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PREFACE

This is an addendum to a companion report, referred to herein as the Task 7 report (UImer et
al., 2024), which presented probabilistic models for liquefaction susceptibility, triggering, and
manifestation that use inputs from a cone penetrometer test (CPT). The objective of this
addendum is to document the development of probabilistic models that take as input soil
stratigraphy from borehole logs, available laboratory index test results, and penetration
resistance measurements from standard penetration tests (SPT). For brevity, this type of site
characterization is referred to subsequently as “SPT-based site characterization.” This
addendum fulfills Task 9 of the current contract jointly supported by the U.S. Nuclear Regulatory
Commission (NRC) and the U.S. Bureau of Reclamation (USBR).

In the Task 7 report, the Supported Modeling Team (SMT) presented probabilistic models based
on CPT data. Many of the foundational elements of those CPT-based models are common to
the SPT-based models outlined in this addendum. Thus, only the unique SPT-related elements
are discussed in this addendum, with appropriate references to the Task 7 report. Moreover, we
apply notation and variable names in this report that were defined in the Task 7 report without
re-defining them here. Accordingly, readers interested in looking up definitions of terms (such as
P[T]S]) are encouraged to consult the Task 7 report.

In Chapter 10, we describe the steps required to develop the necessary stratigraphic
parameters and soil properties from SPT-based site characterizations for use in model
development. In Chapter 11, we provide SPT-based models, including (i) an equation to
compute the probability of susceptibility to liquefaction in a given soil layer and (ii) an equation
to compute the probability of triggering. We also outline a framework to develop equations to
compute the probability of surface manifestation and check the reasonableness of using the
CPT-based manifestation model based on depth to the top of the soil layer. In Chapter 12 we
outline the limitations of the models presented in this addendum, discuss important aspects of
using these SPT-based models, and identify future work that has the potential to improve model
performance. Finally, we summarize the conclusions of our work in Chapter 13.

Our findings provided in the Task 7 report and this addendum are nearing their final form,
although future refinements and improvements are possible. The content presented here is
subject to change as we refine the methodologies, input parameters, and framework. Although
the SPT- and CPT-based models rely on several common elements, the SPT-based
manifestation models are less mature than the CPT-based models, due in part to challenges
with interpreting SPT-based case histories and inconsistent data density, as discussed in
Section 12.1, and due to limitations of the project schedule. Opportunities for future work listed
in Section 12.3 may address the discrepancy in model refinement and maturity.

While the general concepts behind our approach and the CPT-based models have been shared
in meetings with the Next Generation Liquefaction (NGL) Advisory Board, the MRT, and other
NGL modeling teams, this addendum presents new relationships specifically for applications
using SPT-based site characterization data. Accordingly, we welcome feedback on these
specific relationships from the liquefaction research community as they mature and feedback
from regulatory agencies, topical experts, practicing engineers, and others about the modeling
approach and the reasonableness and practicality for application of the models that have

been presented.
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QUALITY OF DATA, ANALYSES, AND CODE DEVELOPMENT

DATA: The primary data source for the work described herein is the NGL database
(http://nextgenerationliquefaction.org, doi: 10.21222/C23P70, Ulmer et al., 2023;

Brandenberg et al., 2020). The NGL database contains data related to case histories of
earthquake-induced liquefaction. These data are from the geotechnical community, including
academic researchers and practicing engineers. Because the intent of the database is to
accumulate as much useful and publicly available data as possible from the technical
community, some of the data are from existing scientific and technical publications and peer-
reviewed journals, but some could also be sourced from the working records of researchers and
engineers. The data are uploaded to the database via a graphical user interface (GUI).
Reviewers evaluate the quality of data after it is uploaded to provide quality control

(Zimmaro et al., 2019). Data that has not yet been reviewed is marked as such in the database.
For other data references in the database, such as the earthquake records from the Next
Generation Attenuation project series, users should consult the original sources to determine
the level of quality of those data.

Other data sources are cited throughout the report and stored in project folders PRJ-3368 and
PRJ-2923 on DesignSafe-Cl (Rathje et al., 2017).

ANALYSES AND CODES: The NGL database is a relational database that was developed
using the My Structured Query Language (MySQL) relational database management system.
The NGL database schema (i.e., its organizational structure) and a meta-dictionary that
contains information about each database entry are available at
http://nextgenerationliquefaction.org (Brandenberg et al., 2020).
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10 SPT CASE HISTORY PROCESSING

Case history processing is required to convert data (e.g., stratigraphy from borehole logs, SPT
N values, groundwater table measurements, ground motion measurements, observations of
liquefaction manifestation) into metrics that facilitate development of liquefaction triggering
models (e.g., CSR, N1s0cs). The goal of processing SPT-based site characterization data is to
couple liquefaction observations (or lack thereof) to a set of nearby boreholes and to identify
and characterize layers within each borehole. This is needed to perform liquefaction evaluation
calculations at depth. Our approach to processing SPT-based site characterization data initially
uses automated procedures to assign observations to boreholes, determine layer boundaries,
and estimate soil properties to characterize the layers. We augment these automated processes
with judgment through human reviews of individual case histories. Whenever feasible, we codify
our judgments so that they are objective and reproducible by other analysts. The development
of calibrated automated processes is crucial for analyzing a database as large as the NGL
database, and provides a repeatable, consistent, and objective initial view of the data.

This chapter describes the steps required to process SPT-based site characterization data for
case histories in the NGL database, including the assignment of layer boundaries and soil
properties within layers for use in model development. These steps include several new
developments within the state-of-the-art in liquefaction evaluation, such as probabilistic
estimates of Pl and FC given a basic soil description.

10.1 Assigning Observations to In Situ Tests

The first step in case history processing is to correlate the in situ test data (e.g., boreholes) in
the database with nearby observations of liquefaction manifestation or no such manifestation.
Observations of surface manifestation (or lack thereof) and site investigations are not
necessarily co-located in the NGL database, so it is necessary to decide which observation
should be associated with which borehole (i.e., what boreholes should be used in evaluating the
soil layers that contributed to the surficial manifestation of liquefaction or lack thereof).
Observations and boreholes (including their in situ tests) are associated through a link to a
common site in the SQL data structure, but within a site there are often multiple observations
and multiple boreholes. Furthermore, there are often “yes” and “no” observations of
manifestations within the same site for the same earthquake. To make initial assignments of
observations to boreholes, we developed the following algorithm using Python code in
Jupyter Notebooks.

1. Select a site and identify all the boreholes and observations that are associated with
that site.

2. Compile the latitude and longitude values for the boreholes and observations and
compute an array containing the distance in meters between every observation and
borehole at the site.

3. Separate the observations by event (some sites have observations from more than one
earthquake event).

4. Assign the closest borehole to each observation for each event so that every
observation has a borehole assigned to it.

The above four steps comprise an initial automated process to make these assignments, which
is followed by a human review by SMT members examining each test-observation pair. To
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conduct the review, the SMT developed a Jupyter notebook to visualize and summarize the
available data for each site and event combination. A screenshot of the notebook is shown in
Figure 10-1. Red markers indicate “yes” manifestation cases, black markers represent “no”
manifestation, and green markers are locations of boreholes with SPT measurements. When a
manifestation observation and borehole are co-located, the green pins are obscured, and a
black or red circle is drawn around the pins to indicate co-location. The purpose of this review
was to:

1) Confirm the appropriate assignments of “yes manifestation” and “no manifestation” to
individual boreholes or groups of boreholes when more than one borehole could be
reasonably assigned to the same field observation.

2) Identify and exclude case histories where the distance between a borehole and an
observation of “yes manifestation” or “no manifestation” is too great to reasonably adopt
(despite being the closest borehole identified by the initial algorithm). This evaluation is
dependent on the site geology and the type and spatial distribution of field observations,
and there is no single cutoff distance that is appropriate in every situation. For example:

a) A lateral spread feature extending over an area of many square meters is
represented in the NGL database by a single latitude/longitude coordinate,
usually near the center. The feature may contain several boreholes within its
lateral extent, but the distance between the center point and the boreholes could
be several meters. In this case, the appropriate maximum acceptable distance
between an observation and a borehole may be greater than in another case
where only a single sand boil is observed.

b) In other cases, it is important to evaluate how close a borehole is to a “yes
manifestation” observation and a "no manifestation" when there are multiple
observations in a single site.

c) Some sites may have more variable conditions, and the appropriate maximum
acceptable distance between an observation and a borehole may be less than
what is considered acceptable at a site where the soil profiles are more constant
over horizontal distances. This evaluation is dependent on the site geology and
available subsurface data.
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Site | Mihama-ward (8 Chome Meetin v
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fom

Figure 10-1 A screenshot of the Jupyter notebook that the SMT designed for reviews of
individual case histories. Black markers represent observations of “no
manifestation”, red markers represent “yes manifestation”, green markers
represent boreholes, red/black lines connect boreholes and observations
that the SMT grouped together, and red/black circles indicate a co-located
borehole and observation pair. Case history: Mihama Ward, 2011
Tohoku earthquake.

3) Identify borehole data that should be disqualified for reasons not readily detected by the
algorithms (e.g., insufficient detail or unreliable SPT hammer operations).

4) Identify case histories where the presence of nearby structures could potentially affect
the manifestation of liquefaction.

5) Assign weights to boreholes when multiple boreholes are assigned to the same
observation. In this manner, multiple boreholes may be paired with a single observation
to form a single case history.

At least one member of the SMT, and often two or more, used this tool to review each case
history that the algorithms initially identified. For this phase, only sites that were also reviewed
as part of the CPT-based model development are included in our case history list, although an
immediate task after submission of this report will be to broaden site selection by removing the
co-located CPT requirement. This process yielded 119 case histories, each with a borehole
associated with an observation of “yes” or “no” manifestation (the number of case histories
when the co-located CPT requirement is dropped will exceed 430). Because over half of the
field observations are co-located with a borehole, the median distance between site
investigation locations and observations is less than a meter. The mean distance is 26m,
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reflecting that some of the boreholes are tens of meters away from the observation’s assigned
location. This is not surprising for some large features, such as lateral spreads, which can span
dozens of meters or more in length and width, but which are represented spatially in the
database by a single pair of latitude and longitude coordinates.

10.2 Layer Boundaries

After identifying the boreholes that are reasonably close to an observation, the next step is to
identify soil layer boundaries within each borehole. The approach to identify layer boundaries in
an SPT-based site characterization is necessarily different than the approach for CPT-based
site characterization. For the CPT-based models, layer detection methods were automated
using agglomerative clustering (Section 5.3 of the Task 7 report; Hudson et al., 2023a)
because the process of performing a CPT sounding does not directly identify layer boundaries
(e.g., there is no visual inspection of the soil, only digital measurements from the CPT cone). In
the case of the SPT-based site characterization, boreholes are logged by an on-site
professional who identifies transitions in soil type from samples, cuttings, and driller feedback as
the drilling progresses. These identified transitions are captured in the NGL database in the
stratigraphy (STRA) table. While borehole logs can miss some stratigraphic horizons and may
not perfectly align with results of co-located CPT logs (e.g., Wang et al., 2019; Xie et al., 2024),
the SMT decided to rely on these assigned boundaries as a starting point for our SPT-based
model development.

