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EXECUTIVE SUMMARY

This report was prepared for the U.S. Nuclear Regulatory Commission
(NRC) to describe a use case of applying advanced condition monitoring (ACM)
technologies to meet the current and future regulatory requirements for inservice
testing (IST) of active systems and components. The ACM technologies
considered in this work are advanced sensors and instrumentation, data analytics,
machine learning and artificial intelligence (ML/AI), and physics-based models.
This report provides a detailed examination of the implementation of ACM for
Safety-Related Structures, Systems, and Components (SSCs) in nuclear facilities,
with a focused case study on reactor coolant pumps (RCP). The RCP use case
outlined in this report highlights the following key considerations in applying
ACM for the IST of nuclear power plant components:

e Identifying degradation mechanisms, monitoring parameters and ACM
technologies in accordance with IST requirements

e Designing and developing ACM technologies and capabilities to
facilitate comprehensive monitoring, early degradation detection, and
accurate prediction of degradation severity and potential failure

e Model training and optimal model selection process for data analytics
and ML/AI models utilized in ACM

e Methodologies for rigorous verification and validation of data analytics
and ML/AI models

e Uncertainty quantification and propagation within monitoring data and
their impact on model performance and outcomes

e Integrating methodologies to address explainability and trustworthiness
of ML/AI models within ACM

There is considerable interest in utilizing ACM to address IST requirements
and enhance the efficiency of operations and maintenance. The use case detailed
in this report illustrates that integrating ACM with IST programs for nuclear
power plant (NPP) components enables the differentiation between normal
operational variations and early degradation signs with a quantifiable level of
confidence. Additionally, ACM facilitates severity assessment and provides
insights into fault progression which are crucial for prioritizing maintenance
actions and managing risks. The findings in this report highlight ACM's potential
to improve the safety, reliability, and efficiency of NPP operations. The NRC
continues to evaluate the use of ACM technologies through research activities.
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Technical Considerations in the Application of
Advanced Condition Monitoring for Inservice Testing
Program

1.  INTRODUCTION

The Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC) has
initiated an effort to assess the regulatory viability of using advanced technologies for condition
monitoring of structures, systems, and components (SSCs) at nuclear facilities. This effort is led by Idaho
National Laboratory in collaboration with The University of Illinois Urbana-Champaign. The objective of
this project is the identification and evaluation of technical and regulatory considerations associated with
advanced technologies when applied by an NRC applicant or licensee toward meeting the current and
future regulatory requirements for the maintenance and condition monitoring of SSCs. Condition
monitoring incorporates data from sensors and instrumentation into computer codes containing various
models (e.g., analytic models) that can be used to assess the state of system or component health. Some of
the advanced technologies being considered for these uses are data analytics, machine learning (ML) and
artificial intelligence (Al), physics-based models, and digital twins (DT). (See previous NRC work on
DT-enabling technologies and their nuclear energy application [1] [2].)

The NRC regulations in Title 10 of the Code of Federal Regulations (10 CFR) Section 50.65,
“Requirements for monitoring the effectiveness of maintenance at nuclear power plants” mandate that
nuclear power plant (NPP) licensees monitor the performance or condition of specified SSCs to ensure
they can perform their intended functions.? For inservice testing (IST) of NPP components, the NRC
incorporates by reference the American Society of Mechanical Engineers (ASME) Operation and
Maintenance of Nuclear Power Plants, Division 1, OM Code: Section IST (OM Code) in 10 CFR 50.55a,
“Codes and standards.”® The ASME OM Code IST is integrated into 10 CFR 50.55a as a regulatory
requirement for establishing and implementing IST programs for NPP components. IST programs at
nuclear facilities consist of activities, such as condition monitoring, surveillance testing, preventive
maintenance, and corrective maintenance, performed at periodic intervals. Traditional IST programs
exhibit several limitations, notably the execution of maintenance activities at predetermined intervals
irrespective of the actual condition of SSCs and labor- and time-intensive nature of certain monitoring
and surveillance activities. The uses of advanced condition monitoring (ACM) technologies, such as
advanced sensors and instrumentation, data analytics, ML, Al, physics-based models, and DT as part of
the IST program, hold promise to address these limitations.

As part of this ongoing effort, the NRC sponsored a virtual workshop, “Condition Monitoring and
Structural Health Management for Nuclear Power Plants,” in November 2023 [3]. The workshop aimed to
understand industry perspectives on advanced technologies for NPP component monitoring, exchange
knowledge on online monitoring, predictive maintenance, and health management, and recognize the
application of these technologies for condition monitoring and maintenance of plant SSCs. This effort has
recently published two reports [1] [2]. The first focused on technical challenges and opportunities
associated with the application of ACM technologies for meeting IST and inservice inspection (ISI)
requirements [1]. The second report discussed the implementation of condition monitoring approaches
using ACM through two use cases: reactor coolant pumps (RCPs) in pressurized water reactors and heat
pipes in microreactors [2].

a. Requirements for monitoring the effectiveness of maintenance at nuclear power plants, 10 CFR 50.65.
https://www .nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0065.html.

b. Codes and standards, 10 CFR 50.55a. https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0055a.html.



This report presents the details of a use case developed to demonstrate the technical consideration of
applying ACM to SSCs at nuclear facilities with a specific focus on pumps as an example. The example
looks at ACM to capture the onset of thermal barrier leakage in RCPs and predict the severity of this
leakage. Section 2 discusses the regulatory and technical aspects of the IST program with an emphasis on
the application of ACM within the program. Section 3 presents a comprehensive use case illustrating the
application of ACM to a specific degradation mechanism in RCPs. Section 3 also outlines a thorough
analysis of various technical aspects of ACM, including data generation, model training, model selection,
explainability, evaluation of model performance, and uncertainty quantification (UQ). It also describes
insights and discusses the results and findings derived from the use case. Section 4 provides a summary
and conclusion from this effort.

2. ADVANCED CONDITION MONITORING
2.1. Motivation for Condition Monitoring

As discussed in the previous report [1], one of the regulatory drivers for the condition monitoring of
components in NPPs stems from the regulations set forth by the NRC in 10 CFR 50.65. These regulations
mandate that licensees must monitor the performance or condition of designated SSCs to provide
reasonable assurance that they can perform their intended safety-related or non-safety-related functions.
Furthermore, 10 CFR 50.65(a)(3) stipulates that condition monitoring and preventive maintenance
activities—including but not limited to surveillance testing, post-maintenance testing, and both corrective
and preventive maintenance—must be conducted at least once every refueling cycle or within a 24-month
timeframe, whichever is shorter. The NRC incorporates by reference the ASME Operation and
Maintenance of Nuclear Power Plants, Division 1, OM Code: Section IST (OM Code) [4] into 10 CFR
50.55a as a regulatory requirement for the establishment and implementation of IST programs for NPP
components.

ACM is anticipated to be pivotal in shifting from traditional time-frequency-based inspection and
testing to a condition-based maintenance framework, driven by these regulatory imperatives. This
transition will facilitate early fault detection, prognostics, and the recommendation of corrective
measures, ultimately leading to an optimized ISI and IST process, while maintaining sufficient safety and
reliability [5]. In ACM, sensor data is utilized within an algorithm to evaluate the normal operating or
fault-free state of a component. These estimations are subsequently compared with the actual measured
values to determine performance and operational status [5]. Key technologies anticipated to play a crucial
role in advancing condition monitoring include sensors, data storage solutions, preprocessing techniques,
analytics, ML, Al, and physics-based simulators. These technologies enable the continuous
synchronization of digital states with physical processes, particularly in identifying early signs and
occurrences of degradation or faults in NPP components. In this report, the term “model” aligns with the
definition of “modeling and simulation” as outlined in an NRC report [2], encompassing data analytics,
Al, ML, physics-based models, data-informed models, and other modeling techniques.

To ensure the effectiveness of condition monitoring systems designed for NPP component
assessment, it is essential to identify the types of data that can be gathered to develop an ACM
methodology. Various sensors, such as those measuring vibration and temperature, are instrumental in
monitoring the different indicators of component condition and are vital for fault detection. For example,
anomalies in the data collected from these sensors may serve as early warning signs of potential
component failures or irregularities. For example, key parameters monitored for pumps by these sensors
encompass inlet and outlet pressure, pump vibrations, flow rate, impeller speed, electric current, bearing
temperatures, motor winding temperature, power consumption, and lubricant quality. Additionally,
multiple sensors may be deployed at different locations to measure a single parameter. For instance, pump
vibrations are typically assessed at a minimum of two locations, often in distinct orientations, to capture
both horizontal and vertical vibrations on the pump shaft. Collecting this data in real time would be
necessary to supply to analytics and/or ML algorithms that detect degradation/fault within the pump.



These analytics and the ML algorithm will be developed and trained with historic data and component
data to ensure their capability in capturing any degradation or anomaly when real-time data is available.
These concepts can also be applied for monitoring the performance of other NPP components.

It is anticipated that sensors will generate a substantial volume of data requiring processing.
Consequently, data storage is expected to be a critical enabling technology for ACM. Real-time sensor
data can be used alongside historical information regarding plant and component modifications, including
past work orders related to component deterioration, equipment data with design specifications,
performance curves, and inventory records. Data preprocessing involves preparing and cleaning data into
a usable format, which may encompass outlier characterization and elimination, noise reduction, and
detrending. Additionally, it can be utilized to detect instances of sensor drift. Fault and degradation
detection can be performed using both traditional analytical techniques and data-driven approaches, such
as ML and Al. These models can also be employed to predict and identify faults in component data and
classify the nature of faults within a component based on real-time data received. The primary advantage
of ML and Al models over traditional analytical methods lies in their capacity to condense extensive
amounts of data into concise relationships.

2.2. IST Requirements

Developing ACM for NPP components must consider its potential effects on the current condition
monitoring program, including operational and economic factors, as well as its influence on the
performance metrics of the plant or components [6]. For example, IST for pumps and associated
activities, as mandated by the ASME OM Code [4], necessitate regular testing to ensure that a pump
achieves its performance objectives [2]. ASME OM Code Case OMN-29, “Pump Condition Monitoring
Program” [4] outlines alternative stipulations for the condition monitoring of NPP pumps as part of the
IST program required by 10 CFR 50.55a. Various pump types are recognized, some of which may fall
outside the purview of the ASME OM Code IST program. For instance, ASME OM, Division 2, Part 24
[4] provides guidance on the condition monitoring of RCPs, detailing in situ monitoring techniques aimed
at detecting or predicting degradation in pumps and drivers and identifying equipment faults before they
lead to functional failures. As an example of condition monitoring activities for NPP components, this
report will concentrate on IST and condition monitoring for NPP pumps.

