

Uncertainty Quantification of the Metal Laser Powder Bed Fusion Additive Manufacturing via the Hypercomplex-based Finite Element Method

Arturo Montoya, Prof.

Matthew Balcer, PhD Candidate

Mauricio Aristizabal, Post Doc.

Juan Rincon-Tabares, PhD Candidate

David Restrepo, Assist. Prof.

Harry Millwater, Prof.

Margie and Bill Klesse College of Engineering and Integrated Design

UTSA[®]
The University of Texas at San Antonio™

Overview

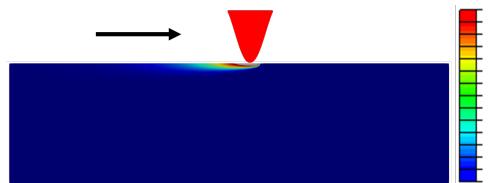
Long-term objective:

Develop, implement, verify, and validate a **new computational methodology** to provide **sensitivities** and **uncertainty quantification** metrics for **metal-based** additively manufactured components

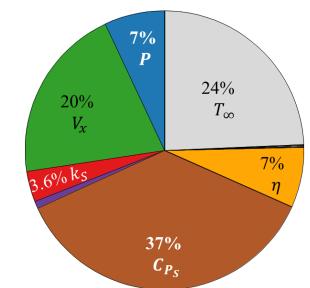
What is new with our approach?

Uses **hypercomplex algebra** combined with traditional **finite element methods** to compute **arbitrary-order high-accuracy** derivatives.

- Arbitrary order, shape, material, and loading parameters available.
- Linear, nonlinear, or time dependent
- Step size independent method ensures high accuracy.
- The traditional real-valued results are still obtained and can be reused.
- **Non-Intrusive** – a **postprocessing** code is programmed using hypercomplex algebra
 - Traditional functions still used, e.g., same shape functions, etc.



Methodology is programmed **based on** a user element (UEL) for the **Abaqus** commercial software.

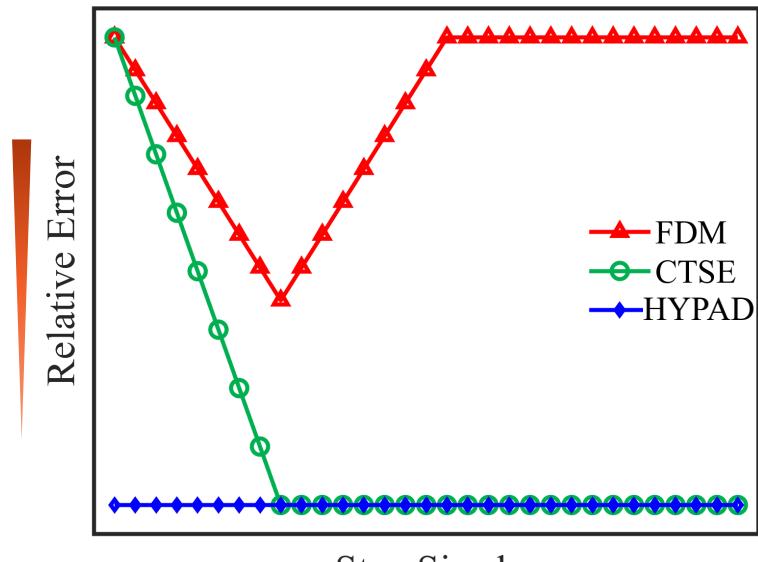


Partial Derivative Calculation

Finite Differentiation Method (FDM)

$$\frac{d\mathbf{u}(a_o)}{da} \approx \frac{\mathbf{u}(a_o + h) - \mathbf{u}(a_o)}{h}$$

- Determining h is problematic
- No code modifications



Complex Taylor Series Expansion (CTSE)

