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Legally binding regulatory requirements are stated only in laws, 
NRC regulations, licenses, including technical specifications, or 
orders; not in Research Information Letters (RILs). A RIL is not 
regulatory guidance, although NRC’s regulatory offices may 
consider the information in a RIL to determine whether any 
regulatory actions are warranted. 
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EXECUTIVE SUMMARY 

Seismic induced soil liquefaction is a phenomenon that can lead to soil instability and large 
ground deformations due to a reduction in soil stiffness and shear strength. Safety related 
structures, systems, or components are at greater risk of losing function if supported on soils 
that experience liquefaction. Regulatory Guide 1.198 provides guidance to applicants on 
acceptable methods for evaluating the potential for liquefaction initiation (triggering). Regulatory 
Guide 1.198 was last published in 2003 and is based on technical information developed prior to 
2000. In 2016, the National Academies of Sciences, Engineering, and Medicine published a 
report providing recommendations for research that can improve scientific understanding of the 
liquefaction phenomenon and engineering practice in evaluating liquefaction triggering and 
consequences associated with liquefaction. This report documents research that implemented 
recommendations from the National Academies in developing new empirical liquefaction 
models. One goal of this research is to provide the technical basis for updating guidance on 
acceptable methods in evaluating risks to nuclear facilities from liquefaction triggering. 

Three models were developed as part of the research documented in this report: a liquefaction 
susceptibility model, a liquefaction triggering model, and a liquefaction surface manifestation 
model. The liquefaction susceptibility model is used to evaluate the probability that soil can 
experience liquefaction under seismic shaking. The liquefaction triggering model is used to 
determine the probability that a susceptible soil will liquefy for a given intensity of ground 
shaking, and the manifestation model is used to estimate the probability that there will be 
surface manifestation of liquefaction. Examples of surface manifestation are ground cracking, 
ground settlement, and liquefied soil ejecta on the ground surface. The triggering and 
manifestation models were developed using data from the Next Generation Liquefaction 
database. Liquefaction triggering models have historically been used to determine if significant 
soil strength loss due to liquefaction is expected at a new nuclear power plant site, and the 
triggering model developed in this research is expected to be useful for future nuclear power 
plant siting evaluations. The surface manifestation model may be useful in assessing the risk 
that liquefaction poses to light weight surface founded micro-reactors.  

The research presented in this report was reviewed by an external panel. Some external review 
comments were not addressed in this version of the report due to the timing of the authors 
receiving the review comments. This report will be revised under a new contract between the 
United States Nuclear Regulatory Commission and Southwest Research Institute to address all 
external peer review comments. The forthcoming revision is not expected to result in 
substantive changes to the models described in this report.  
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ABSTRACT 

The objective of this letter report is to fulfill Task 7 of a contract that was jointly supported by the 
U.S. Nuclear Regulatory Commission (NRC) and the U.S. Bureau of Reclamation (USBR). 
Under Task 7, a probabilistic triggering model was developed that is capable of being used in 
combination with a seismic hazard analysis to obtain the annual frequency of liquefaction 
triggering. The purpose of this report is to document the development of this model. To that end, 
this report discusses the Supported Modeling Team’s (SMT) approaches to (i) use the extensive 
NGL case history and laboratory test results database to perform analyses that previously would 
have been logistically impractical, and (ii) develop relationships required to compute the 
probabilities of liquefaction susceptibility, triggering, and ground surface manifestation. 

The analysis framework developed by the SMT has several elements. First, we assess 
susceptibility solely in consideration of soil type and behavior considerations and express 
results in a probabilistic manner instead of binary “yes” or “no” determinations. Second, we 
evaluate the triggering of liquefaction in a manner that recognizes the distinction between what 
is generally available from case histories (surface manifestation or lack thereof) and what 
should be the outcome of a triggering analysis (probability of triggering of a given layer within a 
soil profile). Several approaches for evaluating triggering that account for this dichotomy are 
presented. Third, we introduce a probabilistic approach for evaluating probability of surface 
manifestation (or lack thereof) based on whether a layer within the profile has triggered, 
attributes of soil composition in that layer, and stratigraphic information such as layer thickness 
and depth.  

In Chapter 2, we define technical terms that comprise the framework for liquefaction analysis 
presented in this report (susceptibility, triggering, manifestation), present the motivation for the 
work described in this report, and describe our research approach. In Chapter 3, we summarize 
some of the major previous liquefaction triggering models that utilize a critical layer framework 
for representing the conditions at a site and some of the challenges inherent to that approach. In 
Chapter 4, we outline the regression framework that has been used for developing the models. 
This approach relies on Bayes theorem and separately considers the mechanisms of 
liquefaction triggering and manifestation. In Chapter 5, we describe the steps required to 
process liquefaction case histories and assign layers and their properties for use in model 
development. These steps include several new elements including a Kriging interpolation 
method to consistently estimate peak ground acceleration (PGA) from nearby recording 
stations, a model to relate soil behavior type index (Ic) to fines content (FC), and an automated 
layer detection algorithm. In Chapter 6, we provide the components of the model, which include 
an equation to compute the probability of triggering based on data from cyclic tests performed in 
the laboratory and equations to compute the probability of surface manifestation based on soil 
layers derived from cone penetrometer test (CPT) data and triggering probabilities within the 
layers. We also explore sensitivities of the manifestation model. In Chapter 7 we outline the 
limitations of the models presented in this report and identify future work that has the potential to 
improve model performance. Finally, in Chapter 8, we summarize the conclusions of our work. 

Although not designated as a formal Senior Seismic Hazard Analysis Committee (SSHAC) 
study, the approach and processes we relied on as the SMT to develop our models followed 
several of the basic SSHAC principles. These included evaluation and integration of available 
data, clearly defined roles and responsibilities of all project members, and transparent 
documentation of the SMT decisions needed to develop our findings. In addition, the model 
presented in a previous version of this report (August 2023) has been peer reviewed by the 
Modeling Review Team (MRT), with all comments received prior to March 22, 2024 documented 
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in a separate report along with SMT responses (Task 8, Ulmer et al., 2024). The purpose of the 
MRT review was to provide feedback on the SMT’s methods but does not necessarily constitute 
an endorsement of the SMT’s methods, results, or recommendations. 

Our findings provided in this report are nearing their final form, although future refinements and 
improvements are possible. The content presented here is subject to change as we refine the 
methodologies, input parameters, and framework, and based on review comments from the 
MRT received after March 22, 2024. Where possible, comments from the MRT have been 
directly addressed in this report. Comments from the MRT that were not received with sufficient 
time remaining in the project schedule may be addressed in derivative products (e.g., journal 
papers) where feasible. While the general concepts behind our approach have been shared in 
meetings with the NGL Advisory Board and other NGL modeling teams, this document presents 
these concepts in greater detail and is more up-to-date than any prior presentation. Accordingly, 
we look forward to receiving feedback from regulatory agencies, topical experts, practicing 
engineers, and others about the modeling approach and the reasonableness and practicality for 
application of the models that have been presented. 

Reference 

Ulmer, K.J., K.S. Hudson, S.J. Brandenberg, P. Zimmaro, S.L. Kramer, and J.P. Stewart. “Task 
8: Model Review Team Comments.” Washington, DC: U.S. Nuclear Regulatory Commission. 
March 2024.
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normalization of undrained shear strength with effective 
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initial liquefaction – Initial liquefaction occurs in saturated granular soil subjected to 
cyclic shear loading (e.g., earthquake ground motions) under 
undrained conditions when excess pore water pressure equals 
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liquefaction triggering –  Liquefaction triggering occurs in liquefaction-susceptible soils 
when the liquefaction demand exceeds the soil’s capacity to resist 
liquefaction. The demand and capacity terms can be expressed as 
metrics in a stress-, strain-, or energy-based framework. The 
stress-based framework is most commonly used in practice and is 
used in this report. In the stress-based framework, the demand 
term is the cyclic stress ratio (CSR) and the capacity term is the 
cyclic resistance ratio (CRR). Thus, liquefaction triggering occurs 
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while others such as decreased strength at depth may not be 
easily observed. The excess pore pressures and levels of strain 
that develop in a profile influence whether the effects of 
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1-1 

1 INTRODUCTION 

1.1 Project Background 

The U.S. Nuclear Regulatory Commission (NRC) has identified the need to update existing 
regulatory guidance on the methods used to evaluate seismic soil liquefaction in Regulatory 
Guide (RG) 1.198, “Procedures and Criteria for Assessing Seismic Soil Liquefaction at Nuclear 
Power Plant Sites” (NRC, 2003). RG 1.198 provides guidance to NRC licensees on acceptable 
methods for evaluating seismic induced liquefaction that demonstrates compliance with  
Title 10 of the Code of Federal Regulations (10 CFR) 100.23, “Geologic and Seismic Siting 
Criteria.” The U.S. Bureau of Reclamation (USBR) is also interested in updated methods to 
assess liquefaction in support of its Dam Safety Program. 

Within the largely deterministic and semi-empirical NRC guidance in RG 1.198, sites that do not 
pass screening or susceptibility criteria are required to undergo more detailed analysis methods. 
RG 1.198 recommends application of relationships from Youd et al. (2001) when using 
semi-empirical procedures to assess the potential for liquefaction triggering. This method, 
which was the consensus industry standard in the late 1990s and early 2000s, is a 
semi-empirical relationship based on a database of case histories that was initially developed by 
Seed et al. (1985). More recent liquefaction case history databases have been developed by 
research groups at several universities. Alternate approaches to model development and 
different interpretations of available data by various modeling teams have resulted in different 
semi-empirical relationships that often produce divergent estimates of liquefaction triggering 
potential. This issue was at the core of a National Academies of Sciences, Engineering and 
Medicine (NASEM) Report on the State of Practice in evaluating the potential for earthquake-
induced liquefaction triggering and consequences (NASEM, 2016, 2021). The recommendations 
in that report informed the scope and purpose of this project, as discussed in this report. 

The alternative of a probabilistic approach for liquefaction triggering analysis is mentioned in 
RG 1.198 but details on what would comprise an acceptable probabilistic approach are not 
described. The recommendations from the NASEM (2016, 2021) report also point to the need 
for probabilistic liquefaction analysis methods. Specifically, the NASEM report recommends that 
more fully probabilistic analyses should “incorporate the complete range of possible damaging 
earthquake ground motions (in terms of both ground motion intensity and earthquake 
magnitude), their probable frequency of occurrence, and the variability in the parameters and 
adjustment factors used to estimate the CRR.” In addition, the NASEM report recommends that 
“these probabilistic analyses can incorporate the epistemic uncertainty among the available 
empirical models by using a logic tree approach that can also be used to consider uncertainty in 
the site characterization. The uncertainties involved in the assessment of earthquake ground 
motions, system response, physical damage, and losses make probabilistic methods for 
liquefaction consequence assessment central to performance- based evaluation and design.” 

Under the current task order (31310019F0030), supported jointly by the NRC and the USBR, 
staff in the Geosciences and Engineering Department (GED) at Southwest Research Institute® 
(SwRI®) and subcontractors at the University of California, Los Angeles (UCLA) are tasked with 
developing a liquefaction triggering model based on an expanded database of liquefaction case 
histories. Because liquefaction models are subject to interpretation of available data, it is 
important that new probabilistic models capture epistemic uncertainty and aleatory variability of 
inputs. Accordingly, the goal of this modeling task aims to capture the center, body, and range 
of technically defensible interpretations. Past reports provided to the NRC and USBR  
(e.g., Task 2 report, Ulmer et al., 2021; Task 4 report Ulmer et al., 2022c; Task 5b report, 
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Ulmer et al., 2022a; and Task 7a report Ulmer et al., 2023c) discuss the expanded database, 
other relevant supporting studies, and earlier phases of model development in more detail.  

Prior to the USBR and the NRC’s efforts, the Pacific Earthquake Engineering Research (PEER) 
Center initiated the Next Generation Liquefaction (NGL) project in 2013. The objective of the 
NGL initiative is to organize research in soil liquefaction and related topics into a framework 
conducive to broad data dissemination and development of improved procedures for modeling 
of liquefaction susceptibility, triggering, and various effects. To meet these objectives, the NGL 
project is organized into several activities, including database development (Brandenberg et al., 
2020; NGL, 2021), supporting studies, and model development. Through the current contract 
between NRC/USBR-SwRI, we are collaborating with the NGL project to work toward common 
goals. The work described herein was performed by the Supported Modeling Team (SMT) and 
is part of NGL’s model development efforts. Other NGL modeling teams are developing 
alternative models to evaluate liquefaction triggering and its effects, but their efforts are not 
supported by the NRC/USBR-SwRI contract and are not detailed herein. 

The NGL project is organized into several teams as shown in Table 1-1. Some of these teams 
operate outside of the current NRC/USBR-SwRI contract while others were fully or partially 
supported by the contract as noted in the table. Each team had an assigned role associated 
with one or more of the three main NGL activities (i.e., database development, supporting 
studies, model development). 

Table 1-1 NGL project participants 

Team Role Individuals 

SMT Supported 
Modeling 

Team* 

Develop preliminary and final 
liquefaction triggering model 

Steven L. Kramer (SMT-Lead) 
Scott J. Brandenberg 
Kenneth S. Hudson 

Kristin J. Ulmer 
Paolo Zimmaro 

MRT Modeling 
Review 
Team* 

Participatory peer review of 
preliminary and final model 

Izzat. M. Idriss 
Lelio Mejia 

Thomas J. Weaver 
Derek Wittwer 

PMT Project 
Management 

Team* 

Manage budget, schedule, 
meetings, and supporting 

activities 

John Stamatakos 
Jonathan P. Stewart 

Steven L. Kramer 

NGL Advisory Board 
(active through  
July 20231) 

Technical advice for all NGL 
activities 

Ross W. Boulanger 
Jonathan D. Bray 
Misko Cubrinovski 

Izzat. M. Idriss 
(Executive Advisor) 

 
1Prof. Ross Boulanger was a named member of the NGL Advisory Board and his initial reviews and comments were 
appreciated. Over the course of the work (since 2021), Prof. Boulanger was absent from NGL engagements with the 
SMT and PMT despite attempts to reengage. 
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Table 1-1 NGL project participants (cont’d) 

Team Role Individuals Team 

DWG Database 
Working 
Group** 

Technical and programmatic 
management of the NGL 

Database 

Scott J. Brandenberg 
Paolo Zimmaro 
Kristin J. Ulmer 

Kenneth S. Hudson 
Robb E.S. Moss 
K. Ӧnder Cetin 

Kevin W. Franke 

NGL Modeling Teams Develop models for liquefaction 
susceptibility, triggering, and/or 
consequences using the NGL 

database 

Kramer et al. (SMT) 
Moss/Çetin/Kayen et al., 

Franke/Lingwall/Stuedlein/Olson 
Green/Rodriguez-Marek et al., 

Baise/Maurer/Thompson 
Dashti/Kamai/Liel et al., 

Okamura/Kiyota 
Carlton/Geyin et al., 

NGL Supporting 
Studies** 

Perform supporting research to fill 
knowledge gaps not represented 

by the case history database 

Stuedlein et al. (susceptibility) 
Carlton et al. (overburden and 

shear stress effects) 

*Supported by SwRI/NRC-USBR contract 
**Partial support from SwRI/NRC-USBR contract 

 

1.2 Tasks Under the Current NRC/USBR-SwRI Contract 

Table 1-2 summarizes the tasks under the current NRC/USBR-SwRI contract. This current 
contract has a period of performance from September 2019 through the end of March 2024. 
This report provides CPT-based models to fulfill Task 7, and an addendum to this report that 
provides SPT-based models fulfills Task 9. 

Table 1-2 Summary of tasks under the current NRC/USBR-SwRI contract 

1 Kickoff Meeting 

2 Liquefaction Case History Database 
2a: Add Case Histories to the NGL Database 
2b: Address Feedback from Modeling Teams 
2c: Database Maintenance 

3 Establish Modeling Team 

4 Develop Preliminary CPT-based Model Using NGL Database 
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Table 1-2 Summary of tasks under the current NRC/USBR-SwRI contract 
(cont’d) 

5 Evaluate the Effects of Confining Stress and Initial Static Shear Stress on 
Liquefaction Triggering 
5a: Test/analysis plan 
5b: Draft technical letter report 
5c: Final draft technical letter report 

6 Preliminary Model Peer Review 

7 Develop Updated Triggering Model 
7a: Technical letter report documenting progress 
7b: Draft technical letter report on updated models 
7c: Final technical letter report on updated models 

8 Peer Review of Updated CPT-based Models 

9 Develop SPT-based Model(s) 
9a: Draft technical letter report on model(s) 
9b: Final technical letter report on model(s) 

 

The authors of this report are responsible for Tasks 4 and 7. The main goal of Tasks 4 and 7 is 
to develop a model for predicting the occurrence or non-occurrence of liquefaction using an 
expanded dataset of liquefaction case histories and results of supporting studies. Under a 
previous contract with the NRC, the graphical user interface (GUI) for this expanded database 
was developed by SwRI staff and the Database Working Group (DWG). The DWG continues to 
provide oversight for and expand the database under Task 2 of the current NRC/USBR-SwRI 
contract. We met frequently with the DWG to identify data needs, reconcile discrepancies in 
documentation of the case histories, and clarify interpretations of the data in the NGL database. 

The Model Review Team (MRT) is responsible for reviewing the main products of the SMT and 
assessing whether the SMT used appropriate methods and considered a broad range of data 
and models, as outlined in Tasks 6 and 8. This review does not necessarily constitute an 
endorsement by the MRT of the SMT’s methods, results, or recommendations. The MRT is 
composed of two external consultants, a representative from NRC, and a former representative 
from USBR. An earlier version of this report was provided to the MRT for their review (August 
2023). The earlier version of this report has been peer reviewed by the MRT, with all comments 
received prior to March 22, 2024 documented in a separate report along with SMT responses 
(Task 8, Ulmer et al. 2024).. 

1.3 Objectives of Study and Scope of Report 

The original scope of Tasks 4 and 7 of the current NRC/USBR-SwRI contract was to develop a 
probabilistic triggering model that is capable of being used in combination with a seismic hazard 
analysis to obtain the annual frequency of liquefaction triggering. In the course of the project 
and in consultation with members of the NGL Advisory Board and other NGL modeling teams, 
we concluded that models developed using case history data need to consider triggering in 
combination with manifestation. Accordingly, as part of the deliverables for Tasks 4 and 7, we 
provide liquefaction models which include susceptibility, triggering, and manifestation. By 
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making this change, we clarify the meaning of key terms in liquefaction analysis, provide a 
framework by which the different effects can be evaluated in a consistent and rational manner, 
and highlight a major innovation of this study relative to prior work. 

The purpose of this report is to document the development of these susceptibility, triggering, 
and manifestation models. To that end, this report discusses the SMT’s approaches to (i) use 
the extensive NGL case history database to perform analyses that previously would have been 
logistically impractical and (ii) develop relationships required to compute probabilities of 
liquefaction susceptibility, triggering, and surface manifestation. A preliminary version of these 
models was presented in the Task 4 report (Ulmer et al., 2022c) and an update to those models 
was provided in the Task 7A report (Ulmer et al., 2023c).  

Several independent groups provided feedback on the Task 4 report in its entirety or on 
individual concepts or approaches documented therein. Some of these groups are contractually 
obligated to support the current NRC/USBR-SwRI project, and others are part of the worldwide 
NGL project. A summary of the sources of feedback to date on the Task 4 report include: 

● The MRT. The MRT was composed of liquefaction experts, including external 
consultants and members of the USBR and NRC project management teams that 
oversaw the NRC/USBR-SwRI project. The MRT was tasked with providing review 
comments as part of Task 6 and Task 8 in Table 1-1. Their feedback on the Task 4 
report was formally documented in the Task 6 report and more informally through 
several virtual discussions with the SMT. 

● NGL Advisory Board. The NGL Advisory Board was composed of liquefaction experts 
who were not formally supported on the NRC/USBR-SwRI project. They provided advice 
and recommendations related to all NGL activities over most of the project duration 
(through July 2023). Members of the SMT met with the Advisory Board monthly or 
bi-monthly. Some members of the NGL Advisory Board provided written comments to 
the Task 4 report and the SMT informally discussed these comments in regular NGL 
Advisory Board meetings. 

● Others, including members of the NGL modeling teams. NGL modeling teams are those 
teams who intend to use the NGL database to develop liquefaction models and meet 
bi-monthly to share results and discuss relevant topics of interest. The SMT is one of the 
NGL modeling teams. Although the Task 4 report in its entirety was not shared with the 
NGL modeling teams, the SMT presented several of the concepts in the Task 4 report 
as they were being developed in order to solicit informal feedback from other NGL 
modeling teams. 

The following chapters describe updated liquefaction models. As such these models replace 
those presented in the Task 4 report. In Chapter 2, we define technical terms that comprise the 
framework for liquefaction analysis presented in this report (susceptibility, triggering, 
manifestation), present the motivation for the work described in this report, and describe our 
research approach. In Chapter 3, we summarize some of the major previous liquefaction 
triggering models that utilize a critical layer framework for representing the conditions at a site 
and some of the challenges inherent to that approach. In Chapter 4, we outline the regression 
framework that has been used for developing the updated triggering models. This approach 
separately considers the mechanisms of liquefaction triggering and manifestation. In Chapter 5, 
we describe the steps required to process liquefaction case histories and assign layers and their 
properties for use in model development. These steps include several elements including a 
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model to relate soil behavior type index (Ic) to fines content (FC), an automated layer detection 
algorithm, and a modeling approach for predicting the probability of surface manifestation. In 
Chapter 6, we provide the components of the updated model, which include equations to 
compute the probability of triggering based on data from cyclic tests performed in the laboratory 
and equations to compute the probability of surface manifestation based on soil layers derived 
from cone penetrometer test (CPT) data and triggering probabilities within the layers. In Chapter 
7 we outline the limitations of the models presented in this report and identify future work that 
has the potential to improve model performance. Finally, in Chapter 8, we summarize the 
conclusions of our work. 
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2 BACKGROUND 

To provide a better understanding of the components of the proposed preliminary model and the 
necessity of the advances presented in this report, we provide the following brief summary of 
the mechanics of liquefaction and the current state-of-the-art in liquefaction evaluation. For a 
more detailed description, we recommend reviewing summary documents such as the 2016 
state-of-the-art and state-of-the-practice report by the NASEM (2016; 2021).  

2.1 Liquefaction Mechanics 

Soil liquefaction (referred to simply as “liquefaction” for the rest of this document) is a 
substantial loss of soil stiffness and shear strength that results from increased pore water 
pressures. Increased pore water pressures occur in contractive or temporarily contractive 
saturated granular soil subjected to cyclic shear loading (e.g., earthquake ground motions) 
under undrained loading that if continued for a sufficient duration can cause the pore water 
pressures to approach the level of the initial vertical effective stress (σ’v0). If the pore pressures 
reach σ’v0, a state of initial liquefaction (Seed and Lee, 1966) is reached. Alternative definitions 
of liquefaction have been based on granular soil reaching certain levels of cyclic shear strains, 
which may occur at different times than initial liquefaction. The levels of strain that develop in a 
profile, and their proximity to the ground surface, influence whether the effects of liquefaction 
are visually apparent, or manifest, at the ground surface.  

Some soil types cannot experience liquefaction–for example, clays generally do not develop 
cyclic pore pressures as large as those for sands, and while they can experience strength loss, 
it is generally less severe than that for sands (with the exception of quick clays). For this reason, 
it is necessary to distinguish soils susceptible to liquefaction from those that are not. The use of 
different terms in relation to liquefaction problems (susceptibility, triggering, manifestation) has 
the potential to cause confusion. Our aims here are to clearly define those terms and to 
describe the past modeling approaches relied on by the liquefaction research and 
engineering community.  

2.1.1 Liquefaction Susceptibility 

Within the geotechnical engineering community, different engineers have different 
understandings of the word “susceptibility” as applied to liquefaction problems (Chapter 3 of 
Stuedlein et al., 2023b). However, as used here, liquefaction susceptibility is related to 
fundamental material characteristics of the soil that control the level of pore pressure generation 
and strength loss that is possible if the soil were to be cyclically sheared. Susceptibility is 
unrelated to the density and current saturation level of the soil; while both of these factors affect 
the potential for triggering, they do not control the fundamental behavior of a soil.  

Two end members of soil response to cyclic loading can be simply summarized as “sand-like” 
behavior (i.e., liquefiable) and “clay-like” behavior (i.e., not liquefiable). Fine-grained soils can 
either exhibit clay-like or sand-like behavior. Clays will tend to exhibit clay-like behavior. The 
mechanical properties of clays are controlled by inter-particle interactions that are influenced by 
various types of chemical bonding; such materials experience strength loss from pore pressure 
increase, but strength from chemical bonding remains and strength loss is somewhat 
moderated. Silts can have different levels of plasticity and may exhibit sand-like or clay-like 
behavior. Some silt particles are sand-like in that they exhibit the same mechanical properties 
as sands (strength is related to gravitational forces and becomes very small when pore pressure 
approaches the initial effective stress). Other silts can be influenced by chemical bonding, as for 
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clays. Soil plasticity, as described by the plasticity index (PI), is loosely connected to these soil 
behavior types; granular soils including some silts (e.g., rock flour) are non-plastic whereas 
clays are by definition plastic. An analysis of susceptibility seeks to distinguish these soil 
behavior types.  

Based on these considerations, Boulanger and Idriss (2006) (BI06) recommended procedures 
to distinguish fine-grained soils for modeling purposes as either “sand-like” materials that can 
liquefy or “clay-like” materials that can experience cyclic softening. Figure 2-1 shows the 
positions of different soil materials in PI-LL space (as used for a plasticity chart, where LL is the 
liquid limit), and suggests that soils with PI > 7 are clay-like and soils with PI < 4 are sand-like. 
Boulanger (2023) argued that BI06 should not be considered to be a susceptibility model due to 
its intended purpose to guide the selection of tools for ground failure modeling. However, given 
the definition of susceptibility adopted here, for practical purposes we consider BI06 to be a 
laboratory-based susceptibility model.  

Another susceptibility model is that of Bray and Sancio (2006) (BS06), who assembled cyclic 
test data from soil samples from Adapazari, Turkey, which experienced ground failure in the 
1999 Kocaeli earthquake. The cyclic test results were used to distinguish materials with different 
engineering responses. Materials were considered to be liquefiable if they experience excess 
pore water pressure ratios, ru > 90% and similar ‘banana-shaped’ cyclic shear stress vs. cyclic 
shear strain loops and to be not liquefiable if they lack those characteristics. As shown in 
Figure 2-2, they found that silts and clays with PI ≤ 12 and water content (wc) greater than 

85% of LL were liquefiable according to this definition, while soils with PI > 18 and wc < 0.8LL 
were not.  

Boulanger (2023) argued that the BI06 and BS06 criteria serve different purposes and should 
not be compared. This issue was discussed extensively at a 2022 PEER workshop (Stuedlein et 
al., 2023b), because most practitioners use these as alternative susceptibility models. We 
consider the two models to, in effect, represent alternative methods for evaluating whether a soil 
should be considered susceptible to liquefaction for modeling purposes. As noted by Stuedlein 
et al. (2023b) – “The models are supported by experimental data and the expert interpretation of 
that data by their developers. Differences in the models can largely be attributed to differences 
in the data they are based upon, and differences in the developers’ interpretation of that data.” 
Accordingly, the differences between the models represents epistemic uncertainty, which can 
be significant for many applications. Potential causes for these differences include the different 
soils that were tested; different methods of test data interpretation to judge different types of soil 
behavior; and the cyclic testing for the two studies having been performed at different stress 
levels (i.e., the ratio of applied shear stress to undrained strength was generally < 0.3 for BS06 
and was generally > 0.5 for BI06). It should also be noted that the BS06 criterion includes, 
through its use of the water content, information about the density (or “state”) of the soil, which 
is inconsistent with the previously described definition of susceptibility. 

Despite the use of soil index properties in current criteria (PI and LL), the soil behavior that 
indicates whether a soil is sand-like or clay-like is better assessed from: (i) the similarity of slope 
between the critical state line (CSL) and isotropic consolidation line (ICL), (ii) the shape of cyclic 
stress-strain loops, and (iii) the maximum pore pressure ratios that develop during cyclic 
shearing. We currently lack specific metrics, and identified limits on those metrics, that can be 
used to translate these more advanced indicators of soil behavior into assessments of  



 

2-3 

 

Figure 2-1 Criterion to distinguish sand-like from clay-like soil behavior for modeling 
purposes by Boulanger and Idriss (2006) 

 

 

Figure 2-2 Susceptibility criteria by Bray and Sancio (2006); figure from 
R.W. Boulanger in Stuedlein et al. (2023b) 
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susceptibility potential, although some work has been done to move toward quantitative metrics 
to distinguish sand-like vs clay-like behavior (Stuedlein et al., 2023a). Both the BI06 criterion in 
Figure 2-1 and the BS06 criterion in Figure 2-2 show intermediate zones between sand-like 
(or susceptible) and clay-like (non-susceptible) where the soil’s behavior is ambiguous. This 
class of “intermediate” soils includes low-plasticity fine-grained soils and sands with a significant 
content of plastic fines. Any future susceptibility criteria are likely to not have a clean cutoff 
between the two end members and thus to remain ambiguous with respect to these materials. 

The rationale for the SMT’s choice of susceptibility criteria as part of case history processing is 
described in Chapter 4. 

2.1.2 Liquefaction Triggering 

In liquefiable soils (i.e., materials judged as susceptible to liquefaction), cyclic undrained shear 
can produce progressive pore pressure increase and effective vertical stress decrease as the 
number of cycles of loading increases (e.g., Figure 2-3). This increase is often expressed as a 
ratio of the excess pore water pressure (uexc) to σ’v0, which is the excess pore pressure ratio (ru),  

𝑟௨ ൌ 𝑢௘௫௖/𝜎′௩଴ 2-1 

Prior to cyclic loading, ru = 0. A between-cycle increase in ru indicates the soil may be advancing 
towards liquefaction. Initial liquefaction is defined as having occurred at the first cycle number 
where ru = 1.0 is achieved. In Figure 2-3, initial liquefaction occurs at 21 cycles. An alternative 
definition of liquefaction is when a certain level of cyclic shear strain (e.g., +/- 3%) is first 
exceeded. Based on that definition, liquefaction occurs at 22 cycles in Figure 2-3.  

Tests such as that shown in Figure 2-3 can be used to evaluate the resistance of a given soil to 
liquefaction. The resistance is typically expressed as the cyclic resistance ratio, CRR, which is 
the cyclic stress ratio, CSR required to liquefy granular soils in a standard number of cycles, 
typically 15 to 20, corresponding approximately to the duration of shaking from a reference 
moment magnitude (M) M7.5 earthquake. The demand on a given soil element from a given 
earthquake is the ratio of a representative cyclic shear stress amplitude (typically 65% of the 
peak) to the initial vertical effective stress and is denoted cyclic stress ratio, CSR. Thus, 
liquefaction triggering occurs when the demand exceeds the capacity, or when CSR > CRR. 
This stress-based analysis is one of three general options, the others being strain-based 
(e.g., Dobry et al., 1982) or energy-based (e.g., Ulmer et al., 2023b). The stress-based 
approach is the most commonly used framework (NASEM, 2016, 2021). The SMT chose to use 
the stress-based framework because (i) of its common utilization in practice, which provides a 
strong precedent for the eventual NGL models and (ii) it provides a direct and simple way to 
estimate seismic demands at the NGL case history sites and in forward applications. For more 
information on the strain- and energy-based methods, we recommend relevant sections in the 
NASEM report (2016, 2021). 

The use of liquefaction case histories was initiated in the late 1960s (Seed and Idriss, 1971; 
Whitman, 1971). Seed and Idriss (1970) and Whitman (1971) estimated peak shear stress at 
depth z as the product of peak ground acceleration (PGA) and total stress (σv) at depth z. This 
product represents the stress if the soil profile were behaving as a rigid body. Seed and Idriss 
(1971) included a depth-dependent shear stress reduction coefficient, rd, to account for the 
flexibility of the soil as: 
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Figure 2-3  Shear strain, shear stress, normal effective stress, and ru vs number of 
cycles of loading during a cyclic test performed on a specimen of 
Monterey 0/30 sand (data from tests performed by Ulmer, 2019) 
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where τcyc,max is the maximum cyclic shear stress at depth z, PGA is the horizontal peak ground 
acceleration at the ground surface, g is the acceleration of gravity, σv is the total vertical stress, 
and rd is a depth-dependent shear stress reduction coefficient that accounts for the nonrigid 
response of the soil deposit. The 0.65 coefficient reduces the CSR from the peak value of the 
shear stress to a more representative value. 

Liquefaction triggering is not only dependent on the CSR but also on the number of loading 
cycles or duration of shaking. To account for the number of cycles, CSR is typically adjusted 
using a magnitude scaling factor (MSF) to compute an equivalent CSR for a reference M7.5: 
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Commonly used relationships for MSF are provided by Youd et al. (2001), Cetin et al. (2004), 
Cetin and Bilge (2012), and Boulanger and Idriss (2014). Some investigators have recently 
suggested that the slope of MSF with magnitude is dependent on relative density 
(Boulanger and Idriss, 2014; Kishida and Tsai, 2014), whereas others have found that this 
density-dependence of slope is not supported by all available data (Ulmer et al., 2018;  
Ulmer et al., 2022b). This topic is addressed in Section 6.2.8 of this report.  

Liquefaction resistance, CRR, has often been evaluated from case histories of observations of 
ground failure in the field during past earthquake events. As described further in Chapter 3, 
these traditional methods require critical assumptions regarding identification of the layer 
causing the ground failure when it has occurred, or the layer mostly likely to have caused 
ground failure when it did not occur. The fundamental problem is that the field data of yes/no 
manifestation is non-uniquely related to layer performance. For these reasons, we apply an 
alternative approach using cyclic testing performed in the laboratory to develop an initial 
estimate (or “prior”) for CRR. Details about these specific approaches are discussed throughout 
the report, but particularly in Chapter 3 and Section 6.2. Definition of the resulting CRR as a 
function of some in situ penetration resistance or relative density (Dr) is the objective of most 
past liquefaction triggering modeling efforts, as discussed in Chapter 3.  

Once the CRR and CSR are established, the factor of safety against liquefaction (FSL) is 
computed as the ratio of CRR to CSR. Alternatively, in probabilistic models, the probability of 
liquefaction (PL) can be computed as a function of CSR and penetration resistance. Using a 
probabilistic approach provides advantages over a binary “yes” or “no” evaluation typically used 
in the deterministic simplified triggering procedures because it conveys more information on the 
likelihood that liquefaction will occur, which is needed for performance-based earthquake 
engineering applications.  

2.1.3 Liquefaction Manifestation 

Once liquefaction triggers in a soil layer, the type and magnitude of consequences can vary 
significantly. Potential consequences include settlement and lateral displacement, sediment 
ejecta (e.g., sand boils), slumping and failure of embankments, loss of foundation support, 
increased lateral loads on and reduced lateral resistance of earth retaining structures and their 
foundations, buoyancy uplift of buried structures, and modification of free-field ground motions. 
Some of these effects (e.g., slope, foundation, retaining structure movements) are stability 
problems and as such their potential for occurring is derived using equilibrium calculations with 
reduced strengths in liquefied strata. Others can occur in flat or nearly flat ground (sand boils, 
ground oscillation) and the likelihood of occurrence is determined using a liquefaction 
manifestation analysis that considers the thickness and depth of liquefied strata and the 
properties of other (non-liquefied) strata in a profile. Here we describe three methods for 
manifestation analysis from the literature: relative layer thickness criteria, severity index criteria, 
and hydraulic profile analysis criteria.  

2.1.3.1 Relative Layer Thickness Criteria 

Ishihara (1985) proposed bounding curves of thickness of a non-liquefiable surficial soil layer 
(H1) vs thickness of an underlying liquefiable sand layer (H2) to predict the occurrence of 
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surficial manifestation of liquefaction-induced ground damage. This is illustrated in Figure 2-4. 
This method is widely used to essentially indicate whether a non-liquefiable crust can suppress 
surficial manifestation of liquefaction that triggers at depth. Rateria and Maurer (2022) revisited 
this relationship and provided updated H1-H2 models. However, they noted that H1 and H2 are 
not necessarily entirely efficient nor sufficient to predict manifestation, and they recommended 
that new manifestation models are needed to explicitly account for other influential factors 
(e.g., effects of strata permeability, sequencing of layers, depth, and thickness on pore pressure 
gradients and transmission). 

2.1.3.2 Severity Index Criteria 

Liquefaction severity indices estimate the severity of surface manifestations based on the 
cumulative liquefaction response of a profile. These models are useful because they provide 
indices of cumulative soil profile response, which can then be related to surface manifestations 
empirically. These methods do not require the identification of a critical layer as triggering 
models do. 

Examples of common liquefaction severity indices include: the Liquefaction Potential Index 
(LPI;-Iwasaki et al., 1978); the Ishihara-inspired Liquefaction Potential Index (LPIISH; Maurer et 
al., 2015a); and the liquefaction severity number (LSN; van Ballegooy et al., 2014). 

The LPI provides a depth-weighted index of the potential for triggering of liquefaction at a site 
using the following equation: 

𝐿𝑃𝐼 ൌ  න 𝐹 ∙ 𝑊ሺ𝑧ሻ𝑑𝑧
ଶ଴௠

଴
 2-4 

where F = 1 – FSL for FSL ≤ 1 and F = 0 for FSL > 1, W(z) is the linear depth weighting function, 
W(z) = 10-0.5z for z ≤ 20 m and W(z) = 0 for z > 20, and z is depth in meters. 

LPI depends on FSL within the upper 20 m of the soil profile and can apply to profiles with 
multiple liquefiable layers rather than selecting one critical layer. LPI ranges from 0 to 100 and 
Iwasaki et al. (1978) found that among 45 sites that liquefied in the 1964 Niigata earthquake, the 
LPI corresponds to the severity categories presented in Table 2-1. Conditions for which “low” 
severity is predicted effectively amount to no manifestation in these criteria. 

Maurer et al. (2015a) modified the LPI framework to include a power law depth weighting 
function instead of a linear function and to account for limiting thickness of non-liquefiable 
capping layer according to the H1-H2 chart developed by Ishihara (1985) (Section 2.1.3.1). This 
modified LPI is called LPIISH, which Maurer et al. (2015a) found to improve predictive capacity 
for 60 case histories from several earthquakes in different regions outside Japan. 

