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PREFACE 

This is an addendum to a companion report, referred to herein as the Task 7 report (Ulmer et 
al., 2024), which presented probabilistic models for liquefaction susceptibility, triggering, and 
manifestation that use inputs from a cone penetrometer test (CPT). The objective of this 
addendum is to document the development of probabilistic models that take as input soil 
stratigraphy from borehole logs, available laboratory index test results, and penetration 
resistance measurements from standard penetration tests (SPT). For brevity, this type of site 
characterization is referred to subsequently as “SPT-based site characterization.” This 
addendum fulfills Task 9 of the current contract jointly supported by the U.S. Nuclear Regulatory 
Commission (NRC) and the U.S. Bureau of Reclamation (USBR).  

In the Task 7 report, the Supported Modeling Team (SMT) presented probabilistic models based 
on CPT data. Many of the foundational elements of those CPT-based models are common to 
the SPT-based models outlined in this addendum. Thus, only the unique SPT-related elements 
are discussed in this addendum, with appropriate references to the Task 7 report. Moreover, we 
apply notation and variable names in this report that were defined in the Task 7 report without 
re-defining them here. Accordingly, readers interested in looking up definitions of terms (such as 
P[T|S]) are encouraged to consult the Task 7 report.  

In Chapter 10, we describe the steps required to develop the necessary stratigraphic 
parameters and soil properties from SPT-based site characterizations for use in model 
development. In Chapter 11, we provide SPT-based models, including (i) an equation to 
compute the probability of susceptibility to liquefaction in a given soil layer and (ii) an equation 
to compute the probability of triggering. We also outline a framework to develop equations to 
compute the probability of surface manifestation and check the reasonableness of using the 
CPT-based manifestation model based on depth to the top of the soil layer. In Chapter 12 we 
outline the limitations of the models presented in this addendum, discuss important aspects of 
using these SPT-based models, and identify future work that has the potential to improve model 
performance. Finally, we summarize the conclusions of our work in Chapter 13. 

Our findings provided in the Task 7 report and this addendum are nearing their final form, 
although future refinements and improvements are possible. The content presented here is 
subject to change as we refine the methodologies, input parameters, and framework. Although 
the SPT- and CPT-based models rely on several common elements, the SPT-based 
manifestation models are less mature than the CPT-based models, due in part to challenges 
with interpreting SPT-based case histories and inconsistent data density, as discussed in 
Section 12.1, and due to limitations of the project schedule. Opportunities for future work listed 
in Section 12.3 may address the discrepancy in model refinement and maturity.  

While the general concepts behind our approach and the CPT-based models have been shared 
in meetings with the Next Generation Liquefaction (NGL) Advisory Board, the MRT, and other 
NGL modeling teams, this addendum presents new relationships specifically for applications 
using SPT-based site characterization data. Accordingly, we welcome feedback on these 
specific relationships from the liquefaction research community as they mature and feedback 
from regulatory agencies, topical experts, practicing engineers, and others about the modeling 
approach and the reasonableness and practicality for application of the models that have 
been presented. 
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10 SPT CASE HISTORY PROCESSING 

Case history processing is required to convert data (e.g., stratigraphy from borehole logs, SPT 
N values, groundwater table measurements, ground motion measurements, observations of 
liquefaction manifestation) into metrics that facilitate development of liquefaction triggering 
models (e.g., CSR, N1,60cs). The goal of processing SPT-based site characterization data is to 
couple liquefaction observations (or lack thereof) to a set of nearby boreholes and to identify 
and characterize layers within each borehole. This is needed to perform liquefaction evaluation 
calculations at depth. Our approach to processing SPT-based site characterization data initially 
uses automated procedures to assign observations to boreholes, determine layer boundaries, 
and estimate soil properties to characterize the layers. We augment these automated processes 
with judgment through human reviews of individual case histories. Whenever feasible, we codify 
our judgments so that they are objective and reproducible by other analysts. The development 
of calibrated automated processes is crucial for analyzing a database as large as the NGL 
database, and provides a repeatable, consistent, and objective initial view of the data. 

This chapter describes the steps required to process SPT-based site characterization data for 
case histories in the NGL database, including the assignment of layer boundaries and soil 
properties within layers for use in model development. These steps include several new 
developments within the state-of-the-art in liquefaction evaluation, such as probabilistic 
estimates of PI and FC given a basic soil description. 

10.1 Assigning Observations to In Situ Tests 

The first step in case history processing is to correlate the in situ test data (e.g., boreholes) in 
the database with nearby observations of liquefaction manifestation or no such manifestation. 
Observations of surface manifestation (or lack thereof) and site investigations are not 
necessarily co-located in the NGL database, so it is necessary to decide which observation 
should be associated with which borehole (i.e., what boreholes should be used in evaluating the 
soil layers that contributed to the surficial manifestation of liquefaction or lack thereof). 
Observations and boreholes (including their in situ tests) are associated through a link to a 
common site in the SQL data structure, but within a site there are often multiple observations 
and multiple boreholes. Furthermore, there are often “yes” and “no” observations of 
manifestations within the same site for the same earthquake. To make initial assignments of 
observations to boreholes, we developed the following algorithm using Python code in 
Jupyter Notebooks.  

1. Select a site and identify all the boreholes and observations that are associated with 
that site.  

2. Compile the latitude and longitude values for the boreholes and observations and 
compute an array containing the distance in meters between every observation and 
borehole at the site.  

3. Separate the observations by event (some sites have observations from more than one 
earthquake event).  

4. Assign the closest borehole to each observation for each event so that every 
observation has a borehole assigned to it. 

The above four steps comprise an initial automated process to make these assignments, which 
is followed by a human review by SMT members examining each test-observation pair. To 
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conduct the review, the SMT developed a Jupyter notebook to visualize and summarize the 
available data for each site and event combination. A screenshot of the notebook is shown in 
Figure 10-1. Red markers indicate “yes” manifestation cases, black markers represent “no” 
manifestation, and green markers are locations of boreholes with SPT measurements. When a 
manifestation observation and borehole are co-located, the green pins are obscured, and a 
black or red circle is drawn around the pins to indicate co-location. The purpose of this review 
was to: 

1) Confirm the appropriate assignments of “yes manifestation” and “no manifestation” to 
individual boreholes or groups of boreholes when more than one borehole could be 
reasonably assigned to the same field observation. 

2) Identify and exclude case histories where the distance between a borehole and an 
observation of “yes manifestation” or “no manifestation” is too great to reasonably adopt 
(despite being the closest borehole identified by the initial algorithm). This evaluation is 
dependent on the site geology and the type and spatial distribution of field observations, 
and there is no single cutoff distance that is appropriate in every situation. For example:  

a) A lateral spread feature extending over an area of many square meters is 
represented in the NGL database by a single latitude/longitude coordinate, 
usually near the center. The feature may contain several boreholes within its 
lateral extent, but the distance between the center point and the boreholes could 
be several meters. In this case, the appropriate maximum acceptable distance 
between an observation and a borehole may be greater than in another case 
where only a single sand boil is observed. 

b) In other cases, it is important to evaluate how close a borehole is to a “yes 
manifestation” observation and a "no manifestation" when there are multiple 
observations in a single site.  

c) Some sites may have more variable conditions, and the appropriate maximum 
acceptable distance between an observation and a borehole may be less than 
what is considered acceptable at a site where the soil profiles are more constant 
over horizontal distances. This evaluation is dependent on the site geology and 
available subsurface data. 
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Figure 10-1 A screenshot of the Jupyter notebook that the SMT designed for reviews of 

individual case histories. Black markers represent observations of “no 
manifestation”, red markers represent “yes manifestation”, green markers 
represent boreholes, red/black lines connect boreholes and observations 
that the SMT grouped together, and red/black circles indicate a co-located 
borehole and observation pair. Case history: Mihama Ward, 2011 
Tohoku earthquake. 

3) Identify borehole data that should be disqualified for reasons not readily detected by the 
algorithms (e.g., insufficient detail or unreliable SPT hammer operations). 

4) Identify case histories where the presence of nearby structures could potentially affect 
the manifestation of liquefaction. 

5) Assign weights to boreholes when multiple boreholes are assigned to the same 
observation. In this manner, multiple boreholes may be paired with a single observation 
to form a single case history. 

At least one member of the SMT, and often two or more, used this tool to review each case 
history that the algorithms initially identified. For this phase, only sites that were also reviewed 
as part of the CPT-based model development are included in our case history list, although an 
immediate task after submission of this report will be to broaden site selection by removing the 
co-located CPT requirement. This process yielded 119 case histories, each with a borehole 
associated with an observation of “yes” or “no” manifestation (the number of case histories 
when the co-located CPT requirement is dropped will exceed 430). Because over half of the 
field observations are co-located with a borehole, the median distance between site 
investigation locations and observations is less than a meter. The mean distance is 26m, 
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reflecting that some of the boreholes are tens of meters away from the observation’s assigned 
location. This is not surprising for some large features, such as lateral spreads, which can span 
dozens of meters or more in length and width, but which are represented spatially in the 
database by a single pair of latitude and longitude coordinates. 

10.2 Layer Boundaries 

After identifying the boreholes that are reasonably close to an observation, the next step is to 
identify soil layer boundaries within each borehole. The approach to identify layer boundaries in 
an SPT-based site characterization is necessarily different than the approach for CPT-based 
site characterization. For the CPT-based models, layer detection methods were automated 
using agglomerative clustering (Section 5.3 of the Task 7 report; Hudson et al., 2023a) 
because the process of performing a CPT sounding does not directly identify layer boundaries 
(e.g., there is no visual inspection of the soil, only digital measurements from the CPT cone). In 
the case of the SPT-based site characterization, boreholes are logged by an on-site 
professional who identifies transitions in soil type from samples, cuttings, and driller feedback as 
the drilling progresses. These identified transitions are captured in the NGL database in the 
stratigraphy (STRA) table. While borehole logs can miss some stratigraphic horizons and may 
not perfectly align with results of co-located CPT logs (e.g., Wang et al., 2019; Xie et al., 2024), 
the SMT decided to rely on these assigned boundaries as a starting point for our SPT-based 
model development.  

One disadvantage to using STRA layers is that these layers tend to be large and ignore some of 
the nuanced differences captured by individual soil samples (SAMP) within each STRA layer. 
These soil samples are obtained during drilling for laboratory testing to measure fines content, 
plasticity index, particle gradation, and other soil properties. An alternative to using STRA layers 
would be to assign layers based on locations of SAMP entries, particularly those with SPT blow 
counts. However, this could lead to the opposite problem of having too many layers with only 
one data point per layer, resulting in potentially anomalous estimates of P[S] or P[T|S] within a 
layer. Furthermore, field geologists/engineers often log stratigraphic boundaries based on 
feedback from drill rig operators when a new layer is encountered, which may not align well with 
sampling locations. 

We reviewed the stratigraphy information logged in each boring alongside the observed blow 
counts and sample descriptions (discussed in Section 10.3) and made our own judgment calls 
regarding appropriate locations of layer boundaries. The SMT developed a Jupyter notebook 
tool that facilitated feedback, such as recommending alternative layer boundaries, adjusting 
assumed FC and PI values, and noting layers with little data and a high level of uncertainty, as 
needed. Figure 10-2 shows a screenshot of this tool for a single case history. This review 
process is currently ongoing. This work was performed on a boring-by-boring basis rather than 
using multiple boring logs at a site to make a more holistic assessment of site stratigraphy. Our 
motivations were (1) adjacent borings at a site may not be associated with the same 
observation (e.g., one boring might be a “no” and the other a “yes” with respect to surface 
evidence of liquefaction, (2) borings are often spaced at a large enough distance that blow 
counts are not expected to be correlated within a layer, and (3) we did not have adequate time 
as of the writing of this report to perform a thorough review of all of the site investigations at  
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.

