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EXECUTIVE SUMMARY

Seismic induced soil liquefaction is a phenomenon that can lead to soil instability and large
ground deformations due to a reduction in soil stiffness and shear strength. Safety related
structures, systems, or components are at greater risk of losing function if supported on soils
that experience liquefaction. Regulatory Guide 1.198 provides guidance to applicants on
acceptable methods for evaluating the potential for liquefaction initiation (triggering). Regulatory
Guide 1.198 was last published in 2003 and is based on technical information developed prior to
2000. In 2016, the National Academies of Sciences, Engineering, and Medicine published a
report providing recommendations for research that can improve scientific understanding of the
liquefaction phenomenon and engineering practice in evaluating liquefaction triggering and
consequences associated with liquefaction. This report documents research that implemented
recommendations from the National Academies in developing new empirical liquefaction
models. One goal of this research is to provide the technical basis for updating guidance on
acceptable methods in evaluating risks to nuclear facilities from liquefaction triggering.

Three models were developed as part of the research documented in this report: a liquefaction
susceptibility model, a liquefaction triggering model, and a liquefaction surface manifestation
model. The liquefaction susceptibility model is used to evaluate the probability that soil can
experience liquefaction under seismic shaking. The liquefaction triggering model is used to
determine the probability that a susceptible soil will liquefy for a given intensity of ground
shaking, and the manifestation model is used to estimate the probability that there will be
surface manifestation of liquefaction. Examples of surface manifestation are ground cracking,
ground settlement, and liquefied soil ejecta on the ground surface. The triggering and
manifestation models were developed using data from the Next Generation Liquefaction
database. Liquefaction triggering models have historically been used to determine if significant
soil strength loss due to liquefaction is expected at a new nuclear power plant site, and the
triggering model developed in this research is expected to be useful for future nuclear power
plant siting evaluations. The surface manifestation model may be useful in assessing the risk
that liquefaction poses to light weight surface founded micro-reactors.

The research presented in this report was reviewed by an external panel. Some external review
comments were not addressed in this version of the report due to the timing of the authors
receiving the review comments. This report will be revised under a new contract between the
United States Nuclear Regulatory Commission and Southwest Research Institute to address all
external peer review comments. The forthcoming revision is not expected to result in
substantive changes to the models described in this report.



ABSTRACT

The objective of this letter report is to fulfill Task 7 of a contract that was jointly supported by the
U.S. Nuclear Regulatory Commission (NRC) and the U.S. Bureau of Reclamation (USBR).
Under Task 7, a probabilistic triggering model was developed that is capable of being used in
combination with a seismic hazard analysis to obtain the annual frequency of liquefaction
triggering. The purpose of this report is to document the development of this model. To that end,
this report discusses the Supported Modeling Team’s (SMT) approaches to (i) use the extensive
NGL case history and laboratory test results database to perform analyses that previously would
have been logistically impractical, and (ii) develop relationships required to compute the
probabilities of liquefaction susceptibility, triggering, and ground surface manifestation.

The analysis framework developed by the SMT has several elements. First, we assess
susceptibility solely in consideration of soil type and behavior considerations and express
results in a probabilistic manner instead of binary “yes” or “no” determinations. Second, we
evaluate the triggering of liquefaction in a manner that recognizes the distinction between what
is generally available from case histories (surface manifestation or lack thereof) and what
should be the outcome of a triggering analysis (probability of triggering of a given layer within a
soil profile). Several approaches for evaluating triggering that account for this dichotomy are
presented. Third, we introduce a probabilistic approach for evaluating probability of surface
manifestation (or lack thereof) based on whether a layer within the profile has triggered,
attributes of soil composition in that layer, and stratigraphic information such as layer thickness
and depth.

In Chapter 2, we define technical terms that comprise the framework for liquefaction analysis
presented in this report (susceptibility, triggering, manifestation), present the motivation for the
work described in this report, and describe our research approach. In Chapter 3, we summarize
some of the major previous liquefaction triggering models that utilize a critical layer framework
for representing the conditions at a site and some of the challenges inherent to that approach. In
Chapter 4, we outline the regression framework that has been used for developing the models.
This approach relies on Bayes theorem and separately considers the mechanisms of
liquefaction triggering and manifestation. In Chapter 5, we describe the steps required to
process liquefaction case histories and assign layers and their properties for use in model
development. These steps include several new elements including a Kriging interpolation
method to consistently estimate peak ground acceleration (PGA) from nearby recording
stations, a model to relate soil behavior type index (/) to fines content (FC), and an automated
layer detection algorithm. In Chapter 6, we provide the components of the model, which include
an equation to compute the probability of triggering based on data from cyclic tests performed in
the laboratory and equations to compute the probability of surface manifestation based on soil
layers derived from cone penetrometer test (CPT) data and triggering probabilities within the
layers. We also explore sensitivities of the manifestation model. In Chapter 7 we outline the
limitations of the models presented in this report and identify future work that has the potential to
improve model performance. Finally, in Chapter 8, we summarize the conclusions of our work.

Although not designated as a formal Senior Seismic Hazard Analysis Committee (SSHAC)
study, the approach and processes we relied on as the SMT to develop our models followed
several of the basic SSHAC principles. These included evaluation and integration of available
data, clearly defined roles and responsibilities of all project members, and transparent
documentation of the SMT decisions needed to develop our findings. In addition, the model
presented in a previous version of this report (August 2023) has been peer reviewed by the
Modeling Review Team (MRT), with all comments received prior to March 22, 2024 documented
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in a separate report along with SMT responses (Task 8, Ulmer et al., 2024). The purpose of the
MRT review was to provide feedback on the SMT’s methods but does not necessarily constitute
an endorsement of the SMT’s methods, results, or recommendations.

Our findings provided in this report are nearing their final form, although future refinements and
improvements are possible. The content presented here is subject to change as we refine the
methodologies, input parameters, and framework, and based on review comments from the
MRT received after March 22, 2024. Where possible, comments from the MRT have been
directly addressed in this report. Comments from the MRT that were not received with sufficient
time remaining in the project schedule may be addressed in derivative products (e.g., journal
papers) where feasible. While the general concepts behind our approach have been shared in
meetings with the NGL Advisory Board and other NGL modeling teams, this document presents
these concepts in greater detail and is more up-to-date than any prior presentation. Accordingly,
we look forward to receiving feedback from regulatory agencies, topical experts, practicing
engineers, and others about the modeling approach and the reasonableness and practicality for
application of the models that have been presented.

Reference
Ulmer, K.J., K.S. Hudson, S.J. Brandenberg, P. Zimmaro, S.L. Kramer, and J.P. Stewart. “Task

8: Model Review Team Comments.” Washington, DC: U.S. Nuclear Regulatory Commission.
March 2024.
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Key Definitions

Clay-like —

initial liquefaction —

liquefaction susceptibility —

liquefaction triggering —

liquefaction manifestation —

LIST OF SYMBOLS

Clay-like is a description of soil behavior that applies to materials
that exhibit characteristic features of clayey soils, including
normalization of undrained shear strength with effective
consolidation stress and relatively fat cyclic stress strain loops
following the onset of cyclic strength loss.

Initial liquefaction occurs in saturated granular soil subjected to
cyclic shear loading (e.g., earthquake ground motions) under
undrained conditions when excess pore water pressure equals
initial vertical effective stress.

As used in this report, liquefaction susceptibility is related to
fundamental material characteristics of the soil that control the
level of pore pressure generation and strength loss that is possible
if the soil were to be cyclically sheared. Susceptibility is unrelated
to the density and current saturation level of the soil; while both of
these factors affect the potential for triggering, they do not control
the fundamental behavior of a soil. Susceptible soils include both
predominantly coarse-grained and fine-grained soils which exhibit
“sand-like” behavior. Soils which exhibit “clay-like” behavior are
not considered susceptible to liquefaction but could be subject to
strength loss from cyclic softening.

Liquefaction triggering occurs in liquefaction-susceptible soils
when the liquefaction demand exceeds the soil’'s capacity to resist
liquefaction. The demand and capacity terms can be expressed as
metrics in a stress-, strain-, or energy-based framework. The
stress-based framework is most commonly used in practice and is
used in this report. In the stress-based framework, the demand
term is the cyclic stress ratio (CSR) and the capacity term is the
cyclic resistance ratio (CRR). Thus, liquefaction triggering occurs
when CSR exceeds CRR.

Liquefaction manifestation is the observable consequence of
liquefaction triggering in liquefaction-susceptible soils. The type
and magnitude of the consequence can vary. Forms of
manifestation include settlement and lateral displacement,
sediment ejecta (e.g., sand boils), slumping and failure of
embankments, loss of foundation support, increased lateral loads
on and reduced lateral resistance of earth retaining structures and
their foundations, buoyancy uplift of buried structures, and
modification of free-field ground motions. Some of these are
readily visible at the ground surface (i.e., surficial manifestation),
while others such as decreased strength at depth may not be
easily observed. The excess pore pressures and levels of strain
that develop in a profile influence whether the effects of

XXii



liquefaction are visually apparent, or manifest, at the ground
surface.

Sand-like — Sand-like is a description of soil behavior that applies to materials
that exhibit characteristic features of granular soils, including non-
parallel consolidation and critical state lines (indicating lack of
strength normalization) and potential for substantial strength loss
under cyclic loading when the material is saturated, sufficiently
loose, and subjected to undrained cyclic loading.

state — The state of a soil refers to its position in void ratio — effective
stress space relative to a critical state line (CSL). Contractive soils
have void ratios above the CSL and would need to generate
positive pore pressures under undrained conditions to reach the
CSL at large strains. Dilative soils have void ratios below the CSL
and would need to dilate to reach the CSL. A soil with a dilative
state can be temporarily contractive when cyclically sheared at
small strains, causing positive water pressures to develop.

Symbols
a ratio of s to oo

CAV cumulative absolute velocity
CAVs cumulative absolute velocity with a minimum acceleration cutoff of 5 cm/s?

Cn overburden stress correction factor for in situ tests (e.g., SPT, CPT)

CSR cyclic stress ratio = 7,c/0’vo

CSRwm7s CSR corrected for M7.5

CSRwm751am CSR corrected for M7.5 and 1 atm of overburden stress

CRR cyclic resistance ratio

CRRyap CRR as estimated from cyclic tests performed in the lab

CRRYietd CRR2» adjusted to more closely reflect field conditions

Cr crust layer resistance parameter (Hutabarat and Bray, 2022)

Vw unit weight of water (9.81 kN/m3)

YDA double-amplitude shear strain

YsA single-amplitude shear strain

D, relative density

Ev volumetric strain

EDA double-amplitude axial strain

Esa single-amplitude axial strain

FC percent fines content by weight, fines are defined as particles smaller than
0.075 mm

FS; factor of safety against liquefaction = CRR/CSR (e.g., CRR/CSRwmy7.5,1atm)

g acceleration of gravity
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Pes critical state friction angle
)] Gaussian cumulative distribution function

H; thickness of a non-liquefiable (i.e., non-susceptible and/or non-saturated) surficial
soil layer

H> thickness of an underlying liquefiable (i.e., susceptible and saturated) soil layer

ha initial hydraulic head (Hutabarat and Bray, 2022)

Pexc excess hydraulic head

lc soil behavior type index

lc standardized variable of /.

Is modified soil behavior type index

Ko coefficient of lateral pressure at-rest

(Ko)rerd coefficient of lateral pressure at-rest estimated for field conditions
(Ko)iab  coefficient of lateral pressure at-rest imposed in laboratory tests

Ka initial static shear stress adjustment factor

Ka drainage adjustment factor

Ksat  saturation correction factor

Ko initial overburden stress adjustment factor

kes clean sand corrected vertical hydraulic conductivity

kv vertical hydraulic conductivity

Lp liquefaction ejecta demand parameter (Hutabarat and Bray, 2022)
LL liquid limit from Atterberg limits tests

LPI  liquefaction potential index (Iswasaki et al., 1978)

LPlisy Ishihara-inspired liquefaction potential index (Maurer et al., 2015a)
LSN liquefaction severity number (van Ballegooy et al., 2014)

M earthquake magnitude, typically moment magnitude
MSF magnitude scaling factor

N SPT blow count

N number of cycles to liquefaction in cyclic lab tests
N1 60cs N1 60 adjusted for clean sand conditions

N, number of layers

Nrsr  reference number of cycles to liquefaction associated with M7.5 (e.g., 10-15)
Np number of profiles

Pa atmospheric pressure (1 atm = 101.3 kPa)

PF probability factor

PGA peak ground acceleration, generally taken as median component

Pl plasticity index, or LL — PL

PL plastic limit from Atterberg limits tests

P probability of triggering of liquefaction (i.e., a function of CSR and penetration

resistance as computed from probabilistic legacy models)

ge cone tip resistance from CPT
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Qein qc adjusted for 1 atm overburden (through Ch)
QciNes gcrv adjusted for clean sand conditions

Gc1Ncs standardized variable of qcnes

q: cone tip resistance from CPT (q.) corrected for pore pressure
rd shear stress reduction factor

Iy pore pressure ratio

Su undrained shear strength

Ov total vertical stress

a'vwo initial vertical effective stress

t layer thickness

tc characteristic layer thickness

Trmp  threshold P[Mp] value associated with OOP

Teyc
Tcyc,max
Ts

Uexc

Vs
V30

We

Za

ZB

Ztop

P[T]
PINT]
PIM]
PINM]
PITIM]
PITINM]
PINTINM]
PINTIM]

PIMIT]

cyclic shear stress
maximum cyclic shear stress
initial static shear stress

excess pore water pressure

small-strain shear wave velocity
time-averaged shear wave velocity within the upper 30 meters

water content

depth measured from ground surface

the depth below the groundwater table depth or the bottom depth of a crust layer
that is at least 250 mm thick with /. = 2.6 if below the groundwater table, per
Hutabarat and Bray (2022)

the top depth of a soil layer that is at least 250 mm thick after the first continuous
sand-like layer with I; =2 2.6 between depths of za and 10 m (zg will be 10 m if
there is no such soil layer), per Hutabarat and Bray (2022)

depth to the top of a soil layer

probability of triggering

probability of no triggering

probability of manifestation

probability of no manifestation

probability that liquefaction did occur in a critical layer for case histories where
manifestation was observed

probability that liquefaction did occur in a critical layer for case histories where
manifestation was not observed

probability that liquefaction did not occur in a critical layer for case histories
where manifestation was not observed

probability that the soil in the critical layer did not trigger for case histories where
manifestation was observed

probability of manifestation given triggering
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P[M|NT]
PINM|T]
PINM|NT]
P[Ti]
PINT.]
PIM.|T.]

PIMLINT.]

P[M.]
PINM,]
P[Mpg]
P[S]
P[T]S]
PIT.|S]

probability of manifestation given no triggering

probability of no manifestation given triggering

probability of no manifestation given no triggering

probability of triggering in a layer

probability of no triggering in a layer

probability of manifestation at the surface conditional upon triggering in a
particular layer

probability of manifestation at the surface conditional upon no triggering in a
particular layer

probability of manifestation of a layer

probability of no manifestation of a layer

probability of manifestation of the profile

probability of susceptibility

probability of triggering conditioned on the soil being susceptible

probability of triggering in a layer conditioned on the layer being susceptible
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AUC

BIO6
BI12
Bl14
BI16
BS06

CDSS
CPT

CSL

CSv
CTRX
CTS
CV-CDSS

DWG

FN
FLDM
FP
FPR
FRS

GED
GMIM
GMM

GUI

HB22

M
ICL

MAP
MRT

NASEM
NGA
NGL
NRC

OOP

ACRONYMS/ABBREVIATIONS

area under the curve in a ROC analysis

Boulanger and Idriss (2006) susceptibility criterion
Boulanger and Idriss (2012)

Boulanger and Idriss (2014)

Boulanger and Idriss (2016)

Bray and Sancio (2006) susceptibility criterion

cyclic direct simple shear
cone penetrometer test
critical state line

comma separated value
cyclic triaxial

cyclic torsional shear
constant-volume CDSS

Database Working Group

false negative prediction

field manifestation (e.g., FLDM ID in the NGL database)
false positive prediction

false positive rate

Fraser River Sand

Geosciences and Engineering Department
ground motion intensity measure
ground motion model

graphical user interface

Hutabarat and Bray (2022)

intensity measure
isotropic consolidation line

maximum a posteriori probability
Model Review Team

National Academies of Science, Engineering, and Medicine
Next Generation Attenuation

Next Generation Liquefaction

U.S. Nuclear Regulatory Commission

optimum operating point from ROC curve
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PEER
PLHA
PMT

RG
ROC

SFEV

SMT
SPT
SQL

SwRI®

N
TP
TPR

UCLA
U.S.

USGS
USBR

Pacific Earthquake Engineering Research
probabilistic liquefaction hazard analysis
Project Management Team

Regulatory Guide
receiver operating characteristic

surface evidence tag (0 = no surface manifestation, 1 = yes surface
manifestation)

Supported Modeling Team

standard penetration test

structured query language

Southwest Research Institute®

true negative prediction
true positive prediction
true positive rate

University of California, Los Angeles
United States

United States Geological Survey
United States Bureau of Reclamation
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QUALITY OF DATA, ANALYSES, AND CODE DEVELOPMENT

DATA: The primary data source for the work described herein is the NGL database
(http://nextgenerationliquefaction.org, doi: 10.21222/C23P70, Ulmer et al., 2023;

Brandenberg et al., 2020). The NGL database contains data related to case histories of
earthquake-induced liquefaction. These data are from the geotechnical community, including
academic researchers and practicing engineers. Because the intent of the database is to
accumulate as much useful and publicly available data as possible from the technical
community, some of this data is from existing scientific and technical publications and peer
reviewed journals, but some could also be sourced from the working records of researchers and
engineers. The data are uploaded to the database via a graphical user interface (GUI).
Reviewers evaluate the quality of data after it is uploaded to provide quality control. For other
data references in the database, such as the earthquake records from the Next Generation
Attenuation project, users should consult the original sources to determine the level of quality of
those data.

Other data sources are cited throughout the report and stored in project folders PRJ-3368 and
PRJ-2923 on DesignSafe-Cl (designsafe-ci.org)

ANALYSES AND CODES: The NGL database is a relational database that was developed
using the My Structured Query Language (MySQL) relational database management system.
The NGL database schema (i.e., its organizational structure) and a meta-dictionary that
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contains information about each database entry are available at
http://nextgenerationliquefaction.org (Brandenberg et al., 2020).
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1 INTRODUCTION

1.1 Project Background

The U.S. Nuclear Regulatory Commission (NRC) has identified the need to update existing
regulatory guidance on the methods used to evaluate seismic soil liquefaction in Regulatory
Guide (RG) 1.198, “Procedures and Criteria for Assessing Seismic Soil Liquefaction at Nuclear
Power Plant Sites” (NRC, 2003). RG 1.198 provides guidance to NRC licensees on acceptable
methods for evaluating seismic induced liquefaction that demonstrates compliance with

Title 10 of the Code of Federal Regulations (10 CFR) 100.23, “Geologic and Seismic Siting
Criteria.” The U.S. Bureau of Reclamation (USBR) is also interested in updated methods to
assess liquefaction in support of its Dam Safety Program.

Within the largely deterministic and semi-empirical NRC guidance in RG 1.198, sites that do not
pass screening or susceptibility criteria are required to undergo more detailed analysis methods.
RG 1.198 recommends application of relationships from Youd et al. (2001) when using
semi-empirical procedures to assess the potential for liquefaction triggering. This method,

which was the consensus industry standard in the late 1990s and early 2000s, is a
semi-empirical relationship based on a database of case histories that was initially developed by
Seed et al. (1985). More recent liquefaction case history databases have been developed by
research groups at several universities. Alternate approaches to model development and
different interpretations of available data by various modeling teams have resulted in different
semi-empirical relationships that often produce divergent estimates of liquefaction triggering
potential. This issue was at the core of a National Academies of Sciences, Engineering and
Medicine (NASEM) Report on the State of Practice in evaluating the potential for earthquake-
induced liquefaction triggering and consequences (NASEM, 2016, 2021). The recommendations
in that report informed the scope and purpose of this project, as discussed in this report.

The alternative of a probabilistic approach for liquefaction triggering analysis is mentioned in
RG 1.198 but details on what would comprise an acceptable probabilistic approach are not
described. The recommendations from the NASEM (2016, 2021) report also point to the need
for probabilistic liquefaction analysis methods. Specifically, the NASEM report recommends that
more fully probabilistic analyses should “incorporate the complete range of possible damaging
earthquake ground motions (in terms of both ground motion intensity and earthquake
magnitude), their probable frequency of occurrence, and the variability in the parameters and
adjustment factors used to estimate the CRR.” In addition, the NASEM report recommends that
“these probabilistic analyses can incorporate the epistemic uncertainty among the available
empirical models by using a logic tree approach that can also be used to consider uncertainty in
the site characterization. The uncertainties involved in the assessment of earthquake ground
motions, system response, physical damage, and losses make probabilistic methods for
liquefaction consequence assessment central to performance- based evaluation and design.”

Under the current task order (31310019F0030), supported jointly by the NRC and the USBR,
staff in the Geosciences and Engineering Department (GED) at Southwest Research Institute®
(SWRI®) and subcontractors at the University of California, Los Angeles (UCLA) are tasked with
developing a liquefaction triggering model based on an expanded database of liquefaction case
histories. Because liquefaction models are subject to interpretation of available data, it is
important that new probabilistic models capture epistemic uncertainty and aleatory variability of
inputs. Accordingly, the goal of this modeling task aims to capture the center, body, and range
of technically defensible interpretations. Past reports provided to the NRC and USBR

(e.g., Task 2 report, Ulmer et al., 2021; Task 4 report Ulmer et al., 2022c; Task 5b report,
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Ulmer et al., 2022a; and Task 7a report Ulmer et al., 2023c) discuss the expanded database,
other relevant supporting studies, and earlier phases of model development in more detail.

Prior to the USBR and the NRC’s efforts, the Pacific Earthquake Engineering Research (PEER)
Center initiated the Next Generation Liquefaction (NGL) project in 2013. The objective of the
NGL initiative is to organize research in soil liquefaction and related topics into a framework
conducive to broad data dissemination and development of improved procedures for modeling
of liquefaction susceptibility, triggering, and various effects. To meet these objectives, the NGL
project is organized into several activities, including database development (Brandenberg et al.,
2020; NGL, 2021), supporting studies, and model development. Through the current contract
between NRC/USBR-SwRI, we are collaborating with the NGL project to work toward common
goals. The work described herein was performed by the Supported Modeling Team (SMT) and
is part of NGL's model development efforts. Other NGL modeling teams are developing
alternative models to evaluate liquefaction triggering and its effects, but their efforts are not
supported by the NRC/USBR-SwRI contract and are not detailed herein.

The NGL project is organized into several teams as shown in Table 1-1. Some of these teams
operate outside of the current NRC/USBR-SwRI contract while others were fully or partially
supported by the contract as noted in the table. Each team had an assigned role associated
with one or more of the three main NGL activities (i.e., database development, supporting
studies, model development).

Table 1-1 NGL project participants

Team Role Individuals
SMT Supported Develop preliminary and final Steven L. Kramer (SMT-Lead)
Modeling liquefaction triggering model Scott J. Brandenberg
Team* Kenneth S. Hudson

Kristin J. Ulmer
Paolo Zimmaro

MRT Modeling Participatory peer review of Izzat. M. Idriss
Review preliminary and final model Lelio Mejia
Team* Thomas J. Weaver
Derek Wittwer
PMT Project Manage budget, schedule, John Stamatakos
Management meetings, and supporting Jonathan P. Stewart
Team* activities Steven L. Kramer
NGL Advisory Board Technical advice for all NGL Ross W. Boulanger
(active through activities Jonathan D. Bray
July 2023") Misko Cubrinovski

Izzat. M. Idriss
(Executive Advisor)

'Prof. Ross Boulanger was a named member of the NGL Advisory Board and his initial reviews and comments were
appreciated. Over the course of the work (since 2021), Prof. Boulanger was absent from NGL engagements with the
SMT and PMT despite attempts to reengage.
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Table 1-1 NGL project participants (cont’d)

Team Role Individuals Team

DWG | Database Technical and programmatic Scott J. Brandenberg
Working management of the NGL Paolo Zimmaro
Group™* Database Kristin J. Ulmer

Kenneth S. Hudson
Robb E.S. Moss
K. Onder Cetin
Kevin W. Franke

NGL Modeling Teams | Develop models for liquefaction
susceptibility, triggering, and/or
consequences using the NGL
database

Kramer et al. (SMT)
Moss/Cetin/Kayen et al.,
Franke/Lingwall/Stuedlein/Olson
Green/Rodriguez-Marek et al.,
Baise/Maurer/Thompson
Dashti/Kamai/Liel et al.,
Okamura/Kiyota
Carlton/Geyin et al.,

NGL Supporting Perform supporting research to fill
Studies™™* knowledge gaps not represented
by the case history database

Stuedlein et al. (susceptibility)
Carlton et al. (overburden and
shear stress effects)

*Supported by SWRI/NRC-USBR contract
**Partial support from SwRI/NRC-USBR contract

1.2 Tasks Under the Current NRC/USBR-SwRI Contract

Table 1-2 summarizes the tasks under the current NRC/USBR-SwRI contract. This current
contract has a period of performance from September 2019 through the end of March 2024.
This report provides CPT-based models to fulfill Task 7, and an addendum to this report that

provides SPT-based models fulfills Task 9.

Table 1-2 Summary of tasks under the current NRC/USBR-SwRI contract

1 Kickoff Meeting

2 Liquefaction Case History Database

2a: Add Case Histories to the NGL Database
2b: Address Feedback from Modeling Teams
2c¢: Database Maintenance

3 Establish Modeling Team

4 Develop Preliminary CPT-based Model Using NGL Database
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Table 1-2 Summary of tasks under the current NRC/USBR-SwRI contract
(cont’d)

5 Evaluate the Effects of Confining Stress and Initial Static Shear Stress on
Liquefaction Triggering

5a: Test/analysis plan

5b: Draft technical letter report

5c: Final draft technical letter report

6 Preliminary Model Peer Review

7 Develop Updated Triggering Model

7a: Technical letter report documenting progress
7b: Draft technical letter report on updated models
7c: Final technical letter report on updated models

8 Peer Review of Updated CPT-based Models

9 Develop SPT-based Model(s)
9a: Draft technical letter report on model(s)
9b: Final technical letter report on model(s)

The authors of this report are responsible for Tasks 4 and 7. The main goal of Tasks 4 and 7 is
to develop a model for predicting the occurrence or non-occurrence of liquefaction using an
expanded dataset of liquefaction case histories and results of supporting studies. Under a
previous contract with the NRC, the graphical user interface (GUI) for this expanded database
was developed by SwRI staff and the Database Working Group (DWG). The DWG continues to
provide oversight for and expand the database under Task 2 of the current NRC/USBR-SwRI
contract. We met frequently with the DWG to identify data needs, reconcile discrepancies in
documentation of the case histories, and clarify interpretations of the data in the NGL database.

The Model Review Team (MRT) is responsible for reviewing the main products of the SMT and
assessing whether the SMT used appropriate methods and considered a broad range of data
and models, as outlined in Tasks 6 and 8. This review does not necessarily constitute an
endorsement by the MRT of the SMT’s methods, results, or recommendations. The MRT is
composed of two external consultants, a representative from NRC, and a former representative
from USBR. An earlier version of this report was provided to the MRT for their review (August
2023). The earlier version of this report has been peer reviewed by the MRT, with all comments
received prior to March 22, 2024 documented in a separate report along with SMT responses
(Task 8, Ulmer et al. 2024)..

1.3 Objectives of Study and Scope of Report

The original scope of Tasks 4 and 7 of the current NRC/USBR-SwRI contract was to develop a
probabilistic triggering model that is capable of being used in combination with a seismic hazard
analysis to obtain the annual frequency of liquefaction triggering. In the course of the project
and in consultation with members of the NGL Advisory Board and other NGL modeling teams,
we concluded that models developed using case history data need to consider triggering in
combination with manifestation. Accordingly, as part of the deliverables for Tasks 4 and 7, we
provide liquefaction models which include susceptibility, triggering, and manifestation. By
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making this change, we clarify the meaning of key terms in liquefaction analysis, provide a
framework by which the different effects can be evaluated in a consistent and rational manner,
and highlight a major innovation of this study relative to prior work.

The purpose of this report is to document the development of these susceptibility, triggering,
and manifestation models. To that end, this report discusses the SMT’s approaches to (i) use
the extensive NGL case history database to perform analyses that previously would have been
logistically impractical and (ii) develop relationships required to compute probabilities of
liquefaction susceptibility, triggering, and surface manifestation. A preliminary version of these
models was presented in the Task 4 report (Ulmer et al., 2022¢) and an update to those models
was provided in the Task 7A report (Ulmer et al., 2023c).

Several independent groups provided feedback on the Task 4 report in its entirety or on
individual concepts or approaches documented therein. Some of these groups are contractually
obligated to support the current NRC/USBR-SwRI project, and others are part of the worldwide
NGL project. A summary of the sources of feedback to date on the Task 4 report include:

e The MRT. The MRT was composed of liquefaction experts, including external
consultants and members of the USBR and NRC project management teams that
oversaw the NRC/USBR-SwRI project. The MRT was tasked with providing review
comments as part of Task 6 and Task 8 in Table 1-1. Their feedback on the Task 4
report was formally documented in the Task 6 report and more informally through
several virtual discussions with the SMT.

e NGL Advisory Board. The NGL Advisory Board was composed of liquefaction experts
who were not formally supported on the NRC/USBR-SwRI project. They provided advice
and recommendations related to all NGL activities over most of the project duration
(through July 2023). Members of the SMT met with the Advisory Board monthly or
bi-monthly. Some members of the NGL Advisory Board provided written comments to
the Task 4 report and the SMT informally discussed these comments in regular NGL
Advisory Board meetings.

e Others, including members of the NGL modeling teams. NGL modeling teams are those
teams who intend to use the NGL database to develop liquefaction models and meet
bi-monthly to share results and discuss relevant topics of interest. The SMT is one of the
NGL modeling teams. Although the Task 4 report in its entirety was not shared with the
NGL modeling teams, the SMT presented several of the concepts in the Task 4 report
as they were being developed in order to solicit informal feedback from other NGL
modeling teams.

The following chapters describe updated liquefaction models. As such these models replace
those presented in the Task 4 report. In Chapter 2, we define technical terms that comprise the
framework for liquefaction analysis presented in this report (susceptibility, triggering,
manifestation), present the motivation for the work described in this report, and describe our
research approach. In Chapter 3, we summarize some of the major previous liquefaction
triggering models that utilize a critical layer framework for representing the conditions at a site
and some of the challenges inherent to that approach. In Chapter 4, we outline the regression
framework that has been used for developing the updated triggering models. This approach
separately considers the mechanisms of liquefaction triggering and manifestation. In Chapter 5,
we describe the steps required to process liquefaction case histories and assign layers and their
properties for use in model development. These steps include several elements including a
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model to relate soil behavior type index (/) to fines content (FC), an automated layer detection
algorithm, and a modeling approach for predicting the probability of surface manifestation. In
Chapter 6, we provide the components of the updated model, which include equations to
compute the probability of triggering based on data from cyclic tests performed in the laboratory
and equations to compute the probability of surface manifestation based on soil layers derived
from cone penetrometer test (CPT) data and triggering probabilities within the layers. In Chapter
7 we outline the limitations of the models presented in this report and identify future work that
has the potential to improve model performance. Finally, in Chapter 8, we summarize the
conclusions of our work.
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2 BACKGROUND

To provide a better understanding of the components of the proposed preliminary model and the
necessity of the advances presented in this report, we provide the following brief summary of
the mechanics of liquefaction and the current state-of-the-art in liquefaction evaluation. For a
more detailed description, we recommend reviewing summary documents such as the 2016
state-of-the-art and state-of-the-practice report by the NASEM (2016; 2021).

2.1 Liguefaction Mechanics

Soil liquefaction (referred to simply as “liquefaction” for the rest of this document) is a
substantial loss of soil stiffness and shear strength that results from increased pore water
pressures. Increased pore water pressures occur in contractive or temporarily contractive
saturated granular soil subjected to cyclic shear loading (e.g., earthquake ground motions)
under undrained loading that if continued for a sufficient duration can cause the pore water
pressures to approach the level of the initial vertical effective stress (¢’vo). If the pore pressures
reach @'\, a state of initial liquefaction (Seed and Lee, 1966) is reached. Alternative definitions
of liquefaction have been based on granular soil reaching certain levels of cyclic shear strains,
which may occur at different times than initial liquefaction. The levels of strain that develop in a
profile, and their proximity to the ground surface, influence whether the effects of liquefaction
are visually apparent, or manifest, at the ground surface.

Some soil types cannot experience liquefaction—for example, clays generally do not develop
cyclic pore pressures as large as those for sands, and while they can experience strength loss,
it is generally less severe than that for sands (with the exception of quick clays). For this reason,
it is necessary to distinguish soils susceptible to liquefaction from those that are not. The use of
different terms in relation to liquefaction problems (susceptibility, triggering, manifestation) has
the potential to cause confusion. Our aims here are to clearly define those terms and to
describe the past modeling approaches relied on by the liquefaction research and

engineering community.

2.1.1 Liquefaction Susceptibility

Within the geotechnical engineering community, different engineers have different
understandings of the word “susceptibility” as applied to liquefaction problems (Chapter 3 of
Stuedlein et al., 2023b). However, as used here, liquefaction susceptibility is related to
fundamental material characteristics of the soil that control the level of pore pressure generation
and strength loss that is possible if the soil were to be cyclically sheared. Susceptibility is
unrelated to the density and current saturation level of the soil; while both of these factors affect
the potential for triggering, they do not control the fundamental behavior of a soil.

Two end members of soil response to cyclic loading can be simply summarized as “sand-like”
behavior (i.e., liquefiable) and “clay-like” behavior (i.e., not liquefiable). Fine-grained soils can
either exhibit clay-like or sand-like behavior. Clays will tend to exhibit clay-like behavior. The
mechanical properties of clays are controlled by inter-particle interactions that are influenced by
various types of chemical bonding; such materials experience strength loss from pore pressure
increase, but strength from chemical bonding remains and strength loss is somewhat
moderated. Silts can have different levels of plasticity and may exhibit sand-like or clay-like
behavior. Some silt particles are sand-like in that they exhibit the same mechanical properties
as sands (strength is related to gravitational forces and becomes very small when pore pressure
approaches the initial effective stress). Other silts can be influenced by chemical bonding, as for
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clays. Soil plasticity, as described by the plasticity index (P/), is loosely connected to these soil
behavior types; granular soils including some silts (e.g., rock flour) are non-plastic whereas
clays are by definition plastic. An analysis of susceptibility seeks to distinguish these soil
behavior types.

Based on these considerations, Boulanger and Idriss (2006) (BI06) recommended procedures
to distinguish fine-grained soils for modeling purposes as either “sand-like” materials that can
liquefy or “clay-like” materials that can experience cyclic softening. Figure 2-1 shows the
positions of different soil materials in PI-LL space (as used for a plasticity chart, where LL is the
liquid limit), and suggests that soils with P/ > 7 are clay-like and soils with Pl < 4 are sand-like.
Boulanger (2023) argued that BI06 should not be considered to be a susceptibility model due to
its intended purpose to guide the selection of tools for ground failure modeling. However, given
the definition of susceptibility adopted here, for practical purposes we consider BI06 to be a
laboratory-based susceptibility model.

Another susceptibility model is that of Bray and Sancio (2006) (BS06), who assembled cyclic
test data from soil samples from Adapazari, Turkey, which experienced ground failure in the
1999 Kocaeli earthquake. The cyclic test results were used to distinguish materials with different
engineering responses. Materials were considered to be liquefiable if they experience excess
pore water pressure ratios, r, > 90% and similar ‘banana-shaped’ cyclic shear stress vs. cyclic
shear strain loops and to be not liquefiable if they lack those characteristics. As shown in

Figure 2-2, they found that silts and clays with P/ < 12 and water content (w.) greater than

85% of LL were liquefiable according to this definition, while soils with Pl > 18 and w, < 0.8LL
were not.