$$\frac{d\mathbf{u}(a_o)}{da} \approx \frac{Im(\mathbf{u}(a_o + ih))}{h}$$

- h can be “very” small $\sim 10^{-30}$
- Built-in in languages

Set of Hypercomplex Numbers

Complex

$$\mathbf{a}^* = \mathbf{a}^{Re} + i\mathbf{a}^{Im}$$

$$i^2 = -1$$

Dual - OTI

$$\mathbf{a}^* = \mathbf{a}^{Re} + \epsilon \mathbf{a}^\epsilon$$

$$\epsilon^2 = 0$$

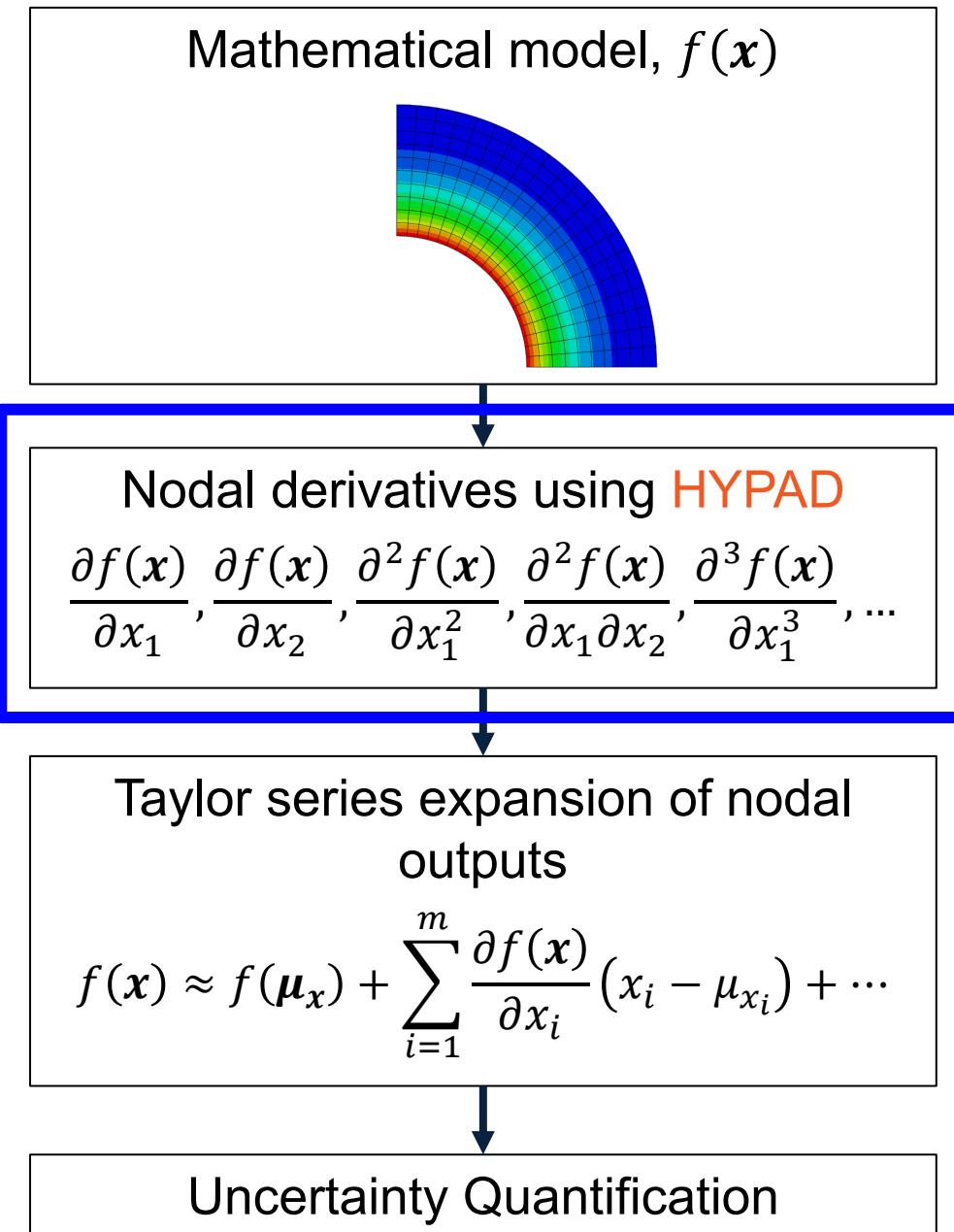
HYPAD: HYPercomplex Automatic Differentiation

$$\frac{d\mathbf{u}(a_o)}{da} \equiv \frac{Im_\epsilon(\mathbf{u}(a_o + \epsilon h))}{h}$$

If a is perturbed along **multiple** imaginary directions **high order sensitivities** (interactions) are obtained

- h can be unitary
- Exact derivative
- Requires specific algebra packages
- Algebra accounts for composition and chain rule