One disadvantage to using STRA layers is that these layers tend to be large and ignore some of
the nuanced differences captured by individual soil samples (SAMP) within each STRA layer.
These soil samples are obtained during drilling for laboratory testing to measure fines content,
plasticity index, particle gradation, and other soil properties. An alternative to using STRA layers
would be to assign layers based on locations of SAMP entries, particularly those with SPT blow
counts. However, this could lead to the opposite problem of having too many layers with only
one data point per layer, resulting in potentially anomalous estimates of P[S] or P[T]S] within a
layer. Furthermore, field geologists/engineers often log stratigraphic boundaries based on
feedback from drill rig operators when a new layer is encountered, which may not align well with
sampling locations.

We reviewed the stratigraphy information logged in each boring alongside the observed blow
counts and sample descriptions (discussed in Section 10.3) and made our own judgment calls
regarding appropriate locations of layer boundaries. The SMT developed a Jupyter notebook
tool that facilitated feedback, such as recommending alternative layer boundaries, adjusting
assumed FC and Pl values, and noting layers with little data and a high level of uncertainty, as
needed. Figure 10-2 shows a screenshot of this tool for a single case history. This review
process is currently ongoing. This work was performed on a boring-by-boring basis rather than
using multiple boring logs at a site to make a more holistic assessment of site stratigraphy. Our
motivations were (1) adjacent borings at a site may not be associated with the same
observation (e.g., one boring might be a “no” and the other a “yes” with respect to surface
evidence of liquefaction, (2) borings are often spaced at a large enough distance that blow
counts are not expected to be correlated within a layer, and (3) we did not have adequate time
as of the writing of this report to perform a thorough review of all of the site investigations at
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Figure 10-2 A screenshot of the Jupyter notebook that the SMT designed for reviews of
layer boundaries and assigned layer properties for individual case
histories.

each site. In future work, we plan to evaluate each site more thoroughly with respect to the
position of adjacent borings, particularly in cases where SPT blow counts were not measured in
a specific stratum

10.3 Assigning Layer Properties

After identifying layer boundaries, the next step is to characterize each soil layer’s strength,
plasticity, and other characteristics relevant to liquefaction evaluation. We developed a number
of different attributes for each layer in the profiles. Some attributes were computed directly from
the SPT data, while others were assigned as representative values based on integration of
several data sources. Section 10.3.1 describes how FC and plasticity (i.e., P/) are assigned.
Section 10.3.2 outlines the process for normalizing measured SPT blow counts (N) to account
for variations in overburden stress, energy, and fines content (N1,60cs), and for assigning
representative normalized values to each layer.

Because SPT data is collected at discrete intervals with the potential for some soil layers to
have no samples or SPT N values, the following sections outline how the SMT assigned
representative values of FC, PI, and Ny eocs for two scenarios: (i) where at least one
measurement is available within a STRA layer, and (ii) where no measurements are available
within a STRA layer. A list of attributes computed for the SPT-based case histories is provided
in Appendix A.
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10.3.1 Estimation of Pland FC

Two important soil characteristics that are needed from SPT-based site characterization for
model development are plasticity index, P/, and fines content, FC. As discussed later in
Section 11.1, the P[S] depends on Pl and, as discussed in Section 10.3.2, the normalized blow
count, N1 e0cs, requires an estimate of FC. Thus, the SMT developed an objective process to
assign Pl and FC to each layer in our case history database.

10.3.1.1 Representative Pl and FC based on measurements

Where possible, Pl and FC were obtained from measurements within each layer. In the cases
where multiple samples within a layer had measured Pl and FC values, the medians of all
measured P/ and FC values within a layer were assigned as representative values for the layer.
The median is selected so that the value used is from a sample in the measured samples rather
than an averaging of samples in the layer and not correlating to any one measurement.
Additionally, the uncertainty on each of these values was quantified by combining two
statistically independent variances: measurement error and spatial variability. The measurement
error was taken as the COV reported in Table 5 of Phoon and Kulhawy (1999) for P/ (0.24).
That COV was converted to measurement error standard deviation for P/ (0p; pmeqs) in

Eq. (10-1):

OpImeas — COVp; - PI (10_1)

Next, the within-layer dispersion of Pl was estimated by examining the variance of P/ within
layers that have more than one P/ measurement. First, the standard deviation was computed
using the approximations given by Burrington and May (1970) and then squared to obtain the
variance. The distribution of within-layer variance is shown in Figure 10-3. The within-layer
variance, ng,spatiaz’ was taken as the mean of that distribution, which had a value of 81.9 with
Pl expressed in percent. The combined P/ variance was then computed as:

2 _ 2 2
Op; = O + 0 P
PI PI,meas Pl spatial (1 0_2)

The following is applied for layers that contain just one Pl measurement:

1. Oprmeas 1S @ssigned using Eq. (10-1) with the measured P/ and the COV from Phoon and
Kulhawy (1999)

2. The median value of 63, ¢, 4riq; from Figure 10-3 is used

3. The total variance, o# is computed using Eq. (10-2).

For layers that have more than one Pl measurement, the same procedure is applied except that
the median P/ value from the layer is used in Eq. (10-1) to compute p; meqs-
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Figure 10-3 Histogram of the variance of P/ within layers. The mean is represented by
the dashed vertical black line. The dataset used to compute these
variances includes Pl measurements from 65 layers that have more than
one Atterberg limit test performed within the STRA table defined layer.

The FC uncertainty does not consider any measurement error because Phoon and Kulhawy
(1999) did not provide uncertainty for FC, likely because it is a laboratory test with small
variance. Spatial uncertainty is considered in the same manner as for PI. The distribution of FC
within-layer variance is presented in Figure 10-4. The mean of that distribution, with FC
expressed in percent, is taken as o7¢ peqas = 381.
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Figure 10-4 Histogram of the variance of FC within layers. The mean is represented
by the dashed vertical black line. The dataset used to compute these
variances includes FC measurements from 287 layers that have more
than one grain size distribution test performed within the STRA table
defined layer.
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10.3.1.2 Representative Pl and FC without measurements

In an SPT-based site characterization, soil samples are collected at discrete intervals with the
potential for some soil layers to have no samples. Thus, not all STRA layers contain Pl and FC
values derived from laboratory testing, but they do have visual manual classification information
about the soil within the layer. Therefore, the SMT developed an approach to infer Pl and FC
from text descriptions.

After reviewing stratigraphic text descriptions of STRA layers and samples (from the SAMP
table) in the NGL database, we assigned one of 11 basic soil type labels as follows:

Gravel
Sand

Silty Sand
Clayey Sand
Silt

Sandy Silt
Clayey Silt
Clay
Sandy Clay
Silty Clay
Organic

These basic soil type labels are used at two stages. Initially they are used for STRA layers or
samples for which Pl and FC data are available to develop predictive relations. Subsequently,
they are used to assign representative values to STRA layers for which no tests are available.

In the initial stage, SMT members checked the value of FC (if it was measured) against the text
descriptions and relied on the FC of each sample to ultimately assign the soil type as needed.
For example, a STRA layer may have been described as “sandy silt” in the field, but the
laboratory specimen from that layer may have FC less than 50%, which would indicate that the
soil is predominantly composed of coarse-grained soils and should instead be called “silty
sand”. Our opinion is that the best practice for constructing boring logs is to revise text
descriptions to be consistent with laboratory test data, but this was not always done for the
boring logs in the database.

After making these basic soil type assignments to all samples with measured P/ or FC values,
the SMT developed distributions of Pl and FC within each of these basic soil type labels.

Figure 10-5 and Figure 10-6 show these distributions. The blue shaded areas represent
approximate histograms of the data, in addition to the box and whisker plots. Medians are
represented by an orange bar, and means are reported at the top of each plot. As expected, the
mean and median P/ for “sand” is zero, while the mean and median P/ values are higher for
predominantly fine-grained soils (e.g., “clay” or “silt”).
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Figure 10-5 Distributions of Pl within each soil type group. The blue shaded area
represents an approximate histogram of the data, with box and whisker
plots in black. Medians are represented by an orange bar, and means are
reported at the top of each plot.
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Figure 10-6 Distributions of FC within each soil type group. The blue shaded area
represents an approximate histogram of the data, with box and whisker
plots in black. Medians are represented by an orange bar, and means are
reported at the top of each plot.

To simplify the groupings and to increase the number of data points within some poorly
represented soil types, some of the basic soil types were grouped together based on similar P/
or FC distributions. For example, “silty sand”, “clayey sand”, and “sandy silt” had nearly identical
PI distributions. Thus, the original 11 soil type labels for P/ distributions were redefined into soil
type groups as outlined in Table 10-1.

To capture the uncertainty in the Pl and FC estimates within these layers, the SMT
characterized the distributions of P/ within each soil type group using a mean and standard
deviation. However, the distributions for P/ were skewed such that a normal distribution did not
fit well. Thus, we performed Box-Cox transformations (Box & Cox, 1964) as defined in
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Table 10-1

Soil type groups for Pl and FC distributions

Soil Type Groups for Pl Distributions Soil Type Groups for FC Distributions
Gravel or Sand Gravel or Sand
Silty Sand, Clayey Sand, or Sandy Silt Silty Sand
Sandy Clay Clayey Sand
Silt or Clayey Silt Silt
Silty Clay Sandy Silt
Clay Clayey Silt
Organic Clay
Sandy Clay
Silty Clay
Organic

Eq. (10-3) within each soil type group to obtain values of A, mean PI, and standard deviation
of PI.

__ PItrr—1
Pr=—— (10-3)

The Box-Cox transformed distributions are shown in Figure 10-7, and Table 10-2 summarizes
the Ap;, mean PI, and standard deviation of PI from the Box-Cox transformation for each soil
type group. Note that for some soil groups (e.g., “gravel” and “organic”) we had no soils with
those descriptions that also had Pl measurements. The SMT assumed that the representative
Pl values for “gravel” and “organic” were 0 and 50, respectively. Also, for the “sand” group, all of
the Pl measurements were 0 (i.e., non-plastic). In this case, the SMT assumed that the
representative P/ value for “sand” was 0.

We repeated the Box-Cox transformation process using FC data to obtain estimates of Arc,
mean FC, and standard deviation of FC, where FC is defined as

__ FC*c—1
FO=— " (10-4)

Figure 10-8 shows the Box-Cox transformed distributions for FC and Table 10-3 summarizes
the resulting parameters Arc, mean FC, and standard deviation of FC. There were no measured
FC values in layers labeled “organic”, and thus the SMT assumed that the representative FC
value was 80.