Boulanger (2023) argued that the BI06 and BS06 criteria serve different purposes and should
not be compared. This issue was discussed extensively at a 2022 PEER workshop (Stuedlein et
al., 2023b), because most practitioners use these as alternative susceptibility models. We
consider the two models to, in effect, represent alternative methods for evaluating whether a soll
should be considered susceptible to liquefaction for modeling purposes. As noted by Stuedlein
et al. (2023b) — “The models are supported by experimental data and the expert interpretation of
that data by their developers. Differences in the models can largely be attributed to differences
in the data they are based upon, and differences in the developers’ interpretation of that data.”
Accordingly, the differences between the models represents epistemic uncertainty, which can
be significant for many applications. Potential causes for these differences include the different
soils that were tested; different methods of test data interpretation to judge different types of soil
behavior; and the cyclic testing for the two studies having been performed at different stress
levels (i.e., the ratio of applied shear stress to undrained strength was generally < 0.3 for BS06
and was generally > 0.5 for BI06). It should also be noted that the BS06 criterion includes,
through its use of the water content, information about the density (or “state”) of the soil, which
is inconsistent with the previously described definition of susceptibility.

Despite the use of soil index properties in current criteria (P/ and LL), the soil behavior that
indicates whether a soil is sand-like or clay-like is better assessed from: (i) the similarity of slope
between the critical state line (CSL) and isotropic consolidation line (ICL), (ii) the shape of cyclic
stress-strain loops, and (iii) the maximum pore pressure ratios that develop during cyclic
shearing. We currently lack specific metrics, and identified limits on those metrics, that can be
used to translate these more advanced indicators of soil behavior into assessments of
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susceptibility potential, although some work has been done to move toward quantitative metrics
to distinguish sand-like vs clay-like behavior (Stuedlein et al., 2023a). Both the BIO6 criterion in
Figure 2-1 and the BSO06 criterion in Figure 2-2 show intermediate zones between sand-like

(or susceptible) and clay-like (non-susceptible) where the soil’s behavior is ambiguous. This
class of “intermediate” soils includes low-plasticity fine-grained soils and sands with a significant
content of plastic fines. Any future susceptibility criteria are likely to not have a clean cutoff
between the two end members and thus to remain ambiguous with respect to these materials.

The rationale for the SMT’s choice of susceptibility criteria as part of case history processing is
described in Chapter 4.

21.2 Liquefaction Triggering

In liquefiable soils (i.e., materials judged as susceptible to liquefaction), cyclic undrained shear
can produce progressive pore pressure increase and effective vertical stress decrease as the
number of cycles of loading increases (e.g., Figure 2-3). This increase is often expressed as a
ratio of the excess pore water pressure (Uexc) to 0’vo, Which is the excess pore pressure ratio (r.),

— !
= uexc/a v0 2-1

Prior to cyclic loading, r, = 0. A between-cycle increase in r, indicates the soil may be advancing
towards liquefaction. Initial liquefaction is defined as having occurred at the first cycle number
where r, = 1.0 is achieved. In Figure 2-3, initial liquefaction occurs at 21 cycles. An alternative
definition of liquefaction is when a certain level of cyclic shear strain (e.g., +/- 3%) is first
exceeded. Based on that definition, liquefaction occurs at 22 cycles in Figure 2-3.

Tests such as that shown in Figure 2-3 can be used to evaluate the resistance of a given soil to
liquefaction. The resistance is typically expressed as the cyclic resistance ratio, CRR, which is
the cyclic stress ratio, CSR required to liquefy granular soils in a standard number of cycles,
typically 15 to 20, corresponding approximately to the duration of shaking from a reference
moment magnitude (M) M7.5 earthquake. The demand on a given soil element from a given
earthquake is the ratio of a representative cyclic shear stress amplitude (typically 65% of the
peak) to the initial vertical effective stress and is denoted cyclic stress ratio, CSR. Thus,
liquefaction triggering occurs when the demand exceeds the capacity, or when CSR > CRR.
This stress-based analysis is one of three general options, the others being strain-based

(e.g., Dobry et al., 1982) or energy-based (e.g., Ulmer et al., 2023b). The stress-based
approach is the most commonly used framework (NASEM, 2016, 2021). The SMT chose to use
the stress-based framework because (i) of its common utilization in practice, which provides a
strong precedent for the eventual NGL models and (ii) it provides a direct and simple way to
estimate seismic demands at the NGL case history sites and in forward applications. For more
information on the strain- and energy-based methods, we recommend relevant sections in the
NASEM report (2016, 2021).

The use of liquefaction case histories was initiated in the late 1960s (Seed and Idriss, 1971;
Whitman, 1971). Seed and Idriss (1970) and Whitman (1971) estimated peak shear stress at
depth z as the product of peak ground acceleration (PGA) and total stress (0,) at depth z. This
product represents the stress if the soil profile were behaving as a rigid body. Seed and Idriss
(1971) included a depth-dependent shear stress reduction coefficient, rq, to account for the
flexibility of the soil as:
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where t¢ycmax is the maximum cyclic shear stress at depth z, PGA is the horizontal peak ground
acceleration at the ground surface, g is the acceleration of gravity, oy is the total vertical stress,
and ry is a depth-dependent shear stress reduction coefficient that accounts for the nonrigid
response of the soil deposit. The 0.65 coefficient reduces the CSR from the peak value of the
shear stress to a more representative value.

Liquefaction triggering is not only dependent on the CSR but also on the number of loading

cycles or duration of shaking. To account for the number of cycles, CSR is typically adjusted
using a magnitude scaling factor (MSF) to compute an equivalent CSR for a reference M7.5:
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Commonly used relationships for MSF are provided by Youd et al. (2001), Cetin et al. (2004),
Cetin and Bilge (2012), and Boulanger and Idriss (2014). Some investigators have recently
suggested that the slope of MSF with magnitude is dependent on relative density

(Boulanger and Idriss, 2014; Kishida and Tsai, 2014), whereas others have found that this
density-dependence of slope is not supported by all available data (Ulmer et al., 2018;

Ulmer et al., 2022b). This topic is addressed in Section 6.2.8 of this report.

Liquefaction resistance, CRR, has often been evaluated from case histories of observations of
ground failure in the field during past earthquake events. As described further in Chapter 3,
these traditional methods require critical assumptions regarding identification of the layer
causing the ground failure when it has occurred, or the layer mostly likely to have caused
ground failure when it did not occur. The fundamental problem is that the field data of yes/no
manifestation is non-uniquely related to layer performance. For these reasons, we apply an
alternative approach using cyclic testing performed in the laboratory to develop an initial
estimate (or “prior”) for CRR. Details about these specific approaches are discussed throughout
the report, but particularly in Chapter 3 and Section 6.2. Definition of the resulting CRR as a
function of some in situ penetration resistance or relative density (D) is the objective of most
past liquefaction triggering modeling efforts, as discussed in Chapter 3.

Once the CRR and CSR are established, the factor of safety against liquefaction (FS;) is
computed as the ratio of CRR to CSR. Alternatively, in probabilistic models, the probability of
liquefaction (P.) can be computed as a function of CSR and penetration resistance. Using a
probabilistic approach provides advantages over a binary “yes” or “no” evaluation typically used
in the deterministic simplified triggering procedures because it conveys more information on the
likelihood that liquefaction will occur, which is needed for performance-based earthquake
engineering applications.

2.1.3 Liquefaction Manifestation

Once liquefaction triggers in a soil layer, the type and magnitude of consequences can vary
significantly. Potential consequences include settlement and lateral displacement, sediment
ejecta (e.g., sand boils), slumping and failure of embankments, loss of foundation support,
increased lateral loads on and reduced lateral resistance of earth retaining structures and their
foundations, buoyancy uplift of buried structures, and modification of free-field ground motions.
Some of these effects (e.g., slope, foundation, retaining structure movements) are stability
problems and as such their potential for occurring is derived using equilibrium calculations with
reduced strengths in liquefied strata. Others can occur in flat or nearly flat ground (sand boils,
ground oscillation) and the likelihood of occurrence is determined using a liquefaction
manifestation analysis that considers the thickness and depth of liquefied strata and the
properties of other (non-liquefied) strata in a profile. Here we describe three methods for
manifestation analysis from the literature: relative layer thickness criteria, severity index criteria,
and hydraulic profile analysis criteria.

2.1.3.1 Relative Layer Thickness Criteria

Ishihara (1985) proposed bounding curves of thickness of a non-liquefiable surficial soil layer
(H+) vs thickness of an underlying liquefiable sand layer (H>) to predict the occurrence of
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surficial manifestation of liquefaction-induced ground damage. This is illustrated in Figure 2-4.
This method is widely used to essentially indicate whether a non-liquefiable crust can suppress
surficial manifestation of liquefaction that triggers at depth. Rateria and Maurer (2022) revisited
this relationship and provided updated H;-H> models. However, they noted that H; and H: are
not necessarily entirely efficient nor sufficient to predict manifestation, and they recommended
that new manifestation models are needed to explicitly account for other influential factors

(e.g., effects of strata permeability, sequencing of layers, depth, and thickness on pore pressure
gradients and transmission).

2.1.3.2 Severity Index Criteria

Liquefaction severity indices estimate the severity of surface manifestations based on the
cumulative liquefaction response of a profile. These models are useful because they provide
indices of cumulative soil profile response, which can then be related to surface manifestations
empirically. These methods do not require the identification of a critical layer as triggering
models do.

Examples of common liquefaction severity indices include: the Liquefaction Potential Index
(LPI;-lwasaki et al., 1978); the Ishihara-inspired Liquefaction Potential Index (LPI;sH; Maurer et
al., 2015a); and the liquefaction severity number (LSN; van Ballegooy et al., 2014).

The LPI provides a depth-weighted index of the potential for triggering of liquefaction at a site
using the following equation:

20m
LPI = f F-W(z)dz 2-4
0

where F=1-FS, for FS. <1 and F=0 for FS. > 1, W(z) is the linear depth weighting function,
W(z) = 10-0.5z for z < 20 m and W(z) = 0 for z > 20, and z is depth in meters.

LPI depends on FS; within the upper 20 m of the soil profile and can apply to profiles with
multiple liquefiable layers rather than selecting one critical layer. LPI ranges from 0 to 100 and
Iwasaki et al. (1978) found that among 45 sites that liquefied in the 1964 Niigata earthquake, the
LPI corresponds to the severity categories presented in Table 2-1. Conditions for which “low”
severity is predicted effectively amount to no manifestation in these criteria.

Maurer et al. (2015a) modified the LPI framework to include a power law depth weighting
function instead of a linear function and to account for limiting thickness of non-liquefiable
capping layer according to the Hs-H> chart developed by Ishihara (1985) (Section 2.1.3.1). This
modified LP/ is called LPI;sy, which Maurer et al. (2015a) found to improve predictive capacity
for 60 case histories from several earthquakes in different regions outside Japan.

LSN uses a power law depth weighting factor to determine cumulative liquefaction response of
a profile and includes contributions from layers that have FS; < 2 with the following equation:

LSN = 1000 [ 2dz 2-5

where ¢, is the post-earthquake volumetric strain at depth z in decimal form and z is the depth in
meters. A method developed by Ishihara and Yoshimine (1992) and implemented by Zhang et
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al. (2004) with CPT data can be used to compute ¢,. This method computes post-liquefaction
volumetric strain as a function of FS;. The LSN index value corresponds to severity categories
shown in Table 2-1.
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Figure 2-4  (a) Relationship between thickness of liquefiable layer and thickness of
overlying layer at sites for which surface manifestation of level ground
liquefaction has been observed and (b) guides to evaluation of respective
layer thicknesses (after Ishihara, 1985)

Table 2-1 LPI and LSN severity categories and index values

Severity LPI Value LSN Value
Low NA <20

Moderate <5 20 to 40
High 5t0 15 > 40

Very High >15 NA
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2.1.3.3 Hydraulic Profile Analysis Criteria

A method for estimating severity of sediment ejecta onto the ground surface has recently been
presented by Hutabarat and Bray (2021) using effective stress analyses. They have also
presented a simplified method to estimate sediment ejecta using CPT data (Hutabarat and Bray,
2022). They define a liquefaction ejecta demand parameter (Lp) that estimates the upward
seepage pressure that could produce artesian flow due to elevated excess hydraulic head and a
crust layer resistance parameter (Cg) that captures the strength and thickness of the non-
liquefiable crust layer. The method is illustrated in Figure 2-5.

The required parameters are calculated as follows:

Sy = Koopptan g if Iz > 22
Cr () = [ 5,dz { ¢ a - 2-6

Sy =0 L <22
Nie

m om

where H; is the thickness of the non-liquefiable layer in meters as defined in Ishihara (1985), s,
is the undrained shear strength of the crust layers in kN/m?, K, is the coefficient of lateral
pressure at-rest (usually assumed to be 0.5), ¢ is the critical state friction angle assumed to be
33 degrees (for quartz sand), q:is the tip resistance from CPT corrected for pore pressure, and
Ny is between 14 and 20 based on /¢, and /s is the modified soil behavior type index (Robertson,
2016). To compute Lp, first r, is estimated as a function of FS; (as computed using Boulanger
and Idriss, 2016) using a relationship proposed by Tokimatsu and Yoshimi (1983):

(a5)
2FS\*F/ _
=1 L .
= 0.5 + sin — if1<FS§ <3 2.7
\ 1if FS, <1

where ais 1.0 and S is -0.2. Next, the excess head (hexc) is computed:

1,0,
hexc — uvvo 2-8
Yw

where y,, is the unit weight of water (9.81 kN/m?). The excess head can be used to estimate
liquefaction ejecta demand. Another factor in ejecta demand is the vertical hydraulic conductivity
(kv) of the profile which can be estimated from CPT data using the Robertson and Cabal (2015)
method:

k,(m/s) = 10(0-952-3.041,) 2.9
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Figure 2-5 (a) Sediment ejecta mechanisms in a typical thick sand site and (b) artesian
flow potential concept (Hutabarat and Bray, 2022)

This correlation is only applicable when /. is between 1 and 3.27. The k, for a clean sand with /¢
= 1.8 yields kcs = 3.0E-5 m/s which is used to normalize the k, in this method. Finally, Lp can be
calculated as an integral of the normalized k, and head with depth:

B k, .
wa k_ (hexc - hA)dZ lf hexc 2 hA
ZA cS

0if hexe < hy

Lp(kN/m) =

where z4 is the depth below the groundwater table depth or the bottom depth of a crust layer
that is at least 250 mm thick with /; = 2.6 if below the groundwater table, zs is the top depth of a
soil layer that is at least 250 mm thick after the first continuous sand-like layer with /. = 2.6
between depths of z4 and 10 m (zg will be 10 m if there is no such soil layer), and ha is the initial
hydraulic head (i.e., the depth in m).

Hutabarat and Bray (2022) computed the Lp and Cr at 176 field case histories and used
observations of ejecta severity at those sites. Using this data, they created a chart with
categories based on the Lp-Cr position as shown in Figure 2-6. This provides a useful approach
for estimating liquefaction severity in terms of ejecta at a site based on CPT data.
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Figure 2-6  Ejecta severity using Lp and Cr parameters at: (a) thick sand sites and
(b) stratified soil sites. The inserts below each plot clearly show data for Lp
< 6 kN/m (Hutabarat and Bray, 2022).

2.2 NGL Approach

In this section we describe two aspects of the NGL approach. The first concerns the philosophy
and organization of the project as a whole while the second concerns model development.

2.2.1 NGL Objectives and Organization

The NGL project has different objectives and is organized in a fundamentally different manner
than typical research projects. As described in Section 1.1, NGL aims to advance the state-of-
the-art in liquefaction research and to provide end users with consensus approaches to assess
liquefaction potential within a probabilistic and risk-informed framework. To accomplish this, we
have collected and organized liquefaction information in a common and comprehensive
database to provide all researchers with a substantially larger, more detailed, more consistent,
and more reliable source of liquefaction data than existed previously. Based in part on this
database, as well as results of supporting studies, it is possible to create probabilistic models
that provide hazard- and risk-consistent bases for assessing liquefaction susceptibility, the
potential for liquefaction to be triggered in susceptible soils, and the likelihood of surface
manifestation. By making all information publicly available and disseminating tools and interim
research products, the process is transparent and inclusive at the levels of database
development, design, and execution of supporting studies, and model development, as
recommended by NASEM (2016; 2021).

The three major phases of the NGL project scope are database development and maintenance,
supporting studies, and model development.

The database has been developed by a Database Working Group (DWG; Chair — Brandenberg)
with regular community interaction and feedback. At the present time and throughout its
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development, reviewed portions of the database have been publicly accessible. The database is
described further in Section 2.3 and in a journal paper (Brandenberg et al., 2020), and is
available at: http://www.nextgenerationliqguefaction.org (Ulmer et al., 2023d).

NGL supporting studies aim to constrain components of liquefaction models using information
derived from sources other than case histories. These external constraints are needed when the
effect in question can be reasonably predicted using principles of soil mechanics or related
fields but cannot be reliably established from case histories alone. The two topics addressed to
date using supporting studies are stress effects on liquefaction resistance and liquefaction
susceptibility (as defined in Section 2.1.1). The work on stress effects is presented in a separate
report (Ulmer et al., 2022a) and summarized in Section 6.2. The work on susceptibility is largely
supported from separate contracts and the results of a major workshop on the topic are
provided separately (Stuedlein et al., 2023b). Our current thoughts on the modeling of
susceptibility are presented in Section 6.1.

The third major project component is modeling, which is the subject of the next subsection.
2.2.2 Model Development

NGL modeling can be viewed as having two general aspects. The first is the modeling activity
supported by and initiated under this present contract. The researchers undertaking this work
are the SMT (Chair — Kramer). The second is a broader, community-based modeling activity
with multiple teams that are coordinated by NGL project personnel; these teams are not
financially supported by the current NRC/USBR-SwRI contract. The modeling-related activities
of the SMT are the subject of this report (Chapters 4-6). The community-based modeling activity
includes seven teams in addition to the SMT. These teams are all using (or planning to use) the
NGL database and have agreed to share interim findings in regular meetings. The work of these
teams is generally at early stages; their research approaches and preliminary findings will be
presented in due course and are not the subject of this report. NGL facilitates the use of

NGL resources by other modeling teams and organizes bi-monthly coordination meetings
among modelers.

The SMT approach for model development aims to utilize soil mechanics principles to the
maximum extent possible for prediction of soil responses (susceptibility, triggering) and to utilize
field case histories to guide the development of models for profile responses (manifestation). An
important aspect of our approach is that we seek to interpret the data in an objective, systematic
and repeatable manner. We do not consider “systematic” or “repeatable” to be incompatible with
the use of engineering judgment; rather, we apply our judgment, informed from case history
interpretation, to develop the proposed systematic procedures. This has the advantage of
producing procedures that can be used in forward applications (i.e., by practitioners) in a
manner that is consistent with how the models were developed. As will be discussed in

Chapter 3, this is not always the case with current models.

The flow chart in Figure 2-7 illustrates the components of the SMT’s model building process.
This flow chart highlights the main components of this process:

1) Objective data used as inputs to the models and prior relationships. This includes data

obtained from the NGL database (Section 2.3) and published studies, such as laboratory
tests used to estimate the cyclic resistance of soils against liquefaction.
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2) Objective algorithms used to quickly and consistently process the case history data from
the NGL database. These are described in Chapter 5, and include a layer detection
algorithm for CPT data.

3) Human review of the individual case histories and the iterative review of regression
results. The SMT manually reviewed case histories (e.g., Section 5.1) and discussed the
results of the regression products (e.g., Section 6.2.7, Section 6.3) at several stages
throughout the model development process to verify that the data-driven results are
reasonably aligned with our current understanding of liquefaction mechanics.

4) The regression process (Section 4.4, Section 6.3) and its resulting products
(Section 6.3.5, Section 6.3.7).

- -
NGL Case L2 d(‘;‘(t;di: e le-FC Laboratory
History M erz " dg) Relationship Data from
Data Literature

Data-Dri nes Assi Case Histories
’m:':; eg‘f,if"r’ls o o Repressselg?ative "Ye:'s;?l(l'o" Celicaien
Processin, [ > f i Algorithms
(Algorithms) Y Detesie Properties Manifestation 9
Review

Review and _—
Application of Case History e F:ﬂii ase
Judgment Interpretation itones Regression Accept
(smT bers) Assumptions
Adjust Assumptions
/
P[M] Predictions,
P[T]
Relationship
Update P[T]
Prior Using

Regression Parameters
P[M] from

Profile
Regression Case Histories P[M]

Relationship
Figure 2-7  Flow chart illustrating the components of the SMT’s model building
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2.3 NGL Database Summary

The NGL database is publicly available and contains geotechnical site investigation data,
post-earthquake observations of liquefaction manifestations (or lack thereof), and earthquake
ground motion data. The organizational structure of the database was developed over the span
of several years with input from the technical community, and the development was overseen by
the database working group. Details are discussed by Brandenberg et al. (2020). The database
is accessible via a web-based GUI) at nextgenerationliquefaction.org (Ulmer et al., 2023d)
where users can upload new data, view and download existing data, and where the database
working group can review uploaded data after it is submitted for review. Figure 2-8 is a
screenshot of the NGL database GUI showing focal mechanisms for earthquake events, and
locations of liquefaction case history sites. Figure 2-9 is a screenshot zoomed in on the

2-13



& Cc @ nextgenerationliquefaction.org

i = g PN Gt
= uGL View Data ~ | Interact With Data ~ ¥ About ~ ﬁ Actions ~

b (oD o

Sites v <
Field Performance ~ +
Field Investigation ~ -
Earthquake ~ Topographic Map (high res.)
Imagery Map (middle res.)
Terrain Map (low res.)
Event name -
Event Information
Magnitude @) roru Py UROPE
TERIC Event
. & ics (G 9'? i D Y @
min nax 16 5 ]
§ General description
e ® site
i L Pacifi
[sum q o =
:,‘ AFRICA
Qcer
Statistics ¥ SOUTH Q TestPits

ndian © Non-Invasive Geophysical
AUSTRALIA
@ \ @ Invasive Geophysical
& 14
47 Q Water Table
Other

Field Performance

@ Observation (Note)

St £ ¥ USNRC MPC L0717

PEER AWV Keeping Utah Moving

Figure 2-8  Screenshot of NGL web-based GUI showing event focal mechanisms and
site locations

Christchurch region (New Zealand), where metadata for a cone penetration test has been
activated by clicking on a CPT icon. Figure 2-10 is a screenshot showing measured cone

penetration test data. Data for any site may also be downloaded in a CSV format, which is
generated from the database on command.

Table 2-2 summarizes the number of different site investigations and liquefaction/non-
liquefaction observations contained in the NGL database. The numbers of observations and site
investigations available in the NGL database are several times more than the number of case
histories contained in legacy datasets (presented subsequently in Table 3-1) and constitute a
significant increase in publicly available data for producing liquefaction models compared to
what was available before the NGL database. Note, each investigation-observation pair cannot
necessarily be treated as an independent case history because in many cases there are
multiple investigations and observations in close proximity at the same site, as is discussed in
more detail in Section 5.1. Thus, the number of case histories that can be potentially extracted
from the NGL database is less than the number of reviewed observations.
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Figure 2-9  Screenshot of data available in Christchurch Region, including metadata
for one of the cone penetration tests activated by clicking a red CPT icon
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Figure 2-10 Screenshot of CPT data obtained by pushing the green plot button from
Figure 2-8

Table 2-2 Status of data quantities contained in NGL database

Total In Under Review Reviewed
Type ; (Two Reviews)
Number Preparation (No Reviews) | (One Review)
CPT Soundings 975 219 89 20 647
Boreholes 994 109 190 33 662
Surface Wave 48 2 20 4 22
Measurements
Invasive Vs 154 0 14 0 140
Profiles
Liquefaction 752 84 54 9 605
Observations
Non-Liquefaction 490 50 25 7 408
Observations
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The GUI does not facilitate development of end-to-end workflows in which users can query data,
analyze it, and draw conclusions. To facilitate such workflows, the database is replicated daily to
DesignSafe (Rathje et al., 2017) where users can query the data via Python scripts in Jupyter
Notebooks. Example-use case notebooks have been developed by the project team to provide
building blocks upon which other users can build custom workflows. The use cases are
documented at https://www.designsafe-ci.org/rw/use-cases/. Figure 2-11 is a screenshot of the
documentation page for the use case, which is accessible from the DesignSafe main page
through the Workspace dropdown menu. The documentation briefly describes the contents of
various Jupyter Notebooks and contains links where users can open the notebooks and run the
example queries. Figure 2-12 shows one of the cells in the ExampleNotebooks.ipynb Jupyter
notebook that makes use of SQL join statements to synthesize CPT and site data for the
Wildlife Array site. Other notebooks available in the use case documentation include a cone
penetration test viewer, shear wave velocity test viewer, and a notebook developed during a
webinar in October 2021 (https://youtu.be/TNOPOU4Ix5w).
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Background Brandenberg, S.J. - UCLA
Understanding the Database Ulmer, K.J. - Southwest Research Institute
Schema Zimmaro, P. - University of Calabria
Querying Data via Jupyter
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Installing Database Connection

Script

Example Queries
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Citations and Licensing

« Please cite Zimmaro, P, et al. (2019) to acknowledge the use of the NGL Database. Data in the
NGL database has been gathered from these published sources. If you use specific data in the
database, please cite the original source.

« Please cite Rathje et al. (2017) to acknowledge the use of DesignSafe resources.

« This software is distributed under the GNU General Public License.

Description

The Next Generation Liquefaction (NGL) Project is advancing the state of the art in liquefaction
research and working toward providing end users with a consensus approach to assess liquefaction
potential within a probabilistic and risk-informed framework. Specifically, NGL's goal is to first

Use case documentation describing interactions between NGL database

Figure 2-11
and Jupyter Notebooks in DesignSafe
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3. Query cone penetration test data at Wildlife
liquefaction array

This query retrieves all cone penetration test data from the Wildlife liquefaction array. INNER JOIN statements are
needed to link SCPT to SCPG (using SCPG_ID), SCPG to TEST (using TEST_ID), and TEST to SITE (using SITE_ID). This

query demonstrates propagation of primary and foreign keys through the schema heirarchy.

import designsafe_db.ngl_db as ngl
import pandas as pd

command = "SELECT TEST.TEST_ID, TEST.TEST_NAME, SCPT. SCPT_DPTH, SCPT.SCPT_RES, SCPT.SCPT_FRES FROM SCP
command += 'INNER JOIN SCPG ON SCPT.SCPG_ID = SCPG.SCPG_ID '

command += 'INNER JOIN TEST ON TEST.TEST_ID = SCPG.TEST_ID '

command += 'INNER JOIN SITE ON SITE.SITE_ID = TEST.SITE_ID '

command += 'WHERE SITE.SITE_NAME = "Wildlife Array™'

df = ngl.read_sql(command)

pd.set_option('display.max_rows', 10)

"

of
4 >
TESTID TEST_NAME SCPT_DPTH SCPT_RES SCPT_FRES
0 977 3Cg_pre 00 00000  0.000000
1 977 3Cg_pre 01 00000  0.000000
2 977 3Cg_pre 02 00000  0.000000
3 977 3Cg_pre 03 00000  0.000000
4 977 3Cg_pre 04 0588 0021950
2384 1974 7Cp 112 09810  0.194238
2385 1974 7Cp 113 09810  0.144207
2386 1974 7Co 14 14715 0.112864

Figure 2-12 Screenshot of “ExampleQueries.ipynb” Jupyter notebook illustrating a SQL
query to retrieve cone penetration test data for the Wildlife Array site



3 LEGACY MODELS AND CRITICAL LAYER SELECTION

3.1 Past Approaches to Developing Triggering Models

Since its devastating effects became widely recognized following the 1964 Niigata and Good
Friday earthquakes in Japan and Alaska, respectively, soil liquefaction has become an
important topic of both research and engineering practice. Early efforts at understanding the
basic mechanics of liquefaction utilized laboratory tests, principally cyclic triaxial tests, to identify
the material, environmental, and loading parameters that most strongly affected the potential for
triggering of liquefaction. Because the loose, clean, saturated sands in which liquefaction had
typically been observed were extremely difficult to sample, laboratory tests were typically
performed on reconstituted test specimens. These testing programs revealed the influence of
important factors such as loading amplitude and duration, soil density, and initial effective stress
on liquefaction potential.

Cyclic laboratory tests involved the application of uniform cycles of harmonic loading and their
results were most commonly expressed in terms of the amplitude and number of cycles required
to trigger liquefaction, either by developing a pore pressure ratio of 100% (initial liquefaction) or
by exceeding some limiting shear strain amplitude. Plots of cyclic stress amplitude (normalized
by initial effective stress to form a cyclic stress ratio, CSR) versus number of loading cycles to
trigger liquefaction, often referred to as cyclic strength curves, were used to characterize
liquefaction resistance. Over time, cyclic triaxial testing has been supplemented by cyclic simple
shear testing — each has advantages and limitations. Both have provided tremendous insight
into trends in the fundamental behavior of liquefiable soils under carefully controlled and
measured conditions and have allowed testing over wide ranges of conditions (e.g., initial
effective stress levels) that are important in geotechnical engineering practice.

Further testing, however, showed that the positions of cyclic strength curves were strongly
influenced by the manner in which test specimens had been reconstituted (i.e., by the initial
fabric of the soil). Because the in situ fabric of any particular soil, which is recognized as a
complex function of its grain size characteristics, original depositional environment, and
subsequent stress/strain history, cannot be accurately reproduced by laboratory reconstitution,
laboratory-based characterization of liquefaction potential fell out of favor in some regions

(like the U.S.) but remained in use for intact specimens in other regions (Japan). The profession
in the U.S. then turned to case history-based methods for evaluating the potential for the
triggering of liquefaction; these methods have become the de facto standard in geotechnical
engineering practice.

The most common method used to obtain what is commonly considered a “triggering” model is
to analyze case histories of observations of liquefaction manifestation or lack thereof in the field
during past earthquake events. In principle, other information, including in situ pore pressure
measurements, subsurface deformations, or ground motion recordings, could indicate the
triggering of liquefaction within a subsurface layer at a site. However, such information has not
been available nor used to any significant degree in the development of previous models. Thus,
existing models tend to rely on evidence of manifestation or no manifestation to indicate that
triggering occurred at some depth within the profile or did not occur within any layer in the
profile, respectively.

Efforts to document and process liquefaction case histories have been ongoing for decades
(e.g., Seed and Idriss, 1971; Seed et al., 1984, Cetin et al., 2000; Andrus et al., 2003;
Moss, 2003; Cetin et al., 2004; Kayen et al., 2013; Boulanger and Idriss, 2014; Cetin et al.,
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2018), and have supported the development of multiple previous liquefaction models. These
datasets provide information for each case history used in model development, such as:

earthquake magnitude (M) and ground motion at the site (e.g., PGA),
brief descriptions of observations at the ground surface (e.g., presence or absence of
ground failure),

depth to groundwater table,

attributes of the soil layer considered by the respective authors to indicate the single
layer most likely to have liquefied (e.g., ., Gy, in situ test measurements, FC),

CSR as computed by the respective authors.

The triggering models developed from these case history datasets consist of a relationship

between CRR and some indirect measure of soil relative density such as SPT blow counts (N),
CPT tip resistance (qc), or small-strain shear wave velocity (Vs). These relationships were
derived by plotting CSR vs the soil density parameter for “liquefaction” and “non-liquefaction”
data points and drawing a boundary curve separating the two domains (e.g., Figure 3-1 from
Seed et al., 1985). That curve, historically drawn to be conservative but more recently
determined through regression, is assumed to represent CRR. The relationships predict CRR
for reference conditions of o’.o = 1 atmosphere, M = 7.5, clean sand (fines content less than 5%)
and no initial static shear stress (i.e., a relatively flat site and no finite loads, also known as

free-field sites).

Figure 3-1
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Liquefaction “triggering” models also include adjustment factors to relate actual conditions to the
assumed reference conditions. One group of factors are applied to the measured in situ
parameter (i.e., N, qc, or V;) whereas the other group of factors are applied to the computed
CRR or CSR (i.e., to compute the normalized value, CSRwy7 5 1atm). The in situ parameters are
adjusted for the effects of overburden stress (through the Cy term) so that they apply for a
common reference stress of 1 atm. The in situ penetration resistance parameters are also
corrected for fines contents that deviate from zero, to account for both the reduced penetration
resistance of fine-grained soils at a common relative density, which is mainly a consequence of
reduced moduli (Cubrinovski and Ishihara 2002, Carraro et al., 2003; Ecemis and Karaman,
2014; Jefferies and Been, 2016), and changes in the cyclic strength of soils with fines

(Polito and Martin, 2001; Park and Kim, 2013). The resulting overburden and clean sand values
are clean sand corrected SPT blow count (N7 60cs) and CPT tip resistance (qeives). The CRR
adjustments are applied to correct for M different from 7.5, overburden stresses different from
1.0 atm, and static shear stresses different from zero. The magnitude correction (MSF) is used
to account for reductions of resistance with increasing number of cycles, which is correlated with
magnitude. The overburden correction (via the K, term) accounts for the suppression of
dilatancy with increasing effective stress. The shear stress adjustment factor (Ky) modifies the
CRR to adjust for effects of initial static shear stress on the horizontal plane. More details about
the K, and K, correction factors are discussed in the Task 5 report (Ulmer et al., 2022a) and
Section 6.2.4.

Historically, the case history datasets have not represented a broad enough parameter range to
constrain many of these correction factors for in situ conditions considered in liquefaction
triggering evaluations. Compilations of case history data have shown that the overwhelming
majority of case histories in legacy triggering models have involved liquefaction interpreted as
occurring at depths of less than 8 m, but engineers dealing with large structures such as earth
dams can be required to assess liquefaction potential at depths of hundreds of meters.
Similarly, few well documented case histories exist for significantly sloping ground. As a result,
the K, and K, correction factors have typically been obtained by applying soil mechanics
principles to the interpretation of experimental laboratory data (e.g., Boulanger, 2003a; 2003b;
Cetin and Bilge 2014; Boulanger and Idriss, 2014), although other researchers have sought to
obtain K, through direct regression of the field case history data (Cetin et al., 2004; Moss et al.,
2006). The former approach is generally favored for its incorporation of the fundamental
mechanics of soil liquefaction, and its use in extrapolating beyond the range of available case
history data is considered more reliable. Thus, this preferred approach uses both laboratory and
case history data in model development but does so in a disconnected manner — the laboratory-
based correction is established and essentially used as a fixed, deterministic relationship

(i.e., implicitly assumed to be correct and not subsequently modified by case history data) in the
model development process.

Other adjustments can be made to the in situ measurements or CRR but are not accounted for
in any commonly used relationships. These include drainage effects due to impeded drainage
boundaries on the borders of susceptible layers (accounted for in the Ky correction factor;
Abdoun et al., 2020, Ni et al., 2020), and partial saturation effects of soils beneath the water
table that may not be fully saturated (Hossain et al., 2013, Tsukamoto et al., 2014; Zhang et al.,
2016). Additional complexities that may not be amenable to correction with simple adjustment
factors are system effects caused by interlayering of more and less resistant soils that affect the
ability of liquefaction at a particular depth to manifest, reductions of demand in relatively deep
strata, and strength loss in shallow layers induced by large flow gradients from liquefaction of
deeper strata (Cubrinovski et al., 2019).
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There also exist alternative methods for assessing liquefaction triggering such as regional map-
based assessments, cyclic strain-based approaches, energy-based approaches, laboratory and
physical model tests, field measurement of pore pressure generation under dynamic loading,
and computational mechanics approaches. For brevity, these methods are not discussed in this
report. A summary of these and other methods is provided in the NASEM (2016, 2021) report.

For the reasons previously discussed, the use of both case history and laboratory data in the
development of liquefaction triggering models is considered to be advantageous. Laboratory
tests allow control of stress, density, and loading conditions in a manner that does not exist in
field case history data. They allow measurement of stresses, strains, and porewater pressures
so that the conditions at the actual point of triggering are accurately and objectively known
rather than inferred as they must be from interpretation of case histories. Laboratory data
reveals trends in liquefiable soil behavior for conditions that cannot be extracted from available
case history data, thereby allowing more confident extrapolation of empirical triggering models
to conditions that can be important in geotechnical practice. The question then becomes one of
how laboratory data should best be implemented in the model development process.

The procedure adopted by the SMT makes use of Bayesian updating, a common procedure in
the development of probabilistic models. In our implementation, laboratory data is used as a
starting point (i.e., to establish a prior distribution in Bayesian terminology). That starting point is
then updated by the consideration of case history data to form a final triggering model (a
posterior distribution, again in Bayesian terminology). The updating process allows the model to
be controlled by the case history data for conditions that are well constrained by the case history
database with control shifting to the prior distribution for conditions not well represented in the
case history database. It also allows uncertainty in the laboratory data to be properly accounted
for in the model development process. From the standpoint of the distinction between triggering
and manifestation, which is a major part of the SMT model, comparison of the posterior and
prior triggering distributions provides valuable insight into the applicability of laboratory data to
the assessment of liquefaction potential. These issues, and the benefits of the SMT approach,
are discussed in more detail in Chapter 6.