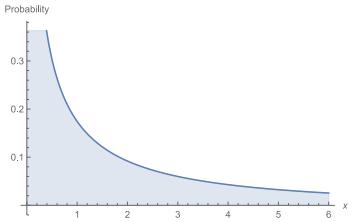
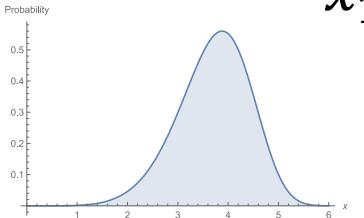
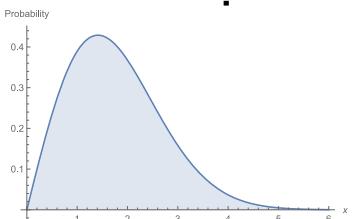
HYPercomplex Automatic Differentiation (HYPAD)



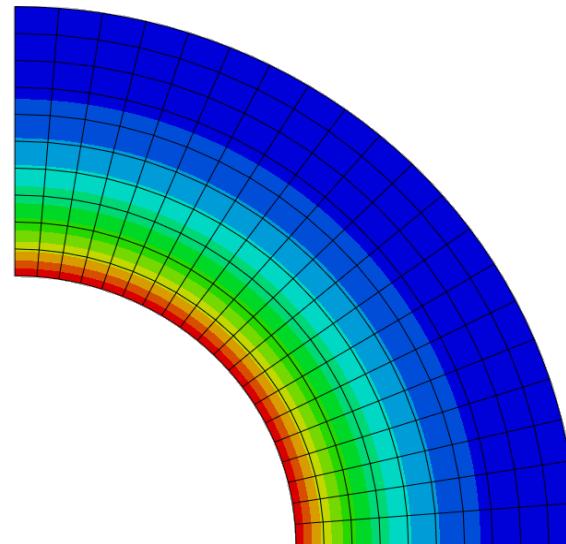
Quantifying Uncertainty in Finite Element Outputs with the Taylor Series

Random Variables

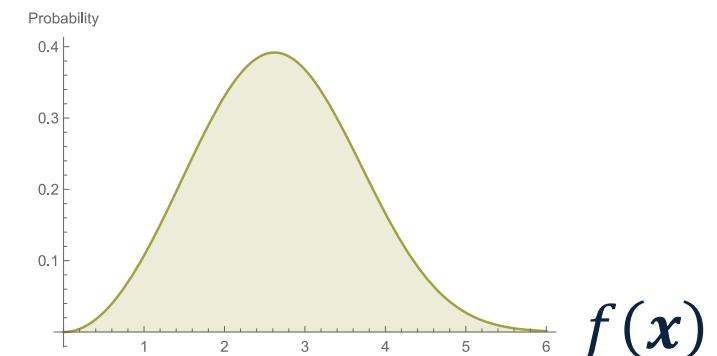
$$\boldsymbol{x} = [x_1, x_2, \dots, x_r]$$