LSN uses a power law depth weighting factor to determine cumulative liquefaction response of 
a profile and includes contributions from layers that have FSL < 2 with the following equation: 

𝐿𝑆𝑁 ൌ ׬1000
ఌೡ
௭
𝑑𝑧 2-5 

where εv is the post-earthquake volumetric strain at depth z in decimal form and z is the depth in 
meters. A method developed by Ishihara and Yoshimine (1992) and implemented by Zhang et 
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al. (2004) with CPT data can be used to compute εv. This method computes post-liquefaction 
volumetric strain as a function of FSL. The LSN index value corresponds to severity categories 
shown in Table 2-1. 

 

Figure 2-4 (a) Relationship between thickness of liquefiable layer and thickness of 
overlying layer at sites for which surface manifestation of level ground 
liquefaction has been observed and (b) guides to evaluation of respective 
layer thicknesses (after Ishihara, 1985) 

 

Table 2-1  LPI and LSN severity categories and index values 

Severity LPI Value LSN Value 

Low NA ≤ 20 

Moderate ≤ 5 20 to 40 

High 5 to 15 > 40 

Very High > 15 NA 
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2.1.3.3 Hydraulic Profile Analysis Criteria 

A method for estimating severity of sediment ejecta onto the ground surface has recently been 
presented by Hutabarat and Bray (2021) using effective stress analyses. They have also 
presented a simplified method to estimate sediment ejecta using CPT data (Hutabarat and Bray, 
2022). They define a liquefaction ejecta demand parameter (LD) that estimates the upward 
seepage pressure that could produce artesian flow due to elevated excess hydraulic head and a 
crust layer resistance parameter (CR) that captures the strength and thickness of the non-
liquefiable crust layer. The method is illustrated in Figure 2-5.  

The required parameters are calculated as follows: 

     𝐶ோ ቀ
௞ே

௠
ቁ ൌ ׬  𝑠௨𝑑𝑧

ுభ
଴௠   ቊ

𝑠௨ ൌ 𝐾଴𝜎௩଴
ᇱ tan𝜙௖௦   𝑖𝑓 𝐼஻ ൐ 22

𝑠௨ ൌ
௤೟ିఙೡబ
ேೖ೟

  𝑖𝑓 𝐼஻ ൑ 22  2-6 

where H1 is the thickness of the non-liquefiable layer in meters as defined in Ishihara (1985), su 
is the undrained shear strength of the crust layers in kN/m2, Ko is the coefficient of lateral 
pressure at-rest (usually assumed to be 0.5), ϕcs is the critical state friction angle assumed to be 
33 degrees (for quartz sand), qt is the tip resistance from CPT corrected for pore pressure, and 
Nkt is between 14 and 20 based on Ic, and IB is the modified soil behavior type index (Robertson, 
2016). To compute LD, first ru is estimated as a function of FSL (as computed using Boulanger 
and Idriss, 2016) using a relationship proposed by Tokimatsu and Yoshimi (1983): 

𝑟௨ ൌ  

⎩
⎪
⎨

⎪
⎧

0.5 ൅ sinିଵ ൦
2𝐹𝑆௅

൬
ଵ
ఈఉ൰ െ 1

𝜋
൪   𝑖𝑓 1 ൑ 𝐹𝑆௅ ൑ 3 

1 𝑖𝑓 𝐹𝑆௅ ൏ 1
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where α is 1.0 and β is -0.2. Next, the excess head (hexc) is computed: 

ℎ௘௫௖ ൌ
𝑟௨𝜎௩଴

ᇱ

𝛾௪
 2-8 

where γw is the unit weight of water (9.81 kN/m3). The excess head can be used to estimate 
liquefaction ejecta demand. Another factor in ejecta demand is the vertical hydraulic conductivity 
(kv) of the profile which can be estimated from CPT data using the Robertson and Cabal (2015) 
method: 

𝑘௩ሺ𝑚/𝑠ሻ ൌ 10ሺ଴.ଽହଶିଷ.଴ସூ೎ሻ 2-9 
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Figure 2-5  (a) Sediment ejecta mechanisms in a typical thick sand site and (b) artesian 
flow potential concept (Hutabarat and Bray, 2022) 

 

This correlation is only applicable when Ic is between 1 and 3.27. The kv for a clean sand with Ic 
= 1.8 yields kcs = 3.0E-5 m/s which is used to normalize the kv in this method. Finally, LD can be 
calculated as an integral of the normalized kv and head with depth: 

𝐿஽ሺ𝑘𝑁/𝑚ሻ ൌ  ቐ
𝛾௪ න

𝑘௩
𝑘௖௦

ሺℎ௘௫௖ െ ℎ஺ሻ𝑑𝑧 𝑖𝑓 ℎ௘௫௖ ൒ ℎ஺
௭ಳ

௭ಲ
0 𝑖𝑓 ℎ௘௫௖ ൏ ℎ஺
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where zA is the depth below the groundwater table depth or the bottom depth of a crust layer 
that is at least 250 mm thick with Ic ≥ 2.6 if below the groundwater table, zB is the top depth of a 
soil layer that is at least 250 mm thick after the first continuous sand-like layer with Ic ≥ 2.6 
between depths of zA and 10 m (zB will be 10 m if there is no such soil layer), and hA is the initial 
hydraulic head (i.e., the depth in m). 

Hutabarat and Bray (2022) computed the LD and CR at 176 field case histories and used 
observations of ejecta severity at those sites. Using this data, they created a chart with 
categories based on the LD-CR position as shown in Figure 2-6. This provides a useful approach 
for estimating liquefaction severity in terms of ejecta at a site based on CPT data. 
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Figure 2-6 Ejecta severity using LD and CR parameters at: (a) thick sand sites and 
(b) stratified soil sites. The inserts below each plot clearly show data for LD 
< 6 kN/m (Hutabarat and Bray, 2022). 

2.2 NGL Approach 

In this section we describe two aspects of the NGL approach. The first concerns the philosophy 
and organization of the project as a whole while the second concerns model development.  

2.2.1 NGL Objectives and Organization  

The NGL project has different objectives and is organized in a fundamentally different manner 
than typical research projects. As described in Section 1.1, NGL aims to advance the state-of-
the-art in liquefaction research and to provide end users with consensus approaches to assess 
liquefaction potential within a probabilistic and risk-informed framework. To accomplish this, we 
have collected and organized liquefaction information in a common and comprehensive 
database to provide all researchers with a substantially larger, more detailed, more consistent, 
and more reliable source of liquefaction data than existed previously. Based in part on this 
database, as well as results of supporting studies, it is possible to create probabilistic models 
that provide hazard- and risk-consistent bases for assessing liquefaction susceptibility, the 
potential for liquefaction to be triggered in susceptible soils, and the likelihood of surface 
manifestation. By making all information publicly available and disseminating tools and interim 
research products, the process is transparent and inclusive at the levels of database 
development, design, and execution of supporting studies, and model development, as 
recommended by NASEM (2016; 2021).  

The three major phases of the NGL project scope are database development and maintenance, 
supporting studies, and model development.  

The database has been developed by a Database Working Group (DWG; Chair – Brandenberg) 
with regular community interaction and feedback. At the present time and throughout its 
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development, reviewed portions of the database have been publicly accessible. The database is 
described further in Section 2.3 and in a journal paper (Brandenberg et al., 2020), and is 
available at: http://www.nextgenerationliquefaction.org (Ulmer et al., 2023d). 

NGL supporting studies aim to constrain components of liquefaction models using information 
derived from sources other than case histories. These external constraints are needed when the 
effect in question can be reasonably predicted using principles of soil mechanics or related 
fields but cannot be reliably established from case histories alone. The two topics addressed to 
date using supporting studies are stress effects on liquefaction resistance and liquefaction 
susceptibility (as defined in Section 2.1.1). The work on stress effects is presented in a separate 
report (Ulmer et al., 2022a) and summarized in Section 6.2. The work on susceptibility is largely 
supported from separate contracts and the results of a major workshop on the topic are 
provided separately (Stuedlein et al., 2023b). Our current thoughts on the modeling of 
susceptibility are presented in Section 6.1. 

The third major project component is modeling, which is the subject of the next subsection.  

2.2.2 Model Development 

NGL modeling can be viewed as having two general aspects. The first is the modeling activity 
supported by and initiated under this present contract. The researchers undertaking this work 
are the SMT (Chair – Kramer). The second is a broader, community-based modeling activity 
with multiple teams that are coordinated by NGL project personnel; these teams are not 
financially supported by the current NRC/USBR-SwRI contract. The modeling-related activities 
of the SMT are the subject of this report (Chapters 4-6). The community-based modeling activity 
includes seven teams in addition to the SMT. These teams are all using (or planning to use) the 
NGL database and have agreed to share interim findings in regular meetings. The work of these 
teams is generally at early stages; their research approaches and preliminary findings will be 
presented in due course and are not the subject of this report. NGL facilitates the use of 
NGL resources by other modeling teams and organizes bi-monthly coordination meetings 
among modelers.  

The SMT approach for model development aims to utilize soil mechanics principles to the 
maximum extent possible for prediction of soil responses (susceptibility, triggering) and to utilize 
field case histories to guide the development of models for profile responses (manifestation). An 
important aspect of our approach is that we seek to interpret the data in an objective, systematic 
and repeatable manner. We do not consider “systematic” or “repeatable” to be incompatible with 
the use of engineering judgment; rather, we apply our judgment, informed from case history 
interpretation, to develop the proposed systematic procedures. This has the advantage of 
producing procedures that can be used in forward applications (i.e., by practitioners) in a 
manner that is consistent with how the models were developed. As will be discussed in 
Chapter 3, this is not always the case with current models.  

The flow chart in Figure 2-7 illustrates the components of the SMT’s model building process. 
This flow chart highlights the main components of this process:  

1) Objective data used as inputs to the models and prior relationships. This includes data 
obtained from the NGL database (Section 2.3) and published studies, such as laboratory 
tests used to estimate the cyclic resistance of soils against liquefaction. 
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2)  Objective algorithms used to quickly and consistently process the case history data from 
the NGL database. These are described in Chapter 5, and include a layer detection 
algorithm for CPT data.  

3)  Human review of the individual case histories and the iterative review of regression 
results. The SMT manually reviewed case histories (e.g., Section 5.1) and discussed the 
results of the regression products (e.g., Section 6.2.7, Section 6.3) at several stages 
throughout the model development process to verify that the data-driven results are 
reasonably aligned with our current understanding of liquefaction mechanics.  

4)  The regression process (Section 4.4, Section 6.3) and its resulting products 
(Section 6.3.5, Section 6.3.7). 

 
Figure 2-7  Flow chart illustrating the components of the SMT’s model building 

process 

2.3 NGL Database Summary 

The NGL database is publicly available and contains geotechnical site investigation data, 
post-earthquake observations of liquefaction manifestations (or lack thereof), and earthquake 
ground motion data. The organizational structure of the database was developed over the span 
of several years with input from the technical community, and the development was overseen by 
the database working group. Details are discussed by Brandenberg et al. (2020). The database 
is accessible via a web-based GUI) at nextgenerationliquefaction.org (Ulmer et al., 2023d) 
where users can upload new data, view and download existing data, and where the database 
working group can review uploaded data after it is submitted for review. Figure 2-8 is a 
screenshot of the NGL database GUI showing focal mechanisms for earthquake events, and 
locations of liquefaction case history sites. Figure 2-9 is a screenshot zoomed in on the 
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Figure 2-8  Screenshot of NGL web-based GUI showing event focal mechanisms and 
site locations 

 

Christchurch region (New Zealand), where metadata for a cone penetration test has been 
activated by clicking on a CPT icon. Figure 2-10 is a screenshot showing measured cone 
penetration test data. Data for any site may also be downloaded in a CSV format, which is 
generated from the database on command.  

Table 2-2 summarizes the number of different site investigations and liquefaction/non-
liquefaction observations contained in the NGL database. The numbers of observations and site 
investigations available in the NGL database are several times more than the number of case 
histories contained in legacy datasets (presented subsequently in Table 3-1) and constitute a 
significant increase in publicly available data for producing liquefaction models compared to 
what was available before the NGL database. Note, each investigation-observation pair cannot 
necessarily be treated as an independent case history because in many cases there are 
multiple investigations and observations in close proximity at the same site, as is discussed in 
more detail in Section 5.1. Thus, the number of case histories that can be potentially extracted 
from the NGL database is less than the number of reviewed observations. 
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Figure 2-9  Screenshot of data available in Christchurch Region, including metadata 
for one of the cone penetration tests activated by clicking a red CPT icon 
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Figure 2-10  Screenshot of CPT data obtained by pushing the green plot button from 
Figure 2-8 

 

Table 2-2 Status of data quantities contained in NGL database 

Type 
Total 

Number 
In 

Preparation 

Under Review Reviewed 
(Two Reviews) 

(No Reviews) (One Review) 

CPT Soundings 975 219 89 20 647 

Boreholes 994 109 190 33 662 

Surface Wave 
Measurements 

48 2 20 4 22 

Invasive Vs 
Profiles 

154 0 14 0 140 

Liquefaction 
Observations 

752 84 54 9 605 

Non-Liquefaction 
Observations 

490 50 25 7 408 
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The GUI does not facilitate development of end-to-end workflows in which users can query data, 
analyze it, and draw conclusions. To facilitate such workflows, the database is replicated daily to 
DesignSafe (Rathje et al., 2017) where users can query the data via Python scripts in Jupyter 
Notebooks. Example-use case notebooks have been developed by the project team to provide 
building blocks upon which other users can build custom workflows. The use cases are 
documented at https://www.designsafe-ci.org/rw/use-cases/. Figure 2-11 is a screenshot of the 
documentation page for the use case, which is accessible from the DesignSafe main page 
through the Workspace dropdown menu. The documentation briefly describes the contents of 
various Jupyter Notebooks and contains links where users can open the notebooks and run the 
example queries. Figure 2-12 shows one of the cells in the ExampleNotebooks.ipynb Jupyter 
notebook that makes use of SQL join statements to synthesize CPT and site data for the 
Wildlife Array site. Other notebooks available in the use case documentation include a cone 
penetration test viewer, shear wave velocity test viewer, and a notebook developed during a 
webinar in October 2021 (https://youtu.be/TNOPOU4lx5w). 

 

Figure 2-11  Use case documentation describing interactions between NGL database 
and Jupyter Notebooks in DesignSafe 
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Figure 2-12 Screenshot of “ExampleQueries.ipynb” Jupyter notebook illustrating a SQL 
query to retrieve cone penetration test data for the Wildlife Array site 
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3 LEGACY MODELS AND CRITICAL LAYER SELECTION 

3.1 Past Approaches to Developing Triggering Models 

Since its devastating effects became widely recognized following the 1964 Niigata and Good 
Friday earthquakes in Japan and Alaska, respectively, soil liquefaction has become an 
important topic of both research and engineering practice. Early efforts at understanding the 
basic mechanics of liquefaction utilized laboratory tests, principally cyclic triaxial tests, to identify 
the material, environmental, and loading parameters that most strongly affected the potential for 
triggering of liquefaction. Because the loose, clean, saturated sands in which liquefaction had 
typically been observed were extremely difficult to sample, laboratory tests were typically 
performed on reconstituted test specimens. These testing programs revealed the influence of 
important factors such as loading amplitude and duration, soil density, and initial effective stress 
on liquefaction potential. 

Cyclic laboratory tests involved the application of uniform cycles of harmonic loading and their 
results were most commonly expressed in terms of the amplitude and number of cycles required 
to trigger liquefaction, either by developing a pore pressure ratio of 100% (initial liquefaction) or 
by exceeding some limiting shear strain amplitude. Plots of cyclic stress amplitude (normalized 
by initial effective stress to form a cyclic stress ratio, CSR) versus number of loading cycles to 
trigger liquefaction, often referred to as cyclic strength curves, were used to characterize 
liquefaction resistance. Over time, cyclic triaxial testing has been supplemented by cyclic simple 
shear testing – each has advantages and limitations. Both have provided tremendous insight 
into trends in the fundamental behavior of liquefiable soils under carefully controlled and 
measured conditions and have allowed testing over wide ranges of conditions (e.g., initial 
effective stress levels) that are important in geotechnical engineering practice. 

Further testing, however, showed that the positions of cyclic strength curves were strongly 
influenced by the manner in which test specimens had been reconstituted (i.e., by the initial 
fabric of the soil). Because the in situ fabric of any particular soil, which is recognized as a 
complex function of its grain size characteristics, original depositional environment, and 
subsequent stress/strain history, cannot be accurately reproduced by laboratory reconstitution, 
laboratory-based characterization of liquefaction potential fell out of favor in some regions 
(like the U.S.) but remained in use for intact specimens in other regions (Japan). The profession 
in the U.S. then turned to case history-based methods for evaluating the potential for the 
triggering of liquefaction; these methods have become the de facto standard in geotechnical 
engineering practice. 

The most common method used to obtain what is commonly considered a “triggering” model is 
to analyze case histories of observations of liquefaction manifestation or lack thereof in the field 
during past earthquake events. In principle, other information, including in situ pore pressure 
measurements, subsurface deformations, or ground motion recordings, could indicate the 
triggering of liquefaction within a subsurface layer at a site. However, such information has not 
been available nor used to any significant degree in the development of previous models. Thus, 
existing models tend to rely on evidence of manifestation or no manifestation to indicate that 
triggering occurred at some depth within the profile or did not occur within any layer in the 
profile, respectively. 

Efforts to document and process liquefaction case histories have been ongoing for decades 
(e.g., Seed and Idriss, 1971; Seed et al., 1984; Cetin et al., 2000; Andrus et al., 2003; 
Moss, 2003; Cetin et al., 2004; Kayen et al., 2013; Boulanger and Idriss, 2014; Cetin et al., 
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2018), and have supported the development of multiple previous liquefaction models. These 
datasets provide information for each case history used in model development, such as: 

● earthquake magnitude (M) and ground motion at the site (e.g., PGA), 

● brief descriptions of observations at the ground surface (e.g., presence or absence of 
ground failure), 

● depth to groundwater table, 

● attributes of the soil layer considered by the respective authors to indicate the single 
layer most likely to have liquefied (e.g., σv, σ’v0, in situ test measurements, FC), 

● CSR as computed by the respective authors. 

The triggering models developed from these case history datasets consist of a relationship 
between CRR and some indirect measure of soil relative density such as SPT blow counts (N), 
CPT tip resistance (qc), or small-strain shear wave velocity (Vs). These relationships were 
derived by plotting CSR vs the soil density parameter for “liquefaction” and “non-liquefaction” 
data points and drawing a boundary curve separating the two domains (e.g., Figure 3-1 from 
Seed et al., 1985). That curve, historically drawn to be conservative but more recently 
determined through regression, is assumed to represent CRR. The relationships predict CRR 
for reference conditions of σ’v0 = 1 atmosphere, M = 7.5, clean sand (fines content less than 5%) 
and no initial static shear stress (i.e., a relatively flat site and no finite loads, also known as 
free-field sites).  

 

Figure 3-1  An example of a suite of CRR curves for different levels of fines content 
(from Seed et al., 1985) 
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Liquefaction “triggering” models also include adjustment factors to relate actual conditions to the 
assumed reference conditions. One group of factors are applied to the measured in situ 
parameter (i.e., N, qc, or Vs) whereas the other group of factors are applied to the computed 
CRR or CSR (i.e., to compute the normalized value, CSRM7.5,1atm). The in situ parameters are 
adjusted for the effects of overburden stress (through the CN term) so that they apply for a 
common reference stress of 1 atm. The in situ penetration resistance parameters are also 
corrected for fines contents that deviate from zero, to account for both the reduced penetration 
resistance of fine-grained soils at a common relative density, which is mainly a consequence of 
reduced moduli (Cubrinovski and Ishihara 2002, Carraro et al., 2003; Ecemis and Karaman, 
2014; Jefferies and Been, 2016), and changes in the cyclic strength of soils with fines 
(Polito and Martin, 2001; Park and Kim, 2013). The resulting overburden and clean sand values 
are clean sand corrected SPT blow count (N1,60cs) and CPT tip resistance (qc1Ncs). The CRR 
adjustments are applied to correct for M different from 7.5, overburden stresses different from 
1.0 atm, and static shear stresses different from zero. The magnitude correction (MSF) is used 
to account for reductions of resistance with increasing number of cycles, which is correlated with 
magnitude. The overburden correction (via the Kσ term) accounts for the suppression of 
dilatancy with increasing effective stress. The shear stress adjustment factor (Kα) modifies the 
CRR to adjust for effects of initial static shear stress on the horizontal plane. More details about 
the Kσ and Kα correction factors are discussed in the Task 5 report (Ulmer et al., 2022a) and 
Section 6.2.4.  

Historically, the case history datasets have not represented a broad enough parameter range to 
constrain many of these correction factors for in situ conditions considered in liquefaction 
triggering evaluations. Compilations of case history data have shown that the overwhelming 
majority of case histories in legacy triggering models have involved liquefaction interpreted as 
occurring at depths of less than 8 m, but engineers dealing with large structures such as earth 
dams can be required to assess liquefaction potential at depths of hundreds of meters. 
Similarly, few well documented case histories exist for significantly sloping ground. As a result, 
the Kσ and Kα correction factors have typically been obtained by applying soil mechanics 
principles to the interpretation of experimental laboratory data (e.g., Boulanger, 2003a; 2003b; 
Cetin and Bilge 2014; Boulanger and Idriss, 2014), although other researchers have sought to 
obtain Kσ through direct regression of the field case history data (Cetin et al., 2004; Moss et al., 
2006). The former approach is generally favored for its incorporation of the fundamental 
mechanics of soil liquefaction, and its use in extrapolating beyond the range of available case 
history data is considered more reliable. Thus, this preferred approach uses both laboratory and 
case history data in model development but does so in a disconnected manner – the laboratory-
based correction is established and essentially used as a fixed, deterministic relationship 
(i.e., implicitly assumed to be correct and not subsequently modified by case history data) in the 
model development process. 

Other adjustments can be made to the in situ measurements or CRR but are not accounted for 
in any commonly used relationships. These include drainage effects due to impeded drainage 
boundaries on the borders of susceptible layers (accounted for in the Kd correction factor; 
Abdoun et al., 2020, Ni et al., 2020), and partial saturation effects of soils beneath the water 
table that may not be fully saturated (Hossain et al., 2013, Tsukamoto et al., 2014; Zhang et al., 
2016). Additional complexities that may not be amenable to correction with simple adjustment 
factors are system effects caused by interlayering of more and less resistant soils that affect the 
ability of liquefaction at a particular depth to manifest, reductions of demand in relatively deep 
strata, and strength loss in shallow layers induced by large flow gradients from liquefaction of 
deeper strata (Cubrinovski et al., 2019).  
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There also exist alternative methods for assessing liquefaction triggering such as regional map-
based assessments, cyclic strain-based approaches, energy-based approaches, laboratory and 
physical model tests, field measurement of pore pressure generation under dynamic loading, 
and computational mechanics approaches. For brevity, these methods are not discussed in this 
report. A summary of these and other methods is provided in the NASEM (2016, 2021) report. 

For the reasons previously discussed, the use of both case history and laboratory data in the 
development of liquefaction triggering models is considered to be advantageous. Laboratory 
tests allow control of stress, density, and loading conditions in a manner that does not exist in 
field case history data. They allow measurement of stresses, strains, and porewater pressures 
so that the conditions at the actual point of triggering are accurately and objectively known 
rather than inferred as they must be from interpretation of case histories. Laboratory data 
reveals trends in liquefiable soil behavior for conditions that cannot be extracted from available 
case history data, thereby allowing more confident extrapolation of empirical triggering models 
to conditions that can be important in geotechnical practice. The question then becomes one of 
how laboratory data should best be implemented in the model development process. 

The procedure adopted by the SMT makes use of Bayesian updating, a common procedure in 
the development of probabilistic models. In our implementation, laboratory data is used as a 
starting point (i.e., to establish a prior distribution in Bayesian terminology). That starting point is 
then updated by the consideration of case history data to form a final triggering model (a 
posterior distribution, again in Bayesian terminology). The updating process allows the model to 
be controlled by the case history data for conditions that are well constrained by the case history 
database with control shifting to the prior distribution for conditions not well represented in the 
case history database. It also allows uncertainty in the laboratory data to be properly accounted 
for in the model development process. From the standpoint of the distinction between triggering 
and manifestation, which is a major part of the SMT model, comparison of the posterior and 
prior triggering distributions provides valuable insight into the applicability of laboratory data to 
the assessment of liquefaction potential. These issues, and the benefits of the SMT approach, 
are discussed in more detail in Chapter 6. 

3.2 Legacy Models 

In this report, we refer to models developed prior to the 2016 NASEM report as “legacy” models. 
Of these legacy models, common relationships for predicting CRR from SPT N are Youd et al. 
(2001), Cetin et al. (2004, 2018), Idriss and Boulanger (2008), and Boulanger and Idriss (2012). 
Common relationships for CRR from CPT qc are Robertson and Wride (1998), Moss et al. 
(2006), Idriss and Boulanger (2008), and Boulanger and Idriss (2016). Relationships for 
predicting CRR from Vs are Andrus and Stokoe (2000) and Kayen et al. (2013). Some models 
have been developed based on laboratory testing of soil specimens that were sampled from 
case history sites (e.g., Tokimatsu and Yoshimi, 1983; Matsuo, 2004; PWRI, 2016). Some 
relationships were developed within a probabilistic framework (Liao et al., 1988; Youd and 
Noble, 1997; Cetin et al., 2004; 2018; Moss et al., 2006; Kayen et al., 2013; Boulanger and 
Idriss, 2012; 2016), meaning they produce a probability of liquefaction (PL) as opposed to a 
deterministic CRR to be used in a FSL computation. 

For brevity, not all CRR models are discussed here. For the purposes of this report, we provide 
additional details about the components of the widely used Boulanger and Idriss (2016) 
CPT-based model only. This does not indicate endorsement of this model over any other model, 
but it is simply for the purpose of comparison in several points throughout the report. The 
parameter range and number of case histories represented in several legacy models are 
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summarized in Table 3-1. Note that the range of σ’v0 is limited to less than 200 kPa (and less 
than 150 kPa in some cases) and the critical depth is within about 12 m (and most often less 
than 8 m). These relatively shallow critical depths are due in part because manifestation at the 
surface is less likely the deeper the liquefied layer. Thus, there are possibly some cases where 
no liquefaction manifestation was observed at the surface, yet liquefaction could have occurred 
at depth. 

As is typical of geotechnical engineering research, the projects that produced the legacy models 
were conducted by individual investigators or small teams of investigators. The investigators 
collected data, analyzed the data, and developed the models. Datasets used in model 
development were often never published in full, or if they were, it was after the model 
development process had been completed. Furthermore, published data products generally 
consisted of properties of the critical layer selected by the research group, and properties of 
other layers were not included. Research results were generally not widely shared with the 
community during model development. 

This traditional research approach has drawbacks, such as lack of transparency (case history 
data not fully presented) and repeatability (case history interpretations made during model 
development that are not documented) that we have sought to overcome in the manner the 
NGL project has been organized (Section 2.2). These drawbacks can create divergence 
between how models are applied in forward applications vs how they were developed, which 
can limit model effectiveness. One of the most important elements of this disconnect is related 
to critical layer selection, which is examined further in the next section. 

Table 3-1 Summary of recent liquefaction triggering case history databases for 
level-ground conditions showing ranges in values of the parameters 
(from NASEM, 2021) 

Parameter 

SPT CPT Vs 

Cetin et al. 
(2004) 

Boulanger and 
Idriss (2016) 

Moss et 
al. (2006) 

Boulanger and 
Idriss (2016) 

Kayen et al. 
(2013) 

“yes” cases 109 133 139 180 287 

“no” cases 88 118 44 71 124 

“yes/no” cases 3 3 0 2 4 

Critical depth (m) 1.1-20.5 1.8-14.3 1.4-14.0 1.4-11.8 1.1-18.5 

σ'v0 (kPa) 8.1-198.7 20.3-170.9 14.1-145.0 19.0-147.0 11.0-176.1 

FC (%) 0-92 0-92 -- 0-85 -- 

N1,60cs (blows/30cm), qc1Ncs 

(atm), or Vs1 (m/s) 
2.2-66.1a 4.6-63.7 11.2-252.0 16.1-311.9 81.7-362.9 

CSRM7.5 0.05-0.66 0.04-0.69 0.08-0.55b 0.06-0.65 0.02-0.73 

M 5.9-8.0 5.9-8.3 5.9-8.0 5.9-9.0 5.9-9.0 

aN1,60 values listed for Cetin et 
al. (2004) as opposed to N1,60cs 
bCSR values listed for Moss et 
al. (2006) and Kayen et al. 
(2013), as opposed to CSRM7.5 
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3.3 Critical Layer Selection 

The concept, meaning, and identification of critical layers as representing the characteristics of 
an entire liquefiable soil profile are complex. They are, however, central to both the 
development and use of legacy triggering models. Their importance warrants recognition and 
discussion as background to the development of new triggering models. 

3.3.1 Non-uniqueness 

The legacy models described in Section 3.2 utilized a critical layer framework in which the layer 
most likely to produce manifestation was selected as being representative of the profile or site. 
For “yes” cases, the critical layer is selected as the layer that is considered to have been most 
likely to have liquefied. In some cases, this layer can be established with a high degree of 
confidence. For example, the Wildlife Liquefaction Array in California (NGL site ID 187; 
Holzer and Youd, 2007) and the Nakashimo levee site in Japan (NGL site ID 423; Zimmaro et 
al., 2020) include piezometers in layers that developed significant excess pore pressures, which 
confirms that liquefaction triggered in those layers. Another such example is the Sandholdt 
Road site from Moss Landing, California, where an inclinometer indicated lateral deformation 
within a layer during the Loma Prieta earthquake (NGL site ID 696; Boulanger et al., 1995, 
1997), which indicates liquefaction-induced strength loss likely occurred in that layer. However, 
in most cases, the only evidence of liquefaction is surface manifestation such as sand boils or 
ground cracking or other deformations. In such cases, the case history interpretation is often 
inconclusive with respect to which layer produced manifestation.  

One approach is to assign the critical layer as the weakest link in the chain, which is 
accomplished, in the case of CPT data, by finding the layer with smallest continuous interval of 
tip resistance with low friction ratio, or the susceptible layer with the smallest CRR (Moss et al., 
2006; Kayen et al., 2013; Cetin et al., 2018). Although the documentation of these studies does 
not clearly distinguish manifestation from triggering in the reasoning behind critical layer 
selection, we interpret the weakest link approach as favoring triggering. A complication with the 
weakest link framework is that a pre-existing model is used to compute CRR, which is then used 
to select the critical layer whose properties are used to develop a new model. The use of 
pre-existing models in critical layer selection and model development can lead to confirmation 
bias, as discussed in Section 3.3.3. 

Consider for example the Landing Road Bridge site (NGL site ID 161), for which surface 
manifestation was observed following the 1987 Edgecumbe, New Zealand earthquake in the 
form of lateral spreading, surface cracks, sand boils, and damage to the foundations of a nearby 
bridge. Figure 3-2 shows a CPT profile for this site, interpreted using procedures described in 
Sections 5.3-5.4. Layer numbers are indicated to the right of the profile of qc1Ncs. While many of 
the layers at the site are likely not susceptible, layers 2 and 6 near depths of 1.5m and 5m, 
respectively, are granular soils (low Ic) with somewhat higher relative density (qc1Ncs) in the 
deeper layer than the shallower one (115 vs. 90). It could be reasonably argued that either is 
critical. In the case of layer 2, it is closer to the ground surface and has the lower qc1Ncs and 
therefore is most likely to manifest. However, since it is immediately beneath the groundwater 
table, partial saturation is possible, which would increase liquefaction resistance. Accordingly, it 
could be argued that the deeper but thicker layer 6 is more critical. As this example illustrates, 
the selection of the critical layer often involves considerable judgment, and this judgment 
naturally varies between different analysts, as described further in Section 3.4. 
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Figure 3-2  Example CPT profiles for the Landing Road Bridge site (CPT LRB007) from 
the 1987 Edgecumbe, New Zealand earthquake derived using procedures 
presented in Sections 5.3-5.4. This is an example of a site for which 
multiple critical layers could be selected for use in model development.  

 

One way to resolve ambiguities like that illustrated in Figure 3-2, in cases where sand boils 
form, is to identify the critical layer by matching gradation and coloration characteristics of ejecta 
to soils at depth (Liao and Whitman, 1986; Cetin et al., 2000; Green et al., 2011). However, 
upward flowing sand can entrain soil from overlying layers with it and/or deeper soils might 
have also liquefied but not formed ejecta. As a result, uncertainties in critical layer 
identification remain.  

These uncertainties are also present for “no” manifestation cases. In such cases, the critical 
layer is intended to represent the layer that most likely would have liquefied and manifested had 
the intensity of shaking been larger or the duration longer (Whitman 1971, Seed and Idriss, 
1971). Consider for example the Radio Tower site (NGL site ID 318), for which no surface 
manifestation was observed following the 1979 Imperial Valley earthquake. Figure 3-3 shows a 
CPT profile for this site, interpreted using procedures described in Sections 5.3-5.4. While many 
of the layers at the site are likely not susceptible, layers 3-4 near 2.5 m depth and layer 7 
near5 m depth are granular soils (low Ic) with apparently similar relative densities (qc1Ncs). It 
could be reasonably argued that either is critical. In the case of layers 3-4, it is close to the 
ground surface and therefore is most likely to manifest. However, because it is immediately 
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Figure 3-3  Example CPT profiles for site Radio Tower (CPT R4) from the 1979 Imperial 
Valley earthquake derived using procedures presented in Sections 5.3-5.4. 
This is an example of no manifestation for which multiple critical layers 
could be selected for use in model development.  

 

beneath the groundwater table, partial saturation is possible, which would increase liquefaction 
resistance. Accordingly, it could be argued that layer 7 is more critical. On the other hand, layer 
5 or layer 9 could also be considered critical, despite being less likely to be susceptible (high Ic), 
given that they have lower qc1Ncs values and are as thick or thicker than layers 3, 4, and 7. 

As these examples illustrate, in the absence of a model for predicting triggering/manifestation, it 
can be difficult to identify which layer within a profile is most critical for surface manifestation. 
While some semi-empirical models were developed through use of the “weakest link” approach, 
the extent to which that process of identifying critical layers considers manifestation is not clear. 
When manifestation is considered, a great deal of judgment is required. Critical layer selection 
should consider layer thickness, depth, stratigraphy, surface geology, spatial variability and 
lateral continuity of potentially liquefiable layers, and presence of sloping ground or a free face 
(Boulanger and Idriss, 2014; Green and Olson, 2015), each of which affect how a complex 
system of soil layers responds to an earthquake (Cubrinovski et al., 2019). In the development 
of legacy models, these judgments are operator-dependent, generally not well documented, and 
therefore not repeatable. We recognize that critical layer selections in some cases are made in 
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consideration of information beyond that represented by a CPT log. This can include multiple 
CPTs at a given site or boring logs with samples that may include laboratory data. Different 
modelers looking at these different data sources may consider different data sources in their 
selections, which can influence variability. Our focus in this section has been on CPT data 
because arguably a CPT-based model should be able to operate solely based on CPT data, 
because this represents a common situation for forward applications. 

3.3.2 Implications for Forward Application of Models 

Important differences between development of a triggering/manifestation model and the manner 
in which such models are applied in practice further complicate their use. Model development 
generally involves utilizing all available evidence to make an informed decision about the critical 
layer. Engineers tasked with a forward application of a model to assess liquefaction at a 
particular site do not have access to the same information, and therefore cannot replicate 
judgments made in critical layer selection during model development. For example, matching 
the ejecta to a specific layer cannot be performed in a forward assessment of a site that has not 
yet been shaken strongly enough to liquefy. Moreover, in forward applications engineers seldom 
apply a critical layer approach, instead opting to compute FSL for every susceptible layer within 
the profile, and subsequently making judgments about the potential consequences 
(manifestation severity and ground deformations) of liquefaction. For example, Figure 3-4 is a 
screenshot of the CLiq (GeoLogismiki, 2018) software that evaluates liquefaction based on CPT 
data. This is a markedly different approach to first selecting a critical layer and evaluating only 
that layer. 

Another distinction between model development and application in some cases is the level of 
care applied during site characterization. In research studies to develop case histories like many 
of those in the NGL database, CPT data is supplemented by borings with sampling that can be 
used to measure index properties like fines content and plasticity. Frequently, due to budget 
constraints, in forward applications engineers may utilize cone penetration testing alone in the 
absence of sampling. Fines content and susceptibility must therefore be inferred from the 
CPT data. 

 

Figure 3-4  Screenshot of CLiq software showing evaluation of CPT data at all depths 
(GeoLogismiki, 2018)  
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3.3.3 Potential for Confirmation Bias 

The need to apply judgment in the selection of critical layers during a process of model 
development sets up the potential for confirmation bias, which is defined as “the tendency to 
interpret new evidence as confirmation of one's existing beliefs or theories” (Oxford Languages 
dictionary). Confirmation bias is often unintentional and can arise from a person’s beliefs about 
a particular outcome. Consider for example a case history in which two alternative critical layer 
selections are essentially equally viable, in which one choice produces a CSR-qc1ncs data point 
that is in agreement with a model (i.e. a “yes” case above the curve or a “no” case below the 
curve) whereas the other choice places the data point in conflict with the model. The temptation 
would be strong to select the choice that agrees with the model, especially if the alternative is a 
data point that would comprise a strong outlier (i.e., a “no” case well above the curve or a “yes” 
case well below the curve). Such cognitive biases are widely recognized in scientific research in 
other fields (e.g., Nickerson, 1998; Hirschhorn and Schonberg, 2024).  