IST activities for pumps within the scope of the IST program are required to be conducted once every
3 months [4]. Pumps that are utilized more frequently than this interval are exempt from testing, provided
it can be demonstrated that they have operated under reference conditions and that the measured
parameters have been assessed in accordance with the ASME OM Code [4]. Each IST activity conducted
on a pump must have a minimum duration of 2 minutes and must include at least one measurement of
each type specified in the ASME OM Code [4]. Furthermore, these tests should be carried out under the
most stable conditions that the system allows. For instance, during an IST activity, the pump’s flow rate
may be adjusted until the differential pressure is as close as possible to the reference point [4]. The
resulting flow rate is then measured and compared to the reference value. By adhering to the acceptance
criteria and testing conditions specified in the ASME OM Code, a license holder can establish an IST
program that complies with 10 CFR 50.55a.

ASME provides guidance for an NPP pump condition monitoring program in Division 2, Part 24 [4];
note Division 2 relates to guidance and is not a requirement:

o Identify the potential pump faults that could be detected by the program and the symptoms
produced by these faults

e Identify the suitable analytical methods for the faults being monitored

e Develop a monitoring program essential for the early detection of equipment degradation or faults
to avert functional failure



e Implement the evaluation criteria for the pump.

3. ADVANCED CONDITION MONITORING USE CASE

In both current light-water reactors and specific advanced reactor designs, pumps serve as essential
elements that ensure the circulation of coolant necessary for the cooling of the reactor core. In these
setups, the pumps function as the principal means to fulfill various performance and safety objectives
inherent to the reactor’s design.

Among the different pumps used in light-water reactors, RCPs are
integral to the reactors safe and reliable operation. The reactor coolant
system (RCS) is responsible for transporting heat from the reactor to

Key Considerations

Develop a use case for ACM

the steam generators through the reactor coolant. The major of RCPs.
components of the RCS are the reactor vessel, RCP that helps with the
circulation of the RCS, steam generators, pressurizer, piping, Identify key variables to

instrumentation, and penetrations for the various secondary systems.
RCP are important components to ensure that the coolant can flow
successfully between the vessel and the steam generator. The major
components of an RCP include the pump case assembly, pump cover,
heat exchanger assembly, the mount and rotating assembly including
the shaft, impeller, and associated coupling, and the shaft seal
assembly [7]. Degradation can occur in any part of the RCP, which can
cause the RCP to fail and thus can have a negative effect on NPP
operations. Figure 1 shows the different components within the RCP.

monitor RCP in accordance
to IST requirements.

Identify degradations to
capture for early detection
and severity prediction.

As a use case for this report, this work focuses on condition monitoring of an RCP for ACM while
focusing on a particular degradation for the use case. The development of an ACM program for RCPs
necessitates the determination of parameters that need to be monitored along with the degradations to be
captured successfully through ACM. The data parameters selected to be monitored are differential
pressure, discharge pressure, flow rate, vibration, and speed of pump motor. Due to the lack of available
experimental data, and for the demonstration for this use case of RCP ACM, synthetic data is simulated
using Idaho National Laboratory’s Generic Pressurized Water Reactor (GPWR) simulator [9]. The
GPWR is a full plant simulator that can simulate neutronics, thermal hydraulics, and electric generation
data analogous to realistic NPPs for the complete power plant. Full plant simulators are useful as they can
be used as a source of realistic sensor data. This data includes parameters that are also utilized in typical
pump IST activities (i.e., differential pressure, discharge pressure, pump speed, flow rate, and vibration
data).

All systems including primary, secondary, and auxiliary systems can be modeled to get an accurate
representation of an NPP as the GPWR has been benchmarked to an existing 1 GWe NPP [8]. The GPWR
can provide real-time data that meets the data requirements for pumps mentioned in ASME OM for IST.
In addition to the parameters mentioned in ASME OM for IST of pumps, the GPWR can monitor bearing
temperatures, stator winding temperature, inlet and outlet temperature of flow to the RCP, inlet pressure,
motor current, pump and motor speeds, flow parameters and surge tank levels on the component cooling
water system, and parameters corresponding to vibration alarms. Bearing temperatures, stator winding
temperature, flow rates, speed, and current are continuously monitored in the GPWR. These parameters
selected can also be measured through installed sensors in physical plants.
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Figure 1. RCP components [8].

The GPWR has built-in malfunctions that can be used to
simulate different degradations occurring within the RCP. These
malfunctions are RCP trips due to bus differential, overcurrent and
undervoltage locked motor, shaft break, vibration trip due to
abnormal vibration readings, thermal barrier leak, seal failure, and
oil leak. The current use case is to identify the occurrence of a
thermal barrier leak. A thermal barrier heat exchanger reduces the
heat transfer rate from the hot reactor coolant to the pump radial
bearings [8]. The thermal barrier heat exchanger lies below the
thermal barrier assembly and receives its cooling water from the
component cooling water system. During a thermal barrier leak,
the reactor coolant leaks into the thermal barrier heat exchanger.
The GPWR can simulate this degradation by choosing the amounts
of reactor coolant leakage in the thermal barrier in the form of a
ramp function over any desired time and can have a leakage range
of 0-200 gallons per minute (gpm) with the beginning and end
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values of the ramp chosen by the user. This type of leakage is sensed by a flow sensor in the component
cooling water return line, which alarms on the detection of a high flow. In response to this alarm, the plant
isolates the return to stop the leak and uses the high-pressure piping of the component cooling water
system as part of the RCS pressure boundary. NUREG-2194 [10] establishes for AP1000 reactors that
RCS leakage during operation shall have the following limits: (a) no leakage through the pressure
boundaries and for any leakages other than pressure boundaries; (b) 0.5 gpm leakage if the type of
leakage is unidentified; (c) 10 gpm leakage if the type of leakage is identified; (d) 150 gpm per day
leakage through any steam generator; and (e) 500 gpm per day primary to in-containment refueling water
storage tank leakage through the passive residual heat removal heat exchanger.

To simulate the thermal barrier leakage, the following variables and data parameters are simulated in
the GPWR. The first five variables that are simulated and tracked in the GPWR correspond to those
mentioned in the ASME OM Code; they are differential pressure, discharge pressure, flow rate, vibration,
and RCP speed. In addition to these five variables, other variables are tracked in the GPWR as they could
be good indicators of the onset or continuation of a thermal barrier leakage. These additional variables
include bearing temperatures and motor winding temperatures, inlet temperature to the RCP pumps,
motor current, return flow in the component cooling water system, and surge tank level in the component
cooling water system. Additionally, the inlet condition variables from the GPWR are also tracked
throughout simulations, and these include control rod position, boron concentration, pressurizer and RCS
pressure, pressurizer temperature, reactor coolant average temperature, and the core life. Using this
expansive list of data parameters to monitor for the three RCPs in GPWR, a case study corresponding to
thermal barrier leakage is simulated and shown in Table 1. This leakage belongs to the identified leakage
category as this leakage can be captured on the component cooling water system line. The use case places
emphasis on leakages below 10 gpm, which remain within the limits set by NUREG-2194 [10]. The first
goal of the ACM methodology is to identify small leaks, which is why the case study contains simulation
with leakages below 5 gpm. In addition to these small leaks, the simulated leakage rates rise from 5 gpm
up to 50 gpm to develop an ACM methodology that is capable of not only capturing early detection of
thermal barrier leakage but one that can also predict the evolution and severity of leakages corresponding
to values larger than 5 gpm. A maximum leakage of 50 gpm was arbitrarily chosen during the
development of this case study. Moreover, alarms in the GPWR simulator specifically are triggered at
high leakages above 50 gpm, thus the ACM methodology would ideally capture the onset of degradation
before it reaches high values of 50 gpm.

Table 1 below explains the simulation that starts with a healthy operation containing no leakage for
10 minutes. After the healthy operation, a ramp function of thermal barrier leakage is simulated from
0 gpm to 1 gpm followed by a steady-state simulation at 1 gpm for 10 minutes. This sequence is repeated
till 5 gpm, after which the two ramp functions for thermal barrier leakage start from 5 gpm to 10 gpm,
followed by a steady state of 10 gpm, and a final ramp to simulate a thermal barrier leakage from 10 gpm
to 50 gpm, each having a duration of 10 minutes. The final few data points correspond to a steady state of
50 gpm and have a duration of only a few seconds to a few minutes, which constitutes the simulation
coming to a stop and the final data points getting stored. Since the time to stop and store simulations can
slightly vary for each independent dataset, the number of data points corresponding to 50 gpm leakage
vary. GPWR constantly monitors variables of interest chosen by the user throughout the simulation. Once
the entire simulation ends (with final leakage of 50 gpm), the simulation data variables get stored as a.csv
(comma-separated values) extension that can then be used for further processing. A graphical
representation of this simulated thermal barrier leakage is illustrated in Figure 2.



Table 1. GPWR simulation for thermal barrier leakage.

Leakage Duration: Real-Time Notes
(seconds)

Start of Simulation: | 600 Healthy Operation
0 gpm
0to 1 gpm 600 Ramp
1 gpm 600 Steady State
1to 2 gpm 600 Ramp
2 gpm 600 Steady State
2 to 3 gpm 600 Ramp
3 gpm 600 Steady State
3 to 4 gpm 600 Ramp
4 gpm 600 Steady State
4to 5 gpm 600 Ramp
5 gpm 600 Steady State
5to 10 gpm 600 Ramp
10 gpm 600 Steady State
10 to 50 gpm 600 Ramp
End of Simulation:
50 gpm
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Figure 2. GPWR simulation for thermal barrier leakage.

Initial conditions are divided into those corresponding to different periods in the reactor cycle and

those at different powers. The possibilities of initial conditions are:

Reactor cycle time

o Beginning of life (BOL)
o Middle of life (MOL)

o End of life (EOL)

Reactor power level

o 100% reactor power

o 77% reactor power

o 52% reactor power.

A total of nine initial conditions were used, with three power levels for point in the reactor life. These

power levels and initial conditions were chosen to have a robust dataset that is generalized to contain data
points corresponding to all different core lives and different power levels from 50% to 100%. These
reactor conditions allow for an examination of the realistic state space; it is not expected for reactors to
operate at a steady state below 50% for a significant length of time. Table 2 presents the values of the
initial condition variables for the different reactor power levels and reactor life as set up in the GPWR
simulator.



Table 2. Initial conditions for data generated in GPWR.