 

Figure 10-2 A screenshot of the Jupyter notebook that the SMT designed for reviews of 
layer boundaries and assigned layer properties for individual case 
histories. 

each site. In future work, we plan to evaluate each site more thoroughly with respect to the 
position of adjacent borings, particularly in cases where SPT blow counts were not measured in 
a specific stratum 

10.3 Assigning Layer Properties  

After identifying layer boundaries, the next step is to characterize each soil layer’s strength, 
plasticity, and other characteristics relevant to liquefaction evaluation. We developed a number 
of different attributes for each layer in the profiles. Some attributes were computed directly from 
the SPT data, while others were assigned as representative values based on integration of 
several data sources. Section 10.3.1 describes how FC and plasticity (i.e., PI) are assigned. 
Section 10.3.2 outlines the process for normalizing measured SPT blow counts (N) to account 
for variations in overburden stress, energy, and fines content (N1,60cs), and for assigning 
representative normalized values to each layer.   

Because SPT data is collected at discrete intervals with the potential for some soil layers to 
have no samples or SPT N values, the following sections outline how the SMT assigned 
representative values of FC, PI, and N1,60cs for two scenarios: (i) where at least one 
measurement is available within a STRA layer, and (ii) where no measurements are available 
within a STRA layer. A list of attributes computed for the SPT-based case histories is provided 
in Appendix A. 
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10.3.1 Estimation of PI and FC 

Two important soil characteristics that are needed from SPT-based site characterization for 
model development are plasticity index, PI, and fines content, FC. As discussed later in 
Section 11.1, the P[S] depends on PI and, as discussed in Section 10.3.2, the normalized blow 
count, N1,60cs, requires an estimate of FC. Thus, the SMT developed an objective process to 
assign PI and FC to each layer in our case history database. 

10.3.1.1 Representative PI and FC based on measurements 

Where possible, PI and FC were obtained from measurements within each layer. In the cases 
where multiple samples within a layer had measured PI and FC values, the medians of all 
measured PI and FC values within a layer were assigned as representative values for the layer. 
The median is selected so that the value used is from a sample in the measured samples rather 
than an averaging of samples in the layer and not correlating to any one measurement. 
Additionally, the uncertainty on each of these values was quantified by combining two 
statistically independent variances: measurement error and spatial variability. The measurement 
error was taken as the COV reported in Table 5 of Phoon and Kulhawy (1999) for PI (0.24). 
That COV was converted to measurement error standard deviation for PI (𝜎௉ூ,௠௘௔௦) in  
Eq. (10-1): 

𝜎௉ூ,௠௘௔௦ ൌ  𝐶𝑂𝑉௉ூ ⋅ 𝑃𝐼 (10-1) 

Next, the within-layer dispersion of PI was estimated by examining the variance of PI within 
layers that have more than one PI measurement. First, the standard deviation was computed 
using the approximations given by Burrington and May (1970) and then squared to obtain the 
variance. The distribution of within-layer variance is shown in Figure 10-3. The within-layer 
variance, 𝜎௉ூ,௦௣௔௧௜௔௟

ଶ , was taken as the mean of that distribution, which had a value of 81.9 with 
PI expressed in percent. The combined PI variance was then computed as:  

𝜎௉ூ
ଶ ൌ 𝜎௉ூ,௠௘௔௦

ଶ ൅ 𝜎௉ூ,௦௣௔௧௜௔௟
ଶ  

(10-2) 

The following is applied for layers that contain just one PI measurement: 

1. 𝜎௉ூ,௠௘௔௦ is assigned using Eq. (10-1) with the measured PI and the COV from Phoon and 
Kulhawy (1999)  

2. The median value of 𝜎௉ூ,௦௣௔௧௜௔௟
ଶ  from Figure 10-3 is used 

3. The total variance, 𝜎௉ூ
ଶ  is computed using Eq. (10-2).  

For layers that have more than one PI measurement, the same procedure is applied except that 
the median PI value from the layer is used in Eq. (10-1) to compute 𝜎௉ூ,௠௘௔௦. 



 

10-7 

 

Figure 10-3 Histogram of the variance of PI within layers. The mean is represented by 
the dashed vertical black line. The dataset used to compute these 
variances includes PI measurements from 65 layers that have more than 
one Atterberg limit test performed within the STRA table defined layer. 

The FC uncertainty does not consider any measurement error because Phoon and Kulhawy 
(1999) did not provide uncertainty for FC, likely because it is a laboratory test with small 
variance. Spatial uncertainty is considered in the same manner as for PI. The distribution of FC 
within-layer variance is presented in Figure 10-4. The mean of that distribution, with FC 
expressed in percent, is taken as 𝜎ி஼,௠௘௔௦

ଶ  = 381. 

 

Figure 10-4 Histogram of the variance of FC within layers. The mean is represented 
by the dashed vertical black line. The dataset used to compute these 
variances includes FC measurements from 287 layers that have more 
than one grain size distribution test performed within the STRA table 
defined layer. 
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10.3.1.2 Representative PI and FC without measurements 

In an SPT-based site characterization, soil samples are collected at discrete intervals with the 
potential for some soil layers to have no samples. Thus, not all STRA layers contain PI and FC 
values derived from laboratory testing, but they do have visual manual classification information 
about the soil within the layer. Therefore, the SMT developed an approach to infer PI and FC 
from text descriptions. 

After reviewing stratigraphic text descriptions of STRA layers and samples (from the SAMP 
table) in the NGL database, we assigned one of 11 basic soil type labels as follows:  

 Gravel 
 Sand 
 Silty Sand 
 Clayey Sand 
 Silt 
 Sandy Silt 
 Clayey Silt 
 Clay 
 Sandy Clay 
 Silty Clay 
 Organic 

These basic soil type labels are used at two stages. Initially they are used for STRA layers or 
samples for which PI and FC data are available to develop predictive relations. Subsequently, 
they are used to assign representative values to STRA layers for which no tests are available.  

In the initial stage, SMT members checked the value of FC (if it was measured) against the text 
descriptions and relied on the FC of each sample to ultimately assign the soil type as needed. 
For example, a STRA layer may have been described as “sandy silt” in the field, but the 
laboratory specimen from that layer may have FC less than 50%, which would indicate that the 
soil is predominantly composed of coarse-grained soils and should instead be called “silty 
sand”. Our opinion is that the best practice for constructing boring logs is to revise text 
descriptions to be consistent with laboratory test data, but this was not always done for the 
boring logs in the database.  

After making these basic soil type assignments to all samples with measured PI or FC values, 
the SMT developed distributions of PI and FC within each of these basic soil type labels. 
Figure 10-5 and Figure 10-6 show these distributions. The blue shaded areas represent 
approximate histograms of the data, in addition to the box and whisker plots. Medians are 
represented by an orange bar, and means are reported at the top of each plot. As expected, the 
mean and median PI for “sand” is zero, while the mean and median PI values are higher for 
predominantly fine-grained soils (e.g., “clay” or “silt”). 
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Figure 10-5 Distributions of PI within each soil type group. The blue shaded area 
represents an approximate histogram of the data, with box and whisker 
plots in black. Medians are represented by an orange bar, and means are 
reported at the top of each plot. 

 

 

Figure 10-6 Distributions of FC within each soil type group. The blue shaded area 
represents an approximate histogram of the data, with box and whisker 
plots in black. Medians are represented by an orange bar, and means are 
reported at the top of each plot. 

To simplify the groupings and to increase the number of data points within some poorly 
represented soil types, some of the basic soil types were grouped together based on similar PI 
or FC distributions. For example, “silty sand”, “clayey sand”, and “sandy silt” had nearly identical 
PI distributions. Thus, the original 11 soil type labels for PI distributions were redefined into soil 
type groups as outlined in Table 10-1. 

To capture the uncertainty in the PI and FC estimates within these layers, the SMT 
characterized the distributions of PI within each soil type group using a mean and standard 
deviation. However, the distributions for PI were skewed such that a normal distribution did not 
fit well. Thus, we performed Box-Cox transformations (Box & Cox, 1964) as defined in  
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Table 10-1 Soil type groups for PI and FC distributions  

Soil Type Groups for PI Distributions Soil Type Groups for FC Distributions 

Gravel or Sand 
Silty Sand, Clayey Sand, or Sandy Silt 

Sandy Clay 
Silt or Clayey Silt 

Silty Clay 
Clay 

Organic 

Gravel or Sand 
Silty Sand 

Clayey Sand 
Silt 

Sandy Silt 
Clayey Silt 

Clay 
Sandy Clay 
Silty Clay 
Organic 

 

Eq. (10-3) within each soil type group to obtain values of λ, mean 𝑃𝐼෢, and standard deviation 
of 𝑃𝐼෢.  

𝑃𝐼෢ ൌ
𝑃𝐼ఒು಺ െ 1

𝜆௉ூ
 (10-3) 

The Box-Cox transformed distributions are shown in Figure 10-7, and Table 10-2 summarizes 
the λPI, mean 𝑃𝐼෢, and standard deviation of 𝑃𝐼෢ from the Box-Cox transformation for each soil 
type group. Note that for some soil groups (e.g., “gravel” and “organic”) we had no soils with 
those descriptions that also had PI measurements. The SMT assumed that the representative 
PI values for “gravel” and “organic” were 0 and 50, respectively. Also, for the “sand” group, all of 
the PI measurements were 0 (i.e., non-plastic). In this case, the SMT assumed that the 
representative PI value for “sand” was 0.  

We repeated the Box-Cox transformation process using FC data to obtain estimates of λFC, 
mean 𝐹𝐶෢ , and standard deviation of 𝐹𝐶෢ , where 𝐹𝐶෢  is defined as 

𝐹𝐶෢ ൌ
𝐹𝐶ఒಷ಴ െ 1

𝜆ி஼
 (10-4) 

Figure 10-8 shows the Box-Cox transformed distributions for 𝐹𝐶෢  and Table 10-3 summarizes 
the resulting parameters λFC, mean 𝐹𝐶෢ , and standard deviation of 𝐹𝐶෢ . There were no measured 
FC values in layers labeled “organic”, and thus the SMT assumed that the representative FC 
value was 80.  