An example of such a case is NGL site “Imazu Elementary School” (NGL site id = 539, test ID = 
2584), shown in Figure 3-5, which experienced surface manifestation of liquefaction from the 
1995 Kobe earthquake (NGL field manifestation ID, FLDM ID = 1432). As in Figures 3-2 and  
3-3, multiple critical layers could reasonably be identified. Layer 2 might be preferred on account 
of being near the ground surface (thus liquefaction would be more likely to manifest), although 
the qc1Ncs is relatively high and its shallow depth below the ground water table could lead to 
partial saturation. On the other hand, layer 4 could be preferred because it is thicker, has lower 
qc1Ncs, and its depth below the ground water table makes partial saturation unlikely. As shown in 
Figure 3-6, the first choice (shallower critical layer) would place the case history below both the 
triggering curve developed in this study and the BI16 curve, whereas the second choice 
(deeper critical layer) places the case history above the two curves. The BI16-selected layer 
was the deeper layer in agreement with models whereas five out of six of the SMT members 
selected the shallower layer in the exercise described in Section 3.4.  
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Figure 3-5  Example CPT profiles for Imazu Elementary School site from the 1995 Kobe 
earthquake derived using procedures presented in Sections 5.3-5.4. 
Surface manifestation occurred at the site 
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Figure 3-6  Position of Imazu Elementary school case history in CSRM7.5,1atm - qc1Ncs 
space using alternate critical layer selections. Black square represents this 
case history as reported in Boulanger and Idriss (2016) (e.g., their 
interpretation of PGA), computation of CSRM7.5,1atm and qc1Ncs 
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A second example case of interest is NGL site “Port of Oakland, 7th Street Terminal (POO7)” 
(NGL site ID = 562), CPT “POO7-3” (NGL test ID = 2651) during the 1989 Loma Prieta 
earthquake (NGL FLDM ID = 1467), the interpreted CPT logs for which are shown in Figure 3-7. 
As in Figures 3-2 and 3-3, multiple critical layers could reasonably be identified. Layers 4-5 
might be preferred on account of being near the ground surface (thus liquefaction would be 
more likely to manifest), although the qc1Ncs is relatively high and its shallow depth below the 
ground water table could lead to partial saturation. On the other hand, layer 13 could be 
preferred because it is relatively thick, has lower qc1Ncs, and is likely saturated, however the 
greater depth could suppress manifestation potential. As shown in Figure 3-8, the first choice 
(shallower critical layer, e.g., layers 4-5) would place the case history well below both the 
laboratory-based triggering curve developed in this study and the BI16 curve, whereas the 
second choice (deeper critical layer, e.g., layer 13) places the case history near to these two 
curves. Adopting the BI16-selected layer using their computed qc1Ncs and CSR places the case 
history well above both curves. An interesting aspect of this case study is the varying 
interpretations of whether liquefaction occurred or not. POO7-3 was initially identified as an area 
that had “no surface manifestations of liquefaction” (Kayen et al., 1998), but subsequent 
interpretations indicated that this site could be considered as having experienced liquefaction 
(Cetin et al., 2004, 2018) or "marginal" liquefaction (Idriss and Boulanger, 2012; Boulanger and 
Idriss, 2014). No sand boils were observed within 15-20 meters of POO7-3, but the CPT is 
located approximately 20-30m away from a zone of ample fissures and sand boils, deformations 
toward the free face, and a small lateral spread into the bay. We do not take a position on the 
field observations, but rather point out that the intense scrutiny of this case was likely a 
consequence of its being an outlier, particularly if the original field observation of no 
manifestation is adopted. A relatively high degree of scrutiny for strong outliers is another 
characteristic of cognitive bias. 

We cannot know to what extent confirmation bias may or may not have affected the 
development of any particular semi-empirical triggering model. However, the circumstances for 
it to have influenced decision making were clearly present, especially given the traditional 
research approaches that led to the models (i.e., small teams of investigators who assemble 
their own database and develop a model with relatively limited outside interaction). Independent 
assessments of model performance have indicated large numbers of mis-predictions  
(Maurer et al., 2015b; Geyin et al., 2020a), especially false positives, which could be interpreted 
to suggest that absent cognitive bias in the critical layer selections, less favorable performance 
may be achieved. In a similar manner, the following section shows an appreciable rate of 
different critical layer selections, again suggesting (though not proving) the potential for 
cognitive bias to have played a role. Ultimately, the problem when cognitive bias influences a 
fundamental aspect of the model development process, is that it further separates the data 
analysis undertaken in model development from what can be done in application. This can 
produce outcomes with too-small levels of model uncertainty and potentially other problems. 
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Figure 3-7  Example CPT profiles for Port of Oakland, 7th Street Terminal (POO7) site 
(CPT POO7-3) from the 1989 Loma Prieta earthquake derived using 
procedures presented in Sections 5.3-5.4. This is an example where the 
manifestation or lack of manifestation of liquefaction is unclear.  

 



 

3-15 

 

Figure 3-8  Position of Port of Oakland, 7th Street Terminal (POO7-3) case history in 
CSRM7.5,1atm - qc1Ncs space using alternate critical layer selections and 
alternate selections of whether manifestation occurred or not  

 

3.4 Critical Layer Selection Study 

A study was conducted to explore the analyst-to-analyst variabilities in critical layer selection. 
We randomly selected 40 CPTs from sites utilized in legacy models, and each member of the 
SMT made critical layer selections. We deliberately restricted the information available to each 
analyst to be the same as what is available to an engineer in a forward assessment of 
liquefaction. Specifically, we included profiles of qc1Ncs, Ic, CSR7.5,1atm, and the difference 
between CRR and CSR where CRR here is estimated using the laboratory-derived prior 
relationship as a function of qc1Ncs (Section 6.1). Prior to selecting critical layers, the SMT agreed 
that each member would independently identify the layer most likely to cause surface 
manifestation. In some cases, the layer most likely to trigger may not be the layer most likely to 
manifest because the triggered layer is deep, the layer is thin, a strong non-liquefiable layer lies 
atop the layer, etc. 

A screenshot of the tool utilized by the SMT to make critical layer selections is shown in 
Figure 3-9. No indication of the site name, earthquake, or whether manifestation was or was not 
observed at the site is included in the tool because such information might contribute unwittingly 
to confirmation bias and would not be available to engineers applying the model in a forward 
sense. SMT members would select one of the layers identified by the agglomerative clustering 
algorithm (Hudson et al., 2023a) as the critical layer. Furthermore, SMT members could indicate 
whether interbedding was present within the critical layer and/or profile, whether the critical layer 
is particularly deep, whether a strong crust exists at the site, and/or if partial drainage could 
exist in cases with shallow liquefiable layers in the absence of a low-permeability capping layer.  
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Figure 3-9  Screenshot of the tool used by SMT members to select critical layers 
 

They could also indicate whether the critical layer has a high Ic, and therefore might contain 
plastic fines. Open-ended comments could also be entered. 

The depths to the top of the critical layer selected by the SMT members are compared with 
those selected by Boulanger and Idriss (2016, “BI16”) in Figure 3-10, along with R2 values 
indicated in the upper-left corner of each figure. Open symbols indicate sites that did not 
manifest liquefaction, while closed circles did manifest. Significant differences are apparent in 
the selections made by the SMT members compared with those by Boulanger and Idriss (2016), 
with R2 values ranging from 0.22 to 0.37. Notably, differences between the SMT members are 
also significant, as illustrated subsequently. BI16 did not select from the layers identified by the  
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Figure 3-10 ztop of critical layers selected by SMT members compared with Boulanger 
and Idriss (2016). R2 values shown in upper-left corners. Open circles 
represent “no manifestation” observations. Closed circles represent 
“manifestation” observations. 

 

clustering algorithm, and therefore their ztop value for a particular profile might not be available 
as an option for the SMT members. However, differences in the selections are much more 
significant than can be explained by that detail. In general, members of the SMT tended to 
select shallower layers than BI16, which may be caused by the SMT team’s focus on 
manifestation over triggering, combined with the expectation that shallower layers are more 
likely to manifest. Similar figures are provided for Ic, qc1Ncs, and CSR in Figures 3-11 through  
3-13. The R2 values tend to be higher, on average, than for ztop, but nevertheless exhibit 
significant differences from BI16. 

As shown in Figure 3-13, a notable feature of the BI16-to-SMT comparison plots are lower SMT 
CSR values for relatively strong shaking conditions (CSR > ~ 0.2). Many of the sites for which 
these estimates differ have CSR values from legacy data sets taken from nearby recordings on 
relatively stiff soil sites compared to the neighboring soft soil sites that comprise the case 
histories. This method of estimation is described further in Section 5.2 (labeled as Approach 5 in 
that section). The CSR values estimated by the SMT are lower due to consideration of 
nonlinearities associated with the strong shaking and soft soils site conditions at the 
liquefaction sites.  
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Figure 3-11  Ic, of critical layers selected by SMT members compared with Boulanger 
and Idriss (2016). R2 values shown in upper-left corners. Open circles 
represent “no manifestation” observations. Closed circles represent 
“manifestation” observations. 
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Figure 3-12  qc1Ncs, of critical layers selected by SMT members compared with 
Boulanger and Idriss (2016). R2 values shown in upper-left corners. Open 
circles represent “no manifestation” observations. Closed circles represent 
“manifestation” observations. 
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Figure 3-13  CSRM7.5,1atm of critical layers selected by SMT members compared with 
Boulanger and Idriss (2016). R2 values shown in upper-left corners. Open 
circles represent “no manifestation” observations. Closed circles represent 
“manifestation” observations. 

 

Figure 3-14 compares critical layer selections by the SMT with those of BI16 in qc1Ncs-CSR 
space. Open circles are profiles that did not manifest, while closed circles are profiles that 
manifested. Significant differences are observed in the positions of the points on these graphs 
for each SMT member compared with BI16; differences between SMT members also exist. In all 
cases, the BI16 model represents a broader range of qc1Ncs values. Another important difference 
is that, among these 40 cases, the BI16 selections do not include any false negatives (FN, false 
predictions of no manifestation (i.e., closed circles below the curve), whereas the SMT members 
had 2 to 5 false negatives). Note that BI16 do have some false negatives among the dataset 
utilized to form their model; however, those cases were not among the 40 selected for this 
exercise. The SMT members tended to have fewer false positives (FP, false predictions of 
manifestation) than BI16, rendering overall accuracy values that are similar. Defining accuracy 
as the number of true predictions (TP, accurate predictions of manifestation) divided by the total 
number of cases, the resulting accuracy values are 82.5% for BI16, 82.5% for Brandenberg 
(SMT member “B”), 77.5% for Hudson, 75% for Kramer, 80% for Stewart, 80% for Ulmer, and 
77.5% for Zimmaro. Despite the different selections, the accuracy of the SMT analysts’ 
selections are all reasonably close to each other, and reasonably close to BI16. This indicates 
that the various individual biases each analyst brings to their selections may have offsetting 
effects from profile-to-profile with respect to accuracy. 
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Figure 3-14  Critical layer properties selected by SMT compared with Boulanger and 
Idriss (2016). Red points represent locations of CSRM7.5,1atm vs qc1Ncs points 
as defined by BI16-selected critical layers, whereas blue points represent 
locations as defined by reviewer-selected critical layers. Red line 
represents the BI16 deterministic CRR curve, blue dashed line represents 
the SMT’s CRR curve (Section 6.2). Open circles represent “no 
manifestation” observations. Closed circles represent “manifestation” 
observations. 

 

Figures 3-15 through 3-18 compare properties of critical layers selected by the SMT members. 
In general, R2 values are higher among the critical layers selected by the SMT members than 
for each member compared with BI16. This outcome likely reflects differences in information 
available to analysts at the time the critical layer selections were made. Although the SMT 
members selections are more similar with each other than with BI16, significant differences 
nevertheless are observed in the critical layers selected by the SMT members. This is an 
indication that the judgment of individual analysts is different, even when those analysts have 
worked closely together for years. This points to a need for objectivity in critical layer selections 
so that liquefaction manifestation models are repeatable and independent of any one 
analysist’s view. 
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Figure 3-15 Correlation of ztop values among critical layers selected by SMT members 
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Figure 3-16  Correlation of Ic values among critical layers selected by SMT members 
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Figure 3-17  Correlation of qc1Ncs values among critical layers selected by SMT members 
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Figure 3-18  Correlation of CSR* values among critical layers selected by SMT members
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4 TRIGGERING AND MANIFESTATION 

As discussed in Chapter 2, the occurrence of liquefaction is often identified by the observation 
of surficial manifestation of its effects. Historically, it has been common to interpret 
manifestation at case history sites as positive evidence of triggering (i.e., that manifestation = 
triggering) and the absence of manifestation as positive evidence that triggering did not occur 
(no manifestation = no triggering). However, it is possible for liquefaction to be triggered in thin, 
deep susceptible layers without producing surface manifestation. It is also possible for 
manifestation evidence such as ground failure due to cyclic softening or sand boils to develop at 
sites where pore pressures in thick, shallow, susceptible layers increase significantly but not to 
the level of liquefaction triggering (Tokimatsu et al., 2012; Kramer et al., 2016).  

Manifestation, or its absence, must therefore be recognized as a consequence of pore pressure 
generation mediated by the characteristics of the soil profile. Detailed investigations and 
modeling of sites in Christchurch, New Zealand have illustrated the extent to which interlayering 
of liquefiable and non-liquefiable soil layers can influence surface manifestation (Cubrinovski et 
al., 2019; Hutabarat and Bray, 2021, 2022). 

4.1 Bayesian Framework 

In our view, the historical reliance on manifestation as an indicator of liquefaction triggering and 
lack of manifestation as an indicator of a lack of triggering has led to conventional liquefaction 
triggering procedures producing factors of safety against manifestation rather than of 
liquefaction triggering. The most recent versions of these procedures produce a probability of 
manifestation, P[M] (and consequently a probability of no manifestation, P[NM] = 1 – P[M]). 
Implicit in the interpretation of the results of these procedures is the assumption that the 
probability of triggering is equal to the probability of manifestation, P[T] = P[M] (and the 
probability of no triggering, P[NT] = 1-P[T]).  

Surface manifestation can be important in many situations and can cause damage to light 
surface structures (e.g., pavements), contribute to settlement of lightweight structures 
(e.g., private houses), and require significant clean-up efforts (e.g., Christchurch in 2011). 
However, the actual triggering of liquefaction at both shallow and large depths is more 
fundamentally important for many critical structures. For the purposes of damage and loss 
estimation, a more fundamental and useful analysis would be to estimate the actual probability 
of triggering, P[T], and with it, P[NT] = 1 – P[T], and separately evaluate the probability of 
manifestation conditional on triggering, P[M|T] or not triggering, P[M|NT]. In terms of case 
history interpretation of triggering, we need to evaluate the probability that the soil in the critical 
layer triggered for case histories where manifestation was observed, i.e., P[T|M]. At the same 
time, we need to evaluate the probability that liquefaction did not occur in a critical layer for case 
histories where manifestation was not observed, i.e., P[NT|NM]. To develop this more complete 
analysis, we need to distinguish between triggering and manifestation and recognize that 
triggering can occur without manifestation and vice versa. These distinctions can be made using 
a Bayesian approach. 

4.1.1 Bayes’ Theorem 

Bayes’ theorem derives directly from the total probability theorem. With respect to the Venn 
diagram in Figure 4-1, the intersection of Events A and B can be expressed as 
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𝑃ሾ𝐴 ∩ 𝐵ሿ ൌ 𝑃ሾ𝐴|𝐵ሿ𝑃ሾ𝐵ሿ  ൌ  𝑃ሾ𝐵|𝐴ሿ𝑃ሾ𝐴ሿ  4-1 

 

Figure 4-1 Venn diagram illustrating intersection of two events, A and B 
 

Solving for the probability of A given B yields Bayes’ theorem, 

𝑃ሾ𝐴|𝐵ሿ ൌ
𝑃ሾ𝐵|𝐴ሿ𝑃ሾ𝐴ሿ

𝑃ሾ𝐵ሿ
  4-2 

In many cases, Event A is described as a hypothesis being true and Event B as the evidence 
that the hypothesis is true. In that case, it can be expressed as 

𝑃ሾℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒ሿ ൌ
𝑃ሾ𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠ሿ𝑃ሾℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠ሿ

𝑃ሾ𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒ሿ
 4-3 

The denominator can be expanded by considering the evidence for both cases of the 
hypotheses, i.e., that the evidence is consistent with the hypothesis and that the evidence 
contradicts the hypothesis. 

𝑃ሾℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒ሿ

ൌ
𝑃ሾ𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠ሿ𝑃ሾℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠ሿ

𝑃ሾ𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑤ℎ𝑒𝑛 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑡𝑟𝑢𝑒ሿ ൅ 𝑃ሾ𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑤ℎ𝑒𝑛 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒ሿ
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In the liquefaction triggering problem, the common interpretation hypothesizes that liquefaction 
has been triggered based on the evidence, or absence of evidence, of surface manifestation. 
However, because manifestation also depends on hydraulic and system-related factors, in 
addition to the actual triggering of liquefaction in some layer of soil, a direct correlation between 
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surface manifestation and triggering is not possible. Using the previously defined symbols for 
triggering and manifestation, Bayes’ theorem can be expressed in the following manner for a 
soil that is susceptible to liquefaction (i.e., with P[S] = 1.0) 

𝑃ሾ𝑇|𝑀ሿ ൌ
𝑃ሾ𝑀|𝑇ሿ𝑃ሾ𝑇ሿ

𝑃ሾ𝑀ሿ
ൌ

𝑃ሾ𝑀|𝑇ሿ𝑃ሾ𝑇ሿ

𝑃ሾ𝑀|𝑇ሿ𝑃ሾ𝑇ሿ ൅ 𝑃ሾ𝑀|𝑁𝑇ሿ𝑃ሾ𝑁𝑇ሿ
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The Bayesian framework can also be applied to case histories where no evidence of surficial 
manifestation was observed. Such cases have historically been interpreted as indicating the 
absence of triggering. For this case, Bayes’ Theorem can be applied as 

𝑃ሾ𝑁𝑇|𝑁𝑀ሿ ൌ
𝑃ሾ𝑁𝑀|𝑁𝑇ሿ𝑃ሾ𝑁𝑇ሿ

𝑃ሾ𝑁𝑀ሿ
ൌ

𝑃ሾ𝑁𝑀|𝑁𝑇ሿ𝑃ሾ𝑁𝑇ሿ

𝑃ሾ𝑁𝑀|𝑁𝑇ሿ𝑃ሾ𝑁𝑇ሿ ൅ 𝑃ሾ𝑁𝑀|𝑇ሿ𝑃ሾ𝑇ሿ
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The Bayesian framework may also be extended to include manifestations from non-susceptible 
layers. Cyclic softening of clay-like soils may produce manifestations such as surface cracks, 
lateral ground deformations, and settlement. When manifestations occur in the absence of sand 
boils, it is often difficult to ascertain whether the cause was liquefaction or cyclic softening. 
However, cyclic softening is not included in the equations presented here for simplicity. 

4.1.2 Probabilities of Interest 

The probabilities in the Bayesian approach relate to both triggering (or not triggering) and 
manifestation (or lack thereof). Brief descriptions of each, using the notation in Figure 2-4 in 
which H1 is the thickness of the non-liquefied crust and H2 is the thickness of an underlying 
liquefaction-susceptible soil (after Ishihara 1985, see also Section 2.1.3.1), are presented in 
Table 4-1 below. Of the six probabilities listed here three are directly computed from their 
complements, so models for only three independent probabilities, P[T], P[M|T], and P[M|NT], 
are needed to explore their impacts on the relationship between triggering and manifestation. 

Table 4-1 Descriptions of probabilities in the Bayesian approach 

P[T] 
Probability that the susceptible soil layer (H2 layer) triggers. For now, assume 
we know this (more later). 

P[NT] Probability that H2 layer does not trigger = 1 – P[T]. 

P[M|T] 
Probability of manifestation given that H2 layer triggers. Depends on H1-H2 
relationship and other hydraulic factors.  

P[NM|T] 
Probability that no manifestation occurs even when H2 layer triggers. Equal to 1 
– P[M|T]. 

P[M|NT] 

Probability that high pore pressures (but not high enough to trigger liquefaction) 
cause sand boils or other observations we usually interpret as manifestation of 
liquefaction. Can potentially occur with thick liquefiable layer (high H2) under 
thin crust (low H1).  

P[NM|NT] 
Probability that no manifestation is observed when liquefaction is not triggered – 
equal to 1 - P[M|NT]. 
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4.1.3 Illustration of Bayes Calculations 

Figure 4-2 illustrates the main components of Bayesian calculations. The left side (to the left of 
the thin vertical line) represents Event T, the triggering of liquefaction; the right side represents 
the event of non-triggering, NT. Within each of these columns, conditional probabilities are 
represented. The red zone is the probability of manifestation due to triggering of the liquefiable 
layer (its probability conditional upon triggering multiplied by the probability of triggering). The 
blue zone is the probability of manifestation in the absence of triggering, e.g., ground cracking 
caused by cyclic softening of non-liquefiable soils or sand boils caused by high (but not high 
enough to trigger liquefaction) pore pressures in a thick liquefiable layer below a thin crust. As 
shown in this example, there is a relatively high probability of triggering (loose soil), a high 
probability of manifestation given triggering, and a low probability of manifestation given no 
triggering – therefore, the probability that liquefaction actually triggered should be high if 
manifestation was observed. The probability of triggering given the observation of manifestation 
is equal to the red area divided by the sum of the areas of the red and blue zones. For P[T] = 
0.7, P[M|T] = 0.9, and P[M|NT] = 0.2 (approximately the values in the figure), P[T|M] = 0.913, 
which means that the historical inference that manifestation = triggering is relatively good in 
this case.  

The historical interpretation of case histories also makes use of observations of no 
manifestation and has implicitly assumed that no manifestation means that liquefaction was not 
triggered. This case can also be visualized graphically as shown in Figure 4-3. In this case, the 
purple zone represents the probability of no manifestation when the liquefiable layer does not 
trigger. The green zone indicates the probability of no manifestation if liquefaction is triggered. 
As indicated in this example, there is a relatively high probability of liquefaction (loose soil), a 
low probability of manifestation given triggering (the loose layer is deep and/or thin), and a very 
low probability of manifestation given no triggering – therefore, the probability that liquefaction 
actually triggered should be high if manifestation was observed. For P[T] = 0.7, P[M|T] = 0.1, 
and P[M|NT] = 0.02 (approximately the values shown in Figure 4-3), P[T|M] = 0.921 which, as 
expected, is quite high. However, the probability that liquefaction would not have triggered if 
manifestation was not observed, i.e., P[NT|NM], would only have been 0.318. In this case, the 
historical inference that manifestation = triggering is reasonable (the thin, deep layer would 
almost certainly have had to trigger in order for surface manifestation to have been observed). 
However, the assumption that no manifestation means no triggering is not very good, because 
the probability of triggering given no manifestation P[T|NM] is 0.682, so P[NT|NM] = 1 - 0.682 = 
0.318. Because of the hydraulic component of manifestation, an observation of no manifestation 
only supports a relatively low probability that liquefaction was not triggered. 

These concepts have implications for how case histories should be interpreted, particularly with 
respect to the “critical layer” concept in cases that appear as apparent false positives (that have 
thin and/or deep critical layers) and false negatives (that may generate surface evidence without 
actually liquefying the soil). If no surficial evidence of liquefaction was observed for the case 
illustrated in Figure 4-3, the values of P[T|NM] and P[NT|NM] mean that there is a 0.682 
probability that liquefaction was triggered even though no manifestation was observed. In the 
common graphical display of closed and open circles, this case could then be treated with two 
data points – an open circle with a weighting factor of 0.318 and a co-located closed circle with 
a weighting factor of 0.682. 
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Figure 4-2 Graphical illustration of Bayes’ theorem calculation to compute probability 
of triggering given observation of manifestation 
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Figure 4-3  Graphical illustration of Bayes’ theorem calculation to compute probability 
of no triggering given the lack of observed manifestation 

4.1.4 Example 

As a specific example, consider the Wufeng A, WAC-2 CPT site (NGL site ID = 364, test ID = 
1585) where no evidence of surface manifestation was observed following the 1999 Chi-Chi 
earthquake despite the presence of a loose, susceptible layer being exposed to a very high 
CSR. Figure 4-4 shows a CPT profile for the site with the layering detected by an agglomerative 
clustering algorithm (details in Section 5.3). Of particular interest is Layer 7, which is 35 cm thick 
and is overlain by a 5.3 m thick crust, which could reasonably be interpreted as a critical layer 
for this profile. With qc1Ncs ~ 80 and Ic ~ 1.9, Layer 7 is loose and susceptible and therefore 
should have a high probability of triggering when subjected to strong shaking. For illustrative 
purposes, assume P[T] = 0.9. Because Layer 7 is thin and under a thick crust, manifestation 
seems unlikely so a value of P[M|T] = 0.15 will be assumed. Finally, the chance that 
manifestation could be produced by this layer with pore pressures insufficient to trigger 
liquefaction seems miniscule, a value of P[M|NT] = 0.005 will be assumed. These values 
produce P[NT|NM] = 0.115, which indicates that little confidence should be placed in a “no 
liquefaction” interpretation of this case history. Instead, the case history could be interpreted as 
two co-located data points on a classic CSR vs. qc1Ncs curve – a solid circle indicating triggering 
with a weighting factor of 0.885 and an open circle indicating no triggering with a weighting 
factor of 0.115. Using these weights, instead of a single open circle with an implied weighting 
factor of 1.0, we more realistically characterize the response of this soil profile in the triggering 
model development process. 
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Figure 4-4 CPT profile for Wufeng A WAC-2 site (NGL site ID = 364, test ID = 1585) 

4.2 Required Components 

Separating triggering from manifestation using the Bayesian framework has potential to reduce 
bias in our SMT triggering model. It also appears that some, and perhaps a significant amount, 
of the uncertainty in our model could be associated with “false positive” cases like Wufeng A 
WAC-2 that show up as a “no liquefaction” with critical layers that have low penetration 
resistance and a high CSR.  

In contrast, prior compilations of liquefaction case histories show data that appear to be outliers 
in the form of “false positives” (cases where manifestation was not observed for conditions 
under which triggering was expected) and “false negatives” (cases in which manifestation was 
observed for conditions under which triggering was not expected). By more appropriately 
interpreting the case histories in terms of probabilities of triggering (or non-triggering) given the 
observation (or non-observation) of surface manifestation, what appear to be outliers may not 
actually be outliers. The Bayesian framework described here allows prior knowledge of 
liquefaction behavior, as informed by principles of soil mechanics and laboratory test data, to be 
utilized to advantage in the process of case history interpretation. The types of calculations 
described in this chapter can address these situations, but they need inputs that are not 
currently available. These include: 

P[S]: Probability of susceptibility. This is based on mineral composition as inferred 
from soil behavior type index, Ic. 
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P[T]: Probability of triggering. For our SMT model, it is the probability of triggering itself 
in a particular layer of soil (not accounting for overlying crusts or other profile-
related hydraulic factors). We herein utilize a laboratory-based “prior” to assess 
triggering. 

P[M|T]:  Probability of manifestation if triggering occurs. This probability has been inferred 
from observations of manifestation using procedures described in Section 4.3 of 
this report. Triggering is first assessed using the laboratory model, and 
probability of manifestation of the profile is subsequently assessed conditional on 
probability of triggering, and other factors such as the penetration resistance, 
depth, thickness, and soil behavior type index for each layer. 

P[NM|T]: Probability of no manifestation if triggering occurs. This is the complement of the 
probability of manifestation if triggering occurs (i.e., P[NM|T] = 1 - P[M|T]), which 
inherently assumes that there is no “marginal” manifestation category.  

P[M|NT]: Probability of manifestation if triggering does not occur. This may arise when 
soils develop significant enough excess pore pressure to produce sand boils or 
other observations that are usually interpreted as manifestation of liquefaction, 
even at excess pore pressure ratios lower than unity. 

The SMT has opted to rely on laboratory test data as an estimation of the prior probability for 
this purpose. We have collected data for a wide range of sands and established the within- and 
between-sand variability in CRR given some loading and Dr, which has been used to estimate 
P[T]. The lab-based expression for P[T] is then updated based on observations of manifestation 
after developing an initial model using the laboratory-based relationship. This approach is 
described in Section 6.2. We also considered creating a case history database that excluded 
cases where impedance of drainage was a significant factor affecting manifestation potential, 
and then developing a triggering model based on that database. This approach was ultimately 
not pursued because (1) it is difficult to ascertain with a high level of confidence whether 
triggering would for sure result in a manifestation at a particular site, and (2) the resulting 
database would be very small and potentially not statistically reliable. 

The existence of P[M|NT] and P[NM|T], i.e., manifestation without triggering and triggering 
without manifestation, can be shown by examination of the data of Hutabarat and Bray 
(2021, 2022), which shows that the model itself has quite a bit of uncertainty in it. There are, for 
example, cases of minor, moderate, and severe manifestation that plot within the “None” zone 
(7 out of 96) for the thick sand sites (left side) and minor and moderate points (3 of 80) within it 
for the stratified sites (right side). There are also cases of no manifestation that plot above the 
“None” zone (6 of 96 for the thick sand sites and 3 of 80 for the stratified sites).  

Figure 4-5 shows data extracted from the Supplemental Data file of the Hutabarat and Bray 
(2022) paper, hereafter abbreviated “HB2022”. In Figure 4-6, we combined and plotted the data 
using solid circles for cases with manifestation (Minor, Moderate, Severe, or Extreme) and open 
circles for cases without manifestation. The data is shown with linear and logarithmic LD scales 
(LD = 0.01 was assigned to all cases that HB22 identified as having LD = 0, which implies no 
triggering anywhere within the profile). In both plots, the boundary between the None and Minor 
states of manifestation severity are shown in red. Of the 176 case histories in the HB22 
database, 55 showed some evidence of manifestation and 121 showed no evidence. 
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Figure 4-5 Plots of LD vs CR (from Hutabarat and Bray, 2022) 
 

  

Figure 4-6 Plots of LD vs CR in linear-linear and log-linear scales 
 

HB22’s bilinear boundary between None and Minor can be viewed as the minimum value of LD 
required to produce (any degree of) manifestation for a given CR, which can be referred to as 
LD,min. To accommodate the sloping part of the boundary, values of LD for actual case histories 
can be normalized as 𝛼 = LD / LD,min. In this form, 𝛼 can be thought of as something like the 
reciprocal of a factor of safety against manifestation. While HB22 did not attempt to characterize 
uncertainty in his manifestation model, it can be at least crudely approximated by considering 
the distribution of “missed” predictions of the occurrence of manifestation. Missed predictions 
can be considered as cases in which an observation of None (marked by an ‘x’ in Figure 4-5 
and an open circle in Figure 4-6) plots above the LD,min boundary and cases in which 
observations of Minor, Moderate, Severe, or Extreme plot below that boundary. By digitizing the 
HB22 data and assigning “observation values” of 0 to cases in which manifestation was not 
observed and 1 to cases in which it was (i.e., Minor, Moderate, Severe, or Extreme), the 
observation values can be plotted versus the parameter 𝛼, as shown in Figure 4-7. Ideally, all 
points with 𝛼 > 1.0 would show some degree of manifestation and all points with 𝛼 < 1.0 would 
not. However, Figure 4-7 shows that there are points with 𝛼 > 1.0 for which no manifestation 
was observed (zero values on y-axis) and points with 𝛼 < 1.0 for which manifestation was 
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observed (1 values on y-axis). The latter of these are cases in which manifestation occurred 
where HB22 would predict none. 

In Figure 4-7, 12 of the 176 case histories (6.8%) have 𝛼 < 1.0 but showed some degree of 
manifestation (note that some points plot on top of each other). Of these 12, three have 𝛼 = 0, 
which means that FSL > 1.0, i.e., no triggering, over the entire depth of the profile – one with 
moderate manifestation and two with minor. The fact that three of the 55 sites with manifestation 
did not show triggering, suggests that P[M|NT] = 5.5% for this small sample set – while this 
percentage is not large, it does suggest that surface manifestation may develop at sites where 
triggering did not occur. The HB22 database includes 121 cases where no manifestation was 
observed. 16 of these cases had 𝛼 > 1.0 but no observations of surface manifestation. 
Assuming an average 𝛼 value of at least 4.0 indicates a very high probability of some 
manifestation developing, six of the 121 manifestation cases had 𝛼 > 4.0 but no manifestation 
was observed. These “outliers” represent cases where liquefaction was triggered but 
manifestation was not observed, suggesting that P[T|NM] = 5.0% for this small sample set, 
again showing that surface manifestation can be absent for cases where liquefaction was 
almost certainly triggered. Thus, the data and analyses developed by HB22 suggest that both 
P[T|NM] and P[M|NT] are greater than zero. 

We have assumed P[M|NT] = 0 in this report because we have not yet achieved consensus on 
whether sufficient evidence is currently available to support a different value. We recommend 
exploring this possibility as part of future work.  

 

 

Figure 4-7 P[M] vs 𝛼 using data from Hutabarat and Bray (2022). For observations, 
P[M] = 1 for “yes” and P[M] = 0 for “no.” 

  

𝛼 = LD / LD,min 
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4.3 Modeling of Critical Layer Triggering 

The Bayesian framework can also be used with the case history database to develop a model 
for triggering in critical layers, which is analogous to the approach used in legacy models 
(Section 3.2). This form of model development requires a prior model for P[T], assumed 
manifestation models (P[M|T], and P[M|NT]), and assumed non-manifestation models 
(P[NM|NT] and P[M|NT]). Those models would then be applied to all case histories.  

Consider for example a case history where surface manifestation was observed. Eq. (4-5) would 
be used to establish P[T|M] and the complement would be computed as P[NT|M] =1-P[T|M]. 
This would lead to two weighted and co-located points. For a case history without surface 
manifestation, Eq. (4-6) would be used to compute P[NT|NM] and its complement would be 
P[T|NM] =1-P[NT|NM]. In an extended multiple-critical-layer approach, each weighted critical 
layer data point would consist of two co-located points with its weighting factor multiplied by the 
same conditional probabilities.  

The suite of M and NM weighted data points would then be used in a regression analysis to 
establish the boundary curve, which would update the prior P[T] model. This outcome 
would naturally depend on the assumed manifestation models, which are the subject of the 
next section, and the assumed non-manifestation models. As discussed in Section 6.3, we 
chose to update the prior P[T] model using Bayesian inference rather than a frequentist 
approach. This is because a frequentist approach requires many iterations of developing a P[M] 
model and updating P[T], which may converge but is inefficient and open to instability. The 
Bayesian inference essentially performs the same steps simultaneously and is much more 
stable. 

4.4 Modeling of Profile Manifestation 

This section describes the framework we adopted to compute the probability of manifestation of 
a profile. The probability that a particular layer will manifest depends on factors beyond 
penetration resistance and cyclic stress ratio. Additional factors include the depth and thickness 
of the layer, the presence of a thick and/or strong crust layer, whether the layer is interbedded 
or uniform, soil composition, and impeded drainage conditions. Previous models may have 
included these factors as part of the judgment utilized to select the critical layer. However, those 
judgments are subjective and were not explicitly documented, and we seek an objective method 
for assessing P[M|T] here. Rather than selecting a single critical layer to be representative of 
the profile, we evaluate the probability that each layer within a profile will cause surface 
manifestation, P[ML|TL], where the subscript “L” denotes manifestation or triggering of a specific 
layer. We then aggregate the contributions from all of the layers to define the probability of 
profile manifestation P[MP], where the subscript “P” denotes profile. We have previously not 
utilized subscripts to differentiate triggering or manifestation of profiles from layers but introduce 
them throughout this section for clarity.  

4.4.1 Manifestation Probability for Single Layer 

There are many variables that could be influential in the prediction of P[ML|TL]. In legacy models, 
CSR and penetration resistance are used to evaluate whether a layer will produce surface 
manifestation, but other factors such as layer thickness, depth, soil composition, crust thickness, 
and impeded drainage may also play a role. The variables we considered in our model are 
provided in Table 4-2. 
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Table 4-2  List of variables considered in manifestation model. 

Variable Description 

qc1N Overburden corrected cone tip resistance 

Ic Soil behavior type index 

ztop Depth to top of layer 

σ’v,0 Initial vertical effective stress 

t Layer thickness 

CSR Cyclic stress ratio 

τcyc/su Cyclic shear stress divided by undrained shear strength 

LD,l Liquefaction eject demand of a layer (Hutabarat and Bray 2022) 

CR,l Crust resistance above a layer (Hutabarat and Bray 2022) 

 

Note that LD and CR (introduced in Section 2.1.3) have been converted from profile parameters 
to layer properties in Error! Reference source not found.. This is achieved by integrating from 
the top to bottom of each layer for the case of LD,l and from the ground surface to the top of the 
layer for CR,l rather than the full profile. 

These variables must be combined in a mathematical framework in a manner that separates 
“yes” from “no” manifestation cases based on the properties of the variables. A common 
functional form utilized in binary classification problems is the logistic function, as shown in 
Eq. (4-7),  

𝑝 ൌ
1

1 ൅ 𝑒𝑥𝑝ሺെ𝛽்𝑥ሻ
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where p is the probability of an outcome, β is an array of coefficients, and x is an array of 
variables.  

The logistic function has several desirable features that make it useful for binary classification 
problems. First, p is constrained in the range between 0 and 1, which is the valid range of 
probabilities of an outcome. Second, βTx is a linear combination of the input variables. Although 
the resulting logistic function is nonlinear, logistic regression is often considered to be a linear 
separator because βTx is a linear function. 

The variables in Table 4-2 can potentially be combined in many different ways using many 
different functional forms. The simplest approach would be to combine all the variables in 
Table 4-2 together in a single logistic function. However, doing so would group together 
variables that are unrelated to each other. For example, qc1N and Ic are soil properties, and it 
makes sense to group them together, whereas ztop and t are geometric properties that should be 
grouped together. We therefore opted to group variables into distinct classes and multiply the 
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logistic functions for each grouping together. However, this caused large instabilities in the 
regression of model coefficients so we opted for the simpler framework with grouping all the 
chosen variables into one logistic function. An example is provided by Eq. (4-8). 