Three Simulations Corresponding to
BOL for Different Reactor Powers

Three Simulations Corresponding to
MOL for Different Reactor Powers

Three Simulations Corresponding to
EOL for Different Reactor Powers

Initial Condition ~100% ~77% ~52% ~100% ~77% ~52% ~100% ~77% ~52%
Variables reactor reactor reactor reactor reactor reactor reactor reactor reactor
power power power power power power power power power

TRCSAYV: Reactor 589.131 579.8 571.9 588.9 580.5 571.1 589.986 590.8 572.7

Coolant Average

Temperature (°F)

PZRPRS: Pressurizer 2242.99 2253.8 2254.5 22439 22443 22453 2243 .82 2242.7 2247.6

Pressure (psia)

TT:453: Pressurizer 652.201 652.9 653.0 652.3 652.3 652.4 652.255 652.2 652.5

Temperature (°F)

FNISPR1: Reactor 100.295 77.6 51.9 99.6 77.5 53.3 99.5491 77.2 53.5

Power (%)

PT:403: Reactor 2249.9 2261.0 2262.0 2250.8 2251.5 2252.9 2250.72 2249.9 2255.0

Coolant Pressure

(psia)

XRCS: Boron 1197.95 1222.5 1263.5 796.0 852.0 918.0 205.994 280.0 359.0

Concentration (ppm)

ROD Position: Rod 210 193 185 210 193 183 210 193 185

Pos




Data preprocessing includes the discarding of variables that have little to no effect on the thermal
barrier leakage and are thus not good detectors of the leakage. The original synthetic data includes
92 variables that are used as input features for data processing and the ML algorithms, which are
challenging for traditional regression and ML models. Thus, there is a requirement for dimensionality
reduction before modeling, which is done using the Pearson correlation.

Before proceeding with modeling, a Pearson correlation analysis was performed to evaluate the
relationship between the input variables and target variable, thermal barrier leakage rate in gallons per
minute. This analysis serves as an initial screening tool to identify and reduce the unnecessary input
dimensions. The Pearson correlation coefficient (1) is calculated as

W& -P5-)
JE G = D25 - 9

where x; and y;are the individual values of the input variable and target variable, respectively, X and y are
their respective means, and N is the number of data points. The resulting correlation coefficient ranges
from —1 to 1. Through this analysis, the variables with no variation were dropped, and finally, the total
number of input variables was reduced from 92 to 53. This included removal of any variables that
remained 0 or unchanged throughout the simulation indicating they had no impact on the output variable
(i.e., thermal barrier leakage in gpm). All 53 variables were used for both model selection and model
application. The figures and explanation below mention how the 53 variables correlate with the thermal
barrier leakage in cases below 5 gpm and in cases greater than 5 gpm.

The different variables used for model selection, model application, and UQ are shown in Table 3
along with descriptions. In GPWR, most variables end with numbers 1, 2, or 3, which correspond to the
respective variables to one of the three RCPs in GPWR simulator.

Table 3. Variable names in GPWR along with description.

Variable Name Description for RCP 1,2,3
TEMPIN Inlet temperature of coolant to RCPs
DELP Differential pressure across RCPs
PIN Inlet pressure to RCPs
TEMPLOWRAD Lower radial-bearing temperature of RCPs
TEMPWIND Winding temperature of RCP motors
TEMPTHRUST Thrust bearing temperature of RCPs
TEMPTHRUSTSHOE Thrust shoe bearing temperature of RCPs
TEMPUPPERLOWER Upper lower bearing temperature of RCPs
TEMPTHRUSTLOWER | Lower thrust bearing temperature of RCPs
PUMPSPEED Speed of RCP pumps
MOTORSPEED Speed of RCP motors
MOTCURR Current for RCP motors
CCWFLOW Return flow for component cooling water system for each corresponding RCP
SURGETANK Level of surge tank in the component cooling water system
RODPOS Control rod position
jmres12a Flag within GPWR corresponding to thermal barrier leakage in RCP1

Figure 3 (a) represents the correlations obtained with the BOL dataset up to the leakage rate of 5 gpm.
The variable SURGETANK3, corresponding to the level in the surge tank number 3 in the component
cooling water system, exhibits strong positive correlations with the leakage rate, suggesting its dominant
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influence during BOL. FLOW- and TEMP-related variables show minimal correlation, indicating that the
system operates under nominal conditions where other dynamics play a critical role. DELP, MOTCURR,
and TEMPWIND also exhibit small coefficient values, suggesting limited relevance to leakage detections
in the early phase.

The correlations obtained with the MOL dataset up to 5 gpm are shown in Figure 3 (b). As the system
progresses to the MOL phase, MOTCURR’s influence moderates, while CCWFLOW1 and
SURGETANKI1&2 start showing more negative values. PUMP speeds start showing fewer correlations,
indicating that mechanical components do not gain importance in predicting leakage as the system ages.
In addition, TEMPTHRUST, TEMPTHRUSTSHOE, and TEMPUPPERLOWER variables start
becoming positive, while they are negative in the BOL phase.

In the EOL scenario, the dominance of influential variables shifts notably as seen in Figure 3 (c).
Flow-related variable CCWFLOW, corresponding to the return flow line on the component cooling water
system, emerges as the strongest contributors to the leakage rate. Mechanical variables like motor and
pump speeds also show small correlations, suggesting that mechanical degradation plays a less significant
role in leakage during this phase. TEMPLOWRAD, corresponding to lower radial-bearing temperature
variables, exhibits increased correlations changing over core life from BOL to EOL. The overall decrease
in the diversity of correlated features reflects the complexity of system behavior in the later stages,
highlighting the nonlinear and multifaceted interactions between subsystems.

Figure 4 highlights the evolving influence of various features across the operational phases and
leakage ranges. In the BOL scenario, the correlations reveal that SURGETANKS3 impacts the leakage
rate, indicating their stabilizing role during the early-stage of degradation. This behavior aligns with the
BOL scenario up to 5 gpm shown in Figure 3 (a), although the amplitudes are larger when considering the
extended leakage range. The increased correlations for temperature-related features
(e.g., TEMPFLOWRAD, TEMPTHRUST, and TEMPUPPERLOWER corresponding to different bearing
temperatures) and flow-related features (e.g., CCWFLOWSs) suggest their growing relevance under larger
leakage conditions.

The MOL dataset, represented in Figure 4 (b), reflects a similar trend to the BOL scenario but with
notable differences in amplitude and sign. The features of CCWFLOWSs and their trends do not change
compared to Figure 3 (b), which represents a negative sign for CCFLOW1, and positives for CCFLOW2
and CCFLOW3; however, their amplitudes get larger. This flipping of signs emphasizes the dynamic
nature of system behavior as degradation progresses. Additionally, features like RCSPRS and PZRTEMP
(reactor coolant pressure and pressurizer temperature, respectively) show significant variability in their
influence, further underscoring the changing dynamics of the system under increasing leakage.

In the EOL phase, shown in Figure 4 (c), the system’s behavior becomes even more complex. While
the overall trend mirrors the MOL phase, features like SURGETANK1 and SURGETANK?2 exhibit
flipped correlations, transitioning from negative in the MOL phase to positive in the EOL phase. This
shift highlights the evolving role of these features as the system approaches the end of its life cycle.
Temperature-related features and flow variables continue to dominate, indicating their critical importance
in predicting leakage under severe conditions.
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3.1. Model Training and Selection

ML/Al-based models are effective enabling technologies that can
be used to predict and detect faults in pump data and classify the type
of fault within a pump based on the real-time data received. Two Model training and selection
major categories of supervised ML/AI models are classification and followed by data
regression. The former outputs classes from a discrete set (e.g.,
binary), while the latter outputs a continuous value. In this research,
the regression algorithms are needed since the objective is to predict
the quantity of the leakage rate. A fully connected neural network
(FCNN), with a baseline architecture as shown in Figure 5, was performance accuracies
employed. It is a fundamental deep-learning model architecture, where using metrics like MSE,
each neuron in one layer is connected to every neuron in the next. MAE, RMSE, and R score
FCNNSs can be effective for general regression tasks. The model is
composed of three parts: (1) input layer, (2) hidden layer(s), and (3)
output layer. The input layer shape is based on the number of inputs, Hyperparameter
and in this use case it was set to 53, the number of variables remaining optimization of chosen
after the Pearson correlation step. The number of outputs is dependent model via cross validation
on the quantities of interest, and it was set to 1 (i.e., leakage rate). The
number of hidden layers and number of neurons per hidden layer were
selected through the hyperparameter tuning and were integrated within
the nested cross-validation (NCV) task to ensure the accuracy matched
the ground truth. The rationale behind selecting this method is (1) by ensuring that no data used for
hyperparameter tuning is used for final evaluation, NCV provides a realistic performance estimate; (2)
NCV averages results from multiple outer loop runs, reducing variance and making performance
estimates more stable and reliable; and (3) it is agnostic to hyperparameter tuning strategies (i.e., grid
search, random search, Bayesian optimization).

Key Considerations

preprocessing.

Optimal model chosen
through comparison of

of different algorithms.

methodologies to ensure
optimal model performance.

The model training strategy was designed to ensure robust performance and unbiased evaluation. The
entire original dataset, comprising the nine simulations, was split into three with all BOL, MOL, and EOL
cases group together. These datasets were then divided into three parts: training, validation, and test
datasets, with proportions of 35%, 35%, and 30%, respectively, as shown in Figure 6 (a). To ensure all
data variables are in the same range so that all variables have an equal effect on the training of the ML
algorithms, the training dataset was first scaled using the min-max scaling method, which normalizes the
features to a range of [0, 1]. This makes sure that the input variables are on a consistent scale to facilitate
effective model training. The min-max scaling formula is given by the following:

X — Xmin

Xscaled =
Xmax — Xmin

where Xs.4104 18 the scaled input variable, and x,,,;,, and x;,,4, are the minimum and maximum values
of the input variable of interest in the training dataset. The scaling parameters (i.e., minimum and
maximum values for each feature) were computed from the training dataset to avoid data leakage.
Subsequently, the same scaling parameters were utilized to normalize the validation and test datasets,
ensuring consistency across all datasets during the evaluation process.

In our 5x2 NCV seen in Figure 6 (b), each outer fold begins with a dedicated training portion, which
is used for hyperparameter tuning via a 2-fold inner cross-validation. In this inner loop, multiple
hyperparameter configurations are evaluated by alternating between training and validation subsets. Once
the optimal hyperparameters are identified, they are fixed and used to train the final model on the entire
training portion of that outer fold. This trained model is then evaluated on the held-out outer test set,
ensuring that no data used for hyperparameter tuning is involved in performance evaluation. Importantly,
while model training occurs within each outer loop, no further hyperparameter tuning is performed in this
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step. The outer loop simply ensures that the final model, trained with preselected hyperparameters, is
evaluated on truly unseen data. This approach yields five independently trained models, each evaluated on
separate outer test sets, providing an unbiased estimate of generalization performance. The validity of this
method has been demonstrated in our work [11].

Once the optimal hyperparameters were identified through NCV, the model was trained on the entire
training dataset without further partitioning. At this stage, the hyperparameters remained fixed and were
not reoptimized. The training process incorporated early stopping, where a separate hold-out validation
dataset was used to monitor the model’s performance during training. The purpose of this hold-out
validation dataset was solely to prevent overfitting, ensuring that training stops once performance no
longer improves. This validation dataset was not used for hyperparameter selection or tuning. Instead, it
acted as a checkpoint to identify the best performing model configuration while preserving generalization
capability. Finally, after training was completed, the model’s generalization performance was assessed on
a completely independent hold-out test dataset, which had never been used in any previous training or
validation step. This strict separation between training, validation (for early stopping), and testing ensured
that the final model evaluation provided an unbiased estimate of real-world performance. For the
evaluation of the hold-out test dataset, three metrics were computed to assess the model’s predictive
performance: R? (coefficient of determination), mean absolute error (MAE), and root mean squared error
(RMSE).