There is some inherent uncertainty in the assignment of basic soil type labels for each STRA 
layer. In some cases, STRA text fields do not have sufficient detail. For example, a layer may be 
described as “sand with fines,” which does not have the required level of detail to distinguish 
“clayey sand,” “silty sand,” and “sand.” In these cases, we check first for a measured FC value 
to establish whether the soil should be called “sand” (i.e., FC less than 50%). If there is no 
measured FC value within the layer to help guide the assignment of the soil type label, then 
“silty sand” is assigned. In other cases, there may be multiple SAMP within a STRA  
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Figure 10-7 Box-Cox transformations for PI in each soil type group. 
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Table 10-2 λPI, mean 𝑷𝑰෢ , standard deviation of 𝑷𝑰෢  , and mean PI from Box-Cox 
transformation for each soil type group  

Soil Type Group λPI 𝑷𝑰෢  𝝈𝑷𝑰෢  PI 
Gravel or Sand 1 -1 1 0 

Silty sand or Clayey sand or Sandy silt 0.3980 2.43 2.591 5.5 

Silt or Clayey silt 0.3682 2.98 3.105 7.5 

Sandy clay 0.4102 4.39 1.237 12.3 

Silty clay 0.4935 5.29 2.233 13.5 

Clay 0.4438 5.90 2.222 18.2 

Organic 1 49 1 50 

Fill 1 3 6 4 

 

layer that have conflicting descriptions. For example, a layer may have three samples with soil 
type descriptions (SAMP_DESC) of “silty sand”, “silty sand”, and “sand”. In these cases, the 
representative soil type label for the STRA layer is assigned as the mode of the individual 
SAMP soil types, which in this example would be “silty sand.”  Results are summarized in a 
pickle file format (with a .pkl file extension) containing the SMT’s processed case history data 
(Appendix A). The individual soil types of the SAMPs within a layer are listed in the column 
called “soil_type_all”, whereas the representative soil type of the STRA layer is in the column 
called “soil_type.” This allows the SMT to track these details when reviewing layer boundaries 
and representative soil characteristics. 
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Figure 10-8 Box-Cox transformations for FC in each soil type group. 
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Table 10-3 λFC, Mean 𝑭𝑪෢ , and standard deviation of 𝑭𝑪෢  from Box-Cox transformation 
and mean FC for each soil type group  

Soil Type Group λFC 𝑭𝑪෢  𝝈𝑭𝑪෢  FC (%) 

Gravel or Sand 0.5243 2.32 2.342 4.6 

Silty sand 0.5012 8.06 2.646 25.2 

Clayey sand 1.4222 109.5 50.063 34.9 

Sandy silt -0.1893 2.9 0.084 67.7 

Silt 6.3291 4.18E11 2.04E11 91.8 

Clayey silt 4.9537 9.74E8 5.09E8 90.1 

Sandy clay 0.2052 6.65 0.377 66.3 

Silty clay 4.9972 1.2E9 6.24E8 90.5 

Clay 2.4247 1.9E4 6.5E3 85.0 

Organic 1 79 30 80 

Fill 1 19 30 20 

 

10.3.2 Penetration Resistance and Stress Normalization 

The decision to use STRA defined layer boundaries for SPT-based site characterization data 
means that there are many layers with more than one measured blow count (N) and some 
layers without any N values. For use in the profile-based model development, each layer needs 
to have an N value for calculation of the cyclic resistance of the soil, therefore an automatic 
workflow is established to make assignments of the representative N value within each layer. 

If a layer has one measured N value between the top and bottom of the layer, then that value is 
used as the representative value. If a layer has multiple N values, the median of the measured 
N values within the layer is taken as the representative value. If a layer does not have any N 
values, then the closest N value in the boring is assigned as representative of that layer. 
This can be problematic and every instance where this occurs will be carefully reviewed 
(Section 10.2). For instances where a layer without an N value is deemed inconsequential from 
the perspective of profile manifestation (e.g., a thin clay layer), then the layer is excluded by 
setting all of the probabilities (defined in Chapter 11) to zero so that it does not influence the 
profile-based calculations. 

For reasons discussed in Section 12.1, SPT blow counts carry significant measurement error 
compared with CPT tip resistance. To account for this error, the measurement uncertainty for N 
is approximated using a COV of 50%, which is between the recommended 54% for sand and 
44% for clay from Phoon and Kulhawy (1999). Spatial uncertainties are considered in the same 
manner as described in Section 10.3.1 for PI and FC. The spatial variance for N, 𝜎ே,௦௣௔௧௜௔௟

ଶ , for 
every layer with more than one N measurement is shown in Figure 10-9. The mean value of that 
distribution (𝜎ே,௦௣௔௧௜௔௟

ଶ =71.2) is used as the spatial variance where there is only one N value 
within a layer. For layers with more than one, the variance is computed using the ranged-based 
method of Burrington and May (1970). For layers with no measured N values, the 𝜎ே,௦௣௔௧௜௔௟

ଶ  
value is multiplied by 1.5 to account for increased uncertainty in the true N value. 
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Figure 10-9 Histogram of the variance of N within layers. The mean is represented by 
the dashed vertical black line. The dataset used to compute these 
variances includes N from 227 layers that have more than one SPT 
performed within a single STRA defined layer. 

SPT N values are corrected for energy and stress. First, N is converted to a normalized blow 
count associated with 60% energy (N60) using the hammer energy (ERm) and the relationship 
shown in Eq. (10-5) (Seed et al., 1985), where CE is the ratio of ERm over 60%. Where possible, 
CE was computed using ERm reported by the original author of the study as documented in the 
NGL database. If ERm was not reported by the author, then CE was assigned based on the 
hammer type if sufficient information was given. For example, if the hammer type is "safety", 
“automatic trip”, or “donut” type, it is given CE = 0.95, 1.0, and 0.7, respectively. These are 
approximately mean CE values for these hammer types as reported by Youd et al. (2001). If the 
hammer type is not reported, then the date of the exploration is used to estimate CE: if the 
exploration occurred before the year 2000, it is assigned CE = 1.0 (i.e., ERm = 60%), whereas if 
it was 2000 or later, CE = 1.33. If the date is unknown, CE = 1.17. 

𝑁଺଴ ൌ 𝑁
𝐸𝑅௠
60%

ൌ 𝑁𝐶ா  (10-5) 

For stress normalization, an estimate of the unit weight profile is created using the specific 
gravity (Gs) and water content (wc) measurements in the boring. If one or neither of these values 
are present at a particular depth range or in nearby borings, then the Gs and wc are assumed to 
be 2.7 and 35%, respectively. Assuming saturation (S=1) beneath the ground water table, the 
unit weight is computed as  
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𝛾 ൌ
𝛾௪ሺ𝑒 ൅ 𝐺௦ሻ

1 ൅ 𝑒
 (10-6) 

where e is the void ratio equal to Gs(wc/100%) and γw = 9.81kN/m3. Assuming S=0 above the 
groundwater table, the unit weight is computed as  

𝛾 ൌ
𝛾௪ሺ𝐺௦ሻ

1 ൅ 𝑒
 (10-7) 

If there is an associated groundwater table depth in the WATR table assigned to the boring, we 
select that value for case history processing. If there is no associated entry in the WATR table 
assigned to the boring, we assign the closest groundwater table depth at any in situ test at the 
site (e.g., another borehole or a nearby CPT). These quantities are all used to compute the total 
and effective stress profile for the boring. The stresses are used to normalize N using the 
equations recommended in Idriss and Boulanger (2008):  

ሺ𝑁ଵሻ଺଴ ൌ 𝐶ே ⋅ 𝑁଺଴ (10-8) 

𝐶ே ൌ ൬
𝑃௔
𝜎௩ᇱ
൰
௠

൑ 1.7 (10-9) 

𝑚 ൌ 0.784 െ 0.0768ඥሺ𝑁ଵሻ଺଴௖௦ (10-10) 

where pa is atmospheric pressure (i.e., 1 atm = 101.325 kPa). Normalized, clean sand 
equivalent values (N1,60cs) are computed as 

ሺ𝑁ଵሻ଺଴௖௦ ൌ ሺ𝑁ଵሻ଺଴ ൅ Δሺ𝑁ଵሻ଺଴௖௦ (10-11) 

Δሺ𝑁ଵሻ଺଴௖௦ ൌ exp ቆ1.63 ൅
9.7

𝐹𝐶 ൅ 0.01
െ ൬

15.7
𝐹𝐶 ൅ 0.01

൰
ଶ

ቇ (10-12) 

where FC is fines content in percent (Boulanger and Idriss, 2014). 

A list of attributes computed for the SPT-based site characterization data is provided in 
Appendix A, including layer depth, layer thickness, representative SPT N value, N variance, 
representative overburden- and fines-corrected N value (N1,60cs), soil type, PI, PI variance, FC, 
FC variance, vertical effective and total stress, groundwater table depth, CSR, MSF, and Kσ. 
These attributes are computed in Python and stored in a pickle file format (with a .pkl file 
extension) that is well suited to being read into a Pandas dataframe. We will publish these data 
as part of this project to facilitate use by other model development teams. 
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10.3.3 Cyclic Stress Ratio  

We compute seismic demands on soil layers in the form of a cyclic stress ratio, CSRM7.5,1atm 
in the same manner as for the CPT-based models in the Task 7 report [Eq. (5-27) through 
Eq. (5-35) in Section 5.4.3]. CSRM7.5,1atm is computed for a given earthquake event and ground 
motion that has been associated with an observation of surface manifestation (or lack thereof) 
at or near the location of the borehole. Some locations have been shaken by multiple 
earthquakes; in which case the borehole data is repeated in the summary pkl file  
(see Appendix A for full list of quantities in the pkl file).  

As was the case for the CPT-based models, CSRM7.5,1atm values computed at the center of each 
layer are taken to be representative of the layer, and CSRM7.5,1atm is computed using the PGA 
estimates from the Kriging approach outlined in Section 5.2 of the Task 7 report, 
where possible. For our fully reviewed dataset, 117 of the PGA values were obtained from 
Kriging and 2 were not obtained from Kriging. In the latter case, we relied on legacy estimates of 
PGA, which typically used best estimates from available ground motion models. 
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11 SPT-BASED MODELS 

As described in Chapter 4 of the Task 7 report, the necessary components of the SMT’s 
conditional probabilistic approach include estimates of P[S], P[T] = P[T|S]*P[S], P[M|T], and 
P[M|NT]. The following sections outline the preliminary approaches adopted by the SMT to 
estimate these probabilities using SPT-based site characterization data.  

Section 11.1 presents the SMT’s selected model to estimate the probability of susceptibility P[S] 
based on existing models from literature. Section 11.2 describes a model for triggering that is 
derived from laboratory cyclic test results as given in Section 6.2 of the Task 7 report. 
Section 11.3 provides some comparisons to show compatibility with existing legacy models and 
the SMT’s CPT-based models (Task 7 report). Finally, Section 11.4 presents a framework to 
obtain a model for manifestation based on SPT-based site characterization data using a similar 
profile-based regression framework described in Section 4.4.3 of the Task 7 report. 

11.1 Probability of Susceptibility, P[S] 

Based on the definition of susceptibility in Section 2.1.1 of the Task 7 report, our susceptibility 
model considers a soil’s mineral composition as inferred from PI (or Ic for CPT-based models), 
and excludes non-compositional factors such as state, saturation, and manifestation potential. 
Note that in our approach, saturation is considered as part of the P[T] relationship, as discussed 
in Section 4.4.1 of the Task 7 report. The following section outlines a set of P[S] models we 
developed based on PI. 

11.1.1 P[S] as a Function of PI 

Our susceptibility model is probabilistic to reflect natural variability of soil behavior and to 
quantify epistemic uncertainty. Following a public workshop on the topic (Stuedlein et al., 2023), 
a framework for creating new susceptibility models using the laboratory component of the NGL 
database was formulated. However, the implementation of this framework is in its beginning 
stages and has not yet been adopted by the broader liquefaction research community. 
Therefore, we developed preliminary P[S] models based on legacy deterministic susceptibility 
models, namely Bray and Sancio (2006) and Boulanger and Idriss (2006). We use the following 
equation, which is a logistic function approximation of a cumulative normal distribution function: 

𝑃ሾ𝑆ሿ ൌ 1 െ
1

1 ൅ 𝑒𝑥𝑝 ቆെ 1.702
𝜎௠

∗ ሺ𝑃𝐼 െ 𝑥௠ሻቇ
 

(11-1) 

 
where xm and σm are moments of a normal distribution. We digitized data from plots given by 
Bray and Sancio (2006) and Boulanger and Idriss (2006) containing pairs of PI and 
susceptibility labels [i.e., “susceptible”, “marginally susceptible”, and “not susceptible” for 
Bray and Sancio (2006), “sand-like”, “intermediate”, and “clay-like” for Boulanger and Idriss 
(2006)]. We then assigned P[S] values of 1.0, 0.5, and 0.0 for data points with “susceptible”, 
“marginally susceptible”, and “not susceptible” labels, respectively, assuming “sand-like” = 
“susceptible”, “intermediate” = “marginally susceptible”, and “clay-like” = “not susceptible”. 
Figure 11-1 shows those data points and probability density functions for each susceptibility 
label. We then fit Eq. (11-1) to the data (“data fit” in the figure). Huang (2008) previously 
developed P[S] relationships for the Bray and Sancio (2006) and Boulanger and Idriss (2006)  
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Figure 11-1 Digitized datapoints from (a) Bray and Sancio (2006) and (b) Boulanger and 
Idriss (2006) with susceptibility labels S = susceptible, MS = marginally 
susceptible, and NS = not susceptible. Thin lines represent probability 
density functions for each susceptibility label and the thick black lines 
represent the SMT’s P[S] models as a function of PI using Eq. (11-1). 

datasets that also incorporate some of the original authors’ judgment and uncertainty in the 
measurement of PI. These P[S] relationships from Huang (2008) are also shown in Figure 11-1 
for comparison. The SMT decided to use Huang’s P[S] models, but to rewrite them in our 
preferred functional form (Eq. 11-1). The Huang (2008) models rewritten in our functional form 
are also shown in Figure 11-1 for comparison (labeled “Huang fit”). The coefficients xm and σm 

for both models are summarized in Table 11-1. 

