
# Managing Selective Leaching during Long-Term Operation

John Wise, Senior Technical Advisor  
Division of New and Renewed Licenses  
Office of Nuclear Reactor Regulation, U.S. NRC

## Selective Leaching—preferential corrosion of the more active (less noble) component of an alloy

- *Dealloying*
- *Graphitic corrosion*
- *De-alumification*
- *De-zincification*

May compromise structural integrity with little change in appearance



Commonly used susceptible materials

- *Cast irons*
- *Copper alloys (>15%Zn or 8%Al)*

## Operating Experience—Examples

**1984**

Cast iron in salt  
water

Through-wall  
corrosion of  
component  
cooling heat  
exchanger

IN 84-71

**Began  
1987**

Aluminum  
bronze in  
raw water

Cracking/  
leakage in  
essential  
cooling  
water

components

**1993**

Aluminum  
bronze in  
brackish water

Leakage in  
service water  
valve bodies

IN 94-59

**2022**

Brass in uncontrolled  
indoor air

EDG radiator leak

**2019**

Cast iron in soil  
Rupture of fire  
protection  
piping during  
pump  
surveillance

IN 20-04

IN = NRC information notice

EDG = emergency diesel generator

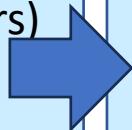
### Nonnuclear

Cast iron water  
distribution systems,  
buried natural gas  
piping

Aluminum bronze in  
seawater (Navy),  
desalination plants



## Regulatory Response


- Oversight of the plant-specific issue
- Generic communications to the industry
  - Informed the industry of operating experience; licensees expected to review and consider actions to avoid similar issues
- Revised guidance for license renewal aging management programs (AMPs)
  - Generic Aging Lessons Learned (GALL) Report NUREG-1800 (initial renewal), NUREG-2191 (subsequent renewal)

## Selective Leaching of Materials AMP

### NUREG-1800

2001, 2005

- One-time inspection (before 40 years)
- Visual
- Hardness
- Sample based



2010

- Added detail: sample size, timing, acceptance criteria
- Introduced alternative mechanical methods (chipping, scraping)

### NUREG-2191

2017

- Added periodic inspections for aggressive environments
- Defined corrective actions (e.g., sample expansion)
- Hardness testing replaced with mechanical and destructive exams



To verify absence of selective leaching

To manage aging (rather than demonstrating absence of aging)

## Case Study: Plant-Specific License Renewal AMP

- Plant with significant history of selective leaching of aluminum bronze in essential cooling water system
- Leaks, seepage, cracking
- ~350 susceptible castings, 3,400 welds

Visual inspections

Destructive examinations

- Proactive, one time
- Reactive, when leaks discovered

Ultrasonic examinations

- Time-of-flight diffraction method

Structural integrity evaluations

## Lessons

- Plant-specific aging management approaches have often been needed to address unique circumstances
- NRC communications and guidance provide the industry the necessary information and a generically acceptable framework to create a strategy for long-term operation

## Ongoing Activities

- Updating NUREG-2191 AMP to address recent operating experience  
*(aging of coated buried piping, malleable iron)*
- Engaging with the industry on its proposed risk-informed approach