

SMR-300 Core Design Update and Nuclear Analysis Codes and Methods Validation & Verification Plan

September 10, 2024

Presented by: Laith Zaidan

SMR, LLC, A Holtec International Company Krishna P. Singh Technology Campus One Holtec Boulevard Camden, NJ 08104, USA

[Not Export Controlled]

Meeting Agenda

- Open Session
 - Purpose & Outcome
 - Core Design Overview
 - Core Design Update
 - ✓ Nuclear Analysis Codes and Methods Validation & Verification Plan
- Closed Session
 - Core Design Update (Continued)
 - ✓ Nuclear Analysis Codes and Methods Validation & Verification Plan (Continued)

Purpose & Outcome

- Present changes to the SMR-300 nuclear core design from what was previously presented in SMR-300 Design Overview meeting on May 8, 2024.
 - ✓ Solicit any questions or concerns from NRC staff on these changes.
 - ✓ Identify any technical areas related to core design that may require further preapplication engagement.
- Present Holtec's plan for verification & validation of the nuclear analysis codes and methods.
 - ✓ Solicit any questions or concerns from NRC staff on this planned approach.
 - ✓ Confirm NRC expectations for scope and justification to be included in a future Holtec Topical Report to utilize the Studsvik CMS5 Software Suite and Generic Nuclear Reliability Factors for SMR-300 nuclear analyses.

Core Design Overview

SMR-300 Core Design Overview

- SMR-300 core will incorporate Framatome's 17x17 GAIA fuel assembly and HARMONI rod cluster control assembly (RCCA)
- GAIA fuel is currently operating in various quantities in the US at three different Westinghouse three and four loop PWRs
- HARMONI 17x17 RCCAs have been supplied to more than 10 Westinghouse PWRs over the last 25 years

GAIA 17x17 Fuel Assembly for SMR-300

Reconstitutable Top Nozzle

GRIP™ Bottom Nozzle

Quick Disconnect (QD) **Upper Connection**

Reconstitutable Lower

Guide Tube Connection

GAIA Reconstitutable

Lower Guide Tube

Connection

Fuel

Lower End

Cap

Rod

Reconstitutable

Top Nozzle

HMP™ Grid

Fuel Rod

Q12 Alloy

Guide Tube

MONOBLOC™

GAIA Mixing Grid

GAIA Mixing Grid

HMP™ Grid

HARMONI RCCA for SMR-300

■ Framatome has supplied over 7,700 HARMONI RCCAs operating in 97 reactors around the world, including the United States

Core Design Update

SMR-300 Core Design

- Efficient design with traditional reload shuffle at the end of each cycle
- Standard PWR fuel assembly and utilizes RCCAs and soluble boron to control reactivity

Parameter	Value
Reactor type	PWR
Electrical (net) capacity	300 MWe
Thermal capacity	1050 MWt
Design life	80 year
System pressure	
Core inlet/exit temperatures	
Reactivity control	Soluble boron and RCCAs
RPV height / diameter	
RPV or module weight	
Fuel type/assembly array	UO ₂ pellet / rectangular array
Fuel assembly length	
Number of fuel assemblies	69
Fuel Lattice	17x17
Average fuel enrichment	
Maximum fuel enrichment	<5%
Fuel Cycle burnup	
Fuel cycle / Refueling Cycle	
Number of control rod assemblies	29

Changes from 5/8/2024 SMR-300 Design Overview Meeting are in blue

Rod Cluster Control Assemblies (RCCA) Update

In-Core Instrumentation (ICI) Update

SMR-300 Core Design

Fuel Cycles and RCCA layout

Equilibrium Cycle Burnup (BU)

Boron Letdown & Sub-channel Factors

Nuclear Analysis Codes and Methods Validation & Verification (V&V) Plan

SMR-300 Core V&V

- Holtec is considering the following General Design Criteria (GDC) from 10 CFR 50 Appendix A for the evaluation of physics parameters for use in safety evaluations:
 - ✓ GDC 10 Reactor design
 - ✓ GDC 11 Reactor inherent protection
 - ✓ GDC 12 Suppression of reactor power oscillations
 - ✓ GDC 20 Protection system functions
 - ✓ GDC 26 Reactivity control system redundancy and capability
 - ✓ GDC 27 Combined reactivity control systems capability

SMR-300 Core V&V

- SMR-300 plans to utilize the Studsvik Scandpower (SSP) Core Management System 5 (CMS5) for its nuclear core analyses
 - ★ The CMS5 Software Suite includes CASMO5, CMSLINK5, and SIMULATE5
- NRC has generically approved the use of CMS5 and a set of generic Nuclear Reliability Factors (NRF) for PWRs that fall within the Limitations & Conditions (L&C) of the NRC's Final Safety Evaluation (SE) for SSP's Generic Topical Report (TR) "SSP-14-P01/028-TR, Rev 0" (ML17236A393 (P), ML17279A986 (NP))
 - "The NRC staff has reviewed the CASMO5/SIMULATE5 models, validation and benchmarking of the models using critical experiments, higher order code comparisons, TL [tolerance limit] statistical analysis, NUFs [nuclear uncertainty factors] derived from one-sided TL analysis and the development of conservative generic NRFs. The staff concludes that the CASMO5/SIMULATE5 models together with the generic NRFs are suitable for core design, analysis, and depletion calculations."

SMR-300 Nuclear Codes and Methods Qualification LTR

Thank you! Questions?!