The range of results in Figure 11-1 constitute a partial representation of epistemic uncertainty. 
We decided to treat this uncertainty using a logic tree approach to obtain PI-conditioned 
probabilities of susceptibility. We used equal weighting between the models because both 
models represent equally reasonable interpretations of available data. The dashed line in 
Figure 11-2 represents the average P[S] for each PI. This line was not considered to be suitable 
for application due to its irregular shape, so a fit using Eq. (11-1) was developed that produced 
the combined model shown in Figure 11-2, which has xm = 10.34 and σm = 4.651.  

To incorporate the susceptibility model into the Bayesian inference framework utilized to obtain 
the manifestation model coefficients, a distribution function with a mean and standard deviation 
must be assigned to each model parameter (i.e., xm and σm for P[S]). The Bayesian prior 
distributions were assumed to be normal with the mean xm and σm values defined by the 
combined SMT model values (Table 11-1). The uncertainty in xm and σm was quantified by 
approximating the standard deviation of the xm and σm values from the Bray and Sancio (2006) 
and Boulanger and Idriss (2006) models using the method by Burrington and May (1970), 
yielding 8.34 and 1.85, respectively. 
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Table 11-1 Coefficients in Eq. (11-1) for three P[S] models  

Model xm σm 

Bray and Sancio (2006), modified from Huang (2008) interpretation 15.04 4.164 

Boulanger and Idriss (2006), modified from Huang (2008) 
interpretation 

5.63 2.071 

Combined SMT model (this study) 10.34 4.651 

 

 

 

Figure 11-2 P[S] models based on Bray and Sancio (2006), Boulanger and Idriss (2006), 
and the SMT’s combined model. The dashed line represents an average 
between the BS06 and BI06 models. 

11.1.2 P[S] as a Function of Soil Description Alone 

In the CPT-based model, CPT data was continuous throughout the soil profile and thus the Ic-
based P[S] model (Section 6.1 of the Task 7 report) was applicable for all CPT soundings at all 
depths where data was available. However, in the case of boreholes, samples are taken at 
much more widely-spaced and discrete intervals, with the potential for some soil layers to lack 
samples. Therefore, some soil layers could be missing an estimate of PI due to (i) no samples 
taken within that layer, or (ii) soil specimens from available samples were not tested in the 
laboratory to measure PI. As a result, the SMT developed an alternative approach to assign 
reasonable values of P[S] to soil layers without measured PI values. 

To assign P[S] for layers without PI measurements, we adopt the distribution of 𝑃𝐼෢ for each soil 
type using parameters defined in Table 10-2 and then compute P[S] as a function of 𝑃𝐼෢ using 
the combined model shown in Section 11.1.1. Table 11-2 summarizes the mean PI, standard 
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deviation of PI, and representative P[S] for a given soil type. The values of P[S] in this 
table were obtained by integrating the product of the PDF of the PI values in each bin 
(e.g., Figure 10-5 in Section 10.3.1.2) with the CDF of the SMT’s combined P[S] model 
introduced in Section 11.1.1. 

𝑃ሾ𝑆ሿ ൌ න 𝑓௉ூ ∙ 𝐹௦௨௦𝑑𝑃𝐼
ஶ

଴
 (11-2) 

where Fsus is the cumulative distribution function defined in Eq. (11-1) and fPI is the probability 
density function of PI for each soil type defined by the normal distribution: 

𝑓௉ூ ൌ
1

𝜎௉ூ√2𝜋
𝑒
ି
ሺ௉ூିఓು಺ሻమ

ଶఙು಺మ  (11-3) 

where µPI and σPI are the mean and standard deviation of PI for each soil type, respectively. The 
integration was approximated as the following summation to solve numerically because there is 
no analytical solution to this convolution: 

𝑃ሾ𝑆ሿ ൌ෍𝑓௉ூሺ𝑃𝐼ሻ ∙ 𝐹௦௨௦ሺ𝑃𝐼ሻ

ସ଴

଴

 (11-4) 

Table 11-2 Mean PI, standard deviation of PI, and associated P[S] from the combined 
SMT model for each soil type group  

Soil Type Group μPI σPI P[S] 

Gravel or Sand 0 0 0.985 

Silty sand or Clayey sand or Sandy silt 5.5 5.933 0.563 

Silt or Clayey silt 7.5 7.926 0.450 

Sandy clay 12.3 2.719 0.358 

Silty clay 13.5 4.505 0.311 

Clay 18.2 4.694 0.117 

 

Figure 11-3 compares the SMT’s PI-based P[S] model with the P[S] estimates based on text 
descriptions assigned as described in Section 10.3.1.2. The data represented in this figure have 
measured PI values and soil type labels based on text descriptions as discussed in this section. 
The shaded areas show the relative distribution of PI values, centered vertically on the assigned 
value of P[S] based on the soil type group. The small vertical lines represent the median PI for 
that group. In general, the SMT’s estimates of P[S] based on text descriptions are in good 
agreement with the PI-based P[S] values, with some uncertainty. This is expected, as the text 
descriptions are not perfectly mapped to values of PI and have some dispersion (as shown 
previously in Section 10.3.1.2) 
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Figure 11-3 Comparison of the SMT’s PI-based P[S] model with the SMT’s P[S] 
estimates based on text descriptions. Shaded areas represent relative 
distributions of PI in each soil type group, centered vertically on the 
assigned P[S] for that soil type group. 

Figure 11-4 compares the SMT’s P[S] assignments based on soil description with the Ic-based 
P[S] relationship from the CPT-based models in the Task 7 report (Section 6.1). The Ic 
associated with each soil type group was selected using judgment based on soil descriptions for 
Ic ranges by Robertson and Cabal (2015), shown in the figure with shaded vertical bands. 
The width of these bands reflects the relatively modest correlation between PI and Ic 
(e.g., Section 5.4.2.3 of the Task 7 report; Hudson et al., 2023b). The SMT’s combined 
PI-based P[S] assignments for each soil type group (red symbols) are reasonably close to the 
SMT’s Ic-based P[S] relationship, which gives confidence that estimates of P[S] from the SMT’s 
CPT- or SPT-based relationships are similar. One exception is the P[S] for soils described as 
“silty sand”, which has a significantly lower P[S] compared to the CPT-based estimate of P[S] 
for a soil with Ic = 2.0. This is likely due to the large standard deviation of PI for this soil type 
(Figure 10-5 in Section 10.3.1.2). 
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Figure 11-4 Comparison of the SMT’s Ic-based P[S] model (blue line and circles) with 
the P[S] models based on Bray and Sancio (2006), Boulanger and Idriss 
(2006), and the SMT’s combined model. Estimates of Ic for each soil type 
group are approximated based on descriptions from Robertson and Cabal 
(2015). 

11.2 Probability of Triggering, P[T|S] 

As described in Chapter 4 of the Task 7 report, the SMT’s approach for developing coupled 
probabilistic models for triggering and manifestation requires a “prior” model for the probability 
of triggering, which would then be potentially modified from interpretation of case history data. In 
Section 6.2 of the Task 7 report, we developed a prior model for P[T|S] using CRR from cyclic 
tests performed on soil specimens in the laboratory. This model was developed based on 
Box-Cox transformed Dr and then adjusted to allow computation of P[T|S] as a function of 
CPT data. For the SPT-based models, we adopt the same prior Dr-based P[T|S] model and 
adjust it to allow computation of P[T|S] as a function of SPT data (i.e., N1,60cs), as described 
in this section. 

The Dr-based linear model as documented in Section 6.2.6 of the Task 7 report is: 

𝐶𝑅𝑅෣ ൌ 𝜁଴ ൅ 𝜁ଵ ∗ 𝐷ோ෢ ൅ 𝜀 ∗ 𝜎఍ (11-5) 

where 𝜁଴, 𝜁ଵ, and 𝜎఍ are model coefficients defined in Table 6-2 of the Task 7 report and 𝜀 is the 
standard normal variate (zero mean and unit standard deviation). Alternatively, the equation can 
be rewritten in the untransformed space as: 
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Typically, liquefaction evaluations are performed based on in situ test measurements (e.g., SPT 
or CPT), and Dr is not known. However, Dr can be approximated from SPT or CPT data using 
published correlations. In the Task 7 report, the SMT adopted a correlation recommended by 
Idriss and Boulanger (2008) to convert Dr to qc1Ncs (Eq. 6-26). Idriss and Boulanger (2008) also 
recommended a correlation to convert Dr to N1,60cs, which the SMT chose to adopt for our 
SPT-based triggering model: 

𝐷௥ሺ%ሻ ൌ 100ඨ
𝑁ଵ,଺଴௖௦

𝐶ௗ
  (11-7) 

where Idriss and Boulanger (2008) recommended Cd =46 for clean sands. Using a subset of our 
“intact” specimen dataset of laboratory tests (see Section 6.2.1 of the Task 7 report) where both 
Dr and N1 or N1,60 are known and chamber test data obtained from Marcuson and Bieganousky 
(1977), we compared the correlation between Dr and N1,60cs with measured values of Dr and 
N1,60 (Figure 11-5). In cases where only N1 was known, the energy was assumed to be 80% for 
intact specimens and 60% for chamber tests to normalize N1 to N1,60. Using Cd = 46 (solid black 
line) reasonably represents our data, while other recommended Cd values [e.g., 35 for 
depositionally “new” soils and 60 for natural soils with depositional age older than 100 years per 
Skempton (1986); 26 for silty sands and 51 for clean sands per Cubrinovski and Ishihara 1999] 
also fit within the range of the measured data. The SMT decided to adopt Cd =46.  
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Figure 11-5 Comparison of the Idriss and Boulanger (2008) correlation between Dr and 
a) N1,60 and b) N1,60cs for three fitting coefficients: Cd = 35, 46, and 60. The 
SMT adopted the relationship with Cd = 46. 

As discussed in Section 6.2, we acknowledge that there are effects due to sample disturbance 
and soil fabric that cause CRR to be different in the laboratory compared to what is expected in 
the field (e.g., Seed, 1979). Our philosophy is to use results from laboratory testing to reflect the 
effect of state in this CRR relationship. This prior relationship (Eq. 11-6) is then tested against 
case histories through the Bayesian updating process as we develop a manifestation model 
(e.g., as was done for CPT-based models in Sections 6.3.2, 6.3.3, and 6.3.4). In this section, we 
develop the prior to be used in the Bayesian updating framework using SPT data described in 
Section 11.4 (and aligned with the CPT-based framework in Sections 4.4.2 and 4.4.3).  

