
program that complies with 10 CFR 50.55a. 

ASME provides guidance for an NPP pump condition monitoring program in Division 2, Part 24 [4]; 
note Division 2 relates to guidance and is not a requirement: 

• Identify the potential pump faults that could be detected by the program and the symptoms 
produced by these faults 

• Identify the suitable analytical methods for the faults being monitored 

• Develop a monitoring program essential for the early detection of equipment degradation or faults 
to avert functional failure 
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• Implement the evaluation criteria for the pump. 

3. ADVANCED CONDITION MONITORING USE CASE 
In both current light-water reactors and specific advanced reactor designs, pumps serve as essential 

elements that ensure the circulation of coolant necessary for the cooling of the reactor core. In these 
setups, the pumps function as the principal means to fulfill various performance and safety objectives 
inherent to the reactor’s design. 

Among the different pumps used in light-water reactors, RCPs are 
integral to the reactors safe and reliable operation. The reactor coolant 
system (RCS) is responsible for transporting heat from the reactor to 
the steam generators through the reactor coolant. The major 
components of the RCS are the reactor vessel, RCP that helps with the 
circulation of the RCS, steam generators, pressurizer, piping, 
instrumentation, and penetrations for the various secondary systems. 
RCP are important components to ensure that the coolant can flow 
successfully between the vessel and the steam generator. The major 
components of an RCP include the pump case assembly, pump cover, 
heat exchanger assembly, the mount and rotating assembly including 
the shaft, impeller, and associated coupling, and the shaft seal 
assembly [7]. Degradation can occur in any part of the RCP, which can 
cause the RCP to fail and thus can have a negative effect on NPP 
operations. Figure 1 shows the different components within the RCP. 

As a use case for this report, this work focuses on condition monitoring of an RCP for ACM while 
focusing on a particular degradation for the use case. The development of an ACM program for RCPs 
necessitates the determination of parameters that need to be monitored along with the degradations to be 
captured successfully through ACM. The data parameters selected to be monitored are differential 
pressure, discharge pressure, flow rate, vibration, and speed of pump motor. Due to the lack of available 
experimental data, and for the demonstration for this use case of RCP ACM, synthetic data is simulated 
using Idaho National Laboratory’s Generic Pressurized Water Reactor (GPWR) simulator [9]. The 
GPWR is a full plant simulator that can simulate neutronics, thermal hydraulics, and electric generation 
data analogous to realistic NPPs for the complete power plant. Full plant simulators are useful as they can 
be used as a source of realistic sensor data. This data includes parameters that are also utilized in typical 
pump IST activities (i.e., differential pressure, discharge pressure, pump speed, flow rate, and vibration 
data). 

All systems including primary, secondary, and auxiliary systems can be modeled to get an accurate 
representation of an NPP as the GPWR has been benchmarked to an existing 1 GWe NPP [8]. The GPWR 
can provide real-time data that meets the data requirements for pumps mentioned in ASME OM for IST. 
In addition to the parameters mentioned in ASME OM for IST of pumps, the GPWR can monitor bearing 
temperatures, stator winding temperature, inlet and outlet temperature of flow to the RCP, inlet pressure, 
motor current, pump and motor speeds, flow parameters and surge tank levels on the component cooling 
water system, and parameters corresponding to vibration alarms. Bearing temperatures, stator winding 
temperature, flow rates, speed, and current are continuously monitored in the GPWR. These parameters 
selected can also be measured through installed sensors in physical plants. 

Key Considerations 
 
Develop a use case for ACM 
of RCPs. 
 
Identify key variables to 
monitor RCP in accordance 
to IST requirements. 
 
Identify degradations to 
capture for early detection 
and severity prediction. 
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Figure 1. RCP components [8]. 

The GPWR has built-in malfunctions that can be used to 
simulate different degradations occurring within the RCP. These 
malfunctions are RCP trips due to bus differential, overcurrent and 
undervoltage locked motor, shaft break, vibration trip due to 
abnormal vibration readings, thermal barrier leak, seal failure, and 
oil leak. The current use case is to identify the occurrence of a 
thermal barrier leak. A thermal barrier heat exchanger reduces the 
heat transfer rate from the hot reactor coolant to the pump radial 
bearings [8]. The thermal barrier heat exchanger lies below the 
thermal barrier assembly and receives its cooling water from the 
component cooling water system. During a thermal barrier leak, 
the reactor coolant leaks into the thermal barrier heat exchanger. 
The GPWR can simulate this degradation by choosing the amounts 
of reactor coolant leakage in the thermal barrier in the form of a 
ramp function over any desired time and can have a leakage range 
of 0–200 gallons per minute (gpm) with the beginning and end 

Key Considerations 
 
Data generation for ACM 
use case of RCP to meet IST 
requirements. 
 
Choosing a degradation 
mechanism used to develop 
ACM.  
 
Data generation comprising 
different life cycles and 
different intensities of 
degradation to develop ACM 
for early detection of 
degradation and predicting 
severity of degradation. 
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values of the ramp chosen by the user. This type of leakage is sensed by a flow sensor in the component 
cooling water return line, which alarms on the detection of a high flow. In response to this alarm, the plant 
isolates the return to stop the leak and uses the high-pressure piping of the component cooling water 
system as part of the RCS pressure boundary. NUREG-2194 [10] establishes for AP1000 reactors that 
RCS leakage during operation shall have the following limits: (a) no leakage through the pressure 
boundaries and for any leakages other than pressure boundaries; (b) 0.5 gpm leakage if the type of 
leakage is unidentified; (c) 10 gpm leakage if the type of leakage is identified; (d) 150 gpm per day 
leakage through any steam generator; and (e) 500 gpm per day primary to in-containment refueling water 
storage tank leakage through the passive residual heat removal heat exchanger. 

To simulate the thermal barrier leakage, the following variables and data parameters are simulated in 
the GPWR. The first five variables that are simulated and tracked in the GPWR correspond to those 
mentioned in the ASME OM Code; they are differential pressure, discharge pressure, flow rate, vibration, 
and RCP speed. In addition to these five variables, other variables are tracked in the GPWR as they could 
be good indicators of the onset or continuation of a thermal barrier leakage. These additional variables 
include bearing temperatures and motor winding temperatures, inlet temperature to the RCP pumps, 
motor current, return flow in the component cooling water system, and surge tank level in the component 
cooling water system. Additionally, the inlet condition variables from the GPWR are also tracked 
throughout simulations, and these include control rod position, boron concentration, pressurizer and RCS 
pressure, pressurizer temperature, reactor coolant average temperature, and the core life. Using this 
expansive list of data parameters to monitor for the three RCPs in GPWR, a case study corresponding to 
thermal barrier leakage is simulated and shown in Table 1. This leakage belongs to the identified leakage 
category as this leakage can be captured on the component cooling water system line. The use case places 
emphasis on leakages below 10 gpm, which remain within the limits set by NUREG-2194 [10]. The first 
goal of the ACM methodology is to identify small leaks, which is why the case study contains simulation 
with leakages below 5 gpm. In addition to these small leaks, the simulated leakage rates rise from 5 gpm 
up to 50 gpm to develop an ACM methodology that is capable of not only capturing early detection of 
thermal barrier leakage but one that can also predict the evolution and severity of leakages corresponding 
to values larger than 5 gpm. A maximum leakage of 50 gpm was arbitrarily chosen during the 
development of this case study. Moreover, alarms in the GPWR simulator specifically are triggered at 
high leakages above 50 gpm, thus the ACM methodology would ideally capture the onset of degradation 
before it reaches high values of 50 gpm. 

Table 1 below explains the simulation that starts with a healthy operation containing no leakage for 
10 minutes. After the healthy operation, a ramp function of thermal barrier leakage is simulated from 
0 gpm to 1 gpm followed by a steady-state simulation at 1 gpm for 10 minutes. This sequence is repeated 
till 5 gpm, after which the two ramp functions for thermal barrier leakage start from 5 gpm to 10 gpm, 
followed by a steady state of 10 gpm, and a final ramp to simulate a thermal barrier leakage from 10 gpm 
to 50 gpm, each having a duration of 10 minutes. The final few data points correspond to a steady state of 
50 gpm and have a duration of only a few seconds to a few minutes, which constitutes the simulation 
coming to a stop and the final data points getting stored. Since the time to stop and store simulations can 
slightly vary for each independent dataset, the number of data points corresponding to 50 gpm leakage 
vary. GPWR constantly monitors variables of interest chosen by the user throughout the simulation. Once 
the entire simulation ends (with final leakage of 50 gpm), the simulation data variables get stored as a.csv 
(comma-separated values) extension that can then be used for further processing. A graphical 
representation of this simulated thermal barrier leakage is illustrated in Figure 2. 
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Table 1. GPWR simulation for thermal barrier leakage. 
Leakage Duration: Real-Time 

(seconds) 
Notes 

Start of Simulation: 
0 gpm 

600 Healthy Operation 

0 to 1 gpm 600 Ramp 
1 gpm 600 Steady State 
1 to 2 gpm 600 Ramp 
2 gpm 600 Steady State 
2 to 3 gpm 600 Ramp 
3 gpm 600 Steady State 
3 to 4 gpm 600 Ramp 
4 gpm 600 Steady State 
4 to 5 gpm 600 Ramp 
5 gpm 600 Steady State 
5 to 10 gpm 600 Ramp 
10 gpm 600 Steady State 
10 to 50 gpm 600 Ramp 
End of Simulation: 
50 gpm 
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Figure 2. GPWR simulation for thermal barrier leakage. 