Input layer Hidden Layers Output

5
\

# Input variables
|

o
/

Figure 5. Architecture of FCNN model where the number of input variables is 53 and the number of
outputs is 1.

(a) Training-Validation-Test Data Splitting (b) 5 x 2 Nested Cross-Validation

| Original Training Dataset |

H (o] ld-o ut Outer k-fold Loop l Inner k-fold Loop
[ A \ |Test Training Folds
Training | Validation Test [ [rest]

35% 35% 30% | Training | validation |

[ validation | Training |

|
|
| | Test I ‘
| [Test| |
| |

Hyperparameter search:
Bayesian optimization algorithm
+
k-fold (*perform 2 folds)

Figure 6. (a) Training-validation-test data splitting and (b) 5x2 NCV. (a) Training-validation-test data
splitting: the dataset is divided into three parts: training (35%), validation (35%), and test (30%). The

15



validation and test sets are held out to ensure unbiased evaluation. The validation set is used for early
stopping to prevent overfitting, while the test set is used only once for final model evaluation. (b) 5x2
NCV: the outer loop performs 5-fold cross-validation, where each fold serves as an independent test set,
ensuring the model is evaluated on unseen data multiple times. The inner loop is responsible for
hyperparameter tuning using 2-fold cross-validation, where different model configurations are evaluated
on training-validation splits.

R? measures the proportion of the variance in the target variable y explained by the model’s
predictions . An R? value closer to 1 indicates that the model accurately predicts the target variable,
whereas a lower value reflects limited predictive power.

Zé\lz1(}’i —9)°
2L i =92
MAE calculates the average absolute difference between predicted and actual values, providing an

intuitive measure of prediction error in the same units as the target variable. Lower MAE values indicate
higher accuracy.

R?=1-

1 N
MAE = NZD’i - 3l
i=1
RMSE captures the square root of the average squared differences between predicted and actual
values. It penalizes larger errors more heavily than MAE, making it particularly sensitive to outliers or
significant deviations in predictions.

N
1
RMSE = |2 (i = 9
i=1

The training configuration for all tasks adhered to a consistent set of baseline hyperparameters to
ensure uniformity and comparability across models. The training processes employed the mean squared
error (MSE) loss function as the optimization objective. The MSE is defined as

1% .
ME=NZm—%)
l=

where y; represents the true value, ¥, is the predicted value, penalizing larger errors and driving the model
to minimize significant prediction discrepancies.

The FCNN model architecture is shown in Figure 5. In this study, the number of input variables was
set to 53 as decided with the result of the Pearson correlation, and the output was a single value
(i.e., leakage rate). The hyperparameter optimization process focused on tuning the number of hidden
layers, constrained between 2 and 4, and the number of neurons per layer, selected from 128, 256, or 512.
These configurations were determined during the 5x2 NCV phase, ensuring an optimal balance between
model complexity and performance.

For all training tasks, the batch size was fixed at 16, with a maximum of 500 epochs. Early stopping
with patience of 10 epochs was employed to halt training when the validation loss showed no
improvement, thus mitigating overfitting. The optimization process used the Adam optimizer, with a
learning rate of 1 X 10~3, an L2 regularization penalty (1 X 10~°) to prevent overfitting, and a dropout
rate of 5 X 1072 in the hidden layers. The rectified linear unit (ReLU) activation function was adopted
across all hidden layers to introduce nonlinearity and enhance learning capability. ReLU was chosen as
the activation function because our target variable, thermal barrier leakage rate, only takes positive
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values. Since ReLLU outputs only non-negative values ( max( 0, x), it ensures that the model does not
produce non-physical negative predictions, unlike activation functions such as Tanh or Sigmoid, which
generate outputs in (—1,1) and (0,1), respectively. Additionally, ReLU helps avoid the vanishing gradient
problem, allowing deeper networks to train efficiently by maintaining larger gradients for positive inputs.
It is also computationally efficient, as it only requires a simple max(0,x) operation, unlike Sigmoid and
Tanh, which involves exponentiation. Importantly, ReLU was not a tuned hyperparameter but rather a
deliberate design choice based on the nature of our problem. The list of hyperparameters (chosen
manually) and optimized hyperparameters are summarized in Table 4.

Table 4. List of hyperparameters and ranges of hidden layers and neurons for hyperparameter search.

Hyperparameter Value
Batch size 16
Number of epochs 500
Early stops patience 10
Adam optimizer -

Learning rate 1E-3

L2 regularization 1E-5
Dropout probability 0.05
Activation functions ReLU
Number of hidden layers" 2,3,or4

Number of neurons per layer' 128, 256, or 512

The results of the NCV for the BOL, MOL, and EOL datasets up to 5 gpm are presented in Table 5,
Table 6, and Table 7, respectively. These tables summarize the MSE computed for each outer fold, along
with the corresponding configurations of hidden layers. Based on lowest MSE for each scenario, the
optimal hyperparameters were selected.

The hyperparameter selection process in NCV was based on identifying the configuration that
achieved the lowest validation MSE across the outer cross-validation folds. Unlike model performance
metrics, which can be statistically averaged, hyperparameters such as the number of hidden layers and
neurons are discrete architectural choices that cannot be meaningfully averaged across folds. For instance,
if one fold selects two hidden layers while another selects four, averaging would suggest three hidden
layers, which was never tested and may not yield optimal performance. Similarly, averaging the number
of neurons per layer (e.g., 128 and 512) would result in an arbitrary value that does not necessarily
correspond to the best performing configuration. Therefore, instead of averaging across folds, we selected
the hyperparameter set that achieved the lowest MSE across all outer folds, ensuring that the final model
architecture is based on the most effective configuration found during validation. This approach ensures
that we maximize generalization performance rather than introducing suboptimal averaged values. The
MSE reported for other folds, such as fold 2 in Table 5, is not disqualifying but reflects the expected
variability due to different data partitions. This variation is inherent in NCV and does not indicate poor
model performance. Each outer fold represents a different training-test split, and some partitions are
expected to lead to slightly higher or lower MSEs. The purpose of NCV is not to evaluate the final model
but to robustly select the best hyperparameters. Once the optimal hyperparameters were identified, the
model was retrained using the entire (unpartitioned) training dataset to leverage all available data for
learning. The final generalization performance was evaluated on a completely independent hold-out test
set, ensuring an unbiased and independent assessment of the model’s real-world predictive capability. For
the BOL dataset (see Table 5), the configuration with hidden layers [128, 128, 128] yielded the lowest
MSE of 7.18 X 10™* in fold 4. Similarly, for the MOL dataset (see Table 6), the configuration [128, 128,

17



128, 128] achieved the lowest MSE of 7.74 X 10~* in fold 2. For the EOL dataset (see Table 7), the best
configuration was [128, 128, 128], with the lowest MSE of 8.50 X 10™* in fold 4.

Table 5. Results of NCV for BOL dataset up to 5 gpm.
Fold ID Hidden layer MSE (cross-validation)

1 [256, 256, 256] 7.64E-4
2 [128, 128, 128] 1.04E-2
3 [512, 512,512, 512] 3.00E-3
4 [128, 128, 128] 7.18E-4
5 [256, 256, 256] 8.12E-4
Average — 3.14E-3

Table 6. Results of NCV for MOL dataset up to 5 gpm.
Fold ID Hidden Layer MSE (Cross-Validation)

1 [256, 256, 256, 256] 1.07E-3
2 [128, 128, 128, 128] 7.74E-4
3 [256, 256, 256, 256] 1.05E-3
4 [128, 128, 128, 128] 1.21E-3
5 [256, 256, 256] 8.69E-4
Average — 9.94E-4

Table 7. Results of NCV for EOL dataset up to 5 gpm.
Fold ID Hidden Layer MSE (Cross-Validation)

1 [512, 512, 512] 1.68E-3
2 [256, 256, 256] 1.10E-3
3 [128, 128, 128] 7.43E-4
4 [128, 128, 128] 5.50E-4
5 [256, 256, 256] 1.31E-3
Average — 1.08E-3

For the datasets up to 50 gpm, the results of NCV for the BOL, MOL, and EOL phases are presented
in Table 8, Table 9, and Table 10, respectively. The configurations of hidden layers with the lowest MSE
values are summarized.

In the BOL dataset (see Table 8), the configuration with hidden layers [512, 512] demonstrated the
lowest MSE of 3.46 x 1072 in fold 5. For the MOL dataset (see Table 9), the configuration [256, 256,
256] achieved the lowest MSE of 4.14 X 1072 in fold 2. In the EOL dataset (see Table 10), the
configuration [512, 512, 512] showed the best performance with the lowest MSE of 4.35 x 1072 in fold
1.

Table 8. Results of NCV for BOL dataset up to 50 gpm.
Fold ID Hidden Layer MSE (Cross-Validation)

1 [512, 512] 1.72E-1
2 [256, 256, 256, 256] 2.81E-1
3 [256, 256, 256] 9.69E-2
4 [512,512,512,512] 4.18E-2
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5 [512, 512] 3.46E-2
Average — 1.25E-1

Table 9. Results of NCV for MOL dataset up to 50 gpm.
Fold ID Hidden Layer MSE (Cross-Validation)

1 [256, 256, 256] 4.14E-2
2 [512,512] 4.75E-2
3 [256, 256, 256] 9.05E-2
4 [256, 256, 256, 256] 1.51E-1
5 [128, 128, 128, 128] 4.52E-2
Average - 7.50E-2

Table 10. Results of NCV for EOL dataset up to 50 gpm.
Fold ID Hidden Layer MSE (Cross-Validation)

1 [512, 512, 512] 4.35E-2
2 [128, 128] 4.94E-1
3 [128, 128, 128] 7.07E-2
4 [512,512] 5.34E-2
5 [512, 512] 1.93E-1
Average — 1.25E-1

As mentioned earlier, the models were trained again using the entire training dataset (without further
partitioning) using obtained hyperparameters; then, the final model performance evaluations were
performed on the hold-out test datasets. The results of the model performance evaluations are presented
and discussed in the following section.