𝑃ሾ𝑀|𝑇ሿ ൌ
1

1 ൅ 𝑒𝑥𝑝ൣെ൫𝛽଴ ൅ 𝛽ଵ𝑞௖ଵே ൅ 𝛽ଶ𝐼௖ ൅ 𝛽ଶ𝑧௧௢௣൯൧
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Eq. (4-8) forms a four-dimensional surface in P[ML|TL], qc1N, Ic, ztop space that is impossible to 
visualize in three-dimensional space. Thus, the components are illustrated schematically in 
Figure 4-8. The probability factor depends jointly on all three features (qc1N, Ic, ztop), so multiple 
plots are required to demonstrate key aspects of the function. As evidenced in the top left 
subplot of , a layer at the ground surface (ztop = 0m) with Ic = 1 (represented as the darkest blue 
curve) has P[M|T] ~ 1 at qc1N < 75. As qc1N increases, P[M|T] decreases until it is approximately 
0 at qc1N = 300. As Ic increases (the color of the curve gets warmer), for the same ztop and qc1N, 
the P[M|T] decreases. Moving to different subplots from left to right and top to bottom, as ztop 
increases P[M|T] decreases for the same qc1N and Ic values. 

 

Figure 4-8  Example probability factors for layer manifestation conditioned on (a) qc1N 
and Ic, and (b) ztop 

 

As presented in Section 4.1.1, probabilities of manifestation that occur due to no triggering 
(P[M|NT]) can be separated into probability of manifestation given no triggering of a susceptible 
layer (ru < 1.0 but producing large strains) and manifestation in a non-susceptible layer (cyclic 
softening). Each are given their own set of logistic functions and combined to produce the total 
probability of manifestation of a layer P[ML] in Eq. (4-9). 

𝑃ሾ𝑀௅ሿ ൌ 1 െ ሺ1 െ 𝑃ሾ𝑀|𝑇ሿ𝑃ሾ𝑇|𝑆ሿ𝑃ሾ𝑆ሿ𝐾ௌ௔௧ሻ ∗ ሺ1 െ 𝑃ሾ𝑀|𝑁𝑇ሿ𝑃ሾ𝑁𝑇|𝑆ሿ𝑃ሾ𝑆ሿ𝐾ௌ௔௧ሻ
∗ ሺ1 െ 𝑃ሾ𝑀|𝑁𝑆ሿ𝑃ሾ𝑁𝑆ሿ𝐾ௌ௔௧ሻ 4-9 
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where P[T|S], P[S], P[NT|S], and P[NS] are all obtained from probabilistic model priors. P[M|T], 
P[M|NT], and P[M|NS] are each logistic functions similar to Eq. (4-8) but with variables important 
for the respective scenarios (e.g., qc1N for P[M|T] and τcyc/su for P[M|NS]). KSat is a term 
introduced to take into account the saturation of the soil. In future work, a KSat model could be 
developed using information such as P-wave velocity and partial saturation zones around the 
groundwater table. For this report, however, we use a binary value: KSat = 0 above the 
groundwater table and KSat = 1 below the groundwater table. Saturation has been shown to 
affect triggering; specifically as saturation decreases from S = 1, the CRR for a given DR 
increases (Arab et al., 2011; Okamura and Soga 2006; O’Donnell et al. 2017; Tsukamoto et al. 
2002; Yang et al. 2004). Rather than including a KSat term as done in Eq. (4-9), a saturation 
effect could be applied to the P[TL|SL] function using an estimated saturation that could be 
derived from proximity to the groundwater table and/or measured P-wave velocity (Vp). The 
framework presented in this report uses a simplified, binary saturation effect, therefore it is 
applied to the P[ML] equation rather than the P[TL|SL] function because it would cause the same 
effect. Future work needs to be done on saturation effects within the presented framework. 

4.4.2 Manifestation Probability for a Profile 

The probability of manifestation of a profile P[MP] is computed using Eq. (4-10),  

𝑃ሾ𝑀௉ሿ ൌ 1 െෑ൫1 െ 𝑃𝐹ெಽ|்ಽ𝑃𝐹்ಽ𝐾ௌ௔௧൯
௧೔/௧೎

ேಽ

௜ୀଵ
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where NL is the number of layers in the profile, ti is the thickness of the ith layer, and tc is a 
constant characteristic thickness. Eq. (4-10) is a simplified case that only considers contribution 
to manifestation from liquefaction triggering and ignores cyclic softening and non-triggering 
manifestations. Eq. (4-10) consists of multiple pieces that warrant separate discussions.  

First, PFML|TL is the probability factor of manifestation of a layer given triggering of the layer, 
defined exactly as P[ML|TL] in Eq. (4-8). PFTL is the probability factor of triggering which is the 
product of the probabilistic triggering and susceptibility prior models (P[T|S]*P[S]). The reason 
these are denoted as probability factors rather than probabilities now is because in the profile 
manifestation framework with the t/tc exponent (explained later in this Section), these quantities 
are not the true probabilities of manifestation or triggering of a layer. 

Second, the expression ൫1 െ 𝑃𝐹ெಽ|்ಽ𝑃𝐹்ಽ൯
௧/௧೎ is equal to the probability that the layer will not 

manifest liquefaction, P[NML] = 1 - P[ML]. If none of the layers manifest liquefaction, then the 
profile does not manifest liquefaction. Therefore, P[NMP] is computed as a product sum of 
P[NML]. However, a direct product sum (i.e., without the t/tc term in the exponent) inherently 
assumes that P[NML] for each layer is statistically independent from all other layers. This is 
generally not true. The t/tc exponent has removed the influence of discretization by tying layer 
thickness to the characteristic length. The characteristic thickness is the layer thickness for 
which PFML|TL is statistically independent of the other layers. If all layers have a thickness equal 
to the characteristic thickness, then Eq. (4-10) reduces to a simple product sum. If a layer is 
thicker than the characteristic thickness, it becomes more likely to manifest, and vice versa, as 
illustrated in Figure 4-9. We considered using thickness as a variable within the logistic 
regression instead of as an exponent, but ultimately included as an exponent instead for 
this reason.  
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Figure 4-9 Influence of t/tc exponent on probability of layer manifestation 
 

Consider the example profile in Figure 4-10, which has three layers with thicknesses of 3 m 
(also using tc = 3m for simplicity), and groundwater table at the ground surface. Layer 1 has a 
high qc1N and Ic (300 and 3.2, respectively), layer 2 has a low qc1N and high Ic (50 and 3.2, 
respectively), and layer 3 has low qc1N and low Ic (50 and 1.5, respectively). A strong ground 
motion with CSR=0.6 is assumed. The first step is to compute P[T|S] for each layer; layer 1 has 
P[T|S]~0 due to its high qc1N, whereas layers 2 and 3 have relatively low qc1N and high CSR, 
therefore P[T|S]~1. The P[S] is low for layers 1 and 2 due to high Ic. The product of P[T|S] and 
P[S] is PFTL, which is 0, 0, and 1 for layers 1, 2, and 3 respectively. The logistic functions in 
Figure 4-6 and Eq. (4-8) are used with the profile data to compute PFML|TL. Layer 1 has  
PFML|TL = 0, layer 2 has PFML|TL = 0, and layer 3 has PFML|TL = 0.5. These results are combined in 
Eq. (4-10) to provide profile manifestation probability P[MP] = 0.5, which is entirely caused by 
layer 3. 
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Figure 4-10 Simplified CPT profile demonstrating the computation of P[MP] 
 

In addition to layer properties, there may be profile properties that could improve a manifestation 
model’s predictive accuracy such as ground motion intensity measures other than PGA or 
variables such as H1 and LPI which are computed for an entire profile rather than an individual 
layer. These could help capture system effects or ground motion properties that are not 
reflected in layer properties or CSR. Therefore, P[MP] can be expanded from the form presented 
in Eq. (4-10) to the following: 

𝑃ሾ𝑀௉ሿ ൌ 1 െ ቌෑ൫1 െ 𝑃𝐹ெಽ|்ಽ𝑃𝐹்ಽ𝐾ௌ௔௧൯
௧೔
௧೎

ேಽ

௜ୀଵ

ቍ ∗ ሺ1 െ 𝑃𝐹௉ ሻ 
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where PFP is the probability factor for the profile-scale manifestation effects defined using the 
same logistic functional form as Eq. (4-7). Any combination of profile variables can be included 
in PFP. Table 4-3 lists the different profile variables that were considered during formulation of 
the manifestation model. 
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Table 4-3  List of profile variables considered in manifestation model 

Variable Description 

H1 Non-liquefiable crust thickness 

CR Crust strength 

LD Liquefaction Demand 

PGV Peak Ground Velocity 

CAV Cumulative Absolute Velocity 

Ia Arias Intensity 

LPI Liquefaction Potential Index 

LSN Liquefaction Severity Number 

 

4.4.3 Profile-Based Regression Framework 

Computing P[MP] requires specification of the prior distributions for the coefficients in the PFs, 
PFT|S, and PFM|T functions, and the characteristic thickness, tc. Independently regressing all of 
these based on case history data is infeasible and undesirable because (i) the amount of field 
case history data is inadequate to isolate so many different variables with nonlinear 
relationships, and (ii) there is a body of knowledge from laboratory testing that help constrain 
PFS and PFT|S. This approach is therefore to develop prior distribution functions for PFS and 
PFT|S from laboratory data and then use Bayesian regression to update uninformed PFM|T and 
PFP coefficients and the more strongly informed PFS and PFT|S coefficients. This section 
presents the framework utilized to infer the coefficients based on observations of manifestations 
at NGL sites. The functional forms of the probability factors and results of the inferences are 
presented in Chapter 6. 

In Bayesian regression, coefficients are characterized with prior distributions and then guesses 
of posterior distributions are sampled using a Hamiltonian Monte Carlo algorithm (Hoffman and 
Gelman 2011, 2014) along with the distribution of data and Bayes theorem to produce a 
posterior belief about the coefficients (Gelman et al. 2014). This regression seeks coefficients 
within the components of Eq. (4-11) that maximize the Bernoulli log-likelihood function given by 
Eq. (4-12), where yk is a binary indicator of whether manifestation was observed at the kth site 
(yk = 1 if manifestation was observed, yk=0 if it was not), and NP is the number of profiles in the 
database. This likelihood function is similar to those used in other probabilistic liquefaction 
models (e.g., Cetin et al. 2018; Moss et al., 2006). 

𝐿 ൌ
1
𝑁௉

෍ሾ𝑦௞ lnሺ𝑃ሾ𝑀௉ሿ௞ሻ ൅ ሺ1 െ 𝑦௞ሻ lnሺ1 െ 𝑃ሾ𝑀௉ሿ௞ሻሿ

ேು

௞ୀଵ
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The likelihood function exhibits several notable properties. First, if yk=1, only the first part of the 
expression within the square brackets on the right side of Eq. (4-12) contributes to the cost 
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function for profile k, whereas only the second expression contributes if yk=0. Second, if the 
prediction is a true positive (i.e., if yk=P[MP]k = 1), or a true negative (i.e., if yk=P[MP]k = 0), the 
contribution to the cost function from that profile is zero. Only values of P[MP] that do not match 
the observed manifestation contribute to the cost function. The ideal scenario would therefore 
be to select an optimal set of coefficients that render P[MP] values that are either 0 or 1, and 
perfectly match the observations. In that case, the selected variables perfectly separate the data 
into distinct domains, and the cost function would be L = 0. For real datasets, this is generally 
not feasible, and the value of L will therefore be less than zero. 

When a single logistic function is utilized to define the probability of occurrence of an event 
(i.e., in traditional logistic regression), the cost function given by Eq. (4-12) is convex, meaning 
that its second derivative is always positive. Logistic regression is therefore a convex 
optimization problem that is guaranteed to find the absolute minimum (within a specified 
threshold) using techniques like the gradient descent method (Cauchy, 1847). However, the 
P[MP] function is more complicated, involving products of logistic functions raised to an 
exponent. As a result, the cost function is not convex, and can contain local minima. 
Furthermore, we wish to constrain values of certain variables. As a result, we are solving a 
non-convex constrained optimization problem, which is more complicated than logistic 
regression. Our approach is to adopt a No-U-Turn Hamiltonian Monte Carlo sampling (NUTS) 
algorithm (Hoffman and Gelman 2011, 2014). NUTS uses a recursive algorithm to build a set of 
likely candidate points that spans a wide swath of the target distribution, stopping automatically 
when it starts to double back and retrace its steps. The Python package PyMC is used to 
perform NUTS and Bayesian regression (Wiecki et al., 2023).  
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5 CASE HISTORY PROCESSING 

Case history processing is required to convert data (e.g., CPT profiles, groundwater table 
measurements, ground motion measurements, observations of liquefaction manifestation) into 
metrics that facilitate model development (e.g., CSR, qc1Ncs). As outlined in Section 2.2.2 and 
Figure 2-7, our approach to case history processing combines automated procedures with 
human inspection and judgment to assign liquefaction observations to nearby in situ tests, 
identify layers, and process the characteristics of these layers. Whenever feasible, we codify our 
judgments so they are objective and reproducible by other analysts. The development of 
calibrated automated processes is crucial for analyzing a database as large as the NGL 
database, and provides a repeatable, consistent, and objective initial view of the data. 

This chapter describes the steps required to process liquefaction case histories as contained in 
the NGL database and to assign layer properties for use in model development. These steps 
include several advances of the state-of-the-art in liquefaction evaluation, such as a revisited 
relationship between Ic and FC, improved estimation of ground motion intensity, and an 
automated layer detection algorithm. 

5.1 Assigning Observations to In Situ Tests 

Observations of surface manifestation (or lack thereof) and site investigations are not 
necessarily collocated in the NGL database so it is necessary to decide which observation is to 
accompany which test (i.e., what in situ test data should be used in evaluating the soil layers 
that contributed to the surficial manifestation of liquefaction or lack thereof). Observations and in 
situ tests are associated through a link to a common site in the SQL data structure, but within a 
site there are often multiple observations and multiple in situ tests. Furthermore, there are often 
“yes” and “no” observations of manifestations within the same site. To make initial assignments 
of observations to in situ tests, we developed the following algorithm using Python code in 
Jupyter Notebooks.  

1. Select a site and identify all the in situ tests and observations that are associated with 
that site.  

2. Compile the latitude and longitude values for the tests and observations and compute an 
array containing the distance in meters between every observation and test at the site.  

3. Separate the observations by events (some sites have observations from more than one 
earthquake event).  

4. Assign the closest in situ test to each observation for each event so that every 
observation has an in situ test assigned to it. 

This is an initial automated process to make these assignments, followed by a human review by 
SMT members examining each test-observation pair. To conduct the review, the SMT 
developed a Jupyter notebook to visualize and summarize the available data for each site and 
event combination. A screenshot of the notebook is shown in Figure 5-1. Red markers indicate 
“yes” manifestation cases, black markers are “no” manifestation, and green markers are CPT 
locations. Note that when an observation and CPT sounding are collocated, some information 
can be obscured in the map (e.g., the green CPT pins or red/black observation pins may be 
obscured). A circle is drawn around the observation pins that are reasonably close to a CPT and 
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Figure 5-1 A screenshot of the Jupyter notebook that the SMT designed for reviews of 

individual case histories. Black markers represent observations of “no 
manifestation”, red markers represent “yes manifestation”, green markers 
represent CPTs, red/black lines connect CPTs and observations that the 
SMT grouped together, and red/black circles indicate a co-located CPT and 
observation pair. 

 

are therefore candidates for inclusion in the SMT’s case history dataset. The purpose of this 
review was to: 

1) Confirm the appropriate assignments of “yes manifestation” and “no manifestation” to an 
individual CPT or groups of CPTs when more than one CPT could be reasonably 
assigned to the same field observation. 

2) Identify and exclude case histories where the distance between a CPT and an 
observation of “yes manifestation” or “no manifestation” is too great to reasonably adopt 
(despite being the closest CPT identified by the initial algorithm). This evaluation is 
dependent on the site geology and the type and spatial distribution of field observations, 
and there is no single cutoff distance that is appropriate in every situation. For example:  

a) A lateral spread feature extending over an area of many square meters is 
represented in the NGL database by a single latitude/longitude coordinate, usually 
near the center. The feature may contain several boreholes within its lateral extent, 
but the distance between the center point and the boreholes could be several 
meters. In this case, the appropriate maximum acceptable distance between an 
observation and a borehole may be greater than in another case where only a single 
sand boil is observed. Figure 5-1 shows a lateral spread feature that extends along 
the north bank of the river shown in the image, with multiple FLDM observation notes 
in several locations. 
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b) In other cases, it is important to evaluate how close a borehole is to a "yes 
manifestation" observation and a "no manifestation" when there are multiple 
observations in a single site.  

c) Some sites may have more variable conditions, and the appropriate maximum 
acceptable distance between an observation and a borehole may be less than what 
is considered acceptable at a site where the soil profiles are more constant over 
horizontal distances. This evaluation is dependent on the site geology and available 
subsurface data. 

3) Identify CPT data that should be disqualified for reasons not readily detected by the 
algorithms (e.g., unreliable CPT equipment). 

4) Identify case histories where the presence of nearby structures could potentially affect 
the manifestation of liquefaction. 

5) Assign weights to CPTs when multiple soundings are assigned to the same observation. 
In this manner, multiple CPT’s may be paired with a single observation to form a single 
case history. 

At least one member of the SMT and often two or more used this tool to review each case 
history that the algorithms initially identified. This process yielded 546 total case histories, each 
with a CPT associated with an observation of “yes” or “no” manifestation. The median distance 
between site investigation locations and observations is 0m (i.e., over half of the manifestation 
observations are collocated with a CPT sounding), and the mean distance is 13.7m. 

5.2 Ground Motion Intensity Measures 

Accurate estimates of GMIMs, such as PGA, at liquefaction case history sites are crucial as IMs 
are used on the demand side of the equation for developing liquefaction triggering and 
consequence models. Current liquefaction triggering models are formulated using PGA values 
developed from various approaches often based on now-dated GMMs or engineering judgment. 
The existence of new GMMs based on current datasets of uniformly processed ground motion 
recordings [e.g., the NGA ground motions (Ancheta et al., 2014; Contreras et al. 2022)] offers a 
tremendous opportunity to improve the accuracy and reliability of GMIMs from old as well as 
new liquefaction case histories. 

This section describes a consistent approach developed to estimate GMIMs at NGL liquefaction 
case history sites and is a continuation of the work described by Hudson et al. (2023b). The 
method is demonstrated using PGA values from the 1989 Loma Prieta earthquake. The 
procedure has been applied to the vast majority of events in the NGL database for PGA, PGV, 
CAV, and Arias intensity (Ia). These intensity measures have been added to the GMIM table in 
the database to support the development of predictive models based on alternative IMs. More 
information on the procedures presented here is provided in Pretell et al. (2024). 

5.2.1 GMIMs Used in Legacy Datasets 

Traditionally, the GMIM required for liquefaction evaluations in the stress-based framework is 
PGA (e.g., Section 2.1.2). PGAs for legacy liquefaction case histories (e.g., Moss, 2003; 
Boulanger and Idriss, 2014; Cetin et al., 2018) were estimated using a variety of approaches 
(Table 5-1). In a handful of cases, sites with liquefaction observations (or lack thereof) had 
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Table 5-1 Summary of approaches used to estimate IMs in legacy datasets 

Approach Description Comments 

1 Measured at the 
site (collocated) 

Direct measurements at location of interest but can be 
complicated by pore pressure, dilation effects 

2 Interpolated from 
nearby stations 

Removal of the event term allows event-specific spatial 
variations to be isolated. Event term subsequently added to 
obtain interpolated IM. Requires nearby stations surrounding 
site 

3 Based on 
ShakeMaps 

Initial versions are less accurate than Approach 2 (level of 
care adopted in ground motion processing, e.g., assignment 
of VS30, is less rigorous), but often updated as better data 
become available 

4 Estimated from 
site response 
analysis 

Can be highly accurate at sites with strong impedance 
contrasts and could be utilized to inform the nonlinear site 
response parameters, but uncertainty in the input motion 
makes this approach less favorable 

5 Recorded at 
nearest station 

Relatively common in past practice, but stations are often 
many km from the case history site 

6 Estimated from 
ground motion 
models 

High degree of uncertainty because they are conditioned on 
data from many earthquakes 

7 Based on 
judgment 

Not well documented, difficult to reproduce 

8 Unknown No documentation available 

 

collocated ground motion stations (Approach 1 in Table 5-1) and thus a measured value of PGA 
at the location of the observations is available. Although directly measured at the sites of 
interest, these PGAs are often affected by factors such as shaking-induced excess pore water 
pressure and dilation-induced acceleration spikes, and thus their direct use in triggering model 
development is not straightforward. In other cases, ground motion recordings were available 
within a few kilometers or more of the liquefaction observations (Approach 5) and were used to 
approximate the PGA at the location of the observations. These estimates were sometimes 
modified to account for specific site conditions via site response analyses (Approach 4). In 
cases where recordings were not sufficiently close to the location of the liquefaction 
observations, PGAs were estimated using region-specific or ergodic GMMs. Other PGAs in 
legacy datasets were estimated from ShakeMaps (Worden et al., 2018), which provide a 
weighted average estimate of the PGA and other IMs using multiple data sources such as 
interpolations between ground motion recordings, intensity reports, and GMMs. These 
inconsistencies lead to a potentially inappropriate seismic demand that could limit the predictive 
ability of liquefaction triggering models.  
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The approaches in Table 5-1 are presented in our perceived order of decreasing accuracy. For 
example, collocated measurements are most accurate, though excess pore pressure 
development can complicate their use. Next best is interpolation of residuals from a dense grid 
of measured ground motions, as done in Approaches 2 and 3. Residuals, and specifically 
within-event residuals, are preferred to the IMs themselves because they are specific to the 
event that produced the motions, the IMs themselves are not spatially stationary, and 
differences in site conditions can be considered when interpreting within-event residuals. 
Approach 2 is distinguished from ShakeMap products (Approach 3) because the goal of 
ShakeMap is to produce near real-time indicators of shaking intensity, which means that the 
level of care adopted in ground motion processing, e.g., assignment of VS30, is less rigorous. 
Approach 2 utilizes uniformly processed ground motion records, site-specific data, site-specific 
spatial correlation relationships, and is therefore considered more accurate. ShakeMaps for 
important events are often updated as better data become available. In those cases, ShakeMap 
products are considered as accurate as Approach 2. Site response analysis (Approach 4) can 
be highly accurate at sites with strong impedance contrasts where the motion is known at the 
impedance contrast (e.g., the “rock” motion). However, rock motions are generally not known 
with a high degree of accuracy and tend to carry higher uncertainty than motions at softer sites. 
Even in cases where a nearby rock outcrop motion is measured, the distance is generally far 
enough that the rock motion is likely not characteristic of the incident motion at the site. While 
we do not dispute the value of site response analysis methods for many sites, uncertainty in the 
input motion has led us to favor interpolated motions. However, site response analysis could 
potentially be utilized to inform the nonlinear site response parameters used in the GMMs 
adopted to interpolate residuals. 

Approach 5 was relatively common in past practice, in which the PGA from the nearest ground 
motion recording was adopted as the value at the site of interest. In many cases, that station 
was many km from the site, and significant differences in PGA values may arise from 
differences in site and path effects, and spatial correlation of residuals. Ground motion models 
carry a high degree of uncertainty because they are conditioned on data from many 
earthquakes. If ground motion measurements are available for a particular event, they should 
be used to refine GMM estimates. Hence, Approach 6 is considered less accurate than 1-5. In 
some cases, PGA values were estimated from judgment. The judgment was not well 
documented and is difficult to reproduce. We therefore consider this to be the least 
accurate approach. Furthermore, sometimes the manner in which a PGA value was estimated 
is unknown. 

Legacy datasets relied solely on PGA as a proxy to quantify the seismic demand leading to soil 
liquefaction, but there is potential for using other GMIMs to characterize demand. For instance, 
Kayen and Mitchell (1997) proposed a liquefaction triggering procedure that uses the Arias 
intensity (Ia) to represent seismic demand. Kramer and Mitchell (2006) evaluated several 
GMIMs in their efficiency, sufficiency and predictability and found that the CAV estimated for 
time histories with a minimum acceleration cutoff of 5 cm/s2 (i.e., CAV5) is a good predictor of 
excess pore water pressure ratio (ru) and thus liquefaction triggering. In a similar study, Karimi 
and Dashti (2017) found CAV and CAV5 at the base rock as the best GMIMs to predict 
liquefaction-induced permanent settlements. The previous and other similar studies (e.g., 
Bullock et al., 2019, 2022; Sideras, 2019) and the recent development of GMMs for Ia and CAV 
based on current ground motion databases (e.g., Campbell and Bozorgnia, 2019, 2023) allow 
for the investigation of GMIMs other than PGA as proxies for seismic demand in liquefaction 
triggering models.  
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The work described in this section aims to address the previously described limitations of legacy 
datasets: (1) the inconsistency in the approaches used for GMIM estimation, and (2) the lack of 
availability of GMIMs other than PGA.  

5.2.2 Consistent Method for Estimating GMIMs: Interpolation from Nearby Stations 

GMIMs at liquefaction case history sites are estimated using Kriging2 interpolation to adjust 
GMM predictions with data from neighboring ground motion stations. The interpolation is not 
performed directly on GMIM values because ground motion tends to decrease with source-to-
site distance and is therefore not anticipated to be a stationary random field. Rather, the 
interpolation is conducted on within-event residuals. GMIM residuals for a given event “i” at a 
site “j” (𝑅௜௝) are calculated as the difference between the recorded GMIM (𝑌௜௝), and the GMIM 
estimated using GMMs ሺ𝑌෠௜௝ሻ, as indicated in Eq. (5-1). The GMMs used to estimate PGAs are 
the ones proposed by Boore et al. (2014) for crustal earthquake events, and by Parker et al. 
(2022) for subduction earthquake events. In seismic hazard analysis it is common to use 
multiple ground motion models to quantify epistemic uncertainty in the predictions. However, 
when interpolating ground motions this selection is less important because we subtract the 
event terms before interpolating within-event residuals. Different ground motion models have 
different event terms, which is a source of epistemic uncertainty, but the interpolated residuals 
are insensitive to these event terms. Selection of the nonlinear site response model is a more 
important consideration due to differences in site conditions between measured ground motion 
locations and liquefaction locations. We have not explored epistemic uncertainty in this area. 

𝑅௜௝ ൌ 𝑙𝑛൫𝑌௜௝൯ െ 𝑙𝑛൫𝑌෠௜௝൯  
5-1 

The event term 𝜂ா is approximated as the average value of the total residuals, as follows:  

𝜂ா,௜ ൎ 𝑅௜௝ ൌ
1

𝑁௥௘௖
෍ 𝑅௜௝

ேೝ೐೎

௝ୀଵ
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The uncertainty in 𝜂ா increases as 𝑁௥௘௖ decreases. This uncertainty is accounted for in the 
correlation model estimation, described in the following section. In the context of GMM 
development, 𝜂ா for each event is estimated using mixed-effect regressions. However, this 
approximation is necessary because events for which we desire to interpolate ground motions 
are not always included in the datasets from which the GMMs were derived. 

Within-event residuals for a given event i at a site j (𝛿𝑊௜௝) are then computed as:  

𝛿𝑊௜௝ ൌ 𝑅௜௝ െ 𝜂ா,௜ 5-3 

Figure 5-2 shows the within-event residuals estimated at ground motion station locations for the 
1989 Loma Prieta earthquake. The within-event residuals are then normalized by the within-
event standard deviation 𝜙௜ calculated from the data. The normalized within-event residuals 
( 𝛿𝑊ሗ ) are used to develop correlation models, as explained in the next section.  

 
2Kriging is a method of spatial interpolation named after Danie Krige, a South African mining engineer. 



 

5-7 

 

Figure 5-2 Map of interpolated within-event residuals for the 1989 Loma Prieta 
earthquake at strong motion recordings stations  

5.2.3 Correlation Model Development 

Correlation models for PGA and the other GMIMs were developed for each earthquake as a 
function of the Euclidean and angular separation distances amongst the ground motion stations. 
Bodenmann et al. (2023) showed that within-event residuals are not stationary random fields 
whose correlation depends solely on separation distance, but also on (1) the difference in the 
azimuth between each site location and the earthquake epicenter, and (2) the difference in the 
VS30 amongst stations. Such approach accounts for source and path effects, and also regional 
similarities in VS30 and thus site effects that are not captured by the GMM for a particular event. 
We herein adopt the approach of Bodenmann et al. (2023) except that we exclude the VS30 

component since we often lack this information at points of interest, and because the additional 
influence of VS30 on PGA within-event residuals, beyond the site conditions already considered 
in the site response models in the GMMs, was found to be very small by Bodenmann et al. 
(2023). The correlation model is defined by Eq. (5-4), where 𝜌ா is correlation due to Euclidean 
separation distance (Eq. 5-5) and 𝜌஺ is correlation due to azimuthal separation distance  
Eq. (5-6). 

𝜌ா஺ሺ𝑑ா , 𝛾ா ,𝑑஺ሻ ൌ 𝜌ாሺ𝑑ா , 𝛾ாሻ ⋅ 𝜌஺ሺ𝑑஺ሻ 5-4 
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where 𝑑ா is the Euclidean distance between a ground motion station and the interpolation point 
in km, 𝛾ா is a model parameter, 𝐿ா is the Euclidean length parameter in km, 𝑑஺ is the difference 
in the azimuth between the epicenter and ground motion station and the epicenter and 
interpolation point in degrees, and 𝐿஺ is the azimuthal length parameter in degrees.  

Bayesian inference is used to estimate the model parameters 𝐿ா, 𝛾ா, and 𝐿஺. Prior distributions 
for the model parameters are first established following the recommendations by Bodenmann et 
al. (2023). Realizations of the posterior joint distribution of the model parameters are then 
computed based on the 𝛿𝑊ሗ . The realizations of the model parameters are sampled using a 
Markov Chain Monte Carlo simulation method using the PyMC (Salvatier et al., 2016) Python 
package. A benefit of Bayesian inference over the more commonly used least squares 
regression in correlation model estimation is that prior beliefs about the model parameters 
stabilize the regressions for events that do not have a large number of ground motion records. 
We found that spurious models often arose from data-driven frequentist regression due to lack 
of adequate data. Herein, 1000 Monte Carlo samples of the posterior joint distribution are used, 
thus resulting in 1000 correlation models. Figure 5-3 shows the correlation models for the 1989 
Loma Prieta earthquake. The model with the highest likelihood, denoted maximum a posteriori, 
and its parameters are also presented. Figure 5-4 shows a map of interpolated within-event 
residuals for the 1989 Loma Prieta earthquake developed using the maximum a posteriori 
correlation model. 

 

Figure 5-3 Correlation models for the 1989 Loma Prieta earthquake: (a) correlation 
model as a function of Euclidean distance, (b) correlation model as a 
function of angular distance  
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Figure 5-4 Map of interpolated within-event residuals for the 1989 Loma Prieta 

earthquake developed using the maximum a posteriori correlation model  

5.2.4 Kriging Interpolation 

Within-event residuals are interpolated at liquefaction case history sites using ordinary Kriging 
and the Bayesian correlation models. Ordinary Kriging estimates a given variable of interest at 
unsampled locations as the weighted average of data from sampled locations, as follows: 

൤𝑊
෡
𝜇
൨ ൌ ቂ𝑽𝒂𝒓 1

1 0
ቃ ⋅ ቂ𝑪𝒐𝒗

1
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where 𝑊෡  are the weights, 𝜇 is the Lagrange multiplier, Var is the covariance matrix among 
ground motion measurement points, and Cov is the covariance matrix between measurement 
points and interpolation points. The element values of the Var and Cov matrices are estimated 
using the following relation: 

𝐶 ൌ 𝐶ଵ ⋅ 𝜌ா஺ 5-8 

where 𝐶 is the covariance and 𝐶ଵ is the semivariance of within-event residuals, estimated as: 

𝐶ଵ ൌ 𝜙௜
ଶ ൅
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In this equation, 𝜏 is the between-event standard deviation calculated from the GMMs. The 
rightmost term in Eq. (5-9) is intended to capture the uncertainty in the estimated event term 
Eq. (5-2). The mean GMIM within-event residual 𝜇ఋௐ෩  and corresponding Kriging interpolation 
error, quantified as the standard deviation 𝜎ఋௐ෩ , are estimated at each liquefaction case history 
site using all the 1000 correlation models. All the mean and standard deviation values are 
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combined using the following closed-form solution to obtain a single global normal distribution 
with mean and standard deviation defined as:  

𝜇ఋௐ෩ ൌ
1

𝑁௠௢ௗ௘௟௦
෍ 𝜇ఋௐ෩ ,௞

ே೘೚೏೐೗ೞ

௞ୀଵ

 
5-10 

 

𝜎ఋௐ෩ ൌ ඩቌ
1

𝑁௠௢ௗ௘௟௦
෍ 𝜎ఋௐ෩ ,௞

ଶ

ே೘೚೏೐೗ೞ

௞ୀଵ

ቍ ൅ ൤
1

𝑁௠௢ௗ௘௟௦ െ 1
൨ ෍ ൫𝜇ఋௐ෩ ,௞ െ 𝜇ఋௐ෩ ൯

ଶ
ே೘೚೏೐೗ೞ

௞ୀଵ

 

5-11 

The mean within-event residual can then be used to estimate the mean GMIM at interpolation 
locations as follows:  

ln൫𝑌෨௜௝൯ ൌ ln൫𝑌෠௜௝ ൅ 𝜂ா,௜ ൅ 𝜇ఋௐ෩ ൯ 5-12 

The 𝜎ఋௐ෩  is a measure of uncertainty in the estimated ground motion GMIM. Both the mean and 
standard deviation are included in the NGL database for each interpolated motion.  

5.2.5 Comparison with Legacy PGAs 

The newly estimated PGAs are compared against those from previous studies (e.g., Moss, 
2003; Boulanger and Idriss, 2014; Cetin et al., 2018) to assess the influence in the new 
approach to estimating ground motions. Figure 5-5 shows a comparison for PGAs at the 
liquefaction case history sites of the 1989 Loma Prieta earthquake available on the NGL 
database (Brandenberg et al., 2020). In this figure, the markers are differentiated by the 
approach used to estimate the legacy PGAs, following the categories indicated in Table 5-1. 
The RotD50 component is considered for the newly estimated PGAs, given it is based on 
GMMs, while the geomean component is considered for the legacy PGAs, as it is more 
generally available.  

Some discrepancies are observed between the legacy and the newly estimated PGAs for case 
histories. Legacy PGAs are based on three approaches: site response analysis, recorded from 
the nearest ground motion station, or based on GMMs. Overall, the newly estimated and legacy 
PGAs are within a factor of 2, as indicated by the 1:2 and 2:1 ratio lines. However, a tendency is 
observed for legacy PGAs based on GMMs to be lower, particularly for PGA values higher than 
0.3g. This discrepancy could be attributed to differences in the site response models embedded 
in the old vs. the modern GMMs used for this work. Modern GMMs are based on larger ground 
motion databases, therefore they are expected to have more accurate site response models. In 
the case of legacy PGAs based on the nearest station (Approach 5), Figure 5-5 shows eight 
cases, seven of them for sites in the Moss Landing area. These sites adopted a value of 0.28g 
based on the PGA recorded at Salinas - John & Work ground motion station, adjusted based on 
GMMs to account for differences in path and site effects. The resulting legacy PGA is higher 
than the estimated PGA in this work. The remaining site is the Alameda Bay Farm Island, 
whose legacy PGA was informed by the PGA recorded at the Alameda Naval Air seismic 
station, a softer site that combined with the relatively long distance to the earthquake fault could 
explain the observed discrepancy. Finally, legacy PGAs based on site response analysis 
(Approach 4) are relatively close to the 1:1 line without any clear tendencies. 
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Figure 5-5 Comparison of the legacy vs. newly estimated PGA estimates at 
liquefaction case history sites from the 1989 Loma Prieta earthquake. 
Markers indicate the approach used for the estimation of the legacy PGAs 
(Table 5-1). 

5.3 Layer Detection 

Liquefaction triggering analyses are typically performed considering the representative 
properties of each soil layer rather than a point-by-point basis within a CPT profile. This is 
because liquefaction occurs as a process of pore pressure generation that typically is only 
meaningful if it occurs across a large enough depth range to produce manifestations. 
Furthermore, the CPT measurement represents an average of soil properties within a zone of 
influence around the cone tip, and measurements at points near layer boundaries may therefore 
not be representative of the soil properties at that point. 

An individual CPT sounding may contain thousands of data points that provide an essentially 
continuous profile of tip resistance (qc) and sleeve friction (fs) with depth over the length of the 
CPT sounding. An engineer or geologist will generally use judgment to assign layer boundaries 
based on the CPT sounding, and subsequently select representative properties. Different 
analysts may make different judgments, and therefore assign layer boundaries differently. The 
process is therefore non-unique and unlikely to be repeatable. Furthermore, manual layer 
selection becomes inefficient when sufficiently large numbers of soundings require 
interpretation. Therefore, it is desirable to establish an algorithm that can efficiently assign 
layers to CPT data with repeatable, objective results that are compatible with sound human 
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judgment to the greatest extent possible. A repeatable algorithm can also reduce bias that can 
be introduced by a sole analyst or small group of analysts.  

A number of different techniques have been developed to create simplified profiles from CPT 
data. For example, Wang et al. (2013) developed a Bayesian approach to assign layer 
boundaries and assign a probability that soil within a particular layer falls within a soil behavior 
type category. Ching et al. (2015) developed a procedure that utilizes the wavelet transform 
method to distinguish sudden changes in CPT tip resistance from smaller amplitude changes 
due to within-layer soil variability. Ntritsos and Cubrinovski (2020) developed an algorithm that 
minimizes the within-layer coefficient of variation of qc1Ncs and Ic for the purpose of developing 
finite element meshes for one-dimensional ground response analysis. The first two of these 
three methods are rather complicated and require a significant number of calculations. The third 
is conceptually and computationally simpler and was shown to produce similar results to 
analyzing the full profile with respect to liquefaction potential. However, Ntritsos and Cubrinovski 
caution that the algorithm may result in fictitious layers at layer boundaries and indicate that 
their algorithm is not intended to replace engineering judgment.  

We describe below an algorithm that utilizes a machine learning technique called agglomerative 
clustering to identify layer boundaries and representative layer properties. This method shares 
some conceptual features with Ntritsos and Cubrinovski (2020) (the methods were developed 
nearly simultaneously but independently); preliminary comparisons indicate that the clustering 
technique is more efficient. The following subsections describe the agglomerative clustering 
algorithm and illustrate its use on a CPT sounding from Moss Landing, an important 
liquefaction site in California. The method described here has been submitted as a paper 
(Hudson et al., 2023a).  