There is some inherent uncertainty in the assignment of basic soil type labels for each STRA
layer. In some cases, STRA text fields do not have sufficient detail. For example, a layer may be
described as “sand with fines,” which does not have the required level of detail to distinguish
“clayey sand,” “silty sand,” and “sand.” In these cases, we check first for a measured FC value
to establish whether the soil should be called “sand” (i.e., FC less than 50%). If there is no
measured FC value within the layer to help guide the assignment of the soil type label, then
“silty sand” is assigned. In other cases, there may be multiple SAMP within a STRA
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Figure 10-7 Box-Cox transformations for Pl in each soil type group.
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Table 10-2  Ap, mean PI, standard deviation of PI , and mean Pl from Box-Cox
transformation for each soil type group

Soil Type Group Api PI Op PI
Gravel or Sand 1 -1 1 0
Silty sand or Clayey sand or Sandy silt 0.3980 2.43 2.591 5.5
Silt or Clayey silt 0.3682 2.98 3.105 7.5
Sandy clay 0.4102 4.39 1.237 12.3
Silty clay 0.4935 5.29 2.233 13.5
Clay 0.4438 5.90 2.222 18.2
Organic 1 49 1 50
Fill 1 & 6 4

layer that have conflicting descriptions. For example, a layer may have three samples with soil
type descriptions (SAMP_DESC) of “silty sand”, “silty sand”, and “sand”. In these cases, the
representative soil type label for the STRA layer is assigned as the mode of the individual
SAMP soil types, which in this example would be “silty sand.” Results are summarized in a
pickle file format (with a .pkl file extension) containing the SMT’s processed case history data
(Appendix A). The individual soil types of the SAMPs within a layer are listed in the column
called “soil_type_all”’, whereas the representative soil type of the STRA layer is in the column
called “soil_type.” This allows the SMT to track these details when reviewing layer boundaries
and representative soil characteristics.
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Figure 10-8 Box-Cox transformations for FC in each soil type group.
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Table 10-3  Arc, Mean FC, and standard deviation of FC from Box-Cox transformation
and mean FC for each soil type group

Soil Type Group Arc FC Orc FC (%)

Gravel or Sand 0.5243 2.32 2.342 4.6
Silty sand 0.5012 8.06 2.646 25.2
Clayey sand 1.4222 109.5 50.063 34.9
Sandy silt -0.1893 2.9 0.084 67.7
Silt 6.3291 | 4.18E11 | 2.04E11 91.8
Clayey silt 49537 | 9.74E8 | 5.09E8 90.1
Sandy clay 0.2052 6.65 0.377 66.3
Silty clay 4.9972 1.2E9 6.24E8 90.5
Clay 2.4247 1.9E4 6.5E3 85.0
Organic 1 79 30 80

Fill 1 19 30 20

10.3.2 Penetration Resistance and Stress Normalization

The decision to use STRA defined layer boundaries for SPT-based site characterization data
means that there are many layers with more than one measured blow count (N) and some
layers without any N values. For use in the profile-based model development, each layer needs
to have an N value for calculation of the cyclic resistance of the soil, therefore an automatic
workflow is established to make assignments of the representative N value within each layer.

If a layer has one measured N value between the top and bottom of the layer, then that value is
used as the representative value. If a layer has multiple N values, the median of the measured
N values within the layer is taken as the representative value. If a layer does not have any N
values, then the closest N value in the boring is assigned as representative of that layer.

This can be problematic and every instance where this occurs will be carefully reviewed
(Section 10.2). For instances where a layer without an N value is deemed inconsequential from
the perspective of profile manifestation (e.g., a thin clay layer), then the layer is excluded by
setting all of the probabilities (defined in Chapter 11) to zero so that it does not influence the
profile-based calculations.

For reasons discussed in Section 12.1, SPT blow counts carry significant measurement error
compared with CPT tip resistance. To account for this error, the measurement uncertainty for N
is approximated using a COV of 50%, which is between the recommended 54% for sand and
44% for clay from Phoon and Kulhawy (1999). Spatial uncertainties are considered in the same
manner as described in Section 10.3.1 for Pl and FC. The spatial variance for N, szzl,spaaah for
every layer with more than one N measurement is shown in Figure 10-9. The mean value of that
distribution (szzz,spanaz=71 .2) is used as the spatial variance where there is only one N value
within a layer. For layers with more than one, the variance is computed using the ranged-based
method of Burrington and May (1970). For layers with no measured N values, the a,\z,'spatial
value is multiplied by 1.5 to account for increased uncertainty in the true N value.
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Figure 10-9 Histogram of the variance of N within layers. The mean is represented by
the dashed vertical black line. The dataset used to compute these
variances includes N from 227 layers that have more than one SPT
performed within a single STRA defined layer.

SPT N values are corrected for energy and stress. First, N is converted to a normalized blow
count associated with 60% energy (Ngo) using the hammer energy (ERx») and the relationship
shown in Eq. (10-5) (Seed et al., 1985), where Ce is the ratio of ER, over 60%. Where possible,
Ce was computed using ER, reported by the original author of the study as documented in the
NGL database. If ER, was not reported by the author, then Ce was assigned based on the
hammer type if sufficient information was given. For example, if the hammer type is "safety",
“automatic trip”, or “donut” type, it is given Ce = 0.95, 1.0, and 0.7, respectively. These are
approximately mean Cg values for these hammer types as reported by Youd et al. (2001). If the
hammer type is not reported, then the date of the exploration is used to estimate Cg: if the
exploration occurred before the year 2000, it is assigned Ce = 1.0 (i.e., ERm = 60%), whereas if
it was 2000 or later, Ce = 1.33. If the date is unknown, Ce = 1.17.

m

N,y = N—— =
60 60%

NCg (10-5)

For stress normalization, an estimate of the unit weight profile is created using the specific
gravity (Gs) and water content (w;) measurements in the boring. If one or neither of these values
are present at a particular depth range or in nearby borings, then the Gs and w, are assumed to
be 2.7 and 35%, respectively. Assuming saturation (S=1) beneath the ground water table, the
unit weight is computed as
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_ Yw(e +Gs)
T 1+4e (10-6)

where e is the void ratio equal to Gs(w./100%) and y, = 9.81kN/m3. Assuming S=0 above the
groundwater table, the unit weight is computed as

Yw(Gs)
1+e (10-7)

’y:

If there is an associated groundwater table depth in the WATR table assigned to the boring, we
select that value for case history processing. If there is no associated entry in the WATR table
assigned to the boring, we assign the closest groundwater table depth at any in situ test at the
site (e.g., another borehole or a nearby CPT). These quantities are all used to compute the total
and effective stress profile for the boring. The stresses are used to normalize N using the
equations recommended in Idriss and Boulanger (2008):

(N1)go = Cy - Neg (10-8)
Cy = (P“>m <17
v={g7) =t (10-9)

where p, is atmospheric pressure (i.e., 1 atm = 101.325 kPa). Normalized, clean sand
equivalent values (N7 60cs) are computed as

(N1)socs = (N1)so + A(N1)socs (10-11)

ANy s0cs = 163+ —— ( 7 )2
tsocs = EXP 203 T o001 ~ \FC + 0.01 (10-12)

where FC is fines content in percent (Boulanger and Ildriss, 2014).

A list of attributes computed for the SPT-based site characterization data is provided in
Appendix A, including layer depth, layer thickness, representative SPT N value, N variance,
representative overburden- and fines-corrected N value (N1.60cs), S0il type, PI, Pl variance, FC,
FC variance, vertical effective and total stress, groundwater table depth, CSR, MSF, and K.
These attributes are computed in Python and stored in a pickle file format (with a .pkl file
extension) that is well suited to being read into a Pandas dataframe. We will publish these data
as part of this project to facilitate use by other model development teams.
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10.3.3 Cyclic Stress Ratio

We compute seismic demands on soil layers in the form of a cyclic stress ratio, CSRm7.5,1atm

in the same manner as for the CPT-based models in the Task 7 report [Eq. (5-27) through

Eq. (5-35) in Section 5.4.3]. CSRwm7 5 1am is computed for a given earthquake event and ground
motion that has been associated with an observation of surface manifestation (or lack thereof)
at or near the location of the borehole. Some locations have been shaken by multiple
earthquakes; in which case the borehole data is repeated in the summary pkl file

(see Appendix A for full list of quantities in the pkl file).

As was the case for the CPT-based models, CSRwm7 5 1am Values computed at the center of each
layer are taken to be representative of the layer, and CSRwy7 5 1amm is computed using the PGA
estimates from the Kriging approach outlined in Section 5.2 of the Task 7 report,

where possible. For our fully reviewed dataset, 117 of the PGA values were obtained from
Kriging and 2 were not obtained from Kriging. In the latter case, we relied on legacy estimates of
PGA, which typically used best estimates from available ground motion models.
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11 SPT-BASED MODELS

As described in Chapter 4 of the Task 7 report, the necessary components of the SMT’s
conditional probabilistic approach include estimates of P[S], P[T] = P[T|S]*P[S], P[M|T], and
P[M|NT]. The following sections outline the preliminary approaches adopted by the SMT to
estimate these probabilities using SPT-based site characterization data.

Section 11.1 presents the SMT’s selected model to estimate the probability of susceptibility P[S]
based on existing models from literature. Section 11.2 describes a model for triggering that is
derived from laboratory cyclic test results as given in Section 6.2 of the Task 7 report.

Section 11.3 provides some comparisons to show compatibility with existing legacy models and
the SMT’s CPT-based models (Task 7 report). Finally, Section 11.4 presents a framework to
obtain a model for manifestation based on SPT-based site characterization data using a similar
profile-based regression framework described in Section 4.4.3 of the Task 7 report.

11.1 Probability of Susceptibility, P[S]

Based on the definition of susceptibility in Section 2.1.1 of the Task 7 report, our susceptibility
model considers a soil’'s mineral composition as inferred from P/ (or I for CPT-based models),
and excludes non-compositional factors such as state, saturation, and manifestation potential.
Note that in our approach, saturation is considered as part of the P[T] relationship, as discussed
in Section 4.4.1 of the Task 7 report. The following section outlines a set of P[S] models we
developed based on PI.

11.1.1 P[S] as a Function of P/

Our susceptibility model is probabilistic to reflect natural variability of soil behavior and to
quantify epistemic uncertainty. Following a public workshop on the topic (Stuedlein et al., 2023),
a framework for creating new susceptibility models using the laboratory component of the NGL
database was formulated. However, the implementation of this framework is in its beginning
stages and has not yet been adopted by the broader liquefaction research community.
Therefore, we developed preliminary P[S] models based on legacy deterministic susceptibility
models, namely Bray and Sancio (2006) and Boulanger and Idriss (2006). We use the following
equation, which is a logistic function approximation of a cumulative normal distribution function:

1

1+exp (— 1502

PlsI=1- (11-1)

* (PI — xm)>

where x, and 0, are moments of a normal distribution. We digitized data from plots given by
Bray and Sancio (2006) and Boulanger and Idriss (2006) containing pairs of P/ and

LTS

susceptibility labels [i.e., “susceptible”, “marginally susceptible”, and “not susceptible” for
Bray and Sancio (2006), “sand-like”, “intermediate”, and “clay-like” for Boulanger and Idriss
(2006)]. We then assigned P[S] values of 1.0, 0.5, and 0.0 for data points with “susceptible”,
“marginally susceptible”, and “not susceptible” labels, respectively, assuming “sand-like” =
“susceptible”, “intermediate” = “marginally susceptible”, and “clay-like” = “not susceptible”.
Figure 11-1 shows those data points and probability density functions for each susceptibility
label. We then fit Eq. (11-1) to the data (“data fit” in the figure). Huang (2008) previously

developed P[S] relationships for the Bray and Sancio (2006) and Boulanger and Idriss (2006)
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Figure 11-1 Digitized datapoints from (a) Bray and Sancio (2006) and (b) Boulanger and
Idriss (2006) with susceptibility labels S = susceptible, MS = marginally
susceptible, and NS = not susceptible. Thin lines represent probability
density functions for each susceptibility label and the thick black lines
represent the SMT’s P[S] models as a function of Pl using Eq. (11-1).

datasets that also incorporate some of the original authors’ judgment and uncertainty in the
measurement of Pl. These P[S] relationships from Huang (2008) are also shown in Figure 11-1
for comparison. The SMT decided to use Huang’s P[S] models, but to rewrite them in our
preferred functional form (Eq. 11-1). The Huang (2008) models rewritten in our functional form
are also shown in Figure 11-1 for comparison (labeled “Huang fit”). The coefficients x,» and om
for both models are summarized in Table 11-1.