It must be emphasized here that the validation data used for early stopping during the final training
and the test data used for model performance evaluation after training are both hold-out datasets, which
are unseen and not used in NCV. The analysis focused on training architectures with a constant number of
neurons per layer, rather than varying neurons across layers, primarily to ensure computational efficiency,
and maintain a manageable hyperparameter search space. Allowing different neuron counts across layers
would have significantly expanded the hyperparameter space, exponentially increasing possible
configurations. Since NCV was used for parameter selection, incorporating additional variability in
neuron counts per layer would have dramatically increased computational cost without a guaranteed
improvement in model performance. Furthermore, the selected architectures with constant neuron counts
(128, 256, or 512 per layer) provided sufficient model capacity to capture complex patterns in the data, as
demonstrated by the low MSE values in Table 5, Table 6, and Table 7. The results suggest that increasing
network depth (i.e., the number of hidden layers) already allowed the model to learn representations
effectively without needing non-uniform neuron distributions. Therefore, maintaining a constant number
of neurons per layer was a deliberate design choice to balance performance, computational feasibility, and
hyperparameter optimization complexity. While varying neuron counts between layers remain an avenue
for future exploration, the current approach ensures a structured and efficient model selection process
without unnecessary complexity.

3.2. Model Performance

In this section, the performance of the FCNN models is evaluated and compared across different ML
techniques, including linear regression, support vector regression (SVR), and Elastic Net regularized
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regression. Linear regression is one of the simplest modeling methods, capturing a linear relationship
between input and output. It assumes that the relationship can be represented as a weighted sum of input
variables plus the intercept term. SVR is more complex compared to the linear regression and is an
extension of support vector machines (SVMs). SVR aims to fit a function that deviates from the observed
outputs by no more than a specified tolerance, while minimizing model complexity. Elastic Net
regularized regression is a regularized linear regression method that combines L, (Lasso) and L, (Ridge)
penalties to improve generalization, especially in cases where input features are correlated. The L;
penalty is based on the sum of the absolute values of the model coefficients, which reduces model
complexity and allows for feature selection by excluding irrelevant features from the model. In contrast,
the L, penalty relies on the sum of the squared values of the coefficients. It helps prevent overfitting by
discouraging excessively large coefficients. This method is suitable for high-dimensional datasets with
potential feature correlations.

Initially, the model performance of various algorithms for leakage rate estimation was evaluated
across three operational datasets: BOL, MOL, and EOL. They were capped for leakage rates at 5 gpm to
focus on the model’s ability to capture an onset of degradation at very low-leakage values <5 gpm. Each
algorithm’s performance is summarized in Table 11, Table 12, and Table 13 for BOL, MOL, and EOL
datasets.

For the BOL dataset (see Table 11), FCNN outperformed other models with an R? score of 0.9998, an
RMSE of 0.0227 gpm, and an MAE of 0.0178 gpm, indicating its high accuracy and robustness on the
hold-out test dataset. Linear Regression and SVR also exhibited strong performance with R? scores of
0.9971 and 0.9934, respectively, although their MAE and RMSE values were higher than FCNN. Elastic
Net achieved the lowest performance in this phase, with an R? score of 0.9543 and significantly higher
error values.

The MOL dataset (see Table 12) revealed similar trends, with FCNN achieving R? of 0.9997, RMSE
01 0.0293 gpm, and MAE of 0.0191 gpm. Both Linear Regression and SVR provided competitive results
with R? scores 0f 0.9972 and 0.9967, although their MAE and RMSE values were higher than those of
FCNN. While showing improved performance compared to the BOL dataset, Elastic Net still
underperformed compared to other methods with an R? score of 0.9910 and noticeably higher error
metrics.

For the EOL dataset (see Table 13), FCNN maintained its superior performance, achieving an R?
score of 0.9997, an RMSE of 0.0256 gpm, and an MAE of 0.0193 gpm. SVR demonstrated slightly better
performance in this phase than in the BOL and MOL datasets, achieving an R? score of 0.9975, making it
a viable alternative for this dataset. Linear Regression performed adequately with an R? score of 0.9949,
while Elastic Net continued to exhibit the lowest predictive accuracy with an R? score of 0.9572 and
higher error values.

The results demonstrate that FCNN consistently outperformed other models across all datasets
corresponding to <5 gpm leakage, highlighting its ability to effectively capture the underlying
relationships in leakage rate detection tasks. Linear Regression and SVR also provided satisfactory
detections, making them suitable for applications.

Table 11. List of model performances on BOL test dataset up to 5 gpm.

Algorithm R2 Score RMSE MAE
FCNN 9.998E-01 2.27E-02 1.78E-02
Linear Regression 9.971E-01 8.63E-02 6.70E-02
SVR 9.934E-01 1.30E-01 1.08E-01
Elastic Net 9.543E-01 3.42E-01 2.68E-01
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Table 12. List of model performances on MOL test dataset up to 5 gpm.

Algorithm R2 Score RMSE MAE
FCNN 9.997E-01 2.93E-02 1.91E-02
Linear Regression 9.972E-01 8.54E-02 6.74E-02
SVR 9.967E-01 9.16E-02 7.35E-02
Elastic Net 9.910E-01 1.520E-01 1.220E-01

Table 13. List of model performances on EOL test dataset up to 5 gpm.

Algorithm R2 Score RMSE MAE
FCNN 9.997E-01 2.56E-02 1.93E-02
Linear Regression 9.949E-01 1.14E-01 8.94E-02
SVR 9.975E-01 7.95E-02 6.68E-02
Elastic Net 9.572E-01 3.32E-01 2.59E-01

For the studies of the severity and evolution of degradation, the models were prepared on the BOL,
MOL, and EOL datasets corresponding to leakage greater than 5 gpm and less than 50 gpm of leakage
rate. To keep consistency with the first task (i.e., the leakage rate up to 5 gpm), the models tested include
FCNN, Linear Regression, SVR, and Elastic Net. Each algorithm’s performance is summarized in
Table 14, Table 15, and Table 16 for BOL, MOL, and EOL datasets, respectively.

As shown in Table 14, the FCNN model on BOL dataset showing R? score of 0.9997 indicates
agreement between the predicted and actual values, with MAE of 0.103 and RMSE of 0.168, reflecting
detections of thermal barrier leakage during the early-stage of system operation. The FCNN model on the
MOL dataset (see Table 15) shows comparable performance, achieving a R? score of 0.9998, with
slightly higher MAE and RMSE values of 0.120 and 0.180, respectively. Similarly, the FCNN model on
the EOL dataset achieves a R? score of 0.9993, MAE of 0.153, and an RMSE of 0.236 as shown in Table
16. These results indicate that the models are capable of generalizing unseen data, providing reliable
detections across all reactor operating conditions. Across all three datasets corresponding to three
different core life and for leakages > Sgpm, the FCNN models demonstrated the best performance,
consistently achieving higher accuracy and lower error metrics than the other algorithms. While Linear
Regression and SVR provided reasonably competitive metrics in certain cases, Elastic Net exhibited the
highest errors and the lowest agreement with the observed data among the tested methods. These results
reveal that FCNN models are a better selection for the problem, as evidenced by their consistently better
performance than traditional regression-based and machine learning algorithms.

Table 14. List of model performances of BOL test dataset up to 50 gpm.

Algorithm R2 Score RMSE MAE
FCNN 9.997E-01 1.68E-01 1.03E-01
Linear Regression 9.954E-01 6.60E-01 4.20E-01
SVR 9.831E-01 1.26E+00 4.14E-01
Elastic Net 9.544E-01 2.07E+00 9.73E-01

Table 15. List of model performances on MOL test dataset up to 50 gpm.

Algorithm R2 Score RMSE MAE

FCNN 9.998E-01 1.80E-01 1.20E-01

21



Linear Regression 9.957E-01 5.96E-01 3.764E-01

SVR 9.938E-01 7.21E-01 3.34E-01

Elastic Net 9.699E-01 1.58E+00 9.03E-01
Table 16. List of model performance on EOL test dataset up to 50 gpm.

Algorithm R2 Score RMSE MAE
FCNN 9.993E-01 2.36E-01 1.53E-01
Linear Regression 9.969E-01 5.09E-01 3.48E-02
SVR 9.930E-01 7.63E-01 3.85E-01
Elastic Net 9.543E-01 1.95E+00 1.15E+00

3.3. Model Application for ACM

As seen from model selection results, among the four selected,
linear regression, SVM, FCNN, and Elastic Net, FCNN had the
highest performance accuracies and is thus the optimal choice for
developing an online condition monitoring methodology for thermal
barrier leakage degradation in RCPs. The developed FCNN models
have two goals: (1) to detect the onset of RCP degradation
corresponding to thermal barrier leakage and (2) to predict the severity
and evolution of the degradation.

3.3.1.

To detect the onset of degradation, low values of thermal barrier
leakage are considered. NUREG-2194 [10] mentions that operational
leakage within RCP should be limited to 10 gpm for identified flow.
Thus, the onset of degradation should be considered with the ability of
the FCNN to capture leakages below 5 gpm to accurately capture the
onset of the degradation corresponding to thermal barrier leakage.
Thus, all data points corresponding to an output thermal barrier
leakage of >5 gpm are disregarded, and the FCNN is trained,
validated, and tested on all data points corresponding to leakage levels
below 5 gpm. This shows the ability of FCNN as part of online
condition monitoring to accurately capture the onset of a degradation
corresponding to thermal barrier leakage.

Detecting the Onset of Degradation

Figure 7 compares the ground truth leakage rate generated by the
GPWR simulator and the leakage rate obtained using the FCNN model

Key Considerations

Model application followed
by model selection and
training for ACM.

Trained model for ACM use
case to detect onset of
degradation and predict the
severity of degradation over
different core lifecycles.

Metrics like LIME
incorporated to assist with
model explainability,
trustworthiness, and
interpretability.

UQ analysis conducted over
model developed for ACM
to understand model
performance over different
scenarios and lifecycles.

for the BOL dataset with leakage rates limited to 5 gpm. Panels (a), (b), and (¢) show leakage rate
comparisons at 100%, 77%, and 52% reactor power. The figures demonstrate an agreement between the
predicted and simulated values across the entire range of samples. Panels (d), (e), and (f) present the
absolute error at each power level, showing generally low errors but increased deviations in transition
regions. Notably, the model needs help reconstructing rapid transition regions appearing approximately
every 500 samples. This discrepancy is likely due to a lack of sufficient training data for these rapid
transitions, leading to reduced accuracy in reconstructing sharp changes. The FCNN model appears to
anticipate an increase in the leakage rate before it occurs in the GPWR simulation. It may be learning a
subtle pattern in the input features that acts as a precursor to an increase in the leakage rate. If the GPWR
simulation outputs are strictly piecewise-linear, but the model was trained on more granular features, it
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may be extrapolating ahead of the GPWR step changes. This indicates that the ML model may be more
sensitive to precursor signals than the actual leakage rate indicated by the GPWR simulation.

Figure 8 presents the MOL dataset results, showing the same comparison between the GPWR
simulator and the FCNN outputs. Panels (a), (b), and (c) show the leakage rate predictions at 100%, 77%,
and 52% reactor power, respectively. Similar to the BOL case, the predicted leakage rate curve closely
follows the ground truth values, even during transitions between distinct operational levels. It indicates
that the model effectively captures the intermediate system dynamics. Panels (d), (e), and (f) illustrate the
absolute error at each power level. While the error remains low across most samples, deviations are more
noticeable in transition regions, likely due to a lack of sufficient training data for rapid changes.