Initial conditions are divided into those corresponding to different periods in the reactor cycle and 
those at different powers. The possibilities of initial conditions are: 

• Reactor cycle time 

o Beginning of life (BOL) 
o Middle of life (MOL) 
o End of life (EOL) 

• Reactor power level 

o 100% reactor power 
o 77% reactor power 
o 52% reactor power. 
A total of nine initial conditions were used, with three power levels for point in the reactor life. These 

power levels and initial conditions were chosen to have a robust dataset that is generalized to contain data 
points corresponding to all different core lives and different power levels from 50% to 100%. These 
reactor conditions allow for an examination of the realistic state space; it is not expected for reactors to 
operate at a steady state below 50% for a significant length of time. Table 2 presents the values of the 
initial condition variables for the different reactor power levels and reactor life as set up in the GPWR 
simulator.
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Table 2. Initial conditions for data generated in GPWR. 
 Three Simulations Corresponding to 

BOL for Different Reactor Powers 
Three Simulations Corresponding to 
MOL for Different Reactor Powers 

Three Simulations Corresponding to 
EOL for Different Reactor Powers 

Initial Condition 
Variables 

~100% 
reactor 
power 

~77% 
reactor 
power 

~52% 
reactor 
power 

~100% 
reactor 
power 

~77% 
reactor 
power 

~52% 
reactor 
power 

~100% 
reactor 
power 

~77% 
reactor 
power 

~52% 
reactor 
power 

TRCSAV: Reactor 
Coolant Average 
Temperature (°F)  

589.131 579.8 571.9 588.9 580.5 571.1 589.986 590.8 572.7 

PZRPRS: Pressurizer 
Pressure (psia) 

2242.99 2253.8 2254.5 2243.9 2244.3 2245.3 2243.82 2242.7 2247.6 

TT:453: Pressurizer 
Temperature (°F) 

652.201 652.9 653.0 652.3 652.3 652.4 652.255 652.2 652.5 

FNISPR1: Reactor 
Power (%) 

100.295 77.6 51.9 99.6 77.5 53.3 99.5491 77.2 53.5 

PT:403: Reactor 
Coolant Pressure 
(psia) 

2249.9 2261.0 2262.0 2250.8 2251.5 2252.9 2250.72 2249.9 2255.0 

XRCS: Boron 
Concentration (ppm) 

1197.95 1222.5 1263.5 796.0 852.0 918.0 205.994 280.0 359.0 

ROD Position: Rod 
Pos 

210 193 185 210 193 183 210 193 185 
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Data preprocessing includes the discarding of variables that have little to no effect on the thermal 
barrier leakage and are thus not good detectors of the leakage. The original synthetic data includes 
92 variables that are used as input features for data processing and the ML algorithms, which are 
challenging for traditional regression and ML models. Thus, there is a requirement for dimensionality 
reduction before modeling, which is done using the Pearson correlation. 

Before proceeding with modeling, a Pearson correlation analysis was performed to evaluate the 
relationship between the input variables and target variable, thermal barrier leakage rate in gallons per 
minute. This analysis serves as an initial screening tool to identify and reduce the unnecessary input 
dimensions. The Pearson correlation coefficient (𝑟𝑟 ) is calculated as 

𝑟𝑟 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖are the individual values of the input variable and target variable, respectively, 𝑥̅𝑥 and 𝑦𝑦� are 
their respective means, and 𝑁𝑁 is the number of data points. The resulting correlation coefficient ranges 
from −1 to 1 . Through this analysis, the variables with no variation were dropped, and finally, the total 
number of input variables was reduced from 92 to 53. This included removal of any variables that 
remained 0 or unchanged throughout the simulation indicating they had no impact on the output variable 
(i.e., thermal barrier leakage in gpm). All 53 variables were used for both model selection and model 
application. The figures and explanation below mention how the 53 variables correlate with the thermal 
barrier leakage in cases below 5 gpm and in cases greater than 5 gpm. 

The different variables used for model selection, model application, and UQ are shown in Table 3 
along with descriptions. In GPWR, most variables end with numbers 1, 2, or 3, which correspond to the 
respective variables to one of the three RCPs in GPWR simulator. 

Table 3. Variable names in GPWR along with description. 
Variable Name Description for RCP 1,2,3 

TEMPIN Inlet temperature of coolant to RCPs 
DELP Differential pressure across RCPs 
PIN Inlet pressure to RCPs 
TEMPLOWRAD Lower radial-bearing temperature of RCPs 
TEMPWIND Winding temperature of RCP motors 
TEMPTHRUST Thrust bearing temperature of RCPs 
TEMPTHRUSTSHOE Thrust shoe bearing temperature of RCPs 
TEMPUPPERLOWER Upper lower bearing temperature of RCPs 
TEMPTHRUSTLOWER Lower thrust bearing temperature of RCPs 
PUMPSPEED Speed of RCP pumps 
MOTORSPEED Speed of RCP motors 
MOTCURR Current for RCP motors 
CCWFLOW Return flow for component cooling water system for each corresponding RCP 
SURGETANK Level of surge tank in the component cooling water system 
RODPOS Control rod position 
jmrcs12a Flag within GPWR corresponding to thermal barrier leakage in RCP1 

 
Figure 3 (a) represents the correlations obtained with the BOL dataset up to the leakage rate of 5 gpm. 

The variable SURGETANK3, corresponding to the level in the surge tank number 3 in the component 
cooling water system, exhibits strong positive correlations with the leakage rate, suggesting its dominant 
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influence during BOL. FLOW- and TEMP-related variables show minimal correlation, indicating that the 
system operates under nominal conditions where other dynamics play a critical role. DELP, MOTCURR, 
and TEMPWIND also exhibit small coefficient values, suggesting limited relevance to leakage detections 
in the early phase. 

The correlations obtained with the MOL dataset up to 5 gpm are shown in Figure 3 (b). As the system 
progresses to the MOL phase, MOTCURR’s influence moderates, while CCWFLOW1 and 
SURGETANK1&2 start showing more negative values. PUMP speeds start showing fewer correlations, 
indicating that mechanical components do not gain importance in predicting leakage as the system ages. 
In addition, TEMPTHRUST, TEMPTHRUSTSHOE, and TEMPUPPERLOWER variables start 
becoming positive, while they are negative in the BOL phase. 

In the EOL scenario, the dominance of influential variables shifts notably as seen in Figure 3 (c). 
Flow-related variable CCWFLOW, corresponding to the return flow line on the component cooling water 
system, emerges as the strongest contributors to the leakage rate. Mechanical variables like motor and 
pump speeds also show small correlations, suggesting that mechanical degradation plays a less significant 
role in leakage during this phase. TEMPLOWRAD, corresponding to lower radial-bearing temperature 
variables, exhibits increased correlations changing over core life from BOL to EOL. The overall decrease 
in the diversity of correlated features reflects the complexity of system behavior in the later stages, 
highlighting the nonlinear and multifaceted interactions between subsystems. 

Figure 4 highlights the evolving influence of various features across the operational phases and 
leakage ranges. In the BOL scenario, the correlations reveal that SURGETANK3 impacts the leakage 
rate, indicating their stabilizing role during the early-stage of degradation. This behavior aligns with the 
BOL scenario up to 5 gpm shown in Figure 3 (a), although the amplitudes are larger when considering the 
extended leakage range. The increased correlations for temperature-related features 
(e.g., TEMPFLOWRAD, TEMPTHRUST, and TEMPUPPERLOWER corresponding to different bearing 
temperatures) and flow-related features (e.g., CCWFLOWs) suggest their growing relevance under larger 
leakage conditions. 

The MOL dataset, represented in Figure 4 (b), reflects a similar trend to the BOL scenario but with 
notable differences in amplitude and sign. The features of CCWFLOWs and their trends do not change 
compared to Figure 3 (b), which represents a negative sign for CCFLOW1, and positives for CCFLOW2 
and CCFLOW3; however, their amplitudes get larger. This flipping of signs emphasizes the dynamic 
nature of system behavior as degradation progresses. Additionally, features like RCSPRS and PZRTEMP 
(reactor coolant pressure and pressurizer temperature, respectively) show significant variability in their 
influence, further underscoring the changing dynamics of the system under increasing leakage. 

In the EOL phase, shown in Figure 4 (c), the system’s behavior becomes even more complex. While 
the overall trend mirrors the MOL phase, features like SURGETANK1 and SURGETANK2 exhibit 
flipped correlations, transitioning from negative in the MOL phase to positive in the EOL phase. This 
shift highlights the evolving role of these features as the system approaches the end of its life cycle. 
Temperature-related features and flow variables continue to dominate, indicating their critical importance 
in predicting leakage under severe conditions. 
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Figure 3. Pearson correlation to leakage rates up to 5 gpm. Panels (a): BOL, (b) MOL, and (c) EOL 
datasets. 
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Figure 4. Pearson correlation to leakage rates between 5 and 50 gpm. Panels (a): BOL, (b) MOL, and (c) 
EOL datasets. 
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3.1. Model Training and Selection 
ML/AI-based models are effective enabling technologies that can 

be used to predict and detect faults in pump data and classify the type 
of fault within a pump based on the real-time data received. Two 
major categories of supervised ML/AI models are classification and 
regression. The former outputs classes from a discrete set (e.g., 
binary), while the latter outputs a continuous value. In this research, 
the regression algorithms are needed since the objective is to predict 
the quantity of the leakage rate. A fully connected neural network 
(FCNN), with a baseline architecture as shown in Figure 5, was 
employed. It is a fundamental deep-learning model architecture, where 
each neuron in one layer is connected to every neuron in the next. 
FCNNs can be effective for general regression tasks. The model is 
composed of three parts: (1) input layer, (2) hidden layer(s), and (3) 
output layer. The input layer shape is based on the number of inputs, 
and in this use case it was set to 53, the number of variables remaining 
after the Pearson correlation step. The number of outputs is dependent 
on the quantities of interest, and it was set to 1 (i.e., leakage rate). The 
number of hidden layers and number of neurons per hidden layer were 
selected through the hyperparameter tuning and were integrated within 
the nested cross-validation (NCV) task to ensure the accuracy matched 
the ground truth. The rationale behind selecting this method is (1) by ensuring that no data used for 
hyperparameter tuning is used for final evaluation, NCV provides a realistic performance estimate; (2) 
NCV averages results from multiple outer loop runs, reducing variance and making performance 
estimates more stable and reliable; and (3) it is agnostic to hyperparameter tuning strategies (i.e., grid 
search, random search, Bayesian optimization). 

