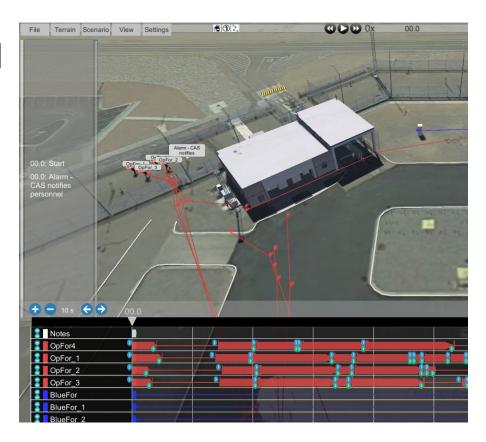


RIC 2025 Optimodel Optimodel CHARTING THE NEXT 50 YEARS


Use of Physical Protection
Modeling and Simulation Tools to
Optimize Security Plans

MARCH 11-13
BETHESDA NORTH MARRIOTT
HOTEL & CONFERENCE CENTER

Physical Security M&S Tools

- Modeling and simulation (M&S) is a tool industry is using to efficiently conduct physical security assessments
 - The capabilities of M&S tools have advanced significantly from their first use in the 1970s
 - M&S assessments can be performed rapidly and consistently
 - M&S tools complement force-on-force exercises
- Sites are benefiting from the use of M&S tools
 - Nuclear power plants—optimizing physical protection strategies
 - Advanced reactor designers—efficiently building and evaluating design plans

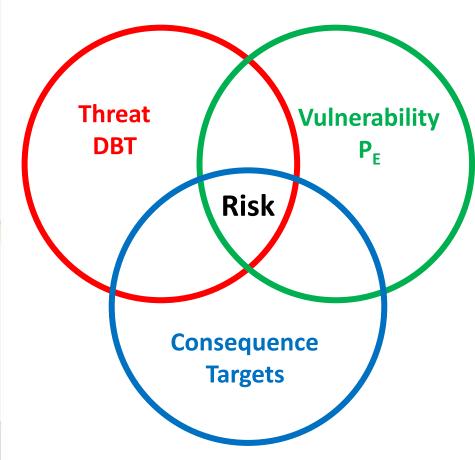
Physical Security M&S Tools (cont.)

- M&S tools can support both NRC and licensee assessments
 - Many iterations of physical protection system and plant design can be conducted to develop an effective physical protection system before proceeding with construction
 - Training of the NRC staff will inform licensing reviews and oversight activities
- M&S tools can be used for creating, adjusting, and evaluating physical protection system designs for other facilities
 - NRC-regulated nonpower reactors
 - NRC fuel cycle facilities

V. NRC. GOV

M&S Tool Types

- Digital Tabletop
 - Supports subject matter expert discussions and scenario development
- Pathway Analysis
 - Assesses probability of interruption (P_I)
- Combat Simulation
 - Assesses probability of neutralization (P_N)



Physical Security Risk

- Triple representation*
 - Threat, Vulnerability, Consequence
 - M&S tools evaluate potential adversary pathways and the probability of adversary defeat
- Only vulnerability, via system effectiveness (P_E) , is determined in assessments
 - Threat is determined by the NRC as the design-basis threat (DBT)
 - Consequence is implied by targets

$$P_E = P_I \times P_N$$

A realistic value of P_E is always less than one

*Kaplan, Stanley, and B. John Garrick (1981), "On The Quantitative Definition of Risk," *Risk Analysis*, Vol. 1, No. 1, pp.11–27. ML12167A133

Data Needs for M&S Tools

- Probabilities of Hit/Kill
- Adversary Capabilities
- Plant Layout
- Response Times

- Barrier Delay Times
- Detection Probabilities
- Target Locations

#nrcric2025

RIC 2025 U.S. Nuclear Regulatory Commission

37th ANNUAL REGULATORY INFORMATION CONFERENCE

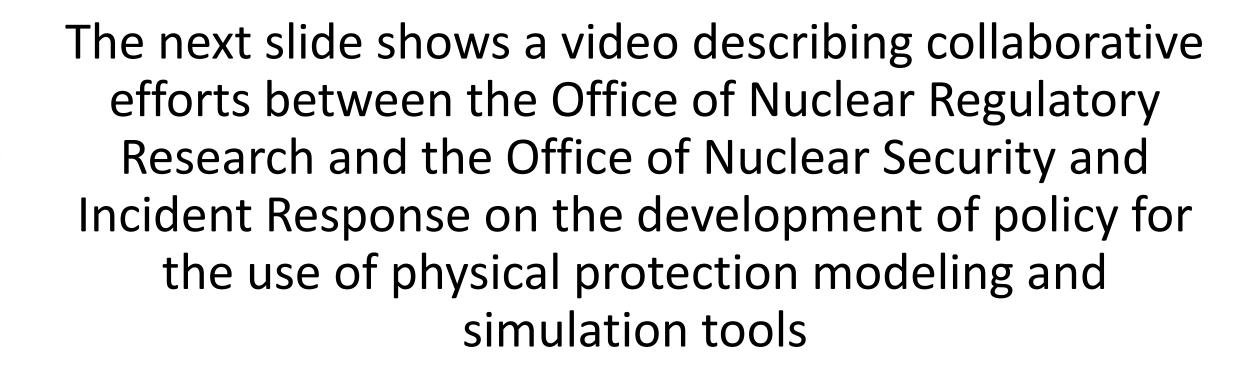
- Ongoing collaboration between the Office of Nuclear Security and Incident Response and the Office of Nuclear Regulatory Research
- NRC engagement with industry on the use of M&S tools
 - Held public meeting in July 2023
 - Summary of public meeting is available
- Preapplication meetings with advanced reactor designers on the use of M&S tools
- Development of reports and staff training for calendar year 2025

MARCH 11-13, 2025

www.nrc.gov #nrcric2025

Publicly Accessible Reports

Preliminary Assessment of Physical Protection Modeling and Simulation Tools—ML23346A027*



Integration of Safety, Security, and Safeguards During Design and Operations—A Technical Assessment and Regulatory Considerations for Advanced Reactor and Advanced Fuel Fabrication Facilities—ML24275A075