Figure 9 illustrates the results for the EOL dataset, where the system is expected to experience more
pronounced variations in leakage rates. Despite these challenges, the FCNN model exhibits high
accuracy, with the predicted curve remaining closely aligned with the simulation across all samples as
shown in panels (a), (b), and (c). Panels (d), (e), and (f) present the absolute error at each power level.
While the errors remain low overall, deviations are more noticeable during rapid transitions, consistent
with observations from the BOL and MOL datasets. The model’s ability to track sharp changes in leakage
rates without overshooting or lagging demonstrates its robustness and adaptability during the later stages
of system operation. Overall, Figure 7, Figure 8, and Figure 9 demonstrate the FCNN model’s capability
to accurately predict leakage rates across different operational stages under the constraint of leakage rates
up to 5 gpm. The model demonstrates strong performance in capturing the gradual trends and operational
dynamics, even during periods of increased system complexity. However, the discrepancies observed in
rapid transition regions, especially in the BOL dataset, underline the importance of improving data
representation in those specific operational ranges. Despite these limitations, the model’s consistency in
following the ground truth values across all datasets underscores its robustness and utility for systems’
real-time monitoring and detection tasks. These findings validate the potential of the FCNN model to
enhance operational reliability and support anomaly detection in critical systems.
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Figure 7. Comparison between GPWR simulation and FCNN model output for BOL test dataset.
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Figure 8. Comparison between GPWR simulation and FCNN model output for MOL test dataset.
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Figure 9. Comparison between GPWR simulation and FCNN model output for EOL test dataset.

3.3.2. Predicting the Severity and Evolution of Degradation

The second application of the online condition monitoring methodology focusing on FCNN is to
predict the severity and evolution of degradation. To do this, all data points corresponding to an output
thermal barrier leakage between 5 and 50 gpm are considered. Given a particular data point corresponding
to monitored plant variables, RCP variables, and component cooling water system variables, a trained
FCNN model should predict a leakage value depicting the severity of degradation.

Figure 10 compares the ground truth leakage rates simulated by the GPWR model with FCNN
predictions for the BOL dataset, covering leakage rates up to 50 gpm. Panels (a), (b), and (c) show the
leakage rate predictions at 100%, 77%, and 52% reactor power, respectively. Panels (d), (e), and (f)
present the absolute error at each power level. The FCNN predictions align closely with the GPWR
output, demonstrating high accuracy across the entire leakage rate range. The inset focuses on low-
leakage rates (up to 5 gpm), where the model captures both small-scale variations and large-scale trends
with minimal deviation, highlighting its adaptability to diverse operational conditions.

Figure 11 presents the FCNN-predicted leakage rates for the MOL dataset, and panels (a), (b), and (c)
show the leakage rate predictions at 100%, 77%, and 52% reactor power, respectively. Panels showing
strong agreement with the ground truth, particularly in the higher leakage range. In the inset, focusing on
leakage rates up to 5 gpm, the model accurately captures trends up to 1 gpm but struggles with finer
details at higher points in this range. Also, as panel (d), (e), and (f) express the absolute errors,
discrepancies reflect the influence of the target feature’s range (0 to 50 gpm) on the training process,
where the loss function is dominated by higher leakage regions, leading to reduced sensitivity in the low-
leakage range. While the model performs well in capturing general trends and transitions, its predictions
in the low-leakage region require further refinement.
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regions and during steep transitions. However, as shown in the inset focusing on leakage rates up to

Figure 12 compares the FCNN-predicted leakage rates with the GPWR simulator results for the EOL
dataset. Panels (a), (b), and (c) show the leakage rate predictions at 100%, 77%, and 52% reactor power,
respectively. The model aligns with the ground truth across the full range, particularly in the high-leakage

5 gpm, the model needs help to reconstruct the ground truth beyond approximately 3 gpm. This behavior

is consistent with the previously observed influence of the target distribution, where higher leakage

regions dominate the training process.
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Figure 10. Comparison between GPWR simulation and FCNN model prediction for BOL test dataset up
to 50 gpm.
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Figure 11. Comparison between GPWR simulation and FCNN model prediction for MOL test dataset up
to 50 gpm.
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Figure 12. Comparison between GPWR simulation and FCNN model prediction for EOL test dataset up
to 50 gpm.

3.4. Model Explainability

The integration of Local Interpretable Model-Agnostic Explanations (LIME) enhances the
interpretability of the FCNN model, offering feature-level insights into predictions of leakage rates across
operational phases. While FCNN provides accurate predictions, its black-box nature limits understanding
of underlying mechanisms. LIME addresses this by generating localized explanations, identifying key
features contributing to individual predictions.

The figure generated by LIME provides a localized explanation for a single prediction made by the
model. At the top in the figure, the intercept represents the baseline prediction, which is the average
predicted value of the model across all instances used in LIME’s local surrogate model training. This
intercept serves as the starting point for the prediction. The prediction local represents the final predicted
value for the specific data instance under analysis. It is derived by adding or subtracting the contributions
of individual features to or from the intercept. These contributions are visualized as horizontal bars,
categorized into positive (orange) and negative (blue). Positive contributions indicate features that
increase the predicted value, while negative contributions reduce it.

Each feature’s condition (e.g., CCWFLOW1 <= -0.51gpm) is shown alongside its contribution value
(e.g., 1.84). The condition specifies the value range or threshold the feature satisfies for this specific data
instance. The length of the bar quantifies the magnitude of the feature’s influence on the prediction.
Larger bars signify a greater contribution, whether positive or negative.

For instance, the prediction local value is calculated as follows: start with the intercept, then adjust by
adding the values of positive contributions and subtracting the values of negative contributions. This
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cumulative process results in the final predicted value for the specific data instance. The LIME figure thus
provides a transparent, localized explanation of how the model arrived at the prediction, highlighting the
most influential features and their respective impacts.

For early degradation (up to 5 gpm) shown in Figure 13, flow-related parameters like CCWFLOW1
and tank-related features such as SURGETANKS3 are identified as dominant contributors. As degradation
progresses to higher leakage rates (up to 50 gpm), feature interactions become more complex. During the
MOL phase depicted in Figure 14, temperature-related metrics (e.g., TEMPUPPERLOWER), additional
parameters (e.g., SURGETANKI and 2), and CCWFLOWs have large contributions. By the EOL phase
in Figure 15, a broader range of inputs, including temperature and motor-related features
(e.g., MOTCURR?2), emerge as critical contributors, highlighting the system’s increased complexity in
late-stage degradation.

The consistent identification of key features, such as CCWFLOW1 and SURGETANK3, underscores
their critical roles across all phases, while evolving feature contributions reflect the model’s adaptability
to system transitions. By linking predictions to operational parameters, LIME provides localized insights
into model behavior, helping to interpret the relationship between data-driven predictions and physical
system dynamics, as also evident in previous work [12]. Additional results and insights on LIME
explanations are described in Appendix A.
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Figure 13. LIME explanations for BOL test dataset up to 5 gpm.
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Figure 14. LIME explanations for MOL test dataset of 5 to 50 gpm.
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Figure 15. LIME explanations for EOL test dataset 5 to 50 gpm.

3.5. Uncertainty Quantification

Monte Carlo sampling (MCS) — based UQ analysis was conducted using the pretrained FCNN models
prepared in the previous section. It involves random sampling from the distributions of uncertain input
variables (i.e., probability distribution functions) and propagating these samples through the model to
estimate the uncertainty in the output. Gaussian distributions with a standard deviation of 10% are used
for each input variable to model uncertainty in the MCS process. This approach captures uncertainties in
the input variables at a given point in the system’s evolution, rather than across the entire time series.
Each Monte Carlo sample represents a single input-output realization, meaning that the sampling process
evaluates how input variability affects predictions at a specific instance rather than modeling the full
temporal evolution of the leakage rate.

To estimate the uncertainty in the output y, MCS generates N independent samples {x D}, by
drawing each xl-(l) from its corresponding distribution D;. For each sample x| the corresponding output
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is computed as y® = f (x(i)). The output distribution is then approximated using the set of output

samples {y P}, . Statistical metrics such as the mean, variance, and confidence intervals can be

determined based on this sampling.

A convergence test was performed to decide the appropriate sampling size. The purpose of a
convergence test is to determine the optimal number of samples required to balance accuracy and
computational efficiency. By monitoring how mean values and uncertainty estimates stabilize as the
sample size increases, the convergence test identifies the point where additional samples no longer
contribute meaningful improvements. During the convergence test, the probability distribution functions
of input variables are set to Gaussian distributions with a standard deviation of 10% for each variable.
Figure 16 presents the results of the convergence test, showing the percentage change in the uncertainty
of predicted leakage rate due to input variability as a function of the number of MC samples. Initially, at
smaller sample sizes (e.g., 50 samples), the percentage change in uncertainty is significant, highlighting
the sensitivity of the predicted leakage rate to variations in input samples. However, as the sample size
increases, the changes in uncertainty estimates decrease, indicating improved stability in the results.
Beyond approximately 100-200 samples, the percentage change in uncertainty consistently falls below
the 1% threshold, demonstrating that the uncertainty in predicted leakage rates has effectively converged.
For this problem, a sample size of around 200 achieves reliable and stable uncertainty estimates,
balancing computational efficiency and prediction robustness.

—m— Uncertainty Changes (%)
—=- 1% Threshold

4.0

Percentage Change (%)

. .
100 200 300 400 500
Number of Samples

Figure 16. Number of MC samples vs. percentage changes in uncertainty of predicted leakage rate due to
input variability.

3.6. Results and Discussions

After determining the optimal number of samples through the convergence test, UQ was performed
for the BOL, MOL, and EOL models using a sample size of 200. The Gaussian distributions with 10%
standard deviations were set for each input variable. This uncertainty level was intentionally set to this
high value of 10% for evaluating synthetic upper limits of uncertainties for each input variable. In the real
nuclear operations, the sensors for monitoring those parameters have uncertainties in their recorded
values, though generally these uncertainties at the sensor level are less than 10% of the reported value.
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Therefore, this study is intended to evaluate the effect of uncertainty modeled leakage rate under extreme
noisy and erroneous conditions.

3.6.1. UQ for Detecting the Onset of Degradation

The UQ analysis for the FCNN models trained on the BOL, MOL, and EOL datasets up to 5 gpm is
presented in Figure 17, Figure 18, and Figure 19, respectively. These figures illustrate the mean
predictions, ground truth, and uncertainty bounds (3 standard deviations). At the same time, the
corresponding absolute error plots are depicted in the lower panels.