The model training strategy was designed to ensure robust performance and unbiased evaluation. The 
entire original dataset, comprising the nine simulations, was split into three with all BOL, MOL, and EOL 
cases group together. These datasets were then divided into three parts: training, validation, and test 
datasets, with proportions of 35%, 35%, and 30%, respectively, as shown in Figure 6 (a). To ensure all 
data variables are in the same range so that all variables have an equal effect on the training of the ML 
algorithms, the training dataset was first scaled using the min-max scaling method, which normalizes the 
features to a range of [0, 1]. This makes sure that the input variables are on a consistent scale to facilitate 
effective model training. The min-max scaling formula is given by the following: 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
 

where 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the scaled input variable, and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum values 
of the input variable of interest in the training dataset. The scaling parameters (i.e., minimum and 
maximum values for each feature) were computed from the training dataset to avoid data leakage. 
Subsequently, the same scaling parameters were utilized to normalize the validation and test datasets, 
ensuring consistency across all datasets during the evaluation process. 

In our 5×2 NCV seen in Figure 6 (b), each outer fold begins with a dedicated training portion, which 
is used for hyperparameter tuning via a 2-fold inner cross-validation. In this inner loop, multiple 
hyperparameter configurations are evaluated by alternating between training and validation subsets. Once 
the optimal hyperparameters are identified, they are fixed and used to train the final model on the entire 
training portion of that outer fold. This trained model is then evaluated on the held-out outer test set, 
ensuring that no data used for hyperparameter tuning is involved in performance evaluation. Importantly, 
while model training occurs within each outer loop, no further hyperparameter tuning is performed in this 

Key Considerations 
 
Model training and selection 
followed by data 
preprocessing.  
 
Optimal model chosen 
through comparison of 
performance accuracies 
using metrics like MSE, 
MAE, RMSE, and R2 score 
of different algorithms. 
 
Hyperparameter 
optimization of chosen 
model via cross validation 
methodologies to ensure 
optimal model performance.    
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step. The outer loop simply ensures that the final model, trained with preselected hyperparameters, is 
evaluated on truly unseen data. This approach yields five independently trained models, each evaluated on 
separate outer test sets, providing an unbiased estimate of generalization performance. The validity of this 
method has been demonstrated in our work [11]. 

Once the optimal hyperparameters were identified through NCV, the model was trained on the entire 
training dataset without further partitioning. At this stage, the hyperparameters remained fixed and were 
not reoptimized. The training process incorporated early stopping, where a separate hold-out validation 
dataset was used to monitor the model’s performance during training. The purpose of this hold-out 
validation dataset was solely to prevent overfitting, ensuring that training stops once performance no 
longer improves. This validation dataset was not used for hyperparameter selection or tuning. Instead, it 
acted as a checkpoint to identify the best performing model configuration while preserving generalization 
capability. Finally, after training was completed, the model’s generalization performance was assessed on 
a completely independent hold-out test dataset, which had never been used in any previous training or 
validation step. This strict separation between training, validation (for early stopping), and testing ensured 
that the final model evaluation provided an unbiased estimate of real-world performance. For the 
evaluation of the hold-out test dataset, three metrics were computed to assess the model’s predictive 
performance: R² (coefficient of determination), mean absolute error (MAE), and root mean squared error 
(RMSE). 

 
Figure 5. Architecture of FCNN model where the number of input variables is 53 and the number of 
outputs is 1. 

 
Figure 6. (a) Training-validation-test data splitting and (b) 5×2 NCV. (a) Training-validation-test data 
splitting: the dataset is divided into three parts: training (35%), validation (35%), and test (30%). The 
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validation and test sets are held out to ensure unbiased evaluation. The validation set is used for early 
stopping to prevent overfitting, while the test set is used only once for final model evaluation. (b) 5×2 
NCV: the outer loop performs 5-fold cross-validation, where each fold serves as an independent test set, 
ensuring the model is evaluated on unseen data multiple times. The inner loop is responsible for 
hyperparameter tuning using 2-fold cross-validation, where different model configurations are evaluated 
on training-validation splits. 

R2 measures the proportion of the variance in the target variable 𝑦𝑦 explained by the model’s 
predictions 𝑦𝑦�. An R2 value closer to 1 indicates that the model accurately predicts the target variable, 
whereas a lower value reflects limited predictive power. 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − y�)2𝑁𝑁
𝑖𝑖=1

 

MAE calculates the average absolute difference between predicted and actual values, providing an 
intuitive measure of prediction error in the same units as the target variable. Lower MAE values indicate 
higher accuracy. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑁𝑁

𝑖𝑖=1

 

RMSE captures the square root of the average squared differences between predicted and actual 
values. It penalizes larger errors more heavily than MAE, making it particularly sensitive to outliers or 
significant deviations in predictions. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  =  �
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑁𝑁

𝑖𝑖=1

 

The training configuration for all tasks adhered to a consistent set of baseline hyperparameters to 
ensure uniformity and comparability across models. The training processes employed the mean squared 
error (MSE) loss function as the optimization objective. The MSE is defined as 

𝑀𝑀𝑀𝑀𝑀𝑀  =  
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖  −  𝑦𝑦𝚤𝚤�)2
𝑁𝑁

𝑖𝑖=1

 

where 𝑦𝑦𝑖𝑖 represents the true value, 𝑦𝑦𝚤𝚤�  is the predicted value, penalizing larger errors and driving the model 
to minimize significant prediction discrepancies. 

The FCNN model architecture is shown in Figure 5. In this study, the number of input variables was 
set to 53 as decided with the result of the Pearson correlation, and the output was a single value 
(i.e., leakage rate). The hyperparameter optimization process focused on tuning the number of hidden 
layers, constrained between 2 and 4, and the number of neurons per layer, selected from 128, 256, or 512. 
These configurations were determined during the 5x2 NCV phase, ensuring an optimal balance between 
model complexity and performance. 

For all training tasks, the batch size was fixed at 16, with a maximum of 500 epochs. Early stopping 
with patience of 10 epochs was employed to halt training when the validation loss showed no 
improvement, thus mitigating overfitting. The optimization process used the Adam optimizer, with a 
learning rate of 1 × 10−3, an L2 regularization penalty (1 × 10−5) to prevent overfitting, and a dropout 
rate of 5 × 10−2 in the hidden layers. The rectified linear unit (ReLU) activation function was adopted 
across all hidden layers to introduce nonlinearity and enhance learning capability. ReLU was chosen as 
the activation function because our target variable, thermal barrier leakage rate, only takes positive 



 

17 

values. Since ReLU outputs only non-negative values ( max( 0, 𝑥𝑥 ), it ensures that the model does not 
produce non-physical negative predictions, unlike activation functions such as Tanh or Sigmoid, which 
generate outputs in (−1,1) and (0,1), respectively. Additionally, ReLU helps avoid the vanishing gradient 
problem, allowing deeper networks to train efficiently by maintaining larger gradients for positive inputs. 
It is also computationally efficient, as it only requires a simple max(0,x) operation, unlike Sigmoid and 
Tanh, which involves exponentiation. Importantly, ReLU was not a tuned hyperparameter but rather a 
deliberate design choice based on the nature of our problem. The list of hyperparameters (chosen 
manually) and optimized hyperparameters are summarized in Table 4. 

Table 4. List of hyperparameters and ranges of hidden layers and neurons for hyperparameter search. 
Hyperparameter Value 

Batch size 16 
Number of epochs 500 
Early stops patience  10 
Adam optimizer - 
Learning rate 1E-3 
L2 regularization  1E-5 
Dropout probability 0.05 
Activation functions ReLU 
Number of hidden layers*1 2, 3, or 4 
Number of neurons per layer*1 128, 256, or 512 

 
The results of the NCV for the BOL, MOL, and EOL datasets up to 5 gpm are presented in Table 5, 

Table 6, and Table 7, respectively. These tables summarize the MSE computed for each outer fold, along 
with the corresponding configurations of hidden layers. Based on lowest MSE for each scenario, the 
optimal hyperparameters were selected. 

The hyperparameter selection process in NCV was based on identifying the configuration that 
achieved the lowest validation MSE across the outer cross-validation folds. Unlike model performance 
metrics, which can be statistically averaged, hyperparameters such as the number of hidden layers and 
neurons are discrete architectural choices that cannot be meaningfully averaged across folds. For instance, 
if one fold selects two hidden layers while another selects four, averaging would suggest three hidden 
layers, which was never tested and may not yield optimal performance. Similarly, averaging the number 
of neurons per layer (e.g., 128 and 512) would result in an arbitrary value that does not necessarily 
correspond to the best performing configuration. Therefore, instead of averaging across folds, we selected 
the hyperparameter set that achieved the lowest MSE across all outer folds, ensuring that the final model 
architecture is based on the most effective configuration found during validation. This approach ensures 
that we maximize generalization performance rather than introducing suboptimal averaged values. The 
MSE reported for other folds, such as fold 2 in Table 5, is not disqualifying but reflects the expected 
variability due to different data partitions. This variation is inherent in NCV and does not indicate poor 
model performance. Each outer fold represents a different training-test split, and some partitions are 
expected to lead to slightly higher or lower MSEs. The purpose of NCV is not to evaluate the final model 
but to robustly select the best hyperparameters. Once the optimal hyperparameters were identified, the 
model was retrained using the entire (unpartitioned) training dataset to leverage all available data for 
learning. The final generalization performance was evaluated on a completely independent hold-out test 
set, ensuring an unbiased and independent assessment of the model’s real-world predictive capability. For 
the BOL dataset (see Table 5), the configuration with hidden layers [128, 128, 128] yielded the lowest 
MSE of 7.18 × 10−4 in fold 4. Similarly, for the MOL dataset (see Table 6), the configuration [128, 128, 
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128, 128] achieved the lowest MSE of 7.74 × 10−4 in fold 2. For the EOL dataset (see Table 7), the best 
configuration was [128, 128, 128], with the lowest MSE of 8.50 × 10−4 in fold 4. 