As discussed in Section 6.3.7 of the Task 7 report, we anticipate that applications of the P[T|S] 
models developed in this report will be of two types: (1) applications for which the desired end 
product is a prediction of manifestation and (2) applications for which only P[T] is of interest (i.e., 
the manifestation components of the model will not be used). For the first application type, the 
goal is to test the laboratory-based prior triggering relationship against case histories through 
the Bayesian updating process as we develop a manifestation model, as was done for CPT data 
in Section 6.3.5 and for SPT data in Section 11.5. For the second application type, following the 
logic developed in Section 6.3.7, the recommended central branch P[T|S] model when P[T] of a 
single layer is desired (i.e., triggering analysis only) using SPT data is the same as the 
CPT-based models: compute P[T] as the product of PFT|S and PFS, where PFT|S is defined in 
Eq. (11-5) and uses the laboratory-based coefficients in Table 6-2. The equations to compute 
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P[T] using SPT data are summarized below, with equation numbers from the Task 7 report 
included in parentheses when the same equation is used in both the CPT- and SPT-based 
model.  

𝑃ሾ𝑇ሿ ൌ 𝑃𝐹்|ௌ𝑃𝐹ௌ (11-8) 
(6-21)  
 

where  

𝑃𝐹்|ௌ ൌ
1

1 ൅ exp ቆ
െ1.702 ∙ ൫𝐶𝑆𝑅෢ െ 𝐶𝑅𝑅෣൯

0.994 ቇ
 

(11-9) 
(6-22)  

 

𝐶𝑆𝑅෢ ൌ
൫𝐶𝑆𝑅ெ଻.ହ,ଵ௔௧௠

ି଴.଺ହ଺଺ െ 1൯
െ0.6566

 
(11-10) 
(6-23) 

 

𝐶𝑅𝑅෣ ൌ െ7.43 ൅ 0.0325 ∙ 𝐷௥෢ (11-11) 
(6-24) 

 

 𝐷௥෢ ൌ
൫஽ೝ

భ.మబమమିଵ൯

ଵ.ଶ଴ଶଶ
   (Dr in %) (11-12) 

(6-25) 

 

𝑃𝐹ௌ ൌ 1 െ
1

1 ൅ exp ൬
െ1.702 ∙ ሺ𝑃𝐼 െ 10.34ሻ

4.651 ൰
 

(11-13) 

Using these recommended equations yields CRR and 𝑃𝐹்|ௌ values as shown in Figure 11-6 as 
functions of Dr, and Figure 11-7 as functions of N1,60cs. Note that for N1,60cs values greater than 
about 46, the associated Dr  using the correlation in Eq. (11-7) is greater than 100%. Although a 
Dr greater than 100% is not theoretically correct, we acknowledge that there is inherent 
uncertainty in the Dr-N1,60cs correlation that prevents a perfect mapping between all possible 
values of N1,60cs and corresponding values of Dr. In fact, it is common to reach blow counts 
equal to or greater than 50 in very dense or gravelly soils. Thus, to allow estimates of P[T|S] for 
soils with N1,60cs greater than 46, we extend these relationships beyond the limits of the Dr to 
N1,60cs correlation. This is depicted in Figure 11-7 as dotted lines.  

Those who apply the recommended P[T|S] Eqs. (11-8) through (11-13) above for soils with 
N1,60cs greater than 46 should carefully consider the potential causes of these high blow counts 
and the resulting P[T|S]. For example, it is common practice to continue an SPT until achieving 
“refusal”, which is often considered to be 50 blows in less than the standard 0.30m penetration 
distance of the test. If refusal in one soil layer is achieved in 0.10m whereas refusal in another 
soil layer is achieved in 0.30m, both soils would be assigned the same CRR and P[T|S] if N1,60cs 
is recorded as 50 in both cases. This is problematic because the soil that reached refusal in 
0.1m could be significantly denser, older, and/or more cemented than the soil that reached 
refusal in 0.3m, and therefore would be expected to have a higher CRR and a lower P[T|S]. This 
nuance is discussed in more detail in Section 12.1.  
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a) 

 
b) 

 
 

Figure 11-6 Plots of Dr-dependence of (a) CRR and (b) PFT|S. 
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a) 

 
b)  

 
 

Figure 11-7 Plots of N1,60cs-dependence of (a) CRR and (b) PFT|S. Dotted lines indicate 
where N1,60cs would yield a Dr > 100% using the adopted correlation. 

11.3 Example Comparisons of SPT and CPT Triggering Models 

To illustrate the consistency of the SMT’s CPT- and SPT-based triggering models, we 
compared results for a case history site with a CPT sounding and a boring performed in the 
same location. We chose a well-documented case history located in Moss Landing where 
liquefaction was observed after the 1989 Loma Prieta earthquake (Boulanger et al., 1995, 
1997). According to Boulanger et al. (1995), considerable damage, including sand boils and 
severe cracking, was observed in the parking lot surrounding the Harbor Master’s Office. 
Figure 11-8 provides a map of the area, including the locations of the CPT (UC-21) and the 
boring (UC-B3) selected for our example. This particular pair of geotechnical tests was selected 
because the soil profile was relatively well characterized with SPT measurements with few data 
gaps (e.g., there was at least one blow count in every STRA soil layer, and there were several 
FC and PI measurements in layers where fines were noted in the STRA descriptions), as shown 
in Figure 11-9. 
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Figure 11-8 Map of Moss Landing Harbor Office area (Boulanger et al., 1995, 1997). 
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Figure 11-9 A screenshot of the SMT’s Jupyter tool showing layer boundaries and 
representative layer characteristics for UC-B3 at Moss Landing Harbor 
Office. 

Figure 11-10a-d shows a side-by-side comparison of the CPT data (qc1Ncs and Ic) and 
borehole/SPT data (N1,60cs and PI) with depth, including the assigned layering based on the 
SMT’s approaches (red lines). The figure also shows comparisons of CSRM7.5,1atm, CRR, P[T|S], 
and P[S] for both the CPT-based models (Task 7 report) and SPT-based models (this 
addendum). Note that the Ksat parameter is not shown here but would be 0 above the 
groundwater table and 1 below and would be multiplied by P[T|S] and P[S] to obtain P[T]. 

The values of CSRM7.5,1atm are essentially identical between the SMT’s CPT- and SPT-based 
models, since the equations used to compute this parameter are the same. Minor differences 
are due to differences in FC (which affects the Kσ calculation) and slight differences in 
overburden stresses due to alternative layer boundaries. The same depth to groundwater was 
used in both CPT and SPT profiles. 

Estimates of CRR are generally consistent between the SMT’s SPT- and CPT-models, although 
significant differences occur at several depth intervals:  

 3.5-4.5 m: The SPT value correlates to a higher relative density than the CPT, despite 
both being sand layers; this difference increases CRR for the SPT relative to that 
obtained for the CPT.  

 6.5-11 m: Due to more continuous data sampling enabled by using the CPT sounding, 
the CPT layering is more finely discretized between 6.5m and 8.3m depth where the 
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boring log indicates there are interbedded layers of clay, silty sand, and sand with silt. If 
the STRA boundaries are used, these interbedded layers are treated as one layer with a 
single set of representative FC, PI, and N1,60cs values, which does not capture the same 
level of variability that the CPT layering indicates. For example, the CPT data indicates 
that a clay layer is present between 7.5 and 8m that is missed by the STRA layer. In 
addition, between 8.3 and 11m, the STRA description indicates the presence of gravels 
within the sand layer but does not specify the depths. More refined layer boundaries for 
the SPT data could address some of these discrepancies. 

 > 11 m: Higher CRR values are obtained for the SPT method, but this has no practical 
significance because this interval is clayey and has very low P[S] from both models.  

 

Figure 11-10 Comparison of the SMT’s SPT- and CPT-based models using CPT data (UC-
21) and SPT data (UC-B3) at Moss Landing Harbor Office. (a) qc1Ncs, (b) Ic, (c) 
N160cs, (d) CSRM7.5,1atm, I CRR, (f) P[T|S], and (g) P[S]. 

Moreover, although the CPT sounding and SPT boring are marked as being in the same 
location in Figure 11-8, practically speaking, there was at least some separation distance 
between the two geotechnical explorations. This introduces some spatial variability with the 
potential for (i) layer boundaries of a soil layer that is present in both explorations to be offset 
and/or (ii) natural variability in penetration resistance, e.g., qc1Ncs or N1,60cs.  

The general trends in P[S] are similar for the SMT’s CPT- and SPT-based models (e.g., layers 
that have P[S] above 0.5 using one method also tend to have P[S] above 0.5 using the other 
method, except for some of the interbedded layers, as discussed previously). The same can be 
said for P[T|S] values between the two methods. 
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These inherent differences between the SPT- and CPT-methods using two co-located 
geotechnical explorations is not unique to the SMT’s triggering models. These differences are 
also apparent when using legacy models, such as the Boulanger and Idriss (2016) CPT-based 
model and the Boulanger and Idriss (2012) SPT-based model, abbreviated as BI16 and BI12, 
respectively. This is illustrated in Figure 11-11 using the same pair of co-located explorations. 
The layer boundaries and representative layer characteristics (e.g., N1,60cs, qc1Ncs, FC, and PI) 
are sensitivee to natural variations in penetration resistance, spatial variability between two 
“co-located” explorations, and differences in data sampling rate. This in turn affects P[T|S] 
and P[S].  

 

Figure 11-11 Comparison of the BI12 SPT-based models and the BI16 CPT-based models 
using CPT data (UC-21) and SPT data (UC-B3) at Moss Landing Harbor 
Office. (a) qc1Ncs, (b) Ic, (c) N160cs, (d) CSRM7.5,1atm, I CRR, (f) P[T|S], and 
(g) P[S]. 

Finally, Figure 11-12 compares the SMT’s SPT-based models with the Boulanger and Idriss 
(2012) SPT-based triggering model and the Boulanger and Idriss (2006) susceptibility model 
(as characterized by the SMT’s logistic function described in Section 11.1.1). For the application 
of the legacy models, we interpret the layer boundaries and representative properties in the 
same way, so that the only differences in model outputs are from the models themselves. The 
SMT’s CSRM7.5,1atm are relatively similar to the BI12 values in this particular case, and the 
differences are explained by differences in the rd, Kσ, and MSF correction factors applied in each 
method. Note, the same PGA from the NGL database was used in both cases to compute 
CSRM7.5,1atm, despite Boulanger et. al (1997) citing a different PGA in their original interpretation 
of this case history. The CRR, P[T|S] and P[S] values are functionally similar, i.e., both SMT 
and BI12  
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Figure 11-12 Comparison of the BI12 SPT-based models and the SMT’s SPT-based 
models using SPT data (UC-B3) at Moss Landing Harbor Office. (a) qc1Ncs, 
(b) Ic, (c) N160cs, (d) CSRM7.5,1atm, (e) CRR, (f) P[T|S], and (g) P[S]. 

methods predict high CRR and P[T|S] above 0.5 or low CRR and P[T|S] below 0.5 in the same 
layers, and both methods predict P[S] above 0.5 or below 0.5 in the same layers. However, one 
notable difference is that the BI12 models tend to predict P[T|S] and P[S] approximately equal to 
either 1.0 or 0.0 without predicting intermediate values, whereas the SMT models predict P[T|S] 
and P[S] values that are 0.0, 1.0, and other intermediate values in between.  

Additionally, it may at first appear that the SMT’s lower values of P[T|S] in the shallow layers 
indicate that it is less conservative than BI12. However, that interpretation ignores the distinction 
between triggering and manifestation that is made by the SMT model. The SMT hypothesizes 
that the BI12 P[T|S] model depends on manifestation of some kind (e.g., sand boils or ground 
cracks at the surface), whereas the SMT’s P[T|S] model is based on laboratory data updated by 
field observations and is independent of manifestation considerations. This nuance is discussed 
in greater detail in Section 12.2. 