In Figure 17, the mean predictions closely follow the ground truth across the dataset, demonstrating
the model’s ability to capture system dynamics effectively. However, the uncertainty bounds increase as
the leakage rate rises, with the widest intervals observed during the steady-state period near 5 gpm. This
suggests that the model exhibits greater variability in its predictions at higher leakage rates, potentially
due to reduced data representation in this range or increased sensitivity to input uncertainties.
Additionally, slightly wider uncertainty bounds are observed in transition regions where rapid changes in
leakage occur, reflecting the model’s reduced confidence in predicting sharp transitions, which may be
attributed to the limited representation of such dynamics in the training data. The absolute error plot
reveals peaks at these transitions, particularly around sample indices corresponding to sudden increases in
leakage rate.

Figure 18 highlights the performance of the MOL model under increased operational variability. The
mean predictions align closely with the ground truth throughout the dataset, with uncertainty bounds that
remain consistently narrow. Compared to the BOL model, the MOL model demonstrates improved
performance, particularly in transition regions, where the uncertainty bounds are narrower, and the
absolute error is reduced. Peaks in the absolute error are still visible during periods of rapid leakage rate
changes but are less pronounced than in the BOL case. Its improved accuracy and confidence suggest that
the MOL model captures intermediate system dynamics more effectively.

The EOL model results, shown in Figure 19, demonstrate the highest accuracy and robustness among
the three phases. The mean predictions closely follow the ground truth with minimal deviations, and the
uncertainty bounds remain consistently narrow, even during transition regions. The absolute error plot
confirms this performance, showing smaller peaks than the BOL and MOL models. The reduced
uncertainty and minimal error in the EOL model indicate its strong capability to predict leakage rates
under complex system dynamics, particularly during the later life-cycle phases. The summaries with
MAE, RMSE and average uncertainty for BOL, MOL and EOL are shown in Table 17.
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Figure 17. Result of UQ for BOL test dataset up to 5 gpm.
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Figure 18. Result of UQ for MOL test dataset up to 5 gpm.
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Figure 19. Result of UQ for EOL test dataset up to 5 gpm.

Table 17. Summary of UQ analysis for the datasets up to 5 gpm.

Model MAE RMSE Averaged Uncertainty
(gpm) (gpm) (gpm)
BOL 3.00E-02 4.02E-02 1.09E-01
MOL 2.47E-02 3.47E-02 1.12E-01
EOL 2.70E-02 3.67E-02 1.23E-01

3.6.2. UQ for Predicting the Severity and Evolution of Degradation

The UQ analysis was conducted for datasets with leakage rates up to 50 gpm, corresponding to the
BOL, MOL, and EOL phases. The primary objective of this analysis is to predict the severity and
evolution of degradation, which becomes increasingly significant as leakage rates escalate. Figure 20,
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Figure 21, and Figure 22 present the mean predictions, uncertainty bounds (+£3 standard deviations), and
absolute errors across the datasets, offering insights into the robustness and accuracy of the FCNN models
under high-leakage conditions.

For the BOL dataset (see Figure 20), the FCNN model successfully predicts the early stages of
degradation, with the mean predictions closely aligning with the ground truth. The uncertainty bounds
remain narrow during periods of stability but widen during sharp transitions where leakage rates escalate
rapidly toward 50 gpm. The absolute error plot highlights minimal deviations during stable intervals and
noticeable peaks during sudden transitions, indicating that the model encounters greater variability when
predicting rapid changes in leakage behavior. These results suggest that the BOL model effectively
identifies early trends in degradation severity but requires additional sensitivity near inflection points.

The MOL dataset (see Figure 21) represents intermediate degradation stages, where the leakage rate
progressively increases. The mean predictions align well with the ground truth, and the uncertainty
bounds remain relatively narrow across the timeline. However, as with the BOL dataset, localized
widening of uncertainty regions occurs during transitions, reflecting increased system variability during
evolving degradation states. The absolute error plot shows recurring peaks, particularly near transitions,
where leakage rates escalate sharply. These observations indicate that the model captures the gradual
evolution of degradation while maintaining reliable performance during periods of increasing severity.

The EOL dataset (see Figure 22) represents the later stages of degradation, where leakage rates
exhibit significant escalation toward the maximum range of 50 gpm. The FCNN model achieves high
predictive accuracy, with mean predictions closely tracking the ground truth throughout the timeline.
Occasional peaks in absolute error are observed near rapid transitions but remain within acceptable limits.
These results suggest that the model effectively handles complex, nonlinear system dynamics
characteristic of the EOL phase due to a uniform distribution of data in both training and test sets. The
summaries for BOL, MOL and EOL and their average uncertainties, MAE and RMSE values are shown
in Table 18.

The UQ results across the BOL, MOL, and EOL phases provide insights into the evolution of
degradation severity:

e Uncertainty Behavior: The uncertainty bounds are slightly wider in the BOL and MOL phases,
particularly near transitions, reflecting greater variability during early and intermediate
degradation states. In contrast, the EOL model maintains consistently narrow bounds,
demonstrating higher confidence in predictions as degradation becomes more pronounced.

e Error Distribution: The absolute error decreases progressively from BOL to EOL, with the EOL
phase exhibiting the lowest error across the dataset. This trend highlights the model’s improved
accuracy in capturing severe degradation states where patterns become more prominent.

e Degradation Response: While the models capture evolving system behavior, uncertainty and
absolute error increase at higher leakage rates, indicating reduced predictive confidence in severe
degradation scenarios. This suggests greater sensitivity to input uncertainties or fewer high-
leakage samples in training. Quantifying uncertainty remains essential for assessing model
reliability in monitoring degradation severity and evolution.
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Figure 20. Result of UQ for EOL test dataset up to 50 gpm.
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Figure 21. Result of UQ for EOL test dataset up to 50 gpm.
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Figure 22. Result of UQ for EOL test dataset up to 50 gpm.
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Table 18. Summary of UQ analysis for the dataset up to 50 gpm.

Model MAE RMSE Averaged Uncertainty
(gpm) (gpm) (gpm)
BOL 1.19E-01 1.88E-01 2.84E-01
MOL 9.60E-02 1.60E-01 2.45E-01
EOL 1.61E-01 2.46E-01 2.63E-01

This study focuses on detecting the onset of degradation and predicting its severity and evolution
using FCNN models for leakage rates up to 50 gpm across three operational phases: BOL, MOL, and
EOL. The results incorporate model predictions, UQ, and feature analysis using LIME, comprehensively
evaluating system behavior under varying leakage conditions.

The FCNN models demonstrated strong predictive performance across all phases. For the datasets
limited to 5 gpm, the models accurately captured the onset of degradation, with predictions closely
aligning with the ground truth and minimal error observed throughout the samples. Specifically, the BOL
model displayed higher variability during transition regions, as indicated by the occasional widening of
uncertainty bounds. This variability likely reflects the system’s rapid changes during early operational
phases. The MOL model exhibited improved stability, narrowing uncertainty bounds as the system
progressed toward more predictable operational states. The EOL model achieved the most consistent
uncertainty bounds and lower absolute error, reflecting its robustness in capturing system behavior during
advanced operational stages, where degradation mechanisms are more complex.

For datasets extending to 50 gpm, the FCNN models effectively captured the evolution and severity
of degradation. The mean predictions closely followed the ground truth, with relatively narrow
uncertainty bounds, except at specific inflection points where sharp escalations in leakage rates occurred.
FCNN results for the BOL data demonstrated higher uncertainty near transitions, where system variability
is pronounced during early phases. Conversely, the MOL and EOL models displayed narrower
uncertainty bounds and lower absolute error, indicating their improved ability to generalize over complex,
high-leakage scenarios. Notably, the EOL model achieved the highest accuracy among all phases,
indicating its reliability in predicting severe leakage events during later operational stages.

The UQ results further validated the models’ robustness in predicting leakage rates across all
operational phases. The narrow uncertainty bounds in steady-state regions reflect high confidence in the
predictions. However, at inflection points characterized by abrupt changes in leakage rates, the widening
of uncertainty bounds aligns with the physical behavior of the system during dynamic transitions. The
absolute error plots confirm that deviations are most pronounced during these regions, where the system
exhibits increased variability. Despite these deviations, the overall trends and magnitude of the predicted
leakage rates closely align with the ground truth across all models.

The comparative analysis across the BOL, MOL, and EOL phases emphasizes the importance of life-
cycle-specific modeling in addressing the evolving nature of degradation. The BOL model effectively
identifies early signs of degradation but exhibits higher sensitivity to transitional changes due to limited
data during these transitions, as these transitions happened over ramp functions with fewer data points
during these rapid changes. In contrast, the MOL and EOL models achieve greater stability and predictive
accuracy by incorporating progressively complex degradation dynamics. The EOL model, in particular,
demonstrates a strong ability to generalize under advanced degradation conditions, where multiple
features interact to influence leakage rates.

In summary, integrating FCNN models with UQ provides a reliable framework for detecting and
predicting system degradation across different operational phases. The UQ results further support the
reliability of the predictions by quantifying uncertainties, ensuring confidence in the model’s performance
under varying input conditions. These findings demonstrate the effectiveness of data-driven models in
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real-time monitoring and condition assessment, particularly in systems where the underlying degradation
mechanisms remain incompletely understood. Future work should focus on refining model performance
during transitional phases and integrating physics-informed approaches to enhance interpretability and
generalization across diverse operational states.

4, SUMMARY

This report details a use case demonstrating the technical considerations of integrating ACM in SSCs
at nuclear facilities, including discussions on regulatory and technical aspects of the IST program. The
use case is focused on performing a comprehensive analysis of ACM applied to a specific degradation
mechanism, thermal barrier leakage in RCP. This report covers data analysis, model training, model
selection, model performance evaluation, and UQ on data generated through multiple simulations in
GPWR. This generated data contains simulations for different lifecycles, BOL, MOL, and EOL,
containing thermal barrier leakages ranging from low values of less than 5 gpm all the way to 50 gpm.
Different ML models were tested, and FCNN was chosen after model selection as FCNN had the highest
performance on the data generated by GPWR. FCNN was used for leakages below 5 gpm to help with
early detection and capturing onset of the degradation and for leakages up to 50 gpm to predict the
severity of degradation. All datasets achieved high accuracy results with low error values for both
capturing the onset of degradation and predicting severity of degradation. UQ analysis using MCS
confirmed stable predictions at lower leakage rates but revealed increasing uncertainty at higher leakage
levels, particularly around 5 gpm steady-state conditions. The model demonstrated reduced confidence in
severe degradation scenarios, likely due to limited high-leakage training data and increased sensitivity to
input variability. These findings highlight the importance of incorporating UQ in predictive maintenance
applications to quantify confidence in model predictions.

The ability to accurately detect the onset of degradation and assess its severity in real time can assist
in predicting failures to optimize RCPs maintenance strategy. Using an RCP as an example, the use case
described in this report demonstrates that by integrating ACM for NPP components with an IST program,
it becomes possible to distinguish between normal operating fluctuations and early signs of degradation
with a quantified level of confidence. Furthermore, ACM helps in severity assessment, providing insights
into the progression of faults, such as bearing wear or thermal barrier leakage. This capability is essential
for prioritizing maintenance actions, managing risks while continuing to ensure regulatory compliance.
This report demonstrates the potential of ACM to enhance the safety, reliability, and efficiency of NPP
operations.