3.2 Legacy Models

In this report, we refer to models developed prior to the 2016 NASEM report as “legacy” models.
Of these legacy models, common relationships for predicting CRR from SPT N are Youd et al.
(2001), Cetin et al. (2004, 2018), Idriss and Boulanger (2008), and Boulanger and Idriss (2012).
Common relationships for CRR from CPT q. are Robertson and Wride (1998), Moss et al.
(2006), Idriss and Boulanger (2008), and Boulanger and Idriss (2016). Relationships for
predicting CRR from Vs are Andrus and Stokoe (2000) and Kayen et al. (2013). Some models
have been developed based on laboratory testing of soil specimens that were sampled from
case history sites (e.g., Tokimatsu and Yoshimi, 1983; Matsuo, 2004; PWRI, 2016). Some
relationships were developed within a probabilistic framework (Liao et al., 1988; Youd and
Noble, 1997; Cetin et al., 2004; 2018; Moss et al., 2006; Kayen et al., 2013; Boulanger and
Idriss, 2012; 2016), meaning they produce a probability of liquefaction (P.) as opposed to a
deterministic CRR to be used in a FS; computation.

For brevity, not all CRR models are discussed here. For the purposes of this report, we provide
additional details about the components of the widely used Boulanger and Idriss (2016)
CPT-based model only. This does not indicate endorsement of this model over any other model,
but it is simply for the purpose of comparison in several points throughout the report. The
parameter range and number of case histories represented in several legacy models are
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summarized in Table 3-1. Note that the range of 0’y is limited to less than 200 kPa (and less
than 150 kPa in some cases) and the critical depth is within about 12 m (and most often less
than 8 m). These relatively shallow critical depths are due in part because manifestation at the
surface is less likely the deeper the liquefied layer. Thus, there are possibly some cases where
no liquefaction manifestation was observed at the surface, yet liquefaction could have occurred

at depth.

As is typical of geotechnical engineering research, the projects that produced the legacy models
were conducted by individual investigators or small teams of investigators. The investigators
collected data, analyzed the data, and developed the models. Datasets used in model
development were often never published in full, or if they were, it was after the model
development process had been completed. Furthermore, published data products generally
consisted of properties of the critical layer selected by the research group, and properties of
other layers were not included. Research results were generally not widely shared with the
community during model development.

This traditional research approach has drawbacks, such as lack of transparency (case history
data not fully presented) and repeatability (case history interpretations made during model
development that are not documented) that we have sought to overcome in the manner the
NGL project has been organized (Section 2.2). These drawbacks can create divergence
between how models are applied in forward applications vs how they were developed, which
can limit model effectiveness. One of the most important elements of this disconnect is related
to critical layer selection, which is examined further in the next section.

Table 3-1 Summary of recent liquefaction triggering case history databases for
level-ground conditions showing ranges in values of the parameters
(from NASEM, 2021)
SPT CPT Vs
AR Cetin et al. Boulanger and Moss et Boulanger and Kayen et al.
(2004) Idriss (2016) al. (2006) | Idriss (2016) (2013)
“yes” cases 109 133 139 180 287
“no” cases 88 118 44 71 124
“yes/no” cases 3 3 0 2 4
Critical depth (m) 1.1-20.5 1.8-14.3 1.4-14.0 1.4-11.8 1.1-18.5
o'vo (kPa) 8.1-198.7 20.3-170.9 14.1-145.0 19.0-147.0 11.0-176.1
FC (%) 0-92 0-92 -- 0-85 --
N1,600s (blows/30cm), gernes 2.2-66.12 4.6-63.7 11.2-252.0 16.1-311.9 81.7-362.9
(atm), or Vs1 (m/s)
CSRwmz.5 0.05-0.66 0.04-0.69 0.08-0.55° 0.06-0.65 0.02-0.73
M 5.9-8.0 5.9-8.3 5.9-8.0 5.9-9.0 5.9-9.0

2N1,60 values listed for Cetin et
al. (2004) as opposed to N1,60cs
bCSR values listed for Moss et
al. (2006) and Kayen et al.
(2013), as opposed to CSRwuz.5
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3.3 Critical Layer Selection

The concept, meaning, and identification of critical layers as representing the characteristics of
an entire liquefiable soil profile are complex. They are, however, central to both the
development and use of legacy triggering models. Their importance warrants recognition and
discussion as background to the development of new triggering models.

3.3.1 Non-uniqueness

The legacy models described in Section 3.2 utilized a critical layer framework in which the layer
most likely to produce manifestation was selected as being representative of the profile or site.
For “yes” cases, the critical layer is selected as the layer that is considered to have been most
likely to have liquefied. In some cases, this layer can be established with a high degree of
confidence. For example, the Wildlife Liquefaction Array in California (NGL site ID 187;

Holzer and Youd, 2007) and the Nakashimo levee site in Japan (NGL site ID 423; Zimmaro et
al., 2020) include piezometers in layers that developed significant excess pore pressures, which
confirms that liquefaction triggered in those layers. Another such example is the Sandholdt
Road site from Moss Landing, California, where an inclinometer indicated lateral deformation
within a layer during the Loma Prieta earthquake (NGL site ID 696; Boulanger et al., 1995,
1997), which indicates liquefaction-induced strength loss likely occurred in that layer. However,
in most cases, the only evidence of liquefaction is surface manifestation such as sand boils or
ground cracking or other deformations. In such cases, the case history interpretation is often
inconclusive with respect to which layer produced manifestation.

One approach is to assign the critical layer as the weakest link in the chain, which is
accomplished, in the case of CPT data, by finding the layer with smallest continuous interval of
tip resistance with low friction ratio, or the susceptible layer with the smallest CRR (Moss et al.,
2006; Kayen et al., 2013; Cetin et al., 2018). Although the documentation of these studies does
not clearly distinguish manifestation from triggering in the reasoning behind critical layer
selection, we interpret the weakest link approach as favoring triggering. A complication with the
weakest link framework is that a pre-existing model is used to compute CRR, which is then used
to select the critical layer whose properties are used to develop a new model. The use of
pre-existing models in critical layer selection and model development can lead to confirmation
bias, as discussed in Section 3.3.3.

Consider for example the Landing Road Bridge site (NGL site ID 161), for which surface
manifestation was observed following the 1987 Edgecumbe, New Zealand earthquake in the
form of lateral spreading, surface cracks, sand boils, and damage to the foundations of a nearby
bridge. Figure 3-2 shows a CPT profile for this site, interpreted using procedures described in
Sections 5.3-5.4. Layer numbers are indicated to the right of the profile of gcines. While many of
the layers at the site are likely not susceptible, layers 2 and 6 near depths of 1.5m and 5m,
respectively, are granular soils (low /) with somewhat higher relative density (gcines) in the
deeper layer than the shallower one (115 vs. 90). It could be reasonably argued that either is
critical. In the case of layer 2, it is closer to the ground surface and has the lower q./nes and
therefore is most likely to manifest. However, since it is immediately beneath the groundwater
table, partial saturation is possible, which would increase liquefaction resistance. Accordingly, it
could be argued that the deeper but thicker layer 6 is more critical. As this example illustrates,
the selection of the critical layer often involves considerable judgment, and this judgment
naturally varies between different analysts, as described further in Section 3.4.
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Figure 3-2 Example CPT profiles for the Landing Road Bridge site (CPT LRB007) from
the 1987 Edgecumbe, New Zealand earthquake derived using procedures
presented in Sections 5.3-5.4. This is an example of a site for which
multiple critical layers could be selected for use in model development.

One way to resolve ambiguities like that illustrated in Figure 3-2, in cases where sand boils
form, is to identify the critical layer by matching gradation and coloration characteristics of ejecta
to soils at depth (Liao and Whitman, 1986; Cetin et al., 2000; Green et al., 2011). However,
upward flowing sand can entrain soil from overlying layers with it and/or deeper soils might
have also liquefied but not formed ejecta. As a result, uncertainties in critical layer

identification remain.

These uncertainties are also present for “no” manifestation cases. In such cases, the critical
layer is intended to represent the layer that most likely would have liquefied and manifested had
the intensity of shaking been larger or the duration longer (Whitman 1971, Seed and Idriss,
1971). Consider for example the Radio Tower site (NGL site ID 318), for which no surface
manifestation was observed following the 1979 Imperial Valley earthquake. Figure 3-3 shows a
CPT profile for this site, interpreted using procedures described in Sections 5.3-5.4. While many
of the layers at the site are likely not susceptible, layers 3-4 near 2.5 m depth and layer 7

near5 m depth are granular soils (low /c) with apparently similar relative densities (qcincs). It
could be reasonably argued that either is critical. In the case of layers 3-4, it is close to the
ground surface and therefore is most likely to manifest. However, because it is immediately
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Figure 3-3 Example CPT profiles for site Radio Tower (CPT R4) from the 1979 Imperial
Valley earthquake derived using procedures presented in Sections 5.3-5.4.
This is an example of no manifestation for which multiple critical layers
could be selected for use in model development.

beneath the groundwater table, partial saturation is possible, which would increase liquefaction

resistance. Accordingly, it could be argued that layer 7 is more critical. On the other hand, layer
5 or layer 9 could also be considered critical, despite being less likely to be susceptible (high /;),
given that they have lower gcines Values and are as thick or thicker than layers 3, 4, and 7.

As these examples illustrate, in the absence of a model for predicting triggering/manifestation, it
can be difficult to identify which layer within a profile is most critical for surface manifestation.
While some semi-empirical models were developed through use of the “weakest link” approach,
the extent to which that process of identifying critical layers considers manifestation is not clear.
When manifestation is considered, a great deal of judgment is required. Critical layer selection
should consider layer thickness, depth, stratigraphy, surface geology, spatial variability and
lateral continuity of potentially liquefiable layers, and presence of sloping ground or a free face
(Boulanger and Idriss, 2014; Green and Olson, 2015), each of which affect how a complex
system of soil layers responds to an earthquake (Cubrinovski et al., 2019). In the development
of legacy models, these judgments are operator-dependent, generally not well documented, and
therefore not repeatable. We recognize that critical layer selections in some cases are made in
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consideration of information beyond that represented by a CPT log. This can include multiple
CPTs at a given site or boring logs with samples that may include laboratory data. Different
modelers looking at these different data sources may consider different data sources in their
selections, which can influence variability. Our focus in this section has been on CPT data
because arguably a CPT-based model should be able to operate solely based on CPT data,
because this represents a common situation for forward applications.

3.3.2 Implications for Forward Application of Models

Important differences between development of a triggering/manifestation model and the manner
in which such models are applied in practice further complicate their use. Model development
generally involves utilizing all available evidence to make an informed decision about the critical
layer. Engineers tasked with a forward application of a model to assess liquefaction at a
particular site do not have access to the same information, and therefore cannot replicate
judgments made in critical layer selection during model development. For example, matching
the ejecta to a specific layer cannot be performed in a forward assessment of a site that has not
yet been shaken strongly enough to liquefy. Moreover, in forward applications engineers seldom
apply a critical layer approach, instead opting to compute FS; for every susceptible layer within
the profile, and subsequently making judgments about the potential consequences
(manifestation severity and ground deformations) of liquefaction. For example, Figure 3-4 is a
screenshot of the CLiq (GeoLogismiki, 2018) software that evaluates liquefaction based on CPT
data. This is a markedly different approach to first selecting a critical layer and evaluating only
that layer.

Another distinction between model development and application in some cases is the level of
care applied during site characterization. In research studies to develop case histories like many
of those in the NGL database, CPT data is supplemented by borings with sampling that can be
used to measure index properties like fines content and plasticity. Frequently, due to budget
constraints, in forward applications engineers may utilize cone penetration testing alone in the
absence of sampling. Fines content and susceptibility must therefore be inferred from the

CPT data.
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Figure 3-4  Screenshot of CLiq software showing evaluation of CPT data at all depths
(GeoLogismiki, 2018)



3.3.3 Potential for Confirmation Bias

The need to apply judgment in the selection of critical layers during a process of model
development sets up the potential for confirmation bias, which is defined as “the tendency to
interpret new evidence as confirmation of one's existing beliefs or theories” (Oxford Languages
dictionary). Confirmation bias is often unintentional and can arise from a person’s beliefs about
a particular outcome. Consider for example a case history in which two alternative critical layer
selections are essentially equally viable, in which one choice produces a CSR-qcnes data point
that is in agreement with a model (i.e. a “yes” case above the curve or a “no” case below the
curve) whereas the other choice places the data point in conflict with the model. The temptation
would be strong to select the choice that agrees with the model, especially if the alternative is a
data point that would comprise a strong outlier (i.e., a “no” case well above the curve or a “yes”
case well below the curve). Such cognitive biases are widely recognized in scientific research in
other fields (e.g., Nickerson, 1998; Hirschhorn and Schonberg, 2024).

An example of such a case is NGL site “Imazu Elementary School” (NGL site id = 539, test ID =
2584), shown in Figure 3-5, which experienced surface manifestation of liquefaction from the
1995 Kobe earthquake (NGL field manifestation ID, FLDM ID = 1432). As in Figures 3-2 and
3-3, multiple critical layers could reasonably be identified. Layer 2 might be preferred on account
of being near the ground surface (thus liquefaction would be more likely to manifest), although
the qgcines is relatively high and its shallow depth below the ground water table could lead to
partial saturation. On the other hand, layer 4 could be preferred because it is thicker, has lower
Qcines, and its depth below the ground water table makes partial saturation unlikely. As shown in
Figure 3-6, the first choice (shallower critical layer) would place the case history below both the
triggering curve developed in this study and the BI16 curve, whereas the second choice
(deeper critical layer) places the case history above the two curves. The Bl16-selected layer
was the deeper layer in agreement with models whereas five out of six of the SMT members
selected the shallower layer in the exercise described in Section 3.4.
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Figure 3-5 Example CPT profiles for Imazu Elementary School site from the 1995 Kobe
earthquake derived using procedures presented in Sections 5.3-5.4.
Surface manifestation occurred at the site
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Figure 3-6  Position of Imazu Elementary school case history in CSRu7.5,1atm - Qcines
space using alternate critical layer selections. Black square represents this
case history as reported in Boulanger and Idriss (2016) (e.g., their
interpretation of PGA), computation of CSRu7.5,1atm and qcines
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A second example case of interest is NGL site “Port of Oakland, 7th Street Terminal (POO7)”
(NGL site ID = 562), CPT “POQO7-3" (NGL test ID = 2651) during the 1989 Loma Prieta
earthquake (NGL FLDM ID = 1467), the interpreted CPT logs for which are shown in Figure 3-7.
As in Figures 3-2 and 3-3, multiple critical layers could reasonably be identified. Layers 4-5
might be preferred on account of being near the ground surface (thus liquefaction would be
more likely to manifest), although the qgcrnes is relatively high and its shallow depth below the
ground water table could lead to partial saturation. On the other hand, layer 13 could be
preferred because it is relatively thick, has lower qcines, and is likely saturated, however the
greater depth could suppress manifestation potential. As shown in Figure 3-8, the first choice
(shallower critical layer, e.g., layers 4-5) would place the case history well below both the
laboratory-based triggering curve developed in this study and the BI16 curve, whereas the
second choice (deeper critical layer, e.g., layer 13) places the case history near to these two
curves. Adopting the Bl16-selected layer using their computed q.1nes and CSR places the case
history well above both curves. An interesting aspect of this case study is the varying
interpretations of whether liquefaction occurred or not. POO7-3 was initially identified as an area
that had “no surface manifestations of liquefaction” (Kayen et al., 1998), but subsequent
interpretations indicated that this site could be considered as having experienced liquefaction
(Cetin et al., 2004, 2018) or "marginal” liquefaction (ldriss and Boulanger, 2012; Boulanger and
Idriss, 2014). No sand boils were observed within 15-20 meters of POO7-3, but the CPT is
located approximately 20-30m away from a zone of ample fissures and sand boils, deformations
toward the free face, and a small lateral spread into the bay. We do not take a position on the
field observations, but rather point out that the intense scrutiny of this case was likely a
consequence of its being an outlier, particularly if the original field observation of no
manifestation is adopted. A relatively high degree of scrutiny for strong outliers is another
characteristic of cognitive bias.

We cannot know to what extent confirmation bias may or may not have affected the
development of any particular semi-empirical triggering model. However, the circumstances for
it to have influenced decision making were clearly present, especially given the traditional
research approaches that led to the models (i.e., small teams of investigators who assemble
their own database and develop a model with relatively limited outside interaction). Independent
assessments of model performance have indicated large numbers of mis-predictions

(Maurer et al., 2015b; Geyin et al., 2020a), especially false positives, which could be interpreted
to suggest that absent cognitive bias in the critical layer selections, less favorable performance
may be achieved. In a similar manner, the following section shows an appreciable rate of
different critical layer selections, again suggesting (though not proving) the potential for
cognitive bias to have played a role. Ultimately, the problem when cognitive bias influences a
fundamental aspect of the model development process, is that it further separates the data
analysis undertaken in model development from what can be done in application. This can
produce outcomes with too-small levels of model uncertainty and potentially other problems.
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Figure 3-7  Example CPT profiles for Port of Oakland, 7th Street Terminal (POO?7) site
(CPT POO7-3) from the 1989 Loma Prieta earthquake derived using
procedures presented in Sections 5.3-5.4. This is an example where the
manifestation or lack of manifestation of liquefaction is unclear.
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Figure 3-8  Position of Port of Oakland, 7th Street Terminal (POO7-3) case history in
CSRu7.5,1atm - Qcines SPace using alternate critical layer selections and
alternate selections of whether manifestation occurred or not

3.4 Critical Layer Selection Study

A study was conducted to explore the analyst-to-analyst variabilities in critical layer selection.
We randomly selected 40 CPTs from sites utilized in legacy models, and each member of the
SMT made critical layer selections. We deliberately restricted the information available to each
analyst to be the same as what is available to an engineer in a forward assessment of
liquefaction. Specifically, we included profiles of gcines, le; CSR7.5,1am, and the difference
between CRR and CSR where CRR here is estimated using the laboratory-derived prior
relationship as a function of gernves (Section 6.1). Prior to selecting critical layers, the SMT agreed
that each member would independently identify the layer most likely to cause surface
manifestation. In some cases, the layer most likely to trigger may not be the layer most likely to
manifest because the triggered layer is deep, the layer is thin, a strong non-liquefiable layer lies
atop the layer, etc.

A screenshot of the tool utilized by the SMT to make critical layer selections is shown in

Figure 3-9. No indication of the site name, earthquake, or whether manifestation was or was not
observed at the site is included in the tool because such information might contribute unwittingly
to confirmation bias and would not be available to engineers applying the model in a forward
sense. SMT members would select one of the layers identified by the agglomerative clustering
algorithm (Hudson et al., 2023a) as the critical layer. Furthermore, SMT members could indicate
whether interbedding was present within the critical layer and/or profile, whether the critical layer
is particularly deep, whether a strong crust exists at the site, and/or if partial drainage could
exist in cases with shallow liquefiable layers in the absence of a low-permeability capping layer.
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Figure 3-9  Screenshot of the tool used by SMT members to select critical layers

They could also indicate whether the critical layer has a high I, and therefore might contain
plastic fines. Open-ended comments could also be entered.

The depths to the top of the critical layer selected by the SMT members are compared with
those selected by Boulanger and Idriss (2016, “BI16”) in Figure 3-10, along with R? values
indicated in the upper-left corner of each figure. Open symbols indicate sites that did not
manifest liquefaction, while closed circles did manifest. Significant differences are apparent in
the selections made by the SMT members compared with those by Boulanger and Idriss (2016),
with R? values ranging from 0.22 to 0.37. Notably, differences between the SMT members are
also significant, as illustrated subsequently. BI16 did not select from the layers identified by the
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Figure 3-10

Ztop Of B&I16 Layer

Ziop Of B&I16 Layer

Zs0p Of critical layers selected by SMT members compared with Boulanger

and Idriss (2016). R? values shown in upper-left corners. Open circles
represent “no manifestation” observations. Closed circles represent
“manifestation” observations.

clustering algorithm, and therefore their z:,, value for a particular profile might not be available
as an option for the SMT members. However, differences in the selections are much more
significant than can be explained by that detail. In general, members of the SMT tended to
select shallower layers than BI16, which may be caused by the SMT team’s focus on
manifestation over triggering, combined with the expectation that shallower layers are more
likely to manifest. Similar figures are provided for I;, gc1nes, and CSR in Figures 3-11 through
3-13. The R?values tend to be higher, on average, than for z,, but nevertheless exhibit

significant differences from BI16.

As shown in Figure 3-13, a notable feature of the BI16-to-SMT comparison plots are lower SMT
CSR values for relatively strong shaking conditions (CSR > ~ 0.2). Many of the sites for which
these estimates differ have CSR values from legacy data sets taken from nearby recordings on
relatively stiff soil sites compared to the neighboring soft soil sites that comprise the case
histories. This method of estimation is described further in Section 5.2 (labeled as Approach 5 in
that section). The CSR values estimated by the SMT are lower due to consideration of
nonlinearities associated with the strong shaking and soft soils site conditions at the

liquefaction sites.
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Figure 3-14 compares critical layer selections by the SMT with those of BI16 in gcives-CSR
space. Open circles are profiles that did not manifest, while closed circles are profiles that
manifested. Significant differences are observed in the positions of the points on these graphs

for each SMT member compared with BI16; differences between SMT members also exist. In all
cases, the BI16 model represents a broader range of qcines values. Another important difference
is that, among these 40 cases, the Bl16 selections do not include any false negatives (FN, false
predictions of no manifestation (i.e., closed circles below the curve), whereas the SMT members
had 2 to 5 false negatives). Note that BI16 do have some false negatives among the dataset
utilized to form their model; however, those cases were not among the 40 selected for this
exercise. The SMT members tended to have fewer false positives (FP, false predictions of
manifestation) than BI16, rendering overall accuracy values that are similar. Defining accuracy
as the number of true predictions (TP, accurate predictions of manifestation) divided by the total
number of cases, the resulting accuracy values are 82.5% for BI16, 82.5% for Brandenberg
(SMT member “B”), 77.5% for Hudson, 75% for Kramer, 80% for Stewart, 80% for Ulmer, and
77.5% for Zimmaro. Despite the different selections, the accuracy of the SMT analysts’
selections are all reasonably close to each other, and reasonably close to BI16. This indicates
that the various individual biases each analyst brings to their selections may have offsetting
effects from profile-to-profile with respect to accuracy.
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Figure 3-14 Critical layer properties selected by SMT compared with Boulanger and
Idriss (2016). Red points represent locations of CSRu7.5,1atm VS Qcines points
as defined by Bl16-selected critical layers, whereas blue points represent
locations as defined by reviewer-selected critical layers. Red line
represents the BI16 deterministic CRR curve, blue dashed line represents
the SMT’s CRR curve (Section 6.2). Open circles represent “no
manifestation” observations. Closed circles represent “manifestation”
observations.

Figures 3-15 through 3-18 compare properties of critical layers selected by the SMT members.
In general, R? values are higher among the critical layers selected by the SMT members than
for each member compared with BI16. This outcome likely reflects differences in information
available to analysts at the time the critical layer selections were made. Although the SMT
members selections are more similar with each other than with BI16, significant differences
nevertheless are observed in the critical layers selected by the SMT members. This is an
indication that the judgment of individual analysts is different, even when those analysts have
worked closely together for years. This points to a need for objectivity in critical layer selections
so that liquefaction manifestation models are repeatable and independent of any one
analysist’s view.
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4 TRIGGERING AND MANIFESTATION

As discussed in Chapter 2, the occurrence of liquefaction is often identified by the observation
of surficial manifestation of its effects. Historically, it has been common to interpret
manifestation at case history sites as positive evidence of triggering (i.e., that manifestation =
triggering) and the absence of manifestation as positive evidence that triggering did not occur
(no manifestation = no triggering). However, it is possible for liquefaction to be triggered in thin,
deep susceptible layers without producing surface manifestation. It is also possible for
manifestation evidence such as ground failure due to cyclic softening or sand boils to develop at
sites where pore pressures in thick, shallow, susceptible layers increase significantly but not to
the level of liquefaction triggering (Tokimatsu et al., 2012; Kramer et al., 2016).

Manifestation, or its absence, must therefore be recognized as a consequence of pore pressure
generation mediated by the characteristics of the soil profile. Detailed investigations and
modeling of sites in Christchurch, New Zealand have illustrated the extent to which interlayering
of liquefiable and non-liquefiable soil layers can influence surface manifestation (Cubrinovski et
al., 2019; Hutabarat and Bray, 2021, 2022).

4.1 Bayesian Framework

In our view, the historical reliance on manifestation as an indicator of liquefaction triggering and
lack of manifestation as an indicator of a lack of triggering has led to conventional liquefaction
triggering procedures producing factors of safety against manifestation rather than of
liquefaction triggering. The most recent versions of these procedures produce a probability of
manifestation, P[M] (and consequently a probability of no manifestation, P[NM] = 1 — P[M]).
Implicit in the interpretation of the results of these procedures is the assumption that the
probability of triggering is equal to the probability of manifestation, P[T] = P[M] (and the
probability of no triggering, P[NT] = 1-P[T]).

Surface manifestation can be important in many situations and can cause damage to light
surface structures (e.g., pavements), contribute to settlement of lightweight structures

(e.g., private houses), and require significant clean-up efforts (e.g., Christchurch in 2011).
However, the actual triggering of liquefaction at both shallow and large depths is more
fundamentally important for many critical structures. For the purposes of damage and loss
estimation, a more fundamental and useful analysis would be to estimate the actual probability
of triggering, P[T], and with it, P[NT] = 1 — P[T], and separately evaluate the probability of
manifestation conditional on triggering, P[M|T] or not triggering, P[M|NT]. In terms of case
history interpretation of triggering, we need to evaluate the probability that the soil in the critical
layer triggered for case histories where manifestation was observed, i.e., P[T|M]. At the same
time, we need to evaluate the probability that liquefaction did not occur in a critical layer for case
histories where manifestation was not observed, i.e., PINT|NM]. To develop this more complete
analysis, we need to distinguish between triggering and manifestation and recognize that
triggering can occur without manifestation and vice versa. These distinctions can be made using
a Bayesian approach.

411 Bayes’ Theorem

Bayes’ theorem derives directly from the total probability theorem. With respect to the Venn
diagram in Figure 4-1, the intersection of Events A and B can be expressed as
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P[AN B] = P[A|B]P[B] = P[B|A]P[A] 4-1

Figure 4-1  Venn diagram illustrating intersection of two events, A and B

Solving for the probability of A given B yields Bayes’ theorem,

4-2

In many cases, Event A is described as a hypothesis being true and Event B as the evidence
that the hypothesis is true. In that case, it can be expressed as

Plevidence|hypothesis|P[hypothesis]

P [ ] = 4-3
[hypothesis|evidence] Pevidence]
The denominator can be expanded by considering the evidence for both cases of the
hypotheses, i.e., that the evidence is consistent with the hypothesis and that the evidence
contradicts the hypothesis.
P[hypothesis|evidence]
Plevidence|hypothesis|P[hypothesis] 4-4

- Plevidence when hypothesis is true] + P[evidence when hypothesis is false]

In the liquefaction triggering problem, the common interpretation hypothesizes that liquefaction
has been triggered based on the evidence, or absence of evidence, of surface manifestation.
However, because manifestation also depends on hydraulic and system-related factors, in
addition to the actual triggering of liquefaction in some layer of soil, a direct correlation between
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surface manifestation and triggering is not possible. Using the previously defined symbols for
triggering and manifestation, Bayes’ theorem can be expressed in the following manner for a
soil that is susceptible to liquefaction (i.e., with P[S] = 1.0)

P[M|T]P[T] P[M|T]PI[T]

PITIM) = —pr = BIMITIP[T] + P[MINTIPNT]

4-5

The Bayesian framework can also be applied to case histories where no evidence of surficial
manifestation was observed. Such cases have historically been interpreted as indicating the
absence of triggering. For this case, Bayes’ Theorem can be applied as

piNTINM] = DIVMINTIPINT] P[NM|NT]P[NT] 46
INTINMI = =""P[NM] — ~ PINMINTIPINT] + PINMITIPIT] -

The Bayesian framework may also be extended to include manifestations from non-susceptible
layers. Cyclic softening of clay-like soils may produce manifestations such as surface cracks,
lateral ground deformations, and settlement. When manifestations occur in the absence of sand
boils, it is often difficult to ascertain whether the cause was liquefaction or cyclic softening.
However, cyclic softening is not included in the equations presented here for simplicity.

41.2 Probabilities of Interest

The probabilities in the Bayesian approach relate to both triggering (or not triggering) and
manifestation (or lack thereof). Brief descriptions of each, using the notation in Figure 2-4 in
which Hy7 is the thickness of the non-liquefied crust and H: is the thickness of an underlying
liquefaction-susceptible soil (after Ishihara 1985, see also Section 2.1.3.1), are presented in
Table 4-1 below. Of the six probabilities listed here three are directly computed from their
complements, so models for only three independent probabilities, P[T], P[M|T], and P[M|NT],
are needed to explore their impacts on the relationship between triggering and manifestation.

Table 4-1 Descriptions of probabilities in the Bayesian approach
P[] Probability that the susceptible soil layer (H2 layer) triggers. For now, assume
we know this (more later).
PINT] Probability that Hz layer does not trigger = 1 — P[T].
PIM|T] Probability of manifestation given that H: layer triggers. Depends on Hs-H2
relationship and other hydraulic factors.
Probability that no manifestation occurs even when H: layer triggers. Equal to 1
PINM|T]
— P[MIT].
Probability that high pore pressures (but not high enough to trigger liquefaction)
PIMINT] cause sand boils or other observations we usually interpret as manifestation of
liquefaction. Can potentially occur with thick liquefiable layer (high H2) under
thin crust (low H).
PINM|NT] Probability that no manifestation is observed when liquefaction is not triggered —
equal to 1 - P[M|NT].
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4.1.3 lllustration of Bayes Calculations

Figure 4-2 illustrates the main components of Bayesian calculations. The left side (to the left of
the thin vertical line) represents Event T, the triggering of liquefaction; the right side represents
the event of non-triggering, NT. Within each of these columns, conditional probabilities are
represented. The red zone is the probability of manifestation due to triggering of the liquefiable
layer (its probability conditional upon triggering multiplied by the probability of triggering). The
blue zone is the probability of manifestation in the absence of triggering, e.g., ground cracking
caused by cyclic softening of non-liquefiable soils or sand boils caused by high (but not high
enough to trigger liquefaction) pore pressures in a thick liquefiable layer below a thin crust. As
shown in this example, there is a relatively high probability of triggering (loose soil), a high
probability of manifestation given triggering, and a low probability of manifestation given no
triggering — therefore, the probability that liquefaction actually triggered should be high if
manifestation was observed. The probability of triggering given the observation of manifestation
is equal to the red area divided by the sum of the areas of the red and blue zones. For P[T] =
0.7, P[M|T] = 0.9, and P[M|NT] = 0.2 (approximately the values in the figure), P[T|M] = 0.913,
which means that the historical inference that manifestation = triggering is relatively good in
this case.

The historical interpretation of case histories also makes use of observations of no
manifestation and has implicitly assumed that no manifestation means that liquefaction was not
triggered. This case can also be visualized graphically as shown in Figure 4-3. In this case, the
purple zone represents the probability of no manifestation when the liquefiable layer does not
trigger. The green zone indicates the probability of no manifestation if liquefaction is triggered.
As indicated in this example, there is a relatively high probability of liquefaction (loose soil), a
low probability of manifestation given triggering (the loose layer is deep and/or thin), and a very
low probability of manifestation given no triggering — therefore, the probability that liquefaction
actually triggered should be high if manifestation was observed. For P[T] = 0.7, P[M|T] = 0.1,
and P[M|NT] = 0.02 (approximately the values shown in Figure 4-3), P[T|M] = 0.921 which, as
expected, is quite high. However, the probability that liquefaction would not have triggered if
manifestation was not observed, i.e., PINT|NM], would only have been 0.318. In this case, the
historical inference that manifestation = triggering is reasonable (the thin, deep layer would
almost certainly have had to trigger in order for surface manifestation to have been observed).
However, the assumption that no manifestation means no triggering is not very good, because
the probability of triggering given no manifestation P[T|NM] is 0.682, so P[NT|NM] =1 - 0.682 =
0.318. Because of the hydraulic component of manifestation, an observation of no manifestation
only supports a relatively low probability that liquefaction was not triggered.

These concepts have implications for how case histories should be interpreted, particularly with
respect to the “critical layer” concept in cases that appear as apparent false positives (that have
thin and/or deep critical layers) and false negatives (that may generate surface evidence without
actually liquefying the soil). If no surficial evidence of liquefaction was observed for the case
illustrated in Figure 4-3, the values of P[T|NM] and P[NTINM] mean that there is a 0.682
probability that liquefaction was triggered even though no manifestation was observed. In the
common graphical display of closed and open circles, this case could then be treated with two
data points — an open circle with a weighting factor of 0.318 and a co-located closed circle with
a weighting factor of 0.682.
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Figure 4-2  Graphical illustration of Bayes’ theorem calculation to compute probability
of triggering given observation of manifestation
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Figure 4-3  Graphical illustration of Bayes’ theorem calculation to compute probability
of no triggering given the lack of observed manifestation

414 Example

As a specific example, consider the Wufeng A, WAC-2 CPT site (NGL site ID = 364, test ID =
1585) where no evidence of surface manifestation was observed following the 1999 Chi-Chi
earthquake despite the presence of a loose, susceptible layer being exposed to a very high
CSR. Figure 4-4 shows a CPT profile for the site with the layering detected by an agglomerative
clustering algorithm (details in Section 5.3). Of particular interest is Layer 7, which is 35 cm thick
and is overlain by a 5.3 m thick crust, which could reasonably be interpreted as a critical layer
for this profile. With gcinves ~ 80 and I ~ 1.9, Layer 7 is loose and susceptible and therefore
should have a high probability of triggering when subjected to strong shaking. For illustrative
purposes, assume P[T] = 0.9. Because Layer 7 is thin and under a thick crust, manifestation
seems unlikely so a value of P[M|T] = 0.15 will be assumed. Finally, the chance that
manifestation could be produced by this layer with pore pressures insufficient to trigger
liquefaction seems miniscule, a value of P[M|NT] = 0.005 will be assumed. These values
produce P[NT|NM] = 0.115, which indicates that little confidence should be placed in a “no
liquefaction” interpretation of this case history. Instead, the case history could be interpreted as
two co-located data points on a classic CSR vs. gcines curve — a solid circle indicating triggering
with a weighting factor of 0.885 and an open circle indicating no triggering with a weighting
factor of 0.115. Using these weights, instead of a single open circle with an implied weighting
factor of 1.0, we more realistically characterize the response of this soil profile in the triggering
model development process.
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Figure 4-4  CPT profile for Wufeng A WAC-2 site (NGL site ID = 364, test ID = 1585)

4.2 Required Components

Separating triggering from manifestation using the Bayesian framework has potential to reduce
bias in our SMT triggering model. It also appears that some, and perhaps a significant amount,
of the uncertainty in our model could be associated with “false positive” cases like Wufeng A
WAC-2 that show up as a “no liquefaction” with critical layers that have low penetration
resistance and a high CSR.

In contrast, prior compilations of liquefaction case histories show data that appear to be outliers
in the form of “false positives” (cases where manifestation was not observed for conditions
under which triggering was expected) and “false negatives” (cases in which manifestation was
observed for conditions under which triggering was not expected). By more appropriately
interpreting the case histories in terms of probabilities of triggering (or non-triggering) given the
observation (or non-observation) of surface manifestation, what appear to be outliers may not
actually be outliers. The Bayesian framework described here allows prior knowledge of
liquefaction behavior, as informed by principles of soil mechanics and laboratory test data, to be
utilized to advantage in the process of case history interpretation. The types of calculations
described in this chapter can address these situations, but they need inputs that are not
currently available. These include:

P[S]: Probability of susceptibility. This is based on mineral composition as inferred
from soil behavior type index, /..
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P[T]: Probability of triggering. For our SMT model, it is the probability of triggering itself
in a particular layer of soil (not accounting for overlying crusts or other profile-
related hydraulic factors). We herein utilize a laboratory-based “prior” to assess
triggering.

P[M|T]:  Probability of manifestation if triggering occurs. This probability has been inferred
from observations of manifestation using procedures described in Section 4.3 of
this report. Triggering is first assessed using the laboratory model, and
probability of manifestation of the profile is subsequently assessed conditional on
probability of triggering, and other factors such as the penetration resistance,
depth, thickness, and soil behavior type index for each layer.

PINM|T]: Probability of no manifestation if triggering occurs. This is the complement of the
probability of manifestation if triggering occurs (i.e., PINM|T] = 1 - P[M|T]), which
inherently assumes that there is no “marginal” manifestation category.