Table 5. Results of NCV for BOL dataset up to 5 gpm. 
Fold ID Hidden layer MSE (cross-validation) 

1 [256, 256, 256] 7.64E-4 
2  [128, 128, 128] 1.04E-2 
3 [512, 512, 512, 512] 3.00E-3 
4 [128, 128, 128] 7.18E-4 
5 [256, 256, 256] 8.12E-4 

Average – 3.14E-3 
 
Table 6. Results of NCV for MOL dataset up to 5 gpm. 

Fold ID Hidden Layer MSE (Cross-Validation) 
1 [256, 256, 256, 256] 1.07E-3 
2  [128, 128, 128, 128] 7.74E-4 
3 [256, 256, 256, 256] 1.05E-3 
4 [128, 128, 128, 128] 1.21E-3 
5 [256, 256, 256] 8.69E-4 

Average – 9.94E-4 
 
Table 7. Results of NCV for EOL dataset up to 5 gpm. 

Fold ID Hidden Layer MSE (Cross-Validation) 
1 [512, 512, 512] 1.68E-3 
2  [256, 256, 256] 1.10E-3 
3 [128, 128, 128] 7.43E-4 
4 [128, 128, 128] 5.50E-4 
5 [256, 256, 256] 1.31E-3 

Average – 1.08E-3 
 

For the datasets up to 50 gpm, the results of NCV for the BOL, MOL, and EOL phases are presented 
in Table 8, Table 9, and Table 10, respectively. The configurations of hidden layers with the lowest MSE 
values are summarized. 

In the BOL dataset (see Table 8), the configuration with hidden layers [512, 512] demonstrated the 
lowest MSE of 3.46 × 10−2 in fold 5. For the MOL dataset (see Table 9), the configuration [256, 256, 
256] achieved the lowest MSE of 4.14 × 10−2 in fold 2. In the EOL dataset (see Table 10), the 
configuration [512, 512, 512] showed the best performance with the lowest MSE of 4.35 × 10−2 in fold 
1. 

Table 8. Results of NCV for BOL dataset up to 50 gpm. 
Fold ID Hidden Layer MSE (Cross-Validation) 

1 [512, 512] 1.72E-1 
2 [256, 256, 256, 256] 2.81E-1 
3 [256, 256, 256] 9.69E-2 
4 [512, 512, 512, 512] 4.18E-2 
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5 [512, 512] 3.46E-2 
Average – 1.25E-1 

 
Table 9. Results of NCV for MOL dataset up to 50 gpm. 

Fold ID Hidden Layer MSE (Cross-Validation) 
1 [256, 256, 256] 4.14E-2 
2 [512, 512] 4.75E-2 
3 [256, 256, 256] 9.05E-2 
4 [256, 256, 256, 256] 1.51E-1 
5 [128, 128, 128, 128] 4.52E-2 

Average – 7.50E-2 
 
Table 10. Results of NCV for EOL dataset up to 50 gpm. 

Fold ID Hidden Layer MSE (Cross-Validation) 
1 [512, 512, 512] 4.35E-2 
2 [128, 128] 4.94E-1 
3 [128, 128, 128] 7.07E-2 
4 [512, 512] 5.34E-2 
5 [512, 512] 1.93E-1 

Average – 1.25E-1 
 

As mentioned earlier, the models were trained again using the entire training dataset (without further 
partitioning) using obtained hyperparameters; then, the final model performance evaluations were 
performed on the hold-out test datasets. The results of the model performance evaluations are presented 
and discussed in the following section. 

It must be emphasized here that the validation data used for early stopping during the final training 
and the test data used for model performance evaluation after training are both hold-out datasets, which 
are unseen and not used in NCV. The analysis focused on training architectures with a constant number of 
neurons per layer, rather than varying neurons across layers, primarily to ensure computational efficiency, 
and maintain a manageable hyperparameter search space. Allowing different neuron counts across layers 
would have significantly expanded the hyperparameter space, exponentially increasing possible 
configurations. Since NCV was used for parameter selection, incorporating additional variability in 
neuron counts per layer would have dramatically increased computational cost without a guaranteed 
improvement in model performance. Furthermore, the selected architectures with constant neuron counts 
(128, 256, or 512 per layer) provided sufficient model capacity to capture complex patterns in the data, as 
demonstrated by the low MSE values in Table 5, Table 6, and Table 7. The results suggest that increasing 
network depth (i.e., the number of hidden layers) already allowed the model to learn representations 
effectively without needing non-uniform neuron distributions. Therefore, maintaining a constant number 
of neurons per layer was a deliberate design choice to balance performance, computational feasibility, and 
hyperparameter optimization complexity. While varying neuron counts between layers remain an avenue 
for future exploration, the current approach ensures a structured and efficient model selection process 
without unnecessary complexity. 

3.2. Model Performance 
In this section, the performance of the FCNN models is evaluated and compared across different ML 

techniques, including linear regression, support vector regression (SVR), and Elastic Net regularized 
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regression. Linear regression is one of the simplest modeling methods, capturing a linear relationship 
between input and output. It assumes that the relationship can be represented as a weighted sum of input 
variables plus the intercept term. SVR is more complex compared to the linear regression and is an 
extension of support vector machines (SVMs). SVR aims to fit a function that deviates from the observed 
outputs by no more than a specified tolerance, while minimizing model complexity. Elastic Net 
regularized regression is a regularized linear regression method that combines 𝐿𝐿1 (Lasso) and 𝐿𝐿2 (Ridge) 
penalties to improve generalization, especially in cases where input features are correlated. The 𝐿𝐿1 
penalty is based on the sum of the absolute values of the model coefficients, which reduces model 
complexity and allows for feature selection by excluding irrelevant features from the model. In contrast, 
the 𝐿𝐿2 penalty relies on the sum of the squared values of the coefficients. It helps prevent overfitting by 
discouraging excessively large coefficients. This method is suitable for high-dimensional datasets with 
potential feature correlations. 

Initially, the model performance of various algorithms for leakage rate estimation was evaluated 
across three operational datasets: BOL, MOL, and EOL. They were capped for leakage rates at 5 gpm to 
focus on the model’s ability to capture an onset of degradation at very low-leakage values <5 gpm. Each 
algorithm’s performance is summarized in Table 11, Table 12, and Table 13 for BOL, MOL, and EOL 
datasets. 

For the BOL dataset (see Table 11), FCNN outperformed other models with an R² score of 0.9998, an 
RMSE of 0.0227 gpm, and an MAE of 0.0178 gpm, indicating its high accuracy and robustness on the 
hold-out test dataset. Linear Regression and SVR also exhibited strong performance with R² scores of 
0.9971 and 0.9934, respectively, although their MAE and RMSE values were higher than FCNN. Elastic 
Net achieved the lowest performance in this phase, with an R² score of 0.9543 and significantly higher 
error values. 

The MOL dataset (see Table 12) revealed similar trends, with FCNN achieving R² of 0.9997, RMSE 
of 0.0293 gpm, and MAE of 0.0191 gpm. Both Linear Regression and SVR provided competitive results 
with R² scores of 0.9972 and 0.9967, although their MAE and RMSE values were higher than those of 
FCNN. While showing improved performance compared to the BOL dataset, Elastic Net still 
underperformed compared to other methods with an R² score of 0.9910 and noticeably higher error 
metrics. 

For the EOL dataset (see Table 13), FCNN maintained its superior performance, achieving an R² 
score of 0.9997, an RMSE of 0.0256 gpm, and an MAE of 0.0193 gpm. SVR demonstrated slightly better 
performance in this phase than in the BOL and MOL datasets, achieving an R² score of 0.9975, making it 
a viable alternative for this dataset. Linear Regression performed adequately with an R² score of 0.9949, 
while Elastic Net continued to exhibit the lowest predictive accuracy with an R² score of 0.9572 and 
higher error values. 

The results demonstrate that FCNN consistently outperformed other models across all datasets 
corresponding to <5 gpm leakage, highlighting its ability to effectively capture the underlying 
relationships in leakage rate detection tasks. Linear Regression and SVR also provided satisfactory 
detections, making them suitable for applications. 

Table 11. List of model performances on BOL test dataset up to 5 gpm. 

 

Algorithm R2 Score RMSE MAE 
FCNN 9.998E-01 2.27E-02 1.78E-02 
Linear Regression 9.971E-01 8.63E-02 6.70E-02 
SVR 9.934E-01 1.30E-01 1.08E-01 
Elastic Net 9.543E-01 3.42E-01 2.68E-01 
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Table 12. List of model performances on MOL test dataset up to 5 gpm. 

 
Table 13. List of model performances on EOL test dataset up to 5 gpm. 

 
For the studies of the severity and evolution of degradation, the models were prepared on the BOL, 

MOL, and EOL datasets corresponding to leakage greater than 5 gpm and less than 50 gpm of leakage 
rate. To keep consistency with the first task (i.e., the leakage rate up to 5 gpm), the models tested include 
FCNN, Linear Regression, SVR, and Elastic Net. Each algorithm’s performance is summarized in 
Table 14, Table 15, and Table 16 for BOL, MOL, and EOL datasets, respectively. 

