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Agenda

 Defining a Digital Twin

» Beginning the Digital Twin journey

« Example use cases for tolerance management
* Future directions




EPIC Digital Engineering Efforts — Advanced Construction

: v N RI National Reactor
Characterized by: Innovation Center
= All digital design \

» Automated component production by

supply chain Characterized by:
= Repeatable component dimensions = Single design (no two airports alike)
» Reliable assembly by OEM = |ocal fabrication
= Cost competitive » No complete digital design
» High production rates = Diminishing supply chain

Achieved in a regulated environment
designed for safety




What Constitutes a Digital Twin?

Is this a “Twin”?

Cross Beam (W24 X 104)
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Is this calibrated model a “Twin”’?



Progressing from Models to Twins
—» Automated Data Flow
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Advancing PLM Using Digital Thread

| | » Adopt a model-based
e.__@ OO systems engineering
(MBSE)

* Two key steps:

* Data untethers from
documents

* Models link to each other
using a common framework

* Linkage occurs throughout
lifetime

« Example:
» Steel Composite Structure




Digital Twin Utilizes PLM For Each Individual System

* Physical system and digital system are so closely
connected, they adapt together

* PLM is used for each individual instance, not
general product families



Lessons Learned & Emerging Opportunities

« OQutdated design processes

» Managing documentation
packages

* Fully exploiting the benefits
of modularity

* Improved decision-making
during construction

Managing Tolerance as
Modules are Placed



Dynamic Product Navigation Enabled By BIM

Users can drill down on
available data as desired
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Example Benefit of the Single Source of Truth in

Construction %

Other Team Members

Post FEA Visualization
Processing BIM Engines

|

00—. The Output of Each
(oo Module Updates the
% ' (oo Database Automatically

Surveyor
Database



Towards a Single-Source of Truth
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Using a Single-Source of Truth
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Today’s Technologies: Scans & Tracking

Legend Legend

O Retroreflector targets Az: Perpendicular distance between measurement points
- -+ Individual laser beams

- === Individual laser beams

Surface To Be Measured

Laser Tracker

Tracks locations of individual points with » Creates dense point cloud to profile
high accuracy the surface contour of an object

« High resolution
» High processing time
« Often requires manual intervention

* Low resolution
» Updates geometry quickly in the field



Laboratory Example: Tolerance
Management

Managing Tolerance as
Modules are Placed

Application Code
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Laser Tracker
Data




Automated Model Updating Via Laser Tracker

Contact Measurements and
Materials Test Data
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Semi-Automated Model Updating Via Laser Scan

Contact Measurements and
Materials Test Data
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Regulatory Interface? %

Regulator

Post FEA Visualization
Processing BIM Engines

00— Workflows can be defined
(=] to easily show the results
Do of specific analyses

aew

Surveyor
Database



Gaps to Address

» Behavioral challenges in the industry — trust in
data

* Rapid feature extraction and cleansing of laser
scans and approaches for seamless integration
with construction

 Better understanding of how to fully exploit
modularity
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