PIM|NT]: Probability of manifestation if triggering does not occur. This may arise when
soils develop significant enough excess pore pressure to produce sand boils or
other observations that are usually interpreted as manifestation of liquefaction,
even at excess pore pressure ratios lower than unity.

The SMT has opted to rely on laboratory test data as an estimation of the prior probability for
this purpose. We have collected data for a wide range of sands and established the within- and
between-sand variability in CRR given some loading and D,, which has been used to estimate
P[T]. The lab-based expression for P[T] is then updated based on observations of manifestation
after developing an initial model using the laboratory-based relationship. This approach is
described in Section 6.2. We also considered creating a case history database that excluded
cases where impedance of drainage was a significant factor affecting manifestation potential,
and then developing a triggering model based on that database. This approach was ultimately
not pursued because (1) it is difficult to ascertain with a high level of confidence whether
triggering would for sure result in a manifestation at a particular site, and (2) the resulting
database would be very small and potentially not statistically reliable.

The existence of P[M|NT] and P[NM|T], i.e., manifestation without triggering and triggering
without manifestation, can be shown by examination of the data of Hutabarat and Bray

(2021, 2022), which shows that the model itself has quite a bit of uncertainty in it. There are, for
example, cases of minor, moderate, and severe manifestation that plot within the “None” zone
(7 out of 96) for the thick sand sites (left side) and minor and moderate points (3 of 80) within it
for the stratified sites (right side). There are also cases of no manifestation that plot above the
“None” zone (6 of 96 for the thick sand sites and 3 of 80 for the stratified sites).

Figure 4-5 shows data extracted from the Supplemental Data file of the Hutabarat and Bray
(2022) paper, hereafter abbreviated “HB2022”. In Figure 4-6, we combined and plotted the data
using solid circles for cases with manifestation (Minor, Moderate, Severe, or Extreme) and open
circles for cases without manifestation. The data is shown with linear and logarithmic Lp scales
(Lo = 0.01 was assigned to all cases that HB22 identified as having Lp = 0, which implies no
triggering anywhere within the profile). In both plots, the boundary between the None and Minor
states of manifestation severity are shown in red. Of the 176 case histories in the HB22
database, 55 showed some evidence of manifestation and 121 showed no evidence.
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Figure 4-5 Plots of Lp vs Cr (from Hutabarat and Bray, 2022)

160 1000

LD
o ®» o
o O O
b )
[ ]
L]
[ ]
LD
()
iy
0..\
(X ) .
%Q?...
L]
(o) L]
o
o oo
L]
o®
(o] L]
o e

40 ‘0 oe ¢ S ° 1 0o® o®ooce @ )
20 . o ® o
- . 8 g
0 o ] 0.1 GEDEETOO® 6 @ @ ®
0 50 100 150 200 250 300 0 50 100 150 200 250 300
CR CR

Figure 4-6 Plots of Lp vs Cr in linear-linear and log-linear scales

HB22’s bilinear boundary between None and Minor can be viewed as the minimum value of Lp
required to produce (any degree of) manifestation for a given Cg, which can be referred to as
Lp,min. TO accommodate the sloping part of the boundary, values of Ly for actual case histories
can be normalized as a = Lp / Lpmin. In this form, @ can be thought of as something like the
reciprocal of a factor of safety against manifestation. While HB22 did not attempt to characterize
uncertainty in his manifestation model, it can be at least crudely approximated by considering
the distribution of “missed” predictions of the occurrence of manifestation. Missed predictions
can be considered as cases in which an observation of None (marked by an ‘X’ in Figure 4-5
and an open circle in Figure 4-6) plots above the Lp min boundary and cases in which
observations of Minor, Moderate, Severe, or Extreme plot below that boundary. By digitizing the
HB22 data and assigning “observation values” of 0 to cases in which manifestation was not
observed and 1 to cases in which it was (i.e., Minor, Moderate, Severe, or Extreme), the
observation values can be plotted versus the parameter «, as shown in Figure 4-7. Ideally, all
points with « > 1.0 would show some degree of manifestation and all points with a« < 1.0 would
not. However, Figure 4-7 shows that there are points with a > 1.0 for which no manifestation
was observed (zero values on y-axis) and points with « < 1.0 for which manifestation was
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observed (1 values on y-axis). The latter of these are cases in which manifestation occurred
where HB22 would predict none.

In Figure 4-7, 12 of the 176 case histories (6.8%) have a < 1.0 but showed some degree of
manifestation (note that some points plot on top of each other). Of these 12, three have a = 0,
which means that FS;. > 1.0, i.e., no triggering, over the entire depth of the profile — one with
moderate manifestation and two with minor. The fact that three of the 55 sites with manifestation
did not show triggering, suggests that P[M|NT] = 5.5% for this small sample set — while this
percentage is not large, it does suggest that surface manifestation may develop at sites where
triggering did not occur. The HB22 database includes 121 cases where no manifestation was
observed. 16 of these cases had a > 1.0 but no observations of surface manifestation.
Assuming an average a value of at least 4.0 indicates a very high probability of some
manifestation developing, six of the 121 manifestation cases had a > 4.0 but no manifestation
was observed. These “outliers” represent cases where liquefaction was triggered but
manifestation was not observed, suggesting that P[T|NM] = 5.0% for this small sample set,
again showing that surface manifestation can be absent for cases where liquefaction was
almost certainly triggered. Thus, the data and analyses developed by HB22 suggest that both
P[TINM] and P[M|NT] are greater than zero.

We have assumed P[M|NT] = 0 in this report becauseawe have not yet achieved consensus on
whether sufficient evidence is currently available to support a different value. We recommend
exploring this possibility as part of future work.
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Figure 4-7  P[M] vs a using data from Hutabarat and Bray (2022). For observations,
P[M] =1 for “yes” and P[M] = 0 for “no.”
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4.3 Modeling of Critical Layer Triggering

The Bayesian framework can also be used with the case history database to develop a model
for triggering in critical layers, which is analogous to the approach used in legacy models
(Section 3.2). This form of model development requires a prior model for P[T], assumed
manifestation models (P[M|T], and P[M|NT]), and assumed non-manifestation models
(PINM|NT] and P[M|NT]). Those models would then be applied to all case histories.

Consider for example a case history where surface manifestation was observed. Eq. (4-5) would
be used to establish P[T]M] and the complement would be computed as P[NT|M] =1-P[T|M].
This would lead to two weighted and co-located points. For a case history without surface
manifestation, Eq. (4-6) would be used to compute P[NT|NM] and its complement would be
P[TINM] =1-P[NTINM]. In an extended multiple-critical-layer approach, each weighted critical
layer data point would consist of two co-located points with its weighting factor multiplied by the
same conditional probabilities.

The suite of M and NM weighted data points would then be used in a regression analysis to
establish the boundary curve, which would update the prior P[T] model. This outcome

would naturally depend on the assumed manifestation models, which are the subject of the
next section, and the assumed non-manifestation models. As discussed in Section 6.3, we
chose to update the prior P[T] model using Bayesian inference rather than a frequentist
approach. This is because a frequentist approach requires many iterations of developing a P[M]
model and updating P[T], which may converge but is inefficient and open to instability. The
Bayesian inference essentially performs the same steps simultaneously and is much more
stable.

4.4 Modeling of Profile Manifestation

This section describes the framework we adopted to compute the probability of manifestation of
a profile. The probability that a particular layer will manifest depends on factors beyond
penetration resistance and cyclic stress ratio. Additional factors include the depth and thickness
of the layer, the presence of a thick and/or strong crust layer, whether the layer is interbedded
or uniform, soil composition, and impeded drainage conditions. Previous models may have
included these factors as part of the judgment utilized to select the critical layer. However, those
judgments are subjective and were not explicitly documented, and we seek an objective method
for assessing P[M|T] here. Rather than selecting a single critical layer to be representative of
the profile, we evaluate the probability that each layer within a profile will cause surface
manifestation, P[M_| T.], where the subscript “L” denotes manifestation or triggering of a specific
layer. We then aggregate the contributions from all of the layers to define the probability of
profile manifestation P[Ms], where the subscript “P” denotes profile. We have previously not
utilized subscripts to differentiate triggering or manifestation of profiles from layers but introduce
them throughout this section for clarity.

441 Manifestation Probability for Single Layer

There are many variables that could be influential in the prediction of P[M.|T.]. In legacy models,
CSR and penetration resistance are used to evaluate whether a layer will produce surface
manifestation, but other factors such as layer thickness, depth, soil composition, crust thickness,
and impeded drainage may also play a role. The variables we considered in our model are
provided in Table 4-2.
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Table 4-2 List of variables considered in manifestation model.

Variable Description
gein Overburden corrected cone tip resistance
I Soil behavior type index
Ziop Depth to top of layer
o0 Initial vertical effective stress
t Layer thickness
CSR Cyclic stress ratio
Teyo/Su Cyclic shear stress divided by undrained shear strength
Lp, Liquefaction eject demand of a layer (Hutabarat and Bray 2022)
Cry Crust resistance above a layer (Hutabarat and Bray 2022)

Note that Lp and Cr (introduced in Section 2.1.3) have been converted from profile parameters
to layer properties in Error! Reference source not found.. This is achieved by integrating from
the top to bottom of each layer for the case of Lp, and from the ground surface to the top of the
layer for Cr, rather than the full profile.

These variables must be combined in a mathematical framework in a manner that separates
“yes” from “no” manifestation cases based on the properties of the variables. A common
functional form utilized in binary classification problems is the logistic function, as shown in
Eq. (4-7),

_ 1 4-7
"1+ exp(—BTx)

p

where p is the probability of an outcome, 8 is an array of coefficients, and x is an array of
variables.

The logistic function has several desirable features that make it useful for binary classification
problems. First, p is constrained in the range between 0 and 1, which is the valid range of
probabilities of an outcome. Second, B7x is a linear combination of the input variables. Although
the resulting logistic function is nonlinear, logistic regression is often considered to be a linear
separator because B7x is a linear function.

The variables in Table 4-2 can potentially be combined in many different ways using many
different functional forms. The simplest approach would be to combine all the variables in

Table 4-2 together in a single logistic function. However, doing so would group together
variables that are unrelated to each other. For example, q./v and I, are soil properties, and it
makes sense to group them together, whereas z:,, and t are geometric properties that should be
grouped together. We therefore opted to group variables into distinct classes and multiply the
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logistic functions for each grouping together. However, this caused large instabilities in the
regression of model coefficients so we opted for the simpler framework with grouping all the
chosen variables into one logistic function. An example is provided by Eq. (4-8).

1 4-8
P[M|T] =
MIT] 1+ exp[—(Bo + Bidcin + Bole + Bazeop)|

Eq. (4-8) forms a four-dimensional surface in P[M.|T.], Qcn, ¢, Ziop SPace that is impossible to
visualize in three-dimensional space. Thus, the components are illustrated schematically in
Figure 4-8. The probability factor depends jointly on all three features (gci, /e, Ziop), SO Multiple
plots are required to demonstrate key aspects of the function. As evidenced in the top left
subplot of , a layer at the ground surface (z:, = Om) with Ic= 1 (represented as the darkest blue
curve) has P[M|T] ~ 1 at geiv < 75. As qcrv increases, P[M|T] decreases until it is approximately
0 at gciv = 300. As I increases (the color of the curve gets warmer), for the same z:p, and gern,
the P[M|T] decreases. Moving to different subplots from left to right and top to bottom, as zi,
increases P[M|T] decreases for the same gcsv and /; values.
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Figure 4-8 = Example probability factors for layer manifestation conditioned on (a) qcin
and I, and (b) z:p

As presented in Section 4.1.1, probabilities of manifestation that occur due to no triggering
(P[MINT]) can be separated into probability of manifestation given no triggering of a susceptible
layer (r, < 1.0 but producing large strains) and manifestation in a non-susceptible layer (cyclic
softening). Each are given their own set of logistic functions and combined to produce the total
probability of manifestation of a layer P[M,] in Eq. (4-9).

P[M,] =1— (1 - P[M|T]P[T|S]P[S]Ksq¢) * (1 — P[MINT]P[NT|S]P[S]Ksqc)
* (1 — P[M|NS]P[NS]Ksqr) 4-9
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where P[T]|S], P[S], P[NT]S], and P[NS] are all obtained from probabilistic model priors. P[M|T],
P[M|NT], and P[M|NS] are each logistic functions similar to Eq. (4-8) but with variables important
for the respective scenarios (e.g., gcinv for P[M|T] and 1eyo/su for PIM|NS]). Ksat is a term
introduced to take into account the saturation of the soil. In future work, a Kss: model could be
developed using information such as P-wave velocity and partial saturation zones around the
groundwater table. For this report, however, we use a binary value: Ks;: = 0 above the
groundwater table and Ksa: = 1 below the groundwater table. Saturation has been shown to
affect triggering; specifically as saturation decreases from S = 1, the CRR for a given Dr
increases (Arab et al., 2011; Okamura and Soga 2006; O’Donnell et al. 2017; Tsukamoto et al.
2002; Yang et al. 2004). Rather than including a Ksa term as done in Eq. (4-9), a saturation
effect could be applied to the P[T.|S.] function using an estimated saturation that could be
derived from proximity to the groundwater table and/or measured P-wave velocity (V,). The
framework presented in this report uses a simplified, binary saturation effect, therefore it is
applied to the P[M,] equation rather than the P[T.|S;] function because it would cause the same
effect. Future work needs to be done on saturation effects within the presented framework.

4.4.2 Manifestation Probability for a Profile

The probability of manifestation of a profile P[Mg] is computed using Eq. (4-10),

Np, et 4-10
P[Mp]l =1-— 1_[(1 — PPy, 1, PFr Ksar) " °

=1

where N is the number of layers in the profile, {; is the thickness of the " layer, and {; is a
constant characteristic thickness. Eq. (4-10) is a simplified case that only considers contribution
to manifestation from liquefaction triggering and ignores cyclic softening and non-triggering
manifestations. Eq. (4-10) consists of multiple pieces that warrant separate discussions.

First, PFu 7. is the probability factor of manifestation of a layer given triggering of the layer,
defined exactly as P[M.|T.] in Eq. (4-8). PFr. is the probability factor of triggering which is the
product of the probabilistic triggering and susceptibility prior models (P[T]|S]*P[S]). The reason
these are denoted as probability factors rather than probabilities now is because in the profile
manifestation framework with the t/t. exponent (explained later in this Section), these quantities
are not the true probabilities of manifestation or triggering of a layer.

Second, the expression (1 - PFML|TLPFTL)t/t“ is equal to the probability that the layer will not
manifest liquefaction, P[NM,] = 1 - P[M.]. If none of the layers manifest liquefaction, then the
profile does not manifest liquefaction. Therefore, P[NMpg] is computed as a product sum of
P[NM.]. However, a direct product sum (i.e., without the t/t; term in the exponent) inherently
assumes that P[NM,] for each layer is statistically independent from all other layers. This is
generally not true. The t/t; exponent has removed the influence of discretization by tying layer
thickness to the characteristic length. The characteristic thickness is the layer thickness for
which PFu 1. is statistically independent of the other layers. If all layers have a thickness equal
to the characteristic thickness, then Eq. (4-10) reduces to a simple product sum. If a layer is
thicker than the characteristic thickness, it becomes more likely to manifest, and vice versa, as
illustrated in Figure 4-9. We considered using thickness as a variable within the logistic
regression instead of as an exponent, but ultimately included as an exponent instead for

this reason.
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Figure 4-9  Influence of t/t: exponent on probability of layer manifestation

Consider the example profile in Figure 4-10, which has three layers with thicknesses of 3 m
(also using t. = 3m for simplicity), and groundwater table at the ground surface. Layer 1 has a
high gesv and I; (300 and 3.2, respectively), layer 2 has a low g¢sn and high /; (50 and 3.2,
respectively), and layer 3 has low gcsv and low /; (50 and 1.5, respectively). A strong ground
motion with CSR=0.6 is assumed. The first step is to compute P[T]S] for each layer; layer 1 has
P[T]S]~0 due to its high gc1v, Whereas layers 2 and 3 have relatively low q.«v and high CSR,
therefore P[T]|S]~1. The P[S] is low for layers 1 and 2 due to high /.. The product of P[T|S] and
P[S] is PFr., which is 0, 0, and 1 for layers 1, 2, and 3 respectively. The logistic functions in
Figure 4-6 and Eq. (4-8) are used with the profile data to compute PFuy .. Layer 1 has

PFuym = 0, layer 2 has PFuym. = 0, and layer 3 has PFu 7. = 0.5. These results are combined in
Eq. (4-10) to provide profile manifestation probability P[Mg] = 0.5, which is entirely caused by
layer 3.
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Figure 4-10 Simplified CPT profile demonstrating the computation of P[Mp]

In addition to layer properties, there may be profile properties that could improve a manifestation
model’s predictive accuracy such as ground motion intensity measures other than PGA or
variables such as H; and LP/ which are computed for an entire profile rather than an individual
layer. These could help capture system effects or ground motion properties that are not
reflected in layer properties or CSR. Therefore, P[Mp] can be expanded from the form presented
in Eq. (4-10) to the following:

Ny . 4-11
PIMp] = 1= | [(1 = PPuyyr, PFr, Ksar)te | (1 = PFp)

i=1

where PFp is the probability factor for the profile-scale manifestation effects defined using the
same logistic functional form as Eq. (4-7). Any combination of profile variables can be included
in PFp. Table 4-3 lists the different profile variables that were considered during formulation of
the manifestation model.
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Table 4-3 List of profile variables considered in manifestation model

Variable Description
H; Non-liquefiable crust thickness
Cr Crust strength
Lp Liquefaction Demand
PGV Peak Ground Velocity
CAV Cumulative Absolute Velocity
[ Arias Intensity
LPI Liquefaction Potential Index
LSN Liquefaction Severity Number
4.4.3 Profile-Based Regression Framework

Computing P[Mp] requires specification of the prior distributions for the coefficients in the PFs,
PFns, and PFyr functions, and the characteristic thickness, f.. Independently regressing all of
these based on case history data is infeasible and undesirable because (i) the amount of field
case history data is inadequate to isolate so many different variables with nonlinear
relationships, and (ii) there is a body of knowledge from laboratory testing that help constrain
PFs and PFrs. This approach is therefore to develop prior distribution functions for PFs and
PFns from laboratory data and then use Bayesian regression to update uninformed PFyr and
PFp coefficients and the more strongly informed PFs and PFrs coefficients. This section
presents the framework utilized to infer the coefficients based on observations of manifestations
at NGL sites. The functional forms of the probability factors and results of the inferences are
presented in Chapter 6.

In Bayesian regression, coefficients are characterized with prior distributions and then guesses
of posterior distributions are sampled using a Hamiltonian Monte Carlo algorithm (Hoffman and
Gelman 2011, 2014) along with the distribution of data and Bayes theorem to produce a
posterior belief about the coefficients (Gelman et al. 2014). This regression seeks coefficients
within the components of Eq. (4-11) that maximize the Bernoulli log-likelihood function given by
Eq. (4-12), where y is a binary indicator of whether manifestation was observed at the k" site
(vk = 1 if manifestation was observed, y,=0 if it was not), and Np is the number of profiles in the
database. This likelihood function is similar to those used in other probabilistic liquefaction
models (e.g., Cetin et al. 2018; Moss et al., 2006).

L 4-12
L= D n(PIMpl) + (1 = 3, In(1 = P[Mpl)]

N
Pr=

The likelihood function exhibits several notable properties. First, if yx=1, only the first part of the
expression within the square brackets on the right side of Eq. (4-12) contributes to the cost
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function for profile k, whereas only the second expression contributes if yx=0. Second, if the
prediction is a true positive (i.e., if y,=P[Mg]« = 1), or a true negative (i.e., if yi«=P[Mp]x = 0), the
contribution to the cost function from that profile is zero. Only values of P[Mg] that do not match
the observed manifestation contribute to the cost function. The ideal scenario would therefore
be to select an optimal set of coefficients that render P[Mp] values that are either 0 or 1, and
perfectly match the observations. In that case, the selected variables perfectly separate the data
into distinct domains, and the cost function would be L = 0. For real datasets, this is generally
not feasible, and the value of L will therefore be less than zero.

When a single logistic function is utilized to define the probability of occurrence of an event
(i.e., in traditional logistic regression), the cost function given by Eq. (4-12) is convex, meaning
that its second derivative is always positive. Logistic regression is therefore a convex
optimization problem that is guaranteed to find the absolute minimum (within a specified
threshold) using techniques like the gradient descent method (Cauchy, 1847). However, the
P[Mp] function is more complicated, involving products of logistic functions raised to an
exponent. As a result, the cost function is not convex, and can contain local minima.
Furthermore, we wish to constrain values of certain variables. As a result, we are solving a
non-convex constrained optimization problem, which is more complicated than logistic
regression. Our approach is to adopt a No-U-Turn Hamiltonian Monte Carlo sampling (NUTS)
algorithm (Hoffman and Gelman 2011, 2014). NUTS uses a recursive algorithm to build a set of
likely candidate points that spans a wide swath of the target distribution, stopping automatically
when it starts to double back and retrace its steps. The Python package PyMC is used to
perform NUTS and Bayesian regression (Wiecki et al., 2023).
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5 CASE HISTORY PROCESSING

Case history processing is required to convert data (e.g., CPT profiles, groundwater table
measurements, ground motion measurements, observations of liquefaction manifestation) into
metrics that facilitate model development (e.g., CSR, qgcines). As outlined in Section 2.2.2 and
Figure 2-7, our approach to case history processing combines automated procedures with
human inspection and judgment to assign liquefaction observations to nearby in situ tests,
identify layers, and process the characteristics of these layers. Whenever feasible, we codify our
judgments so they are objective and reproducible by other analysts. The development of
calibrated automated processes is crucial for analyzing a database as large as the NGL
database, and provides a repeatable, consistent, and objective initial view of the data.

This chapter describes the steps required to process liquefaction case histories as contained in
the NGL database and to assign layer properties for use in model development. These steps
include several advances of the state-of-the-art in liquefaction evaluation, such as a revisited
relationship between /; and FC, improved estimation of ground motion intensity, and an
automated layer detection algorithm.

5.1 Assigning Observations to In Situ Tests

Observations of surface manifestation (or lack thereof) and site investigations are not
necessarily collocated in the NGL database so it is necessary to decide which observation is to
accompany which test (i.e., what in situ test data should be used in evaluating the soil layers
that contributed to the surficial manifestation of liquefaction or lack thereof). Observations and in
situ tests are associated through a link to a common site in the SQL data structure, but within a
site there are often multiple observations and multiple in situ tests. Furthermore, there are often
“yes” and “no” observations of manifestations within the same site. To make initial assignments
of observations to in situ tests, we developed the following algorithm using Python code in
Jupyter Notebooks.

1. Select a site and identify all the in situ tests and observations that are associated with
that site.

2. Compile the latitude and longitude values for the tests and observations and compute an
array containing the distance in meters between every observation and test at the site.

3. Separate the observations by events (some sites have observations from more than one
earthquake event).

4. Assign the closest in situ test to each observation for each event so that every
observation has an in situ test assigned to it.

This is an initial automated process to make these assignments, followed by a human review by
SMT members examining each test-observation pair. To conduct the review, the SMT
developed a Jupyter notebook to visualize and summarize the available data for each site and
event combination. A screenshot of the notebook is shown in Figure 5-1. Red markers indicate
“yes” manifestation cases, black markers are “no” manifestation, and green markers are CPT
locations. Note that when an observation and CPT sounding are collocated, some information
can be obscured in the map (e.g., the green CPT pins or red/black observation pins may be
obscured). A circle is drawn around the observation pins that are reasonably close to a CPT and
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Site | Farris Farm v

Event | Loma Prieta v

== Leaflet | Google

Figure 5-1 A screenshot of the Jupyter notebook that the SMT designed for reviews of
individual case histories. Black markers represent observations of “no
manifestation”, red markers represent “yes manifestation”, green markers
represent CPTs, red/black lines connect CPTs and observations that the
SMT grouped together, and red/black circles indicate a co-located CPT and
observation pair.

are therefore candidates for inclusion in the SMT’s case history dataset. The purpose of this
review was to:

1)

2)

Confirm the appropriate assignments of “yes manifestation” and “no manifestation” to an
individual CPT or groups of CPTs when more than one CPT could be reasonably
assigned to the same field observation.

Identify and exclude case histories where the distance between a CPT and an
observation of “yes manifestation” or “no manifestation” is too great to reasonably adopt
(despite being the closest CPT identified by the initial algorithm). This evaluation is
dependent on the site geology and the type and spatial distribution of field observations,
and there is no single cutoff distance that is appropriate in every situation. For example:

a) A lateral spread feature extending over an area of many square meters is
represented in the NGL database by a single latitude/longitude coordinate, usually
near the center. The feature may contain several boreholes within its lateral extent,
but the distance between the center point and the boreholes could be several
meters. In this case, the appropriate maximum acceptable distance between an
observation and a borehole may be greater than in another case where only a single
sand boil is observed. Figure 5-1 shows a lateral spread feature that extends along
the north bank of the river shown in the image, with multiple FLDM observation notes
in several locations.
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b) In other cases, it is important to evaluate how close a borehole is to a "yes
manifestation" observation and a "no manifestation" when there are multiple
observations in a single site.

c) Some sites may have more variable conditions, and the appropriate maximum
acceptable distance between an observation and a borehole may be less than what
is considered acceptable at a site where the soil profiles are more constant over
horizontal distances. This evaluation is dependent on the site geology and available
subsurface data.

3) Identify CPT data that should be disqualified for reasons not readily detected by the
algorithms (e.g., unreliable CPT equipment).

4) Identify case histories where the presence of nearby structures could potentially affect
the manifestation of liquefaction.

5) Assign weights to CPTs when multiple soundings are assigned to the same observation.
In this manner, multiple CPT’s may be paired with a single observation to form a single
case history.

At least one member of the SMT and often two or more used this tool to review each case
history that the algorithms initially identified. This process yielded 546 total case histories, each
with a CPT associated with an observation of “yes” or “no” manifestation. The median distance
between site investigation locations and observations is Om (i.e., over half of the manifestation
observations are collocated with a CPT sounding), and the mean distance is 13.7m.

5.2 Ground Motion Intensity Measures

Accurate estimates of GMIMs, such as PGA, at liquefaction case history sites are crucial as IMs
are used on the demand side of the equation for developing liquefaction triggering and
consequence models. Current liquefaction triggering models are formulated using PGA values
developed from various approaches often based on now-dated GMMs or engineering judgment.
The existence of new GMMs based on current datasets of uniformly processed ground motion
recordings [e.g., the NGA ground motions (Ancheta et al., 2014; Contreras et al. 2022)] offers a
tremendous opportunity to improve the accuracy and reliability of GMIMs from old as well as
new liquefaction case histories.

This section describes a consistent approach developed to estimate GMIMs at NGL liquefaction
case history sites and is a continuation of the work described by Hudson et al. (2023b). The
method is demonstrated using PGA values from the 1989 Loma Prieta earthquake. The
procedure has been applied to the vast majority of events in the NGL database for PGA, PGV,
CAYV, and Arias intensity (/2). These intensity measures have been added to the GMIM table in
the database to support the development of predictive models based on alternative IMs. More
information on the procedures presented here is provided in Pretell et al. (2024).

5.21 GMIMs Used in Legacy Datasets
Traditionally, the GMIM required for liquefaction evaluations in the stress-based framework is
PGA (e.g., Section 2.1.2). PGAs for legacy liquefaction case histories (e.g., Moss, 2003;

Boulanger and Idriss, 2014; Cetin et al., 2018) were estimated using a variety of approaches
(Table 5-1). In a handful of cases, sites with liquefaction observations (or lack thereof) had
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Table 5-1 Summary of approaches used to estimate IMs in legacy datasets

Approach Description Comments

1 Measured at the | Direct measurements at location of interest but can be
site (collocated) | complicated by pore pressure, dilation effects

2 Interpolated from | Removal of the event term allows event-specific spatial
nearby stations [ variations to be isolated. Event term subsequently added to
obtain interpolated IM. Requires nearby stations surrounding

site
3 Based on Initial versions are less accurate than Approach 2 (level of
ShakeMaps care adopted in ground motion processing, e.g., assignment

of Vs3o, is less rigorous), but often updated as better data
become available

4 Estimated from Can be highly accurate at sites with strong impedance
site response contrasts and could be utilized to inform the nonlinear site
analysis response parameters, but uncertainty in the input motion

makes this approach less favorable

5 Recorded at Relatively common in past practice, but stations are often
nearest station many km from the case history site

6 Estimated from High degree of uncertainty because they are conditioned on
ground motion data from many earthquakes
models

7 Based on Not well documented, difficult to reproduce
judgment

8 Unknown No documentation available

collocated ground motion stations (Approach 1 in Table 5-1) and thus a measured value of PGA
at the location of the observations is available. Although directly measured at the sites of
interest, these PGAs are often affected by factors such as shaking-induced excess pore water
pressure and dilation-induced acceleration spikes, and thus their direct use in triggering model
development is not straightforward. In other cases, ground motion recordings were available
within a few kilometers or more of the liquefaction observations (Approach 5) and were used to
approximate the PGA at the location of the observations. These estimates were sometimes
modified to account for specific site conditions via site response analyses (Approach 4). In
cases where recordings were not sufficiently close to the location of the liquefaction
observations, PGAs were estimated using region-specific or ergodic GMMs. Other PGAs in
legacy datasets were estimated from ShakeMaps (Worden et al., 2018), which provide a
weighted average estimate of the PGA and other IMs using multiple data sources such as
interpolations between ground motion recordings, intensity reports, and GMMs. These
inconsistencies lead to a potentially inappropriate seismic demand that could limit the predictive
ability of liquefaction triggering models.

5-4



The approaches in Table 5-1 are presented in our perceived order of decreasing accuracy. For
example, collocated measurements are most accurate, though excess pore pressure
development can complicate their use. Next best is interpolation of residuals from a dense grid
of measured ground motions, as done in Approaches 2 and 3. Residuals, and specifically
within-event residuals, are preferred to the IMs themselves because they are specific to the
event that produced the motions, the IMs themselves are not spatially stationary, and
differences in site conditions can be considered when interpreting within-event residuals.
Approach 2 is distinguished from ShakeMap products (Approach 3) because the goal of
ShakeMap is to produce near real-time indicators of shaking intensity, which means that the
level of care adopted in ground motion processing, e.g., assignment of Vssy, is less rigorous.
Approach 2 utilizes uniformly processed ground motion records, site-specific data, site-specific
spatial correlation relationships, and is therefore considered more accurate. ShakeMaps for
important events are often updated as better data become available. In those cases, ShakeMap
products are considered as accurate as Approach 2. Site response analysis (Approach 4) can
be highly accurate at sites with strong impedance contrasts where the motion is known at the
impedance contrast (e.g., the “rock” motion). However, rock motions are generally not known
with a high degree of accuracy and tend to carry higher uncertainty than motions at softer sites.
Even in cases where a nearby rock outcrop motion is measured, the distance is generally far
enough that the rock motion is likely not characteristic of the incident motion at the site. While
we do not dispute the value of site response analysis methods for many sites, uncertainty in the
input motion has led us to favor interpolated motions. However, site response analysis could
potentially be utilized to inform the nonlinear site response parameters used in the GMMs
adopted to interpolate residuals.

Approach 5 was relatively common in past practice, in which the PGA from the nearest ground
motion recording was adopted as the value at the site of interest. In many cases, that station
was many km from the site, and significant differences in PGA values may arise from
differences in site and path effects, and spatial correlation of residuals. Ground motion models
carry a high degree of uncertainty because they are conditioned on data from many
earthquakes. If ground motion measurements are available for a particular event, they should
be used to refine GMM estimates. Hence, Approach 6 is considered less accurate than 1-5. In
some cases, PGA values were estimated from judgment. The judgment was not well
documented and is difficult to reproduce. We therefore consider this to be the least

accurate approach. Furthermore, sometimes the manner in which a PGA value was estimated
is unknown.

Legacy datasets relied solely on PGA as a proxy to quantify the seismic demand leading to soil
liquefaction, but there is potential for using other GMIMs to characterize demand. For instance,
Kayen and Mitchell (1997) proposed a liquefaction triggering procedure that uses the Arias
intensity (/») to represent seismic demand. Kramer and Mitchell (2006) evaluated several
GMIMs in their efficiency, sufficiency and predictability and found that the CAV estimated for
time histories with a minimum acceleration cutoff of 5 cm/s? (i.e., CAVs) is a good predictor of
excess pore water pressure ratio (r,) and thus liquefaction triggering. In a similar study, Karimi
and Dashti (2017) found CAV and CAV:; at the base rock as the best GMIMs to predict
liquefaction-induced permanent settlements. The previous and other similar studies (e.g.,
Bullock et al., 2019, 2022; Sideras, 2019) and the recent development of GMMs for I, and CAV
based on current ground motion databases (e.g., Campbell and Bozorgnia, 2019, 2023) allow
for the investigation of GMIMs other than PGA as proxies for seismic demand in liquefaction
triggering models.
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The work described in this section aims to address the previously described limitations of legacy
datasets: (1) the inconsistency in the approaches used for GMIM estimation, and (2) the lack of
availability of GMIMs other than PGA.

522 Consistent Method for Estimating GMIMs: Interpolation from Nearby Stations

GMIMs at liquefaction case history sites are estimated using Kriging? interpolation to adjust
GMM predictions with data from neighboring ground motion stations. The interpolation is not
performed directly on GMIM values because ground motion tends to decrease with source-to-
site distance and is therefore not anticipated to be a stationary random field. Rather, the
interpolation is conducted on within-event residuals. GMIM residuals for a given event “/” at a

site /" (R;;) are calculated as the difference between the recorded GMIM (Y;;), and the GMIM
estimated using GMMs (?l-j), as indicated in Eq. (5-1). The GMMs used to estimate PGAs are
the ones proposed by Boore et al. (2014) for crustal earthquake events, and by Parker et al.
(2022) for subduction earthquake events. In seismic hazard analysis it is common to use
multiple ground motion models to quantify epistemic uncertainty in the predictions. However,
when interpolating ground motions this selection is less important because we subtract the
event terms before interpolating within-event residuals. Different ground motion models have
different event terms, which is a source of epistemic uncertainty, but the interpolated residuals
are insensitive to these event terms. Selection of the nonlinear site response model is a more
important consideration due to differences in site conditions between measured ground motion
locations and liquefaction locations. We have not explored epistemic uncertainty in this area.

5-1
Rij = In(Yy;) — In(¥)
The event term ny is approximated as the average value of the total residuals, as follows:
Nrec 5'2
Ng; ~ R;j = R::
E,i it § ] Nrec j=1 15

The uncertainty in ng increases as N,... decreases. This uncertainty is accounted for in the
correlation model estimation, described in the following section. In the context of GMM
development, n; for each event is estimated using mixed-effect regressions. However, this
approximation is necessary because events for which we desire to interpolate ground motions
are not always included in the datasets from which the GMMs were derived.

Within-event residuals for a given event / at a site j (§W;;) are then computed as:
SWij = Rij — g, 5-3

Figure 5-2 shows the within-event residuals estimated at ground motion station locations for the
1989 Loma Prieta earthquake. The within-event residuals are then normalized by the within-
event standard deviation ¢; calculated from the data. The normalized within-event residuals

( W) are used to develop correlation models, as explained in the next section.

2Kriging is a method of spatial interpolation named after Danie Krige, a South African mining engineer.
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Figure 5-2 Map of interpolated within-event residuals for the 1989 Loma Prieta
earthquake at strong motion recordings stations

523 Correlation Model Development

Correlation models for PGA and the other GMIMs were developed for each earthquake as a
function of the Euclidean and angular separation distances amongst the ground motion stations.
Bodenmann et al. (2023) showed that within-event residuals are not stationary random fields
whose correlation depends solely on separation distance, but also on (1) the difference in the
azimuth between each site location and the earthquake epicenter, and (2) the difference in the
Vssoamongst stations. Such approach accounts for source and path effects, and also regional
similarities in Vs3p and thus site effects that are not captured by the GMM for a particular event.
We herein adopt the approach of Bodenmann et al. (2023) except that we exclude the Vsso
component since we often lack this information at points of interest, and because the additional
influence of Vs3p on PGA within-event residuals, beyond the site conditions already considered
in the site response models in the GMMs, was found to be very small by Bodenmann et al.
(2023). The correlation model is defined by Eq. (5-4), where pg is correlation due to Euclidean
separation distance (Eq. 5-5) and p, is correlation due to azimuthal separation distance

Eq. (5-6).