Clustering is an unsupervised machine learning technique that separates data into different 
groups, often based on distance between data points and the clusters in a desired 
multi-dimensional parameter space (Pedregosa et al., 2011). The simplest clustering algorithm 
is called K-means, which groups data based on the aggregate distance between the data point 
and the centroid of each cluster. Gaussian mixture models assign probabilities that each data 
point belongs within each cluster based on the cluster statistics and may be thought of as an 
extension of K-means clustering that also considers covariance. Prior to clustering, variables 
are generally standardized, meaning that the mean is subtracted, and the resulting quantity is 
divided by the standard deviation. 

Here, we use an example problem to illustrate various approaches for clustering to identify 
layers. Figure 5-6 displays profiles of qc, fs, Ic, and qc1Ncs for CPT UC-4 that was obtained at 
Moss Landing near Sandholdt Road, a location that had severe liquefaction manifestation 
observations due to the 1989 M6.9 Loma Prieta earthquake (Boulanger et al., 1995, 1997). 
Visual inspection of the data makes it obvious that there are alternating layers of fine-grained 
and coarse-grained materials that compose this site’s stratigraphy. Standardized versions of the 
variables are denoted Îc and q̂c1Ncs and are plotted in Figure 5-7. 

K-means and Gaussian mixture model clustering is applied in Îc and q̂c1Ncs using the Scikit-learn 
Python package (Pedregosa et al., 2011), and plotted in Figure 5-8. The number of clusters is 
specified to be 14 here. Both algorithms do indeed group data points based on their proximity to 
each other. However, a problem arises when the clustered data are plotted as profiles with 
depth. As shown in Figure 5-9, non-contiguous data points may be assigned to the same cluster 
despite spatial separation. Figure 5-9 shows the results of K-means clustering, and Gaussian 
mixture model clustering suffers the same problem.  
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Figure 5-6 CPT data from UC-4 at Moss Landing–Sandholdt Road (original data from 
Boulanger et al., 1995, 1997) 

 

Figure 5-7 Cross plots of Ic vs qc1Ncs and Îc vs q̂c1Ncs for UC-4 at Moss Landing–
Sandholdt road 
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Figure 5-8 (a) K-means and (b) Gaussian mixture clustering algorithm results for UC-4 
CPT profile 

 

Figure 5-9 Depth profiles for K-means clustering algorithm results for UC-4 CPT 
profile 
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One possible solution would be to include depth as a 3rd variable in the clustering algorithm. 
While that solution improves continuity with depth, it does not solve the problem. To overcome 
this problem and obtain vertically contiguous clusters, we turn to agglomerative clustering, 
which is a form of hierarchical clustering that groups data based on a cascading “tree” of 
clusters computed using distances between points (Nielsen, 2016). A nearest neighbor matrix is 
provided to the clustering algorithm to specify which points are permitted to be considered when 
assigning clusters. For ordered data, the nearest neighbor matrix is tri-diagonal with ones on the 
diagonal and the two adjacent diagonals, and zeros elsewhere. This matrix forces the clusters 
to be contiguous. The algorithm then clusters data by minimizing the within-cluster variance for 
the total number of clusters specified. The resulting data is plotted in Figure 5-10, which 
illustrates that the layers are now vertically contiguous. Some clusters clearly correspond to 
transition zones (e.g., the cluster beginning at 10m depth) while others clearly belong within a 
stratum (the cluster immediately below the previously mentioned transition layer). 

 

Figure 5-10 Depth profiles for agglomerative clustering algorithm with nearest neighbor 
Matrix for UC-4 CPT profile 

 

Success of this method is highly dependent on the number of clusters specified, which is not 
known a priori because different CPT soundings require different numbers of clusters due to 
differences in total length and spatial variability of the soil deposit. Selecting the optimal number 
of clusters must balance two competing factors: (i) increasing the number of clusters reduces 
within-cluster variance, and (ii) to avoid over-fitting, the fewest possible number of clusters that 
reasonably divide the profile into layers should be provided. 
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In agglomerative clustering, a distortion score, JD, is often utilized to identify the optimal number 
of clusters, and is defined for the two-standardized-variable case considered here in Eq. (5-13),  
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where 𝜇௤ො೔ and 𝜇ூመ೎೔  are the mean values of q̂c1Ncs and Îc, respectively, for the ith cluster (i.e., 

subscript i is the index for clusters and identifies values of these parameters for each individual 
cluster), and N is the total number of data points in the profile. Note that JD decreases as the 
number of clusters, K, increases, and by definition is equal to zero when K=N because every 
point would constitute its own cluster and the numerator would be zero. The optimal number of 
clusters therefore cannot be computed by minimizing the distortion score, but rather is a 
compromise between reducing the distortion score while retaining the smallest possible number 
of clusters that adequately categorizes the data. 

5.3.1 Thickness-Dependent Cost Function and Combined Cost Function 

We define a cost function, JT, that penalizes the average layer thickness within a profile using 
Eq. (5-14). 

𝐽் ൌ 0.2ቆ
0.5𝑚
𝑡௔௩௚

ቇ
ଷ
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The average thickness is defined as tavg = zmax/K, where zmax is generally the total depth of the 
CPT profile. Note that predrilling is sometimes necessary for CPT profiles, in which case the first 
depth at which data is recorded is non-zero. In those cases, zmax is the difference between the 
deepest and shallowest CPT measurement. The purpose of Eq. (5-14) is to penalize selection 
of a high value of K if it results in average layer thicknesses that are too small to be considered 
geotechnically significant. Based on inspections and analyses of hundreds of CPT profiles in the 
NGL database, we believe that 0.5 m is a fairly thin stratum, and we set the coefficients in  
Eq. (5-14) such that JT = 0.2 for this condition. The cubic form of Eq. (5-14) was adjusted until 
the achieved average layer thickness accorded well with our judgment. A combined cost 
function is then defined in Eq. (5-15), where wD and wT are weights assigned to the components 
of the cost function. We herein utilize wD = wT = 1.0, but these weights can be adjusted based 
on user judgment in a site- or region-specific manner., 

J = wD·JD + wT·JT 5-15 

5.3.2 Elbow and min(J) Methods 

We consider two methods for utilizing the distortion score and the combined cost function to 
select the optimal number of layers. First, the “elbow” method graphically interprets a plot of JD 
vs. K, which has a negative curvature over the full range of K, but flattens as K increases 
(Figure 5-11). The optimum value of K (9 in the case of Figure 5-10) is identified on the basis of 
curvature having decreased to a sufficiently low level, which is subjective. As such, the elbow  
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Figure 5-11 Cost functions and layer selection for CPT profile UC-4 
 

method is based only on JD and not on JT. We utilize the Yellowbrick (Bengfort et al., 2022) 
Python package to implement the elbow method which identifies the point of maximum 
curvature of the JD vs. K curve and assigns that as the optimum number of layers. The 
silhouette method (Bengfort et al., 2022) is also often utilized to identify the optimal number of 
clusters. This method is based on a so-called “silhouette” value that measures the similarity of 
data points within a cluster compared to other clusters. We found it to produce similar results to 
the elbow method. Thus, results from this method are not reported in Figure 5-11. Molina-
Gómez et al. (2022) utilize the silhouette method to define the number of clusters in their 
algorithm. We also apply an alternative method in which K is selected as the point where J 
[from Eq. (5-15)] is minimized. For this reason, we call this the min(J) method. The combined 
cost function is minimized for K = 16 clusters for the example of CPT UC-4 in Figure 5-11. 

Profiles of 16 and 9 layers are shown in Figure 5-12, where (a) and (b) have 16 layers by using 
the min(J) method, whereas (c) and (d) have 9 layers by using the elbow method. The primary 
differences between these two profiles are in layers number 3, 4, and 6 for the 9-layer profile. 
These layers clearly contain within-layer regions that are vertically contiguous with different 
qc1Ncs and Ic values (e.g., the layer for the 2.2-3.8 m depth range), yet they are clustered 
together in the 9-layer profile. By contrast, they are separated into different layers in the 16-layer 
profile. The 16-layer profile accords better with our judgment, and similar observations observed 
across diverse profiles with a wide range of depths (as described in the next section) causes us 
to prefer use of the min(J) approach over the elbow method when selecting the number of 
layers. We recognize that a different curvature threshold in the application of the elbow method 
would have produced a different number of layers and, possibly, a solution that accords better 
with our judgment. However, the superiority of the min(J) method is related to the fact that it is 
based on layer thickness, which is a physically meaningful quantity, whereas the gradient of JT 
vs. K used in the elbow and silhouette methods does not have a clear physical meaning. 
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Figure 5-12 Profiles of qc1Ncs and Ic with 16 layers by using the min(J) method (a and b) 
and 9 layers by using the elbow method (c and d) 

5.3.3 Calculations for Many CPT Profiles 

Calculations of the optimal numbers of layers were performed for a total of 272 CPT profiles 
contained in the NGL database. Both the elbow method and the min(J) method were utilized to 
select the optimal number of layers. We expect that tavg should be independent of zmax because 
tavg depends upon vertical heterogeneity of the soil profile, which is controlled by the geological 
processes that formed the soil deposit, whereas zmax arises from a decision controlled by the 
objectives of the site investigation. For example, zmax may be higher for a site investigation for a 
pile-supported tall building with a corresponding deep zone of influence than for a single-story 
building supported by spread footings with a corresponding shallow zone of influence. 

Values of tavg vs. zmax are plotted in Figure 5-13. The elbow method exhibits a strong positive 
correlation in which tavg increases essentially linearly with zmax. This is an undesirable outcome 
since we anticipate tavg to be independent of zmax. By contrast, values of tavg are essentially 
independent of zmax using the min(J) method, particularly for values of zmax > 12m. For 
liquefaction triggering evaluation, profiles shorter than about 15m may miss layers that could 
potentially liquefy and produce surface manifestation. In this regard, the slight bias in the min(J) 
method for shallow profiles has little practical impact because evaluations of liquefaction for a 
profile need to extend deeper than 12m to reasonably capture all the layers that may influence 
manifestation, and there should not be instances where the bias on short CPTs is present. 
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Figure 5-13 Average layer thickness, tavg, versus total CPT profile length, zmax for (a) 
elbow method and (b) min(J) method. 

 

The influence of maximum depth on average layer thickness is further explored in Figure 5-14, 
which illustrates normalized cost versus number of clusters for (a) a shallow profile with zmax = 
5.1m from CPT_8933 at Site 76 in Edgecumbe, New Zealand, and (b) a deep profile with zmax = 
31.3m from CPT001 at the Inage site in Urayasu City, Japan (CPT names are those reported in 
the NGL database). Note that the JT functions are significantly different for these two profiles 
because the same average thickness in Eq. (5-14) produces fewer layers for the shallow profile 
than for the deep profile. For the shallow profile, the elbow method indicates that 8 sublayers is 
ideal (tavg = 0.64m), while the min(J) approach provides 7 layers (tavg = 0.73m). These results 
are very similar. By contrast, for the deep profile, the elbow method indicates that 8 layers is 
ideal (tavg = 3.9m), while min(J) provides 36 sublayers (tavg = 0.87m). These results are 
significantly different, and the average layer thickness using the elbow method is too large to 
capture potential critical layers of sand-like soil with low qc1Ncs. 
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Figure 5-14 Normalized cost versus number of clusters for (a) a shallow profile with 
zmax=5.1m corresponding to CPT_8933 at Site 76 in Edgecumbe, 
New Zealand and (b) a deep profile with zmax=31.3m corresponding to 
CPT001 at the Inage site in Urayasu City, Japan 

 

Note that when K=8, JD is near 0.2 for the shallow profile and near 0.4 for the deep profile. A 
fundamental limitation of the elbow method is that it considers only the curvature of the cost 
function, and not the value of the cost function itself. 

The two profiles are illustrated in Figure 5-15 with a common depth axis to illustrate the clear 
differences in the maximum penetration depth. The average layer thicknesses determined using 
the min(J) method are similar for these two profiles despite the different total depths. 
Furthermore, it is clear that reducing the number of layers for the deeper site from 36 [using the 
min(J) method] to only 8 (using the elbow method) would result in significantly higher average 
layer thickness and would miss much of the stratigraphic detail within that profile. 
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Figure 5-15 Profiles of qc1Ncs and Ic for (a) and (b) a shallow profile corresponding to 
CPT_8933 at Site 76 in Edgecumbe, New Zealand, and (c) and (d) a deep 
profile corresponding to CPT001 at the Inage site in Urayasu City, Japan 
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5.4 Assigning Layer Properties  

After identifying layers using the agglomerative clustering algorithm, we compute a number of 
different attributes for each layer in the profiles. Some attributes are computed directly from the 
CPT data, while others are computed using a combination of CPT data and demand for the 
purpose of identifying the critical layer within the profile. Section 5.4.1 describes attributes 
obtained directly from CPT data and stress normalization. Section 5.4.2 describes a new 
relationship for estimating FC. Section 5.4.3 describes the calculation of CSR.  

5.4.1 Basic Layer Properties and Stress Normalization 

Attributes computed directly from the CPT data are listed in Appendix A. We computed a total of 
16 different layer parameters for the case history dataset for consideration in model 
development, including layer depth, layer thickness, cone tip resistance, overburden- and fines-
corrected cone tip resistance, sleeve friction, soil behavior type index, modified soil behavior 
type index, vertical total stress, vertical effective stress, groundwater table depth, cyclic stress 
ratio, magnitude scaling factor, Kσ, strength of non-liquefied layers above the layer, and ejecta 
severity index within the layer. These attributes are computed in Python and stored in a pickle 
file format (with a .pkl file extension) that is well suited to being read into a Pandas dataframe. 
We will publish these data as part of this project to facilitate use by other model development 
teams. One pickle file has been created for the measured CPT data, and another has been 
created for CPT data that has been inverse-filtered using the algorithm by Boulanger and 
DeJong (2018). 

To calculate qc1Ncs for a profile, the total and effective stress profiles are needed. An estimate of 
the unit weight profile is created using the specific gravity (Gs) and water content (wc) 
measurements from the nearest boring to the CPT. If one or neither of these values are present 
at a particular depth range or in the closest boring, then the Gs and wc are assumed to be 2.7 
and 35%, respectively. Assuming saturation, the unit weight is computed as 
9.81kN/m3(e+Gs)/(1+e) where e is the void ratio equal to Gs(wc/100%). If there is an associated 
groundwater table depth in the WATR table assigned to the CPT, we select that value for case 
history processing. If there is no associated entry in the WATR table assigned to the CPT, we 
assign the closest groundwater table depth at any in situ test at the site (e.g., a borehole). 
These quantities are all used to compute the total and effective stress profile for the CPT.  

The equations to compute qc1N as recommended by Boulanger and Idriss (2014) are: 

𝑞௖ଵே ൌ 𝐶ே
𝑞௖
𝑝௔
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𝐶ே ൌ ൬
𝑃௔
𝜎௩ᇱ
൰
௠

൑ 1.7 5-17 

𝑚 ൌ 1.338 െ 0.249ሺ𝑞௖ଵே௖௦ሻ଴.ଶସ଺ 5-18 

where qc is the cone tip resistance and pa is atmospheric pressure (i.e., 1 atm = 101.325 kPa). 
Equations used to compute qc1Ncs as recommended by Boulanger and Idriss (2014) are 
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𝑞௖ଵே௖௦ ൌ 𝑞௖ଵே ൅ 𝛥𝑞௖ଵே 5-19 
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where FC is fines content. The crust thickness (H1) is taken as the sum of the thickness of 
layers with Ic greater than or equal to 2.6 above the water table. 

5.4.2 Estimation of Fines Content from CPT Data 

The liquefaction potential of an element of soil is related to its degree of contractiveness, which 
is a function of its state. At a given effective stress level, the state of a particular soil is a 
function of its relative density, which can be measured in the laboratory. The in situ relative 
density, however, is difficult to measure directly and typically inferred from penetration 
resistance. The CPT provides an effectively continuous profile of tip resistance (qt), sleeve 
friction (fs), and sometimes pore pressure (u2), and is commonly utilized to assess soil 
liquefaction (e.g., Robertson and Wride, 1998; Moss et al., 2006; Boulanger and Idriss, 2016) 
because qt correlates well with relative density of clean sands. However, qt alone is inadequate 
to assess relative density of sandy soils with appreciable fines because the amount and 
plasticity characteristics of fines present in the sand influence its compressibility and drainage 
characteristics, and therefore influences the qt for a given relative density. For these reasons, 
CPT soundings should be accompanied by sampling and laboratory testing when feasible to 
measure fines content and plasticity characteristics, either using a collocated borehole or by 
using sampling equipment that can be affixed to the CPT rods. However, many projects proceed 
without soil sampling, in which case susceptibility and fines content are inferred from CPT 
measurements. The presence and plasticity characteristics of fines also influence liquefaction 
susceptibility and cyclic resistance ratio (e.g., Park and Kim, 2013), albeit in a different manner 
from their effect on CPT measurements (investigated by Carraro et al., 2003 and Ecemis and 
Karaman, 2014). The fines correction applied in liquefaction evaluation does not distinguish 
these two effects, but rather jointly captures both effects in a combined manner. This section 
focuses on the influence of fines on CPT measurements, and not on the influence of fines on 
liquefaction susceptibility or resistance. The method described here has been submitted as a 
technical note (Hudson et al., 2023d), and the dataset is available on DesignSafe (Hudson et 
al., 2023c). 

Soil behavior type index, Ic, is an indicator of the manner in which a particular soil behaves and 
is defined by Eq. (5-21). Robertson (1990) developed relationships between Ic and soil 
behavior type in which fine-grained soils tend to have Ic>2.6, sand-like soils with appreciable 
fines (i.e., silty sand to sandy silt) tend to have Ic = 2.05 to 2.6, and clean sand to silty sand 
tends to have Ic = 1.31 to 2.05. Soil behavior type is different from soil classification because the 
Unified Soil Classification System uses fines content (FC) of 50% to distinguish fine-grained 
soils from coarse-grained soils, whereas the mechanical behavior of soils with FC as low as 
35% is generally considered to be dominated by the fines (Thevanayagam, 1998). 

𝐼௖ ൌ ඥሺ3.47 െ 𝑙𝑜𝑔𝑄௧௡ሻଶ ൅ ሺ𝑙𝑜𝑔𝐹௥ ൅ 1.22ሻଶ 5-21 

Robertson and Wride (1998) developed a relationship between “apparent fines content” and Ic 
as specified by Eq. (5-22). Furthermore, they indicated that PI influenced the relationship 
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between Ic and FC and specified separate relationships for high plasticity fines  
(PI > 20%) and non-plastic fines (PI < 5%). For a given Ic, FC tended to be lower for high 
plasticity fines. They utilized the phrase “apparent fines content” rather than “fines content” as 
an acknowledgment that the relationship between Ic and FC was approximate, and influenced 
by plasticity, mineralogy, sensitivity, and stress-history. They indicated that the approximate 
relationship provided by Eq. (5-22) may nevertheless be useful for small projects. 

𝐹𝐶ሺ%ሻ ൌ ቐ
0 𝑓𝑜𝑟 𝐼௖ ൏ 1.26

1.75𝐼௖ଷ.ଶହ െ 3.7 𝑓𝑜𝑟 1.26 ൑ 𝐼௖ ൑ 3.5
100 𝑓𝑜𝑟 𝐼௖ ൐ 3.5
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Robinson et al. (2013) developed a relationship between Ic and FC for soils in Christchurch and 
found that the apparent fines content was 10% for soils with Ic<1.7, and reasonably followed the 
Robertson and Wride (1998) relationship for non-plastic fines for soils with Ic>1.7.  

Boulanger and Idriss (2016) developed a relationship between Ic and FC based on 
approximately 200 Ic-FC pairs from Suzuki et al. (1998) supplemented with approximately 120 
Ic-FC pairs from liquefaction case histories. They regressed their relationship using FC as the 
independent variable, and Ic as the dependent variable, and subsequently inverted the equation 
to obtain the relationship given by Eq. (5-23), where CFC is a parameter that may be calibrated 
on a site-specific basis. The mean value of CFC from their dataset is 0.0, and the standard 
deviation is 0.29. Note that the standard deviation reflects uncertainty in Ic for a given FC 
because they regressed the model with FC as the independent variable. 

𝐹𝐶 ൌ 80ሺ𝐼௖ ൅ 𝐶ி஼ሻ െ 137 0% ൑ 𝐹𝐶 ൑ 100% 5-23 

Cetin and Ozan (2009) compiled a dataset containing 484 measurements of FC, CPT 
measurements, and plasticity indices. A total of 474 pairs have FC and CPT measurements, 
while 388 have Atterberg limits. They do not report Ic, but rather utilized Bayesian methods to 
estimate FC directly from measured cone tip resistance and sleeve friction. We sought to 
develop a new probabilistic relationship for FC conditioned on Ic using CPT and FC data from 
the NGL dataset. 

5.4.2.1 Dataset 

At the time the NGL database was queried to develop this relationship, a total of 2,714 layers 
with Ic computed using CPT soundings were associated with a measured FC from a sample at 
the same depth in a nearby boring. These data come from 111 different sites and 227 different 
collocated CPT/boring log pairs. All data used herein were reviewed by two independent 
reviewers to check for accuracy of information in the database relative to source documents. 
This association of a CPT sounding with a boring was applied to pairings separated by 10m or 
less, with most separated by less than 3m. Each CPT sounding was inverse-filtered to account 
for layer effects using the procedure by Boulanger and DeJong (2018), and strata from the 
inverse-filtered profiles were identified using an agglomerative clustering method (Hudson et al., 
2023a). The representative value of Ic for each stratum was then computed as its median value 
over the length of the specimen used to measure FC computed as the percent passing the No. 
200 sieve (75 μm). 
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An example boring log and Ic profile is shown in Figure 5-16 for Adapazari Site B  
(PEER 2000, Bray et al., 2004), which has 13 measured FC values. For example, FC in the 
upper 4 m of Adapazari Site B (Figure 1) is generally higher than 50% with a median Ic of 2.7 
whereas Ic = 1.3 with FC = 5% in the sand layer from about 4 to 9 m depth. In some cases, FC 
was measured for multiple specimens within a sample, and the FC values varied significantly. 
This is consistent with interbedding in the upper 4m of this profile. We considered computing Ic 
as the average value over the layer thickness or the sample length. We opted to average over 
the specimen length because the layer thickness is often quite large and might miss important 
stratigraphic details, and because multiple specimens are often tested from a single sample, 
often with significantly different FC and Ic within the specimen depth range. 

The processing illustrated in Figure 5-16 was repeated for all collocated CPT soundings and 
boring logs, resulting in the values plotted in Figure 5-17, along with binned means that illustrate 
trends in the data. Ic-FC pairs were obtained from sites in California (1928), Turkey (319), 
Taiwan (191), New Zealand (94), Japan (88), China (60), and Mexico (34), and reflect 
geological conditions including Holocene and Pleistocene aged alluvial, beach, eolian, 
estuarine, floodplain, fluvial, lacustrine, and marine deposits as well as artificial fill. A general 
trend of increasing FC with increasing Ic is evident from the data. Standard errors of the binned 
means are smaller than the icons used to plot them. When Ic=2.6, the mean value of FC is 
about 60%, which is consistent with Robertson’s (1990) soil behavior type concept because soil 
with FC this high is dominated by the fine fraction. When Ic=2.0, the mean value of FC is about 
35%, often considered the transition where the soil becomes fines-dominated. Furthermore, the 
mean FC drops to about 10% for Ic<1.5, which is also consistent with Robertson (1990). 
Significant scatter exists in the data, which indicates that Ic is not a unique indicator of FC. The 
model shown in Figure 5-17 is described subsequently. 

 

Figure 5-16 Boring log and CPT data from Adapazari Site B illustrating how FC values 
are related to Ic 
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Figure 5-17 Fines content (FC) vs. soil behavior type index (Ic) for collocated CPT 
soundings and boring logs in NGL database compared with proposed 
model, Robertson and Wride (1998), and Boulanger and Idriss (2016). Each 
bin contains an equal number of data points. 

 

5.4.2.2 Proposed FC-Ic Model 

FC is bounded between 0 and 1, which poses a complication for least squares regression 
because the functional form must enforce these boundary conditions, which precludes linear 
regression. Rather than formulate a complicated functional form, we instead impose a logistic 
transform (Johnson, 1949) on the data as indicated by Eq. (5-24). Note that 𝐹𝐶෢  is unbounded, 
and becomes infinity when FC = 1.0, and negative infinity when FC = 0.0. To avoid infinite 
values, we set the data to the nearest measured value that is not 0 or 1 (i.e., 0’s are set to 0.6% 
and 1’s are set to 99.8%). 

𝐹𝐶෢ ൌ ln ൤
𝐹𝐶

1 െ 𝐹𝐶
൨ 5-24 

We subsequently standardize 𝐹𝐶෢  and Ic by subtracting the mean and dividing by the standard 
deviation of each quantity, prior to performing ordinary least squares regression (Table 5-2). 
The result is shown in Figure 5-18. The linear fit passes through the origin since the data were 
standardized prior to regression. The slope is 0.566, and the standard deviation of the residuals 
is 0.825. Although not shown here for brevity, residuals of the fit in transformed variable space 
approximately follow a normal distribution. 
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Table 5-2 Mean and Standard Deviation of Ic and 𝑭𝑪෢  

Variable Mean Standard Deviation 

Ic 2.5 0.615 

𝐹𝐶෢  0.15 2.267 

 

 

 

Figure 5-18 Linear least squares regression of standardized quantities 
 

The regression results must be de-standardized and must be de-transformed to obtain a form of 
the equation in Ic – FC space. The result is provided by Eq. (5-25). 

𝐹𝐶 ൌ
expሺ2.084𝐼௖ െ 5.066 ൅ 1.869𝜖ሻ

1 ൅ expሺ2.084𝐼௖ െ 5.066 ൅ 1.869𝜖ሻ
 5-25 

where 𝜖 is a random variable with mean zero and standard deviation of 1.0. The proposed 
relationship is plotted in Figure 5-17 in Ic – FC space for the mean relationship and 𝜖 = ±1 
values. The mean curve agrees well with the binned means of the data, indicating that the fit is 
reasonable. The 𝜖 = ±1 relationships reflect the significant scatter in the data. 

The relationships of Robertson and Wride (1998) and Boulanger and Idriss (2016) are also 
plotted in Figure 5-17. The recommended Robertson and Wride (1998) model is lower than the 
binned means, indicating under-prediction of FC for this dataset. The Robertson and Wride 
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(1998) model for non-plastic fines, however, is very close to the binned means of our dataset, 
which is consistent with the findings of Robinson et al. (2013) for the soils in Christchurch. The 
model of Boulanger and Idriss (2016) tends to under-predict FC for values of Ic < 2.0 and over-
predict FC for values of Ic > 2.0 and does not represent the smooth variation of FC with Ic 
indicated by the binned means for the NGL dataset. Furthermore, the range corresponding to 
CFC ± 0.29 is rather small, and significantly smaller than the range for our proposed model 
corresponding to ± 1𝜎. 

5.4.2.3 Influence of Plasticity 

Robertson and Wride (1998) found that plasticity index (PI) influenced the relationship between 
Ic and FC. Specifically, FC was noted to decrease as PI increased for a given Ic. This trend is 
intuitive because a small amount of plastic fines would be expected to exert more influence on 
soil behavior than the same amount of non-plastic fines. Of the 2,714 Ic-FC pairs in the NGL 
dataset, 1,063 have measured Atterberg limits. An additional 299 samples were inferred as 
non-plastic based on stratigraphic layer descriptions containing the words “non-plastic”, “sand”, 
and/or “gravel” and not containing any of the following words: “plastic”, “clay”, “silt”, “fat”. To 
investigate potential effects of soil plasticity, residuals were computed as:  

𝑅ி஼ ൌ lnሺ𝐹𝐶ሻ െ lnቆ
expሺ2.084𝐼௖ െ 5.066ሻ

1 ൅ expሺ2.084𝐼௖ െ 5.066ሻ
ቇ 5-26 

The binned means of the residuals are negative (model overpredicts) for PI < 20%, and positive 
(model underpredicts) for PI > 20%. This implies that, for a given Ic, the fines content is higher 
for high PI soils, which is the opposite of the trend presented by Robertson and Wride (1998). 
To investigate the cause of this finding, Figure 5-19b shows a positive correlation between FC 
and PI; i.e., higher FC soils are more likely to have high PI. As a result, an Ic-FC pair with an 
unusually high FC (thus producing a positive residual) is likely to also have a high PI, whereas a 
pair with an unusually low FC (producing a negative residual) is likely to have a non-zero but 
low PI. This parameter correlation is not surprising because Atterberg limits are tested on 
specimens passing the #40 sieve, which therefore include sand-size particles and fines. 
Accordingly, low FC materials likely have large granular fractions in plasticity test specimens, 
reducing PI, whereas high FC materials will have limited granular fractions, increasing PI. We 
recognize that incomplete sampling could also affect the results in unknown ways – perhaps 
Atterberg limits tests on low FC soils are more likely to be performed if the plasticity is low 
(because such samples are more likely susceptible to liquefaction). If so, this would represent a 
type of sampling bias. Another potential sampling bias would occur if Atterberg limits on high PI 
soils with low FC are underrepresented relative to the frequency of their occurrence in nature, 
which is a possibility we cannot exclude. Given these uncertainties, we have not attempted to 
adjust the relationship to recover the trend we believe would exist in the absence of correlation 
between FC and PI. Furthermore, the influence of PI on the Ic-FC relationship has little practical 
impact because in cases where PI is measured, FC should also be measured and therefore 
should not be inferred from Ic.  



 

5-29 

 

Figure 5-19 (a) Residuals of proposed model Eq. (5-26) versus PI, (b) positive 
correlation of FC with PI in database 

 

5.4.3 Cyclic Stress Ratio  

We compute seismic demands on soil layers in the form of a cyclic stress ratio, CSRM7.5,1atm 
[Eq. (2-2) with adjustments MSF and Kσ]. CSRM7.5,1atm is computed for a given earthquake event 
and ground motion that has been associated with an observation of surface manifestation 
(or lack thereof) at or near the location of the CPT sounding. Some locations have been shaken 
by multiple earthquakes; in which case the CPT data is repeated in the summary pkl file 
(see Appendix A for full list of quantities in the pkl file). The quantities that describe the 
earthquake event are summarized in Table 5-3. For each field observation, the nearest CPT 
sounding within the site is selected as being representative of that observation. The distance 
between the observation location and CPT sounding is recorded and stored in the pkl file.  
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Table 5-3 Summary of values queried or computed for each layer based on quantities 
from the database or derived from CPT data 

Variable Name Description 

EVNT_ID The primary key from the NGL database for the earthquake associated 
with this observation/CPT pair 

EVNT_NAME The event name from the NGL database for the earthquake associated 
with this observation/CPT pair 

EVNT_MAG The event magnitude from the NGL database for the earthquake 
associated with this observation/CPT pair 

PGA The PGA from the NGL database for the observation location 
(FLDO location) 

FLDM_ID The primary key from the NGL database for the observation of 
manifestation 

FLDM_SFEV The flag from the NGL database for the observation of manifestation  
(1 if manifestation observed, 0 if not) 

FLDM_DIST The distance between the CPT/observation pair 

CSR Cyclic stress ratio 

 

CSRM7.5,1atm values computed at the center of each layer are taken to be representative of the 
layer. As shown by the equations below, CSRM7.5,1atm is computed using the PGA stored in the 
GMIM table associated with the observation (using the estimates from the Kriging approach 
outlined in Section 5.2.4, where possible), the moment magnitude of the event associated with 
the observation, the total and effective stress profiles computed for use in the qc1N calculation, 
the MSF and Neq equations by Lasley et al. (2017), and the rd relationship presented in Lasley et 
al. (2016). The K𝜎 model is from Section 6.2.4 of this report. 
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where z is the depth in meters, pa is atmospheric pressure (1 atm) in the same units as σ’v, and 
M is the moment magnitude.  
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6 CPT-BASED MODELS 

As described in Chapter 4, the necessary components of the SMT’s conditional probabilistic 
approach include estimates of P[T] = P[T|S]*P[S], P[M|T], and P[M|NT]. The following sections 
outline the preliminary approaches adopted by the SMT to estimate these probabilities. These 
results constitute the culmination of the model development process described in Section 2.2.2 
and illustrated in Figure 2-7. The content presented in this chapter is subject to change as we 
refine the methodologies, input parameters, and framework, and based on the review comments 
from the MRT received prior to March 22, 2024.  

Section 6.1 presents the SMT’s selected model to estimate the probability of susceptibility P[S] 
based on existing models in the literature. Section 6.2 describes an initial (prior) model for 
triggering that is derived from laboratory cyclic test results. This model is needed as part of the 
overall model development process for reasons explained in Section 4.2. Section 6.3 presents 
the updated model for manifestation using the profile-based regression framework described in 
Section 4.4. Finally, Section 6.4 illustrates additional sensitivities of the P[M] model that have 
been investigated as part of the model development process. 

6.1 Probability of Susceptibility, P[S] 

Based on the definition of susceptibility in Section 2.1.1, our susceptibility model considers a 
soil’s mineral composition as inferred from PI or Ic, and excludes non-compositional factors like 
state, saturation, and manifestation potential. Note that in our approach, saturation is 
considered as part of the P[T] relationship, as discussed in Section 4.4.1. Our susceptibility 
model is probabilistic to reflect natural variability of soil behavior and to quantify epistemic 
uncertainty. Following a public workshop on the topic (Stuedlein et al., 2023b), a framework for 
creating new susceptibility models using the laboratory component of the NGL database was 
formulated. However, the implementation of this framework is in its beginning stages and has 
not yet been adopted by the broader liquefaction research community. Therefore, we are using 
currently available models, namely Maurer et al. (2017) in which the authors used borings and 
co-located CPTs in New Zealand to correlate Ic to Atterberg limits which in turn is converted to a 
probability of susceptibility as defined by four criteria: Polito (2001), Seed et al. (2003), Bray and 
Sancio (2006), and Boulanger and Idriss (2006). The Maurer et al. (2017) adaptations of the 
four models are shown in Figure 6-1, and use the following functional form: 

𝑃ሾ𝑆ሿ ൌ 1 െ
1

1 ൅ 𝑒𝑥𝑝 ቆെ1.702
𝜎௠

∗ ቀ
𝐼௖
𝑥௠

െ 1ቁቇ
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The range of results in Figure 6-1 constitute a partial representation of epistemic uncertainty. 
We decided to treat this uncertainty using a logic tree approach to obtain Ic-conditioned 
probabilities of susceptibility, using equal weighting between the models. This approach 
produces the combined model shown in Figure 6-1, which has xm = 2.635, and σm = 0.115. To 
incorporate the susceptibility model into the Bayesian inference framework utilized to obtain the 
manifestation model coefficients, a distribution function must be assigned to each model 
parameter. The uncertainty in these parameters was quantified by taking the standard deviation 
of the xm and σm values from the four criteria, yielding 0.0204 and 0.0865, respectively. The 
Bayesian prior distributions were assumed to be normal with the means and the standard 
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deviations of the xm and σm values as given above. The sensitivity of the P[M] model 
(Section 6.3) to variations across the different P[S] models is discussed in Section 6.4.3. 

 
Figure 6-1 Probability of susceptibility models as a function of Ic as defined by 

Maurer et al (2017) 

6.2 Probability of Triggering, P[T|S] 

As described in Chapter 4, the SMT’s approach for developing coupled probabilistic models for 
triggering and manifestation requires a “prior” model for the probability of triggering, which would 
then be potentially modified from interpretation of case history data. We develop a prior model 
for P[T|S] using CRR from cyclic tests performed on soil specimens in the laboratory. Many 
researchers over the last several decades have performed such tests under a wide range of 
conditions (e.g., cyclic stress amplitudes, soil densities, effective stress levels) and made their 
findings available in the published literature through journals, reports, and data repositories. 
These data provide meaningful insights into the mechanics of triggering and a given soil’s 
resistance to liquefaction triggering for a broader range of conditions than exist in field case 
histories and without the influence of manifestation that is inherent in those case histories. We 
acknowledge the traditional argument that laboratory tests are performed on samples with 
varying levels of disturbance, and as a result, triggering under field conditions could differ from 
those in the laboratory. However, we seek to mitigate these concerns by considering in our 
model development results from intact specimens and by incorporating field performance data 
into the manifestation analysis. As a result, we consider a P[T|S] relationship derived from 
laboratory data to provide a reasonable prior. The following discussion outlines how P[T|S] was 
estimated from laboratory data. 

6.2.1 Data Sources 

As part of Task 5 of the current NRC/USBR-SwRI project, many published studies with CRR 
values from laboratory data were compiled and digitized into a single dataset to investigate the 
effects of overburden and initial static shear stresses on liquefaction triggering (Ulmer et al., 
2022a, Ulmer et al., 2023a; Carlton et al., 2023). This dataset represented predominantly 
reconstituted soil specimens as opposed to intact specimens retrieved from the field with 
minimal disturbance and tested in the laboratory. The process of reconstituting specimens 
removes the effects of aging processes that occur in the field and the selection of a 
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reconstitution method (e.g., tamping, pluviation) can have a significant effect on the fabric of the 
soil. These modifications can influence the liquefaction response and triggering resistance of 
the soil (Seed, 1979).  

We then proceeded to gather data from 19 studies in which intact specimens were sheared in 
CTRX or CDSS tests (CDWR, 1985; 1989; Hatanaka et al., 1995; Huang et al., 2009, 1999, 
2004; Idriss et al., 1975; Ishihara et al., 1978, 1979; Ishihara and Koga, 1981; Kokusho et al., 
2012; Kokusho and Tanimoto, 2021; Okamura et al., 2003; Pillai and Byrne, 1994; Pillai and 
Stewart, 1994; Porcino and Diano, 2016; Sancio, 2003; Sanín, 2010; Sanín and Wijewickreme, 
2006; Seed et al., 1973; Suzuki et al., 1993, 1995; Wijewickreme, 2010; Wijewickreme et al., 
2005; Yoshimi et al., 1989, 1994). This dataset of intact specimens represents predominantly 
clean sands with a few fine-grained specimens (FC up to 100%).  