The range of results in Figure 11-1 constitute a partial representation of epistemic uncertainty.
We decided to treat this uncertainty using a logic tree approach to obtain P/-conditioned
probabilities of susceptibility. We used equal weighting between the models because both
models represent equally reasonable interpretations of available data. The dashed line in
Figure 11-2 represents the average P[S] for each PI. This line was not considered to be suitable
for application due to its irregular shape, so a fit using Eq. (11-1) was developed that produced
the combined model shown in Figure 11-2, which has x» = 10.34 and o, = 4.651.

To incorporate the susceptibility model into the Bayesian inference framework utilized to obtain
the manifestation model coefficients, a distribution function with a mean and standard deviation
must be assigned to each model parameter (i.e., xn» and o, for P[S]). The Bayesian prior
distributions were assumed to be normal with the mean x,, and o, values defined by the
combined SMT model values (Table 11-1). The uncertainty in x,, and 0, was quantified by
approximating the standard deviation of the x,, and oy, values from the Bray and Sancio (2006)
and Boulanger and Ildriss (2006) models using the method by Burrington and May (1970),
yielding 8.34 and 1.85, respectively.
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Table 11-1  Coefficients in Eq. (11-1) for three P[S] models

Model Xm Om
Bray and Sancio (2006), modified from Huang (2008) interpretation | 15.04 | 4.164
Boulanger and Idriss (2006), moFI|f|ed from Huang (2008) 563 2 071
interpretation
Combined SMT model (this study) 10.34 4.651

..... BSOG
BI06
- - avg
- Combined 3
Y
a
0 5 10 15 20 25 30 35 40

Figure 11-2 P[S] models based on Bray and Sancio (2006), Boulanger and Idriss (2006),
and the SMT’s combined model. The dashed line represents an average
between the BS06 and BI06 models.

11.1.2 P[S] as a Function of Soil Description Alone

In the CPT-based model, CPT data was continuous throughout the soil profile and thus the /.-
based P[S] model (Section 6.1 of the Task 7 report) was applicable for all CPT soundings at all
depths where data was available. However, in the case of boreholes, samples are taken at
much more widely-spaced and discrete intervals, with the potential for some soil layers to lack
samples. Therefore, some soil layers could be missing an estimate of P/ due to (i) no samples
taken within that layer, or (ii) soil specimens from available samples were not tested in the
laboratory to measure PI. As a result, the SMT developed an alternative approach to assign
reasonable values of P[S] to soil layers without measured P/ values.

To assign P[S] for layers without Pl measurements, we adopt the distribution of PI for each soil
type using parameters defined in Table 10-2 and then compute P[S] as a function of PI using
the combined model shown in Section 11.1.1. Table 11-2 summarizes the mean PI, standard
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deviation of PI, and representative P[S] for a given soil type. The values of P[S] in this
table were obtained by integrating the product of the PDF of the P/ values in each bin
(e.g., Figure 10-5 in Section 10.3.1.2) with the CDF of the SMT’s combined P[S] model
introduced in Section 11.1.1.

Pm=f2hﬂwﬁl (11-2)
0

where Fqs is the cumulative distribution function defined in Eq. (11-1) and fg, is the probability
density function of Pl for each soil type defined by the normal distribution:

1 _(PI—MPZI)Z (11-3)
e 20py -
op;V 2t

fer =

where pp; and op are the mean and standard deviation of P/ for each soil type, respectively. The
integration was approximated as the following summation to solve numerically because there is
no analytical solution to this convolution:

40
PISI = ) for(PD) - Faus (PD) (11-4)
0

Table 11-2 Mean PI, standard deviation of Pl, and associated P[S] from the combined
SMT model for each soil type group

Soil Type Group Mpi (o P[S]

Gravel or Sand 0 0 0.985

Silty sand or Clayey sand or Sandy silt SIS 5.933 0.563
Silt or Clayey silt 7.5 7.926 0.450

Sandy clay 12.3 2.719 0.358

Silty clay 13.5 4.505 0.311

Clay 18.2 4.694 0.117

Figure 11-3 compares the SMT’s Pl-based P[S] model with the P[S] estimates based on text
descriptions assigned as described in Section 10.3.1.2. The data represented in this figure have
measured P/ values and soil type labels based on text descriptions as discussed in this section.
The shaded areas show the relative distribution of P/ values, centered vertically on the assigned
value of P[S] based on the soil type group. The small vertical lines represent the median P/ for
that group. In general, the SMT’s estimates of P[S] based on text descriptions are in good
agreement with the P/-based P[S] values, with some uncertainty. This is expected, as the text
descriptions are not perfectly mapped to values of Pl and have some dispersion (as shown
previously in Section 10.3.1.2)

11-4



1.0 - and —— SMT Combined, P[S] = f(PI)

o
5]
1

o
(=]
1

Silty sand gr Clayey sand or Sandy silt

Silt or Clage silt

o
f=%
1

P[S] based on soil type group

Sandy clay
Silty clay
0.2 A
Clay
0.0
T T T T T T T T
0 10 20 30 40 50 60 70

P!

Figure 11-3 Comparison of the SMT’s Pl-based P[S] model with the SMT’s P[S]
estimates based on text descriptions. Shaded areas represent relative
distributions of Pl in each soil type group, centered vertically on the
assigned P[S] for that soil type group.

Figure 11-4 compares the SMT’s P[S] assignments based on soil description with the /--based
P[S] relationship from the CPT-based models in the Task 7 report (Section 6.1). The /.
associated with each soil type group was selected using judgment based on soil descriptions for
I ranges by Robertson and Cabal (2015), shown in the figure with shaded vertical bands.

The width of these bands reflects the relatively modest correlation between P/ and /.

(e.g., Section 5.4.2.3 of the Task 7 report; Hudson et al., 2023b). The SMT’s combined
Pl-based P[S] assignments for each soil type group (red symbols) are reasonably close to the
SMT’s I-based P[S] relationship, which gives confidence that estimates of P[S] from the SMT’s
CPT- or SPT-based relationships are similar. One exception is the P[S] for soils described as
“silty sand”, which has a significantly lower P[S] compared to the CPT-based estimate of P[S]
for a soil with I; = 2.0. This is likely due to the large standard deviation of P/ for this soil type
(Figure 10-5 in Section 10.3.1.2).
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Figure 11-4 Comparison of the SMT’s I.-based P[S] model (blue line and circles) with
the P[S] models based on Bray and Sancio (2006), Boulanger and Idriss
(2006), and the SMT’s combined model. Estimates of /. for each soil type
group are approximated based on descriptions from Robertson and Cabal
(2015).

11.2 Probability of Triggering, P[71S]

As described in Chapter 4 of the Task 7 report, the SMT’s approach for developing coupled
probabilistic models for triggering and manifestation requires a “prior” model for the probability
of triggering, which would then be potentially modified from interpretation of case history data. In
Section 6.2 of the Task 7 report, we developed a prior model for P[T]|S] using CRR from cyclic
tests performed on soil specimens in the laboratory. This model was developed based on
Box-Cox transformed D, and then adjusted to allow computation of P[T]S] as a function of

CPT data. For the SPT-based models, we adopt the same prior D-based P[T]S] model and
adjust it to allow computation of P[T]|S] as a function of SPT data (i.e., N1 60cs), as described

in this section.

The D-based linear model as documented in Section 6.2.6 of the Task 7 report is:
m=(0+(1*5;+8*a{ (11-5)

where {y, ¢;, and a; are model coefficients defined in Table 6-2 of the Task 7 report and ¢ is the

standard normal variate (zero mean and unit standard deviation). Alternatively, the equation can
be rewritten in the untransformed space as:
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D DTA A CRR

CRR = (ra_mleCRRO(SHCRR% - C;Rfl ; 1) (11-6)
Dr Dr

Typically, liquefaction evaluations are performed based on in situ test measurements (e.g., SPT
or CPT), and D; is not known. However, D, can be approximated from SPT or CPT data using
published correlations. In the Task 7 report, the SMT adopted a correlation recommended by
Idriss and Boulanger (2008) to convert D, to gc1ves (EQ. 6-26). Idriss and Boulanger (2008) also
recommended a correlation to convert D, to Ny 60cs, which the SMT chose to adopt for our
SPT-based triggering model:

N
D, (%) = 100 [—2%= (11-7)
Ca

where Idriss and Boulanger (2008) recommended C, =46 for clean sands. Using a subset of our
“intact” specimen dataset of laboratory tests (see Section 6.2.1 of the Task 7 report) where both
D, and Ny or N1 6o are known and chamber test data obtained from Marcuson and Bieganousky
(1977), we compared the correlation between D, and Ny socs with measured values of D, and
N160 (Figure 11-5). In cases where only N; was known, the energy was assumed to be 80% for
intact specimens and 60% for chamber tests to normalize Ny to N1 e0. Using Cy = 46 (solid black
line) reasonably represents our data, while other recommended Cy values [e.g., 35 for
depositionally “new” soils and 60 for natural soils with depositional age older than 100 years per
Skempton (1986); 26 for silty sands and 51 for clean sands per Cubrinovski and Ishihara 1999]
also fit within the range of the measured data. The SMT decided to adopt Cy =46.
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Figure 11-5 Comparison of the Idriss and Boulanger (2008) correlation between D, and
a) N1,60 and b) Ny eocs for three fitting coefficients: Cq = 35, 46, and 60. The
SMT adopted the relationship with C4 = 46.

As discussed in Section 6.2, we acknowledge that there are effects due to sample disturbance
and soil fabric that cause CRR to be different in the laboratory compared to what is expected in
the field (e.g., Seed, 1979). Our philosophy is to use results from laboratory testing to reflect the
effect of state in this CRR relationship. This prior relationship (Eq. 11-6) is then tested against
case histories through the Bayesian updating process as we develop a manifestation model
(e.g., as was done for CPT-based models in Sections 6.3.2, 6.3.3, and 6.3.4). In this section, we
develop the prior to be used in the Bayesian updating framework using SPT data described in
Section 11.4 (and aligned with the CPT-based framework in Sections 4.4.2 and 4.4.3).