Pea(dE, Ve, da) = pe(dE, VE) - pa(ds) 5-4
dp\"* 5-5
pe(dg,vg) =exp|—1- (L_)
E
d, d, 180/L4 5.6
patdn) = (1 +a) (1 -50)
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where dj is the Euclidean distance between a ground motion station and the interpolation point
in km, y; is a model parameter, Ly is the Euclidean length parameter in km, d, is the difference
in the azimuth between the epicenter and ground motion station and the epicenter and
interpolation point in degrees, and L, is the azimuthal length parameter in degrees.

Bayesian inference is used to estimate the model parameters L, yg, and L,. Prior distributions
for the model parameters are first established following the recommendations by Bodenmann et
al. (2023). Realizations of the posterior joint distribution of the model parameters are then
computed based on the §W. The realizations of the model parameters are sampled using a
Markov Chain Monte Carlo simulation method using the PyMC (Salvatier et al., 2016) Python
package. A benefit of Bayesian inference over the more commonly used least squares
regression in correlation model estimation is that prior beliefs about the model parameters
stabilize the regressions for events that do not have a large number of ground motion records.
We found that spurious models often arose from data-driven frequentist regression due to lack
of adequate data. Herein, 1000 Monte Carlo samples of the posterior joint distribution are used,
thus resulting in 1000 correlation models. Figure 5-3 shows the correlation models for the 1989
Loma Prieta earthquake. The model with the highest likelihood, denoted maximum a posteriori,
and its parameters are also presented. Figure 5-4 shows a map of interpolated within-event
residuals for the 1989 Loma Prieta earthquake developed using the maximum a posteriori
correlation model.

1.0 1.0
Correlogram realization Correlogram realization

= = Maximum a posteriori (lg = 12.1 km, yg = 0.40) = = Maximum a posteriori (Lx =26.1°)

60 90 120
Euclidean distance, dg (km) Angular distance, da (°)

40 60

Figure 5-3  Correlation models for the 1989 Loma Prieta earthquake: (a) correlation
model as a function of Euclidean distance, (b) correlation model as a
function of angular distance
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Figure 5-4  Map of interpolated within-event residuals for the 1989 Loma Prieta
earthquake developed using the maximum a posteriori correlation model

5.2.4 Kriging Interpolation

Within-event residuals are interpolated at liquefaction case history sites using ordinary Kriging
and the Bayesian correlation models. Ordinary Kriging estimates a given variable of interest at
unsampled locations as the weighted average of data from sampled locations, as follows:

[W] _ [Var 1] ' [Cov] 5-7
u 1 0 1
where W are the weights, u is the Lagrange multiplier, Var is the covariance matrix among

ground motion measurement points, and Cov is the covariance matrix between measurement

points and interpolation points. The element values of the Var and Cov matrices are estimated
using the following relation:

C=0CiPEa 5-8
where C is the covariance and C; is the semivariance of within-event residuals, estimated as:

72 5-9

Cr =" +
rec
In this equation, 7 is the between-event standard deviation calculated from the GMMs. The
rightmost term in Eq. (5-9) is intended to capture the uncertainty in the estimated event term
Eq. (5-2). The mean GMIM within-event residual usy and corresponding Kriging interpolation
error, quantified as the standard deviation o4y, are estimated at each liquefaction case history
site using all the 1000 correlation models. All the mean and standard deviation values are
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combined using the following closed-form solution to obtain a single global normal distribution
with mean and standard deviation defined as:

Nmodels

1 5-10
Hsw = N Z Hew ke
models =
Nmodels Ninodels 5-1 1
1 2
I9sw = [\ N z Osw ,k N. ] Z (stzc #aw)
models models —

k=1

The mean within-event residual can then be used to estimate the mean GMIM at interpolation
locations as follows:

ln(Yij) = ln(?ij +Ng; + MavT/) 5-12

The oy is @ measure of uncertainty in the estimated ground motion GMIM. Both the mean and
standard deviation are included in the NGL database for each interpolated motion.

5.25 Comparison with Legacy PGAs

The newly estimated PGAs are compared against those from previous studies (e.g., Moss,
2003; Boulanger and Idriss, 2014; Cetin et al., 2018) to assess the influence in the new
approach to estimating ground motions. Figure 5-5 shows a comparison for PGAs at the
liquefaction case history sites of the 1989 Loma Prieta earthquake available on the NGL
database (Brandenberg et al., 2020). In this figure, the markers are differentiated by the
approach used to estimate the legacy PGAs, following the categories indicated in Table 5-1.
The RotD50 component is considered for the newly estimated PGAs, given it is based on
GMMs, while the geomean component is considered for the legacy PGAs, as it is more
generally available.

Some discrepancies are observed between the legacy and the newly estimated PGAs for case
histories. Legacy PGAs are based on three approaches: site response analysis, recorded from
the nearest ground motion station, or based on GMMs. Overall, the newly estimated and legacy
PGAs are within a factor of 2, as indicated by the 1:2 and 2:1 ratio lines. However, a tendency is
observed for legacy PGAs based on GMMs to be lower, particularly for PGA values higher than
0.3g. This discrepancy could be attributed to differences in the site response models embedded
in the old vs. the modern GMMs used for this work. Modern GMMs are based on larger ground
motion databases, therefore they are expected to have more accurate site response models. In
the case of legacy PGAs based on the nearest station (Approach 5), Figure 5-5 shows eight
cases, seven of them for sites in the Moss Landing area. These sites adopted a value of 0.28¢g
based on the PGA recorded at Salinas - John & Work ground motion station, adjusted based on
GMMs to account for differences in path and site effects. The resulting legacy PGA is higher
than the estimated PGA in this work. The remaining site is the Alameda Bay Farm Island,
whose legacy PGA was informed by the PGA recorded at the Alameda Naval Air seismic
station, a softer site that combined with the relatively long distance to the earthquake fault could
explain the observed discrepancy. Finally, legacy PGAs based on site response analysis
(Approach 4) are relatively close to the 1:1 line without any clear tendencies.
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Figure 5-5  Comparison of the legacy vs. newly estimated PGA estimates at
liquefaction case history sites from the 1989 Loma Prieta earthquake.
Markers indicate the approach used for the estimation of the legacy PGAs
(Table 5-1).

5.3 Layer Detection

Liquefaction triggering analyses are typically performed considering the representative
properties of each soil layer rather than a point-by-point basis within a CPT profile. This is
because liquefaction occurs as a process of pore pressure generation that typically is only
meaningful if it occurs across a large enough depth range to produce manifestations.
Furthermore, the CPT measurement represents an average of soil properties within a zone of
influence around the cone tip, and measurements at points near layer boundaries may therefore
not be representative of the soil properties at that point.

An individual CPT sounding may contain thousands of data points that provide an essentially
continuous profile of tip resistance (qc) and sleeve friction (fs) with depth over the length of the
CPT sounding. An engineer or geologist will generally use judgment to assign layer boundaries
based on the CPT sounding, and subsequently select representative properties. Different
analysts may make different judgments, and therefore assign layer boundaries differently. The
process is therefore non-unique and unlikely to be repeatable. Furthermore, manual layer
selection becomes inefficient when sufficiently large numbers of soundings require
interpretation. Therefore, it is desirable to establish an algorithm that can efficiently assign
layers to CPT data with repeatable, objective results that are compatible with sound human
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judgment to the greatest extent possible. A repeatable algorithm can also reduce bias that can
be introduced by a sole analyst or small group of analysts.

A number of different techniques have been developed to create simplified profiles from CPT
data. For example, Wang et al. (2013) developed a Bayesian approach to assign layer
boundaries and assign a probability that soil within a particular layer falls within a soil behavior
type category. Ching et al. (2015) developed a procedure that utilizes the wavelet transform
method to distinguish sudden changes in CPT tip resistance from smaller amplitude changes
due to within-layer soil variability. Ntritsos and Cubrinovski (2020) developed an algorithm that
minimizes the within-layer coefficient of variation of q./ncs and I for the purpose of developing
finite element meshes for one-dimensional ground response analysis. The first two of these
three methods are rather complicated and require a significant number of calculations. The third
is conceptually and computationally simpler and was shown to produce similar results to
analyzing the full profile with respect to liquefaction potential. However, Ntritsos and Cubrinovski
caution that the algorithm may result in fictitious layers at layer boundaries and indicate that
their algorithm is not intended to replace engineering judgment.

We describe below an algorithm that utilizes a machine learning technique called agglomerative
clustering to identify layer boundaries and representative layer properties. This method shares
some conceptual features with Ntritsos and Cubrinovski (2020) (the methods were developed
nearly simultaneously but independently); preliminary comparisons indicate that the clustering
technique is more efficient. The following subsections describe the agglomerative clustering
algorithm and illustrate its use on a CPT sounding from Moss Landing, an important
liquefaction site in California. The method described here has been submitted as a paper
(Hudson et al., 2023a).

Clustering is an unsupervised machine learning technique that separates data into different
groups, often based on distance between data points and the clusters in a desired
multi-dimensional parameter space (Pedregosa et al., 2011). The simplest clustering algorithm
is called K-means, which groups data based on the aggregate distance between the data point
and the centroid of each cluster. Gaussian mixture models assign probabilities that each data
point belongs within each cluster based on the cluster statistics and may be thought of as an
extension of K-means clustering that also considers covariance. Prior to clustering, variables
are generally standardized, meaning that the mean is subtracted, and the resulting quantity is
divided by the standard deviation.

Here, we use an example problem to illustrate various approaches for clustering to identify
layers. Figure 5-6 displays profiles of qc, fs, Ic, and qcinves for CPT UC-4 that was obtained at
Moss Landing near Sandholdt Road, a location that had severe liquefaction manifestation
observations due to the 1989 M6.9 Loma Prieta earthquake (Boulanger et al., 1995, 1997).
Visual inspection of the data makes it obvious that there are alternating layers of fine-grained
and coarse-grained materials that compose this site’s stratigraphy. Standardized versions of the
variables are denoted /; and dines and are plotted in Figure 5-7.

K-means and Gaussian mixture model clustering is applied in /; and d.ies using the Scikit-learn
Python package (Pedregosa et al., 2011), and plotted in Figure 5-8. The number of clusters is
specified to be 14 here. Both algorithms do indeed group data points based on their proximity to
each other. However, a problem arises when the clustered data are plotted as profiles with
depth. As shown in Figure 5-9, non-contiguous data points may be assigned to the same cluster
despite spatial separation. Figure 5-9 shows the results of K-means clustering, and Gaussian
mixture model clustering suffers the same problem.
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Figure 5-6  CPT data from UC-4 at Moss Landing—Sandholdt Road (original data from
Boulanger et al., 1995, 1997)
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Figure 5-7  Cross plots of I. vs gcines and Iz vs geines for UC-4 at Moss Landing—
Sandholdt road
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Figure 5-8  (a) K-means and (b) Gaussian mixture clustering algorithm results for UC-4
CPT profile
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Figure 5-9  Depth profiles for K-means clustering algorithm results for UC-4 CPT
profile
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One possible solution would be to include depth as a 3™ variable in the clustering algorithm.
While that solution improves continuity with depth, it does not solve the problem. To overcome
this problem and obtain vertically contiguous clusters, we turn to agglomerative clustering,
which is a form of hierarchical clustering that groups data based on a cascading “tree” of
clusters computed using distances between points (Nielsen, 2016). A nearest neighbor matrix is
provided to the clustering algorithm to specify which points are permitted to be considered when
assigning clusters. For ordered data, the nearest neighbor matrix is tri-diagonal with ones on the
diagonal and the two adjacent diagonals, and zeros elsewhere. This matrix forces the clusters
to be contiguous. The algorithm then clusters data by minimizing the within-cluster variance for
the total number of clusters specified. The resulting data is plotted in Figure 5-10, which
illustrates that the layers are now vertically contiguous. Some clusters clearly correspond to
transition zones (e.g., the cluster beginning at 10m depth) while others clearly belong within a
stratum (the cluster immediately below the previously mentioned transition layer).

0 NOY U1l A WN =

Depth (m)

0 100 200 300 400 1 2 3 4
Qcines Ic

Figure 5-10 Depth profiles for agglomerative clustering algorithm with nearest neighbor
Matrix for UC-4 CPT profile

Success of this method is highly dependent on the number of clusters specified, which is not
known a priori because different CPT soundings require different numbers of clusters due to
differences in total length and spatial variability of the soil deposit. Selecting the optimal number
of clusters must balance two competing factors: (i) increasing the number of clusters reduces
within-cluster variance, and (ii) to avoid over-fitting, the fewest possible number of clusters that
reasonably divide the profile into layers should be provided.
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In agglomerative clustering, a distortion score, Jp, is often utilized to identify the optimal number
of clusters, and is defined for the two-standardized-variable case considered here in Eq. (5-13),

R 2
sl ()

T S (e + ()]

where p;, and y;_are the mean values of Genes and Iz, respectively, for the it" cluster (i.e.,
L

subscript j is the index for clusters and identifies values of these parameters for each individual
cluster), and N is the total number of data points in the profile. Note that Jp decreases as the
number of clusters, K, increases, and by definition is equal to zero when K=N because every
point would constitute its own cluster and the numerator would be zero. The optimal number of
clusters therefore cannot be computed by minimizing the distortion score, but rather is a
compromise between reducing the distortion score while retaining the smallest possible number
of clusters that adequately categorizes the data.

5.3.1 Thickness-Dependent Cost Function and Combined Cost Function

We define a cost function, Jr, that penalizes the average layer thickness within a profile using
Eq. (5-14).

3
Jr=0.2 <0'5m> 5-14

avg

The average thickness is defined as tag = Zmax/K, where zmax is generally the total depth of the
CPT profile. Note that predrilling is sometimes necessary for CPT profiles, in which case the first
depth at which data is recorded is non-zero. In those cases, zy is the difference between the
deepest and shallowest CPT measurement. The purpose of Eq. (5-14) is to penalize selection
of a high value of K if it results in average layer thicknesses that are too small to be considered
geotechnically significant. Based on inspections and analyses of hundreds of CPT profiles in the
NGL database, we believe that 0.5 m is a fairly thin stratum, and we set the coefficients in

Eq. (5-14) such that Jr = 0.2 for this condition. The cubic form of Eq. (5-14) was adjusted until
the achieved average layer thickness accorded well with our judgment. A combined cost
function is then defined in Eq. (5-15), where wp and wr are weights assigned to the components
of the cost function. We herein utilize wp = wr = 1.0, but these weights can be adjusted based
on user judgment in a site- or region-specific manner.,

J=wpdp + wrdr 5-15

53.2 Elbow and min(J) Methods

We consider two methods for utilizing the distortion score and the combined cost function to
select the optimal number of layers. First, the “elbow” method graphically interprets a plot of Jp
vs. K, which has a negative curvature over the full range of K, but flattens as K increases
(Figure 5-11). The optimum value of K (9 in the case of Figure 5-10) is identified on the basis of
curvature having decreased to a sufficiently low level, which is subjective. As such, the elbow
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Figure 5-11 Cost functions and layer selection for CPT profile UC-4

method is based only on Jpand not on Jr. We utilize the Yellowbrick (Bengfort et al., 2022)
Python package to implement the elbow method which identifies the point of maximum
curvature of the Jp vs. K curve and assigns that as the optimum number of layers. The
silhouette method (Bengfort et al., 2022) is also often utilized to identify the optimal number of
clusters. This method is based on a so-called “silhouette” value that measures the similarity of
data points within a cluster compared to other clusters. We found it to produce similar results to
the elbow method. Thus, results from this method are not reported in Figure 5-11. Molina-
Gdémez et al. (2022) utilize the silhouette method to define the number of clusters in their
algorithm. We also apply an alternative method in which K'is selected as the point where J
[from Eq. (5-15)] is minimized. For this reason, we call this the min(J) method. The combined
cost function is minimized for K = 16 clusters for the example of CPT UC-4 in Figure 5-11.

Profiles of 16 and 9 layers are shown in Figure 5-12, where (a) and (b) have 16 layers by using
the min(J) method, whereas (c) and (d) have 9 layers by using the elbow method. The primary
differences between these two profiles are in layers number 3, 4, and 6 for the 9-layer profile.
These layers clearly contain within-layer regions that are vertically contiguous with different
gcines and I values (e.g., the layer for the 2.2-3.8 m depth range), yet they are clustered
together in the 9-layer profile. By contrast, they are separated into different layers in the 16-layer
profile. The 16-layer profile accords better with our judgment, and similar observations observed
across diverse profiles with a wide range of depths (as described in the next section) causes us
to prefer use of the min(J) approach over the elbow method when selecting the number of
layers. We recognize that a different curvature threshold in the application of the elbow method
would have produced a different number of layers and, possibly, a solution that accords better
with our judgment. However, the superiority of the min(J) method is related to the fact that it is
based on layer thickness, which is a physically meaningful quantity, whereas the gradient of Jr
vs. K used in the elbow and silhouette methods does not have a clear physical meaning.
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Figure 5-12 Profiles of qcines and Ic with 16 layers by using the min(J) method (a and b)
and 9 layers by using the elbow method (¢ and d)

5.3.3 Calculations for Many CPT Profiles

Calculations of the optimal numbers of layers were performed for a total of 272 CPT profiles
contained in the NGL database. Both the elbow method and the min(J) method were utilized to
select the optimal number of layers. We expect that .y should be independent of z,,.x because
tavg depends upon vertical heterogeneity of the soil profile, which is controlled by the geological
processes that formed the soil deposit, whereas znax arises from a decision controlled by the
objectives of the site investigation. For example, znax may be higher for a site investigation for a
pile-supported tall building with a corresponding deep zone of influence than for a single-story
building supported by spread footings with a corresponding shallow zone of influence.

Values of tag VS. Zmax are plotted in Figure 5-13. The elbow method exhibits a strong positive
correlation in which t..4 increases essentially linearly with znax. This is an undesirable outcome
since we anticipate t.,4 to be independent of z,.x. By contrast, values of t.,4 are essentially
independent of zmax using the min(J) method, particularly for values of znax > 12m. For
liquefaction triggering evaluation, profiles shorter than about 15m may miss layers that could
potentially liquefy and produce surface manifestation. In this regard, the slight bias in the min(J)
method for shallow profiles has little practical impact because evaluations of liquefaction for a
profile need to extend deeper than 12m to reasonably capture all the layers that may influence
manifestation, and there should not be instances where the bias on short CPTs is present.
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Figure 5-13 Average layer thickness, t..g, versus total CPT profile length, z.x for (a)
elbow method and (b) min(J) method.

The influence of maximum depth on average layer thickness is further explored in Figure 5-14,
which illustrates normalized cost versus number of clusters for (a) a shallow profile with zax =
5.1m from CPT_8933 at Site 76 in Edgecumbe, New Zealand, and (b) a deep profile with zax =
31.3m from CPTO001 at the Inage site in Urayasu City, Japan (CPT names are those reported in
the NGL database). Note that the Jr functions are significantly different for these two profiles
because the same average thickness in Eq. (5-14) produces fewer layers for the shallow profile
than for the deep profile. For the shallow profile, the elbow method indicates that 8 sublayers is
ideal (tavg = 0.64m), while the min(J) approach provides 7 layers (ta,g = 0.73m). These results
are very similar. By contrast, for the deep profile, the elbow method indicates that 8 layers is
ideal (tavg = 3.9m), while min(J) provides 36 sublayers (t.,g = 0.87m). These results are
significantly different, and the average layer thickness using the elbow method is too large to
capture potential critical layers of sand-like soil with low qcncs.
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Figure 5-14 Normalized cost versus humber of clusters for (a) a shallow profile with
Zmax=5.1m corresponding to CPT_8933 at Site 76 in Edgecumbe,
New Zealand and (b) a deep profile with z,,,x=31.3m corresponding to
CPTO001 at the Inage site in Urayasu City, Japan

Note that when K=8, Jp is near 0.2 for the shallow profile and near 0.4 for the deep profile. A
fundamental limitation of the elbow method is that it considers only the curvature of the cost
function, and not the value of the cost function itself.

The two profiles are illustrated in Figure 5-15 with a common depth axis to illustrate the clear
differences in the maximum penetration depth. The average layer thicknesses determined using
the min(J) method are similar for these two profiles despite the different total depths.
Furthermore, it is clear that reducing the number of layers for the deeper site from 36 [using the
min(J) method] to only 8 (using the elbow method) would result in significantly higher average
layer thickness and would miss much of the stratigraphic detail within that profile.
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Figure 5-15 Profiles of qcivcs and I for (a) and (b) a shallow profile corresponding to
CPT_8933 at Site 76 in Edgecumbe, New Zealand, and (c) and (d) a deep
profile corresponding to CPT001 at the Inage site in Urayasu City, Japan
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5.4 Assigning Layer Properties

After identifying layers using the agglomerative clustering algorithm, we compute a number of
different attributes for each layer in the profiles. Some attributes are computed directly from the
CPT data, while others are computed using a combination of CPT data and demand for the
purpose of identifying the critical layer within the profile. Section 5.4.1 describes attributes
obtained directly from CPT data and stress normalization. Section 5.4.2 describes a new
relationship for estimating FC. Section 5.4.3 describes the calculation of CSR.

54.1 Basic Layer Properties and Stress Normalization

Attributes computed directly from the CPT data are listed in Appendix A. We computed a total of
16 different layer parameters for the case history dataset for consideration in model
development, including layer depth, layer thickness, cone tip resistance, overburden- and fines-
corrected cone tip resistance, sleeve friction, soil behavior type index, modified soil behavior
type index, vertical total stress, vertical effective stress, groundwater table depth, cyclic stress
ratio, magnitude scaling factor, Kg, strength of non-liquefied layers above the layer, and ejecta
severity index within the layer. These attributes are computed in Python and stored in a pickle
file format (with a .pkl file extension) that is well suited to being read into a Pandas dataframe.
We will publish these data as part of this project to facilitate use by other model development
teams. One pickle file has been created for the measured CPT data, and another has been
created for CPT data that has been inverse-filtered using the algorithm by Boulanger and
Dedong (2018).

To calculate gq1nes for a profile, the total and effective stress profiles are needed. An estimate of
the unit weight profile is created using the specific gravity (Gs) and water content (w.)
measurements from the nearest boring to the CPT. If one or neither of these values are present
at a particular depth range or in the closest boring, then the Gs and w, are assumed to be 2.7
and 35%, respectively. Assuming saturation, the unit weight is computed as
9.81kN/m3(e+Gs)/(1+€e) where e is the void ratio equal to Gs(w./100%). If there is an associated
groundwater table depth in the WATR table assigned to the CPT, we select that value for case
history processing. If there is no associated entry in the WATR table assigned to the CPT, we
assign the closest groundwater table depth at any in situ test at the site (e.g., a borehole).
These quantities are all used to compute the total and effective stress profile for the CPT.

The equations to compute gc1v as recommended by Boulanger and Idriss (2014) are:

m = 1.338 — 0-249(qclNc5)0'246 5-18

where q. is the cone tip resistance and p, is atmospheric pressure (i.e., 1 atm = 101.325 kPa).
Equations used to compute gcines as recommended by Boulanger and Idriss (2014) are
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qcin 9.7 ( 15.7 )2
Agery = (119 + 2228 1.63 — =
den = (119 +55) exp < FC+2 \FC+2 5-20

where FC is fines content. The crust thickness (H) is taken as the sum of the thickness of
layers with /; greater than or equal to 2.6 above the water table.

542 Estimation of Fines Content from CPT Data

The liquefaction potential of an element of soil is related to its degree of contractiveness, which
is a function of its state. At a given effective stress level, the state of a particular soil is a
function of its relative density, which can be measured in the laboratory. The in situ relative
density, however, is difficult to measure directly and typically inferred from penetration
resistance. The CPT provides an effectively continuous profile of tip resistance (q:), sleeve
friction (fs), and sometimes pore pressure (uz), and is commonly utilized to assess soil
liquefaction (e.g., Robertson and Wride, 1998; Moss et al., 2006; Boulanger and Idriss, 2016)
because qg; correlates well with relative density of clean sands. However, g; alone is inadequate
to assess relative density of sandy soils with appreciable fines because the amount and
plasticity characteristics of fines present in the sand influence its compressibility and drainage
characteristics, and therefore influences the g; for a given relative density. For these reasons,
CPT soundings should be accompanied by sampling and laboratory testing when feasible to
measure fines content and plasticity characteristics, either using a collocated borehole or by
using sampling equipment that can be affixed to the CPT rods. However, many projects proceed
without soil sampling, in which case susceptibility and fines content are inferred from CPT
measurements. The presence and plasticity characteristics of fines also influence liquefaction
susceptibility and cyclic resistance ratio (e.g., Park and Kim, 2013), albeit in a different manner
from their effect on CPT measurements (investigated by Carraro et al., 2003 and Ecemis and
Karaman, 2014). The fines correction applied in liquefaction evaluation does not distinguish
these two effects, but rather jointly captures both effects in a combined manner. This section
focuses on the influence of fines on CPT measurements, and not on the influence of fines on
liquefaction susceptibility or resistance. The method described here has been submitted as a
technical note (Hudson et al., 2023d), and the dataset is available on DesignSafe (Hudson et
al., 2023c).

Soil behavior type index, I, is an indicator of the manner in which a particular soil behaves and
is defined by Eq. (5-21). Robertson (1990) developed relationships between /. and soll

behavior type in which fine-grained soils tend to have /:>2.6, sand-like soils with appreciable
fines (i.e., silty sand to sandy silt) tend to have /. = 2.05 to 2.6, and clean sand to silty sand
tends to have /. = 1.31 to 2.05. Soil behavior type is different from soil classification because the
Unified Soil Classification System uses fines content (FC) of 50% to distinguish fine-grained
soils from coarse-grained soils, whereas the mechanical behavior of soils with FC as low as
35% is generally considered to be dominated by the fines (Thevanayagam, 1998).

I, = /(347 — 10gQs)? + (logE. + 1.22)2 5.91

Robertson and Wride (1998) developed a relationship between “apparent fines content” and /;
as specified by Eq. (5-22). Furthermore, they indicated that Pl influenced the relationship
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between /. and FC and specified separate relationships for high plasticity fines

(PI'> 20%) and non-plastic fines (Pl < 5%). For a given I., FC tended to be lower for high
plasticity fines. They utilized the phrase “apparent fines content” rather than “fines content” as
an acknowledgment that the relationship between /. and FC was approximate, and influenced
by plasticity, mineralogy, sensitivity, and stress-history. They indicated that the approximate
relationship provided by Eq. (5-22) may nevertheless be useful for small projects.

0 forl. <1.26
FC(%) ={1.75132> — 3.7 for 1.26 < I, < 3.5
100 for I, > 3.5

5-22

Robinson et al. (2013) developed a relationship between /. and FC for soils in Christchurch and
found that the apparent fines content was 10% for soils with /;<1.7, and reasonably followed the
Robertson and Wride (1998) relationship for non-plastic fines for soils with /:>1.7.

Boulanger and Idriss (2016) developed a relationship between /. and FC based on
approximately 200 /-FC pairs from Suzuki et al. (1998) supplemented with approximately 120
I-FC pairs from liquefaction case histories. They regressed their relationship using FC as the
independent variable, and /; as the dependent variable, and subsequently inverted the equation
to obtain the relationship given by Eq. (5-23), where Crgc is a parameter that may be calibrated
on a site-specific basis. The mean value of Crc from their dataset is 0.0, and the standard
deviation is 0.29. Note that the standard deviation reflects uncertainty in /. for a given FC
because they regressed the model with FC as the independent variable.

FC =80(, + Cpc) — 137 0% < FC < 100% 5.93

Cetin and Ozan (2009) compiled a dataset containing 484 measurements of FC, CPT
measurements, and plasticity indices. A total of 474 pairs have FC and CPT measurements,
while 388 have Atterberg limits. They do not report I, but rather utilized Bayesian methods to
estimate FC directly from measured cone tip resistance and sleeve friction. We sought to
develop a new probabilistic relationship for FC conditioned on /. using CPT and FC data from
the NGL dataset.

5.4.2.1 Dataset

At the time the NGL database was queried to develop this relationship, a total of 2,714 layers
with /. computed using CPT soundings were associated with a measured FC from a sample at
the same depth in a nearby boring. These data come from 111 different sites and 227 different
collocated CPT/boring log pairs. All data used herein were reviewed by two independent
reviewers to check for accuracy of information in the database relative to source documents.
This association of a CPT sounding with a boring was applied to pairings separated by 10m or
less, with most separated by less than 3m. Each CPT sounding was inverse-filtered to account
for layer effects using the procedure by Boulanger and DeJong (2018), and strata from the
inverse-filtered profiles were identified using an agglomerative clustering method (Hudson et al.,
2023a). The representative value of /. for each stratum was then computed as its median value
over the length of the specimen used to measure FC computed as the percent passing the No.
200 sieve (75 um).
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An example boring log and /. profile is shown in Figure 5-16 for Adapazari Site B

(PEER 2000, Bray et al., 2004), which has 13 measured FC values. For example, FC in the
upper 4 m of Adapazari Site B (Figure 1) is generally higher than 50% with a median /. of 2.7
whereas I = 1.3 with FC = 5% in the sand layer from about 4 to 9 m depth. In some cases, FC
was measured for multiple specimens within a sample, and the FC values varied significantly.
This is consistent with interbedding in the upper 4m of this profile. We considered computing /¢
as the average value over the layer thickness or the sample length. We opted to average over
the specimen length because the layer thickness is often quite large and might miss important
stratigraphic details, and because multiple specimens are often tested from a single sample,
often with significantly different FC and /. within the specimen depth range.

The processing illustrated in Figure 5-16 was repeated for all collocated CPT soundings and
boring logs, resulting in the values plotted in Figure 5-17, along with binned means that illustrate
trends in the data. /.-FC pairs were obtained from sites in California (1928), Turkey (319),
Taiwan (191), New Zealand (94), Japan (88), China (60), and Mexico (34), and reflect
geological conditions including Holocene and Pleistocene aged alluvial, beach, eolian,
estuarine, floodplain, fluvial, lacustrine, and marine deposits as well as artificial fill. A general
trend of increasing FC with increasing /. is evident from the data. Standard errors of the binned
means are smaller than the icons used to plot them. When /;=2.6, the mean value of FC is
about 60%, which is consistent with Robertson’s (1990) soil behavior type concept because soil
with FC this high is dominated by the fine fraction. When /:=2.0, the mean value of FC is about
35%, often considered the transition where the soil becomes fines-dominated. Furthermore, the
mean FC drops to about 10% for /.<1.5, which is also consistent with Robertson (1990).
Significant scatter exists in the data, which indicates that /. is not a unique indicator of FC. The
model shown in Figure 5-17 is described subsequently.
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Figure 5-17 Fines content (FC) vs. soil behavior type index (/) for collocated CPT
soundings and boring logs in NGL database compared with proposed
model, Robertson and Wride (1998), and Boulanger and Idriss (2016). Each
bin contains an equal number of data points.

5.4.2.2 Proposed FC-I. Model

FC is bounded between 0 and 1, which poses a complication for least squares regression
because the functional form must enforce these boundary conditions, which precludes linear
regression. Rather than formulate a complicated functional form, we instead impose a logistic
transform (Johnson, 1949) on the data as indicated by Eq. (5-24). Note that FC is unbounded,
and becomes infinity when FC = 1.0, and negative infinity when FC = 0.0. To avoid infinite
values, we set the data to the nearest measured value thatis not 0 or 1 (i.e., O’s are set to 0.6%
and 1’s are set to 99.8%).

FC]

FC=ln[1_FC
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We subsequently standardize FC and /; by subtracting the mean and dividing by the standard
deviation of each quantity, prior to performing ordinary least squares regression (Table 5-2).
The result is shown in Figure 5-18. The linear fit passes through the origin since the data were
standardized prior to regression. The slope is 0.566, and the standard deviation of the residuals
is 0.825. Although not shown here for brevity, residuals of the fit in transformed variable space
approximately follow a normal distribution.
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Table 5-2 Mean and Standard Deviation of /. and FC

Variable Mean Standard Deviation
Ic 2.5 0.615
EFC 0.15 2.267
3 - -
y = 0.566x + ¢ o o OO O OO ADOCCDO /” o
o, = 0.825 _="

21 o 00®© 00D Q;cnoono OB ODBNOA DO OO o,o’

0o 0000 O O oo gmmm@&?o(o o
ap 0 00

‘:EE o
<O
NS
Q 0 %o
‘o
-
-
—14 5
@ ° %™ o
¥ o8 0060 000 60 o
@ ao :,mﬁoé’poooomoom o
=2 1 28 OPAO 0 0 O o o O binned means
- 0 00 00 EUICOCTXDADALTI 0O @ 00 OGO OV O
g o data
-3 -2 -1 0 1 2 3 4
Ic — HMic
Oic

Figure 5-18 Linear least squares regression of standardized quantities

The regression results must be de-standardized and must be de-transformed to obtain a form of
the equation in I — FC space. The result is provided by Eq. (5-25).

exp(2.0841, — 5.066 + 1.869¢)
1+ exp(2.0841, — 5.066 + 1.869¢) 5-25

FC =

where € is a random variable with mean zero and standard deviation of 1.0. The proposed
relationship is plotted in Figure 5-17 in I — FC space for the mean relationship and € = +1
values. The mean curve agrees well with the binned means of the data, indicating that the fit is
reasonable. The € = 11 relationships reflect the significant scatter in the data.

The relationships of Robertson and Wride (1998) and Boulanger and Idriss (2016) are also

plotted in Figure 5-17. The recommended Robertson and Wride (1998) model is lower than the
binned means, indicating under-prediction of FC for this dataset. The Robertson and Wride
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(1998) model for non-plastic fines, however, is very close to the binned means of our dataset,
which is consistent with the findings of Robinson et al. (2013) for the soils in Christchurch. The
model of Boulanger and Idriss (2016) tends to under-predict FC for values of /; < 2.0 and over-
predict FC for values of I; > 2.0 and does not represent the smooth variation of FC with /.
indicated by the binned means for the NGL dataset. Furthermore, the range corresponding to
Crc £ 0.29 is rather small, and significantly smaller than the range for our proposed model
corresponding to £ 1.

5.4.2.3 Influence of Plasticity

Robertson and Wride (1998) found that plasticity index (P/) influenced the relationship between
I and FC. Specifically, FC was noted to decrease as P/ increased for a given /Ic. This trend is
intuitive because a small amount of plastic fines would be expected to exert more influence on
soil behavior than the same amount of non-plastic fines. Of the 2,714 I-FC pairs in the NGL
dataset, 1,063 have measured Atterberg limits. An additional 299 samples were inferred as
non-plastic based on stratigraphic layer descriptions containing the words “non-plastic”, “sand”,
and/or “gravel” and not containing any of the following words: “plastic”, “clay”, “silt”, “fat”. To

investigate potential effects of soil plasticity, residuals were computed as:

exp(2.0841. — 5.066) )

Rgc =In(FC) — In <1 + exp(2.0841, — 5.066)
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The binned means of the residuals are negative (model overpredicts) for Pl < 20%, and positive
(model underpredicts) for P/ > 20%. This implies that, for a given I, the fines content is higher
for high PI soils, which is the opposite of the trend presented by Robertson and Wride (1998).
To investigate the cause of this finding, Figure 5-19b shows a positive correlation between FC
and PI; i.e., higher FC soils are more likely to have high PI. As a result, an /.-FC pair with an
unusually high FC (thus producing a positive residual) is likely to also have a high P/, whereas a
pair with an unusually low FC (producing a negative residual) is likely to have a non-zero but
low PI. This parameter correlation is not surprising because Atterberg limits are tested on
specimens passing the #40 sieve, which therefore include sand-size particles and fines.
Accordingly, low FC materials likely have large granular fractions in plasticity test specimens,
reducing PI, whereas high FC materials will have limited granular fractions, increasing Pl. We
recognize that incomplete sampling could also affect the results in unknown ways — perhaps
Atterberg limits tests on low FC soils are more likely to be performed if the plasticity is low
(because such samples are more likely susceptible to liquefaction). If so, this would represent a
type of sampling bias. Another potential sampling bias would occur if Atterberg limits on high P/
soils with low FC are underrepresented relative to the frequency of their occurrence in nature,
which is a possibility we cannot exclude. Given these uncertainties, we have not attempted to
adjust the relationship to recover the trend we believe would exist in the absence of correlation
between FC and PI. Furthermore, the influence of P/ on the /.-FC relationship has little practical
impact because in cases where Pl is measured, FC should also be measured and therefore
should not be inferred from /.
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Figure 5-19 (a) Residuals of proposed model Eq. (5-26) versus PI, (b) positive
correlation of FC with Pl in database

54.3 Cyclic Stress Ratio

We compute seismic demands on soil layers in the form of a cyclic stress ratio, CSRm7.5,1atm
[Eq. (2-2) with adjustments MSF and K,]. CSRwm75 1atm is computed for a given earthquake event
and ground motion that has been associated with an observation of surface manifestation

(or lack thereof) at or near the location of the CPT sounding. Some locations have been shaken
by multiple earthquakes; in which case the CPT data is repeated in the summary pkl file

(see Appendix A for full list of quantities in the pkl file). The quantities that describe the
earthquake event are summarized in Table 5-3. For each field observation, the nearest CPT
sounding within the site is selected as being representative of that observation. The distance
between the observation location and CPT sounding is recorded and stored in the pkl file.
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Table 5-3 Summary of values queried or computed for each layer based on quantities
from the database or derived from CPT data

Variable Name Description

EVNT_ID The primary key from the NGL database for the earthquake associated
with this observation/CPT pair

EVNT_NAME The event name from the NGL database for the earthquake associated
with this observation/CPT pair

EVNT_MAG The event magnitude from the NGL database for the earthquake
associated with this observation/CPT pair

PGA The PGA from the NGL database for the observation location
(FLDO location)

FLDM_ID The primary key from the NGL database for the observation of
manifestation

FLDM_SFEV The flag from the NGL database for the observation of manifestation
(1 if manifestation observed, 0 if not)

FLDM_DIST The distance between the CPT/observation pair

CSR Cyclic stress ratio

CSRwr.51atm Values computed at the center of each layer are taken to be representative of the
layer. As shown by the equations below, CSRwmy7.5,7atm is computed using the PGA stored in the
GMIM table associated with the observation (using the estimates from the Kriging approach
outlined in Section 5.2.4, where possible), the moment magnitude of the event associated with
the observation, the total and effective stress profiles computed for use in the g.sv calculation,
the MSF and Neq equations by Lasley et al. (2017), and the rq relationship presented in Lasley et
al. (2016). The K, model is from Section 6.2.4 of this report.