Nearly all of the intact specimen testing was performed as CTRX, although some was CDSS. 
The tests were typically consolidated in the laboratory to the in situ σ’v0 prior to cyclic loading, 
with some exceptions. The types of sampling methods from these studies that were considered 
by the respective authors to be relatively undisturbed or intact vary widely. The ability of each 
method to obtain undisturbed samples is not discussed in this report, but they generally fall into 
three categories based on their general procedures: 

1) Soil is frozen in situ and subsequently sampled 
2) Soil is sampled using high quality samplers and then subsequently frozen 
3) Soil is sampled without freezing, e.g.: 

a) Block sampling technique 
b) Fixed piston sampler 
c) Rotary triple-tube sampler 
d) Large diameter sampler 

Although intact specimens are preferable because they are more likely to retain their in situ soil 
fabric, reconstituted specimens have some advantages. For example, there is more opportunity 
for repeated tests to check for within-soil variability, whereas an intact specimen provides only 
one CRR value. Thus, in the following sections, we present and analyze results from both intact 
and reconstituted specimens.  

The data for reconstituted specimens come from the dataset compiled for Task 5 and those 
data sources are discussed in detail in the Task 5 report (Ulmer et al., 2022a; Ulmer et al., 
2023a; Carlton et al., 2023). We supplement the Task 5 dataset with two additional datasets 
containing data from other studies that investigated liquefaction resistance of various soils but 
that did not include a range of initial overburden stress or static shear stress values (thus 
disqualifying them from the Task 5 database). One of these additional datasets contains results 
from tests on intact specimens, while the other contains results from reconstituted specimens. 
Thus, three datasets were used to guide the development of a P[T|S] model as summarized 
below. 

1. Task 5 dataset specifically compiled to investigate the effects of overburden and initial 
static shear stresses on liquefaction triggering (Ulmer et al., 2022a; Ulmer et al., 2023a; 
Carlton et al., 2023) 

2. Additional data from studies of intact specimens to supplement the Task 5 dataset in 
developing a P[T|S] model 
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3. Additional data from studies on reconstituted specimens to supplement the Task 5 
dataset in developing a P[T|S] model 

All data in these datasets were processed in the same manner, as described in the 
following section. 

6.2.2 Methodology 

The specific process of estimating CRR from cyclic tests is documented in the Task 5 report 
(Ulmer et al., 2022a), but is also briefly summarized here. To estimate CRR from laboratory 
tests, a series of laboratory tests [e.g., CTRX, CDSS, or CTS] is conducted to develop 
relationships between the applied loading stress amplitude (CSR) and the number of cycles to 
reach liquefaction (NL) as defined by a pre-defined liquefaction criterion for a given soil under a 
set of conditions [e.g., same Dr and σ’v0]. Assuming a reference value of Nref associated with a 
given magnitude event (e.g., 15 cycles for M7.5 in this study), CSRM7.5 can be computed from a 
power law fit of the CSR versus N relationship. This CSRM7.5 is the CRR from lab data, denoted 
as CRRlab, which is typically adjusted to better reflect field conditions using correction factors for 
bi-directional shaking and mean effective stress. The following corrections were made to the 
CRRlab values as recommended by Montgomery et al. (2012) to compute the field-corrected 
CRR (CRRfield): 

𝐶𝑅𝑅௙௜௘௟ௗ ൌ 0.9ቆ
1 ൅ 2ሺ𝐾଴ሻ௙௜௘௟ௗ
1 ൅ 2ሺ𝐾଴ሻ௟௔௕

ቇ𝐶𝑅𝑅௟௔௕ 6-2 

where CRRlab is the CRR estimated from CSR vs N curves using lab data and (K0)field and (K0)lab 
are the at-rest lateral earth pressure coefficients in the field and in the lab, respectively. The 0.9 
value in Eq. (6-2) is traditionally used to adjust unidirectional loading in laboratory tests to bi-
directional loading in the field (e.g., Pyke, 1975). The value of (K0)lab in a CTRX or CTS test is 
equal to the ratio of the radial to axial stress [e.g., (K0)lab = 1.0 for isotropically consolidated 
CTRX tests] . The value of (K0)field is typically unknown, but can be approximated to be between 
0.5 to 1.0 for most applications related to liquefaction (Montgomery et al., 2012). In our study, 
we approximated the value of (K0)field for each soil using reported values of the drained friction 
angle (𝜙’) as (K0)field = 1-sin(𝜙’). If 𝜙’ was unknown, then we assumed 𝜙’ = 30 degrees 
[i.e., (K0)field = 0.5]. 

The value of Nref and thus CRRlab and CRRfield depends on the liquefaction criterion assumed to 
indicate triggering of liquefaction in the lab. As discussed in Chapter 2, the formal definition of 
initial liquefaction indicates that it occurs when ru = 1.0 (i.e., a condition, usually momentary, of 
zero effective stress). In a number of experimental studies, liquefaction is considered to be 
triggered when ru is very close to 1.0 because 1.0 is not always achieved. In many other studies, 
however, strain criteria are used as a substitute for pore pressure-based criteria. In some cases 
this is because the researchers were more interested in identifying the onset of significant shear 
strains rather than initial liquefaction. The conventional assumption has been that ru reaches 1.0 
at about the same time as specimens exhibit 2.5% single-amplitude axial strain (εSA) or 5% 
double-amplitude axial strain (εDA) in CTRX tests, or 3.75% single-amplitude shear strain (𝛾SA) in 
CDSS tests. However, this is not always the case. A recent laboratory study (Stuedlein et al., 
2023a), for example, has shown that soils can exhibit clay-like hysteretic behavior at moderate 
strain levels (𝛾SA ~ 3%) that transitions to sand-like behavior when additional cycles of loading 
produce higher strains. Thus, in several figures that follow, the CRR values we computed in this 
study are separated by liquefaction criterion type to identify trends specific to each criterion. 
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Using this approach, we computed 215 CRRfield values from intact specimens and 1154 CRRfield 
values from reconstituted specimens. In most cases, values of Dr were reported for each 
specimen. In some cases, estimates of SPT blow count and/or estimates of qc were also 
reported. Figure 6-2 shows histograms of the combined datasets in terms of test type, intact vs. 
reconstituted, Dr, FC, σ’v0, and liquefaction criterion type. 

 

Figure 6-2 Histograms of CRR values obtained from the combined datasets in terms 
of test type, reconstituted vs. intact specimens, Dr, FC, σ’v0, and 
liquefaction criterion 

6.2.3 Data Coverage 

As part of our analysis, we attempted to discern whether there were any significant differences 
in CRR values between intact vs reconstituted specimens, CTRX vs CDSS tests, and strain-
based vs ru-based liquefaction criteria. Our findings along this line are discussed in this section 
and in the figures below. However, despite gathering published data from a wide variety of 
sources, there are some underrepresented scenarios within our database that lead to some 
sampling bias, as will be discussed. 

Figure 6-3 shows the variation of CRRlab with Dr for the entire dataset used for estimating 
P[T|S], split up by intact vs. reconstituted specimens. The trendlines through each subset of the 
data are of a simple exponential functional form used for purposes of illustration. For Dr less 
than approximately 50%, the CRR for intact specimens is generally indistinguishable from the 
CRR for reconstituted specimens. However, as Dr increases beyond 50%, the CRR for intact 
specimens appears to be greater than that of reconstituted specimens. This may be the result of 
the age of the intact specimens making them more resistant to liquefaction, and perhaps in part 
due to other effects as discussed subsequently. 
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Figure 6-3 CRR vs Dr showing differences in intact and reconstituted datasets 
 

Figures 6-4 to 6-6 partition the data to investigate various effects. Figure 6-4 shows that the 
CRR values from CDSS tests tend to be less sensitive to Dr than those from CTRX tests within 
the reconstituted data alone; this effect may be influenced by necking that often occurs in CTRX 
tests. Figures 6-5 and 6-6 illustrate the effects of different failure criteria (strain- vs. ru-based). 
Figure 6-5 focuses on this comparison using CDSS tests, which show that CRR values from 
strain-based criteria are slightly higher than those from ru-based criteria, but that the shapes of 
the CRR vs Dr curves for the two data sets generally match. Figure 6-6 makes the same 
comparison using CRR values from CTRX tests and shows that CRR values from strain-based 
criteria are much more sensitive to Dr than the CRR values from ru-based criteria are. Granted, 
the number of CRR values from tests that use ru-based criteria is limited compared to the 
number of CRR values from tests that use strain-based criteria, so this finding could be refined 
with more data. However, current trends indicate that the use of strain-based criteria can 
influence the shape of the CRR vs Dr curve more for CTRX tests than for CDSS tests. Thus, the 
difference between CRR values from intact specimens compared to CRR values from 
reconstituted specimens could be explained by the almost exclusive use of CTRX tests and 
strain-based criteria within the intact subset of the database, and there is no conclusive 
evidence to state whether intact specimens do indeed yield higher CRR values. 

In general, we believe that triggering behavior in the field, (represented by the P[T|S] curve) is 
most consistent with CDSS stress paths, which are more representative of in situ loading 
conditions during seismic events. We also believe that ru-based criteria are more closely related 
to the actual triggering of liquefaction than strain-based criteria, which are considered to be 
more of a consequence (e.g., manifestation) issue. However, we recognize that limiting our 
P[T|S] regression to this scenario alone would represent a small fraction of our current database 
and would not likely reflect our current uncertainty in the actual CRR curve for forward analysis 
(i.e., an unspecified soil that may not be represented in the current CRR database). Thus, we 
decided to use the entire dataset with the basic data filters discussed subsequently in 
Section 6.2.6 when regressing the P[T|S] curve to provide a realistic level of uncertainty based 
on currently available data.  
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Figure 6-4 CRR vs Dr showing differences in CTRX and CDSS tests within the 

laboratory results from reconstituted specimens 
 

 
Figure 6-5 CRR vs Dr showing differences in ru- and strain-based liquefaction criteria 

within the laboratory results from CDSS tests performed on reconstituted 
specimens 
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Figure 6-6 CRR vs Dr showing differences in ru- and strain-based liquefaction criteria 

within the laboratory results from CTRX tests performed on reconstituted 
specimen 

6.2.4 Kσ Model 

The liquefaction behavior of a soil is influenced by its initial stress conditions because of the 
dependence of state on stress (Vaid et al., 2001). Laboratory tests have shown that the CRR, a 
normalized measure of a soil's cyclic resistance to liquefaction, decreases as the effective 
confining pressure (e.g., σ’v0) increases (e.g., Seed et al., 1973). In addition, the presence of a 
non-zero initial static shear stress (𝜏s) can either increase or decrease a soil’s CRR, depending 
on the state of the soil and its contractive or dilative nature (Boulanger, 2003b). In cyclic 
stress-based liquefaction triggering evaluations (Seed and Idriss, 1971), the overburden stress 
correction factor (Kσ) is used to modify the CRR to account for σ’v0 differing from 1 atm, and the 
initial shear stress correction factor (Kα) is used to modify the CRR to account for 𝜏s not equal to 
zero (Seed, 1983). 

There are two well-known approaches to developing models for Kσ and Kα: 1) constrain the 
relationship as part of regressing an empirical CRR model using a database of field case 
histories (e.g., Moss et al., 2006; Cetin et al., 2018); or 2) use laboratory data and soil 
mechanics concepts to develop a model (e.g., Boulanger, 2003a, 2003b; Bilge and Cetin, 
2011). The challenge of the first approach is collecting case histories with a wide enough range 
of σ’v0 and 𝜏s to sufficiently constrain Kσ and Kα. Historically, this has been difficult to achieve. 
The use of surface manifestation as a criterion for triggering in the field has limited the case 
history database to cases with critical layers at depths generally less than 8 m and far less than 
the depths of interest in many important applications. In the second approach, the results of 
laboratory tests [e.g., CTRX, CDSS, or CTS] are used to develop relationships between cyclic 
stress ratio (CSR = 𝜏cyc / σ’v0 where 𝜏cyc is the applied cyclic loading stress) and the number of 
cycles to liquefaction (N) for a given soil under a set of conditions [e.g., same relative density 
(Dr), σ’v0, and 𝜏s]. Typically, this is done first using a reference condition such as σ’v0 = 1 atm or 
𝜏s = 0. Assuming a value of N associated with a given magnitude event (e.g., Mw7.5), CRR can 
be computed from the reference CSR versus N relationship. To compute Kσ or Kα, the same soil 
is tested using the same set of conditions but with a change in either σ’v0 or 𝜏s. The Kσ or Kα 
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correction factor is then defined as the ratio of the CRR of the second set of tests to the CRR of 
the reference condition tests. 

To develop a comprehensive generic (i.e., not material-specific) model to account for the effects 
of σ’v0 and 𝜏s in liquefaction triggering evaluation procedures, the aggregated results of cyclic 
tests performed on many different soils over a wide range of states and stresses are required. 
There have been prior efforts to compile datasets of Kα values (e.g., Harder and Boulanger, 
1997) and Kσ values (Montgomery et al., 2012, 2014) and to develop ergodic models 
(Boulanger, 2003a, 2003b; Bilge and Cetin, 2011). However, these datasets and models are still 
limited in scope (e.g., for clean sands only) and there have been a significant number of 
laboratory studies that greatly expanded the range and quantity of soil state and stress 
parameters (Ulmer et al., 2023a) since the time when the earlier compiled datasets 
were published. 

As discussed in Section 6.2.1, the SMT compiled a database of results from laboratory tests 
that could elucidate the effects of initial overburden (σ’v0) or static shear stresses (𝜏s) over the 
broad range of conditions encountered in practice. Where possible, we computed Kσ from CSR 
vs N data as discussed in Section 6.2.2 or from reported CRR data. However, in some 
instances, Kσ values were directly reported without CSR vs N or CRR data. Our approach 
yielded hundreds of Kσ and K⍺ factors for a broad range of soils. A summary plot of the Kσ 
values is shown in Figure 6-7. Figures 6-8 and 6-9 compare the Kσ values from the laboratory 
tests with existing relationships (e.g., Idriss and Boulanger, 2008; Bilge and Cetin, 2011) and 
demonstrates that there are potential misfits of these existing models to the data when 
considering a broader range of Dr (Dr >70% and Dr <30%) and FC (FC >10%). The SMT 
concluded that it is possible to regress updated Kσ and K⍺ relationships that would better fit the 
data over a wider range of Dr and FC. 

 

Figure 6-7 Kσ vs σ’v0 from the Task 5 laboratory results dataset. Symbols for different 
preparation methods and colors based on Dr. 
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Figure 6-8 Residuals of Kσ vs FC, Dr, void ratio post-consolidation (ec), and σ’v0 using 

the Idriss and Boulanger (2008) Kσ model 
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Figure 6-9 Residuals of Kσ vs FC, Dr, void ratio post-consolidation (ec), and σ’v0 using 

the Bilge and Cetin (2011) Kσ model 
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As part of an NGL supporting study (Section 2.2), the SMT worked with Brian Carlton to regress 
updated Kσ and K⍺ relationships using the Task 5 dataset (Ulmer et al., 2022a; Ulmer et al., 
2023a; Carlton et al., 2023). Given that the majority of the case histories in the NGL database 
are on relatively level ground (~80% with less than 1 degree ground slope) and free of 
significant initial shear stress, the SMT agreed that updating the Kσ relationship was a higher 
priority than updating K⍺. Using 230 Kσ values that span a wide range of soil types, Dr, initial 
stresses, fines content, and specimen preparation methods, the SMT developed two options for 
modeling Kσ as functions of either (i) σ’v0 or (ii) σ’v0 and FC. Preliminary results showed a 
relatively weak dependence of Kσ on Dr, which is contrary to the assumptions used by some 
existing Kσ models that depend on Dr (e.g., Boulanger, 2003b) but agreed with other models 
that do not include Dr (e.g., Cetin et al., 2018). Kσ was shown to be sensitive to FC, which 
warranted its inclusion as an independent variable. 

The SMT adopted the following relationship based on σ’v0 and FC: 
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where FC is in percent and pa is one standard atmospheric pressure in the same units as σ’v0. 
This Kσ relationship assumes a different exponent (a1 or a2) depending on whether σ’v0 is less 
than or greater than 1 atm (100 kPa). This relationship was adopted to adjust CSR to 
CSRM7.5,1atm (see Section 5.4.3) and to adjust CRR for laboratory tests performed at levels of σ’v0 
other than 1 atm (discussed subsequently in Section 6.2.6). 

In existing Kσ relationships, there is typically an upper limit imposed on Kσ to avoid very high 
values at low σ’v0 to avoid being unconservative in a forward analysis. For example, Boulanger 
and Idriss (2014, 2016) recommend an upper limit of 1.1. Based on the laboratory data collected 
for our study, there are examples of soils with Kσ greater than 1.1, particularly for soils with high 
FC. In our effort to develop an unbiased (i.e., neither conservative or unconservative) model, we 
chose to limit our model to the range of σ’v0 represented in our laboratory data (greater than 
about 20 kPa). Thus, the upper limit of Kσ in Eq. (6-3) is associated with σ’v0 = 20 kPa (0.2 atm), 
which is roughly 1.17 for FC = 0% up to 2.2 for FC > 50%. This is illustrated in Figure 6-10. 
Reasons for the increase in Kσ at low σ’v0 with increasing FC is not yet clear, but could be 
investigated in follow-on studies (e.g., over consolidation effects).  

Figure 6-11 shows a comparison between the SMT’s selected Kσ model and other published 
relationships (Idriss & Boulanger, 2008; Bilge & Cetin, 2011; Cetin et al., 2018). The SMT’s Kσ 
relationships for a range of FC nearly captures the range of Kσ values from these published 
relationships. 
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Figure 6-10 Kσ vs σ’v0 from the Task 5 laboratory results dataset with the proposed SMT 
model based on σ’v0 and FC. Upper limits of Kσ represented by σ’v0 = 20 kPa 
(0.2 atm). 

 

Figure 6-11 Comparison of several Kσ models based on either FC and σ’v0 (SMT model), 
Dr and σ’v0 (Idriss & Boulanger, 2008; Bilge & Cetin, 2011), or σ’v0 alone 
(Cetin et al., 2018) 

6.2.5 Functional Form of CRR vs Dr 

To establish a reasonable functional form for CRR vs. DR, we first developed CRR curves using 
a relatively complete dataset for a single soil from tests performed on reconstituted specimens 
over wide ranges of Dr and σ’v0 values. We found such a dataset published by Vaid and 
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Sivathayalan who performed constant-volume CV-CDSS tests on water-pluviated specimens of 
FRS (Sivathayalan 1994; Vaid and Sivathayalan, 1996). FRS is a medium-grained sand 
predominantly composed of quartz with some unstable volcanic rock fragments. Prior to testing, 
the fine particles were removed so that the FRS specimens tested were clean sands (i.e., FC 
less than 5%). Vaid and Sivathayalan prepared specimens using air pluviation and investigated 
the effects of varying σ’v0. In a parallel study, Vaid and Thomas tested the same sand under 
CTRX conditions (Vaid and Thomas, 1995; Vaid and Thomas 1994; Thomas, 1992). For CV-
CDSS tests, they used 𝛾SA = 3.75% to define liquefaction and for CTRX tests they used εSA = 
2.5%. 

Using the FRS data, we computed CRR at multiple values of Dr. The resulting CRR vs Dr curves 
are shown in Figure 6-12. The curves were established by fitting the following equation to 
the data: 

ln൫𝐶𝑅𝑅௙௜௘௟ௗ൯ ൌ 𝑐ଵ ൅ 𝑐ଶ𝐷௥ ൅ 𝑐ଷ𝐷௥
ଷ  6-4 

where c1, c2 and c3 are regressed coefficients and Dr is in percent. Coefficients of Eq. (6-4) for 
an FRS combined curve (CTRX & CV-CDSS) are provided in Table 6-1. 
 
Also shown in Figure 6-12 is the Boulanger and Idriss (2016) (denoted BI16) deterministic 
triggering curve (shown in gray). The curve for PL ≈ 15% is used for this purpose, with qc1Ncs 

converted to Dr for the plot using their relationship. At values of Dr < 40%, the laboratory CV-
CDSS curve generally aligns with the BI16 curve. However, both the CV-CDSS and CTRX 
curves are substantially lower than the BI16 curve at higher Dr. The BI16 curve, being based 
solely on case histories of surficial manifestation, reflects both triggering and manifestation 
effects whereas the laboratory data reflects triggering alone. Although there are other field-
related factors that could be influencing this difference (e.g., aging, previous seismic history, 
over consolidation), these results suggest the influence of manifestation is especially impactful 
at higher penetration resistances, and thus the BI16 curve is not expected to perfectly match the 
laboratory-based curve, which represents triggering alone. 
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Figure 6-12 CRR curve regressed using proposed functional form and CRR values 
computed from CV-CDSS and CTRX tests on water-pluviated specimens of 
Fraser River sand. CV-CDSS data are from Sivathayalan (1994) and 
Vaid and Sivathayalan (1996), whereas CTRX data are from Vaid and 
Thomas (1995), Vaid and Thomas (1994), and Thomas (1992) 

 

Table 6-1 Regressed coefficients for CRR curves using Eq. (6-4) 
Scenario c1 c2 c3 

FRS CTRX & CV-CDSS -2.578 4.881e-3 7.830e-7 

CRR based on Intact and Reconstituted 
Specimens  

-2.473 3.335e-3 1.509e-6 

 

6.2.6 Preliminary CRR vs Dr Model 

Given the functional form of CRR vs Dr as established based on an individual soil shown 
previously Eq. (6-4), we seek to establish a generic (multi-material) probabilistic CRR vs Dr 
model. A key modeling decision for development of the triggering prior was whether to produce 
separate models for CTX and CDSS conditions. Had this been done, as suggested by the 
results shown in Figure 6-5 and Figure 6-6, the CDSS model would produce relatively low 
resistances without appreciable increases at large DR. This feature was considered unrealistic. 
Thus, to develop the prior laboratory-based model, we broadened our analysis to include CRR 
values from both CTRX and CDSS tests on both intact and reconstituted specimens from 
multiple references as outlined in Section 6.2.1. 

The database of CRR values from the literature represents a range of reconstitution methods, 
initial loading conditions, liquefaction criteria, and other testing parameters as determined by the 
researchers for each individual study. To focus our prior model on the data that are most 
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relevant to this project, we screened the total dataset of CRR values using data that met the 
following criteria: 

● α ≤ 0.02 or anisotropic consolidation ratio (Kc) = 0.9-1.1 

● Reasonable liquefaction criteria assumed to be associated with triggering based on 
precedent in the literature: 
○ ru ≥ 0.95 

○ CTRX: εDA = 4 - 6%, εSA = 2 - 3% 
○ CDSS: 𝛾DA = 7 - 8%, 𝛾SA = 3.5 - 4% 

● FC ≤ 30% 

● Specimen reconstitution methods not involving tamping or compaction. 

We then regressed a CRR vs Dr relationship using a cubic polynomial [Eq. (6-4)] and the 
screened database of CRR values, with the results shown in Figure 6-13 and coefficients 
provided in the previously introduced Table 6-1 for comparison with FRS results. Also shown in 
Figure 6-13 are the binned means of the data with 95% confidence intervals to confirm that the 
cubic polynomial adequately captures the data. The regressed CRR vs Dr relationship is 
accompanied by dotted lines representing the mean +/- σln(CRR) where σln(CRR) is the standard 
deviation of the residuals of ln(CRR). Figure 6-14 shows the binned means of the residuals and 
the σln(CRR) against Dr. This figure indicates that the residuals are not sensitive to Dr. However, 
the uncertainty (i.e., σln(CRR)) does appear to increase as Dr increases. 

 
Figure 6-13 Summary of CRRfield vs Dr results from laboratory tests on intact and 

reconstituted specimens (using basic filters outlined in Section 6.2.6) and 
the median CRR curve proposed in this report [i.e., Eq. (6-4) with 
coefficients from row 2 of Table 6-1] compared to BI12 and BI16 
CRR curves 
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Figure 6-14 (a) model residuals computed as ln(CRRfield)–ln(CRRpredicted) vs Dr with 

binned mean values shown in orange; (b) standard deviation of model 
residuals, σln(CRR), vs Dr 

 

After developing this initial CRR vs Dr relationship, we identified the need to account for a 
non-uniform distribution of Dr values in our dataset that effects the results of model fitting. 
Figure 6-15 shows the distribution of Dr values in bins of [0-40%], (40-60%], (60-80%], and (80-
100%] {note that a square bracket is inclusive such that (40-60%] is equivalent to 40% < Dr <= 
60%}. The sampling bias reflects more laboratory tests performed between 40-80% Dr 
compared to Dr<40% and Dr>80%. In order to reduce the sampling bias, each data point is 
weighted by the inverse of the number of points within its Dr bin (and normalized by the mean 
weight). Figure 6-16 replots the dataset with coloration based on assigned weights. 
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Figure 6-15 Histogram of the triggering dataset Dr values with bin edges defined at 
[0,40], (40,60], (60,80], and (80,100]. The proportion of counts within each 
bin was applied as weight for regressing the triggering prior. 

 

Figure 6-16 Dataset used for determining triggering prior. Datapoints are weighted by 
the inverse proportion of points within histogram bins presented in 
Figure 6-16. 
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We then updated the initial CRR vs Dr model to address two issues: (i) account for the weights 
shown in Figure 6-15 and (ii) to stabilize the regression using a simpler linear model in 
transformed parameter spaces in which the data distribution is approximately normal and 
homoscedastic, i.e., with a consistent level of dispersion across the range of the independent 
variable. This model is referred to as a linear P[T|S] model subsequently. The transformation 
of the dataset was accomplished by applying a Box-Cox transformation (Box & Cox, 1964; 
Eq. 6-5) to both the Dr and CRR values, as follows, 

𝑥ො ൌ
𝑥ఒ െ 1
𝜆

 6-5 

where λ is taken as the value that transforms the dataset as close as possible to a normal 
distribution. The λ values for Dr and CRR (𝜆஽ೝ and 𝜆஼ோோ, respectively) were determined to be 
1.202 and -0.657, respectively, calculated using the SciPy Python package (Virtanen et al. 
2020). The dataset in the transformed 𝐶𝑅𝑅෣-𝐷௥෢ space is presented in Figure 6-17. 

 

Figure 6-17 Dataset for triggering model development in (a) Box-Cox transformed  
(𝑪𝑹𝑹෣ -𝑫𝑹෢ ) space and (b) CSR-DR space. The data points are colored by the 
weights in Figure 6-16. 

 

Following this transformation, the dataset was fit using a linear model: 

𝐶𝑅𝑅෣ ൌ 𝜁଴ ൅ 𝜁ଵ ∗ 𝐷ோ෢ ൅ 𝜀 ∗ 𝜎఍ 6-6 

where 𝜁଴, 𝜁ଵ, and 𝜎఍ are model coefficients to be regressed as described in the next section and 
𝜀 is the standard normal variate (zero mean and unit standard deviation). Alternatively, the 
equation can be rewritten in the untransformed space as: 
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6.2.7 P[T|S] Model Prior 

We performed Bayesian inference using the PyMC Python package (Wiecki et al. 2023) to 
determine prior distributions of the coefficients in Eq. (6-6). Bayesian inference was used 
instead of a typical least squares regression because of the advantages gained in determining 
distribution of the coefficients so that uncertainty can be quantified for later updates to the model 
in the form of posterior coefficient distributions (Section 6.3.2). An “uninformed” prior distribution 
was adopted for each coefficient from Eq. (6-6) using a normal distribution with mean of zero 
and standard deviation of ten. The weighted dataset (Figure 6-16) was used in the inference. 
Four Markov chains (Gagniuc 2017; Markov 2006) with 1000 samples drawn from each chain 
and the resulting distribution of parameters and drawn samples are presented in Figure 6-18. 
Note that each distribution seems homogeneous and stationary (there are no large drifts or 
other odd patterns) indicating a stable regression. 

The posterior distributions of the triggering model coefficients reflect uncertainty in how well the 
model represents the laboratory data. Additional uncertainty that is not reflected in the 
coefficient uncertainty is caused by (i) sample disturbance that creates uncertainty regarding 
applicability of laboratory data to field conditions and (ii) uncertainty in the correlation between 
qc1Ncs and Dr. For these reasons, we decided to increase the standard deviation of each model 
coefficient in the posterior laboratory-based triggering model by a factor of 4, and to use the 
results of this adjusted model as the prior triggering model in developing the manifestation 
model, as described later. To account for correlations between the three coefficients, the 
covariances were computed (Table 6-3). The covariance matrix was used to create multivariate 
normal distribution priors for updating the triggering model as described in Section 6.3. The 
correlation matrix (a transformation of the covariance matrix) is presented in Table 6-4 to 
present the correlation coefficients between the three PFT|S coefficients; note there is a strong 
negative correlation between 𝜁଴ and 𝜁ଵ and weak correlations between both the slope and 
intercept to 𝜎఍. 

The regressed model (shown in Figure 6-19) is linear and the error term, defined by 𝜎఍, is 
normally distributed within Box-Cox space (𝐶𝑆𝑅෢ ). The probability density for the regressed 
model, shown in Figure 6-20, is a normal distribution in Box-Cox space, but skewed in CSR 
space. The skewed distribution is similar in shape to a log-normal distribution; however, it is not 
identical because the Box-Cox transformation is not logarithmic. Instead, it can be called a “Box-
Cox normal” distribution. 
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Figure 6-18 Distribution of triggering model coefficients (left column) and sampling 
draws for each coefficient (right column). The four distributions with 
different line styles shown in the left column are the four Markov chains 
that are sampled. 

 

Table 6-2 Means and standard deviations for the coefficients in Eq. 6-6 taken from 
Bayesian inference  

Variable Value 

𝜇఍బ -7.43 

𝜎఍బ 0.196 

𝜇఍భ 0.0325 

𝜎఍భ 0.00141 

𝜇ఙഅ 0.994 

𝜎ఙഅ 0.0459 

 

Table 6-3 Covariance matrix of the three PFT|S coefficients after Bayesian inference 
sampling. Note the diagonals are squared standard deviations from 
Table 6-2.  

 ζ0 ζ1 σζ 
ζ0 3.844e-02 -2.597e-04 -6.792e-04 
ζ1 -2.597e-04 2.007e-06 5.106e-06 
σζ -6.792e-04 5.106e-06 2.102e-03 
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Table 6-4 Covariance matrix of the three PFT|S coefficients in the after Bayesian 
inference sampling  

 ζ0 ζ1 σζ 
ζ0 1 -0.935 -0.0755 
ζ1 -0.935 1 0.0786 
σζ -0.0755 0.0786 1 

 

 

Figure 6-19 Triggering model fit shown in (a) Box-Cox transformed space and (b) 
untransformed parameter space. Samples of the mean model are shown as 
light gray lines and the recommended mean and mean plus or minus one 
standard deviation are plotted as solid and dashed black lines, 
respectively. Orange line represents preliminary polynomial fit (Eq. 6-4). 
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Figure 6-20 Probability density of the regressed triggering model for DR = 80, 60, and 
40% and histograms of laboratory CRR data within േ 𝟏 of the target DR. 
Plotted in (a) Box-Cox transformed space and (b) CSR space. The 
distributions in CSR space can be described as “Box-Cox normal”. 

6.2.8 Magnitude Scaling Factor 

As discussed in Section 2.1.2, liquefaction triggering depends not only on the CSR but also on 
the number of loading cycles or duration of shaking. To account for the influence of the number 
of loading cycles on cyclic strength, CSR is typically adjusted using a MSF to compute an 
equivalent CSR for a reference M7.5 using Eq. (2-3). Historically, MSF has been derived from 
cyclic laboratory test results as: 

𝑀𝑆𝐹 ൌ ቆ
𝑁௘௤,ெ௪

𝑁௘௤,ெ௪଻.ହ
ቇ
ି௕
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where Neq,Mw and Neq,Mw7.5 are the equivalent number of cycles associated with M and M7.5, 
respectively, and b (herein called the b-value) represents the relationship between the number 
of cycles to liquefaction and CSR in log-log space. This MSF relationship comes from the 
general assumption that the log(CSR) vs log(N) relationship is linear. Estimates of Neq,Mw and 
Neq,Mw7.5 can be obtained from published correlations (e.g., Lasley et al., 2017). The b-value is 
often estimated from laboratory data by using a power law fit of the CSR versus N relationship 
as discussed in Section 6.2.2. A b-value can be estimated for a given soil using laboratory tests 
performed on specimens of that soil but would only be applicable for that soil. An alternative is 
to develop a generic b-value that is reasonably representative of many soils, thus the resulting 
MSF could be generally applied to soils that for various reasons cannot, or have not, been 
sampled and tested in the laboratory. This is a necessary approximation in our case history 
processing as discussed in Section 5.4.3. 
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However, there is no current consensus on the appropriate b-value to use for establishing the 
MSF relationship. Historically, b-values have been interpreted as being functions of M alone 
(i.e., independent of environmental factors such as soil state). Some studies recommend that 
the b-value increases with increasing Dr (e.g., Boulanger and Idriss, 2014, 2016), which results 
in a density-dependent MSF relationship. Subsequent studies have shown that the b-value vs Dr 
relationship is more ambiguous, and is potentially unnecessary (e.g., Ulmer et al., 2018; 2022b). 
Table 6-5 summarizes the recommended b-values from several published studies, which range 
from 0.178 to 0.417. We used the compiled datasets as outlined in Section 6.2.1 to select a 
recommended b-value for computing MSF and to highlight some trends in b-value vs. Dr, FC, 
and σ’v0.  

Table 6-5 Recommended b-values for computing MSF  

Reference Recommended b-value Alternative b-values 

Liu et al. (2001) 0.37 0.5 

Idriss & Boulanger (2008) 0.35 N/A 

Kishida and Tsai (2014) 0.35 (adopted from I&B08) 0.1-0.4 

Boulanger & Idriss (2014) 0.178 (Dr = 10%) 
0.200 (Dr = 44%) 

0.350 (Dr = 76.65%) 
0.417 (Dr = 90%) 

N/A 

Green et al. (2019) 0.34 N/A 

Ulmer et al. (2022) 0.28 0.20 

SMT 0.20 (σb =0.069) N/A 

 

Figures 6-21, 6-22 and 6-23 plot the trends of b-values with Dr, σ’v0, and FC, respectively. In 
general, there is no strong relationship between the b-values and Dr, FC, and σ’v0. However, the 
scatter in b-values is significant, particularly when no constraints are placed on the values of 
initial static shear stress ratio (i.e., 𝛼 = 𝜏s/σ’v0) and uncertainties in the b-value estimates (i.e., the 
standard error of the b-value, εb) are not used for screening purposes. Figure 6-24 shows the 
relationship between b-value and Dr after restricting 𝛼 to be approximately 0 and εb to be less 
than 0.15. In general, the data supports an assumption that a b-value of approximately 0.20, 
with a standard deviation σb of 0.069, is representative of many soil types, regardless of Dr, FC, 
and σ’v0. This value is also aligned with one of the recommended b-values from Ulmer et al. 
(2022b) based on an interpretation of constant dissipated energy using published modulus 
reduction and damping relationships. Therefore, the SMT elected to use a constant b-value of 
0.20 combined with the Lasley et al. (2017) Neq relationship to compute MSF as shown below 
(see also Section 5.4.3). 

ln൫𝑁௘௤൯ ൌ 0.4605 െ 0.4082 lnሺ𝑎௠௔௫ሻ ൅ 0.2332𝑀௪  6-9 
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To investigate whether the lack of Dr-dependence and lack of σ’v0-dependence also applies to 
individual soils, we looked for these dependencies using the FRS data as shown in Figure 6-25. 
Note that the b-value for FRS is generally insensitive to both Dr and σ’v0, with the exception of 
the Dr = 60% group which has a slightly different b-value for the highest σ’v0 tested within that Dr 
group. Note also that the b-values from CTRX tests (0.09-0.12) are different than those from 
CDSS tests (0.20-0.22). Such comparisons are also discussed for other soil types by Ulmer et 
al. (2018), showing that Dr-dependencies exist for some soils, but not all. In some cases, the 
apparent Dr-dependency in a given soil disappears after ensuring that the log(CSR) vs log(N) 
relationship is indeed linear, as is generally assumed. Given this ambiguity, more complex, 
material-specific models for b-values could be considered in a forward analysis. 

 

Figure 6-21 Computed b-values vs. Dr using the SMT’s compiled dataset of laboratory 
data. Orange shaded area represents +/- the standard deviation of the 
b-values for each Dr bin. The gray line represents the implied b-values 
associated with the BI14 MSF relationship. 

 

Figure 6-22 Computed b-values vs. σ’v0 using the SMT’s compiled dataset of laboratory 
data. Orange shaded area represents +/- the standard deviation of the 
b-values for each σ’v0 bin. 
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Figure 6-23 Computed b-values vs. FC using the SMT’s compiled dataset of laboratory 
data. Orange shaded area represents +/- the standard deviation of the 
b-values for each FC bin. 
 

 

Figure 6-24 Computed b-values vs. Dr using the SMT’s compiled dataset of laboratory 
data with some filters applied (σ’v0 approximately 1 atm, 𝛼 = 0, FC less than 
or equal to 10%, and standard error of b-value less than or equal to 0.15). 
Orange shaded area represents +/- the standard deviation of the b-values 
for each Dr bin. The gray line represents the implied b-values associated 
with the BI14 MSF relationship. 
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Figure 6-25 Computed b-values vs. σ’v0 for a range of Dr using FRS data 

(water-pluviated specimens) 

6.3 Probability of Manifestation P[M] Model 

The model formulation applied in this research includes manifestation given triggering but 
does not include manifestation given no triggering nor manifestation given no susceptibility 
(Section 4.4.2). Potential contributors to surface manifestations of ground failure aside from 
liquefaction triggering were not included in the final model because: 

 Versions of models that include effects such as substantial strains related to cyclic 
softening of clays did not improve predictive power significantly compared to models that 
neglected such effects. 

 Members of the NGL Advisory Board voiced skepticism about manifestation in the 
absence of triggering. 

 By not including these other mechanisms, the resulting model is simpler to adopt for end 
users. 

The model that only considers manifestation caused by triggering therefore involves three 
models that each have coefficients that can be updated: susceptibility, triggering given 
susceptibility, and manifestation given triggering. The formulation in Eq. (4-10) can be expanded 
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to show the susceptibility, triggering, and manifestation models that go into the profile 
manifestation prediction as follows: 

𝑃ሾ𝑀௉ሿ ൌ 1 െෑቀ1 െ 𝑃𝐹ெ|்௟
𝑃𝐹்|ௌ௟

𝑃𝐹ௌ௟𝐾ௌ௔௧௟ቁ
௧೗/௧೎

ேಽ

௟ୀଵ
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Variable tc is the characteristic thickness as introduced in Section 4.4.2. This variable could 
potentially be treated as a model coefficient in the Bayesian inference, but we found that it 
causes instability in the results. Several tc values ranging from 0.5m to 5m were tested in the 
regression, and the likelihood, L, was maximized at tc ~ 2m. The value was thereafter fixed 
at 2m. 