As shown in Table 14, the FCNN model on BOL dataset showing 𝑅𝑅2 score of 0.9997 indicates 
agreement between the predicted and actual values, with MAE of 0.103 and RMSE of 0.168, reflecting 
detections of thermal barrier leakage during the early-stage of system operation. The FCNN model on the 
MOL dataset (see Table 15) shows comparable performance, achieving a 𝑅𝑅2 score of 0.9998, with 
slightly higher MAE and RMSE values of 0.120 and 0.180, respectively. Similarly, the FCNN model on 
the EOL dataset achieves a 𝑅𝑅2 score of 0.9993, MAE of 0.153, and an RMSE of 0.236 as shown in Table 
16. These results indicate that the models are capable of generalizing unseen data, providing reliable 
detections across all reactor operating conditions. Across all three datasets corresponding to three 
different core life and for leakages > 5gpm, the FCNN models demonstrated the best performance, 
consistently achieving higher accuracy and lower error metrics than the other algorithms. While Linear 
Regression and SVR provided reasonably competitive metrics in certain cases, Elastic Net exhibited the 
highest errors and the lowest agreement with the observed data among the tested methods. These results 
reveal that FCNN models are a better selection for the problem, as evidenced by their consistently better 
performance than traditional regression-based and machine learning algorithms. 

Table 14. List of model performances of BOL test dataset up to 50 gpm. 

 
Table 15. List of model performances on MOL test dataset up to 50 gpm. 

Algorithm R2 Score RMSE MAE 
FCNN 9.998E-01 1.80E-01 1.20E-01 

Algorithm R2 Score RMSE MAE 
FCNN 9.997E-01 2.93E-02 1.91E-02 
Linear Regression 9.972E-01 8.54E-02 6.74E-02 
SVR 9.967E-01 9.16E-02 7.35E-02 
Elastic Net 9.910E-01 1.520E-01 1.220E-01 

Algorithm R2 Score RMSE MAE 
FCNN 9.997E-01 2.56E-02 1.93E-02 
Linear Regression 9.949E-01 1.14E-01 8.94E-02 
SVR 9.975E-01 7.95E-02 6.68E-02 
Elastic Net 9.572E-01 3.32E-01 2.59E-01 

Algorithm R2 Score RMSE MAE 
FCNN 9.997E-01 1.68E-01 1.03E-01 
Linear Regression 9.954E-01 6.60E-01 4.20E-01 
SVR 9.831E-01 1.26E+00 4.14E-01 
Elastic Net 9.544E-01 2.07E+00 9.73E-01 
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Linear Regression 9.957E-01 5.96E-01 3.764E-01 
SVR 9.938E-01 7.21E-01 3.34E-01 
Elastic Net 9.699E-01 1.58E+00 9.03E-01 

 
Table 16. List of model performance on EOL test dataset up to 50 gpm. 

Algorithm R2 Score RMSE MAE 
FCNN 9.993E-01 2.36E-01 1.53E-01 
Linear Regression 9.969E-01 5.09E-01 3.48E-02 
SVR 9.930E-01 7.63E-01 3.85E-01 
Elastic Net 9.543E-01 1.95E+00 1.15E+00 

 

3.3. Model Application for ACM 
As seen from model selection results, among the four selected, 

linear regression, SVM, FCNN, and Elastic Net, FCNN had the 
highest performance accuracies and is thus the optimal choice for 
developing an online condition monitoring methodology for thermal 
barrier leakage degradation in RCPs. The developed FCNN models 
have two goals: (1) to detect the onset of RCP degradation 
corresponding to thermal barrier leakage and (2) to predict the severity 
and evolution of the degradation. 

3.3.1. Detecting the Onset of Degradation 
To detect the onset of degradation, low values of thermal barrier 

leakage are considered. NUREG-2194 [10] mentions that operational 
leakage within RCP should be limited to 10 gpm for identified flow. 
Thus, the onset of degradation should be considered with the ability of 
the FCNN to capture leakages below 5 gpm to accurately capture the 
onset of the degradation corresponding to thermal barrier leakage. 
Thus, all data points corresponding to an output thermal barrier 
leakage of >5 gpm are disregarded, and the FCNN is trained, 
validated, and tested on all data points corresponding to leakage levels 
below 5 gpm. This shows the ability of FCNN as part of online 
condition monitoring to accurately capture the onset of a degradation 
corresponding to thermal barrier leakage. 

Figure 7 compares the ground truth leakage rate generated by the 
GPWR simulator and the leakage rate obtained using the FCNN model 
for the BOL dataset with leakage rates limited to 5 gpm. Panels (a), (b), and (c) show leakage rate 
comparisons at 100%, 77%, and 52% reactor power. The figures demonstrate an agreement between the 
predicted and simulated values across the entire range of samples. Panels (d), (e), and (f) present the 
absolute error at each power level, showing generally low errors but increased deviations in transition 
regions. Notably, the model needs help reconstructing rapid transition regions appearing approximately 
every 500 samples. This discrepancy is likely due to a lack of sufficient training data for these rapid 
transitions, leading to reduced accuracy in reconstructing sharp changes. The FCNN model appears to 
anticipate an increase in the leakage rate before it occurs in the GPWR simulation. It may be learning a 
subtle pattern in the input features that acts as a precursor to an increase in the leakage rate. If the GPWR 
simulation outputs are strictly piecewise-linear, but the model was trained on more granular features, it 

Key Considerations 
 
Model application followed 
by model selection and 
training for ACM.  
 
Trained model for ACM use 
case to detect onset of 
degradation and predict the 
severity of degradation over 
different core lifecycles. 
 
Metrics like LIME 
incorporated to assist with 
model explainability, 
trustworthiness, and 
interpretability.  
 
UQ analysis conducted over 
model developed for ACM 
to understand model 
performance over different 
scenarios and lifecycles. 
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may be extrapolating ahead of the GPWR step changes. This indicates that the ML model may be more 
sensitive to precursor signals than the actual leakage rate indicated by the GPWR simulation. 

Figure 8 presents the MOL dataset results, showing the same comparison between the GPWR 
simulator and the FCNN outputs. Panels (a), (b), and (c) show the leakage rate predictions at 100%, 77%, 
and 52% reactor power, respectively. Similar to the BOL case, the predicted leakage rate curve closely 
follows the ground truth values, even during transitions between distinct operational levels. It indicates 
that the model effectively captures the intermediate system dynamics. Panels (d), (e), and (f) illustrate the 
absolute error at each power level. While the error remains low across most samples, deviations are more 
noticeable in transition regions, likely due to a lack of sufficient training data for rapid changes. 

Figure 9 illustrates the results for the EOL dataset, where the system is expected to experience more 
pronounced variations in leakage rates. Despite these challenges, the FCNN model exhibits high 
accuracy, with the predicted curve remaining closely aligned with the simulation across all samples as 
shown in panels (a), (b), and (c). Panels (d), (e), and (f) present the absolute error at each power level. 
While the errors remain low overall, deviations are more noticeable during rapid transitions, consistent 
with observations from the BOL and MOL datasets. The model’s ability to track sharp changes in leakage 
rates without overshooting or lagging demonstrates its robustness and adaptability during the later stages 
of system operation. Overall, Figure 7, Figure 8, and Figure 9 demonstrate the FCNN model’s capability 
to accurately predict leakage rates across different operational stages under the constraint of leakage rates 
up to 5 gpm. The model demonstrates strong performance in capturing the gradual trends and operational 
dynamics, even during periods of increased system complexity. However, the discrepancies observed in 
rapid transition regions, especially in the BOL dataset, underline the importance of improving data 
representation in those specific operational ranges. Despite these limitations, the model’s consistency in 
following the ground truth values across all datasets underscores its robustness and utility for systems’ 
real-time monitoring and detection tasks. These findings validate the potential of the FCNN model to 
enhance operational reliability and support anomaly detection in critical systems. 
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Figure 7. Comparison between GPWR simulation and FCNN model output for BOL test dataset. 
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Figure 8. Comparison between GPWR simulation and FCNN model output for MOL test dataset. 
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3.3.2. Predicting the Severity and Evolution of Degradation 
The second application of the online condition monitoring methodology focusing on FCNN is to 

predict the severity and evolution of degradation. To do this, all data points corresponding to an output 
thermal barrier leakage between 5 and 50 gpm are considered. Given a particular data point corresponding 
to monitored plant variables, RCP variables, and component cooling water system variables, a trained 
FCNN model should predict a leakage value depicting the severity of degradation. 

Figure 10 compares the ground truth leakage rates simulated by the GPWR model with FCNN 
predictions for the BOL dataset, covering leakage rates up to 50 gpm. Panels (a), (b), and (c) show the 
leakage rate predictions at 100%, 77%, and 52% reactor power, respectively. Panels (d), (e), and (f) 
present the absolute error at each power level. The FCNN predictions align closely with the GPWR 
output, demonstrating high accuracy across the entire leakage rate range. The inset focuses on low-
leakage rates (up to 5 gpm), where the model captures both small-scale variations and large-scale trends 
with minimal deviation, highlighting its adaptability to diverse operational conditions. 

Figure 11 presents the FCNN-predicted leakage rates for the MOL dataset, and panels (a), (b), and (c) 
show the leakage rate predictions at 100%, 77%, and 52% reactor power, respectively. Panels showing 
strong agreement with the ground truth, particularly in the higher leakage range. In the inset, focusing on 
leakage rates up to 5 gpm, the model accurately captures trends up to 1 gpm but struggles with finer 
details at higher points in this range. Also, as panel (d), (e), and (f) express the absolute errors, 
discrepancies reflect the influence of the target feature’s range (0 to 50 gpm) on the training process, 
where the loss function is dominated by higher leakage regions, leading to reduced sensitivity in the low-
leakage range. While the model performs well in capturing general trends and transitions, its predictions 
in the low-leakage region require further refinement. 

Figure 9. Comparison between GPWR simulation and FCNN model output for EOL test dataset. 



 

27 

Figure 12 compares the FCNN-predicted leakage rates with the GPWR simulator results for the EOL 
dataset. Panels (a), (b), and (c) show the leakage rate predictions at 100%, 77%, and 52% reactor power, 
respectively. The model aligns with the ground truth across the full range, particularly in the high-leakage 
regions and during steep transitions. However, as shown in the inset focusing on leakage rates up to 
5 gpm, the model needs help to reconstruct the ground truth beyond approximately 3 gpm. This behavior 
is consistent with the previously observed influence of the target distribution, where higher leakage 
regions dominate the training process. 