11.4 Probability of Manifestation P[M] Model Framework 

As discussed in the Task 7 report (Section 4.4.3), computing P[MP] requires specification of the 
prior distributions for the coefficients in the PFS, PFT|S, and PFM|T functions, and the 
characteristic thickness, tc. Our approach is to develop model priors for PFS and PFT|S from 
laboratory data as described above, to use uninformed PFM|T coefficients, and then to apply 
Bayesian regression to estimate posterior distributions of all coefficients. In essence, the 
purpose of developing a P[M] model is twofold: 
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1) To provide a model to predict manifestation of liquefaction, and 

2) To update the coefficients assumed in the prior distributions of PFS and PFT|S based on 
laboratory data. 

The framework to infer the coefficients for the SPT-based manifestation model using 
observations of manifestations at NGL sites is similar to what was presented for CPT-based 
models in the Task 7 report, with some modifications. This section identifies those differences. 

11.4.1 Manifestation Probability for a Profile 

As discussed in Section 4.4.2 of the Task 7 report, the probability of manifestation of a profile 
P[MP] is computed as:  

𝑃ሾ𝑀௉ሿ ൌ 1 െෑ൫1 െ 𝑃𝐹ெಽ|்ಽ𝑃𝐹்ಽ𝐾ௌ௔௧൯
௧೔/௧೎

ேಽ

௜ୀଵ

 
(11-14) 

(4-10) 

where NL is the number of layers in the profile, ti is the thickness of the ith layer, and tc is a 
constant characteristic thickness. Eq. (11-14) is a simplified case that only considers 
contributions to manifestation from liquefaction triggering and ignores cyclic softening and non-
triggering manifestations. Recall, 𝑃𝐹ெಽ|்ಽ is the probability factor of manifestation of a layer 
given triggering of the layer, defined exactly as P[ML|TL] in Eq. (4-8) when the thickness of the 
layer is equal to tc. 𝑃𝐹்ಽ is the probability factor of layer triggering which is the product of the 
probabilistic triggering and susceptibility prior models (P[T|S]*P[S]).  

Also recall, the expression P[NML] is equal to the probability that the layer will not manifest 
liquefaction and that P[NML] = 1 – P[ML]. If none of the layer’s manifest liquefaction, then the 
profile cannot manifest liquefaction. Therefore, P[NMP] is computed as a product sum of P[NML]. 
However, a direct product sum (i.e., without the t/tc term in the exponent) inherently assumes 
that P[NML] for each layer is statistically independent from all other layers. This is generally not 
true. The t/tc exponent was applied to greatly reduce the influence of discretization by tying layer 
thickness to the characteristic length. The characteristic thickness is the layer thickness for 
which 𝑃𝐹ெಽ|்ಽ is statistically independent of the other layers. If all layers have a thickness equal 
to the characteristic thickness, then Eq. (11-14) reduces to a simple product sum. If a layer is 
thicker than the characteristic thickness, it becomes more likely to manifest, and vice versa. For 
the CPT-based manifestation model, the optimal characteristic thickness was found to be 2.0m. 
This characteristic layer thickness will need to be reassessed for the SPT model due to the 
inherent differences in SPT and CPT data (e.g., layers tend to be thicker in the SPT 
interpretations). 

We are exploring different options for parameters to use in the SPT-based P[ML|TL] model. 
Parameters under consideration are depth to top of the layer, PI, FC, and N1,60cs.  

11.4.2 Profile-Based Regression Framework 

In Bayesian regression, prior beliefs about the model coefficients are updated using 
observations to form posterior beliefs about the model coefficients. The posterior distributions 
generally cannot be obtained in closed form, so samples are drawn from the posterior 
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distribution numerically using Monte Carlo methods. This regression seeks coefficients that 
maximize the Bernoulli log-likelihood likelihood function,   
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(4-12) 

where yk is a binary indicator of whether manifestation was observed at the kth site (yk = 1 if 
manifestation was observed, yk=0 if it was not), and NP is the number of profiles in the database. 
This likelihood function is similar to those used in other probabilistic liquefaction models 
(e.g., Cetin et al., 2018; Moss et al., 2006). 

The likelihood function exhibits several notable properties. First, if yk=1, only the first part of the 
expression within the square brackets on the right side of Eq. (11-15) contributes to the 
likelihood function for profile k, whereas only the second expression contributes if yk=0. Second, 
if the prediction is a true positive (i.e., if yk=P[MP]k = 1), or a true negative (i.e., if yk=P[MP]k = 0), 
the contribution to the likelihood function from that profile is zero. Only values of P[MP] that do 
not match the observed manifestation contribute to the likelihood function. The ideal scenario 
would therefore be to select an optimal set of coefficients that render P[MP] values that are 
either 0 or 1, and perfectly match the observations. In that case, the selected variables would 
perfectly separate the data into distinct domains, and the likelihood function would be L = 0. For 
real datasets, this is generally not feasible, and the value of L will therefore be less than zero. 

Our approach is to adopt a NUTS algorithm (Hoffman and Gelman 2011, 2014). NUTS uses a 
recursive algorithm to build a set of likely candidate points that spans a wide swath of the target 
distribution, stopping automatically when it starts to double back and retrace its steps. The 
Python package PyMC (Wiecki et al., 2023) is used to perform NUTS sampling and 
Bayesian regression.  

In the proposed framework to develop SPT-based manifestation models, in addition to the prior 
distributions of model coefficients, all of the training data quantities (e.g., N, PI, FC) are input 
into the regression as random variables with distributions defined using the means and standard 
deviations established in Section 10.3. Each of the random variables are assumed to be 
normally distributed with standard deviations taken as the square root of the variances 
described in Section 10.3 with cutoff values applied where appropriate (e.g., PI and N cannot be 
below 0% and FC cannot be below 0% or above 100%). N1,60cs is computed within the random 
variable framework to incorporate the individual uncertainties from N and FC in the clean sand 
correction. This allows the quantified uncertainty for every layer’s representative properties to 
be incorporated into the Bayesian inference and influence the posterior distributions of the 
model coefficients. 

As discussed in Section 4.4.2 of the Task 7 report, the model formulation includes manifestation 
given triggering but does not include manifestation given no triggering nor manifestation given 
no susceptibility. The model that only considers manifestation caused by triggering therefore 
involves three models that each have coefficients that can be updated: susceptibility, triggering 
given susceptibility, and manifestation given triggering. The formulation in Eq. (11-14) can be 
expanded to show the susceptibility, triggering, and manifestation models that go into the profile 
manifestation prediction as shown in Section 4.4.2,  
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11.5 Consistency of SPT Data with CPT P[M] Model 

As of the date of this report, the SPT-based P[MP] models could not be constrained using the 
SPT case histories we were able to incorporate into the model development process for reasons 
given later in this section. We instead focused on whether the SPT case histories we have 
analyzed are consistent with the CPT-based manifestation model based on ztop, PFM|T(ztop) 

(Section 6.3.3), shown in Eq. 11-17. The benefit of this model is that it can be applied to both 
CPT and SPT datasets since it does not involve CPT-specific measurements. 
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(11-17)  

We checked the consistency of the CPT-based manifestation model PFM|T(ztop) using two 
datasets: 1) the dataset of reviewed case histories described in Section 10.1, which only 
included borings co-located with one or more CPT soundings (119 profiles), and 2) a reduced 
dataset of profiles in which every layer has at least one measured N value (32 profiles). 
Although we have identified potential strategies for estimating N1,60cs without measurements of N 
in a given layer, such strategies add considerable uncertainty to the results.  

As a result, we initially examine the second dataset (the reduced dataset of reviewed profiles 
with at least one measured N value within every layer). Figure 11-13 shows the input models for 
PFS, PFT|S, and PFM|T and a confusion matrix computed using those input models on the 
reduced dataset of reviewed profiles with measured N values within every layer. The input PFS 
and PFT|S models are the laboratory-based priors as described in Sections 11.1 and 11.2, 
respectively. The PFM|T model is the model regressed using the CPT dataset presented in 
Section 6.3.3. The dataset was tested using the uncertainty of variables in layers assigned as 
described in Section 10.3 by treating each layers’ properties as a stochastic random variable 
and using the maximum a posteriori estimate of P[MP] for each profile. 

For comparison, the confusion matrix and performance metrics for the PFM|T(ztop) model from 
Section 6.3.3 computed for the CPT dataset is shown in Figure 11-14. The true positive rates for 
the SPT and CPT data are similar using this model. However, the true negative rate is lower for 
the SPT data, indicating a higher rate of false positive predictions.  
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Figure 11-13 Performance of the CPT-based PFM|T(ztop) model used with the SPT dataset 
of reviewed profiles with a measured N value within each layer. (a), (b), and 
(c) present the model parameters in the relevant dataspaces for PFM|T, PFT|S, 
and PFS, respectively. (d) presents the confusion matrix and statistical 
metrics of the predicted P[MP] using the model parameters in (a), (b), and 
(c) compared with the observation of manifestation for each of the SPT 
case histories in the reduced dataset. 
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Figure 11-14 Performance of the PFM|T(ztop) model regressed using CPT data on the CPT 
dataset (Task 7 report). 

The dataset considered in Figure 11-13 is small (32 profiles), limiting the statistical rigor of the 
results. To strengthen the analysis, we perform a second evaluation using the larger dataset of 
119 reviewed SPT case histories. The additional cases are missing N values in some layers, 
which was addressed by assigning N values to layers that do not have N measurements as the 
nearest measured N value in the profile. For such assignments, we increase the spatial 
variance of N by a factor of 1.5 (Section 10.3.2). Figure 11-15 shows the results of the CPT 
PFM|T(ztop) model applied to the larger dataset of reviewed SPT case histories. The true 
positive rate increases, while the true negative rate stays approximately the same as the test on 
the initial (smaller) dataset, indicating slightly better performance on average for the 
expanded dataset.  

Our interpretation of the results from these two evaluations is that the CPT PFM|T(ztop) model is 
reasonably consistent with the SPT dataset. In both SPT dataset test cases, the true positive 
rate is higher than the true negative rate, indicating a potential bias of the PFM|T(ztop) predicting 
manifestation over no manifestation within these test datasets.  
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Figure 11-15 Performance of the CPT-based PFM|T(ztop) model used with the SPT dataset 
of all reviewed profiles. (a), (b), and (c) present the model parameters in the 
relevant dataspaces for PFM|T, PFT|S, and PFS, respectively. (d) presents the 
confusion matrix and statistical metrics of the predicted P[MP] using the 
model parameters in (a), (b), and (c) compared with the observation of 
manifestation for each of the SPT case histories in the full dataset. 

To provide additional insight into model performance, we apply the susceptibility and triggering 
model while assuming that any liquefied layer would manifest. The aim of this evaluation is to 
quantify the impact of the manifestation model on the results as expressed in the confusion 
matrix. These analyses use the larger dataset of 119 reviewed SPT case histories with a model 
that includes the PFS, PFT|S priors but forces PFM|T to be 1 for all layers. This model is input into 
the P[MP] framework and applied to the SPT dataset, yielding the results presented in 
Figure 11-16. There are a high number of true positives, but a larger number of false negatives 
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than true negatives. This demonstrates that the application of the CPT-derived PFM|T(ztop) model 
improves performance. This evaluation was also performed using the Boulanger and Idriss 
(2012) SPT model as the PFT|S model within the P[MP] framework, and the resulting confusion 
matrix is presented in Figure 11-17. Using the Boulanger and Idriss (2012) model decreases the 
number of true positives by 11 case histories while increasing the number of true negatives by 
two case histories relative to the similar analysis in Figure 11-16. While the imbalance between 
true positives and true negatives has narrowed, overall model performance as measured by the 
sum of true positives and true negatives has worsened.  