PGAs, 1 1

CSRy751atm = 0.65 - 5 ol MSF K. 5-27

rg = (1—a)exp (%) +a 5-28

a = exp(—4.373 + 0.4491M,,) 5-29

B =—20.11+ 6.247 * M,, 5-30

In(Negg) = 0.4605 — 0.4082In(ayqy) + 0.2332M,, 5-31
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MSF = (14/N,,)°*?
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< VO) for oy, < pqg
Pa
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) o=
Pa

K, =

-0.49

M expl0.121(11.67 — FO)]

" {—3.8 X 1075(FC)? + 4.88 x 10~*(FC)? — 1.358 x 10~2(FC) — 0.13 for FC < 70
, =

—0.148 for FC > 70
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where z is the depth in meters, p, is atmospheric pressure (1 atm) in the same units as ¢’y, and

M is the moment magnitude.
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6 CPT-BASED MODELS

As described in Chapter 4, the necessary components of the SMT’s conditional probabilistic
approach include estimates of P[T] = P[T]|S]*P[S], P[M|T], and P[M|NT]. The following sections
outline the preliminary approaches adopted by the SMT to estimate these probabilities. These
results constitute the culmination of the model development process described in Section 2.2.2
and illustrated in Figure 2-7. The content presented in this chapter is subject to change as we
refine the methodologies, input parameters, and framework, and based on the review comments
from the MRT received prior to March 22, 2024.

Section 6.1 presents the SMT’s selected model to estimate the probability of susceptibility P[S]
based on existing models in the literature. Section 6.2 describes an initial (prior) model for
triggering that is derived from laboratory cyclic test results. This model is needed as part of the
overall model development process for reasons explained in Section 4.2. Section 6.3 presents
the updated model for manifestation using the profile-based regression framework described in
Section 4.4. Finally, Section 6.4 illustrates additional sensitivities of the P[M] model that have
been investigated as part of the model development process.

6.1 Probability of Susceptibility, P[S]

Based on the definition of susceptibility in Section 2.1.1, our susceptibility model considers a
soil's mineral composition as inferred from Pl or I, and excludes non-compositional factors like
state, saturation, and manifestation potential. Note that in our approach, saturation is
considered as part of the P[T] relationship, as discussed in Section 4.4.1. Our susceptibility
model is probabilistic to reflect natural variability of soil behavior and to quantify epistemic
uncertainty. Following a public workshop on the topic (Stuedlein et al., 2023b), a framework for
creating new susceptibility models using the laboratory component of the NGL database was
formulated. However, the implementation of this framework is in its beginning stages and has
not yet been adopted by the broader liquefaction research community. Therefore, we are using
currently available models, namely Maurer et al. (2017) in which the authors used borings and
co-located CPTs in New Zealand to correlate /. to Atterberg limits which in turn is converted to a
probability of susceptibility as defined by four criteria: Polito (2001), Seed et al. (2003), Bray and
Sancio (2006), and Boulanger and Idriss (2006). The Maurer et al. (2017) adaptations of the
four models are shown in Figure 6-1, and use the following functional form:

1
PIsT=1- 1.702 /1 6-1
= _C __
1+exp < o * (xm 1))

The range of results in Figure 6-1 constitute a partial representation of epistemic uncertainty.
We decided to treat this uncertainty using a logic tree approach to obtain /.-conditioned
probabilities of susceptibility, using equal weighting between the models. This approach
produces the combined model shown in Figure 6-1, which has x, = 2.635, and o, = 0.115. To
incorporate the susceptibility model into the Bayesian inference framework utilized to obtain the
manifestation model coefficients, a distribution function must be assigned to each model
parameter. The uncertainty in these parameters was quantified by taking the standard deviation
of the x» and o, values from the four criteria, yielding 0.0204 and 0.0865, respectively. The
Bayesian prior distributions were assumed to be normal with the means and the standard

6-1



deviations of the x, and o, values as given above. The sensitivity of the P[M] model
(Section 6.3) to variations across the different P[S] models is discussed in Section 6.4.3.
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Figure 6-1 Probability of susceptibility models as a function of I. as defined by
Maurer et al (2017)

6.2 Probability of Triggering, P[ 7] 5]

As described in Chapter 4, the SMT’s approach for developing coupled probabilistic models for
triggering and manifestation requires a “prior” model for the probability of triggering, which would
then be potentially modified from interpretation of case history data. We develop a prior model
for P[T]S] using CRR from cyclic tests performed on soil specimens in the laboratory. Many
researchers over the last several decades have performed such tests under a wide range of
conditions (e.qg., cyclic stress amplitudes, soil densities, effective stress levels) and made their
findings available in the published literature through journals, reports, and data repositories.
These data provide meaningful insights into the mechanics of triggering and a given soil’s
resistance to liquefaction triggering for a broader range of conditions than exist in field case
histories and without the influence of manifestation that is inherent in those case histories. We
acknowledge the traditional argument that laboratory tests are performed on samples with
varying levels of disturbance, and as a result, triggering under field conditions could differ from
those in the laboratory. However, we seek to mitigate these concerns by considering in our
model development results from intact specimens and by incorporating field performance data
into the manifestation analysis. As a result, we consider a P[T]S] relationship derived from
laboratory data to provide a reasonable prior. The following discussion outlines how P[T]S] was
estimated from laboratory data.

6.2.1 Data Sources

As part of Task 5 of the current NRC/USBR-SwRI project, many published studies with CRR
values from laboratory data were compiled and digitized into a single dataset to investigate the
effects of overburden and initial static shear stresses on liquefaction triggering (Ulmer et al.,
2022a, Ulmer et al., 2023a; Carlton et al., 2023). This dataset represented predominantly
reconstituted soil specimens as opposed to intact specimens retrieved from the field with
minimal disturbance and tested in the laboratory. The process of reconstituting specimens
removes the effects of aging processes that occur in the field and the selection of a
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reconstitution method (e.g., tamping, pluviation) can have a significant effect on the fabric of the
soil. These modifications can influence the liquefaction response and triggering resistance of
the soil (Seed, 1979).

We then proceeded to gather data from 19 studies in which intact specimens were sheared in
CTRX or CDSS tests (CDWR, 1985; 1989; Hatanaka et al., 1995; Huang et al., 2009, 1999,
2004; Idriss et al., 1975; Ishihara et al., 1978, 1979; Ishihara and Koga, 1981; Kokusho et al.,
2012; Kokusho and Tanimoto, 2021; Okamura et al., 2003; Pillai and Byrne, 1994; Pillai and
Stewart, 1994; Porcino and Diano, 2016; Sancio, 2003; Sanin, 2010; Sanin and Wijewickreme,
2006; Seed et al., 1973; Suzuki et al., 1993, 1995; Wijewickreme, 2010; Wijewickreme et al.,
2005; Yoshimi et al., 1989, 1994). This dataset of intact specimens represents predominantly
clean sands with a few fine-grained specimens (FC up to 100%).

Nearly all of the intact specimen testing was performed as CTRX, although some was CDSS.
The tests were typically consolidated in the laboratory to the in situ ¢’\o prior to cyclic loading,
with some exceptions. The types of sampling methods from these studies that were considered
by the respective authors to be relatively undisturbed or intact vary widely. The ability of each
method to obtain undisturbed samples is not discussed in this report, but they generally fall into
three categories based on their general procedures:

1) Sail is frozen in situ and subsequently sampled
2) Soil is sampled using high quality samplers and then subsequently frozen
3) Soil is sampled without freezing, e.qg.:

a) Block sampling technique

b) Fixed piston sampler

c) Rotary triple-tube sampler

d) Large diameter sampler

Although intact specimens are preferable because they are more likely to retain their in situ soil
fabric, reconstituted specimens have some advantages. For example, there is more opportunity
for repeated tests to check for within-soil variability, whereas an intact specimen provides only
one CRR value. Thus, in the following sections, we present and analyze results from both intact
and reconstituted specimens.

The data for reconstituted specimens come from the dataset compiled for Task 5 and those
data sources are discussed in detail in the Task 5 report (Ulmer et al., 2022a; Ulmer et al.,
2023a; Carlton et al., 2023). We supplement the Task 5 dataset with two additional datasets
containing data from other studies that investigated liquefaction resistance of various soils but
that did not include a range of initial overburden stress or static shear stress values (thus
disqualifying them from the Task 5 database). One of these additional datasets contains results
from tests on intact specimens, while the other contains results from reconstituted specimens.
Thus, three datasets were used to guide the development of a P[T]|S] model as summarized
below.

1. Task 5 dataset specifically compiled to investigate the effects of overburden and initial
static shear stresses on liquefaction triggering (Ulmer et al., 2022a; Ulmer et al., 2023a;
Carlton et al., 2023)

2. Additional data from studies of intact specimens to supplement the Task 5 dataset in
developing a P[T]S] model
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3. Additional data from studies on reconstituted specimens to supplement the Task 5
dataset in developing a P[T]|S] model

All data in these datasets were processed in the same manner, as described in the
following section.

6.2.2 Methodology

The specific process of estimating CRR from cyclic tests is documented in the Task 5 report
(Ulmer et al., 2022a), but is also briefly summarized here. To estimate CRR from laboratory
tests, a series of laboratory tests [e.g., CTRX, CDSS, or CTS] is conducted to develop
relationships between the applied loading stress amplitude (CSR) and the number of cycles to
reach liquefaction (N,) as defined by a pre-defined liquefaction criterion for a given soil under a
set of conditions [e.g., same D, and ¢’,0]. Assuming a reference value of N, associated with a
given magnitude event (e.g., 15 cycles for M7.5 in this study), CSRur.5 can be computed from a
power law fit of the CSR versus N relationship. This CSRuz.s is the CRR from lab data, denoted
as CRR», which is typically adjusted to better reflect field conditions using correction factors for
bi-directional shaking and mean effective stress. The following corrections were made to the
CRRap values as recommended by Montgomery et al. (2012) to compute the field-corrected
CRR (CRRﬁe/d)Z

1+ 2(Ko) fieta

CRR 6-2
1+ 2(Ko)iap > tab

CRRfield = 09<

where CRR)a is the CRR estimated from CSR vs N curves using lab data and (Ko)seir and (Ko)an
are the at-rest lateral earth pressure coefficients in the field and in the lab, respectively. The 0.9
value in Eq. (6-2) is traditionally used to adjust unidirectional loading in laboratory tests to bi-
directional loading in the field (e.g., Pyke, 1975). The value of (Ky)ap in @ CTRX or CTS test is
equal to the ratio of the radial to axial stress [e.g., (Ko)as = 1.0 for isotropically consolidated
CTRX tests] . The value of (Ko)seis is typically unknown, but can be approximated to be between
0.5 to 1.0 for most applications related to liquefaction (Montgomery et al., 2012). In our study,
we approximated the value of (Kp)seis for each soil using reported values of the drained friction
angle (¢’) as (Ko)retd = 1-sin(¢’). If ¢’ was unknown, then we assumed ¢’ = 30 degrees

[i.e., (Ko)ﬁe/d = 0.5].

The value of N.r and thus CRRa» and CRRyeis depends on the liquefaction criterion assumed to
indicate triggering of liquefaction in the lab. As discussed in Chapter 2, the formal definition of
initial liquefaction indicates that it occurs when r, = 1.0 (i.e., a condition, usually momentary, of
zero effective stress). In a number of experimental studies, liquefaction is considered to be
triggered when r, is very close to 1.0 because 1.0 is not always achieved. In many other studies,
however, strain criteria are used as a substitute for pore pressure-based criteria. In some cases
this is because the researchers were more interested in identifying the onset of significant shear
strains rather than initial liquefaction. The conventional assumption has been that r, reaches 1.0
at about the same time as specimens exhibit 2.5% single-amplitude axial strain (€sa) or 5%
double-amplitude axial strain (epa) in CTRX tests, or 3.75% single-amplitude shear strain (ysa) in
CDSS tests. However, this is not always the case. A recent laboratory study (Stuedlein et al.,
2023a), for example, has shown that soils can exhibit clay-like hysteretic behavior at moderate
strain levels (ysa ~ 3%) that transitions to sand-like behavior when additional cycles of loading
produce higher strains. Thus, in several figures that follow, the CRR values we computed in this
study are separated by liquefaction criterion type to identify trends specific to each criterion.
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Using this approach, we computed 215 CRRyeiw Values from intact specimens and 1154 CRRiei
values from reconstituted specimens. In most cases, values of D, were reported for each
specimen. In some cases, estimates of SPT blow count and/or estimates of q. were also
reported. Figure 6-2 shows histograms of the combined datasets in terms of test type, intact vs.
reconstituted, D,, FC, g’,, and liquefaction criterion type.
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Figure 6-2  Histograms of CRR values obtained from the combined datasets in terms
of test type, reconstituted vs. intact specimens, D,, FC, ¢’ and
liquefaction criterion

6.2.3 Data Coverage

As part of our analysis, we attempted to discern whether there were any significant differences
in CRR values between intact vs reconstituted specimens, CTRX vs CDSS tests, and strain-
based vs ry-based liquefaction criteria. Our findings along this line are discussed in this section
and in the figures below. However, despite gathering published data from a wide variety of
sources, there are some underrepresented scenarios within our database that lead to some
sampling bias, as will be discussed.

Figure 6-3 shows the variation of CRRa» with D, for the entire dataset used for estimating

P[T]S], split up by intact vs. reconstituted specimens. The trendlines through each subset of the
data are of a simple exponential functional form used for purposes of illustration. For D, less
than approximately 50%, the CRR for intact specimens is generally indistinguishable from the
CRR for reconstituted specimens. However, as D, increases beyond 50%, the CRR for intact
specimens appears to be greater than that of reconstituted specimens. This may be the result of
the age of the intact specimens making them more resistant to liquefaction, and perhaps in part
due to other effects as discussed subsequently.
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Figure 6-3 CRR vs D, showing differences in intact and reconstituted datasets

Figures 6-4 to 6-6 partition the data to investigate various effects. Figure 6-4 shows that the
CRR values from CDSS tests tend to be less sensitive to D, than those from CTRX tests within
the reconstituted data alone; this effect may be influenced by necking that often occurs in CTRX
tests. Figures 6-5 and 6-6 illustrate the effects of different failure criteria (strain- vs. r,-based).
Figure 6-5 focuses on this comparison using CDSS tests, which show that CRR values from
strain-based criteria are slightly higher than those from r,-based criteria, but that the shapes of
the CRR vs D, curves for the two data sets generally match. Figure 6-6 makes the same
comparison using CRR values from CTRX tests and shows that CRR values from strain-based
criteria are much more sensitive to D, than the CRR values from r,-based criteria are. Granted,
the number of CRR values from tests that use r,-based criteria is limited compared to the
number of CRR values from tests that use strain-based criteria, so this finding could be refined
with more data. However, current trends indicate that the use of strain-based criteria can
influence the shape of the CRR vs D, curve more for CTRX tests than for CDSS tests. Thus, the
difference between CRR values from intact specimens compared to CRR values from
reconstituted specimens could be explained by the almost exclusive use of CTRX tests and
strain-based criteria within the intact subset of the database, and there is no conclusive
evidence to state whether intact specimens do indeed yield higher CRR values.

In general, we believe that triggering behavior in the field, (represented by the P[T]S] curve) is
most consistent with CDSS stress paths, which are more representative of in situ loading
conditions during seismic events. We also believe that r,-based criteria are more closely related
to the actual triggering of liquefaction than strain-based criteria, which are considered to be
more of a consequence (e.g., manifestation) issue. However, we recognize that limiting our
P[T]S] regression to this scenario alone would represent a small fraction of our current database
and would not likely reflect our current uncertainty in the actual CRR curve for forward analysis
(i.e., an unspecified soil that may not be represented in the current CRR database). Thus, we
decided to use the entire dataset with the basic data filters discussed subsequently in

Section 6.2.6 when regressing the P[T]S] curve to provide a realistic level of uncertainty based
on currently available data.
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Figure 6-4 CRR vs D, showing differences in CTRX and CDSS tests within the
laboratory results from reconstituted specimens
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Figure 6-5 CRR vs D, showing differences in r,- and strain-based liquefaction criteria
within the laboratory results from CDSS tests performed on reconstituted
specimens
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Figure 6-6  CRR vs D, showing differences in r,- and strain-based liquefaction criteria
within the laboratory results from CTRX tests performed on reconstituted
specimen

6.2.4 K> Model

The liquefaction behavior of a soil is influenced by its initial stress conditions because of the
dependence of state on stress (Vaid et al., 2001). Laboratory tests have shown that the CRR, a
normalized measure of a soil's cyclic resistance to liquefaction, decreases as the effective
confining pressure (e.g., 0'v) increases (e.g., Seed et al., 1973). In addition, the presence of a
non-zero initial static shear stress (zs) can either increase or decrease a soil's CRR, depending
on the state of the soil and its contractive or dilative nature (Boulanger, 2003b). In cyclic
stress-based liquefaction triggering evaluations (Seed and Idriss, 1971), the overburden stress
correction factor (K;) is used to modify the CRR to account for ¢’ differing from 1 atm, and the
initial shear stress correction factor (Ky) is used to modify the CRR to account for 7s not equal to
zero (Seed, 1983).

There are two well-known approaches to developing models for K, and Kq: 1) constrain the
relationship as part of regressing an empirical CRR model using a database of field case
histories (e.g., Moss et al., 2006; Cetin et al., 2018); or 2) use laboratory data and soil
mechanics concepts to develop a model (e.g., Boulanger, 2003a, 2003b; Bilge and Cetin,
2011). The challenge of the first approach is collecting case histories with a wide enough range
of 0’ and ts to sufficiently constrain K, and K. Historically, this has been difficult to achieve.
The use of surface manifestation as a criterion for triggering in the field has limited the case
history database to cases with critical layers at depths generally less than 8 m and far less than
the depths of interest in many important applications. In the second approach, the results of
laboratory tests [e.g., CTRX, CDSS, or CTS] are used to develop relationships between cyclic
stress ratio (CSR = tcyc/ 0'v0 Where 1¢c is the applied cyclic loading stress) and the number of
cycles to liquefaction (N) for a given soil under a set of conditions [e.g., same relative density
(Dr), 0'v0, and t5]. Typically, this is done first using a reference condition such as 0’0 = 1 atm or
7s = 0. Assuming a value of N associated with a given magnitude event (e.g., M7.5), CRR can
be computed from the reference CSR versus N relationship. To compute K, or Kq, the same soil
is tested using the same set of conditions but with a change in either o’ or 7s. The K, or Kq
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correction factor is then defined as the ratio of the CRR of the second set of tests to the CRR of
the reference condition tests.

To develop a comprehensive generic (i.e., not material-specific) model to account for the effects
of 0’vo and s in liquefaction triggering evaluation procedures, the aggregated results of cyclic
tests performed on many different soils over a wide range of states and stresses are required.
There have been prior efforts to compile datasets of K, values (e.g., Harder and Boulanger,
1997) and K, values (Montgomery et al., 2012, 2014) and to develop ergodic models
(Boulanger, 2003a, 2003b; Bilge and Cetin, 2011). However, these datasets and models are still
limited in scope (e.g., for clean sands only) and there have been a significant number of
laboratory studies that greatly expanded the range and quantity of soil state and stress
parameters (Ulmer et al., 2023a) since the time when the earlier compiled datasets

were published.

As discussed in Section 6.2.1, the SMT compiled a database of results from laboratory tests
that could elucidate the effects of initial overburden (o',0) or static shear stresses (7s) over the
broad range of conditions encountered in practice. Where possible, we computed K, from CSR
vs N data as discussed in Section 6.2.2 or from reported CRR data. However, in some
instances, K, values were directly reported without CSR vs N or CRR data. Our approach
yielded hundreds of Ky and K, factors for a broad range of soils. A summary plot of the K,
values is shown in Figure 6-7. Figures 6-8 and 6-9 compare the K, values from the laboratory
tests with existing relationships (e.g., Idriss and Boulanger, 2008; Bilge and Cetin, 2011) and
demonstrates that there are potential misfits of these existing models to the data when
considering a broader range of D, (D, >70% and D, <30%) and FC (FC >10%). The SMT
concluded that it is possible to regress updated K, and K, relationships that would better fit the
data over a wider range of D and FC.

2.5
% 100
2.0
15 % 80
< 4 :
%
1.0 agE ¢ i i u 4 60
A ? 2° [ - ;\3
A~ A ~
0.5 i B> &
40
0.0
0 250 500 750 1000 1250 1500
o'y (kPa) 20
Air & Air w/Vib. ¢ Compaction
Water & Water w/Vib. < Other 0
Tamping %« No D,

Figure 6-7 K, vs o’ cfrom the Task 5 laboratory results dataset. Symbols for different
preparation methods and colors based on D.,.
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As part of an NGL supporting study (Section 2.2), the SMT worked with Brian Carlton to regress
updated K, and K, relationships using the Task 5 dataset (Ulmer et al., 2022a; Ulmer et al.,
2023a; Carlton et al., 2023). Given that the majority of the case histories in the NGL database
are on relatively level ground (~80% with less than 1 degree ground slope) and free of
significant initial shear stress, the SMT agreed that updating the K, relationship was a higher
priority than updating K.. Using 230 K, values that span a wide range of soil types, D, initial
stresses, fines content, and specimen preparation methods, the SMT developed two options for
modeling Ky as functions of either (i) o’ or (ii) 0’0 and FC. Preliminary results showed a
relatively weak dependence of K, on D,, which is contrary to the assumptions used by some
existing K, models that depend on D; (e.g., Boulanger, 2003b) but agreed with other models
that do not include D; (e.g., Cetin et al., 2018). K, was shown to be sensitive to FC, which
warranted its inclusion as an independent variable.

The SMT adopted the following relationship based on o’y and FC:

g’ ai
()" ot <,

1o\ a2
0,
EAL

a

6-3

~ ~0.49
M= expl0.121(11.67 — FO)]

o = {—3.8 X 1076(FC)3 + 4.88 x 10™*(F(C)? — 1.358 x 1072(FC) — 0.13 for FC < 70
2 —0.148 for FC = 70

where FC is in percent and p, is one standard atmospheric pressure in the same units as .
This Ksrelationship assumes a different exponent (as or az) depending on whether ¢’y is less
than or greater than 1 atm (100 kPa). This relationship was adopted to adjust CSR to
CSRwur.5,1atm (See Section 5.4.3) and to adjust CRR for laboratory tests performed at levels of ¢’
other than 1 atm (discussed subsequently in Section 6.2.6).

In existing K, relationships, there is typically an upper limit imposed on K, to avoid very high
values at low ¢’\o to avoid being unconservative in a forward analysis. For example, Boulanger
and Idriss (2014, 2016) recommend an upper limit of 1.1. Based on the laboratory data collected
for our study, there are examples of soils with K, greater than 1.1, particularly for soils with high
FC. In our effort to develop an unbiased (i.e., neither conservative or unconservative) model, we
chose to limit our model to the range of o'\, represented in our laboratory data (greater than
about 20 kPa). Thus, the upper limit of K, in Eq. (6-3) is associated with o’ = 20 kPa (0.2 atm),
which is roughly 1.17 for FC = 0% up to 2.2 for FC > 50%. This is illustrated in Figure 6-10.
Reasons for the increase in K, at low 0’yo with increasing FC is not yet clear, but could be
investigated in follow-on studies (e.g., over consolidation effects).

Figure 6-11 shows a comparison between the SMT’s selected K, model and other published
relationships (Idriss & Boulanger, 2008; Bilge & Cetin, 2011; Cetin et al., 2018). The SMT’s K,
relationships for a range of FC nearly captures the range of K, values from these published
relationships.

6-12



3.0

FC %
2.5 1 10

— 30

100

0.0

0 200 400 600 800 1000 1200
o', (kPa)

Figure 6-10 K, vs o’ ofrom the Task 5 laboratory results dataset with the proposed SMT
model based on o’ and FC. Upper limits of K, represented by o’,, = 20 kPa

(0.2 atm).
— SMT, FC=0% —— SMT, FC=0%
2.0 1 —— SMT, FC=10% 1 — SMT, FC=10%
SMT, FC=50% SMT, FC=50%
15 — == Idriss & Boulanger (2008), D,=20% ) E —-- Bilge & Cetin (2011), D,=20%
——- ldriss & Boulanger (2008), D,=60% Mﬁ —-- Bilge & Cetin (2011), D,=60%

----- Cetin et al. (2018)

0.0

0 200 400 600 800 1000 1200 O 200 400 600 800 1000 1200
0., (kPa) o, (kPa)

Figure 6-11 Comparison of several K, models based on either FC and o’ (SMT model),
Dr and o’y (Idriss & Boulanger, 2008; Bilge & Cetin, 2011), or o’,¢ alone
(Cetin et al., 2018)

6.2.5 Functional Form of CRRvs D:
To establish a reasonable functional form for CRR vs. Dg, we first developed CRR curves using

a relatively complete dataset for a single soil from tests performed on reconstituted specimens
over wide ranges of D, and ¢’\¢ values. We found such a dataset published by Vaid and
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Sivathayalan who performed constant-volume CV-CDSS tests on water-pluviated specimens of
FRS (Sivathayalan 1994; Vaid and Sivathayalan, 1996). FRS is a medium-grained sand
predominantly composed of quartz with some unstable volcanic rock fragments. Prior to testing,
the fine particles were removed so that the FRS specimens tested were clean sands (i.e., FC
less than 5%). Vaid and Sivathayalan prepared specimens using air pluviation and investigated
the effects of varying @'o. In a parallel study, Vaid and Thomas tested the same sand under
CTRX conditions (Vaid and Thomas, 1995; Vaid and Thomas 1994; Thomas, 1992). For CV-
CDSS tests, they used ysa = 3.75% to define liquefaction and for CTRX tests they used €sa =
2.5%.

Using the FRS data, we computed CRR at multiple values of D,. The resulting CRR vs D, curves
are shown in Figure 6-12. The curves were established by fitting the following equation to
the data:

In(CRRyie1q) = ¢1 + 2Dy + c3D,° 6-4

where ¢4, ¢2 and c3 are regressed coefficients and D; is in percent. Coefficients of Eq. (6-4) for
an FRS combined curve (CTRX & CV-CDSS) are provided in Table 6-1.

Also shown in Figure 6-12 is the Boulanger and Idriss (2016) (denoted BI16) deterministic
triggering curve (shown in gray). The curve for P, = 15% is used for this purpose, with gcines

converted to D, for the plot using their relationship. At values of D, < 40%, the laboratory CV-
CDSS curve generally aligns with the BI16 curve. However, both the CV-CDSS and CTRX
curves are substantially lower than the BI16 curve at higher D.. The BI16 curve, being based
solely on case histories of surficial manifestation, reflects both triggering and manifestation
effects whereas the laboratory data reflects triggering alone. Although there are other field-
related factors that could be influencing this difference (e.g., aging, previous seismic history,
over consolidation), these results suggest the influence of manifestation is especially impactful
at higher penetration resistances, and thus the BI16 curve is not expected to perfectly match the
laboratory-based curve, which represents triggering alone.
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Figure 6-12 CRR curve regressed using proposed functional form and CRR values
computed from CV-CDSS and CTRX tests on water-pluviated specimens of
Fraser River sand. CV-CDSS data are from Sivathayalan (1994) and
Vaid and Sivathayalan (1996), whereas CTRX data are from Vaid and
Thomas (1995), Vaid and Thomas (1994), and Thomas (1992)

Table 6-1 Regressed coefficients for CRR curves using Eq. (6-4)

Scenario C1 C2 C3
FRS CTRX & CV-CDSS -2.578 4.881e-3 7.830e-7
CRR_based on Intact and Reconstituted 2473 3.3356-3 1.5096-6
Specimens

6.2.6 Preliminary CRR vs D, Model

Given the functional form of CRR vs D, as established based on an individual soil shown
previously Eq. (6-4), we seek to establish a generic (multi-material) probabilistic CRR vs D,
model. A key modeling decision for development of the triggering prior was whether to produce
separate models for CTX and CDSS conditions. Had this been done, as suggested by the
results shown in Figure 6-5 and Figure 6-6, the CDSS model would produce relatively low
resistances without appreciable increases at large Dr. This feature was considered unrealistic.
Thus, to develop the prior laboratory-based model, we broadened our analysis to include CRR
values from both CTRX and CDSS tests on both intact and reconstituted specimens from
multiple references as outlined in Section 6.2.1.

The database of CRR values from the literature represents a range of reconstitution methods,
initial loading conditions, liquefaction criteria, and other testing parameters as determined by the
researchers for each individual study. To focus our prior model on the data that are most
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relevant to this project, we screened the total dataset of CRR values using data that met the

following criteria:

e a =< 0.02 or anisotropic consolidation ratio (K;) = 0.9-1.1

e Reasonable liquefaction criteria assumed to be associated with triggering based on

precedent in the literature:

o r,=0.95

o CTRX: EpA = 4 - 60/0, EsSA = 2-3%

o CDSS: YDA = 7 - 8%, YsA = 3.5-4%

o FC<30%

e Specimen reconstitution methods not involving tamping or compaction.

We then regressed a CRR vs D; relationship using a cubic polynomial [Eq. (6-4)] and the
screened database of CRR values, with the results shown in Figure 6-13 and coefficients
provided in the previously introduced Table 6-1 for comparison with FRS results. Also shown in
Figure 6-13 are the binned means of the data with 95% confidence intervals to confirm that the
cubic polynomial adequately captures the data. The regressed CRR vs D; relationship is
accompanied by dotted lines representing the mean +/- Oincrr) Where Oincrr) is the standard
deviation of the residuals of In(CRR). Figure 6-14 shows the binned means of the residuals and
the oincrr) against D;. This figure indicates that the residuals are not sensitive to D,. However,

the uncertainty (i.e., Oincrr)) does appear to increase as D, increases.

(g0
()

1.0
All Data
— fit
0.8 = +/- Oin(crR)

----------- Boulanger & Idriss 2016, CPT, P.=15%
------ Boulanger & Idriss 2012, SPT, P.=15%
0.61 4 binned means

CRR

0.4

0.2 A

0-0 T T T
Dr (%)

100

Figure 6-13 Summary of CRRyieid VS D, results from laboratory tests on intact and
reconstituted specimens (using basic filters outlined in Section 6.2.6) and

the median CRR curve proposed in this report [i.e., Eq. (6-4) with
coefficients from row 2 of Table 6-1] compared to BI12 and BI16

CRR curves
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Figure 6-14 (a) model residuals computed as In(CRRyicia)-IN(CRRpredicted) VS Dr with
binned mean values shown in orange; (b) standard deviation of model
residuals, Oincrr), VS Dr

After developing this initial CRR vs D; relationship, we identified the need to account for a
non-uniform distribution of D, values in our dataset that effects the results of model fitting.
Figure 6-15 shows the distribution of D, values in bins of [0-40%], (40-60%], (60-80%], and (80-
100%)] {note that a square bracket is inclusive such that (40-60%)] is equivalent to 40% < D, <=
60%}. The sampling bias reflects more laboratory tests performed between 40-80% D;
compared to D,<40% and D>80%. In order to reduce the sampling bias, each data point is
weighted by the inverse of the number of points within its D, bin (and normalized by the mean
weight). Figure 6-16 replots the dataset with coloration based on assigned weights.
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Figure 6-15 Histogram of the triggering dataset D, values with bin edges defined at
[0,40], (40,60], (60,80], and (80,100]. The proportion of counts within each
bin was applied as weight for regressing the triggering prior.
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Figure 6-16 Dataset used for determining triggering prior. Datapoints are weighted by
the inverse proportion of points within histogram bins presented in
Figure 6-16.
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We then updated the initial CRR vs D, model to address two issues: (i) account for the weights
shown in Figure 6-15 and (ii) to stabilize the regression using a simpler linear model in
transformed parameter spaces in which the data distribution is approximately normal and
homoscedastic, i.e., with a consistent level of dispersion across the range of the independent
variable. This model is referred to as a linear P[T]|S] model subsequently. The transformation
of the dataset was accomplished by applying a Box-Cox transformation (Box & Cox, 1964;

Eq. 6-5) to both the D, and CRR values, as follows,

A _
X 1 6-5
A

X =

where A is taken as the value that transforms the dataset as close as possible to a normal
distribution. The A values for D, and CRR (Ap, and Acgg, respectively) were determined to be
1.202 and -0.657, respectively, calculated using the SciPy Python package (Virtanen et al.
2020). The dataset in the transformed CRR-D, space is presented in Figure 6-17.
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Figure 6-17 Dataset for triggering model development in (a) Box-Cox transformed

(CRR-Dy) space and (b) CSR-Dr space. The data points are colored by the
weights in Figure 6-16.

Following this transformation, the dataset was fit using a linear model:
CRR={y+{ *Dp+exo; 6-6

where {,, {;, and a; are model coefficients to be regressed as described in the next section and
¢ is the standard normal variate (zero mean and unit standard deviation). Alternatively, the
equation can be rewritten in the untransformed space as:
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6.2.7 P[T|S] Model Prior

We performed Bayesian inference using the PyMC Python package (Wiecki et al. 2023) to
determine prior distributions of the coefficients in Eq. (6-6). Bayesian inference was used
instead of a typical least squares regression because of the advantages gained in determining
distribution of the coefficients so that uncertainty can be quantified for later updates to the model
in the form of posterior coefficient distributions (Section 6.3.2). An “uninformed” prior distribution
was adopted for each coefficient from Eq. (6-6) using a normal distribution with mean of zero
and standard deviation of ten. The weighted dataset (Figure 6-16) was used in the inference.
Four Markov chains (Gagniuc 2017; Markov 2006) with 1000 samples drawn from each chain
and the resulting distribution of parameters and drawn samples are presented in Figure 6-18.
Note that each distribution seems homogeneous and stationary (there are no large drifts or
other odd patterns) indicating a stable regression.

The posterior distributions of the triggering model coefficients reflect uncertainty in how well the
model represents the laboratory data. Additional uncertainty that is not reflected in the
coefficient uncertainty is caused by (i) sample disturbance that creates uncertainty regarding
applicability of laboratory data to field conditions and (ii) uncertainty in the correlation between
geines and Dy. For these reasons, we decided to increase the standard deviation of each model
coefficient in the posterior laboratory-based triggering model by a factor of 4, and to use the
results of this adjusted model as the prior triggering model in developing the manifestation
model, as described later. To account for correlations between the three coefficients, the
covariances were computed (Table 6-3). The covariance matrix was used to create multivariate
normal distribution priors for updating the triggering model as described in Section 6.3. The
correlation matrix (a transformation of the covariance matrix) is presented in Table 6-4 to
present the correlation coefficients between the three PFns coefficients; note there is a strong
negative correlation between ¢, and {; and weak correlations between both the slope and
intercept to a;.

The regressed model (shown in Figure 6-19) is linear and the error term, defined by o, is
normally distributed within Box-Cox space (CSR). The probability density for the regressed
model, shown in Figure 6-20, is a normal distribution in Box-Cox space, but skewed in CSR
space. The skewed distribution is similar in shape to a log-normal distribution; however, it is not
identical because the Box-Cox transformation is not logarithmic. Instead, it can be called a “Box-
Cox normal” distribution.
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Figure 6-18 Distribution of triggering model coefficients (left column) and sampling
draws for each coefficient (right column). The four distributions with
different line styles shown in the left column are the four Markov chains
that are sampled.