 

 
 

Figure 10. Comparison between GPWR simulation and FCNN model prediction for BOL test dataset up 
to 50 gpm. 
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Figure 11. Comparison between GPWR simulation and FCNN model prediction for MOL test dataset up 
to 50 gpm. 
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3.4. Model Explainability 
The integration of Local Interpretable Model-Agnostic Explanations (LIME) enhances the 

interpretability of the FCNN model, offering feature-level insights into predictions of leakage rates across 
operational phases. While FCNN provides accurate predictions, its black-box nature limits understanding 
of underlying mechanisms. LIME addresses this by generating localized explanations, identifying key 
features contributing to individual predictions. 

The figure generated by LIME provides a localized explanation for a single prediction made by the 
model. At the top in the figure, the intercept represents the baseline prediction, which is the average 
predicted value of the model across all instances used in LIME’s local surrogate model training. This 
intercept serves as the starting point for the prediction. The prediction local represents the final predicted 
value for the specific data instance under analysis. It is derived by adding or subtracting the contributions 
of individual features to or from the intercept. These contributions are visualized as horizontal bars, 
categorized into positive (orange) and negative (blue). Positive contributions indicate features that 
increase the predicted value, while negative contributions reduce it. 

Each feature’s condition (e.g., CCWFLOW1 <= -0.51gpm) is shown alongside its contribution value 
(e.g., 1.84). The condition specifies the value range or threshold the feature satisfies for this specific data 
instance. The length of the bar quantifies the magnitude of the feature’s influence on the prediction. 
Larger bars signify a greater contribution, whether positive or negative. 

For instance, the prediction local value is calculated as follows: start with the intercept, then adjust by 
adding the values of positive contributions and subtracting the values of negative contributions. This 

Figure 12. Comparison between GPWR simulation and FCNN model prediction for EOL test dataset up 
to 50 gpm. 
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cumulative process results in the final predicted value for the specific data instance. The LIME figure thus 
provides a transparent, localized explanation of how the model arrived at the prediction, highlighting the 
most influential features and their respective impacts. 

For early degradation (up to 5 gpm) shown in Figure 13, flow-related parameters like CCWFLOW1 
and tank-related features such as SURGETANK3 are identified as dominant contributors. As degradation 
progresses to higher leakage rates (up to 50 gpm), feature interactions become more complex. During the 
MOL phase depicted in Figure 14, temperature-related metrics (e.g., TEMPUPPERLOWER), additional 
parameters (e.g., SURGETANK1 and 2), and CCWFLOWs have large contributions. By the EOL phase 
in Figure 15, a broader range of inputs, including temperature and motor-related features 
(e.g., MOTCURR2), emerge as critical contributors, highlighting the system’s increased complexity in 
late-stage degradation. 

The consistent identification of key features, such as CCWFLOW1 and SURGETANK3, underscores 
their critical roles across all phases, while evolving feature contributions reflect the model’s adaptability 
to system transitions. By linking predictions to operational parameters, LIME provides localized insights 
into model behavior, helping to interpret the relationship between data-driven predictions and physical 
system dynamics, as also evident in previous work [12]. Additional results and insights on LIME 
explanations are described in Appendix A. 

 
Figure 13. LIME explanations for BOL test dataset up to 5 gpm. 
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3.5. Uncertainty Quantification 
Monte Carlo sampling (MCS) – based UQ analysis was conducted using the pretrained FCNN models 

prepared in the previous section. It involves random sampling from the distributions of uncertain input 
variables (i.e., probability distribution functions) and propagating these samples through the model to 
estimate the uncertainty in the output. Gaussian distributions with a standard deviation of 10% are used 
for each input variable to model uncertainty in the MCS process. This approach captures uncertainties in 
the input variables at a given point in the system’s evolution, rather than across the entire time series. 
Each Monte Carlo sample represents a single input-output realization, meaning that the sampling process 
evaluates how input variability affects predictions at a specific instance rather than modeling the full 
temporal evolution of the leakage rate. 

To estimate the uncertainty in the output 𝑦𝑦, MCS generates 𝑁𝑁 independent samples {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1𝑁𝑁  by 
drawing each 𝑥𝑥𝑖𝑖

(𝑖𝑖) from its corresponding distribution 𝐷𝐷𝑖𝑖. For each sample 𝑥𝑥(𝑖𝑖), the corresponding output 

Figure 15. LIME explanations for EOL test dataset 5 to 50 gpm. 

Figure 14. LIME explanations for MOL test dataset of 5 to 50 gpm. 
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is computed as 𝑦𝑦(𝑖𝑖) = 𝑓𝑓�𝑥𝑥(𝑖𝑖)�. The output distribution is then approximated using the set of output 
samples {𝑦𝑦(𝑖𝑖)}𝑖𝑖=1𝑁𝑁 . Statistical metrics such as the mean, variance, and confidence intervals can be 
determined based on this sampling. 

A convergence test was performed to decide the appropriate sampling size. The purpose of a 
convergence test is to determine the optimal number of samples required to balance accuracy and 
computational efficiency. By monitoring how mean values and uncertainty estimates stabilize as the 
sample size increases, the convergence test identifies the point where additional samples no longer 
contribute meaningful improvements. During the convergence test, the probability distribution functions 
of input variables are set to Gaussian distributions with a standard deviation of 10% for each variable. 
Figure 16 presents the results of the convergence test, showing the percentage change in the uncertainty 
of predicted leakage rate due to input variability as a function of the number of MC samples. Initially, at 
smaller sample sizes (e.g., 50 samples), the percentage change in uncertainty is significant, highlighting 
the sensitivity of the predicted leakage rate to variations in input samples. However, as the sample size 
increases, the changes in uncertainty estimates decrease, indicating improved stability in the results. 
Beyond approximately 100–200 samples, the percentage change in uncertainty consistently falls below 
the 1% threshold, demonstrating that the uncertainty in predicted leakage rates has effectively converged. 
For this problem, a sample size of around 200 achieves reliable and stable uncertainty estimates, 
balancing computational efficiency and prediction robustness. 

 

3.6. Results and Discussions 
After determining the optimal number of samples through the convergence test, UQ was performed 

for the BOL, MOL, and EOL models using a sample size of 200. The Gaussian distributions with 10% 
standard deviations were set for each input variable. This uncertainty level was intentionally set to this 
high value of 10% for evaluating synthetic upper limits of uncertainties for each input variable. In the real 
nuclear operations, the sensors for monitoring those parameters have uncertainties in their recorded 
values, though generally these uncertainties at the sensor level are less than 10% of the reported value. 

Figure 16. Number of MC samples vs. percentage changes in uncertainty of predicted leakage rate due to 
input variability. 
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Therefore, this study is intended to evaluate the effect of uncertainty modeled leakage rate under extreme 
noisy and erroneous conditions. 

3.6.1. UQ for Detecting the Onset of Degradation 
The UQ analysis for the FCNN models trained on the BOL, MOL, and EOL datasets up to 5 gpm is 

presented in Figure 17, Figure 18, and Figure 19, respectively. These figures illustrate the mean 
predictions, ground truth, and uncertainty bounds (±3 standard deviations). At the same time, the 
corresponding absolute error plots are depicted in the lower panels. 

In Figure 17, the mean predictions closely follow the ground truth across the dataset, demonstrating 
the model’s ability to capture system dynamics effectively. However, the uncertainty bounds increase as 
the leakage rate rises, with the widest intervals observed during the steady-state period near 5 gpm. This 
suggests that the model exhibits greater variability in its predictions at higher leakage rates, potentially 
due to reduced data representation in this range or increased sensitivity to input uncertainties. 
Additionally, slightly wider uncertainty bounds are observed in transition regions where rapid changes in 
leakage occur, reflecting the model’s reduced confidence in predicting sharp transitions, which may be 
attributed to the limited representation of such dynamics in the training data. The absolute error plot 
reveals peaks at these transitions, particularly around sample indices corresponding to sudden increases in 
leakage rate. 

Figure 18 highlights the performance of the MOL model under increased operational variability. The 
mean predictions align closely with the ground truth throughout the dataset, with uncertainty bounds that 
remain consistently narrow. Compared to the BOL model, the MOL model demonstrates improved 
performance, particularly in transition regions, where the uncertainty bounds are narrower, and the 
absolute error is reduced. Peaks in the absolute error are still visible during periods of rapid leakage rate 
changes but are less pronounced than in the BOL case. Its improved accuracy and confidence suggest that 
the MOL model captures intermediate system dynamics more effectively. 

The EOL model results, shown in Figure 19, demonstrate the highest accuracy and robustness among 
the three phases. The mean predictions closely follow the ground truth with minimal deviations, and the 
uncertainty bounds remain consistently narrow, even during transition regions. The absolute error plot 
confirms this performance, showing smaller peaks than the BOL and MOL models. The reduced 
uncertainty and minimal error in the EOL model indicate its strong capability to predict leakage rates 
under complex system dynamics, particularly during the later life-cycle phases. The summaries with 
MAE, RMSE and average uncertainty for BOL, MOL and EOL are shown in Table 17. 

 
Figure 17. Result of UQ for BOL test dataset up to 5 gpm. 
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Figure 18. Result of UQ for MOL test dataset up to 5 gpm. 

 
Figure 19. Result of UQ for EOL test dataset up to 5 gpm. 

 
Table 17. Summary of UQ analysis for the datasets up to 5 gpm. 