As discussed in Section 6.3.7 of the Task 7 report, we anticipate that applications of the P[T]S]
models developed in this report will be of two types: (1) applications for which the desired end
product is a prediction of manifestation and (2) applications for which only P[T] is of interest (i.e.,
the manifestation components of the model will not be used). For the first application type, the
goal is to test the laboratory-based prior triggering relationship against case histories through
the Bayesian updating process as we develop a manifestation model, as was done for CPT data
in Section 6.3.5 and for SPT data in Section 11.5. For the second application type, following the
logic developed in Section 6.3.7, the recommended central branch P[T]|S] model when P[T] of a
single layer is desired (i.e., triggering analysis only) using SPT data is the same as the
CPT-based models: compute P[T] as the product of PFns and PFs, where PFrs is defined in

Eq. (11-5) and uses the laboratory-based coefficients in Table 6-2. The equations to compute
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P[T] using SPT data are summarized below, with equation numbers from the Task 7 report
included in parentheses when the same equation is used in both the CPT- and SPT-based
model.

P[T] = PFysPFs (11-8)
(6-21)
where
PFoie = 1 (11-9)
e ~1.702 - (CSR — CRR) (6-22)
+exp 0.094
< _ (CSRM7.5,1atm_0'6566 - 1) (11-10)
CSR = —0.6566 (6-23)
CRR = —7.43 +0.0325- D, (11-11)
(6-24)
. p,12022_ . _
by = ( 1.2022 . (Drin %) Eng;)z)
_ 1 (11-13)
PFs =1~ 1+ (—1.702 - (PI - 10.34))
€Xp 2.651

Using these recommended equations yields CRR and PFrs values as shown in Figure 11-6 as
functions of D,, and Figure 11-7 as functions of N1 eocs. Note that for Ny socs Values greater than
about 46, the associated D, using the correlation in Eq. (11-7) is greater than 100%. Although a
D, greater than 100% is not theoretically correct, we acknowledge that there is inherent
uncertainty in the D,-N; socs correlation that prevents a perfect mapping between all possible
values of Ny e0cs and corresponding values of D,. In fact, it is common to reach blow counts
equal to or greater than 50 in very dense or gravelly soils. Thus, to allow estimates of P[T]|S] for
soils with Ny socs greater than 46, we extend these relationships beyond the limits of the D, fo

N1 60cs correlation. This is depicted in Figure 11-7 as dotted lines.

Those who apply the recommended P[T]S] Egs. (11-8) through (11-13) above for soils with

N1 60cs greater than 46 should carefully consider the potential causes of these high blow counts
and the resulting P[T]S]. For example, it is common practice to continue an SPT until achieving
“refusal”, which is often considered to be 50 blows in less than the standard 0.30m penetration
distance of the test. If refusal in one soil layer is achieved in 0.10m whereas refusal in another
soil layer is achieved in 0.30m, both soils would be assigned the same CRR and P[T]S] if N1 60cs
is recorded as 50 in both cases. This is problematic because the soil that reached refusal in
0.1m could be significantly denser, older, and/or more cemented than the soil that reached
refusal in 0.3m, and therefore would be expected to have a higher CRR and a lower P[T]S]. This
nuance is discussed in more detail in Section 12.1.
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Figure 11-6 Plots of D,-dependence of (a) CRR and (b) PFrs.
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Figure 11-7 Plots of N1 eocs-dependence of (a) CRR and (b) PFrs. Dotted lines indicate
where Ni60cs Would yield a D, > 100% using the adopted correlation.

11.3 Example Comparisons of SPT and CPT Triggering Models

To illustrate the consistency of the SMT’s CPT- and SPT-based triggering models, we
compared results for a case history site with a CPT sounding and a boring performed in the
same location. We chose a well-documented case history located in Moss Landing where
liquefaction was observed after the 1989 Loma Prieta earthquake (Boulanger et al., 1995,
1997). According to Boulanger et al. (1995), considerable damage, including sand boils and
severe cracking, was observed in the parking lot surrounding the Harbor Master’s Office.
Figure 11-8 provides a map of the area, including the locations of the CPT (UC-21) and the
boring (UC-B3) selected for our example. This particular pair of geotechnical tests was selected
because the soil profile was relatively well characterized with SPT measurements with few data
gaps (e.g., there was at least one blow count in every STRA soil layer, and there were several
FC and Pl measurements in layers where fines were noted in the STRA descriptions), as shown
in Figure 11-9.
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Figure 11-9 A screenshot of the SMT’s Jupyter tool showing layer boundaries and
representative layer characteristics for UC-B3 at Moss Landing Harbor

Figure 11-10a-d shows a side-by-side comparison of the CPT data (qcnes and ;) and

Office.

borehole/SPT data (N+,60cs and Pl) with depth, including the assigned layering based on the

SMT'’s approaches (red lines). The figure also shows comparisons of CSRu7.5,1am, CRR, P[T]S],
and P[S] for both the CPT-based models (Task 7 report) and SPT-based models (this
addendum). Note that the Ksat parameter is not shown here but would be 0 above the

groundwater table and 1 below and would be multiplied by P[T]S] and P[S] to obtain P[T].

The values of CSRw75,1am are essentially identical between the SMT’'s CPT- and SPT-based

models, since the equations used to compute this parameter are the same. Minor differences
are due to differences in FC (which affects the K, calculation) and slight differences in
overburden stresses due to alternative layer boundaries. The same depth to groundwater was

used in both CPT and SPT profiles.

Estimates of CRR are generally consistent between the SMT’s SPT- and CPT-models, although
significant differences occur at several depth intervals:

3.5-4.5 m: The SPT value correlates to a higher relative density than the CPT, despite

both being sand layers; this difference increases CRR for the SPT relative to that

obtained for the CPT.

6.5-11 m: Due to more continuous data sampling enabled by using the CPT sounding,
the CPT layering is more finely discretized between 6.5m and 8.3m depth where the
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boring log indicates there are interbedded layers of clay, silty sand, and sand with silt. If
the STRA boundaries are used, these interbedded layers are treated as one layer with a
single set of representative FC, PI, and N1 e0cs values, which does not capture the same
level of variability that the CPT layering indicates. For example, the CPT data indicates
that a clay layer is present between 7.5 and 8m that is missed by the STRA layer. In
addition, between 8.3 and 11m, the STRA description indicates the presence of gravels
within the sand layer but does not specify the depths. More refined layer boundaries for
the SPT data could address some of these discrepancies.

e > 11 m: Higher CRR values are obtained for the SPT method, but this has no practical
significance because this interval is clayey and has very low P[S] from both models.

Case 105, Site: Moss Landing Harbor Office (ID713), FLDM: Yes (ID2009)

UC-21 (ID3580) UC-B3 (ID3581)
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Figure 11-10 Comparison of the SMT’s SPT- and CPT-based models using CPT data (UC-
21) and SPT data (UC-B3) at Moss Landing Harbor Office. (a) gcines, (b) I, (¢)
Ni1socs, (d) CSRwm7.5,1atm, | CRR, (f) P[T]S], and (g) P[S].

Moreover, although the CPT sounding and SPT boring are marked as being in the same
location in Figure 11-8, practically speaking, there was at least some separation distance
between the two geotechnical explorations. This introduces some spatial variability with the
potential for (i) layer boundaries of a soil layer that is present in both explorations to be offset
and/or (ii) natural variability in penetration resistance, e.g., gcines Or N1 60cs.

The general trends in P[S] are similar for the SMT’s CPT- and SPT-based models (e.g., layers
that have P[S] above 0.5 using one method also tend to have P[S] above 0.5 using the other
method, except for some of the interbedded layers, as discussed previously). The same can be
said for P[T]S] values between the two methods.
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These inherent differences between the SPT- and CPT-methods using two co-located
geotechnical explorations is not unique to the SMT'’s triggering models. These differences are
also apparent when using legacy models, such as the Boulanger and Idriss (2016) CPT-based
model and the Boulanger and Idriss (2012) SPT-based model, abbreviated as BI16 and Bl12,
respectively. This is illustrated in Figure 11-11 using the same pair of co-located explorations.
The layer boundaries and representative layer characteristics (e.g., N1 60cs, Qcines, FC, and PI)
are sensitivee to natural variations in penetration resistance, spatial variability between two
“co-located” explorations, and differences in data sampling rate. This in turn affects P[T]S]

and P[S].
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Figure 11-11 Comparison of the BI12 SPT-based models and the BI16 CPT-based models
using CPT data (UC-21) and SPT data (UC-B3) at Moss Landing Harbor
Office. (a) qc1Ncs, (b) Ic, (C) N1606$, (d) CSRM7.5,1atm, I CRR! (f) P[nS]s and
(9) PLS].

Finally, Figure 11-12 compares the SMT’s SPT-based models with the Boulanger and Idriss
(2012) SPT-based triggering model and the Boulanger and Idriss (2006) susceptibility model
(as characterized by the SMT’s logistic function described in Section 11.1.1). For the application
of the legacy models, we interpret the layer boundaries and representative properties in the
same way, so that the only differences in model outputs are from the models themselves. The
SMT’s CSRwyr.5,1atm are relatively similar to the Bl12 values in this particular case, and the
differences are explained by differences in the ry, Ky, and MSF correction factors applied in each
method. Note, the same PGA from the NGL database was used in both cases to compute
CSRwr.5,1atm, despite Boulanger et. al (1997) citing a different PGA in their original interpretation
of this case history. The CRR, P[T]S] and P[S] values are functionally similar, i.e., both SMT
and BI12
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Case 105, Site: Moss Landing Harbor Office (ID713), FLDM (ID2009)
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Figure 11-12 Comparison of the BI12 SPT-based models and the SMT’s SPT-based
models using SPT data (UC-B3) at Moss Landing Harbor Office. (a) gcincs,
(b) I, (€) Ni1eocs, (d) CSRwz.5,1atm, (€) CRR, (f) P[T]S], and (@) P[S].

methods predict high CRR and P[T]S] above 0.5 or low CRR and P[T]S] below 0.5 in the same
layers, and both methods predict P[S] above 0.5 or below 0.5 in the same layers. However, one
notable difference is that the BI12 models tend to predict P[T]|S] and P[S] approximately equal to
either 1.0 or 0.0 without predicting intermediate values, whereas the SMT models predict P[T]S]
and P[S] values that are 0.0, 1.0, and other intermediate values in between.

Additionally, it may at first appear that the SMT’s lower values of P[T]|S] in the shallow layers
indicate that it is less conservative than Bl12. However, that interpretation ignores the distinction
between triggering and manifestation that is made by the SMT model. The SMT hypothesizes
that the BI12 P[T]S] model depends on manifestation of some kind (e.g., sand boils or ground
cracks at the surface), whereas the SMT’s P[T]S] model is based on laboratory data updated by
field observations and is independent of manifestation considerations. This nuance is discussed
in greater detail in Section 12.2.

11.4 Probability of Manifestation P[M] Model Framework

As discussed in the Task 7 report (Section 4.4.3), computing P[Mp] requires specification of the
prior distributions for the coefficients in the PFs, PFns, and PFuy 7 functions, and the
characteristic thickness, t.. Our approach is to develop model priors for PFs and PFns from
laboratory data as described above, to use uninformed PFyr coefficients, and then to apply
Bayesian regression to estimate posterior distributions of all coefficients. In essence, the
purpose of developing a P[M] model is twofold:
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1) To provide a model to predict manifestation of liquefaction, and

2) To update the coefficients assumed in the prior distributions of PFs and PFnsbased on
laboratory data.