The above analyses confirming the applicability of the CPT-based manifestation model to 
subsets of SPT case histories were considered by the SMT to be the only viable approach for 
these analyses. Inherent shortcomings of profiles established solely based on borehole logs 
with SPT, including often incomplete layering and missing layer properties (penetration 
resistances and index tests), cause such data to be suboptimal for characterizations of layer 
and profile manifestation. 

To regress potential future SPT-based manifestation models would require broadening the 
number of sites characterized for model development to expand beyond those with co-located 
borings and CPTs to include those with borings / SPTs only. It would also be required to 
develop procedures, with defined uncertainties, to overcome data gaps including missing FC, 
PI, or N in individual soil layers. These challenges and others are discussed in more detail in 
Section 12.1. 
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Figure 11-16 Performance of the P[MP] model where PFM|T is set to 1 for all layers in the 
SPT dataset of all reviewed profiles. (a), (b), and (c) present the model 
parameters in the relevant dataspaces for PFM|T, PFT|S, and PFS, 
respectively. (d) presents the confusion matrix and statistical metrics of the 
predicted P[MP] using the model parameters in (a), (b), and (c) compared 
with the observation of manifestation for each of the SPT case histories in 
the full dataset. 
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Figure 11-17 Performance of the P[MP] model where PFM|T is set to 1 for all layers in the 
SPT dataset of all reviewed profiles and PFT|S is set to the Boulanger and 
Idriss (2012) model. (a), (b), and (c) present the model parameters in the 
relevant dataspaces for PFM|T, PFT|S, and PFS, respectively. (d) presents the 
confusion matrix and statistical metrics of the predicted P[MP] using the 
model parameters in (a), (b), and (c) compared with the observation of 
manifestation for each of the SPT case histories in the full dataset. 

 



 

12-1 

12 DISCUSSION OF BOREHOLE AND SPT-BASED MODELS 

In this addendum, we present probabilistic models developed by the SMT for the prediction of 
liquefaction susceptibility and triggering based on SPT data and present a framework for 
developing probabilistic models for the prediction of manifestation based on SPT data. As 
presented in the companion Task 7 report, we used specific definitions for those terms and 
formulated the models in a manner that is consistent with those definitions. For a given 
application, particular elements of the three-part modeling framework may be most critical. The 
clear separation of the components allows such determinations to be made, which in turn 
provides the opportunity to refine such elements through additional testing or data collection to 
reduce uncertainties for critical applications.  

As discussed in Section 2.2 of the Task 7 report, two important philosophies influenced how this 
work was performed. First, we use data from the NGL database, and as such the information we 
relied upon is available to any interested researcher. This promotes transparency and 
repeatability. Second, while we exercised our experience and judgment throughout the learning 
and model-building process, we translated that judgment into procedures that can be 
consistently applied across case histories. This too promotes transparency and repeatability, 
while also reducing the influence of confirmation bias and allowing the models to be used in 
forward applications in a manner that is consistent with how they were developed.  

Our modeling process has Bayesian elements, as described in Sections 4.1 and 4.2 of the 
Task 7 report. The main objective of the modeling process is prediction of a particular effect of 
liquefaction, namely surface manifestation. Within the Bayesian process that leads to such 
predictions, several critical model elements must be formulated, which include probability of 
susceptibility P[S], probability of triggering given the soil is susceptible P[T|S], probability of 
profile manifestation when one or more layers within the profile trigger P[MP] (which is 
conditioned on a series of variables that are not shown here for brevity). This addendum 
presents SPT-based models for two of these elements – P[S] (Section 11.1) and P[T|S] 
(Section 11.2) and provides a framework for obtaining a third element – P[MP] (Section 11.4). 

All of the models provided in this report have empirical elements. As such, they are valid only 
over certain parametric ranges. The P[T|S] model mainly applies for Holocene sediments and 
artificial fills that are relatively granular in composition. The Dr range for the model is considered 
to be 20% to 90% based on the availability of laboratory data but has been extended to apply 
outside this range when using N160cs as the input parameter (discussed in Section 11.2). The 
P[MP] model is intended to predict manifestation from liquefaction at essentially level ground 
sites; as such it does not apply for problems involving cyclic mobility, flow slides, or ground 
failure from non-susceptible soils (i.e., stability problems involving strength loss in clay).  

The following sections highlight important discussion topics for understanding and appropriately 
using the SPT-based models provided in this addendum and provide suggestions for future 
research topics that could improve these models. 

12.1 Challenges in Interpreting Borehole Data 

Interpretation of borehole data, including SPT blow counts, provides some benefits and some 
challenges relative to CPT-based methods. The primary benefit is that a geologist or 
geotechnical engineer performs visual manual classification of soils retrieved from the borehole 
during drilling, which provides insights into soil composition that are superior to soil behavior 
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type index, Ic, that is used when CPT testing is performed in the absence of sampling. 
Furthermore, laboratory tests are often performed on samples gathered from the boreholes, 
providing direct measurements of fines content and plasticity characteristics, and possibly cyclic 
strength, that are known to influence liquefaction susceptibility and triggering. Correlations 
between Ic and FC and PI are often quite poor, and measuring these quantities is superior to 
inferring them from Ic. 

A significant drawback of developing a profile-based manifestation model using borehole data 
compared with CPT data is that SPT blow counts are sampled infrequently compared with CPT 
tip resistance, and sometimes no SPT blow counts are measured within an entire stratum. For 
example, an engineer may opt to forego (with good reason) SPTs within a fine-grained soil layer 
opting instead for tube samples for laboratory testing. In other cases, blow counts were simply 
not measured within layers having a non-negligible probability of susceptibility. For example, in 
Figure 10-2, a stratum at Moss Landing Marine Lab between approximately 9 and 13 m depth is 
described as “Clay and sand (CL-SP)” in the stratigraphic log. Based on the soil description, a 
mix of susceptible and non-susceptible soils would be expected within the stratum. However, 
blow counts were not measured in this layer, and assigning a probability of triggering and 
manifestation therefore cannot be performed on measured penetration resistance values. In a 
traditional liquefaction triggering assessment, the path forward is clear. The critical layer would 
simply be selected as the sandy layer overlying the “Clay and sand” stratum. But in a profile-
based framework, every layer contributes to the overall manifestation probability. 

Low plasticity fine-grained soils have a non-zero probability of susceptibility in our model, and 
therefore must be evaluated for liquefaction triggering. SPT-based liquefaction triggering 
relationships use blow counts that must be corrected for the effects of non-zero fines contents. 
However, fines content corrections have been formulated for sandy soils with predominantly 
non-plastic silts, and any bias introduced by applying these fines content corrections to plastic 
fine-grained soils is currently not well understood. We anticipate that fine-grained soil will 
generally have a higher cyclic strength than implied by inserting their fines-corrected blow count 
values into a CRR equation because they are likely to be undrained during penetration 
resistance tests. High pore pressures that persist between blow counts will reduce the 
measured blow count. Furthermore, bearing factors at the tip of a sampler are different for 
drained and undrained loading, and drained tip resistance is generally significantly higher than 
undrained as a result. We contend that sampling and cyclically testing these materials is the 
best way to assess their cyclic strength, but such testing is not available in most of the case 
histories in the NGL database, and for none of the ones used herein.  

A number of methods could potentially be used to fill in gaps in penetration resistance 
measurements. First, soil layers with missing blow count data could be assumed to be non-
susceptible based on the observation that an engineer or geologist would have measured blow 
count values in all susceptible layers. Interestingly, Saye et al. (2021) attributed observed 
ground failure at the Moss Landing Marine Lab to failure of a fine-grained soil layer rather than 
to liquefaction of the sand layer assigned as the critical layer by Boulanger and Idriss (2016). 
Saye et al. (2021) utilized CPT data instead of SPT data to make this inference, but the point 
remains that important aspects of the performance of a profile may be missed if fine-grained soil 
layers (which are disproportionately more likely to not have SPT blow counts) are excluded from 
consideration. Second, susceptibility and triggering could be based on laboratory tests 
performed on the fine-grained soils. Ideally, plasticity characteristics would be measured using 
the Atterberg limits test, and both susceptibility and cyclic strength would be evaluated using a 
cyclic testing program (e.g., direct simple shear or triaxial testing). Atterberg limits are often 
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measured for fine-grained soils. However, cyclic strength testing is rarely performed. Third, the 
cyclic strength of fine-grained soils could be characterized using CPT data instead of borehole 
information. In these cases, we argue that the cone tip resistance should also be utilized to 
characterize the sandy soils because CPT measurements are more repeatable than SPT 
measurements. Finally, the penetration resistance could be inferred from visual manual 
classification (e.g., qualitative soil descriptions such as hard/stiff/soft), or from measurements in 
similar layers within the profile. However, the resulting inferred values would be highly uncertain. 

Uncertainty in SPT blow counts arise from measurement errors, and from soil spatial variability. 
Blow count measurements carry significant uncertainty due to (i) hammer energy being rarely 
measured, (ii) upward migration of water in hollow-stem auger borings when adequate pressure 
head is not maintained, (iii) use of non-standard sampling equipment such as the modified 
California sampler, or SPT samplers modified to accommodate rings, (iv) rod length corrections, 
and other factors. By contrast, measurement error in CPT tip resistance is due to the calibration 
coefficient in the cone tip load cell, and potentially push rate. For these reasons, we consider 
SPT blow counts to carry significant measurement uncertainty compared with CPT tip 
resistance. Furthermore, soils are spatially variable due to the depositional processes that 
formed them. Both SPT and CPT result in some depth-averaging such that the measured 
penetration resistance is not a point measurement, but rather an average within a zone of 
influence. Averaging is more significant for SPTs because the single blow count is measured for 
a full 0.30m of sampler penetration. Furthermore, a handful of SPT measurements might be 
obtained within a stratum, which does not permit a robust quantification of within-layer 
variability. It is therefore often unclear whether the selected SPT blow count is truly 
representative of the layer. 

Another challenge is that SPT blow counts are often terminated in stiff soils before the sampler 
is advanced one foot, resulting in refusal or a blow count reported as, for example, 50/4” where 
50 blows were applied to the sampler, but it only advanced 4” before the test was terminated. 
Using typical correlation relationships (Section 11.2), uncemented sandy soils are inferred as 
having a blow count around 46 when DR = 100%, so there is arguably no meaning to continuing 
SPT measurements beyond this threshold. However, soils with blow counts higher than the 
threshold are likely cemented, thereby increasing the blow counts in a manner that makes 
liquefaction assessments difficult since our procedures are formulated for uncemented sands. It 
is likely that refusal soils have higher liquefaction resistance than uncemented sands with DR = 
100%. Yet assessing the cyclic strengths of these materials is not currently possible. This is the 
reason we have opted to extrapolate cyclic strength with blow counts in Figure 11-7. 

12.2 Triggering and Manifestation 

The reliance upon field data in the development of empirical models of liquefaction potential has 
been well established and widely accepted for many years. This approach was based on the 
difficulty of obtaining undisturbed samples of clean, liquefiable sands and the observation that 
different methods of specimen reconstitution produced very different levels of cyclic strength in 
laboratory tests (e.g., Seed 1979). As a result, in U.S. practice laboratory tests have tended to 
be relegated to the investigation of constitutive behavior (e.g., phase transformation, cyclic 
degradation) under carefully controlled conditions and to establishing trends in behavior with 
respect to variables (e.g., initial effective stress) that significantly influence behavior in the field. 
Advances in soil sampling technology, such as by ground freezing, have proven to be expensive 
and are not commonly used in the U.S., although they are used more commonly in Japan. 
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Current empirical models generally use the presence or absence of surficial features such as 
sand boils or ground surface cracking as evidence of the triggering or non-triggering of 
liquefaction in a given earthquake. These features, which are often referred to as “surface 
manifestation” are implicitly assumed to be perfect indicators of the triggering of liquefaction in 
the earthquakes that produced, or didn’t produce, them. However, it is widely recognized that 
liquefaction can be triggered, for example in a thin or deep soil layer, without producing sand 
boils or ground cracking. It is also possible for ground cracking to be associated with cyclic 
softening of clay-like soils or, potentially, by elevated pore pressures not reaching 100% pore 
pressure ratio in thick, shallow sand-like soils. As such, it could be argued that the factor of 
safety produced by these empirical models describes the potential for surface manifestation 
more accurately than the potential for the actual triggering of liquefaction. 