The development of the manifestation model is presented in a step-by-step approach in the 
following subsections to clarify the model development process. First, a simple manifestation 
model conditioned on one parameter is presented. That relationship was developed only 
allowing the manifestation model (PFM|T) priors to update to posteriors while fixing the triggering 
(PFT|S) and susceptibility (PFS) priors. Next, both the manifestation and triggering priors were 
updated simultaneously within the single parameter model. Finally, other manifestation model 
parameters were explored, and a two-parameter version of the manifestation model was 
selected as the recommended model. 

6.3.1 PFM|T Inference with Single Parameter Model 

The modeling began with a one-dimensional logistic function in which the single independent 
variable was the depth to the top of the potentially liquefiable layer ztop. The conditional 
probability factor is then described by 

𝑃𝐹ெ|் ൌ
1

1 ൅ exp ቀെ൫𝛽଴ ൅ 𝛽ଵ ∙ 𝑧௧௢௣൯ቁ
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As discussed in Section 6.2.7, the coefficients updated through Bayesian inference needed to 
be assigned prior distributions. It was not desired to impose any prior belief about the 
relationships for manifestation given triggering, therefore β0 and β1 were initialized as having 
normal distributions with mean (μ) = 0 and standard deviation (σ) = 1000 (Gelman 2006 
recommend a normal distribution centered at zero with a standard deviation set to a very high 
value for a noninformative prior distribution). The other models, PFT|S and PFS, are given the 
mean prior model coefficients presented in Sections 6.1 and 6.2 but are not given the 
opportunity to update so that they remain fixed while the PFM|T coefficients update. 

The model was developed using a dataset reduced from the full dataset described in Section 5 
to a subset that only contained CPT profiles with total lengths of at least 15m. This filter was 
applied because shorter profiles were observed to cause significantly reduced model 
performance since the short profiles did not represent all of the soil layers that could contribute 
to surface manifestation. The threshold of 15m was selected based on a series of tests in which 
different depth thresholds were used and manifestation models developed. Review of the model 
coefficients and performance produced the conclusion that 15m gave a practical balance 
between the size of the dataset and the performance of the model. Application of the >15m 
threshold reduces the case history dataset to 204 profiles that include 5091 soil layers. Each 



 

6-29 

case history is also weighted to account for cases in which multiple CPTs are associated with a 
single observation, as described in Section 5.1. 

The results of the PFM|T model coefficient inference are presented in Figure 6-26. For this and 
the following inferences, a local MAP estimate (i.e., mode of the a posteriori distribution) 
(Bassett and Deride 2016) is evaluated to approximate the mean for each coefficient rather than 
sampling which would produce posterior distributions of each coefficient. The MAP provides a 
point estimate using the dataset and the priors and was used during exploratory analyses (and 
for this simplified illustrative model) for computational efficiency. The final recommended model 
will present the results of sampling the full distributions of the model coefficients. 

 

Figure 6-26 Computed b-values vs. σ’v0 for a range of Dr using FRS data 
(water-pluviated specimens) 

 

The MAP estimates for β0 and β1 are 1.279 and -0.281, respectively. The negative coefficient on 
β1 ensures that PFM|T decreases as the depth of a layer increases. It is also noted that PFM|T 
never reaches a value of 1, even at ztop=0 it only reaches ~0.8. 

The probability factor model (Eq. 6-12) only produces an equivalent probability P[ML|TL] for a 
layer of thickness tc. Recall that P[ML] is influenced by the layer thickness (Section 4.4.2), so 
while a layer with t=tc produces P[M|T]=0.8, a layer with t somewhat larger than tc could produce 
P[M|T]~1. Therefore, the model is predicting that a layer at the ground surface that has 
liquefaction triggered will have an ~80% chance of manifesting if it is 2m thick. If t < 2m, P[M] 
will decrease and if t > 2m, P[M] will increase. This is also intuitive: a thin layer, even if it is 
shallow, will be less likely to manifest surface evidence if liquefaction is triggered compared to a 
thick layer. 

To track performance of the regressed models, a cost function (J) is introduced that is very 
similar to the likelihood function presented in Eq. 4-12 except that it incorporates a negative sign 
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so that values are positive. As model performance improves, the value of the cost function 
decreases, with 0 representing a perfect model. 

𝐽 ൌ  െ
1
𝑁௉
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When the model is run on the training dataset using the above MAP estimates of the PFM|T 
coefficients, the cost is J=0.566. 

6.3.2 Single Parameter PFM|T Model with PFT|S Inference 

Whereas in the previous section the triggering and susceptibility prior models were fixed 
(not adjusted by Bayesian regression), in this section the Bayesian inference is allowed to 
simultaneously update both the PFM|T and PFT|S coefficients while the PFS priors remain fixed. 
The PFM|T priors were again set at μ=0 and σ=1000. The PFT|S priors were set using the μ 
inferred from the laboratory test dataset in Section 6.2 (Table 6-2) while the covariance 
coefficients were increased (multiplied by four) from those directly inferred from the laboratory-
based data to incorporate a larger level of uncertainty. As discussed in Section 6.2.7, the σ 
values determined from the laboratory test dataset represent uncertainty with laboratory tests, 
but do not incorporate additional uncertainty that comes from a lack of knowledge of how 
representative of field conditions these specimens are. This is a somewhat arbitrary 
modification, but the sensitivity to inference results is explored in Section 6.4.4 where a 
multitude of different σ multipliers are tested. The 4x multiplier was deemed appropriate to 
maintain confidence in the laboratory-based triggering prior while accounting for uncertainty for 
the laboratory tests representing field conditions. 

Bayesian inference is performed using the case history dataset and MAP estimates of the PFM|T 
and PFT|S coefficients were evaluated, with the results shown in Figure 6-27 and Figure 6-28. 
The PFM|T posterior (Figure 6-27) remains very similar to the posterior inferred in Section 6.3.1 
but the PFT|S posterior (Figure 6-28) changes significantly, reducing the CSR required to trigger 
liquefaction at high Dr/qc1Ncs. These posterior models produce J=0.558 which is only a small 
reduction in cost (small increase in model predictive performance) compared to the model that 
fixed the PFT|S prior and inferred the PFM|T posterior. 

The shift in the PFT|S posterior is potentially important and warrants discussion. While the 
Bayesian inference shifts down the triggering relationship, this produces only marginal 
improvement, suggesting that it is only weakly supported by the data. To more carefully 
evaluate this effect, the shift is re-examined using different assumptions regarding the PFM|T 
conditioning variables and updating of the PFS in subsequent sections. 
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Figure 6-27 PFM|T function conditioned on ztop based on MAP estimates of model 
coefficients in which PFT|S was also updated. The PFS priors were fixed. 

 

Figure 6-28 PFT|S function conditioned on qc1Ncs based on MAP estimates of model 
coefficients. The PFS priors were fixed. 

 

6.3.3 Single Parameter PFM|T Model with PFT|S and PFS Inference 

In this section the Bayesian inference was extended to include the susceptibility prior, which 
updated the posterior PFS model. The two PFS model coefficients, xm and σm, had prior μ and σ 
values that were described in Section 6.1; those coefficients’ priors were assumed to be 
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normally distributed. The Bayesian inference updated these along with the PFM|T and PFT|S 
coefficient priors. The inference was performed using the same dataset as described previously 
(Section 6.3.1). MAP estimates of coefficients were obtained and the results are shown in 
Figure 6-29, Figure 6-30, and Figure 6-31. 

The PFM|T updated posterior was generally similar to the previous two posteriors; however, it 
reached higher probabilities at shallow depths. The PFT|S posterior shifted to lower CSR at high 
DR again, but to a lesser extent, indicating that some of the change may have actually been due 
to susceptibility effects rather than triggering. The PFS posterior decreased across the entire 
range of Ic values, meaning that the susceptibility prior was not adequately decreasing P[M] for 
fine-grained soils with moderate to high Ic. This inference produced J=0.515, which is a 
significant improvement compared to the prior two iterations, indicating that the susceptibility 
function update is important for improving manifestation prediction. 

 

Figure 6-29 PFM|T function conditioned on ztop based on MAP estimates of model 
coefficients in which PFT|S and PFS were also updated 
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Figure 6-30 PFT|S function conditioned on qc1Ncs based on MAP estimates of model 
coefficients. The PFS priors were also adjusted. 

 

 

Figure 6-31 PFS function conditioned on Ic based on MAP estimates of model 
coefficients 
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6.3.4 P[M] Inference Using Multi-Parameter PFM|T Models 

Up to this point, the manifestation given triggering function has only included ztop as a predictive 
feature but other features and combinations of multiple features could help further improve 
manifestation prediction. Additional layer attributes that could potentially improve the PFM|T 
function are listed in Table 4-2. Soil layer thickness, t, is not listed in Table 4-2 because it is 
already included in the t/tc exponent. MAP estimates that describe the posterior PFM|T, PFT|S, 
and PFS coefficients were obtained for all parameter combinations; a total of 127 combinations 
of potential predictive features were investigated.  

Several feature combinations in the PFM|T function produced physically unrealistic trends 
(i.e., PFM|T increases as ztop increases or PFM|T decreases as CSR increases). For each feature, 
a sign for its multiplying coefficient can be anticipated, representing the physically expected 
trend (i.e., βi for ztop should be a negative number and βi for CSR should be a positive number). 
While the Bayesian inferences were not constrained to conform with the expected coefficient 
signs, any model with at least one coefficient opposite to the anticipated sign was discarded and 
not listed in Table 6-6. Of the 127 possible PFM|T combinations, 87 were rejected using this 
process. The 40 remaining models are listed in Table 6-6. The table is sorted first by ascending 
number of features, and then by ascending J. Note that J generally decreases as the number of 
features increases; this trend is shown in Figure 6-32. 

Table 6-6 Accepted P[MP] models with MAP estimated coefficients  

PFM|T Features 
PFM|T, coefficients  

(β0, β1, …, βi) 
PFT|S coefficients  

(ζ0, ζ1, σ) 
PFS coefficients 

(σm, xm) 
J 

ztop -1.3429, -2.8025 -7.004, 0.0285, 0.9377 0.1054, 2.4093 0.5148 

CR,l -1.6795, -3.4581 -6.9896, 0.0287, 0.9597 0.1068, 2.5014 0.5243 

σv
’ -0.8982, -1.1557 -7.0584, 0.0274, 0.9549 0.1041, 2.4394 0.5512 

LD,l -1.7139, 1.1218 -7.5775, 0.0258, 1.0229 0.114, 2.566 0.5557 

Ic -2.4065, -3.5026 -7.3687, 0.0331, 0.99,  0.115, 2.6414 0.5658 

CSRM7.5,1atm -1.2846, 0.0276 -7.2739, 0.0249, 0.9465 0.1063, 2.4554 0.6004 

ztop, LD,l -1.9695, -2.4715, 1.2552 -7.4491, 0.0301, 1.0108 0.1097, 2.5266 0.4907 

LD,l, σv
’ -1.5557, 1.3474, -1.5057 -7.5004, 0.0296, 1.0285 0.1113, 2.5599 0.499 

CR,l, LD,l -1.9662, -2.9421, 0.9195 -7.2948, 0.0299, 1.0246 0.1099, 2.5807 0.5051 

Ic, ztop -2.1977, -2.6584, -2.0155 -7.3037, 0.0328, 0.9408 0.1148, 2.6223 0.5072 

ztop, CR,l -1.556, -1.4489, -1.9446 -6.9953, 0.0286, 0.9485 0.1057, 2.4469 0.5154 

Ic, CR,l -2.0743, -1.8466, -2.6926 -7.1716, 0.0325, 0.9524 0.1137, 2.6292 0.517 

CSRM7.5,1atm, CR,l -1.6998, 0.1085, -3.4694 -7.1344, 0.0294, 0.9643 0.1064, 2.5005 0.5241 

Ic, σv
’ -1.8673, -2.7136, -0.9504 -7.3221, 0.0333, 0.9529 0.1147, 2.6313 0.533 

Ic, LD,l -2.2372, -2.1159, 0.8318 -7.5346, 0.0317, 1.0475 0.1151, 2.6446 0.5422 

CSRM7.5,1atm, LD,l 
-1.7140e+00, 1.3000e-03, 
1.1217e+00 

-7.5789, 0.0258, 1.0229 0.114, 2.5659 0.5557 

CSRM7.5,1atm, Ic -2.4201, 0.0548, -3.5239 -7.4249, 0.0335, 0.9932 0.1149, 2.6416 0.5656 

qc1N, Ic -2.435, -0.3291, -3.4513 -7.3235, 0.0324, 0.9863 0.1151, 2.6412 0.5659 

Ic, ztop, LD,l 
-2.3693, -1.6522, -2.2252, 
1.0134 

-7.4738, 0.0323, 0.9968 0.1147, 2.6284 0.4822 

Ic, LD,l, σv
’ 

-1.9027, -1.3049, 1.1658,  
-1.4059 

-7.4995, 0.0318, 1.0223 0.1145, 2.6313 0.4921 

CR,l, LD,l, σv
’ 

-1.6673, -0.8586, 1.2296,  
-1.1256 

-7.4425, 0.0298, 1.0274 0.1108 2.5661 0.4982 
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PFM|T Features 
PFM|T, coefficients  

(β0, β1, …, βi) 
PFT|S coefficients  

(ζ0, ζ1, σ) 
PFS coefficients 

(σm, xm) 
J 

CSRM7.5,1atm, LD,l, 
σv

’ 
-1.5559e+00, 5.0000e-04, 
1.3481e+00, -1.5064e+00 

-7.5014, 0.0296, 1.0285 0.1113, 2.5599 0.499 

Ic, CR,l, LD,l 
-2.143, -1.0562, -2.6921, 
0.7581 

-7.3044, 0.0319, 1.0139 0.113, 2.6335 0.5016 

CSRM7.5,1atm, CR,l, 
LD,l 

-1.9755, 0.0935, -2.9593, 
0.9174 

-7.3971, 0.0304, 1.0276 0.1096, 2.5778 0.5045 

qc1N, Ic, ztop 
-2.3555, -0.6257, -2.7786,  
-1.93,  

-7.2198, 0.0315, 0.9318 0.115, 2.6218 0.5063 

Ic, ztop, CR,l 
-2.1904, -2.5977, -1.9204,  
-0.1612 

-7.2935, 0.0327, 0.9414 0.1147, 2.6217 0.5071 

CSRM7.5,1atm, ztop, 
CR,l 

-1.5865, 0.0727, -1.3552,  
-2.0807 

-7.0821, 0.029, 0.9527 0.1054, 2.4501 0.5159 

CSRM7.5,1atm, Ic, 
CR,l 

-2.0901, 0.1001, -1.8697,  
-2.6906 

-7.2762, 0.0331, 0.9568 0.1136, 2.629  0.5164 

Ic, CR,l, σv
’ 

-1.6799, -1.493, -1.9084,  
-0.0509 

-6.8722, 0.03, 0.9195 0.1136, 2.6303 0.5206 

qc1N, Ic, σv
’ 

-2.0166, -0.6511, -2.7446,  
-0.9263 

-7.2146, 0.0315, 0.9467 0.1149, 2.6293 0.5323 

CSRM7.5,1atm, Ic, 
σv

’ 
-1.8707, 0.015, -2.7199,  
-0.9498 

-7.3363, 0.0334, 0.9537 0.1147, 2.6312 0.533 

qc1N, Ic, LD,l 
-2.2913, -0.3738, -2.1058, 
0.8085 

-7.4667, 0.0302, 1.0355 0.1155, 2.6453 0.5416 

CSRM7.5,1atm, Ic, 
LD,l 

-2.2551, 0.0465, -2.1721, 
0.8291 

-7.5802, 0.0321, 1.0484 0.1151, 2.6446 0.542 

qc1N, CSRM7.5,1atm, 
Ic 

-2.6119, -1.4734, 0.1968,  
-3.4726 

-7.126, 0.0289, 0.9553 0.119, 2.6262 0.5621 

CSRM7.5,1atm, Ic, 
ztop, LD,l 

-2.3816, 0.0369, -1.6528,  
-2.2449, 1.0197 

-7.5292, 0.0326, 0.9972 0.1147, 2.6271 0.4821 

CSRM7.5,1atm, Ic, 
LD,l, σv

’ 
-1.9096, 0.0308, -1.3145, 
1.1663, -1.4064 

-7.5305, 0.0319, 1.0231 0.1144, 2.6312 0.4921 

CSRM7.5,1atm, CR,l, 
LD,l, σv

’ 
-1.6714, 0.043, -0.8765, 
1.2254, -1.1205 

-7.4869, 0.03, 1.029  0.1106, 2.5646 0.4981 

CSRM7.5,1atm, Ic, 
CR,l, LD,l 

-2.1604, 0.1102, -1.0864,  
-2.6979, 0.7595 

-7.4149, 0.0325, 1.0184 0.1129, 2.6323 0.5007 

qc1N, CSRM7.5,1atm, 
Ic, ztop 

-2.4281, -0.8623, 0.0664,  
-2.8546, -1.8899 

-7.253, 0.0315, 0.9311 0.1151, 2.6217 0.5062 

qc1N, CSRM7.5,1atm, 
Ic, ztop, CR,l 

-2.4258, -0.8583, 0.0674,  
-2.834, -1.8717, -0.0398 

-7.2538, 0.0315, 0.9328 0.115, 2.6214 0.5062 
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Figure 6-32 Cost (J) of accepted P[MP] models with MAP estimated coefficients 
compared with number of features in the PFM|T function. The lowest J model 
for each number of feature group is highlighted red and the feature(s) in 
that model’s PFM|T function is printed next to it. 

 

The best performing PFM|T model with a single independent variable used ztop (the model 
presented in Sections 6.3.1-6.3.3). The ztop parameter also appears in each of the top 
performing multi-variable models. Based on these results, ztop is considered to be the single 
most important layer parameter for analysis of profile manifestation given triggering. The LD,l 
parameter also frequently appears in top performing models, indicating it is a useful predictor. 
However, it incorporates FSL in its calculation and so requires use of a prior liquefaction model 
for CRR. This complicates the analyses because triggering is incorporated into multiple analysis 
phases, which may introduce correlation issues (if the same triggering model is used in PFM|T 
and PFT|S) or incompatibility issues (if different triggering models are used in PFM|T and PFT|S). 
For this reason, LD,l-conditioned models were not selected. Ultimately, the two-parameter model 
that includes ztop and Ic was selected as the recommended model. Models with three 
parameters did not significantly reduce the cost function relative to the selected two-parameter 
model. 

6.3.5 Recommended P[M] Model 

The recommended model is Eq. (6-11) with tc=2m and the PFM|T, PFT|S, and PFS, functions 
presented in Eq. 6-14 through Eq. 6-20 and visualized in Figure 6-33 through Figure 6-38. This 
model combines ztop and Ic in the manifestation given triggering model. The reasoning behind 
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including Ic is that it serves as a proxy of hydraulic conductivity and erodibility of a layer. A soil 
with low hydraulic conductivity could generate large excess water pressures but not be able to 
expel water quickly enough to contribute to surface manifestation. This is reflected in 
Figure 6-33 by reductions of PFM|T as Ic increases, with probability factors approaching zero for 
Ic > 2.5. Similarly, Figure 6-34 shows how fixed values of PFM|T (0.16, 0.5, 0.84) vary with ztop 
and Ic, illustrating the decay of manifestation likelihood as depth increases or Ic increases. This 
model produces J=0.508, which is notably reduced from the 0.515 value for the single 
parameter model (Section 6.3.3). 

By including Ic in the PFM|T function with a very weak prior, the model recovers a strong 
dependence on Ic in the manifestation component (Figure 6-33 and Figure 6-34) and the 
susceptibility posterior is very similar to the prior (Figure 6-37). This contrasts with the results in 
Section 6.3.3 when Ic was not considered in the manifestation model; by allowing Ic to affect 
manifestation, adjustments of the susceptibility prior are no longer suggested. As shown in 
Figure 6-35, the triggering model posterior shifts up modestly relative to the prior for this model, 
which is in contrast to no change (Section 6.3.3) or a downward shift (Section 6.3.2). The 
upward shift with the present model makes the most physical sense, due to the unaccounted for 
effects of sample disturbance in the prior, which would be expected to increase resistance for a 
given Dr. However, it is worthwhile to acknowledge that the improvement in fit produced by 
these shifts in the triggering model is small. The PFT|S model is visualized with continuous plots 
against ztop for bands of Ic in Figure 6-36. 

Because this is the recommended model, in this section we provide not only MAP estimates of 
coefficients, but also sample parameter distributions with four Markov chains (Section 4.4.3), 
each composed of 1000 samples. Recommended coefficients are taken as the mean across the 
four sampling chains, and thus are not exactly equal to the MAP estimates in Table 6-6, 
although they are very similar. The distributions of the posterior coefficients are shown in 
Figure 6-38. 
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Figure 6-33 PFM|T function conditioned on ztop and Ic based on MAP estimates of model 
coefficients in which PFT|S and PFS were also updated 

 

Figure 6-34 Values of ztop and Ic that produce probability factors of 0.16, 0.5, and 0.84. 
As ztop increases and Ic increases, the probability of manifestation given 
triggering decreases. 
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Figure 6-35 Recommended PFT|S function conditioned on qc1Ncs based on MAP 
estimates of model coefficients. The PFS priors were also adjusted. 
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Figure 6-36 PFT|S values for the recommended P[MP] model for varying qc1Ncs and 
CSRM7.5,1atm values 
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Figure 6-37 PFS function from recommended model conditioned on Ic based on MAP 
estimates of model coefficients 
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Figure 6-38 Posterior distributions of the coefficients updated with Bayesian inference 
for the recommended P[M] model. The first three coefficients are for PFM|T, 
the next three are for PFT|S, and the final two are for PFS. Note the PFM|T 
coefficients are in normalized Ic-ztop space and therefore do not match the 
unnormalized coefficients in Eq. 6-14. 
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6.3.6 P[M] Discussion 

The manifestation model presented in Section 6.3.5 operates on an entire profile rather than a 
critical layer, which is a significant break from past practice in liquefaction model development. 
As noted in Chapter 3, while legacy models are generally considered to predict triggering, 
because they are based on case histories of surface manifestation (or lack thereof), the 
manifestation effects considered in this chapter must affect those models to some extent. For 
this reason, I compare here the predicted probabilities of profile manifestation with predictions 
from a legacy triggering model.  

There are several metrics in statistics for quantifying the predictive accuracy of a model. The 
recommended model produces a probability of observable surface manifestation of liquefaction, 
but the physical outcome is always a binary outcome: no manifestation (yobs=0) or manifestation 
(yobs=1). The P[MP] value can be categorized as either a yes (ypred=1) or no (ypred=0) prediction if 
it is above or below a threshold probability. An obvious threshold probability to use would be 
0.5, and a confusion matrix using that threshold with the dataset that the model was trained on 
is presented in Figure 6-39. A confusion matrix shows the proportion of correctly and incorrectly 
predicted “yes” and “no” cases for binary outcomes; there are four categories: true positives 
(TP) are correctly predicted “yes” cases, false positives (FP) are incorrectly predicted “no” 
cases, true negatives (TN) are correctly predicted “no” cases, and false negatives (FN) are 
incorrectly predicted “yes” cases. The percentages shown are the true positive 
rate(TPR=TP/(TP+FN)), false positive rate (FPR=FP/(FP+TN)), false negative rate 
(FNR=FN/(TP+FN)), and true negative rate (TNR=TN/(FP+TN)) Both the TP and TN categories 
have more cases than their FN and FP counterparts, indicated by the TPR and TNR 
percentages higher than 50%. If the model were random, the TPR, TNR, FPR, and FNR values 
would each be approximately 50% and if the model was able to perfectly predict the outcome for 
every case, then it would show TPR = TNR = 100% and FPR = FNR = 0%. Figure 6-39 also 
presents several statistical metrics and their definitions including accuracy, precision, recall, and 
F1 score. 
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Figure 6-39 Confusion matrix using a P[MP] threshold = 0.5 for model training dataset 
 

Instead of looking at predictions based on one P[MP] threshold, the probability threshold for 
assigning manifestation to a site can be varied from 0 to 1 and the TPR and FPR calculated for 
each probability threshold to create a ROC curve as shown in Figure 6-40. As the threshold 
increases from 0 to 1, the TPR and FPR decrease from 100% to 0% and there is a threshold 
that balances the two values relative to each other called the OOP, defined as the point that 
minimizes FPR + (1 – TPR) (Figure 6-41). For this dataset, the OOP=0.51, and the confusion 
matrix using the OOP as the P[MP] threshold is displayed in Figure 6-42. The slight change from 
0.5 to 0.51 in the threshold changes one TP to a FN and three FPs to TNs, meaning that there 
were a total of four case histories with P[MP] between 0.5 and 0.51. 
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Figure 6-40 ROC curve for the model training dataset. The OOP is shown as the red 
“x”, and the AUC is printed in the legend. 
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Figure 6-41 Trend of TPR and FPR with threshold probabilities and identification of 
the OOP 
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Figure 6-42 Confusion matrix using a P[MP] threshold = OOP = 0.51 for model training 
dataset 

 

A model is expected to perform well on the dataset it is trained on, therefore it is useful to see 
how the model applies to a test dataset that is independent of the training dataset. A dataset of 
CPTs and surface manifestation of liquefaction observations from the Canterbury earthquake 
sequences was published in DesignSafe (Geyin et al. 2020b). All the CPTs with length greater 
than 15m were obtained from this dataset and used with the recommended model to predict 
P[MP]. The resulting ROC curve and confusion matrix are presented in Figure 6-43 and  
Figure 6-44. All the statistical metrics for the Canterbury liquefaction dataset are very similar to 
the model training dataset even though it is a much larger number of case histories exemplifying 
that the model is not overfit to the training dataset. 
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Figure 6-43.  ROC curve for the Canterbury liquefaction dataset. The OOP is shown as 
the red “x”, and the AUC is printed in the legend. 
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Figure 6-44.  Confusion matrix using a P[MP] threshold = 0.5 for the Canterbury 
liquefaction dataset. 

 

6.3.7 Recommended P[T|S] Model and its Epistemic Uncertainty 

We anticipate that applications of the P[T|S] models developed in this report will be of two 
types: (1) applications for which the desired end product is a prediction of manifestation and 
(2) applications for which only P[T] is of interest (i.e., the manifestation components of the 
model will not be used). For the first application type, the P[T|S] model that should be used is 
the posterior model associated with the manifestation model (details in Section 6.3.5). Our 
recommendation for the second application type is the subject of the remainder of this section.  

The second type of application would presumably be used to assess whether triggering will 
occur at a site. However, we contend that a triggering analysis by itself should not be used to 
make mitigation decisions. It is quite possible that layers will trigger without causing any adverse 
consequences to infrastructure, and this can only properly be assessed using a manifestation 
model. The manifestation models presented in this report pertain to surface evidence in the form 
of ground cracks, sand boils, etc. under essentially free-field conditions (no large driving static 
shear stresses). Separate manifestation models may be required for different conditions, 
especially those involving large overburden or shear stresses (e.g., settlement of a shallow 
foundation, end bearing at the tip of a deep foundation, slope instability of dams, etc.).  
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We considered two alternative recommendations when P[T|S] is the terminal model result that is 
desired (application 2). The first alternative is to use the posterior P[T|S] associated with the 
preferred P[ML] model, which is the model conditioned on ztop and Ic. The rationale for selecting 
this alternative is that the posterior distribution is a modification of the laboratory-based prior 
that is constrained by case history data, and as such overcomes the well-known limitations of a 
solely laboratory-based model (i.e., sample disturbance effects, fabric effects, etc.). The second 
alternative is to use the P[T|S] prior, which is based on laboratory data (Section 6.2.7). The 
rationale for considering this alternative is that different manifestation models (i.e., those 
summarized in Table 6-6) produce different P[T|S] posterior distributions, as shown in  
Figure 6-45a, some of which are above the prior and some of which are below. Three posterior 
distributions are highlighted in Figure 6-45a, which are associated with manifestation models 
conditioned on ztop only, ztop and Ic, and ztop, Ic, and qc1ncs. We consider these three models to be 
the most likely models that would be used, and they too have posteriors below, above, and 
nearly coincident with the laboratory prior. If future work produces a different manifestation 
model, another posterior P[T|S] would be produced. Given these variations, one approach is 
using a stable central model for P[T|S], which is provided by the laboratory prior model.  

Given the current stage of model development, we prefer the second alternative, but also 
recommend that epistemic uncertainty in the model be considered. Epistemic uncertainties are 
described below, but the recommended central branch P[T|S] model when P[T] of a single layer 
is desired (i.e., triggering analysis only) is to compute P[T] as PFT|S multiplied by PFS where 
PFT|S is defined using the same logistic functional form as Eq. (6-15) but uses the lab-based 
coefficients given in Table 6-2. The equations to compute P[T] are summarized below in  
Eq. (6-21) through Eq. (6-27).  
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Figure 6-45.  Uncertainty in posterior triggering relationships (a) across the possible 
manifestation models and (b) within the recommended model 
(distributions presented in Figure 6-38). The mean of the samples in (b) is 
the recommended model as presented in Section 6.3.5 for applications in 
which manifestation probabilities are to be predicted (black curve), 
whereas the prior model (red curve) is the recommended central model 
when the terminal analysis result is the probability of triggering. 

 

To characterize model uncertainty in P[T|S], we consider the range of posterior distributions 
provided by Bayesian inference. Two components of model uncertainty can be considered. First 
is within-model uncertainty, as illustrated in Figure 6-45b, which shows 4000 sampled PFT|S = 
0.5 curves within the distribution of ζ0, and ζ1 for the recommended manifestation model (i.e., 
distributions presented in Figure 6-38). There are also model uncertainties related to which set 
of parameters is appropriate for the manifestation model, as shown in Figure 6-45a and 
described previously. These two elements, intra- and inter-model uncertainty, can both be 
considered to represent epistemic uncertainties in the triggering model, but the inter-model 
uncertainty is considered to be the best representation of uncertainty in the central branch 
triggering model.  

6.4 Sensitivity Analyses 

The proposed P[MP] model is conditioned on several variables and was derived using prior 
models for susceptibility and triggering. In this section, sensitivity analyses were performed to 
demonstrate variations of predicted outcomes from the recommended model from changes of 
input parameters (Section 6.4.1). Suites of alternative models are also derived using different 
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susceptibility and triggering priors, to investigate the relative impacts of the Bayesian inference 
of the data vs. the prior formulation on the characteristics of the posterior (Sections 6.4.2-6.4.3).  

6.4.1 Sensitivity to Recommended Model Parameters 

To compare the proposed P[MP] model to legacy models and understand its sensitivity to model 
parameters, a reference CSR, CSRref, was computed for a target P[ML], reference depth (ztop), 
reference Ic, and reference t value for a given qc1Ncs. The computed value of P[ML] was taken as 
equivalent to the profile manifestation P[MP], which can be visualized as a profile composed 
entirely of non-susceptible material (PFS = 0) except for a single layer with properties defined by 
the reference conditions (Figure 6-46). The reference properties of the soil can be adjusted to 
examine the effects on P[MP] with changing layer conditions.  

 

Figure 6-46.  Example of profiles with different reference layer geometries that are used 
to evaluate P[MP] sensitivity to model parameters: ztop, t, Ic. (a) is a relatively 
shallow and thin layer, (b) is a relatively shallow and thick layer, and (c) is a 
relatively deep and thin layer. 
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For a reference condition with a shallow depth, low Ic, and P[MP]=0.16 or 0.5, CSRref was 
computed for a range of qc1Ncs values and shown relative to the PFT|S=0.16 and 0.5 curves in 
Figure 6-47. The CSRref curve is located above and to the left of the triggering curve, meaning 
that for a given tip resistance a higher CSR is needed for manifestation than for triggering. The 
difference is modest at low penetration resistances but significant for stiffer soils.  

Figure 6-48 to Figure 6-50 show sensitivities of CSRref – qc1Ncs curves to variations in ztop, Ic, and 
t, respectively. These plots were prepared for a relatively low probability level of P[ML]=0.16. 
The rationale for selecting this low probability is because individual layer P[ML] values are often 
low even for sites with high P[MP] values, due to multiple layers contributing to P[MP]. As shown 
in Figure 6-28, as ztop increases higher CSR values are required for a given qc1Ncs to produce 
P[MP] = 0.16, increasing the upward shift relative to the triggering curve. Similarly, as Ic 
increases, higher CSR values are required to produce P[MP]=0.16 (Figure 6-49). For the case of 
variable layer thicknesses (Figure 6-50), higher CSRs are required for relatively thin layers (t < 
tc) and lower CSRs are required for thick layers (t > tc). 

Figures 6-47 to 6-50 include comparisons of results from the proposed models (both triggering 
and manifestation) to the Boulanger and Idriss (2016) model. A direct comparison of the 
triggering model (labeled as PFT|S in the figures) with triggering models such as Boulanger and 
Idriss (2016) would be a false comparison. As discussed in Section 4.1, we contend that the 
historical reliance on manifestation as an indicator of liquefaction triggering and lack of 
manifestation as an indicator of a lack of triggering has led to conventional liquefaction 
triggering procedures producing factors of safety against manifestation rather than of 
liquefaction triggering. The SMT model explicitly separates triggering from manifestation, and 
we therefore believe it is more appropriate to compare our “triggering + manifestation” model 
(results labeled as P[MP] in the figures) with legacy “triggering” models. The SMT triggering 
model is lower than legacy models, but that should not necessarily be interpreted as the SMT 
model being more conservative than legacy models. On the other hand, the SMT profile 
manifestation results (P[MP]) are generally closer to the legacy model. 
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Figure 6-47.  Median and 16% PFT|S, PL (Boulanger and Idriss 2016), and P[MP] from the 

recommended model presented in this section using reference conditions 
for ztop, t, and Ic obtained as the median ztop, t, and Ic from critical layers 
selected for the Boulanger and Idriss (2016) dataset. 
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Figure 6-48.  Reference condition P[MP] = 0.16 curve with varying ztop values relative to 
the PFT|S = 0.16 curve 

 



 

6-56 

 

Figure 6-49.  Reference condition P[MP] = 0.16 curve with varying Ic values relative to the 
PFT|S = 0.16 curve 
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Figure 6-50.  Reference condition P[MP] = 0.16 curve with varying t values relative to the 
PFT|S = 0.16 curve 

 

6.4.2 Sensitivity to PFS Priors 

In this section, the sensitivity of the P[MP] model to susceptibility priors is tested. This sensitivity 
was investigated in two ways: (1) changes to the mean model, (2) changes to the uncertainty 
level on the mean model coefficients for the original prior (i.e., the prior presented in 
Section 6.1).  

The first evaluation considered each of the four published susceptibility models and the 
combined model discussed in Section 6.1. The four susceptibility model coefficients were 
used as the PFS prior in the Bayesian inference. The resulting posteriors are presented in 
Figure 6-51. Figure 6-51 (a) shows that the higher the PFS relationship, the flatter the trend of 
the PFM|T lines in Ic-ztop space. While the manifestation model is affected, Figure 6-51 (b) shows 
that the susceptibility posteriors are not significantly modified from the prior. This occurs 
because the susceptibility prior is given relatively strong confidence (the standard deviations 
used in the normal distributions for the two PFS coefficients, xm and σm, are relatively small). The 
cost function, J, using these four priors were very similar (between 0.506 and 0.508). 

The second evaluation modified the confidence levels placed on the PFS coefficients for the 
original model (from Section 6.1). The standard deviations on the PFS coefficients’ normal 
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distributions (σ) were increased by factors of 2 and 4. The resulting PFM|T posteriors are 
presented in Figure 6-52. By increasing the coefficient standard deviations, Bayesian inference 
has greater freedom to update the posteriors, and the PFS function shifts to the left such that a 
soil is less susceptible for a given Ic. However, the PFM|T coefficient on Ic moves in the opposite 
direction, eventually producing a model that shows increasing manifestation potential for 
increasing Ic, which is clearly non-physical. While J decreases to 0.491 for the P[MP] model with 
a factor of 4 on the PFS coefficients’ normal distributions, because the PFM|T model has a 
counter-intuitive trend a strong prior for the PFS function was retained. 

 

Figure 6-51.  Impact of changing initial PFS model on final P[M] model using the four 
models recommended in Maurer et al.( 2017): P01 (Polito 2001), Sea03 
(Seed et al. 2003), BS06 (Bray and Sancio 2006), and BI06/IB08 (Boulanger 
and Idriss 2006; Idriss and Boulanger 2008). The PFM|T function in (a) shows 
that the manifestation portion of the model that includes Ic changes to 
accommodate the change in susceptibility functions. The change in the 
PFM|T function allow the strongly informed prior PFS (b) to remain almost 
unchanged in the posterior. 
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Figure 6-52.  Impact of changing the confidence in the original PFS prior on resulting 
P[M] model. The PFM|T function in (a) shows that the manifestation portion 
of the model that includes Ic changes to accommodate the change in PFS 
functions posteriors (b). 

 

6.4.3 Sensitivity to PFT|S Priors 

In this section, the sensitivity of the P[MP] model to variations in the triggering priors is tested. 
This was done by considering alternate means and standard deviations for the PFT|S priors’ 
distributions. The effects of these variations on the PFM|T and PFT|S posteriors were evaluated. 

First, alternate prior mean values (μ) were considered by increasing or decreasing the mean of 
each coefficient’s prior by five times the standard deviation of that coefficient’s distribution and 
by applying a weak confidence (100 times the standard deviations in the covariance matrix). 
This produces the prior PFT|S functions plotted in Figure 6-53. Second, different levels of 
confidence are explored by changing the multiplier on the standard deviations in the covariance 
matrix. In the first case where only the mean priors are changed, Figure 6-53 shows that the 
posterior does not noticeably move relative to the prior. In the second case where the standard 
deviations are increased, despite the posterior having more freedom to move, the posteriors all 
converge to curves similar to the priors (Figure 6-54). 