The framework to infer the coefficients for the SPT-based manifestation model using
observations of manifestations at NGL sites is similar to what was presented for CPT-based
models in the Task 7 report, with some modifications. This section identifies those differences.

11.4.1 Manifestation Probability for a Profile

As discussed in Section 4.4.2 of the Task 7 report, the probability of manifestation of a profile
P[Mp] is computed as:

NL ” (11-14)
P[Mp] =1— 1_[(1 — PFy, i1, PFr,Ksat) " ¢ (4-10)

=1

where N, is the number of layers in the profile, t; is the thickness of the i layer, and t; is a
constant characteristic thickness. Eq. (11-14) is a simplified case that only considers
contributions to manifestation from liquefaction triggering and ignores cyclic softening and non-
triggering manifestations. Recall, PFy, |7, is the probability factor of manifestation of a layer
given triggering of the layer, defined exactly as P[M;|T.] in Eq. (4-8) when the thickness of the
layer is equal to f.. PFy, is the probability factor of layer triggering which is the product of the
probabilistic triggering and susceptibility prior models (P[T]ST*P[S]).

Also recall, the expression P[NM,] is equal to the probability that the layer will not manifest
liquefaction and that P[NM.] = 1 — P[M.]. If none of the layer’s manifest liquefaction, then the
profile cannot manifest liquefaction. Therefore, P[NMpg] is computed as a product sum of P[NM,].
However, a direct product sum (i.e., without the f/f. term in the exponent) inherently assumes
that P[NM,] for each layer is statistically independent from all other layers. This is generally not
true. The t/t. exponent was applied to greatly reduce the influence of discretization by tying layer
thickness to the characteristic length. The characteristic thickness is the layer thickness for
which PFy, r, is statistically independent of the other layers. If all layers have a thickness equal
to the characteristic thickness, then Eq. (11-14) reduces to a simple product sum. If a layer is
thicker than the characteristic thickness, it becomes more likely to manifest, and vice versa. For
the CPT-based manifestation model, the optimal characteristic thickness was found to be 2.0m.
This characteristic layer thickness will need to be reassessed for the SPT model due to the
inherent differences in SPT and CPT data (e.g., layers tend to be thicker in the SPT
interpretations).

We are exploring different options for parameters to use in the SPT-based P[M.|T;] model.
Parameters under consideration are depth to top of the layer, PI, FC, and Ny,socs.

11.4.2 Profile-Based Regression Framework
In Bayesian regression, prior beliefs about the model coefficients are updated using
observations to form posterior beliefs about the model coefficients. The posterior distributions

generally cannot be obtained in closed form, so samples are drawn from the posterior
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distribution numerically using Monte Carlo methods. This regression seeks coefficients that
maximize the Bernoulli log-likelihood likelihood function,

N (11-15)
L= N_p;[yk In(P[Mp])) + (1 — ) In(1 — P[Mp];)] (4-12)

where yi is a binary indicator of whether manifestation was observed at the k" site (yx = 1 if
manifestation was observed, y,=0 if it was not), and Np is the number of profiles in the database.
This likelihood function is similar to those used in other probabilistic liquefaction models

(e.g., Cetin et al., 2018; Moss et al., 2006).

The likelihood function exhibits several notable properties. First, if yx=1, only the first part of the
expression within the square brackets on the right side of Eq. (11-15) contributes to the
likelihood function for profile k, whereas only the second expression contributes if y,=0. Second,
if the prediction is a true positive (i.e., if yi,=P[Mp]x = 1), or a true negative (i.e., if yx=P[Mg]« = 0),
the contribution to the likelihood function from that profile is zero. Only values of P[Mp] that do
not match the observed manifestation contribute to the likelihood function. The ideal scenario
would therefore be to select an optimal set of coefficients that render P[Mp] values that are
either 0 or 1, and perfectly match the observations. In that case, the selected variables would
perfectly separate the data into distinct domains, and the likelihood function would be L = 0. For
real datasets, this is generally not feasible, and the value of L will therefore be less than zero.

Our approach is to adopt a NUTS algorithm (Hoffman and Gelman 2011, 2014). NUTS uses a
recursive algorithm to build a set of likely candidate points that spans a wide swath of the target
distribution, stopping automatically when it starts to double back and retrace its steps. The
Python package PyMC (Wiecki et al., 2023) is used to perform NUTS sampling and

Bayesian regression.

In the proposed framework to develop SPT-based manifestation models, in addition to the prior
distributions of model coefficients, all of the training data quantities (e.g., N, PI, FC) are input
into the regression as random variables with distributions defined using the means and standard
deviations established in Section 10.3. Each of the random variables are assumed to be
normally distributed with standard deviations taken as the square root of the variances
described in Section 10.3 with cutoff values applied where appropriate (e.g., Pl and N cannot be
below 0% and FC cannot be below 0% or above 100%). N1 60cs is computed within the random
variable framework to incorporate the individual uncertainties from N and FC in the clean sand
correction. This allows the quantified uncertainty for every layer’s representative properties to
be incorporated into the Bayesian inference and influence the posterior distributions of the
model coefficients.

As discussed in Section 4.4.2 of the Task 7 report, the model formulation includes manifestation
given triggering but does not include manifestation given no triggering nor manifestation given
no susceptibility. The model that only considers manifestation caused by triggering therefore
involves three models that each have coefficients that can be updated: susceptibility, triggering
given susceptibility, and manifestation given triggering. The formulation in Eq. (11-14) can be
expanded to show the susceptibility, triggering, and manifestation models that go into the profile
manifestation prediction as shown in Section 4.4.2,

11-18



Ny,

tl/tc
P[M,] =1 — 1_[ (1= PFuyr PFrys PFs Ksar,) (11-16)
=1 (4-11)

11.5 Consistency of SPT Data with CPT P[M] Model

As of the date of this report, the SPT-based P[Mp] models could not be constrained using the
SPT case histories we were able to incorporate into the model development process for reasons
given later in this section. We instead focused on whether the SPT case histories we have
analyzed are consistent with the CPT-based manifestation model based on z:p, PFm(Ztop)
(Section 6.3.3), shown in Eq. 11-17. The benefit of this model is that it can be applied to both
CPT and SPT datasets since it does not involve CPT-specific measurements.

1
1+ exp[—(2.383 — 0.3752,0, )] (11-17)

PFM|T =

We checked the consistency of the CPT-based manifestation model PFuyr{(zwp) using two
datasets: 1) the dataset of reviewed case histories described in Section 10.1, which only
included borings co-located with one or more CPT soundings (119 profiles), and 2) a reduced
dataset of profiles in which every layer has at least one measured N value (32 profiles).
Although we have identified potential strategies for estimating Ny socs without measurements of N
in a given layer, such strategies add considerable uncertainty to the results.

As a result, we initially examine the second dataset (the reduced dataset of reviewed profiles
with at least one measured N value within every layer). Figure 11-13 shows the input models for
PFs, PFns, and PFyr and a confusion matrix computed using those input models on the
reduced dataset of reviewed profiles with measured N values within every layer. The input PFs
and PFns models are the laboratory-based priors as described in Sections 11.1 and 11.2,
respectively. The PFyr model is the model regressed using the CPT dataset presented in
Section 6.3.3. The dataset was tested using the uncertainty of variables in layers assigned as
described in Section 10.3 by treating each layers’ properties as a stochastic random variable
and using the maximum a posteriori estimate of P[Mg] for each profile.

For comparison, the confusion matrix and performance metrics for the PFyr(z:p) model from
Section 6.3.3 computed for the CPT dataset is shown in Figure 11-14. The true positive rates for
the SPT and CPT data are similar using this model. However, the true negative rate is lower for
the SPT data, indicating a higher rate of false positive predictions.
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Figure 11-13 Performance of the CPT-based PFuyr(z:p) model used with the SPT dataset
of reviewed profiles with a measured N value within each layer. (a), (b), and
(c) present the model parameters in the relevant dataspaces for PFyr, PFrs,
and PFs, respectively. (d) presents the confusion matrix and statistical
metrics of the predicted P[Mr] using the model parameters in (a), (b), and
(c) compared with the observation of manifestation for each of the SPT
case histories in the reduced dataset.
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Figure 11-14 Performance of the PFu r(z:p) model regressed using CPT data on the CPT
dataset (Task 7 report).

The dataset considered in Figure 11-13 is small (32 profiles), limiting the statistical rigor of the
results. To strengthen the analysis, we perform a second evaluation using the larger dataset of
119 reviewed SPT case histories. The additional cases are missing N values in some layers,
which was addressed by assigning N values to layers that do not have N measurements as the
nearest measured N value in the profile. For such assignments, we increase the spatial
variance of N by a factor of 1.5 (Section 10.3.2). Figure 11-15 shows the results of the CPT
PFu(ziop) model applied to the larger dataset of reviewed SPT case histories. The true

positive rate increases, while the true negative rate stays approximately the same as the test on
the initial (smaller) dataset, indicating slightly better performance on average for the

expanded dataset.

Our interpretation of the results from these two evaluations is that the CPT PFuyr(z:p) model is
reasonably consistent with the SPT dataset. In both SPT dataset test cases, the true positive
rate is higher than the true negative rate, indicating a potential bias of the PFuyr(z:«p) predicting
manifestation over no manifestation within these test datasets.
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Figure 11-15 Performance of the CPT-based PFuyr(z:p) model used with the SPT dataset
of all reviewed profiles. (a), (b), and (c) present the model parameters in the
relevant dataspaces for PFuyr, PFrns, and PFs, respectively. (d) presents the
confusion matrix and statistical metrics of the predicted P[Mg] using the
model parameters in (a), (b), and (¢) compared with the observation of
manifestation for each of the SPT case histories in the full dataset.

To provide additional insight into model performance, we apply the susceptibility and triggering
model while assuming that any liquefied layer would manifest. The aim of this evaluation is to
quantify the impact of the manifestation model on the results as expressed in the confusion
matrix. These analyses use the larger dataset of 119 reviewed SPT case histories with a model
that includes the PFs, PFns priors but forces PFuyrto be 1 for all layers. This model is input into
the P[Mp] framework and applied to the SPT dataset, yielding the results presented in

Figure 11-16. There are a high number of true positives, but a larger number of false negatives
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than true negatives. This demonstrates that the application of the CPT-derived PFy1(z:p) model
improves performance. This evaluation was also performed using the Boulanger and Idriss
(2012) SPT model as the PFns model within the P[Mp] framework, and the resulting confusion
matrix is presented in Figure 11-17. Using the Boulanger and Ildriss (2012) model decreases the
number of true positives by 11 case histories while increasing the number of true negatives by
two case histories relative to the similar analysis in Figure 11-16. While the imbalance between
true positives and true negatives has narrowed, overall model performance as measured by the
sum of true positives and true negatives has worsened.

The above analyses confirming the applicability of the CPT-based manifestation model to
subsets of SPT case histories were considered by the SMT to be the only viable approach for
these analyses. Inherent shortcomings of profiles established solely based on borehole logs
with SPT, including often incomplete layering and missing layer properties (penetration
resistances and index tests), cause such data to be suboptimal for characterizations of layer
and profile manifestation.