Model MAE 
(gpm) 

RMSE 
(gpm) 

Averaged Uncertainty 
(gpm) 

BOL 3.00E-02 4.02E-02 1.09E-01 
MOL 2.47E-02 3.47E-02 1.12E-01 
EOL 2.70E-02 3.67E-02 1.23E-01 

 

3.6.2. UQ for Predicting the Severity and Evolution of Degradation 
The UQ analysis was conducted for datasets with leakage rates up to 50 gpm, corresponding to the 

BOL, MOL, and EOL phases. The primary objective of this analysis is to predict the severity and 
evolution of degradation, which becomes increasingly significant as leakage rates escalate. Figure 20, 
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Figure 21, and Figure 22 present the mean predictions, uncertainty bounds (±3 standard deviations), and 
absolute errors across the datasets, offering insights into the robustness and accuracy of the FCNN models 
under high-leakage conditions. 

For the BOL dataset (see Figure 20), the FCNN model successfully predicts the early stages of 
degradation, with the mean predictions closely aligning with the ground truth. The uncertainty bounds 
remain narrow during periods of stability but widen during sharp transitions where leakage rates escalate 
rapidly toward 50 gpm. The absolute error plot highlights minimal deviations during stable intervals and 
noticeable peaks during sudden transitions, indicating that the model encounters greater variability when 
predicting rapid changes in leakage behavior. These results suggest that the BOL model effectively 
identifies early trends in degradation severity but requires additional sensitivity near inflection points. 

The MOL dataset (see Figure 21) represents intermediate degradation stages, where the leakage rate 
progressively increases. The mean predictions align well with the ground truth, and the uncertainty 
bounds remain relatively narrow across the timeline. However, as with the BOL dataset, localized 
widening of uncertainty regions occurs during transitions, reflecting increased system variability during 
evolving degradation states. The absolute error plot shows recurring peaks, particularly near transitions, 
where leakage rates escalate sharply. These observations indicate that the model captures the gradual 
evolution of degradation while maintaining reliable performance during periods of increasing severity. 

The EOL dataset (see Figure 22) represents the later stages of degradation, where leakage rates 
exhibit significant escalation toward the maximum range of 50 gpm. The FCNN model achieves high 
predictive accuracy, with mean predictions closely tracking the ground truth throughout the timeline. 
Occasional peaks in absolute error are observed near rapid transitions but remain within acceptable limits. 
These results suggest that the model effectively handles complex, nonlinear system dynamics 
characteristic of the EOL phase due to a uniform distribution of data in both training and test sets. The 
summaries for BOL, MOL and EOL and their average uncertainties, MAE and RMSE values are shown 
in Table 18. 

The UQ results across the BOL, MOL, and EOL phases provide insights into the evolution of 
degradation severity: 

• Uncertainty Behavior: The uncertainty bounds are slightly wider in the BOL and MOL phases, 
particularly near transitions, reflecting greater variability during early and intermediate 
degradation states. In contrast, the EOL model maintains consistently narrow bounds, 
demonstrating higher confidence in predictions as degradation becomes more pronounced. 

• Error Distribution: The absolute error decreases progressively from BOL to EOL, with the EOL 
phase exhibiting the lowest error across the dataset. This trend highlights the model’s improved 
accuracy in capturing severe degradation states where patterns become more prominent. 

• Degradation Response: While the models capture evolving system behavior, uncertainty and 
absolute error increase at higher leakage rates, indicating reduced predictive confidence in severe 
degradation scenarios. This suggests greater sensitivity to input uncertainties or fewer high-
leakage samples in training. Quantifying uncertainty remains essential for assessing model 
reliability in monitoring degradation severity and evolution. 
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Figure 20. Result of UQ for EOL test dataset up to 50 gpm. 

 
Figure 21. Result of UQ for EOL test dataset up to 50 gpm. 

 
Figure 22. Result of UQ for EOL test dataset up to 50 gpm. 
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Table 18. Summary of UQ analysis for the dataset up to 50 gpm. 
Model MAE 

(gpm) 
RMSE 
(gpm) 

Averaged Uncertainty 
(gpm) 

BOL 1.19E-01 1.88E-01 2.84E-01 
MOL 9.60E-02 1.60E-01 2.45E-01 
EOL 1.61E-01 2.46E-01 2.63E-01 

 
This study focuses on detecting the onset of degradation and predicting its severity and evolution 

using FCNN models for leakage rates up to 50 gpm across three operational phases: BOL, MOL, and 
EOL. The results incorporate model predictions, UQ, and feature analysis using LIME, comprehensively 
evaluating system behavior under varying leakage conditions. 

The FCNN models demonstrated strong predictive performance across all phases. For the datasets 
limited to 5 gpm, the models accurately captured the onset of degradation, with predictions closely 
aligning with the ground truth and minimal error observed throughout the samples. Specifically, the BOL 
model displayed higher variability during transition regions, as indicated by the occasional widening of 
uncertainty bounds. This variability likely reflects the system’s rapid changes during early operational 
phases. The MOL model exhibited improved stability, narrowing uncertainty bounds as the system 
progressed toward more predictable operational states. The EOL model achieved the most consistent 
uncertainty bounds and lower absolute error, reflecting its robustness in capturing system behavior during 
advanced operational stages, where degradation mechanisms are more complex. 

For datasets extending to 50 gpm, the FCNN models effectively captured the evolution and severity 
of degradation. The mean predictions closely followed the ground truth, with relatively narrow 
uncertainty bounds, except at specific inflection points where sharp escalations in leakage rates occurred. 
FCNN results for the BOL data demonstrated higher uncertainty near transitions, where system variability 
is pronounced during early phases. Conversely, the MOL and EOL models displayed narrower 
uncertainty bounds and lower absolute error, indicating their improved ability to generalize over complex, 
high-leakage scenarios. Notably, the EOL model achieved the highest accuracy among all phases, 
indicating its reliability in predicting severe leakage events during later operational stages. 

The UQ results further validated the models’ robustness in predicting leakage rates across all 
operational phases. The narrow uncertainty bounds in steady-state regions reflect high confidence in the 
predictions. However, at inflection points characterized by abrupt changes in leakage rates, the widening 
of uncertainty bounds aligns with the physical behavior of the system during dynamic transitions. The 
absolute error plots confirm that deviations are most pronounced during these regions, where the system 
exhibits increased variability. Despite these deviations, the overall trends and magnitude of the predicted 
leakage rates closely align with the ground truth across all models. 

The comparative analysis across the BOL, MOL, and EOL phases emphasizes the importance of life-
cycle-specific modeling in addressing the evolving nature of degradation. The BOL model effectively 
identifies early signs of degradation but exhibits higher sensitivity to transitional changes due to limited 
data during these transitions, as these transitions happened over ramp functions with fewer data points 
during these rapid changes. In contrast, the MOL and EOL models achieve greater stability and predictive 
accuracy by incorporating progressively complex degradation dynamics. The EOL model, in particular, 
demonstrates a strong ability to generalize under advanced degradation conditions, where multiple 
features interact to influence leakage rates. 

In summary, integrating FCNN models with UQ provides a reliable framework for detecting and 
predicting system degradation across different operational phases. The UQ results further support the 
reliability of the predictions by quantifying uncertainties, ensuring confidence in the model’s performance 
under varying input conditions. These findings demonstrate the effectiveness of data-driven models in 
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real-time monitoring and condition assessment, particularly in systems where the underlying degradation 
mechanisms remain incompletely understood. Future work should focus on refining model performance 
during transitional phases and integrating physics-informed approaches to enhance interpretability and 
generalization across diverse operational states. 

4. SUMMARY 
This report details a use case demonstrating the technical considerations of integrating ACM in SSCs 

at nuclear facilities, including discussions on regulatory and technical aspects of the IST program. The 
use case is focused on performing a comprehensive analysis of ACM applied to a specific degradation 
mechanism, thermal barrier leakage in RCP. This report covers data analysis, model training, model 
selection, model performance evaluation, and UQ on data generated through multiple simulations in 
GPWR. This generated data contains simulations for different lifecycles, BOL, MOL, and EOL, 
containing thermal barrier leakages ranging from low values of less than 5 gpm all the way to 50 gpm. 
Different ML models were tested, and FCNN was chosen after model selection as FCNN had the highest 
performance on the data generated by GPWR. FCNN was used for leakages below 5 gpm to help with 
early detection and capturing onset of the degradation and for leakages up to 50 gpm to predict the 
severity of degradation. All datasets achieved high accuracy results with low error values for both 
capturing the onset of degradation and predicting severity of degradation. UQ analysis using MCS 
confirmed stable predictions at lower leakage rates but revealed increasing uncertainty at higher leakage 
levels, particularly around 5 gpm steady-state conditions. The model demonstrated reduced confidence in 
severe degradation scenarios, likely due to limited high-leakage training data and increased sensitivity to 
input variability. These findings highlight the importance of incorporating UQ in predictive maintenance 
applications to quantify confidence in model predictions. 

The ability to accurately detect the onset of degradation and assess its severity in real time can assist 
in predicting failures to optimize RCPs maintenance strategy. Using an RCP as an example, the use case 
described in this report demonstrates that by integrating ACM for NPP components with an IST program, 
it becomes possible to distinguish between normal operating fluctuations and early signs of degradation 
with a quantified level of confidence. Furthermore, ACM helps in severity assessment, providing insights 
into the progression of faults, such as bearing wear or thermal barrier leakage. This capability is essential 
for prioritizing maintenance actions, managing risks while continuing to ensure regulatory compliance. 
This report demonstrates the potential of ACM to enhance the safety, reliability, and efficiency of NPP 
operations. 

There is significant interest in using ACM to meet IST requirements and improve operations and 
maintenance efficiency. The NRC continues to evaluate the use of ACM technologies through research 
activities. In a follow up effort, the NRC is focused on exploring risk-informed, graded approaches for 
performance evaluation and reliability assessment of ACM technologies. The lessons learned from this 
project can be applied in implementing ACM technologies to monitor the performance of various NPP 
components. 
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Appendix A 
 

Model Interpretability Using LIME 
This supplementally section provides more detail on the LIME analysis given in Section 3.4. 