The PFM|T and PFT|S posteriors all converge on similar values irrespective of the prior μ so long 
as they are given enough uncertainty on the standard deviations to find the lowest cost model. 
The insensitivity of the posterior distributions to changes in the mean and uncertainty of the 
prior indicates that the approach used in Section 6.3 is appropriate for finding a stable  
PFT|S posterior. 
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Figure 6-53.  Impact of changing the PFT|S prior means on PFM|T and PFT|S posteriors. The 
posteriors converge on approximately the same values when given a 
sufficiently large uncertainty on the priors. 

 

Figure 6-54. Impact of changing the PFT|S prior standard deviations on PFM|T and PFT|S 
posteriors. The posteriors converge on approximately the same values 
when uncertainty on the priors is increased by a factor of 2 or higher. 
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7 DISCUSSION 

In this report, we present probabilistic models developed by the SMT for the prediction of 
liquefaction susceptibility, triggering, and manifestation. We used specific definitions for those 
terms (Section 2.1) and formulated the models in a manner that is consistent with those 
definitions. For a given application, particular elements of the three-part modeling framework 
may be critical. The clear separation of the components allows such determinations to be made, 
which in turn provides the opportunity to refine such elements through additional testing or data 
collection to reduce uncertainties for critical applications.  

As discussed in Section 2.2, two important philosophies influenced how this work was 
performed. First, we only use data from the NGL database, and as such the information we 
relied upon is available to any interested researcher. This promotes transparency and 
repeatability. Second, while we exercised our experience and judgment throughout the learning 
and model building process, we translated that judgment into procedures that can be 
consistently applied across case histories. This too promotes transparency and repeatability, 
while also reducing the influence of confirmation bias and allowing the models to be used in 
forward applications in a manner that is consistent with how they were developed.  

Our modeling process has Bayesian elements, as described in Section 4.1 and 4.2. The main 
objective of the modeling process is prediction of a particular effect of liquefaction, namely 
surface manifestation. Within the Bayesian process that leads to such predictions, several 
critical model elements must be formulated, which include probability of susceptibility P[S], 
probability of triggering given the soil is susceptible P[T|S], probability of profile manifestation 
when one or more layers within the profile trigger P[MP|T] (which is conditioned on a series of 
variables that are not shown here for brevity), and probability of profile manifestation when no 
layers within it trigger P[MP|NT]. This report presents models for three of these four elements – 
P[S] (Section 6.1), P[T|S] (Section 6.2), and P[MP|T] (Sections 4.4 and 6.3). A model for the 
P[M|NT] component has not been developed yet; while we have ideas about how to form this 
modeling element, our work has not advanced to the state of a presentable model. For this 
report, we assumed that P[M|NT] = 0.  

We recognize that the modeling approach here diverges from precedent in liquefaction 
modeling, which may be welcomed by some and viewed skeptically by others. We envision 
several assessments to help geotechnical engineers better understand these models, including:  

1) The performance of the proposed models will be compared to the performance of legacy 
models when applied to the full NGL data inventory. This will allow the predictive power 
of the different methods to be compared, albeit with some subjectivity given the need for 
critical layer selection with the legacy models. This is a recommendation for future work. 

2) Demonstration of the use of the models for example applications in which stability is the 
main concern (i.e., manifestation is secondary) vs applications where manifestation is 
the main concern will help engineers understand how these models would be applied to 
solve practical problems encountered in engineering design. This is a recommendation 
for future work. 

3) A set of example calculations to show the step-by-step application of the P[MP] model 
using data from a case history in the NGL database. This is provided in Appendix B. 
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Each of the models provided in this report have empirical elements. As such, they are valid only 
over certain parametric ranges. The P[T|S] model mainly applies for Holocene sediments and 
artificial fills that are relatively granular in composition, although FC can range from 0 to 100%. 
The Dr range for the model is considered to be 20% to 90%. The P[MP|T] model is considered to 
be applicable for Ic = 0.2 to 6.7, Dr = 0 to 100%, ztop = 0 to 49m, and t = 0.01 to 14m. The model 
is intended to predict manifestation from liquefaction at essentially level ground sites; as such it 
does not apply for problems involving cyclic mobility, flow slides, or ground failure from non-
susceptible soils (i.e., stability problems involving strength loss in clay).  

In developing the proposed models, we have adopted some prior modeling conventions that are 
important, including fines corrections to convert qc1N to qc1Ncs (Section 5.4.1), conversions of Dr 
to qc1N (Section 6.2.6), and plasticity-based models for liquefaction susceptibility (Section 6.1). 
Each of these is potentially subject to revision as research progresses. A subsequent phase of 
the NGL project will investigate the potential for improvement of susceptibility models (Stuedlein 
et al., 2023b). For fines, there is a need to separate fines effects on qc1N from its effect on 
triggering. The fines correction to qc1N is also critical, as it jointly accounts for the effects of fines 
on penetration resistance, and the effects of fines on liquefaction triggering resistance, given a 
particular state of the soil. In future work, it would be useful to separate these two factors in the 
model formulation. 

This report focuses on using CPT data in model formulation. We have developed SPT-based 
models in an addendum to this report (SPT-based models, Chapters 10-14) to fulfill Task 9 of 
this project, as outlined in Section 1.2. Using SPT data instead of CPT data affects the P[T|S] 
model (mainly through the Dr to N1,60 relationship) and the surface manifestation model (P[MP|T]) 
through the use of SPT blow count and index test data in lieu of qc1N and Ic to represent layer 
characteristics.  

7.1 Triggering and Manifestation in Soils with High Relative Density 

Some comments received from the MRT appear to question whether the attributes of the 
proposed triggering model at high relative densities (Dr near 100%) are supported by the 
available data. To respond to this comment, two considerations must be discussed. The first 
consideration is related to evidence from laboratory data at high relative densities. This topic 
was addressed in Section 6.2.3, where CRRs are reported from tests on specimens of sand 
with Dr values up to about 92%, with seven tests between 85-92%. The results show that 
liquefaction can be triggered in such materials at CRRs ranging from 0.25 to 0.85, with an 
approximate average of 0.35-0.4. Based on the extrapolation of the fitted curves, at Dr = 100% 
the CRR range is 0.35-0.85. We recognize that finite CRR values for these dense materials run 
counter to classical understandings, in which liquefaction is attributed to contraction of granular 
soils during undrained cyclic shear. High Dr soils dilate, thus do not contract, to reach a critical 
state. However, before they dilate, they temporarily contract at relatively modest strain levels, 
thus generating positive pore pressures as measured in these tests. We have taken this data 
into account in the development of the prior. An alternative approach would be to neglect the 
data and impose judgment by increasing CRR to very large values beyond some limiting Dr. We 
recognize that some researchers may support such model features, but this was not our choice 
so as to avoid inconsistency between the prior and laboratory test data.  

The second consideration is related to manifestation of liquefaction, which was a major focus of 
the SMT modeling effort. If a high Dr material triggers, it is unlikely to manifest (incidentally, the 
NGL database contains no manifestation cases wherein a layer has P[ML] greater than 0.5 and 
Dr near 100%). The lack of manifestation is reasoned to be a consequence of two factors: 
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(1) dense soil, following relatively small-strain pore pressure generation, experiences strong 
dilation upon straining, which limits strain accumulation in the profile and thus manifestation, 
and (2) dense soils have low compressibility, which limits the volume of porewater they expel 
when pore pressures dissipate. We anticipated that the case history data would reflect this 
expected feature via a strong dependence of manifestation probabilities on qc1Ncs. This was 
investigated in Section 6.3.4, where the effects of qc1Ncs were in fact rather weak. For this 
reason, we recommended that the manifestation model be conditioned on other parameters that 
exert greater influence, which were layer depth and Ic. We are currently considering whether 
judgment-based adjustments to the model for high Dr conditions can be implemented without 
compromising model performance.  

7.2 Future Work 

As we developed the models documented in this report, we have identified other improvements 
or enhancements that could be incorporated but that were not feasible within the scope and 
limitations of the current project. These suggestions are listed here as opportunities for future 
work.  

● Refine the P[S] as discussed in Section 6.1. For the purposes of the work in this report, 
we adopted a combined model representing several published susceptibility models for 
forward analysis to reflect the lack of consensus in the community regarding 
susceptibility. Over the long-term, a probabilistic susceptibility model should be derived 
from laboratory test data that may be conditioned on parameters with more predictive 
power than PI or Ic. Ideally, this would be the subject of a dedicated NGL supporting 
study. A workshop supported by the PEER center and organized mainly by NGL 
researchers was held in September 2022, with the aim of soliciting community feedback 
and building consensus on the path forward for susceptibility modeling. A follow-on study 
after this workshop would ideally provide an improved P[S] relationship. 

● Re-visit rd, Kσ, and MSF models. In this report, we refined our selections of rd, Kσ, and 
MSF models as outlined in Sections 5.4.3, 6.2.4, and 6.2.8, respectively, to compute 
CSR for the purposes of assigning layer properties (Section 5.4.3) and regressing 
preliminary models (Chapter 6). However, preliminary work using a relative importance 
ranking based on a random forest machine learning algorithm identified several of these 
parameters as most influential in our model development. This suggests that future 
efforts to further refine these models would be beneficial.  

● Develop a saturation effect to apply to the P[TL|S] function. Herein, we use a simple 
binary KSat value of 0 above the groundwater table and 1 below the groundwater table. 
Alternatively, a saturation effect could be derived from proximity to the groundwater table 
and/or measured P-wave velocity (Vp). 

● Re-examine interpretations of select case histories. Our approach to case history 
processing combines automated procedures with human inspection and judgment using 
what we believe are reasonable first-order approximations to assign liquefaction 
observations to nearby in situ tests, identify layers, and process the characteristics of 
these layers. This automated process is crucial for analyzing a database as large as the 
NGL database, and provides a repeatable, consistent, and objective initial view of the 
data. However, there are currently unidentified nuances in each case history that could 
potentially affect these modeling decisions. One particularly difficult situation relates to 
separating instances of ground failure due to liquefaction triggering from instances of 
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ground failure due to cyclic softening (e.g., a non-susceptible soil as discussed in 
Section 2.1.1). This could be addressed through excluding such cases that are clearly 
cases of cyclic softening or through a combined cyclic softening and manifestation 
model for fine-grained soils. 

● Expand the site characterization data considered in model development to include VS 
data. Several legacy models mentioned in Section 3.2 are based on VS and developing a 
set of VS-based models to accompany our CPT-based (Task 7) and SPT-based (Task 9) 
models, or perhaps a combined model using two or more of these in situ data types, 
would potentially improve model performance. 

● Evaluate whether some outliers in the database can be explained by factors not directly 
considered in the modeling approaches described herein, such as:  

○ Partial drainage of susceptible and liquefiable strata 

○ Aging effects that may be predictable based on geologic age or VS 

○ Effects of geologic complexity, such as horizontally discontinuous vs relatively 
continuous strata, which may affect manifestation 

○ The effects of mechanisms other than liquefaction, such as cyclic softening of clayey 
soils not susceptible to liquefaction. 

● Evaluate model sensitivity using seismic hazard curves. For example, Dr. Andrew 
Makdisi at the U.S. Geological Survey (USGS) previously developed a Python script for 
probabilistic liquefaction hazard analyses (PLHA) using the USGS seismic source 
models and designed his script to implement new triggering models as they become 
available, such as those resulting from NGL model development efforts (e.g., this 
report). This could be a productive investigation, particularly when additional NGL 
modeling teams have proposed models that could be used to capture epistemic 
uncertainty. 
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8 CONCLUSIONS AND NEXT STEPS 

In this report, we provided a framework for liquefaction modeling that includes discrete steps for 
susceptibility, triggering, and manifestation. Each of these models has been updated since the 
presentation of preliminary models in the Task 4 report and are approaching their final form. In 
this report, we clarified the meaning of key terms in liquefaction analysis and provided a 
framework by which the different effects can be evaluated in a consistent and rational manner 
that is probabilistic and performance-based. In the preceding chapters, we described several 
significant aspects of the model development process, such as: 

● using the extensive NGL case history database to perform analyses that previously 
would have been logistically impractical (Section 2.3),  

● exploring the uncertainties in critical layer selection and finding this process to be non-
repeatable within the SMT and compared to legacy models (Section 3.3-3.4), 

● using algorithms to process case history data and provide a repeatable, consistent, and 
objective view of the data (Chapter 5), 

● interpolating ground motion intensity measures at case history locations (Section 5.2), 

● identifying layers within continuous CPT profiles (Section 5.3), 

● estimating FC from CPT data using an updated relationship derived using the NGL 
database (Section 5.4.2) for cases where directly measured FC values are not available, 

● interpreting susceptibility in a probabilistic manner using CPT data which captures 
variability and epistemic uncertainty in current models (Section 6.1),  

● combining knowledge from laboratory tests and field case histories by using a rich 
database of laboratory data spanning a wide parameter space to define the Bayesian 
prior probability, P[T|S] (Section 6.2.7), and 

● modeling surface manifestation conditional on liquefaction having triggered within one or 
more layers through probabilistic analysis of the NGL database (Section 6.3.5); this 
approach allows for an entire soil profile to be considered within the coupled triggering-
manifestation framework (Chapter 4) and does not require identification of a specific 
critical layer. 

The preceding chapters outline the approaches adopted by the SMT to model critical 
relationships including probability of susceptibility conditional on Ic (P[S]), probability of 
triggering for susceptible layers conditional on state and stress demand (P[T|S]), and probability 
of profile manifestation conditional on at least one layer within the profile having triggered 
(P[MP|T]). The role of a fourth model component to estimate the probability of profile 
manifestation when no triggering occurs P[MP|NT] has also been identified, although the model 
is not yet formulated. For this report, P[MP|NT] was assumed to be zero. 

The recommended model for estimating P[MP] is provided in Eq. (6-14) through Eq. (6-20) in 
Section 6.3.5. For forward analysis where P[T] of a single layer is desired (i.e., ignoring 
manifestation), we recommend computing P[T] as PFT|S multiplied by PFS given by Eq. (6-21) 
through Eq. (6-27) in Section 6.3.7, where PFT|S relies on laboratory data. 
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Although not designated as a formal Senior Seismic Hazard Analysis Committee (SSHAC) 
study, the approach and processes we relied on as the SMT to develop our models followed 
several of the basic SSHAC principles. These included evaluation and integration of available 
data, clearly defined roles and responsibilities of all project members, and transparent 
documentation of the SMT decisions needed to develop our findings. In addition, the model 
presented in a previous version of this report (August 2023) has been peer reviewed by the 
Modeling Review Team (MRT), with all comments received prior to March 22, 2024 documented 
in a separate report along with SMT responses (Task 8, Ulmer et al., 2024). The purpose of the 
MRT review was to provide feedback on the SMT’s methods but does not necessarily constitute 
an endorsement of the SMT’s methods, results, or recommendations. 

Findings provided in this report are nearing their final form, although future refinements and 
improvements are possible. The content presented here is subject to change as we refine the 
methodologies, input parameters, and framework, and based on the review comments from the 
MRT received after March 22, 2024. Where possible, comments from the MRT have been 
directly addressed in this report. Comments from the MRT that were not received with sufficient 
time remaining in the project schedule may be addressed in derivative products (e.g., journal 
papers) where feasible. While the general concepts behind our approach have been shared in 
meetings with the NGL Advisory Board and other NGL modeling teams, this document presents 
these concepts in greater detail and is more up-to-date than any prior presentation. Accordingly, 
we look forward to receiving feedback from regulatory agencies, topical experts, practicing 
engineers, and others about the modeling approach and the reasonableness and practicality for 
application of the models that have been presented.  

Although current SMT models are not yet sufficiently mature to ensure that the center body and 
range of technically defensible interpretations have been captured, the developments thus far 
advance the ultimate realization of this goal and have set up a framework for doing so. The 
proposed modeling framework has distinct elements, each with their own uncertainties, that can 
be separately evaluated in a general (ergodic) sense or for application to a specific project. An 
additional component of epistemic uncertainty involves the model-to-model uncertainty that will 
only be evident once the larger NGL modeling efforts mature. An important step in this process 
is soliciting feedback from the stakeholder agencies and topical experts.  
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APPENDIX A 

Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data 

Parameter Description Classification 

TEST_ID primary key in test table metadata 

dGWT depth to groundwater table (m) layer 

ztop depth to top of layer (m) layer 

zbot depth to bottom of layer (m) layer 

qc min minimum qc within-layer (kPa) layer 

qc avg average qc within-layer (kPa) layer 

qc 30% 30th percentile qc within-layer (kPa) layer 

qc 50% median qc within-layer (kPa) layer 

qc max maximum qc within-layer (kPa) layer 

qc std standard deviation of qc within-layer (kPa) layer 

fs min minimum fs within-layer (kPa) layer 

fs avg average fs within-layer (kPa) layer 

fs 30% 30th percentile fs within-layer (kPa) layer 

fs 50% median qc within-layer (kPa) layer 

fs max maximum fs within-layer (kPa) layer 

fs std standard deviation of fs within-layer (kPa) layer 

sigma_v min minimum vertical total stress (kPa) layer 

sigma_v avg average vertical total stress (kPa) layer 

sigma_v 50% median vertical effective stress (kPa) layer 

sigma_v max maximum vertical total stress (kPa) layer 

sigmap_v min minimum vertical effective stress (kPa) layer 

sigmap_v avg average vertical effective stress (kPa) layer 

sigmap_v 50% median vertical effective stress (kPa) layer 
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Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data (cont’d) 

Parameter Description Classification 

sigmap_v max maximum vertical effective stress (kPa) layer 

Ic min minimum soil behavior type index layer 

Ic avg average soil behavior type index layer 

Ic 30% 30th percentile soil behavior type index layer 

Ic 50% median soil behavior type index  layer 

Ic 70% 70th percentile soil behavior type index layer 

Ic max maximum soil behavior type index layer 

Ic std standard deviation of soil behavior type index layer 

qc1Ncs min minimum normalized clean sand cone tip 
resistance 

layer 

qc1Ncs avg average normalized clean sand cone tip 
resistance 

layer 

qc1Ncs 30% 30th percentile normalized clean sand cone tip 
resistance 

layer 

qc1Ncs 50% median normalized clean sand cone tip 
resistance 

layer 

qc1Ncs max maximum normalized clean sand cone tip 
resistance 

layer 

qc1Ncs std standard deviation of normalized clean sand 
cone tip resistance 

layer 

CSR avg average cyclic stress ratio computed using Idriss 
(1999) r_d 

layer 

I_B modified soil behavior type index layer 

Su undrained shear strength (kPa) layer 

taucycsu cyclic shear stress divided by undrained shear 
strength 

layer 

IF_layer layer interbeddedness factor (number of double 
threshold crossings above the layer, where 
Ic_thresh1 = 2.34, Ic_thresh2 = 2.93) 

layer 
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Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data (cont’d) 

Parameter Description Classification 

H1 thickness of non-liquefiable crust (m) profile 

SITE_ID primary key of site table metadata 

SITE_NAME site name metadata 

TEST_NAME test name  metadata 

EVNT_ID primary key of event table metadata 

EVNT_NAME event name metadata 

EVNT_MAG earthquake magnitude profile 

PGA peak horizontal acceleration (g) profile 

FLDM_ID primary key of fldm (field observation) table metadata 

FLDM_SFEV surface evidence of liquefaction (0 = no, 1 = yes) profile 

FLDM_DIST distance between observation and cone 
penetration test (m) 

profile 

TEST weights weights for observation in regression profile 

alltriggers Total number of double Ic threshold crossings in 
the profile, where Ic_thresh1 = 2.34; Ic_thresh2 = 
2.93 

profile 

FLDM_SNBL sand boils (0 = no, 1 = yes) profile 

FLDM Slope (deg) slope at observation location from 3-arc second 
digital elevation model (deg) 

profile 

TEST Slope (deg) slope at test location from 3-arc second digital 
elevation model (deg) 

profile 

LPI liquefaction potential index profile 

LSN liquefaction severity number profile 

CR crust strength (kN/m) profile 

LD liquefaction ejecta demand parameter (kN/m) profile 

PGV peak ground velocity (m/s) profile 

CAV cumulative absolute velocity (m/s) profile 
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Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data (cont’d) 

Parameter Description Classification 

I_a Arias intensity (m/s) profile 

CSR Lasley r_d CSR computed using stress reduction coefficient 
from Lasley et al. (2017) 

layer 

MSF B&I magnitude scaling factor from Boulanger and 
Idriss (2016) 

layer 

MSF Green et al magnitude scaling factor from Green et al. (2019) layer 

MSF Green et al b=0.2 magnitude scaling factor from Green et al. (2019) 
for b = 0.2 

layer 

MSF Green et al b=0.28 magnitude scaling factor from Green et al. (2019) 
for b = 0.28 

layer 

Ksig I&B K-sigma from Idriss and Boulanger (2008) layer 

Ksig Carlton K-sigma for SMT model layer 

LDl Liquefaction ejecta demand parameter within the 
layer (kN/m) 

layer 

CRl Crust resistance above a layer (kN/m) layer 

qc1N Overburden corrected cone tip resistance (kPa) layer 
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APPENDIX B – EXAMPLE APPLICATION OF PROPOSED MODEL 

This appendix provides an example application of the P[MP] model using data from a case 
history in the NGL database: Wufeng Site A, which had no surface manifestation despite very 
strong shaking during the 1999 Chi-Chi Taiwan earthquake. 

The four CPT profiles shown here have false positive predictions using legacy models (critical 
layers above the probability of liquefaction = 0.5 curve). These analyses began at the stage 
where the raw CPT data had been discretized into layers (using the algorithm in Section 5.3) 
and converted into qc1Ncs and Ic values for each layer. Another critical step is the assignment of a 
ground surface PGA value and earthquake magnitude; for the present analysis the conditions 
for the event that produced the observations were used (Section 5.2), but in general forward 
applications these would be derived from seismic hazard analyses. In this section, the 
calculations will be illustrated in detail for CPT WAC-4 and then results are provided for all four 
CPTs.  

Eq. B-1 is used to compute the probability of manifestation for each layer, P[ML].  

 𝑃ሾ𝑀௅ሿ ൌ 1 െ ቀ1 െ 𝑃𝐹ெ|்௟
𝑃𝐹்|ௌ௟

𝑃𝐹ௌ௟𝐾ௌ௔௧௟ቁ
௧೗/௧೎

 B-1 

 

There are four model components within Eq. B-1 (𝑃𝐹ெ|்௟
,𝑃𝐹்|ௌ௟

,𝑃𝐹ௌ௟ , and 𝐾ௌ௔௧௟) and one 

variable (𝑡௟). Each model component is computed for each layer, given the respective 
independent variables, with the results tabulated on the right side of Table B-1 and displayed in 
Figure B-1. 

 



 

B
-2

 

 

T
ab

le
 B

-1
.  

E
xa

m
p

le
 C

o
m

p
u

ta
ti

o
n

 o
f 

P
[M

P
] 

fo
r 

W
u

fe
n

g
 S

it
e 

A
 W

A
C

-4
 f

o
r 

th
e 

fi
rs

t 
20

 la
ye

rs
 in

 t
h

e 
p

ro
fi

le
. 

La
ye
r 

# 
z to

p 

(m
) 

z b
ot
 

(m
) 

t (
m
) 

q c
1N

cs
 

I c 
CS
R M

7

.5
,1
at
m
 

PF
S 

𝑪
𝑺𝑹෣

 
D
R 

(%
) 

𝑫
𝑹෢
 

𝑪
𝑹
𝑹

෣
 

PF
T|
S 

PF
T 

PF
M
|T
 

K S
at
 

P[
M

L] 

1 
0
.0
5
 

0
.5
 

0
.4
5
 

7
.7
 

1
.9
6
 

0
.2
6
 

0
.9
8
 

‐2
.2
1
 

0
.0
0
 

‐0
.8
 

‐7
.4
6
 

1
.0
0
 

0
.9
8
 

0
.8
1
 

0
.0
0
 

0
.0
0
 

2 
0
.5
 

1
.1
1
8
 

0
.6
1
8
 

3
.9
 

2
.7
6
 

0
.2
6
 

0
.3
0
 

‐2
.2
1
 

0
.0
0
 

‐0
.8
 

‐7
.4
6
 

1
.0
0
 

0
.3
0
 

0
.1
8
 

0
.0
0
 

0
.0
0
 

3 
1
.1
1
8
 

1
.3
5
 

0
.2
3
2
 

3
.9
 

2
.7
6
 

0
.2
6
 

0
.3
0
 

‐2
.2
1
 

0
.0
0
 

‐0
.8
 

‐7
.4
6
 

1
.0
0
 

0
.3
0
 

0
.1
5
 

1
.0
0
 

0
.0
1
 

4 
1
.3
5
 

1
.8
 

0
.4
5
 

1
.0
 

3
.8
9
 

0
.3
0
 

0
.0
0
 

‐1
.8
6
 

0
.0
0
 

‐0
.8
 

‐7
.4
6
 

1
.0
0
 

0
.0
0
 

0
.0
0
 

1
.0
0
 

0
.0
0
 

5 
1
.8
 

3
 

1
.2
 

5
.2
 

2
.7
2
 

0
.3
5
 

0
.3
6
 

‐1
.5
4
 

0
.0
0
 

‐0
.8
 

‐7
.4
6
 

1
.0
0
 

0
.3
6
 

0
.1
4
 

1
.0
0
 

0
.0
3
 

6 
3
 

3
.8
 

0
.8
 

4
5
.3
 

2
.7
5
 

0
.3
8
 

0
.3
1
 

‐1
.3
4
 

2
4
.5
0
 

3
8
.1
 

‐6
.1
4
 

1
.0
0
 

0
.3
1
 

0
.0
9
 

1
.0
0
 

0
.0
1
 

7 
3
.8
 

5
.5
5
 

1
.7
5
 

1
6
.1
 

2
.9
1
 

0
.4
1
 

0
.1
6
 

‐1
.2
2
 

0
.0
0
 

‐0
.8
 

‐7
.4
6
 

1
.0
0
 

0
.1
6
 

0
.0
4
 

1
.0
0
 

0
.0
1
 

8 
5
.5
5
 

5
.8
 

0
.2
5
 

1
0
8
.

7
 

2
.0
8
 

0
.4
2
 

0
.9
5
 

‐1
.1
7
 

5
8
.4
9
 

1
0
9
.

9
 

‐3
.7
1
 

0
.9
9
 

0
.9
4
 

0
.2
9
 

1
.0
0
 

0
.0
4
 

9 
5
.8
 

6
 

0
.2
 

2
0
.8
 

3
.0
6
 

0
.4
2
 

0
.0
8
 

‐1
.1
6
 

0
.1
6
 

‐0
.7
 

‐7
.4
5
 

1
.0
0
 

0
.0
8
 

0
.0
1
 

1
.0
0
 

0
.0
0
 

10
 

6
 

6
.3
 

0
.3
 

9
2
.0
 

1
.9
1
 

0
.4
2
 

0
.9
8
 

‐1
.1
5
 

5
1
.4
3
 

9
4
.1
 

‐4
.2
5
 

1
.0
0
 

0
.9
8
 

0
.3
8
 

1
.0
0
 

0
.0
7
 

11
 

6
.3
 

9
.5
 

3
.2
 

1
9
.0
 

3
.0
3
 

0
.4
3
 

0
.0
9
 

‐1
.1
2
 

0
.0
0
 

‐0
.8
3
 

‐7
.4
6
 

1
.0
0
 

0
.0
9
 

0
.0
1
 

1
.0
0
 

0
.0
0
 

12
 

9
.5
 

1
0
.4
 

0
.9
 

7
6
.9
 

2
.3
7
 

0
.4
3
 

0
.8
0
 

‐1
.1
1
 

4
4
.1
2
 

7
8
.1
0
 

‐4
.7
9
 

1
.0
0
 

0
.8
0
 

0
.0
4
 

1
.0
0
 

0
.0
1
 

13
 

1
0
.4
 

1
0
.6
5
 

0
.2
5
 

2
6
.0
 

3
.0
9
 

0
.4
4
 

0
.0
6
 

‐1
.1
1
 

6
.6
8
 

7
.3
3
 

‐7
.1
8
 

1
.0
0
 

0
.0
6
 

0
.0
0
 

1
.0
0
 

0
.0
0
 

14
 

1
0
.6
5
 

1
1
 

0
.3
5
 

1
0
1
.9
 

2
.2
8
 

0
.4
3
 

0
.8
7
 

‐1
.1
1
 

5
5
.7
1
 

1
0
3
.6

4
 

‐3
.9
2
 

0
.9
9
 

0
.8
6
 

0
.0
3
 

1
.0
0
 

0
.0
1
 

15
 

1
1
 

1
2
.1
 

1
.1
 

1
9
.1
 

2
.9
9
 

0
.4
3
 

0
.1
1
 

‐1
.1
1
 

0
.0
0
 

‐0
.8
3
 

‐7
.4
6
 

1
.0
0
 

0
.1
1
 

0
.0
0
 

1
.0
0
 

0
.0
0
 

16
 

1
2
.1
 

1
3
 

0
.9
 

1
7
6
.5
 

1
.9
5
 

0
.4
3
 

0
.9
8
 

‐1
.1
2
 

8
1
.0
1
 

1
6
3
.0

4
 

‐1
.9
2
 

0
.8
0
 

0
.7
8
 

0
.0
6
 

1
.0
0
 

0
.0
2
 

17
 

1
3
 

1
3
.6
5
 

0
.6
5
 

8
9
.0
 

2
.2
0
 

0
.4
3
 

0
.9
1
 

‐1
.1
2
 

5
0
.0
4
 

9
0
.9
9
 

‐4
.3
5
 

1
.0
0
 

0
.9
1
 

0
.0
2
 

1
.0
0
 

0
.0
1
 

18
 

1
3
.6
5
 

1
3
.9
 

0
.2
5
 

8
.7
 

3
.2
1
 

0
.4
3
 

0
.0
3
 

‐1
.1
2
 

0
.0
0
 

‐0
.8
3
 

‐7
.4
6
 

1
.0
0
 

0
.0
3
 

0
.0
0
 

1
.0
0
 

0
.0
0
 

19
 

1
3
.9
 

1
4
.1
5
 

0
.2
5
 

9
1
.3
 

2
.1
6
 

0
.4
3
 

0
.9
3
 

‐1
.1
3
 

5
1
.1
0
 

9
3
.3
3
 

‐4
.2
7
 

1
.0
0
 

0
.9
2
 

0
.0
2
 

1
.0
0
 

0
.0
0
 

20
 

1
4
.1
5
 

1
4
.4
 

0
.2
5
 

1
3
.2
 

3
.0
6
 

0
.4
3
 

0
.0
7
 

‐1
.1
3
 

0
.0
0
 

‐0
.8
3
 

‐7
.4
6
 

1
.0
0
 

0
.0
7
 

0
.0
0
 

1
.0
0
 

0
.0
0
 

 



 

B–3 

 

Figure B-1.  CPT “WAC-4” from Wufeng Site A with CSR computed using a PGA 
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors 
used to compute P[ML] for each layer. The total P[MP] prediction is printed 
at the top of the figure along with the observation of manifestation 
(SFEV=1) or lack of manifestation (SFEV=0). 

 

Considering first the PFS component (probability factor for susceptibility), the independent 
variable is Ic (Eq. 6-20). For example, the first layer that is below the ground water table and 
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clearly granular (Layer 8) has Ic=2.08, and produces PFS = 0.95, indicating a highly susceptible 
layer. 

 𝑃𝐹ௌ ൌ 1 െ
1

1 ൅ expቌ
െ1.702 ∙ ቀ𝐼௖ 2.614ൗ െ 1ቁ

0.116 ቍ

ൌ 1 െ
1

1 ൅ exp൭
െ1.702 ∙ ൫2.08

2.614ൗ െ 1൯
0.116 ൱

ൌ 0.95 
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Next, the probability factor for triggering given susceptibility (PFT|S) is computed. This is a 
function of 𝐶𝑆𝑅෢  and 𝐶𝑅𝑅෣ (Eq. 6-15) and therefore requires some transformations of the CPT 
data. 𝐶𝑆𝑅෢  can be computed directly from CSRM7.5,1atm (Eq. 6-16), which is demonstrated for layer 
8 in Eq. B-3. Relative density (Dr) is estimated from the qc1Ncs value of the layer (Eq. 6-19) 
yielding Dr=58% in Eq. B-3 which is then converted to 𝐷௥෢ = 109.9 (Eq. 6-18) in Eq. B-5. 𝐶𝑅𝑅෣ can 
then be computed (Eq. 6-17) in Eq. B-6 and combined with 𝐶𝑆𝑅෢  to produce PFT|S = 0.99 (Eq.B-
7). This indicates that layer 8, being a low tip resistance layer shaken at a high intensity, is likely 
to trigger. 

 
𝐶𝑆𝑅෢ ൌ

ሺ𝐶𝑆𝑅ି଴.଺ହ଺଺ െ 1ሻ
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ൌ
ሺ0.42ି଴.଺ହ଺଺ െ 1ሻ

െ0.6566
ൌ െ1.17 
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0 ൏ 𝐷௥ ൏ 100% ൌ 47.8 ∙ 𝑞௖ଵே௖௦଴.ଶ଺ସ െ 106.3 ൌ 47.8 ∙ 108.7଴.ଶ଺ସ െ 106.3

ൌ 58% 
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1.2022

ൌ
ሺ58ଵ.ଶ଴ଶଶ െ 1ሻ

1.2022
ൌ 109.9 
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 𝐶𝑅𝑅෣ ൌ െ7.427 ൅ 0.0338 ∙ ൫𝐷௥෢൯ ൌ െ7.427 ൅ 0.0338 ∙ ሺ109.9ሻ ൌ െ3.71 B-6 
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Taking the product of PFS and PFT|S gives the probability factor of triggering (PFT), a metric that 
accounts for both the susceptibility and triggering potential of the layer. The PFT for layer 8 is 
computed in Eq. B-8 to be 0.94. 

 𝑃𝐹் ൌ 𝑃𝐹்|ௌ ∗ 𝑃𝐹ௌ ൌ 0.99 ∗ 0.95 ൌ 0.94 B-8 
 

The probability factor for manifestation given triggering (PFM|T) is a function of Ic and ztop (Eq. 6-
14) and is computed for layer 8 in Eq. B-9. PFM|T is nearly zero for layer 8, which is expected 
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because the layer is thin and deep, being overlain by predominantly clay layers. Therefore, if 
liquefaction were to occur in this layer, it would be unlikely to produce surface manifestations. 

 

𝑃𝐹ெ|் ൌ
1

1 ൅ exp ቀെ൫8.206 െ 0.342 ∙ 𝑧௧௢௣ െ 3.461 ∙ 𝐼௖൯ቁ

ൌ
1

1 ൅ exp൫െሺ8.206 െ 0.342 ∙ 2.08 െ 3.461 ∙ 5.55ሻ൯
ൌ 0.29 
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Finally, the saturation term, KSat, which is taken as a binary outcome of 0 above the groundwater 
table and 1 below the groundwater table, is assigned to each layer (taken as 1 for layer 8). With 
all model components derived, the probability of manifestation for layer 8 can be computed, 

 
𝑃ሾ𝑀௅ሿ ൌ 1 െ ൫1 െ 𝑃𝐹ெ|்𝑃𝐹்|ௌ𝑃𝐹ௌ𝐾ௌ௔௧൯

௧
௧೎

ൌ 1 െ ሺ1 െ 1 ∗ 0.29 ∗ 0.99 ∗ 0.94ሻ
଴.ଶହ
ଶ ൌ 0.04 
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This shows that layer 8 is unlikely to manifest. Looking at the different layers in Table B-1, most 
have no appreciable manifestation potential. Among the different layers, layer 10 has the 
strongest manifestation potential (0.38), although even this result is modest, which is due mainly 
to its limited susceptibility potential.  

The total manifestation probability for the profile, P[MP], can now be computed as the product 
sum of the P[NML] = 1-P[ML] values for all layers using Eq. B-11,  

 𝑃ሾ𝑀௉ሿ ൌ 1 െෑሺ1 െ 𝑃ሾ𝑀௅ሿ௟ሻ௧೗/௧೎
ேಽ

௟ୀଵ
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This yields P[MP] ~ 0.2 for WAC-4, indicating a low probability of manifestation, making it a “no” 
surface evidence prediction. This matches the observation of no manifestation for this site in 
Wufeng. This prediction occurs despite there being multiple layers beneath the groundwater 
table that have a high probability factor for triggering, due to the features of the manifestation 
model.  

Results similar to those for CPT WAC-4 were generated for the other CPTs at the site  WAC-5, 
7, and 9. These results are plotted in Figure B-2 through Figure B-4. Each of these CPTs 
correctly predict no manifestation for the profile despite the presence of layers with high PFT and 
“yes” manifestation predictions from legacy models. Table B-2 summarizes the probability of 
manifestation predicted using Boulanger and Idriss (2016) for the critical layer selected on the 
basis of being susceptible and having the highest predicted PL in the profile, as well as the 
P[MP] predicted using the recommended model. 
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Table B-2.  Probability of manifestation predictions for Boulanger and Idriss (2016) and 

the recommended P[MP] model compared with surface evidence of 
manifestations for Wufeng Site A CPTs. 

CPT Number 
Boulanger and 
Idriss (2016) PL 

P[MP] 
Surface 

Evidence? 
4 0.99 0.20 No 
5 0.99 0.41 No 
7 0.99 0.17 No 
9 0.99 0.21 No 
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Figure B-2. CPT “WAC-5” from Wufeng Site A with CSR computed using a PGA 
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors 
used to compute P[ML] for each layer. The total P[MP] prediction is printed 
at the top of the figure along with the observation of manifestation 
(SFEV=1) or lack of manifestation (SFEV=0). 
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Figure B-3.  CPT “WAC-7” from Wufeng Site A with CSR computed using a PGA 
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors 
used to compute P[ML] for each layer. The total P[MP] prediction is printed 
at the top of the figure along with the observation of manifestation 
(SFEV=1) or lack of manifestation (SFEV=0). 
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Figure B-4. CPT “WAC-9” from Wufeng Site A with CSR computed using a PGA 
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors 
used to compute P[ML] for each layer. The total P[MP] prediction is printed 
at the top of the figure along with the observation of manifestation 
(SFEV=1) or lack of manifestation (SFEV=0). 

 

 