To regress potential future SPT-based manifestation models would require broadening the
number of sites characterized for model development to expand beyond those with co-located
borings and CPTs to include those with borings / SPTs only. It would also be required to
develop procedures, with defined uncertainties, to overcome data gaps including missing FC,
PI, or N in individual soil layers. These challenges and others are discussed in more detail in
Section 12.1.
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Figure 11-16 Performance of the P[Mr] model where PFyris set to 1 for all layers in the
SPT dataset of all reviewed profiles. (a), (b), and (c) present the model
parameters in the relevant dataspaces for PFuyr, PFns, and PFs,
respectively. (d) presents the confusion matrix and statistical metrics of the
predicted P[Mp] using the model parameters in (a), (b), and (c) compared
with the observation of manifestation for each of the SPT case histories in
the full dataset.
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Figure 11-17 Performance of the P[Mr] model where PFyris set to 1 for all layers in the
SPT dataset of all reviewed profiles and PFrs is set to the Boulanger and
Idriss (2012) model. (a), (b), and (c) present the model parameters in the
relevant dataspaces for PFuy 1, PFns, and PFs, respectively. (d) presents the
confusion matrix and statistical metrics of the predicted P[M¢] using the
model parameters in (a), (b), and (c) compared with the observation of
manifestation for each of the SPT case histories in the full dataset.
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12 DISCUSSION OF BOREHOLE AND SPT-BASED MODELS

In this addendum, we present probabilistic models developed by the SMT for the prediction of
liquefaction susceptibility and triggering based on SPT data and present a framework for
developing probabilistic models for the prediction of manifestation based on SPT data. As
presented in the companion Task 7 report, we used specific definitions for those terms and
formulated the models in a manner that is consistent with those definitions. For a given
application, particular elements of the three-part modeling framework may be most critical. The
clear separation of the components allows such determinations to be made, which in turn
provides the opportunity to refine such elements through additional testing or data collection to
reduce uncertainties for critical applications.

As discussed in Section 2.2 of the Task 7 report, two important philosophies influenced how this
work was performed. First, we use data from the NGL database, and as such the information we
relied upon is available to any interested researcher. This promotes transparency and
repeatability. Second, while we exercised our experience and judgment throughout the learning
and model-building process, we translated that judgment into procedures that can be
consistently applied across case histories. This too promotes transparency and repeatability,
while also reducing the influence of confirmation bias and allowing the models to be used in
forward applications in a manner that is consistent with how they were developed.

Our modeling process has Bayesian elements, as described in Sections 4.1 and 4.2 of the
Task 7 report. The main objective of the modeling process is prediction of a particular effect of
liquefaction, namely surface manifestation. Within the Bayesian process that leads to such
predictions, several critical model elements must be formulated, which include probability of
susceptibility P[S], probability of triggering given the soil is susceptible P[T]S], probability of
profile manifestation when one or more layers within the profile trigger P[Mg] (which is
conditioned on a series of variables that are not shown here for brevity). This addendum
presents SPT-based models for two of these elements — P[S] (Section 11.1) and P[T]S]
(Section 11.2) and provides a framework for obtaining a third element — P[Mg] (Section 11.4).

All of the models provided in this report have empirical elements. As such, they are valid only
over certain parametric ranges. The P[T]|S] model mainly applies for Holocene sediments and
artificial fills that are relatively granular in composition. The D, range for the model is considered
to be 20% to 90% based on the availability of laboratory data but has been extended to apply
outside this range when using Nisocs as the input parameter (discussed in Section 11.2). The
P[Mge] model is intended to predict manifestation from liquefaction at essentially level ground
sites; as such it does not apply for problems involving cyclic mobility, flow slides, or ground
failure from non-susceptible soils (i.e., stability problems involving strength loss in clay).

The following sections highlight important discussion topics for understanding and appropriately
using the SPT-based models provided in this addendum and provide suggestions for future
research topics that could improve these models.

12.1 Challenges in Interpreting Borehole Data

Interpretation of borehole data, including SPT blow counts, provides some benefits and some
challenges relative to CPT-based methods. The primary benefit is that a geologist or
geotechnical engineer performs visual manual classification of soils retrieved from the borehole
during drilling, which provides insights into soil composition that are superior to soil behavior
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type index, I, that is used when CPT testing is performed in the absence of sampling.
Furthermore, laboratory tests are often performed on samples gathered from the boreholes,
providing direct measurements of fines content and plasticity characteristics, and possibly cyclic
strength, that are known to influence liquefaction susceptibility and triggering. Correlations
between I; and FC and P/ are often quite poor, and measuring these quantities is superior to
inferring them from /..

A significant drawback of developing a profile-based manifestation model using borehole data
compared with CPT data is that SPT blow counts are sampled infrequently compared with CPT
tip resistance, and sometimes no SPT blow counts are measured within an entire stratum. For
example, an engineer may opt to forego (with good reason) SPTs within a fine-grained soil layer
opting instead for tube samples for laboratory testing. In other cases, blow counts were simply
not measured within layers having a non-negligible probability of susceptibility. For example, in
Figure 10-2, a stratum at Moss Landing Marine Lab between approximately 9 and 13 m depth is
described as “Clay and sand (CL-SP)” in the stratigraphic log. Based on the soil description, a
mix of susceptible and non-susceptible soils would be expected within the stratum. However,
blow counts were not measured in this layer, and assigning a probability of triggering and
manifestation therefore cannot be performed on measured penetration resistance values. In a
traditional liquefaction triggering assessment, the path forward is clear. The critical layer would
simply be selected as the sandy layer overlying the “Clay and sand” stratum. But in a profile-
based framework, every layer contributes to the overall manifestation probability.

Low plasticity fine-grained soils have a non-zero probability of susceptibility in our model, and
therefore must be evaluated for liquefaction triggering. SPT-based liquefaction triggering
relationships use blow counts that must be corrected for the effects of non-zero fines contents.
However, fines content corrections have been formulated for sandy soils with predominantly
non-plastic silts, and any bias introduced by applying these fines content corrections to plastic
fine-grained soils is currently not well understood. We anticipate that fine-grained soil will
generally have a higher cyclic strength than implied by inserting their fines-corrected blow count
values into a CRR equation because they are likely to be undrained during penetration
resistance tests. High pore pressures that persist between blow counts will reduce the
measured blow count. Furthermore, bearing factors at the tip of a sampler are different for
drained and undrained loading, and drained tip resistance is generally significantly higher than
undrained as a result. We contend that sampling and cyclically testing these materials is the
best way to assess their cyclic strength, but such testing is not available in most of the case
histories in the NGL database, and for none of the ones used herein.

A number of methods could potentially be used to fill in gaps in penetration resistance
measurements. First, soil layers with missing blow count data could be assumed to be non-
susceptible based on the observation that an engineer or geologist would have measured blow
count values in all susceptible layers. Interestingly, Saye et al. (2021) attributed observed
ground failure at the Moss Landing Marine Lab to failure of a fine-grained soil layer rather than
to liquefaction of the sand layer assigned as the critical layer by Boulanger and Idriss (2016).
Saye et al. (2021) utilized CPT data instead of SPT data to make this inference, but the point
remains that important aspects of the performance of a profile may be missed if fine-grained soil
layers (which are disproportionately more likely to not have SPT blow counts) are excluded from
consideration. Second, susceptibility and triggering could be based on laboratory tests
performed on the fine-grained soils. Ideally, plasticity characteristics would be measured using
the Atterberg limits test, and both susceptibility and cyclic strength would be evaluated using a
cyclic testing program (e.g., direct simple shear or triaxial testing). Atterberg limits are often
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measured for fine-grained soils. However, cyclic strength testing is rarely performed. Third, the
cyclic strength of fine-grained soils could be characterized using CPT data instead of borehole
information. In these cases, we argue that the cone tip resistance should also be utilized to
characterize the sandy soils because CPT measurements are more repeatable than SPT
measurements. Finally, the penetration resistance could be inferred from visual manual
classification (e.g., qualitative soil descriptions such as hard/stiff/soft), or from measurements in
similar layers within the profile. However, the resulting inferred values would be highly uncertain.

Uncertainty in SPT blow counts arise from measurement errors, and from soil spatial variability.
Blow count measurements carry significant uncertainty due to (i) hammer energy being rarely
measured, (ii) upward migration of water in hollow-stem auger borings when adequate pressure
head is not maintained, (iii) use of non-standard sampling equipment such as the modified
California sampler, or SPT samplers modified to accommodate rings, (iv) rod length corrections,
and other factors. By contrast, measurement error in CPT tip resistance is due to the calibration
coefficient in the cone tip load cell, and potentially push rate. For these reasons, we consider
SPT blow counts to carry significant measurement uncertainty compared with CPT tip
resistance. Furthermore, soils are spatially variable due to the depositional processes that
formed them. Both SPT and CPT result in some depth-averaging such that the measured
penetration resistance is not a point measurement, but rather an average within a zone of
influence. Averaging is more significant for SPTs because the single blow count is measured for
a full 0.30m of sampler penetration. Furthermore, a handful of SPT measurements might be
obtained within a stratum, which does not permit a robust quantification of within-layer
variability. It is therefore often unclear whether the selected SPT blow count is truly
representative of the layer.

Another challenge is that SPT blow counts are often terminated in stiff soils before the sampler
is advanced one foot, resulting in refusal or a blow count reported as, for example, 50/4” where
50 blows were applied to the sampler, but it only advanced 4” before the test was terminated.
Using typical correlation relationships (Section 11.2), uncemented sandy soils are inferred as
having a blow count around 46 when Dr = 100%, so there is arguably no meaning to continuing
SPT measurements beyond this threshold. However, soils with blow counts higher than the
threshold are likely cemented, thereby increasing the blow counts in a manner that makes
liquefaction assessments difficult since our procedures are formulated for uncemented sands. It
is likely that refusal soils have higher liquefaction resistance than uncemented sands with Dr =
100%. Yet assessing the cyclic strengths of these materials is not currently possible. This is the
reason we have opted to extrapolate cyclic strength with blow counts in Figure 11-7.

12.2 Triggering and Manifestation

The reliance upon field data in the development of empirical models of liquefaction potential has
been well established and widely accepted for many years. This approach was based on the
difficulty of obtaining undisturbed samples of clean, liquefiable sands and the observation that
different methods of specimen reconstitution produced very different levels of cyclic strength in
laboratory tests (e.g., Seed 1979). As a result, in U.S. practice laboratory tests have tended to
be relegated to the investigation of constitutive behavior (e.g., phase transformation, cyclic
degradation) under carefully controlled conditions and to establishing trends in behavior with
respect to variables (e.g., initial effective stress) that significantly influence behavior in the field.
Advances in soil sampling technology, such as by ground freezing, have proven to be expensive
and are not commonly used in the U.S., although they are used more commonly in Japan.
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Current empirical models generally use the presence or absence of surficial features such as
sand boils or ground surface cracking as evidence of the triggering or non-triggering of
liquefaction in a given earthquake. These features, which are often referred to as “surface
manifestation” are implicitly assumed to be perfect indicators of the triggering of liquefaction in
the earthquakes that produced, or didn’t produce, them. However, it is widely recognized that
liquefaction can be triggered, for example in a thin or deep soil layer, without producing sand
boils or ground cracking. It is also possible for ground cracking to be associated with cyclic
softening of clay-like soils or, potentially, by elevated pore pressures not reaching 100% pore
pressure ratio in thick, shallow sand-like soils. As such, it could be argued that the factor of
safety produced by these empirical models describes the potential for surface manifestation
more accurately than the potential for the actual triggering of liquefaction.