The triggering of liquefaction is characterized by a significant reduction in effective stress and 
consequent reduction of stiffness, which can lead to a number of different consequences that 
involve different elemental and soil profile behaviors. The development of sand boils, for 
example, involves the hydrologic characteristics of a soil profile in addition to the mechanistic 
behavior of the liquefiable soils within it. The development of ground cracking is influenced by 
the behaviors of both liquefiable and non-liquefiable soils, such as the cyclic degradation of 
saturated clay-like soils and the brittleness of overlying, non-liquefied “crustal” soils. Thin, loose 
layers that may not expel enough porewater to contribute to sand boil development, however, 
may develop sufficient shear strains to contribute significantly to lateral spreading or, in extreme 
cases, flow sliding.  

Thus, the triggering of liquefaction can be viewed as a fundamental condition from which 
numerous consequences can emanate. The presence of sand boils and ground cracking are 
two such consequences but there are others that involve different mechanisms and are 
influenced by different profile characteristics. While conventional surface manifestation involves 
mechanisms similar to those that influenced post-earthquake free-field settlement, the most 
damaging consequences of liquefaction are generally associated with shearing mechanisms 
that produce significant lateral (and vertical) permanent deformations. The prediction of 
consequences that involve shearing deformations given triggering are likely to be more 
accurate, i.e., less biased and/or uncertain, than their prediction given conventional surface 
manifestation. 

The models developed in the NGL project by the SMT have produced both triggering and 
manifestation relationships and plots of those relationships as functions of penetration 
resistance show triggering curves that fall below manifestation curves, particularly at higher 
penetration resistances (e.g., Figure 11-6a). The triggering curve may be interpreted by some 
engineers as a more “conservative” relationship because it implies that triggering would occur at 
a lower cyclic stress ratio than the manifestation curve. It should, however, be viewed as a more 
accurate indication of the actual triggering of liquefaction and the more appropriate point from 
which to conduct consequence analyses. The severity of most consequences will decrease with 
increasing soil penetration resistance so the consequences for soils whose triggering curves 
plot farthest below the manifestation curve may not be severe at all. They would be mild, 
however, because of consequence behavior, not because similar soils at other locations did not 
produce sand boils or ground surface cracking in other earthquakes. Given that the 
consequences of liquefaction are of greatest importance for design and performance 
assessment, the ability to predict consequences as accurately as possible is of paramount 
importance. 
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The development of probabilistic performance-based earthquake engineering procedures for 
soil liquefaction has centered on a conditional susceptibility-triggering-consequence sequence 
of assessments. In this approach, triggering is conditional upon susceptibility and consequences 
are conditional upon triggering. The distinction between triggering and manifestation that has 
been made in the NGL project allows this performance-based earthquake engineering approach 
to be implemented in a natural and logical manner. Without this distinction, the developers of 
consequence models are forced to predict consequences of one type to be based on a 
consequence of a different type, e.g., predicting lateral spreading displacement conditional upon 
sand boil observations, even though those observations are influenced by hydrologic profile 
characteristics different than those that influence lateral spreading. The development of 
improved consequence models, for a variety of liquefaction consequences, is an important 
research need in geotechnical earthquake engineering. 

12.3 Future Work 

As we developed the SPT-based models documented in this addendum, we have identified 
other improvements or enhancements that could be incorporated but that were not feasible 
within the scope and limitations of the current project. In addition to the suggestions already 
listed in Chapter 7 of the Task 7 report, the following suggestions are listed here as 
opportunities for future work.  

● As part of the current project, it is necessary to broaden the numbers of sites 
characterized for model development to expand beyond those with co-located borings 
and CPTs to include those with borings / SPTs only. 

● There are opportunities to refine the specific elements of SPT case history processing. 

For example: 

○ Refining the energy estimates when they are not measured and provided in the 
NGL database. Some assumptions based on region where the test was 
performed, age of the test, and perhaps descriptions of the equipment could help 
refine these estimates. 

○ Refining the assumed N value for a layer that does not have SPT measurements.  
There are several possible methods, some are listed in Section 12.1. 

● In developing the proposed models, we have adopted some prior modeling conventions 
that are important, including:  

○ fines corrections to convert N1,60 to N1,60cs (Section 10.3.2),  

○ conversions of Dr to N1,60cs (Section 11.2), and  

○ plasticity-based models for liquefaction susceptibility (Section 11.1).  

As discussed in Chapter 7 of the Task 7 report, these prior modeling conventions may 
be improved in the future. For example, a subsequent phase of the NGL project will 
investigate the potential for improvement of susceptibility models (Stuedlein et al., 2023). 
For fines, there is a need to separate fines effects on N1,60cs from its effect on triggering 
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and to refine the fines correction to convert N1,60 to N1,60cs for reasons discussed in 
Section 12.1). 

● Application of the P[MP] framework described in Section 11.4 to develop probabilistic 
profile manifestation models suitable for use with SPT-based site characterization data. 
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13 CONCLUSIONS, SPT-BASED MODELS 

In this addendum, we provide liquefaction models based on borehole logs and SPT resistance 
values that follow the same framework outlined in the Task 7 report, which focused on CPT 
data. The model framework includes discrete steps for susceptibility, triggering, and 
manifestation. The models provided in this report are for susceptibility (P[S]) and triggering 
conditioned on susceptibility (P[T|S]), while a framework for manifestation analysis is provided.  

In this addendum, we described several aspects of the model development process that are 
unique to the SPT-based site characterization data, such as: 

● identifying case histories with SPT-based site characterization data from the extensive 
NGL case history database (Section 10.1),  

● using algorithms to process site data and provide a repeatable, consistent, and objective 
view of the data (Chapter 10), 

● identifying layers from the borehole data (Section 10.2), 

● evaluating probabilistic distributions of relevant engineering properties (PI, FC, and 
N-values) for each layer (Section 10.3),   

● developing a Bayesian prior model for susceptibility, P[S], for soil layers with measured 
PI values (Section 11.1.1) 

● interpreting P[S] when PI data is not available using interpretations of soil properties 
from borehole strata text descriptions by jointly considering modeling uncertainty and 
parametric variability (Section 11.1.2),  

● developing a Bayesian prior probability for triggering, P[T|S], using laboratory data 
adapted to utilize SPT data as the input parameter, e.g., N160cs (Section 11.2), and 

● providing a framework to model surface manifestation, P[MP], as a function of 
SPT-based site characterization data (Section 11.4) and confirmed that the SPT case 
histories we have analyzed are consistent with the CPT-based manifestation model 
based on ztop. 

For forward analysis using SPT data where P[T] of a single layer is desired (i.e., excluding 
manifestation), we recommend computing P[T] as PFT|S multiplied by PFS given by Eq. (11-8) 
through Eq. (11-13) in Section 11.2, where PFT|S relies on laboratory data, for reasons given in 
the Task 7 report (Section 6.3.7) and in this addendum (Section 11.2). 

Findings provided in this addendum are nearing their final form, although future refinements and 
improvements are possible. The content presented here is subject to change as we refine the 
methodologies, input parameters, and framework.  

Although the SPT- and CPT-based models rely on several common elements, the SPT-based 
manifestation models are less mature than the CPT-based models, due in part to challenges 
with interpreting SPT-based case histories and inconsistent data density, as discussed in 
Section 12.1, and due to limitations of the project schedule. Opportunities for future work listed 
in Section 12.3 may address the discrepancy in model refinement and maturity.  
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While the general concepts behind our approach and the CPT-based models have been shared 
in meetings with the NGL Advisory Board, the MRT, and other NGL modeling teams, this 
addendum presents new relationships specifically for applications using SPT-based site 
characterization data. Accordingly, we look forward to receiving feedback on these specific 
relationships from the liquefaction research community as they mature and feedback from 
regulatory agencies, topical experts, practicing engineers, and others about the modeling 
approach and the reasonableness and practicality for application of the models that are 
documented in this report.  
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APPENDIX A 

Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data 

Parameter Description Classification 

TEST_ID primary key in test table metadata 

dGWT depth to groundwater table (m) layer 

STRA_ID Primary key in stratigraphy (STRA) table metadata 

STRA_TOP depth to top of layer (m) layer 

STRA_BASE depth to bottom of layer (m) layer 

STRA_USCS USCS classification of the STRA layer layer 

STRA_COL color description of layer layer 

STRA_DESC text description of layer layer 

soil_type_all soil type bin labels for all samples in the layer layer 

soil_type representative soil type bin label for the layer layer 

PIhat_mu mean of Box-Cox transformed PI hat layer 

PIhat_std standard deviation of Box-Cox transformed PI hat  layer 

PIhat_lambda lambda for Box-Cox transformed PI hat layer 

PI mean PI of the layer layer 

PIstd standard deviation of PI in the layer layer 

PIs measured PI values of specimens within the layer layer 

PIzs depths of measured PI values within the layer (m) layer 

FC mean FC of the layer layer 

FCs measured FC values of specimens within the layer layer 

FCzs depths of measured FC values within the layer layer 

sC vertical total stress at the center of the layer (kPa) layer 

spC vertical effective stress at the center of the layer 
(kPa) 

layer 
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Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data 

Parameter Description Classification 

zC depth to the center of the layer (m) layer 

N representative SPT blow count N of the layer layer 

Ns measured SPT blow count N of samples in the 
layer 

layer 

Nzs depths of the measured N values in the layer (m) layer 

CN representative overburden normalization factor in 
the layer 

layer 

CNs overburden normalization factors for individual N 
values in the layer 

layer 

CE representative energy normalization factor in the 
layer 

layer 

CEs energy normalization factors for individual N values 
in the layer 

layer 

N160cs representative corrected N value (fines, 
overburden, energy correction) for the layer (I.e., 
average of “N160css” values) 

layer 

N160css Individual corrected N values (fines, overburden, 
energy correction) within the layer 

layer 

PS P[S] value associated with representative PI of the 
layer using the SMT’s combined susceptibility 
model 

layer 

SITE_ID primary key of site table metadata 

SITE_NAME site name metadata 

TEST_NAME test name  metadata 

TEST_LAT test latitude metadata 

TEST_LON test longitude metadata 

EVNT_ID primary key of event table metadata 

EVNT_NAME event name metadata 
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Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case 
History Data 

Parameter Description Classification 

EVNT_MAG earthquake magnitude profile 

PGA peak horizontal acceleration (g) profile 

FLDM_ID primary key of fldm (field observation) table metadata 

FLDM_SFEV surface evidence of liquefaction (0 = no, 1 = yes) profile 

FLDM_DIST distance between observation and borehole (m) profile 

TEST Assignments list of TEST_IDs grouped together with the same 
observation (FLDM_ID) 

profile 

TEST weights weights for tests within a group of tests attached to 
the same FLDM_ID in the regression 

profile 

FLDM_SNBL sand boils (0 = no, 1 = yes) profile 

CSR Lasley r_d CSR computed using stress reduction coefficient 
from Lasley et al. (2017) 

layer 

MSF Green et al b=0.2 magnitude scaling factor from Green et al. (2019) 
for b = 0.2 

layer 

Ksig Carlton Kσ for SMT model Layer` 
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