A-1. The Onset of Degradation 

The LIME explanations for the BOL dataset up to 5 gpm provide localized insights into the FCNN 
model’s predictions across specific instances. The results are illustrated in Figure 23, where panels (a), 
(b), (c), (d), and (e) correspond to test sample index at 750, 1750, 2750, 3750, and 4750, respectively. 
Each panel highlights the contributions of influential features, with positive and negative contributions 
marked in orange and blue, respectively. SURGETANK3 consistently exerts a negative influence, as 
observed in panel (a), where it reduces the predicted value to 0.48. In contrast, CCWFLOW1, 
SURGETANK1, and jmrcs12a frequently emerge as dominant positive contributors, increasing 
predictions at various sample indices. For instance, in panel (b), CCWFLOW1 and SURGETANK1 
elevate the predicted value to 1.49, while in panel (d), similar features contribute to a higher prediction of 
3.53 gpm. These observations reveal that, while certain features exhibit recurring importance, their 
contributions shift depending on the system’s operational state. Identifying and interpreting the influence 
of these key features highlight the FCNN model’s adaptability in reconstructing leakage rate predictions 
during early-stage degradation, particularly in the low-leakage region. 

The MOL dataset, shown in Figure 24, reveals similarities and notable differences compared to the 
BOL dataset. The LIME explanations for sample indices corresponding to timestamps 750, 1750, 2750, 
3750, and 4750 seconds highlight increased variability in feature importance as the system transitions to 
the intermediate operational stage. CCWFLOW1 remains a dominant positive contributor, particularly at 
higher predicted values, as seen in panels (c), (d), and (e). Negative contributions are primarily driven by 
SURGETANK2 and CCWFLOW2, which suppress predictions at certain indices. At sample index 750 
(panel a), SURGETANK2 exerts a significant negative influence, reducing the predicted value to 
0.49 gpm, while TEMPLOWRAD1 acts as the primary positive driver. By sample index 2750 (panel c), 
the roles shift, with CCWFLOW1 and jmrcs12a emerging as key positive contributors, driving the 
prediction to 2.47 gpm. In panel (d), CCWFLOW1 continues to dominate, contributing significantly to a 
predicted leakage rate of 3.45 gpm, while CCWFLOW2 and CCWFLOW3 exert negative influences. 
These results suggest that the MOL phase introduces greater feature interaction complexity than the BOL 
phase, reflecting the evolving system behavior during intermediate degradation. 

The EOL dataset results in Figure 25 further highlight the increased complexity of feature 
contributions as the system approaches its late operational phase. Panels (a), (b), (c), (d), and (e), 
corresponding to sample indices related to the timestamps at 750, 1750, 2750, 3750, and 4750 seconds, 
respectively, demonstrate that CCWFLOW1 and jmrcs12a remain dominant positive contributors across 
all indices. For example, in panel (b) at sample index 1750, CCWFLOW1 <= -0.64 and jmrcs12a 
<= -0.32 drive the predicted leakage rate to 1.52 gpm, while in panel (d), CCWFLOW1 continues to 
dominate, contributing to a predicted value of 3.53 gpm. Negative contributions are consistently attributed 
to SURGETANK1, CCWFLOW2, and SURGETANK2, which act as stabilizing features, suppressing 
predicted values. Additionally, MOTCURR2 > 0.93 and temperature-related features, such as 
TEMPWIND1 and TEMPWIND3, exhibit increasing influence in the EOL phase, suggesting that the 
model relies on a broader set of features to capture the more intricate dynamics of late-stage degradation. 

Overall, the LIME explanations across the BOL, MOL, and EOL datasets provide insights into the 
evolving feature interactions as the system progresses through different operational stages. CCWFLOW1 
and jmrcs12a consistently emerge as dominant positive contributors, driving predictions upward across all 
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datasets. Conversely, SURGETANK3, SURGETANK1, and CCWFLOW2 are recurring negative 
contributors, stabilizing the predicted values by counterbalancing the positive features. The feature 
interactions become increasingly complex as the system transitions from BOL to MOL and EOL. While 
relatively straightforward feature relationships characterize the BOL phase, the MOL phase introduces 
greater variability, and the EOL phase exhibits a broader range of influential features, including 
MOTCURR2 and temperature-related variables. These findings reveal the FCNN model’s ability to adapt 
to varying operational states while reconstructing early-stage and late-stage leakage dynamics. By 
leveraging LIME for explainability, the analysis enhances the interpretability of the data-driven approach, 
offering transparency into the critical features governing system behavior and supporting informed 
decision-making in systems with unclear physical degradation mechanisms. 

 
Figure 23. LIME results for BOL test dataset up to 5 gpm. 
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Figure 24. LIME results for MOL test dataset up to 5 gpm. 



 

45 

 
Figure 25. LIME results for EOL test dataset up to 5 gpm. 

A-2. Predicting the Severity and Evolution of Degradation 

The LIME analysis for the FCNN model was extended to datasets spanning leakage rates up to 
50 gpm for the BOL, MOL, and EOL phases. Figure 26, Figure 27, and Figure 28 illustrate localized 
explanations for selected sample indices: 5500, 5750, 6000, 6250, 6500, 6750, and 7000. These analyses 
provide insights into the key features driving the FCNN model’s predictions under significantly larger 
leakage ranges. 

The LIME results for the BOL dataset shown in Figure 26 highlight the influence of dominant 
features across the sample indices. The positive contributions in orange are led by jmrcs12a and 
SURGETANK3, consistently driving predicted values upward. For instance, at sample index 6000 
(panel c), CCWFLOW1 <= -0.08 and jmrcs12a <= -0.27 collectively contribute to a prediction of 
10.59 gpm, while SURGETANK3 acts as a strong positive driver. This pattern continues in later indices, 
such as 7000 (panel f), where positive drivers dominate predictions nearing 30.21 gpm. The results 
confirm that during the BOL phase, the FCNN model relies on a relatively consistent set of dominant 
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features. Flow-related parameters, particularly CCWFLOW1 and jmrcs12a, exhibit persistent positive 
contributions, while SURGETANK3 emerges as an important feature contributing positively across all 
sample indices. 

The LIME explanations for the MOL dataset (see Figure 27) reveal evolving feature contributions 
compared to the BOL phase. CCWFLOW1 and jmrcs12a remain key positive contributors, but their 
relative importance varies with increasing leakage rates. At sample index 5500 (panel a), CCWFLOW3 
dominates the negative contributions, suppressing the predicted leakage rate to 5.40 gpm, while jmrcs12a 
and CCWFLOW1 counterbalance with positive influences. This dynamic interplay persists through 
intermediate indices, such as 6000 (panel c), where CCWFLOW1 and jmrcs12a push predictions upward 
to 9.65 gpm, while SURGETANK2 and CCWFLOW3 exhibit negative influences. At higher sample 
indices, such as 7000 (panel f), CCWFLOW1 and SURGETANKs emerge as dominant positive drivers, 
contributing to a predicted value of 30.00 gpm. Additionally, the increasing importance of 
TEMPUPPERLOWER and PZTEMP suggests broader feature interactions as the system transitions 
toward higher leakage levels. These results emphasize the evolving role of tank-related features (i.e., 
SURGETANKs and SURGETANKs) and temperature-related metrics during the MOL phase, where the 
system exhibits greater complexity than in the BOL phase. 

The LIME analysis for the EOL dataset shown in Figure 28 below underscores the increasing 
complexity of feature interactions as the system approaches the EOL phase. At sample index 5500 (panel 
a), PUMPSPEED1 <= -1.41 exerts a negative influence, suppressing the predicted leakage rate to 5.19 
gpm, while CCWFLOW1 and jmrcs12a emerge as significant positive contributors. This trend remains 
consistent at intermediate indices, such as 6000 (panel c), where the predicted value of 9.86 gpm reflects 
the balancing influence of negative contributor (i.e., SURGETANK2) against dominant positive drivers 
(i.e., CCWFLOW1 and jmrcs12a). At higher leakage rates near 50 gpm, the model increasingly relies on 
flow-related parameters (i.e., CCWFLOW1 and CCWFLOW3) and temperature-related features (i.e., 
TEMPWIND2 and MOTCURR2). For instance, at sample index 7000 (panel f), CCWFLOW1 and 
jmrcs12a dominate as positive contributors, driving predictions to 29.84 gpm, while SURGETANK2 
exerts a stabilizing influence. The EOL phase reveals a more intricate interaction of features than in 
earlier phases. While CCWFLOW1 and jmrcs12a remain critical positive drivers, the contributions of 
SURGETANK3, SURGETANK2, and temperature-related features become increasingly prominent as the 
system progresses toward higher leakage rates. Across all three phases—BOL, MOL, and EOL—the 
LIME results consistently highlight CCWFLOW1, jmrcs12a, and SURGETANK3 as dominant positive 
contributors. These features drive predicted leakage rates upward with increasing leakage conditions. 
SURGETANK2 emerges as another critical positive contributor, particularly during the MOL, reflecting 
its growing influence as the system transitions to higher leakage levels. Negative contributions are 
primarily observed from flow- and pump-related parameters, such as CCWFLOW3, PUMPSPEED1, and 
SURGETANK2 (in certain localized instances). These features suppress predictions, balancing the 
influence of dominant positive contributors and maintaining model stability. The progression from the 
BOL to EOL phases reveals increasing feature complexity. During the EOL phase, a broader range of 
inputs, such as temperature-related metrics (i.e., TEMPWIND1, TEMPUPPERLOWER, and PZTEMP), 
becomes influential. This trend reflects the evolving degradation mechanisms and highlights the FCNN 
model’s ability to integrate multiple operational parameters to predict leakage dynamics accurately and 
adaptively. 
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Figure 26. LIME results for BOL test dataset up to 50 gpm. 
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Figure 27. LIME results for MOL test dataset up to 50 gpm. 
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Figure 28. LIME results for EOL test dataset up to 50 gpm. 
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