The triggering of liquefaction is characterized by a significant reduction in effective stress and
consequent reduction of stiffness, which can lead to a number of different consequences that
involve different elemental and soil profile behaviors. The development of sand boils, for
example, involves the hydrologic characteristics of a soil profile in addition to the mechanistic
behavior of the liquefiable soils within it. The development of ground cracking is influenced by
the behaviors of both liquefiable and non-liquefiable soils, such as the cyclic degradation of
saturated clay-like soils and the brittleness of overlying, non-liquefied “crustal” soils. Thin, loose
layers that may not expel enough porewater to contribute to sand boil development, however,
may develop sufficient shear strains to contribute significantly to lateral spreading or, in extreme
cases, flow sliding.

Thus, the triggering of liquefaction can be viewed as a fundamental condition from which
numerous consequences can emanate. The presence of sand boils and ground cracking are
two such consequences but there are others that involve different mechanisms and are
influenced by different profile characteristics. While conventional surface manifestation involves
mechanisms similar to those that influenced post-earthquake free-field settlement, the most
damaging consequences of liquefaction are generally associated with shearing mechanisms
that produce significant lateral (and vertical) permanent deformations. The prediction of
consequences that involve shearing deformations given triggering are likely to be more
accurate, i.e., less biased and/or uncertain, than their prediction given conventional surface
manifestation.

The models developed in the NGL project by the SMT have produced both triggering and
manifestation relationships and plots of those relationships as functions of penetration
resistance show triggering curves that fall below manifestation curves, particularly at higher
penetration resistances (e.g., Figure 11-6a). The triggering curve may be interpreted by some
engineers as a more “conservative” relationship because it implies that triggering would occur at
a lower cyclic stress ratio than the manifestation curve. It should, however, be viewed as a more
accurate indication of the actual triggering of liquefaction and the more appropriate point from
which to conduct consequence analyses. The severity of most consequences will decrease with
increasing soil penetration resistance so the consequences for soils whose triggering curves
plot farthest below the manifestation curve may not be severe at all. They would be mild,
however, because of consequence behavior, not because similar soils at other locations did not
produce sand boils or ground surface cracking in other earthquakes. Given that the
consequences of liquefaction are of greatest importance for design and performance
assessment, the ability to predict consequences as accurately as possible is of paramount
importance.
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The development of probabilistic performance-based earthquake engineering procedures for
soil liqguefaction has centered on a conditional susceptibility-triggering-consequence sequence
of assessments. In this approach, triggering is conditional upon susceptibility and consequences
are conditional upon triggering. The distinction between triggering and manifestation that has
been made in the NGL project allows this performance-based earthquake engineering approach
to be implemented in a natural and logical manner. Without this distinction, the developers of
consequence models are forced to predict consequences of one type to be based on a
consequence of a different type, e.g., predicting lateral spreading displacement conditional upon
sand boil observations, even though those observations are influenced by hydrologic profile
characteristics different than those that influence lateral spreading. The development of
improved consequence models, for a variety of liquefaction consequences, is an important
research need in geotechnical earthquake engineering.

12.3 Future Work

As we developed the SPT-based models documented in this addendum, we have identified
other improvements or enhancements that could be incorporated but that were not feasible
within the scope and limitations of the current project. In addition to the suggestions already
listed in Chapter 7 of the Task 7 report, the following suggestions are listed here as
opportunities for future work.

e As part of the current project, it is necessary to broaden the numbers of sites
characterized for model development to expand beyond those with co-located borings
and CPTs to include those with borings / SPTs only.

e There are opportunities to refine the specific elements of SPT case history processing.
For example:
o Refining the energy estimates when they are not measured and provided in the
NGL database. Some assumptions based on region where the test was
performed, age of the test, and perhaps descriptions of the equipment could help

refine these estimates.

o Refining the assumed N value for a layer that does not have SPT measurements.
There are several possible methods, some are listed in Section 12.1.

e |n developing the proposed models, we have adopted some prior modeling conventions
that are important, including:

o fines corrections to convert N1 60 to N1 60cs (Section 10.3.2),
o conversions of D, to Ny socs (Section 11.2), and
o plasticity-based models for liquefaction susceptibility (Section 11.1).

As discussed in Chapter 7 of the Task 7 report, these prior modeling conventions may
be improved in the future. For example, a subsequent phase of the NGL project will
investigate the potential for improvement of susceptibility models (Stuedlein et al., 2023).
For fines, there is a need to separate fines effects on Ny e0cs from its effect on triggering
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and to refine the fines correction to convert Ny 60 to N1 socs fOr reasons discussed in
Section 12.1).

e Application of the P[Mp] framework described in Section 11.4 to develop probabilistic
profile manifestation models suitable for use with SPT-based site characterization data.
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13 CONCLUSIONS, SPT-BASED MODELS

In this addendum, we provide liquefaction models based on borehole logs and SPT resistance
values that follow the same framework outlined in the Task 7 report, which focused on CPT
data. The model framework includes discrete steps for susceptibility, triggering, and
manifestation. The models provided in this report are for susceptibility (P[S]) and triggering
conditioned on susceptibility (P[T]S]), while a framework for manifestation analysis is provided.

In this addendum, we described several aspects of the model development process that are
unique to the SPT-based site characterization data, such as:

e identifying case histories with SPT-based site characterization data from the extensive
NGL case history database (Section 10.1),

e using algorithms to process site data and provide a repeatable, consistent, and objective
view of the data (Chapter 10),

e identifying layers from the borehole data (Section 10.2),

e evaluating probabilistic distributions of relevant engineering properties (PI, FC, and
N-values) for each layer (Section 10.3),

e developing a Bayesian prior model for susceptibility, P[S], for soil layers with measured
Pl values (Section 11.1.1)

e interpreting P[S] when P/ data is not available using interpretations of soil properties
from borehole strata text descriptions by jointly considering modeling uncertainty and
parametric variability (Section 11.1.2),

e developing a Bayesian prior probability for triggering, P[T]S], using laboratory data
adapted to utilize SPT data as the input parameter, e.g., Nssocs (Section 11.2), and

e providing a framework to model surface manifestation, P[Mp], as a function of
SPT-based site characterization data (Section 11.4) and confirmed that the SPT case
histories we have analyzed are consistent with the CPT-based manifestation model
based on Zzig.

For forward analysis using SPT data where P[T] of a single layer is desired (i.e., excluding
manifestation), we recommend computing P[T] as PFns multiplied by PFs given by Eq. (11-8)
through Eq. (11-13) in Section 11.2, where PFnsrelies on laboratory data, for reasons given in
the Task 7 report (Section 6.3.7) and in this addendum (Section 11.2).

Findings provided in this addendum are nearing their final form, although future refinements and
improvements are possible. The content presented here is subject to change as we refine the
methodologies, input parameters, and framework.

Although the SPT- and CPT-based models rely on several common elements, the SPT-based
manifestation models are less mature than the CPT-based models, due in part to challenges
with interpreting SPT-based case histories and inconsistent data density, as discussed in
Section 12.1, and due to limitations of the project schedule. Opportunities for future work listed
in Section 12.3 may address the discrepancy in model refinement and maturity.
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While the general concepts behind our approach and the CPT-based models have been shared
in meetings with the NGL Advisory Board, the MRT, and other NGL modeling teams, this
addendum presents new relationships specifically for applications using SPT-based site
characterization data. Accordingly, we look forward to receiving feedback on these specific
relationships from the liquefaction research community as they mature and feedback from
regulatory agencies, topical experts, practicing engineers, and others about the modeling
approach and the reasonableness and practicality for application of the models that are
documented in this report.
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APPENDIX A

Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case

History Data
Parameter Description Classification
TEST_ID primary key in test table metadata
dGWT depth to groundwater table (m) layer
STRA_ID Primary key in stratigraphy (STRA) table metadata
STRA TOP depth to top of layer (m) layer
STRA_BASE depth to bottom of layer (m) layer
STRA_USCS USCS classification of the STRA layer layer
STRA_COL color description of layer layer
STRA _DESC text description of layer layer
soil_type_all soil type bin labels for all samples in the layer layer
soil_type representative soil type bin label for the layer layer
Plhat_mu mean of Box-Cox transformed P/ hat layer
Plhat_std standard deviation of Box-Cox transformed Pl hat | layer
Plhat_lambda lambda for Box-Cox transformed P/ hat layer
Pl mean P/ of the layer layer
Plstd standard deviation of P/ in the layer layer
Pls measured P/ values of specimens within the layer | layer
Plzs depths of measured P/ values within the layer (m) | layer
FC mean FC of the layer layer
FCs measured FC values of specimens within the layer | layer
FCzs depths of measured FC values within the layer layer
sC vertical total stress at the center of the layer (kPa) | layer
spC vertical effective stress at the center of the layer layer

(kPa)




Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case

History Data
Parameter Description Classification
zC depth to the center of the layer (m) layer
N representative SPT blow count N of the layer layer
Ns measured SPT blow count N of samples in the layer
layer
Nzs depths of the measured N values in the layer (m) layer
CN representative overburden normalization factor in layer
the layer
CNs overburden normalization factors for individual N layer
values in the layer
CE representative energy normalization factor in the layer
layer
CEs energy normalization factors for individual N values | layer
in the layer
N160cs representative corrected N value (fines, layer
overburden, energy correction) for the layer (l.e.,
average of “N160css” values)
N160css Individual corrected N values (fines, overburden, layer
energy correction) within the layer
PS P[S] value associated with representative Pl of the | layer
layer using the SMT’s combined susceptibility
model
SITE_ID primary key of site table metadata
SITE_NAME site name metadata
TEST_NAME test name metadata
TEST_LAT test latitude metadata
TEST_LON test longitude metadata
EVNT_ID primary key of event table metadata
EVNT_NAME event name metadata




Table A-1 Parameters in the Summary pkl File Containing SMT’s Processed Case

History Data
Parameter Description Classification
EVNT_MAG earthquake magnitude profile
PGA peak horizontal acceleration (g) profile
FLDM_ID primary key of fldm (field observation) table metadata
FLDM_SFEV surface evidence of liquefaction (0 = no, 1 = yes) profile
FLDM_DIST distance between observation and borehole (m) profile
TEST Assignments list of TEST _IDs grouped together with the same profile
observation (FLDM_ID)
TEST weights weights for tests within a group of tests attached to | profile
the same FLDM_ID in the regression
FLDM_SNBL sand boils (0 = no, 1 = yes) profile
CSR Lasley r_d CSR computed using stress reduction coefficient layer
from Lasley et al. (2017)
MSF Green et al b=0.2 | magnitude scaling factor from Green et al. (2019) layer
forb=0.2
Ksig Carlton Ko for SMT model Layer
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