There is significant interest in using ACM to meet IST requirements and improve operations and
maintenance efficiency. The NRC continues to evaluate the use of ACM technologies through research
activities. In a follow up effort, the NRC is focused on exploring risk-informed, graded approaches for
performance evaluation and reliability assessment of ACM technologies. The lessons learned from this
project can be applied in implementing ACM technologies to monitor the performance of various NPP
components.
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Appendix A

Model Interpretability Using LIME

This supplementally section provides more detail on the LIME analysis given in Section 3.4.

A-1. The Onset of Degradation

The LIME explanations for the BOL dataset up to 5 gpm provide localized insights into the FCNN
model’s predictions across specific instances. The results are illustrated in Figure 23, where panels (a),
(b), (c), (d), and (e) correspond to test sample index at 750, 1750, 2750, 3750, and 4750, respectively.
Each panel highlights the contributions of influential features, with positive and negative contributions
marked in orange and blue, respectively. SURGETANKS3 consistently exerts a negative influence, as
observed in panel (a), where it reduces the predicted value to 0.48. In contrast, CCWFLOW1,
SURGETANKI, and jmrcs12a frequently emerge as dominant positive contributors, increasing
predictions at various sample indices. For instance, in panel (b), CCWFLOW1 and SURGETANK1
elevate the predicted value to 1.49, while in panel (d), similar features contribute to a higher prediction of
3.53 gpm. These observations reveal that, while certain features exhibit recurring importance, their
contributions shift depending on the system’s operational state. Identifying and interpreting the influence
of these key features highlight the FCNN model’s adaptability in reconstructing leakage rate predictions
during early-stage degradation, particularly in the low-leakage region.

The MOL dataset, shown in Figure 24, reveals similarities and notable differences compared to the
BOL dataset. The LIME explanations for sample indices corresponding to timestamps 750, 1750, 2750,
3750, and 4750 seconds highlight increased variability in feature importance as the system transitions to
the intermediate operational stage. CCWFLOW 1 remains a dominant positive contributor, particularly at
higher predicted values, as seen in panels (c), (d), and (e). Negative contributions are primarily driven by
SURGETANK?2 and CCWFLOW?2, which suppress predictions at certain indices. At sample index 750
(panel a), SURGETANK?2 exerts a significant negative influence, reducing the predicted value to
0.49 gpm, while TEMPLOWRADI1 acts as the primary positive driver. By sample index 2750 (panel c),
the roles shift, with CCWFLOWI1 and jmrcs12a emerging as key positive contributors, driving the
prediction to 2.47 gpm. In panel (d), CCWFLOWI1 continues to dominate, contributing significantly to a
predicted leakage rate of 3.45 gpm, while CCWFLOW2 and CCWFLOW3 exert negative influences.
These results suggest that the MOL phase introduces greater feature interaction complexity than the BOL
phase, reflecting the evolving system behavior during intermediate degradation.

The EOL dataset results in Figure 25 further highlight the increased complexity of feature
contributions as the system approaches its late operational phase. Panels (a), (b), (¢), (d), and (e),
corresponding to sample indices related to the timestamps at 750, 1750, 2750, 3750, and 4750 seconds,
respectively, demonstrate that CCWFLOW1 and jmrcs12a remain dominant positive contributors across
all indices. For example, in panel (b) at sample index 1750, CCWFLOW1 <= -0.64 and jmrcs12a
<=-0.32 drive the predicted leakage rate to 1.52 gpm, while in panel (d), CCWFLOWI1 continues to
dominate, contributing to a predicted value of 3.53 gpm. Negative contributions are consistently attributed
to SURGETANK1, CCWFLOW?2, and SURGETANKZ2, which act as stabilizing features, suppressing
predicted values. Additionally, MOTCURR?2 > 0.93 and temperature-related features, such as
TEMPWINDI1 and TEMPWIND3, exhibit increasing influence in the EOL phase, suggesting that the
model relies on a broader set of features to capture the more intricate dynamics of late-stage degradation.

Overall, the LIME explanations across the BOL, MOL, and EOL datasets provide insights into the
evolving feature interactions as the system progresses through different operational stages. CCWFLOW1
and jmrcs12a consistently emerge as dominant positive contributors, driving predictions upward across all
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datasets. Conversely, SURGETANK3, SURGETANK1, and CCWFLOW?2 are recurring negative
contributors, stabilizing the predicted values by counterbalancing the positive features. The feature
interactions become increasingly complex as the system transitions from BOL to MOL and EOL. While
relatively straightforward feature relationships characterize the BOL phase, the MOL phase introduces
greater variability, and the EOL phase exhibits a broader range of influential features, including
MOTCURR?2 and temperature-related variables. These findings reveal the FCNN model’s ability to adapt
to varying operational states while reconstructing early-stage and late-stage leakage dynamics. By
leveraging LIME for explainability, the analysis enhances the interpretability of the data-driven approach,
offering transparency into the critical features governing system behavior and supporting informed
decision-making in systems with unclear physical degradation mechanisms.
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Figure 23. LIME results for BOL test dataset up to 5 gpm.
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Figure 24. LIME results for MOL test dataset up to 5 gpm.
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Figure 25. LIME results for EOL test dataset up to 5 gpm.
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A-2. Predicting the Severity and Evolution of Degradation

The LIME analysis for the FCNN model was extended to datasets spanning leakage rates up to
50 gpm for the BOL, MOL, and EOL phases. Figure 26, Figure 27, and Figure 28 illustrate localized
explanations for selected sample indices: 5500, 5750, 6000, 6250, 6500, 6750, and 7000. These analyses
provide insights into the key features driving the FCNN model’s predictions under significantly larger

leakage ranges.

The LIME results for the BOL dataset shown in Figure 26 highlight the influence of dominant
features across the sample indices. The positive contributions in orange are led by jmrcs12a and
SURGETANK3, consistently driving predicted values upward. For instance, at sample index 6000
(panel ¢), CCWFLOW1 <= -0.08 and jmrcs12a <= -0.27 collectively contribute to a prediction of
10.59 gpm, while SURGETANK3 acts as a strong positive driver. This pattern continues in later indices,
such as 7000 (panel f), where positive drivers dominate predictions nearing 30.21 gpm. The results
confirm that during the BOL phase, the FCNN model relies on a relatively consistent set of dominant
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features. Flow-related parameters, particularly CCWFLOW 1 and jmrcs12a, exhibit persistent positive
contributions, while SURGETANK?3 emerges as an important feature contributing positively across all
sample indices.

The LIME explanations for the MOL dataset (see Figure 27) reveal evolving feature contributions
compared to the BOL phase. CCWFLOWI1 and jmrcs12a remain key positive contributors, but their
relative importance varies with increasing leakage rates. At sample index 5500 (panel a), CCWFLOW3
dominates the negative contributions, suppressing the predicted leakage rate to 5.40 gpm, while jmrcs12a
and CCWFLOW!I1 counterbalance with positive influences. This dynamic interplay persists through
intermediate indices, such as 6000 (panel ¢), where CCWFLOW1 and jmrcs12a push predictions upward
to 9.65 gpm, while SURGETANK?2 and CCWFLOW3 exhibit negative influences. At higher sample
indices, such as 7000 (panel f), CCWFLOW1 and SURGETANKSs emerge as dominant positive drivers,
contributing to a predicted value of 30.00 gpm. Additionally, the increasing importance of
TEMPUPPERLOWER and PZTEMP suggests broader feature interactions as the system transitions
toward higher leakage levels. These results emphasize the evolving role of tank-related features (i.e.,
SURGETANKSs and SURGETANKSs) and temperature-related metrics during the MOL phase, where the
system exhibits greater complexity than in the BOL phase.

The LIME analysis for the EOL dataset shown in Figure 28 below underscores the increasing
complexity of feature interactions as the system approaches the EOL phase. At sample index 5500 (panel
a), PUMPSPEEDI1 <= -1.41 exerts a negative influence, suppressing the predicted leakage rate to 5.19
gpm, while CCWFLOW 1 and jmrcs12a emerge as significant positive contributors. This trend remains
consistent at intermediate indices, such as 6000 (panel c), where the predicted value of 9.86 gpm reflects
the balancing influence of negative contributor (i.e., SURGETANK?2) against dominant positive drivers
(i.e., CCWFLOWI1 and jmrcs12a). At higher leakage rates near 50 gpm, the model increasingly relies on
flow-related parameters (i.e., CCWFLOW1 and CCWFLOW3) and temperature-related features (i.c.,
TEMPWIND2 and MOTCURR?2). For instance, at sample index 7000 (panel f), CCWFLOWI1 and
jmres12a dominate as positive contributors, driving predictions to 29.84 gpm, while SURGETANK?2
exerts a stabilizing influence. The EOL phase reveals a more intricate interaction of features than in
earlier phases. While CCWFLOW 1 and jmrcs12a remain critical positive drivers, the contributions of
SURGETANK3, SURGETANKZ2, and temperature-related features become increasingly prominent as the
system progresses toward higher leakage rates. Across all three phases—BOL, MOL, and EOL—the
LIME results consistently highlight CCWFLOW1, jmrcs12a, and SURGETANK3 as dominant positive
contributors. These features drive predicted leakage rates upward with increasing leakage conditions.
SURGETANK? emerges as another critical positive contributor, particularly during the MOL, reflecting
its growing influence as the system transitions to higher leakage levels. Negative contributions are
primarily observed from flow- and pump-related parameters, such as CCWFLOW3, PUMPSPEEDI, and
SURGETANK?2 (in certain localized instances). These features suppress predictions, balancing the
influence of dominant positive contributors and maintaining model stability. The progression from the
BOL to EOL phases reveals increasing feature complexity. During the EOL phase, a broader range of
inputs, such as temperature-related metrics (i.e., TEMPWIND1, TEMPUPPERLOWER, and PZTEMP),
becomes influential. This trend reflects the evolving degradation mechanisms and highlights the FCNN
model’s ability to integrate multiple operational parameters to predict leakage dynamics accurately and
adaptively.
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Figure 26. LIME results for BOL test dataset up to 50 gpm.
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Figure 27. LIME results for MOL test dataset up to 50 gpm.
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Figure 28. LIME results for EOL test dataset up to 50 gpm.
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CCWFLOW1 <=0.22

[SURGETANK3 > -0.14
235

[TEMPWIND?2 > 0.92
082

positive

CCWFLOW1 <= 0.22
[——
CCWFLOWS3 > -0.13
B

423
CCWFLOW2 > -0.13
396
SURGETANK3 > -0.14
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PLOWRAD2 <= ...
138

MPUPPERLOWE...
116

MPTHRUSTI <=...
108

PWIND2 > 0.92

02

PUPPERLOWER...
154

590
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