Table 6-2 Means and standard deviations for the coefficients in Eq. 6-6 taken from
Bayesian inference

Variable Value
Ue, -7.43
az, 0.196
Ue, 0.0325
oz, 0.00141
Mo, 0.994
P 0.0459

Table 6-3 Covariance matrix of the three PFrs coefficients after Bayesian inference
sampling. Note the diagonals are squared standard deviations from
Table 6-2.

o ¢1 0¢
%o 3.844e-02 -2.597e-04 -6.792e-04
4] -2.597e-04 2.007e-06 5.106e-06
oz -6.792e-04 5.106e-06 2.102e-03
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Table 6-4

inference sampling

Covariance matrix of the three PFrs coefficients in the after Bayesian

o {1 oz
o 1 -0.935 -0.0755
1 -0.935 1 0.0786
o¢ -0.0755 0.0786 1

0 -
._2 .
o o
< _4 -
3 4]
_6 .
PR Sampled Model
,/’ Polynomial Model
_g8- = 1 of Sampled Models
== (i *+ o of Sampled Models
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Figure 6-19 Triggering model fit shown in (a) Box-Cox transformed space and (b)

untransformed parameter space. Samples of the mean model are shown as
light gray lines and the recommended mean and mean plus or minus one
standard deviation are plotted as solid and dashed black lines,
respectively. Orange line represents preliminary polynomial fit (Eq. 6-4).
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Figure 6-20 Probability density of the regressed triggering model for Dg = 80, 60, and
40% and histograms of laboratory CRR data within + 1 of the target Drg.
Plotted in (a) Box-Cox transformed space and (b) CSR space. The
distributions in CSR space can be described as “Box-Cox normal”.

6.2.8 Magnitude Scaling Factor

As discussed in Section 2.1.2, liquefaction triggering depends not only on the CSR but also on
the number of loading cycles or duration of shaking. To account for the influence of the number
of loading cycles on cyclic strength, CSR is typically adjusted using a MSF to compute an
equivalent CSR for a reference M7.5 using Eq. (2-3). Historically, MSF has been derived from
cyclic laboratory test results as:

-b

N,

MSF = <LMW> 6-8
Neq,Mw7.5

where Negmw and Neg w75 are the equivalent number of cycles associated with M and M7.5,
respectively, and b (herein called the b-value) represents the relationship between the number
of cycles to liquefaction and CSR in log-log space. This MSF relationship comes from the
general assumption that the log(CSR) vs log(N) relationship is linear. Estimates of Negguw and
Neg,mw7.5Ccan be obtained from published correlations (e.g., Lasley et al., 2017). The b-value is
often estimated from laboratory data by using a power law fit of the CSR versus N relationship
as discussed in Section 6.2.2. A b-value can be estimated for a given soil using laboratory tests
performed on specimens of that soil but would only be applicable for that soil. An alternative is
to develop a generic b-value that is reasonably representative of many soils, thus the resulting
MSF could be generally applied to soils that for various reasons cannot, or have not, been
sampled and tested in the laboratory. This is a necessary approximation in our case history
processing as discussed in Section 5.4.3.
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However, there is no current consensus on the appropriate b-value to use for establishing the
MSF relationship. Historically, b-values have been interpreted as being functions of M alone
(i.e., independent of environmental factors such as soil state). Some studies recommend that
the b-value increases with increasing D; (e.g., Boulanger and Idriss, 2014, 2016), which results
in a density-dependent MSF relationship. Subsequent studies have shown that the b-value vs D,
relationship is more ambiguous, and is potentially unnecessary (e.g., Ulmer et al., 2018; 2022b).
Table 6-5 summarizes the recommended b-values from several published studies, which range

from 0.178 to 0.417. We used the compiled datasets as outlined in Section 6.2.1 to select a
recommended b-value for computing MSF and to highlight some trends in b-value vs. D,, FC,

and o'yo.

Table 6-5

Recommended b-values for computing MSF

Reference Recommended b-value Alternative b-values

Liu et al. (2001) 0.37 0.5
Idriss & Boulanger (2008) 0.35 N/A
Kishida and Tsai (2014) 0.35 (adopted from 1&B08) 0.1-0.4
Boulanger & Idriss (2014) 0.178 (Dr= 10%) N/A

0.200 (D, = 44%)

0.350 (D, = 76.65%)

0.417 (D= 90%)
Green et al. (2019) 0.34 N/A
Ulmer et al. (2022) 0.28 0.20
SMT 0.20 (o» =0.069) N/A

Figures 6-21, 6-22 and 6-23 plot the trends of b-values with D,, ¢’,0, and FC, respectively. In
general, there is no strong relationship between the b-values and D,, FC, and o’,. However, the
scatter in b-values is significant, particularly when no constraints are placed on the values of
initial static shear stress ratio (i.e., a = 7s/0",0) and uncertainties in the b-value estimates (i.e., the
standard error of the b-value, &) are not used for screening purposes. Figure 6-24 shows the
relationship between b-value and D; after restricting a to be approximately 0 and ¢, to be less
than 0.15. In general, the data supports an assumption that a b-value of approximately 0.20,
with a standard deviation g, of 0.069, is representative of many soil types, regardless of D, FC,
and o’y. This value is also aligned with one of the recommended b-values from Ulmer et al.
(2022b) based on an interpretation of constant dissipated energy using published modulus
reduction and damping relationships. Therefore, the SMT elected to use a constant b-value of
0.20 combined with the Lasley et al. (2017) Ngq relationship to compute MSF as shown below

(see also Section 5.4.3).

In(Ngq) = 0.4605 — 0.4082 In(@pqy) + 0.2332M,,

6-24
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— 0.2
MSF = (14/Ngq) 6.10

To investigate whether the lack of D~dependence and lack of o’,o-dependence also applies to
individual soils, we looked for these dependencies using the FRS data as shown in Figure 6-25.
Note that the b-value for FRS is generally insensitive to both D, and o'y, with the exception of
the D, = 60% group which has a slightly different b-value for the highest ¢’,¢ tested within that D,
group. Note also that the b-values from CTRX tests (0.09-0.12) are different than those from
CDSS tests (0.20-0.22). Such comparisons are also discussed for other soil types by Ulmer et
al. (2018), showing that D,-dependencies exist for some soils, but not all. In some cases, the
apparent D~dependency in a given soil disappears after ensuring that the log(CSR) vs log(N)
relationship is indeed linear, as is generally assumed. Given this ambiguity, more complex,
material-specific models for b-values could be considered in a forward analysis.
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Figure 6-21 Computed b-values vs. D, using the SMT’s compiled dataset of laboratory
data. Orange shaded area represents +/- the standard deviation of the
b-values for each D, bin. The gray line represents the implied b-values
associated with the BI14 MSF relationship.
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Figure 6-22 Computed b-values vs. ¢’yo using the SMT’s compiled dataset of laboratory

data. Orange shaded area represents +/- the standard deviation of the
b-values for each ¢’ bin.
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Figure 6-23 Computed b-values vs. FC using the SMT’s compiled dataset of laboratory
data. Orange shaded area represents +/- the standard deviation of the
b-values for each FCbin.
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Figure 6-24 Computed b-values vs. D, using the SMT’s compiled dataset of laboratory
data with some filters applied (0’0 approximately 1 atm, a = 0, FC less than
or equal to 10%, and standard error of b-value less than or equal to 0.15).
Orange shaded area represents +/- the standard deviation of the b-values
for each D, bin. The gray line represents the implied b-values associated
with the BI14 MSF relationship.
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Figure 6-25 Computed b-values vs. 0’, for a range of D, using FRS data
(water-pluviated specimens)

6.3 Probability of Manifestation P[M] Model

The model formulation applied in this research includes manifestation given triggering but
does not include manifestation given no triggering nor manifestation given no susceptibility
(Section 4.4.2). Potential contributors to surface manifestations of ground failure aside from
liquefaction triggering were not included in the final model because:

¢ Versions of models that include effects such as substantial strains related to cyclic
softening of clays did not improve predictive power significantly compared to models that
neglected such effects.

o Members of the NGL Advisory Board voiced skepticism about manifestation in the
absence of triggering.

¢ By not including these other mechanisms, the resulting model is simpler to adopt for end
users.

The model that only considers manifestation caused by triggering therefore involves three

models that each have coefficients that can be updated: susceptibility, triggering given
susceptibility, and manifestation given triggering. The formulation in Eq. (4-10) can be expanded
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to show the susceptibility, triggering, and manifestation models that go into the profile
manifestation prediction as follows:

Ny,

ti/te
P[Mp]=1— | | (1= PFyr PFrys PFs Ksat, ) 6-11
=1

Variable {; is the characteristic thickness as introduced in Section 4.4.2. This variable could
potentially be treated as a model coefficient in the Bayesian inference, but we found that it
causes instability in the results. Several t; values ranging from 0.5m to 5m were tested in the
regression, and the likelihood, L, was maximized at {. ~ 2m. The value was thereafter fixed
at 2m.

The development of the manifestation model is presented in a step-by-step approach in the
following subsections to clarify the model development process. First, a simple manifestation
model conditioned on one parameter is presented. That relationship was developed only
allowing the manifestation model (PFuy 1) priors to update to posteriors while fixing the triggering
(PFns) and susceptibility (PFs) priors. Next, both the manifestation and triggering priors were
updated simultaneously within the single parameter model. Finally, other manifestation model
parameters were explored, and a two-parameter version of the manifestation model was
selected as the recommended model.

6.3.1 PFurInference with Single Parameter Model

The modeling began with a one-dimensional logistic function in which the single independent
variable was the depth to the top of the potentially liquefiable layer z:,,. The conditional
probability factor is then described by

1

PFyr =
T 1+exp (—(ﬁo + B2 'Ztop))

6-12

As discussed in Section 6.2.7, the coefficients updated through Bayesian inference needed to
be assigned prior distributions. It was not desired to impose any prior belief about the
relationships for manifestation given triggering, therefore 8o and 8, were initialized as having
normal distributions with mean (u) = 0 and standard deviation (o) = 1000 (Gelman 2006
recommend a normal distribution centered at zero with a standard deviation set to a very high
value for a noninformative prior distribution). The other models, PFns and PFs, are given the
mean prior model coefficients presented in Sections 6.1 and 6.2 but are not given the
opportunity to update so that they remain fixed while the PFyr coefficients update.

The model was developed using a dataset reduced from the full dataset described in Section 5
to a subset that only contained CPT profiles with total lengths of at least 15m. This filter was
applied because shorter profiles were observed to cause significantly reduced model
performance since the short profiles did not represent all of the soil layers that could contribute
to surface manifestation. The threshold of 15m was selected based on a series of tests in which
different depth thresholds were used and manifestation models developed. Review of the model
coefficients and performance produced the conclusion that 15m gave a practical balance
between the size of the dataset and the performance of the model. Application of the >15m
threshold reduces the case history dataset to 204 profiles that include 5091 soil layers. Each
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case history is also weighted to account for cases in which multiple CPTs are associated with a
single observation, as described in Section 5.1.

The results of the PFyr model coefficient inference are presented in Figure 6-26. For this and
the following inferences, a local MAP estimate (i.e., mode of the a posteriori distribution)
(Bassett and Deride 2016) is evaluated to approximate the mean for each coefficient rather than
sampling which would produce posterior distributions of each coefficient. The MAP provides a
point estimate using the dataset and the priors and was used during exploratory analyses (and
for this simplified illustrative model) for computational efficiency. The final recommended model
will present the results of sampling the full distributions of the model coefficients.
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Figure 6-26 Computed b-values vs. o’, for a range of D, using FRS data
(water-pluviated specimens)

The MAP estimates for 8y and B+ are 1.279 and -0.281, respectively. The negative coefficient on
B1 ensures that PFyr decreases as the depth of a layer increases. It is also noted that PFur
never reaches a value of 1, even at z:,=0 it only reaches ~0.8.

The probability factor model (Eq. 6-12) only produces an equivalent probability P[M.|T,] for a
layer of thickness t.. Recall that P[M,] is influenced by the layer thickness (Section 4.4.2), so
while a layer with t=f; produces P[M|T]=0.8, a layer with { somewhat larger than {; could produce
P[M|T]~1. Therefore, the model is predicting that a layer at the ground surface that has
liquefaction triggered will have an ~80% chance of manifesting if it is 2m thick. If t < 2m, P[M]
will decrease and if t > 2m, P[M] will increase. This is also intuitive: a thin layer, even if it is
shallow, will be less likely to manifest surface evidence if liquefaction is triggered compared to a
thick layer.

To track performance of the regressed models, a cost function (J) is introduced that is very
similar to the likelihood function presented in Eq. 4-12 except that it incorporates a negative sign
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so that values are positive. As model performance improves, the value of the cost function
decreases, with 0 representing a perfect model.

Np

1
J= —N—szl[yk In(P[Mp],) + (1 — y )] In(1 — P[Mp],) 6-13

When the model is run on the training dataset using the above MAP estimates of the PFuyr
coefficients, the cost is J=0.566.

6.3.2 Single Parameter PFyyr Model with PF7s Inference

Whereas in the previous section the triggering and susceptibility prior models were fixed

(not adjusted by Bayesian regression), in this section the Bayesian inference is allowed to
simultaneously update both the PFyr and PFns coefficients while the PFs priors remain fixed.
The PFur priors were again set at y=0 and 0=1000. The PFns priors were set using the y
inferred from the laboratory test dataset in Section 6.2 (Table 6-2) while the covariance
coefficients were increased (multiplied by four) from those directly inferred from the laboratory-
based data to incorporate a larger level of uncertainty. As discussed in Section 6.2.7, the ¢
values determined from the laboratory test dataset represent uncertainty with laboratory tests,
but do not incorporate additional uncertainty that comes from a lack of knowledge of how
representative of field conditions these specimens are. This is a somewhat arbitrary
modification, but the sensitivity to inference results is explored in Section 6.4.4 where a
multitude of different o multipliers are tested. The 4x multiplier was deemed appropriate to
maintain confidence in the laboratory-based triggering prior while accounting for uncertainty for
the laboratory tests representing field conditions.

Bayesian inference is performed using the case history dataset and MAP estimates of the PFuyr
and PFrs coefficients were evaluated, with the results shown in Figure 6-27 and Figure 6-28.
The PFur posterior (Figure 6-27) remains very similar to the posterior inferred in Section 6.3.1
but the PFns posterior (Figure 6-28) changes significantly, reducing the CSR required to trigger
liquefaction at high D/qc1nes. These posterior models produce J=0.558 which is only a small
reduction in cost (small increase in model predictive performance) compared to the model that
fixed the PFns prior and inferred the PFyr posterior.

The shift in the PFns posterior is potentially important and warrants discussion. While the
Bayesian inference shifts down the triggering relationship, this produces only marginal
improvement, suggesting that it is only weakly supported by the data. To more carefully
evaluate this effect, the shift is re-examined using different assumptions regarding the PFuyr
conditioning variables and updating of the PFs in subsequent sections.

6-30



1.0
Bo=1.157
BL=-0274
5§ 0.8-
N
Q.
+
— |
I 0.6
Q
+
—
| 04
=
S
Et 0.2 1
0.0 T T T T T T
0 5 10 15 20 25

Ztop (M)

Figure 6-27 PFyr function conditioned on z,,, based on MAP estimates of model
coefficients in which PFpns was also updated. The PFs priors were fixed.
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Figure 6-28 PFns function conditioned on gcin.s based on MAP estimates of model
coefficients. The PFs priors were fixed.

6.3.3 Single Parameter PFyr Model with PFrs and PFs Inference

In this section the Bayesian inference was extended to include the susceptibility prior, which

updated the posterior PFs model. The two PFs model coefficients, x» and o, had prior y and o
values that were described in Section 6.1; those coefficients’ priors were assumed to be
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normally distributed. The Bayesian inference updated these along with the PFuyr and PFns
coefficient priors. The inference was performed using the same dataset as described previously
(Section 6.3.1). MAP estimates of coefficients were obtained and the results are shown in
Figure 6-29, Figure 6-30, and Figure 6-31.

The PFyr updated posterior was generally similar to the previous two posteriors; however, it
reached higher probabilities at shallow depths. The PFns posterior shifted to lower CSR at high
Dr again, but to a lesser extent, indicating that some of the change may have actually been due
to susceptibility effects rather than triggering. The PFs posterior decreased across the entire
range of /; values, meaning that the susceptibility prior was not adequately decreasing P[M] for
fine-grained soils with moderate to high /.. This inference produced J=0.515, which is a
significant improvement compared to the prior two iterations, indicating that the susceptibility
function update is important for improving manifestation prediction.
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Figure 6-29 PFyr function conditioned on z,, based on MAP estimates of model
coefficients in which PFns and PFs were also updated
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Figure 6-30 PFns function conditioned on gcines based on MAP estimates of model
coefficients. The PFs priors were also adjusted.
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Figure 6-31 PFs function conditioned on /. based on MAP estimates of model
coefficients
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6.3.4 P[M] Inference Using Multi-Parameter PFyr Models

Up to this point, the manifestation given triggering function has only included z,, as a predictive
feature but other features and combinations of multiple features could help further improve
manifestation prediction. Additional layer attributes that could potentially improve the PFuyr
function are listed in Table 4-2. Soil layer thickness, t, is not listed in Table 4-2 because it is
already included in the t/t. exponent. MAP estimates that describe the posterior PFuy 1, PFs,
and PFs coefficients were obtained for all parameter combinations; a total of 127 combinations
of potential predictive features were investigated.

Several feature combinations in the PFuyr function produced physically unrealistic trends

(i.e., PFuTincreases as zip increases or PFyr decreases as CSR increases). For each feature,
a sign for its multiplying coefficient can be anticipated, representing the physically expected
trend (i.e., Bi for zi,p should be a negative number and B; for CSR should be a positive number).
While the Bayesian inferences were not constrained to conform with the expected coefficient
signs, any model with at least one coefficient opposite to the anticipated sign was discarded and
not listed in Table 6-6. Of the 127 possible PFuyr combinations, 87 were rejected using this
process. The 40 remaining models are listed in Table 6-6. The table is sorted first by ascending
number of features, and then by ascending J. Note that J generally decreases as the number of
features increases; this trend is shown in Figure 6-32.

Table 6-6 Accepted P[Mr] models with MAP estimated coefficients
PFm, coefficients PFns coefficients PFs coefficients

PFmT Features ('3'0, Bi. ... B) ”( 20, C1, 0) (Oim, Xm) J
Ziop -1.3429, -2.8025 -7.004, 0.0285, 0.9377 | 0.1054, 2.4093 | 0.5148
Crs 11,6795, -3.4581 -6.9896, 0.0287, 0.9597 | 0.1068, 2.5014 | 0.5243
o -0.8982, -1.1557 -7.0584, 0.0274, 0.9549 | 0.1041, 2.4394 | 0.5512
Loy 17139, 11218 -7.5775, 0.0258, 1.0229 | 0.114,2.566 | 0.5557
Ie -2.4065, -3.5026 -7.3687,00331,099, | 0115, 2.6414 | 0.5658
CSRursram | -1.2846, 0.0276 -7.2739, 0.0249, 0.9465 | 0.1063, 2.4554 | 0.6004
Zop, Loy 11,9695, -2.4715, 1.2552 | -7.4491, 0.0301, 1.0108 | 0.1097, 2.5266 | 0.4907
Loy, 0 15557, 13474, -1.5057 | -7.5004, 0.0296, 1.0285 | 0.1113, 2.5599 | 0.499
Crir Loy 11,9662, -2.9421, 0.9195 | -7.2948, 0.0299, 1.0246 | 0.1099, 2.5807 | 0.5051
ley Ztop 21977, 2.6584, -2.0155 | -7.3037, 0.0328, 0.9408 | 0.1148, 2.6223 | 0.5072
Ziops Cr 1556, -1.4489, 19446 | -6.9953, 0.0286, 0.9485 | 0.1057, 2.4469 | 0.5154
le, Crs 2.0743, -1.8466, -2.6926 | -7.1716, 0.0325, 0.9524 | 0.1137, 2.6292 | 0.517
CSRu751am Cri | -1.6998, 0.1085, -3.4694 | -7.1344, 0.0294, 0.9643 | 0.1064, 2.5005 | 0.5241
I, O 1.8673, -2.7136, -0.9504 | -7.3221, 0.0333, 0.9529 | 0.1147, 2.6313 | 0.533
le Loy 22372, 21159, 0.8318 | -7.5346, 0.0317, 1.0475 | 0.1151, 2.6446 | 0.5422
CSRuzs tam, Loy | ;' D140er 00 1:30006:03, 1 7 5789, 0.0258, 1.0220 | 0.114,2.5659 | 0.5557
CSRursram le | -2.4201, 0.0548, -3.5239 | -7.4249, 0.0335, 0.9932 | 0.1149, 2.6416 | 0.5656
Gorm, Io 2.435,-0.3291, 34513 | -7.3235, 0.0324, 0.9863 | 0.1151, 2.6412 | 0.5659
oo zion, Lot | Torgy 002 22252 | 7.4738,0.0323,0.9968 | 0.1147,2.6284 | 0.4822
oo Lo, 00 |y aoee 190491098, ) 7 4995 0.0318, 1.0223 | 0.1145, 2.6313 | 0.4921
Cri Loy, o | 1950908980, 1.2296, 1 7 4425,0.0208, 1.0274 | 0.1108 2.5661 | 0.4982
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PFm, coefficients

PFs coefficients

PFs coefficients

PFum T Features J
Hr (Bo,Br, ..., B) (¢o, {1, 0) (Gm, Xm)
CSRwm7.5,1atm, Lp,y, | -1.5559e+00, 5.0000e-04,
o 00 Soateayg | 7:5014,0.0296, 1.0285 | 0.1113,255599 | 0.499
le, Cry, Loy ;)2'713‘}33;’ -1.0562,-2.6921, | 7 3044 0.0319,1.0139 | 0.113,2.6335 | 0.5016
CSRuwzstam, Cri, | -1.9755, 0.0935,-2.9993, | 7 3971 0.0304,1.0276 | 0.1096, 2.5778 | 0.5045
Lp, 0.9174
Qo Io, zop | 5 oo 002021780, | 7 2198,0.0315,0.9318 | 0.115,2.6218 | 0.5063
lo.2Ziop, Cr | o100 2091 1920% 1 79935, 0.0827,0.9414 | 01147, 26217 | 0.5071
CSRur 5 1aim, Zop, | -1.5865,0.0727,-1.3552, | 7 0871 0.029,0.9527 | 0.1054,2.4501 | 0.5159
Cri -2.0807
CSRurs1atm, lo, | -2.0901,0.1001, -1.8697, | 7 5765 0331, 0.9568 | 0.1136,2.629 | 0.5164
Cri -2.6906
o Crioy | ooroe 1493719084 | 66709 0.03,09195 | 0.1136,2.6303 | 0.5206
Gern, lo, OV :g'g;gg' -0.6511,-2.7446, | 7 5146, 0.0315, 0.9467 | 0.1149, 2.6293 | 0.5323
CSRur5tam, lo, | -1.8707,0.015,-2.7199, | 7 3363 0334, 0.9537 | 0.1147, 2.6312 | 0.533
o -0.9498
Gems, le, Lo 62620%153’ -0.3738,-2.1058, | 7 4667, 0.0302, 1.0355 | 0.1155, 2.6453 | 0.5416
CSRuz51am, lo, | -2.2551,0.0465, -2.1721, | 7 5805 00321, 1.0484 | 0.1151, 2.6446 | 0.542
Lp, 0.8291
Germ, CSRumasam, | 200 4194 01998, 1 7 126,0.0289,0.9553 | 0.119, 26262 | 0.5621
CSRwr.s 1am Io | -2.3816, 0.0369, -1.6528,
s 2 oane 10197 75292, 0.0326, 0.9972 | 0.1147, 2.6271 | 0.4821
CSRu7.5.1em Tor | ~1.9096. 0.0308, -1.3145,
s T oos 1 008 7.5305, 0.0319, 1.0231 | 0.1144, 2.6312 | 0.4921
CSRur.5.1am Cry, | -1.6714, 0.043, -0.8765,
o oen ) 1905 -7.4869, 0.03, 1.029 0.1106, 2.5646 | 0.4981
CSRu7.5 1am I | -2.1604, 0.1102, -1.0864,
Qs o980 vaee 7.4149, 0.0325, 1.0184 | 0.1129, 2.6323 | 0.5007
Gom, CSRur.sram, | -2.4281, -0.8623, 0.0664, | _
o S aeas 1 o0o 7253 0.0315, 09311 | 0.1151, 2.6217 | 0.5062
Gom, CSRursram, | -2.4258, -0.8583, 0.0674, | _
R, | 1 byey "00s0s | -7-2538,00315,0.9328 | 0.115,2.6214 | 0.5062
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Figure 6-32 Cost (J) of accepted P[Mr] models with MAP estimated coefficients
compared with number of features in the PFyr function. The lowest J model
for each number of feature group is highlighted red and the feature(s) in
that model’s PFyr function is printed next to it.

The best performing PFyr model with a single independent variable used zi,, (the model
presented in Sections 6.3.1-6.3.3). The zi,, parameter also appears in each of the top
performing multi-variable models. Based on these results, zi, is considered to be the single
most important layer parameter for analysis of profile manifestation given triggering. The Lp;
parameter also frequently appears in top performing models, indicating it is a useful predictor.
However, it incorporates FS; in its calculation and so requires use of a prior liquefaction model
for CRR. This complicates the analyses because triggering is incorporated into multiple analysis
phases, which may introduce correlation issues (if the same triggering model is used in PFyr
and PFrs) or incompatibility issues (if different triggering models are used in PFyr and PFrs).
For this reason, Lprconditioned models were not selected. Ultimately, the two-parameter model
that includes z:, and /. was selected as the recommended model. Models with three
parameters did not significantly reduce the cost function relative to the selected two-parameter
model.

6.3.5 Recommended P[M] Model
The recommended model is Eq. (6-11) with {-=2m and the PFyr, PFns, and PFs, functions

presented in Eq. 6-14 through Eq. 6-20 and visualized in Figure 6-33 through Figure 6-38. This
model combines z:, and /. in the manifestation given triggering model. The reasoning behind
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including /; is that it serves as a proxy of hydraulic conductivity and erodibility of a layer. A soil
with low hydraulic conductivity could generate large excess water pressures but not be able to
expel water quickly enough to contribute to surface manifestation. This is reflected in

Figure 6-33 by reductions of PFyr as I. increases, with probability factors approaching zero for
lc >~ 2.5. Similarly, Figure 6-34 shows how fixed values of PFyr (0.16, 0.5, 0.84) vary with z,
and /, illustrating the decay of manifestation likelihood as depth increases or /. increases. This
model produces J=0.508, which is notably reduced from the 0.515 value for the single
parameter model (Section 6.3.3).

By including /. in the PFyr function with a very weak prior, the model recovers a strong
dependence on /; in the manifestation component (Figure 6-33 and Figure 6-34) and the
susceptibility posterior is very similar to the prior (Figure 6-37). This contrasts with the results in
Section 6.3.3 when /. was not considered in the manifestation model; by allowing /. to affect
manifestation, adjustments of the susceptibility prior are no longer suggested. As shown in
Figure 6-35, the triggering model posterior shifts up modestly relative to the prior for this model,
which is in contrast to no change (Section 6.3.3) or a downward shift (Section 6.3.2). The
upward shift with the present model makes the most physical sense, due to the unaccounted for
effects of sample disturbance in the prior, which would be expected to increase resistance for a
given D,. However, it is worthwhile to acknowledge that the improvement in fit produced by
these shifts in the triggering model is small. The PFns model is visualized with continuous plots
against zp for bands of I in Figure 6-36.

Because this is the recommended model, in this section we provide not only MAP estimates of
coefficients, but also sample parameter distributions with four Markov chains (Section 4.4.3),
each composed of 1000 samples. Recommended coefficients are taken as the mean across the
four sampling chains, and thus are not exactly equal to the MAP estimates in Table 6-6,
although they are very similar. The distributions of the posterior coefficients are shown in

Figure 6-38.

1
PFEyr =
Tt exp (~(8.206 — 0.342 - 2,0, —3.461-1,)) 6-14
1
PFps = _
s ~1.702- (CSR — CRR) 6-15
1+ exp 0985
(SR = (CSRu7.s1atm” > = 1)
—0.6566 6-16
CRR = —7.427 + 0.0338 - D,
6-17
5 _ (D,12022 _ 1)
T 1.2022 6-18
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Figure 6-33 PFuyr function conditioned on z:, and I based on MAP estimates of model
coefficients in which PFps and PFs were also updated
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Figure 6-34 Values of z:, and /. that produce probability factors of 0.16, 0.5, and 0.84.
As zip increases and Ic increases, the probability of manifestation given

triggering decreases.
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Figure 6-35 Recommended PFrs function conditioned on gcin.s based on MAP
estimates of model coefficients. The PFs priors were also adjusted.
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6.3.6 P[M] Discussion

The manifestation model presented in Section 6.3.5 operates on an entire profile rather than a
critical layer, which is a significant break from past practice in liquefaction model development.
As noted in Chapter 3, while legacy models are generally considered to predict triggering,
because they are based on case histories of surface manifestation (or lack thereof), the
manifestation effects considered in this chapter must affect those models to some extent. For
this reason, | compare here the predicted probabilities of profile manifestation with predictions
from a legacy triggering model.

There are several metrics in statistics for quantifying the predictive accuracy of a model. The
recommended model produces a probability of observable surface manifestation of liquefaction,
but the physical outcome is always a binary outcome: no manifestation (yo»s=0) or manifestation
(vobs=1). The P[Mp] value can be categorized as either a yes (Vprea=1) Or N0 (Ypred=0) prediction if
it is above or below a threshold probability. An obvious threshold probability to use would be
0.5, and a confusion matrix using that threshold with the dataset that the model was trained on
is presented in Figure 6-39. A confusion matrix shows the proportion of correctly and incorrectly
predicted “yes” and “no” cases for binary outcomes; there are four categories: true positives
(TP) are correctly predicted “yes” cases, false positives (FP) are incorrectly predicted “no”
cases, true negatives (TN) are correctly predicted “no” cases, and false negatives (FN) are
incorrectly predicted “yes” cases. The percentages shown are the true positive
rate(TPR=TP/(TP+FN)), false positive rate (FPR=FP/(FP+TN)), false negative rate
(FNR=FN/(TP+FN)), and true negative rate (TNR=TN/(FP+TN)) Both the TP and TN categories
have more cases than their FN and FP counterparts, indicated by the TPR and TNR
percentages higher than 50%. If the model were random, the TPR, TNR, FPR, and FNR values
would each be approximately 50% and if the model was able to perfectly predict the outcome for
every case, then it would show TPR = TNR = 100% and FPR = FNR = 0%. Figure 6-39 also
presents several statistical metrics and their definitions including accuracy, precision, recall, and
F1 score.
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Confusion matrix with P[Mp] threshold = 0.5
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Figure 6-39 Confusion matrix using a P[Mg] threshold = 0.5 for model training dataset

Instead of looking at predictions based on one P[Mp] threshold, the probability threshold for
assigning manifestation to a site can be varied from 0 to 1 and the TPR and FPR calculated for
each probability threshold to create a ROC curve as shown in Figure 6-40. As the threshold
increases from 0 to 1, the TPR and FPR decrease from 100% to 0% and there is a threshold
that balances the two values relative to each other called the OOP, defined as the point that
minimizes FPR + (1 — TPR) (Figure 6-41). For this dataset, the OOP=0.51, and the confusion
matrix using the OOP as the P[Mp] threshold is displayed in Figure 6-42. The slight change from
0.5 to 0.51 in the threshold changes one TP to a FN and three FPs to TNs, meaning that there
were a total of four case histories with P[Mp] between 0.5 and 0.51.
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Figure 6-40 ROC curve for the model training dataset. The OOP is shown as the red
“x”, and the AUC is printed in the legend.
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Confusion matrix with P[Mp] threshold = OOP = 0.51
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Figure 6-42 Confusion matrix using a P[Mpg] threshold = OOP = 0.51 for model training
dataset

A model is expected to perform well on the dataset it is trained on, therefore it is useful to see
how the model applies to a test dataset that is independent of the training dataset. A dataset of
CPTs and surface manifestation of liquefaction observations from the Canterbury earthquake
sequences was published in DesignSafe (Geyin et al. 2020b). All the CPTs with length greater
than 15m were obtained from this dataset and used with the recommended model to predict
P[Meg]. The resulting ROC curve and confusion matrix are presented in Figure 6-43 and

Figure 6-44. All the statistical metrics for the Canterbury liquefaction dataset are very similar to
the model training dataset even though it is a much larger number of case histories exemplifying
that the model is not overfit to the training dataset.
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Figure 6-43. ROC curve for the Canterbury liquefaction dataset. The OOP is shown as
the red “x”, and the AUC is printed in the legend.
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Confusion matrix with P[Mp] threshold = 0.5
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Figure 6-44. Confusion matrix using a P[Mp] threshold = 0.5 for the Canterbury
liquefaction dataset.

6.3.7 Recommended P[7]S] Model and its Epistemic Uncertainty

We anticipate that applications of the P[T]S] models developed in this report will be of two
types: (1) applications for which the desired end product is a prediction of manifestation and
(2) applications for which only P[T] is of interest (i.e., the manifestation components of the
model will not be used). For the first application type, the P[T|S] model that should be used is
the posterior model associated with the manifestation model (details in Section 6.3.5). Our
recommendation for the second application type is the subject of the remainder of this section.

The second type of application would presumably be used to assess whether triggering will
occur at a site. However, we contend that a triggering analysis by itself should not be used to
make mitigation decisions. It is quite possible that layers will trigger without causing any adverse
consequences to infrastructure, and this can only properly be assessed using a manifestation
model. The manifestation models presented in this report pertain to surface evidence in the form
of ground cracks, sand boils, etc. under essentially free-field conditions (no large driving static
shear stresses). Separate manifestation models may be required for different conditions,
especially those involving large overburden or shear stresses (e.g., settlement of a shallow
foundation, end bearing at the tip of a deep foundation, slope instability of dams, etc.).
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We considered two alternative recommendations when P[T]S] is the terminal model result that is
desired (application 2). The first alternative is to use the posterior P[T]S] associated with the
preferred P[M.] model, which is the model conditioned on z:,, and /.. The rationale for selecting
this alternative is that the posterior distribution is a modification of the laboratory-based prior
that is constrained by case history data, and as such overcomes the well-known limitations of a
solely laboratory-based model (i.e., sample disturbance effects, fabric effects, etc.). The second
alternative is to use the P[T]S] prior, which is based on laboratory data (Section 6.2.7). The
rationale for considering this alternative is that different manifestation models (i.e., those
summarized in Table 6-6) produce different P[T|S] posterior distributions, as shown in

Figure 6-45a, some of which are above the prior and some of which are below. Three posterior
distributions are highlighted in Figure 6-45a, which are associated with manifestation models
conditioned on zi,, only, Ziwp and e, and Zig, e, and qc1ncs. We consider these three models to be
the most likely models that would be used, and they too have posteriors below, above, and
nearly coincident with the laboratory prior. If future work produces a different manifestation
model, another posterior P[T|S] would be produced. Given these variations, one approach is
using a stable central model for P[T]S], which is provided by the laboratory prior model.

Given the current stage of model development, we prefer the second alternative, but also
recommend that epistemic uncertainty in the model be considered. Epistemic uncertainties are
described below, but the recommended central branch P[T]S] model when P[T] of a single layer
is desired (i.e., triggering analysis only) is to compute P[T] as PFns multiplied by PFs where
PFns is defined using the same logistic functional form as Eq. (6-15) but uses the lab-based
coefficients given in Table 6-2. The equations to compute P[T] are summarized below in

Eq. (6-21) through Eq. (6-27).

P[T] = PFT|SPFS

6-21
PFpg = !
s ) —1.702 - (CSR — CRR) 6-22
+exp 0.094
. CSR ~0.6566 _ 1
CSR = ( M7.5,1atm ) 6-23
—0.6566
CRR = —7.43 + 0.0325 - D,.
6-24
. (Dr1.2022 _ 1)
b =022 6-25
D, (%) = 47.8  qo1nes"2%* — 106.3 (0 < D, < 100%)
6-26
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Figure 6-45. Uncertainty in posterior triggering relationships (a) across the possible
manifestation models and (b) within the recommended model
(distributions presented in Figure 6-38). The mean of the samples in (b) is
the recommended model as presented in Section 6.3.5 for applications in
which manifestation probabilities are to be predicted (black curve),
whereas the prior model (red curve) is the recommended central model
when the terminal analysis result is the probability of triggering.

To characterize model uncertainty in P[T|S], we consider the range of posterior distributions
provided by Bayesian inference. Two components of model uncertainty can be considered. First
is within-model uncertainty, as illustrated in Figure 6-45b, which shows 4000 sampled PFns=
0.5 curves within the distribution of ¢, and {; for the recommended manifestation model (i.e.,
distributions presented in Figure 6-38). There are also model uncertainties related to which set
of parameters is appropriate for the manifestation model, as shown in Figure 6-45a and
described previously. These two elements, intra- and inter-model uncertainty, can both be
considered to represent epistemic uncertainties in the triggering model, but the inter-model
uncertainty is considered to be the best representation of uncertainty in the central branch
triggering model.

6.4 Sensitivity Analyses

The proposed P[Mp] model is conditioned on several variables and was derived using prior

models for susceptibility and triggering. In this section, sensitivity analyses were performed to
demonstrate variations of predicted outcomes from the recommended model from changes of
input parameters (Section 6.4.1). Suites of alternative models are also derived using different
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susceptibility and triggering priors, to investigate the relative impacts of the Bayesian inference
of the data vs. the prior formulation on the characteristics of the posterior (Sections 6.4.2-6.4.3).

6.4.1 Sensitivity to Recommended Model Parameters

To compare the proposed P[Mp] model to legacy models and understand its sensitivity to model
parameters, a reference CSR, CSRer, was computed for a target P[M,], reference depth (z:p),
reference I, and reference t value for a given gcincs. The computed value of P[M.] was taken as
equivalent to the profile manifestation P[Mpg], which can be visualized as a profile composed
entirely of non-susceptible material (PFs = 0) except for a single layer with properties defined by
the reference conditions (Figure 6-46). The reference properties of the soil can be adjusted to
examine the effects on P[Mp] with changing layer conditions.

(a) (b) (c)

()] H N

Depth (m)
(o]

10

12

14

Figure 6-46. Example of profiles with different reference layer geometries that are used
to evaluate P[Mp] sensitivity to model parameters: z.p, t, Ic. (a) is a relatively
shallow and thin layer, (b) is a relatively shallow and thick layer, and (c) is a
relatively deep and thin layer.
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For a reference condition with a shallow depth, low /., and P[Mp]=0.16 or 0.5, CSR.r was
computed for a range of gcines Values and shown relative to the PFns=0.16 and 0.5 curves in
Figure 6-47. The CSRyer curve is located above and to the left of the triggering curve, meaning
that for a given tip resistance a higher CSR is needed for manifestation than for triggering. The
difference is modest at low penetration resistances but significant for stiffer soils.

Figure 6-48 to Figure 6-50 show sensitivities of CSRer — qc1nes Curves to variations in ziop, Ic, and
t, respectively. These plots were prepared for a relatively low probability level of P[M;]=0.16.
The rationale for selecting this low probability is because individual layer P[M,] values are often
low even for sites with high P[Mg] values, due to multiple layers contributing to P[Mp]. As shown
in Figure 6-28, as z:,p increases higher CSR values are required for a given gcines to produce
P[Mpr] = 0.16, increasing the upward shift relative to the triggering curve. Similarly, as /¢
increases, higher CSR values are required to produce P[Mp]=0.16 (Figure 6-49). For the case of
variable layer thicknesses (Figure 6-50), higher CSRs are required for relatively thin layers (t <
tc) and lower CSRs are required for thick layers (t > ;).

Figures 6-47 to 6-50 include comparisons of results from the proposed models (both triggering
and manifestation) to the Boulanger and Idriss (2016) model. A direct comparison of the
triggering model (labeled as PFrs in the figures) with triggering models such as Boulanger and
Idriss (2016) would be a false comparison. As discussed in Section 4.1, we contend that the
historical reliance on manifestation as an indicator of liquefaction triggering and lack of
manifestation as an indicator of a lack of triggering has led to conventional liquefaction
triggering procedures producing factors of safety against manifestation rather than of
liquefaction triggering. The SMT model explicitly separates triggering from manifestation, and
we therefore believe it is more appropriate to compare our “triggering + manifestation” model
(results labeled as P[Mp] in the figures) with legacy “triggering” models. The SMT triggering
model is lower than legacy models, but that should not necessarily be interpreted as the SMT
model being more conservative than legacy models. On the other hand, the SMT profile
manifestation results (P[Ms]) are generally closer to the legacy model.
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P[M_] at reference values: Ziop = 3.2m, t=1.5m, I = 1.9
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Figure 6-47. Median and 16% PFrs, P. (Boulanger and Idriss 2016), and P[Mg] from the
recommended model presented in this section using reference conditions
for zip, t, and I. obtained as the median z,, t, and /. from critical layers
selected for the Boulanger and Idriss (2016) dataset.
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P[Mp] at reference values: t=1.5m, I.=1.9
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Figure 6-48. Reference condition P[Mp] = 0.16 curve with varying z.,, values relative to
the PFns = 0.16 curve
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P[Mp] at reference values: zyp = 3.2, t=1.5m
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Figure 6-49. Reference condition P[Mr] = 0.16 curve with varying /. values relative to the
PFns = 0.16 curve
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Figure 6-50. Reference condition P[Mp] = 0.16 curve with varying t values relative to the
PFns =0.16 curve

6.4.2 Sensitivity to PFs Priors

In this section, the sensitivity of the P[Mps] model to susceptibility priors is tested. This sensitivity
was investigated in two ways: (1) changes to the mean model, (2) changes to the uncertainty
level on the mean model coefficients for the original prior (i.e., the prior presented in

Section 6.1).

The first evaluation considered each of the four published susceptibility models and the
combined model discussed in Section 6.1. The four susceptibility model coefficients were

used as the PFs prior in the Bayesian inference. The resulting posteriors are presented in
Figure 6-51. Figure 6-51 (a) shows that the higher the PFs relationship, the flatter the trend of
the PFuyr lines in I~z space. While the manifestation model is affected, Figure 6-51 (b) shows
that the susceptibility posteriors are not significantly modified from the prior. This occurs
because the susceptibility prior is given relatively strong confidence (the standard deviations
used in the normal distributions for the two PFs coefficients, x, and o, are relatively small). The
cost function, J, using these four priors were very similar (between 0.506 and 0.508).

The second evaluation modified the confidence levels placed on the PFs coefficients for the
original model (from Section 6.1). The standard deviations on the PFs coefficients’ normal
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distributions (o) were increased by factors of 2 and 4. The resulting PFuyr posteriors are
presented in Figure 6-52. By increasing the coefficient standard deviations, Bayesian inference
has greater freedom to update the posteriors, and the PFs function shifts to the left such that a
soil is less susceptible for a given I.. However, the PFy,r coefficient on /. moves in the opposite
direction, eventually producing a model that shows increasing manifestation potential for
increasing /¢, which is clearly non-physical. While J decreases to 0.491 for the P[Mp] model with
a factor of 4 on the PFs coefficients’ normal distributions, because the PFyr model has a
counter-intuitive trend a strong prior for the PFs function was retained.

2,54 (a) PFur Posterior 1.0 4 ) prior PO1
\ s PFyy7r = 0.5, PO1 e poOSsterior PO1
PFuyr=0.5, Sea03 s prior Sga03
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Figure 6-51. Impact of changing initial PFs model on final P[M] model using the four
models recommended in Maurer et al.( 2017): P01 (Polito 2001), Sea03
(Seed et al. 2003), BS06 (Bray and Sancio 2006), and BI06/IB08 (Boulanger
and Idriss 2006; Idriss and Boulanger 2008). The PFuyr function in (a) shows
that the manifestation portion of the model that includes /. changes to
accommodate the change in susceptibility functions. The change in the
PFuyr function allow the strongly informed prior PFs (b) to remain almost
unchanged in the posterior.
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Figure 6-52. Impact of changing the confidence in the original PFs prior on resulting
P[M] model. The PFyr function in (a) shows that the manifestation portion
of the model that includes /. changes to accommodate the change in PFs
functions posteriors (b).

6.4.3 Sensitivity to PFps Priors

In this section, the sensitivity of the P[Ms] model to variations in the triggering priors is tested.
This was done by considering alternate means and standard deviations for the PFs priors’
distributions. The effects of these variations on the PFy 7 and PFns posteriors were evaluated.

First, alternate prior mean values (u) were considered by increasing or decreasing the mean of
each coefficient’s prior by five times the standard deviation of that coefficient’s distribution and
by applying a weak confidence (100 times the standard deviations in the covariance matrix).
This produces the prior PFps functions plotted in Figure 6-53. Second, different levels of
confidence are explored by changing the multiplier on the standard deviations in the covariance
matrix. In the first case where only the mean priors are changed, Figure 6-53 shows that the
posterior does not noticeably move relative to the prior. In the second case where the standard
deviations are increased, despite the posterior having more freedom to move, the posteriors all
converge to curves similar to the priors (Figure 6-54).

The PFyr and PFrs posteriors all converge on similar values irrespective of the prior y so long
as they are given enough uncertainty on the standard deviations to find the lowest cost model.
The insensitivity of the posterior distributions to changes in the mean and uncertainty of the
prior indicates that the approach used in Section 6.3 is appropriate for finding a stable

PFns posterior.
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Figure 6-53. Impact of changing the PFns prior means on PFyr and PFrs posteriors. The
posteriors converge on approximately the same values when given a
sufficiently large uncertainty on the priors.
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Figure 6-54. Impact of changing the PFns prior standard deviations on PFyr and PFns
posteriors. The posteriors converge on approximately the same values
when uncertainty on the priors is increased by a factor of 2 or higher.
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7 DISCUSSION

In this report, we present probabilistic models developed by the SMT for the prediction of
liquefaction susceptibility, triggering, and manifestation. We used specific definitions for those
terms (Section 2.1) and formulated the models in a manner that is consistent with those
definitions. For a given application, particular elements of the three-part modeling framework
may be critical. The clear separation of the components allows such determinations to be made,
which in turn provides the opportunity to refine such elements through additional testing or data
collection to reduce uncertainties for critical applications.

As discussed in Section 2.2, two important philosophies influenced how this work was
performed. First, we only use data from the NGL database, and as such the information we
relied upon is available to any interested researcher. This promotes transparency and
repeatability. Second, while we exercised our experience and judgment throughout the learning
and model building process, we translated that judgment into procedures that can be
consistently applied across case histories. This too promotes transparency and repeatability,
while also reducing the influence of confirmation bias and allowing the models to be used in
forward applications in a manner that is consistent with how they were developed.

Our modeling process has Bayesian elements, as described in Section 4.1 and 4.2. The main
objective of the modeling process is prediction of a particular effect of liquefaction, namely
surface manifestation. Within the Bayesian process that leads to such predictions, several
critical model elements must be formulated, which include probability of susceptibility P[S],
probability of triggering given the soil is susceptible P[T]S], probability of profile manifestation
when one or more layers within the profile trigger P[Mp|T] (which is conditioned on a series of
variables that are not shown here for brevity), and probability of profile manifestation when no
layers within it trigger P[Mp|NT]. This report presents models for three of these four elements —
P[S] (Section 6.1), P[T]S] (Section 6.2), and P[Mp|T] (Sections 4.4 and 6.3). A model for the
P[M|NT] component has not been developed yet; while we have ideas about how to form this
modeling element, our work has not advanced to the state of a presentable model. For this
report, we assumed that P[M|NT] = 0.

We recognize that the modeling approach here diverges from precedent in liquefaction
modeling, which may be welcomed by some and viewed skeptically by others. We envision
several assessments to help geotechnical engineers better understand these models, including:

1) The performance of the proposed models will be compared to the performance of legacy
models when applied to the full NGL data inventory. This will allow the predictive power
of the different methods to be compared, albeit with some subijectivity given the need for
critical layer selection with the legacy models. This is a recommendation for future work.

2) Demonstration of the use of the models for example applications in which stability is the
main concern (i.e., manifestation is secondary) vs applications where manifestation is
the main concern will help engineers understand how these models would be applied to
solve practical problems encountered in engineering design. This is a recommendation
for future work.

3) A set of example calculations to show the step-by-step application of the P[Mp] model
using data from a case history in the NGL database. This is provided in Appendix B.
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Each of the models provided in this report have empirical elements. As such, they are valid only
over certain parametric ranges. The P[T]|S] model mainly applies for Holocene sediments and
artificial fills that are relatively granular in composition, although FC can range from 0 to 100%.
The D, range for the model is considered to be 20% to 90%. The P[Mp|T] model is considered to
be applicable for I = 0.2 t0 6.7, D, = 0 to 100%, Zip = 0 to 49m, and t = 0.01 to 14m. The model
is intended to predict manifestation from liquefaction at essentially level ground sites; as such it
does not apply for problems involving cyclic mobility, flow slides, or ground failure from non-
susceptible soils (i.e., stability problems involving strength loss in clay).

In developing the proposed models, we have adopted some prior modeling conventions that are
important, including fines corrections to convert gciv t0 gernes (Section 5.4.1), conversions of D,
to gciv (Section 6.2.6), and plasticity-based models for liquefaction susceptibility (Section 6.1).
Each of these is potentially subject to revision as research progresses. A subsequent phase of
the NGL project will investigate the potential for improvement of susceptibility models (Stuedlein
et al., 2023b). For fines, there is a need to separate fines effects on g./n from its effect on
triggering. The fines correction to gcsw is also critical, as it jointly accounts for the effects of fines
on penetration resistance, and the effects of fines on liquefaction triggering resistance, given a
particular state of the soil. In future work, it would be useful to separate these two factors in the
model formulation.

This report focuses on using CPT data in model formulation. We have developed SPT-based
models in an addendum to this report (SPT-based models, Chapters 10-14) to fulfill Task 9 of
this project, as outlined in Section 1.2. Using SPT data instead of CPT data affects the P[T]S]
model (mainly through the D, to N 6o relationship) and the surface manifestation model (P[Mg| T])
through the use of SPT blow count and index test data in lieu of gcsv and ¢ to represent layer
characteristics.

71 Triggering and Manifestation in Soils with High Relative Density

Some comments received from the MRT appear to question whether the attributes of the
proposed triggering model at high relative densities (D, near 100%) are supported by the
available data. To respond to this comment, two considerations must be discussed. The first
consideration is related to evidence from laboratory data at high relative densities. This topic
was addressed in Section 6.2.3, where CRRs are reported from tests on specimens of sand
with D, values up to about 92%, with seven tests between 85-92%. The results show that
liquefaction can be triggered in such materials at CRRs ranging from 0.25 to 0.85, with an
approximate average of 0.35-0.4. Based on the extrapolation of the fitted curves, at D, = 100%
the CRR range is 0.35-0.85. We recognize that finite CRR values for these dense materials run
counter to classical understandings, in which liquefaction is attributed to contraction of granular
soils during undrained cyclic shear. High D, soils dilate, thus do not contract, to reach a critical
state. However, before they dilate, they temporarily contract at relatively modest strain levels,
thus generating positive pore pressures as measured in these tests. We have taken this data
into account in the development of the prior. An alternative approach would be to neglect the
data and impose judgment by increasing CRR to very large values beyond some limiting D,. We
recognize that some researchers may support such model features, but this was not our choice
so as to avoid inconsistency between the prior and laboratory test data.

The second consideration is related to manifestation of liquefaction, which was a major focus of
the SMT modeling effort. If a high D, material triggers, it is unlikely to manifest (incidentally, the

NGL database contains no manifestation cases wherein a layer has P[M,] greater than 0.5 and

D, near 100%). The lack of manifestation is reasoned to be a consequence of two factors:
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(1) dense soil, following relatively small-strain pore pressure generation, experiences strong
dilation upon straining, which limits strain accumulation in the profile and thus manifestation,
and (2) dense soils have low compressibility, which limits the volume of porewater they expel
when pore pressures dissipate. We anticipated that the case history data would reflect this
expected feature via a strong dependence of manifestation probabilities on gcines. This was
investigated in Section 6.3.4, where the effects of g.ines Were in fact rather weak. For this
reason, we recommended that the manifestation model be conditioned on other parameters that
exert greater influence, which were layer depth and /.. We are currently considering whether
judgment-based adjustments to the model for high D, conditions can be implemented without
compromising model performance.

7.2 Future Work

As we developed the models documented in this report, we have identified other improvements
or enhancements that could be incorporated but that were not feasible within the scope and
limitations of the current project. These suggestions are listed here as opportunities for future
work.

e Refine the P[S] as discussed in Section 6.1. For the purposes of the work in this report,
we adopted a combined model representing several published susceptibility models for
forward analysis to reflect the lack of consensus in the community regarding
susceptibility. Over the long-term, a probabilistic susceptibility model should be derived
from laboratory test data that may be conditioned on parameters with more predictive
power than P/ or /.. Ideally, this would be the subject of a dedicated NGL supporting
study. A workshop supported by the PEER center and organized mainly by NGL
researchers was held in September 2022, with the aim of soliciting community feedback
and building consensus on the path forward for susceptibility modeling. A follow-on study
after this workshop would ideally provide an improved P[S] relationship.

e Re-visit rq, K5, and MSF models. In this report, we refined our selections of ry, Ks, and
MSF models as outlined in Sections 5.4.3, 6.2.4, and 6.2.8, respectively, to compute
CSR for the purposes of assigning layer properties (Section 5.4.3) and regressing
preliminary models (Chapter 6). However, preliminary work using a relative importance
ranking based on a random forest machine learning algorithm identified several of these
parameters as most influential in our model development. This suggests that future
efforts to further refine these models would be beneficial.

e Develop a saturation effect to apply to the P[T.|S] function. Herein, we use a simple
binary Ksa value of 0 above the groundwater table and 1 below the groundwater table.
Alternatively, a saturation effect could be derived from proximity to the groundwater table
and/or measured P-wave velocity (Vp).

e Re-examine interpretations of select case histories. Our approach to case history
processing combines automated procedures with human inspection and judgment using
what we believe are reasonable first-order approximations to assign liquefaction
observations to nearby in situ tests, identify layers, and process the characteristics of
these layers. This automated process is crucial for analyzing a database as large as the
NGL database, and provides a repeatable, consistent, and objective initial view of the
data. However, there are currently unidentified nuances in each case history that could
potentially affect these modeling decisions. One particularly difficult situation relates to
separating instances of ground failure due to liquefaction triggering from instances of
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ground failure due to cyclic softening (e.g., a non-susceptible soil as discussed in
Section 2.1.1). This could be addressed through excluding such cases that are clearly
cases of cyclic softening or through a combined cyclic softening and manifestation
model for fine-grained soils.

Expand the site characterization data considered in model development to include Vs
data. Several legacy models mentioned in Section 3.2 are based on Vs and developing a
set of Vs-based models to accompany our CPT-based (Task 7) and SPT-based (Task 9)
models, or perhaps a combined model using two or more of these in situ data types,
would potentially improve model performance.

Evaluate whether some outliers in the database can be explained by factors not directly
considered in the modeling approaches described herein, such as:

o Partial drainage of susceptible and liquefiable strata
o Aging effects that may be predictable based on geologic age or Vs

o Effects of geologic complexity, such as horizontally discontinuous vs relatively
continuous strata, which may affect manifestation

o The effects of mechanisms other than liquefaction, such as cyclic softening of clayey
soils not susceptible to liquefaction.

Evaluate model sensitivity using seismic hazard curves. For example, Dr. Andrew
Makdisi at the U.S. Geological Survey (USGS) previously developed a Python script for
probabilistic liquefaction hazard analyses (PLHA) using the USGS seismic source
models and designed his script to implement new triggering models as they become
available, such as those resulting from NGL model development efforts (e.g., this
report). This could be a productive investigation, particularly when additional NGL
modeling teams have proposed models that could be used to capture epistemic
uncertainty.
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8 CONCLUSIONS AND NEXT STEPS

In this report, we provided a framework for liquefaction modeling that includes discrete steps for
susceptibility, triggering, and manifestation. Each of these models has been updated since the
presentation of preliminary models in the Task 4 report and are approaching their final form. In
this report, we clarified the meaning of key terms in liquefaction analysis and provided a
framework by which the different effects can be evaluated in a consistent and rational manner
that is probabilistic and performance-based. In the preceding chapters, we described several
significant aspects of the model development process, such as:

e using the extensive NGL case history database to perform analyses that previously
would have been logistically impractical (Section 2.3),

e exploring the uncertainties in critical layer selection and finding this process to be non-
repeatable within the SMT and compared to legacy models (Section 3.3-3.4),

e using algorithms to process case history data and provide a repeatable, consistent, and
objective view of the data (Chapter 5),

e interpolating ground motion intensity measures at case history locations (Section 5.2),
e identifying layers within continuous CPT profiles (Section 5.3),

e estimating FC from CPT data using an updated relationship derived using the NGL
database (Section 5.4.2) for cases where directly measured FC values are not available,

e interpreting susceptibility in a probabilistic manner using CPT data which captures
variability and epistemic uncertainty in current models (Section 6.1),

e combining knowledge from laboratory tests and field case histories by using a rich
database of laboratory data spanning a wide parameter space to define the Bayesian
prior probability, P[T]S] (Section 6.2.7), and

e modeling surface manifestation conditional on liquefaction having triggered within one or
more layers through probabilistic analysis of the NGL database (Section 6.3.5); this
approach allows for an entire soil profile to be considered within the coupled triggering-
manifestation framework (Chapter 4) and does not require identification of a specific
critical layer.

The preceding chapters outline the approaches adopted by the SMT to model critical
relationships including probability of susceptibility conditional on /. (P[S]), probability of
triggering for susceptible layers conditional on state and stress demand (P[T]S]), and probability
of profile manifestation conditional on at least one layer within the profile having triggered
(P[M&e|T]). The role of a fourth model component to estimate the probability of profile
manifestation when no triggering occurs P[Mp|NT] has also been identified, although the model
is not yet formulated. For this report, P[Mp|NT] was assumed to be zero.

The recommended model for estimating P[Mp] is provided in Eq. (6-14) through Eq. (6-20) in
Section 6.3.5. For forward analysis where P[T] of a single layer is desired (i.e., ignoring
manifestation), we recommend computing P[T] as PFns multiplied by PFs given by Eq. (6-21)
through Eq. (6-27) in Section 6.3.7, where PFnsrelies on laboratory data.
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Although not designated as a formal Senior Seismic Hazard Analysis Committee (SSHAC)
study, the approach and processes we relied on as the SMT to develop our models followed
several of the basic SSHAC principles. These included evaluation and integration of available
data, clearly defined roles and responsibilities of all project members, and transparent
documentation of the SMT decisions needed to develop our findings. In addition, the model
presented in a previous version of this report (August 2023) has been peer reviewed by the
Modeling Review Team (MRT), with all comments received prior to March 22, 2024 documented
in a separate report along with SMT responses (Task 8, Ulmer et al., 2024). The purpose of the
MRT review was to provide feedback on the SMT’s methods but does not necessarily constitute
an endorsement of the SMT’s methods, results, or recommendations.

Findings provided in this report are nearing their final form, although future refinements and
improvements are possible. The content presented here is subject to change as we refine the
methodologies, input parameters, and framework, and based on the review comments from the
MRT received after March 22, 2024. Where possible, comments from the MRT have been
directly addressed in this report. Comments from the MRT that were not received with sufficient
time remaining in the project schedule may be addressed in derivative products (e.g., journal
papers) where feasible. While the general concepts behind our approach have been shared in
meetings with the NGL Advisory Board and other NGL modeling teams, this document presents
these concepts in greater detail and is more up-to-date than any prior presentation. Accordingly,
we look forward to receiving feedback from regulatory agencies, topical experts, practicing
engineers, and others about the modeling approach and the reasonableness and practicality for
application of the models that have been presented.

Although current SMT models are not yet sufficiently mature to ensure that the center body and
range of technically defensible interpretations have been captured, the developments thus far
advance the ultimate realization of this goal and have set up a framework for doing so. The
proposed modeling framework has distinct elements, each with their own uncertainties, that can
be separately evaluated in a general (ergodic) sense or for application to a specific project. An
additional component of epistemic uncertainty involves the model-to-model uncertainty that will
only be evident once the larger NGL modeling efforts mature. An important step in this process
is soliciting feedback from the stakeholder agencies and topical experts.
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APPENDIX A

Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case

History Data
Parameter Description Classification
TEST_ID primary key in test table metadata
dGWT depth to groundwater table (m) layer
ztop depth to top of layer (m) layer
zbot depth to bottom of layer (m) layer
gc min minimum qc within-layer (kPa) layer
gc avg average gc within-layer (kPa) layer
qc 30% 30th percentile qc within-layer (kPa) layer
qc 50% median qc within-layer (kPa) layer
gc max maximum qc within-layer (kPa) layer
gc std standard deviation of qc within-layer (kPa) layer
fs min minimum fs within-layer (kPa) layer
fs avg average fs within-layer (kPa) layer
fs 30% 30th percentile fs within-layer (kPa) layer
fs 50% median gc within-layer (kPa) layer
fs max maximum fs within-layer (kPa) layer
fs std standard deviation of fs within-layer (kPa) layer
sigma_v min minimum vertical total stress (kPa) layer
sigma_v avg average vertical total stress (kPa) layer
sigma_v 50% median vertical effective stress (kPa) layer
sigma_v max maximum vertical total stress (kPa) layer
sigmap_v min minimum vertical effective stress (kPa) layer
sigmap_v avg average vertical effective stress (kPa) layer
sigmap_v 50% median vertical effective stress (kPa) layer




Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case
History Data (cont’d)

Parameter Description Classification
sigmap_v max maximum vertical effective stress (kPa) layer
Ic min minimum soil behavior type index layer
Ic avg average soil behavior type index layer
Ic 30% 30th percentile soil behavior type index layer
Ic 50% median soil behavior type index layer
Ic 70% 70th percentile soil behavior type index layer
Ic max maximum soil behavior type index layer
Ic std standard deviation of soil behavior type index layer
gc1Ncs min minimum normalized clean sand cone tip layer
resistance

gc1Ncs avg average normalized clean sand cone tip layer
resistance

gc1Ncs 30% 30th percentile normalized clean sand cone tip layer
resistance

gc1Ncs 50% median normalized clean sand cone tip layer
resistance

gc1Ncs max maximum normalized clean sand cone tip layer
resistance

gc1Ncs std standard deviation of normalized clean sand layer
cone tip resistance

CSR avg average cyclic stress ratio computed using Idriss | layer
(1999) r_d

| B modified soil behavior type index layer

Su undrained shear strength (kPa) layer

taucycsu cyclic shear stress divided by undrained shear layer
strength

IF_layer layer interbeddedness factor (number of double layer

threshold crossings above the layer, where
Ic_thresh1 = 2.34, Ic_thresh2 = 2.93)
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Table A-1

History Data (cont’d)

Parameters in the Summary pkl File Containing SMT’s Processed Case

Parameter Description Classification
H1 thickness of non-liquefiable crust (m) profile
SITE_ID primary key of site table metadata
SITE_NAME site name metadata
TEST_NAME test name metadata
EVNT_ID primary key of event table metadata
EVNT_NAME event name metadata
EVNT_MAG earthquake magnitude profile
PGA peak horizontal acceleration (g) profile
FLDM_ID primary key of fldm (field observation) table metadata
FLDM_SFEV surface evidence of liquefaction (0 = no, 1 = yes) | profile
FLDM_DIST distance between observation and cone profile
penetration test (m)
TEST weights weights for observation in regression profile
alltriggers Total number of double Ic threshold crossings in | profile
the profile, where Ic_thresh1 = 2.34; Ic_thresh2 =
2.93
FLDM_SNBL sand boils (0 = no, 1 = yes) profile
FLDM Slope (deg) slope at observation location from 3-arc second profile
digital elevation model (deg)
TEST Slope (deg) slope at test location from 3-arc second digital profile
elevation model (deg)
LPI liquefaction potential index profile
LSN liquefaction severity number profile
CR crust strength (kN/m) profile
LD liquefaction ejecta demand parameter (kN/m) profile
PGV peak ground velocity (m/s) profile
CAV cumulative absolute velocity (m/s) profile
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Table A-1

History Data (cont’d)

Parameters in the Summary pkl File Containing SMT’s Processed Case

Parameter Description Classification
| a Arias intensity (m/s) profile
CSR Lasley r_d CSR computed using stress reduction coefficient | layer
from Lasley et al. (2017)

MSF B&l magnitude scaling factor from Boulanger and layer
Idriss (2016)

MSF Green et al magnitude scaling factor from Green et al. (2019) | layer

MSF Green et al b=0.2 magnitude scaling factor from Green et al. (2019) | layer
forb=0.2

MSF Green et al b=0.28 | magnitude scaling factor from Green et al. (2019) | layer
forb =0.28

Ksig 1&B K-sigma from Idriss and Boulanger (2008) layer

Ksig Carlton K-sigma for SMT model layer

LDI Liquefaction ejecta demand parameter within the | layer
layer (kN/m)

CRI Crust resistance above a layer (KN/m) layer

qci1N Overburden corrected cone tip resistance (kPa) layer




APPENDIX B — EXAMPLE APPLICATION OF PROPOSED MODEL

This appendix provides an example application of the P[Mr] model using data from a case
history in the NGL database: Wufeng Site A, which had no surface manifestation despite very
strong shaking during the 1999 Chi-Chi Taiwan earthquake.

The four CPT profiles shown here have false positive predictions using legacy models (critical
layers above the probability of liquefaction = 0.5 curve). These analyses began at the stage
where the raw CPT data had been discretized into layers (using the algorithm in Section 5.3)
and converted into gcines and Ic values for each layer. Another critical step is the assignment of a
ground surface PGA value and earthquake magnitude; for the present analysis the conditions
for the event that produced the observations were used (Section 5.2), but in general forward
applications these would be derived from seismic hazard analyses. In this section, the
calculations will be illustrated in detail for CPT WAC-4 and then results are provided for all four
CPTs.

Eq. B-1 is used to compute the probability of manifestation for each layer, P[M,].

tl/tc
PIM,] =1 — (1 = PFyr PFris PFs Ksar,) B-1

There are four model components within Eq. B-1 (PFM|TI,PFT|51,PF51, and Kgq¢,) and one

variable (t;). Each model component is computed for each layer, given the respective
independent variables, with the results tabulated on the right side of Table B-1 and displayed in
Figure B-1.
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Wufeng Site A, WAC-4
SFEV=0, P[Mp] = 0.2

Depth (m)

250 2 4 0.30.4 0 1 0 1 0 1 0 1 0 1
dcines Ic CSR PFs PF7s PF; PF T P[M, ]

o

Figure B-1. CPT “WAC-4” from Wufeng Site A with CSR computed using a PGA
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors
used to compute P[M.] for each layer. The total P[Mg] prediction is printed
at the top of the figure along with the observation of manifestation
(SFEV=1) or lack of manifestation (SFEV=0).

Considering first the PFs component (probability factor for susceptibility), the independent
variable is I (Eq. 6-20). For example, the first layer that is below the ground water table and
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clearly granular (Layer 8) has /;=2.08, and produces PFs = 0.95, indicating a highly susceptible
layer.

1 .
PFo=1- - B-2
~1.702- ("*/5 614 = 1)
1+ exp 0116
1
=1- 5 =095
. —1.702 - (49%/5 14— 1)
+exp 0.116

Next, the probability factor for triggering given susceptibility (PFns) is computed. This is a
function of CSR and CRR (Eq. 6-15) and therefore requires some transformations of the CPT
data. CSR can be computed directly from CSRw7.5 1am (EQ. 6-16), which is demonstrated for layer
8 in Eq. B-3. Relative density (D;) is estimated from the qcincs value of the layer (Eqg. 6-19)
yielding D=58% in Eq. B-3 which is then converted to D, = 109.9 (Eq. 6-18) in Eq. B-5. CRR can
then be computed (Eq. 6-17) in Eq. B-6 and combined with CSR to produce PFns = 0.99 (Eq.B-
7). This indicates that layer 8, being a low tip resistance layer shaken at a high intensity, is likely
to trigger.

. (CSR™06%66 —1)  (0.42706%66 —1) B-3
CSR = = =-1.17
—0.6566 —0.6566
0 < Dp <100% = 47.8" qeines"?** — 106.3 = 47.8-108.7%%%* = 1063 o ,
= 58%
(D122 —1) (5812022 — 1) B-5
D, = = =109.9
1.2022 1.2022

CRR = —7.427 + 0.0338 - (D;) = —7.427 + 0.0338 - (109.9) = —3.71  B-6

PFpj5 = ! — B-7
s Lie (—1.702 -(CSR - CRR))
X
0.985
= ! =0.99
- ~1.702 - (-1.17 = (-3.71))\
1+ exp 0.985

Taking the product of PFs and PFrs gives the probability factor of triggering (PFr), a metric that
accounts for both the susceptibility and triggering potential of the layer. The PFr for layer 8 is
computed in Eq. B-8 to be 0.94.

PFr = PFpis x PFs = 0.99 * 0.95 = 0.94 B-8

The probability factor for manifestation given triggering (PFu ) is a function of I and z«, (EqQ. 6-
14) and is computed for layer 8 in Eq. B-9. PFyr is nearly zero for layer 8, which is expected
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because the layer is thin and deep, being overlain by predominantly clay layers. Therefore, if
liquefaction were to occur in this layer, it would be unlikely to produce surface manifestations.

1

1+ exp (—(8.206 — 0.342 - z,,,, — 3.461-1.))
1
1+ exp(—(8.206 — 0.342 - 2.08 — 3.461 - 5.55))

PFM|T =

B-9
0.29

Finally, the saturation term, Ksa, which is taken as a binary outcome of 0 above the groundwater
table and 1 below the groundwater table, is assigned to each layer (taken as 1 for layer 8). With
all model components derived, the probability of manifestation for layer 8 can be computed,

t
P[ML] =1- (1 — PFM|TPFT|5PFSI{Sat)tc B-10
0.25

2
=1-(1-1%0.29%0.99%0.94) 2 = 0.04

This shows that layer 8 is unlikely to manifest. Looking at the different layers in Table B-1, most
have no appreciable manifestation potential. Among the different layers, layer 10 has the
strongest manifestation potential (0.38), although even this result is modest, which is due mainly
to its limited susceptibility potential.

The total manifestation probability for the profile, P[Mg], can now be computed as the product
sum of the P[NM,] = 1-P[M,] values for all layers using Eq. B-11,

Np,
PIMp] =1 - | [ - PIM 1 B-11
=1

This yields P[Mp] ~ 0.2 for WAC-4, indicating a low probability of manifestation, making it a “no”
surface evidence prediction. This matches the observation of no manifestation for this site in
Wufeng. This prediction occurs despite there being multiple layers beneath the groundwater
table that have a high probability factor for triggering, due to the features of the manifestation
model.

Results similar to those for CPT WAC-4 were generated for the other CPTs at the site — WAC-5,
7, and 9. These results are plotted in Figure B-2 through Figure B-4. Each of these CPTs
correctly predict no manifestation for the profile despite the presence of layers with high PFr and
“yes” manifestation predictions from legacy models. Table B-2 summarizes the probability of
manifestation predicted using Boulanger and Idriss (2016) for the critical layer selected on the
basis of being susceptible and having the highest predicted P, in the profile, as well as the
P[Mp] predicted using the recommended model.
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Table B-2.  Probability of manifestation predictions for Boulanger and Idriss (2016) and
the recommended P[Mr] model compared with surface evidence of
manifestations for Wufeng Site A CPTs.

Boulanger and Surface
GRF LR \driss (2016) Py Evidence?
4 0.99 0.20 No
5 0.99 0.41 No
7 0.99 0.17 No
9 0.99 0.21 No
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Wufeng Site A, WAC-5
SFEV=0, P[Mp] = 0.41
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Figure B-2. CPT “WAC-5” from Wufeng Site A with CSR computed using a PGA
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors
used to compute P[M.] for each layer. The total P[Mg] prediction is printed
at the top of the figure along with the observation of manifestation
(SFEV=1) or lack of manifestation (SFEV=0).
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Wufeng Site A, WAC-7
SFEV=0, P[Mp] =0.172
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CPT “WAC-7” from Wufeng Site A with CSR computed using a PGA
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors
used to compute P[M.] for each layer. The total P[Mg] prediction is printed
at the top of the figure along with the observation of manifestation
(SFEV=1) or lack of manifestation (SFEV=0).



Wufeng Site A, WAC-9
SFEV=0, P[Mp] = 0.207
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Figure B-4. CPT “WAC-9” from Wufeng Site A with CSR computed using a PGA
estimate from the 1999 Chi-Chi, Taiwan earthquake and probability factors
used to compute P[M.] for each layer. The total P[Mg] prediction is printed
at the top of the figure along with the observation of manifestation
(SFEV=1) or lack of manifestation (SFEV=0).