 x_1

 \vdots

 x_r

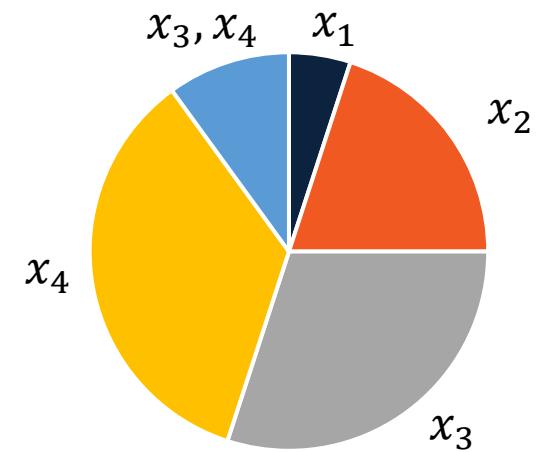
Mathematical Model, $f(\boldsymbol{x})$



Output


 $f(\boldsymbol{x})$

Sobol' Indices

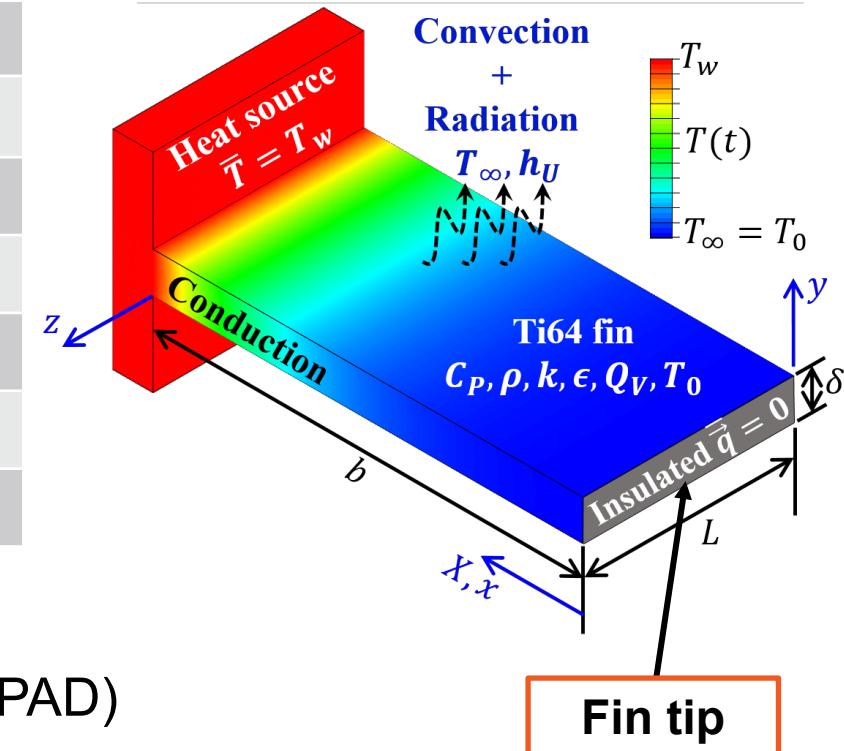


Surrogate Model
 $f(\boldsymbol{x}) \approx Y_n$
 $(n^{th}\text{-order Taylor series expansion})$

Heated Fin: Verification Problem [1]

Goal: Quantify uncertainty of temperature at tip of fin through time

Variable	Distribution	Mean, μ_x	COV = σ_x/μ_x
Thermal conductivity, k	Log-Normal	7.1 W/(m · K)	0.20
Specific heat, c_p	Log-Normal	580 J/(kg · K)	0.20
Density, ρ	Log-Normal	4430 kg/m ³	0.20
Heat transfer coefficient, h_U	Log-Normal	114 W/(m ² · K)	0.20
Ambient temperature, T_∞	Triangular	283 K	0.01
Heat source temperature, T_w	Uniform	389 K	0.20
Length of fin, b	Uniform	51 mm	0.20



- Analytical solution was used for verification [2]
- HYPAD-UQ conducted with a 2D FEM model (using OTI-based HYPAD)
- Compared computational performance against linear regression-based stochastic perturbation finite element method

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite Element Method. doi: 10.1115/1.4062459.

[2] Rincon-Tabares, J.-S., Velasquez-Gonzalez, J. C., Ramirez-Tamayo, D., Montoya, A., Millwater, H., & Restrepo, D. (2022). Sensitivity Analysis for Transient Thermal Problems Using the Complex-Variable Finite Element Method. *Appl. Sci.*, 12(5), 2738. doi: 10.3390/app12052738

Hypercomplex-based Taylor Series vs Linear Regression-based Taylor Series

Computational performance of **HYPAD-UQ** was compared to **linear regression**

HYPAD-UQ

- Taylor series expansion of $f(\mathbf{x})$ about the mean values of \mathbf{x}

$$f(\mathbf{x}) \approx f(\boldsymbol{\mu}_{\mathbf{x}}) + \sum_{i=1}^m \frac{\partial f}{\partial x_i} (\mathbf{x}_i - \boldsymbol{\mu}_{x_i}) + \frac{1}{2} \sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{x}_i - \boldsymbol{\mu}_{x_i})(\mathbf{x}_j - \boldsymbol{\mu}_{x_j}) + \dots$$

- Derivatives calculated with HYPAD

Linear Regression-based Stochastic Perturbation Finite Element Method [1]

- Taylor series expansion of $f(\mathbf{x})$ (same polynomial basis)

$$f(\mathbf{x}) \approx b_0 + \sum_{i=1}^m b_i x_i + \sum_{i,j=1}^m b_{ij} x_i x_j + \dots$$

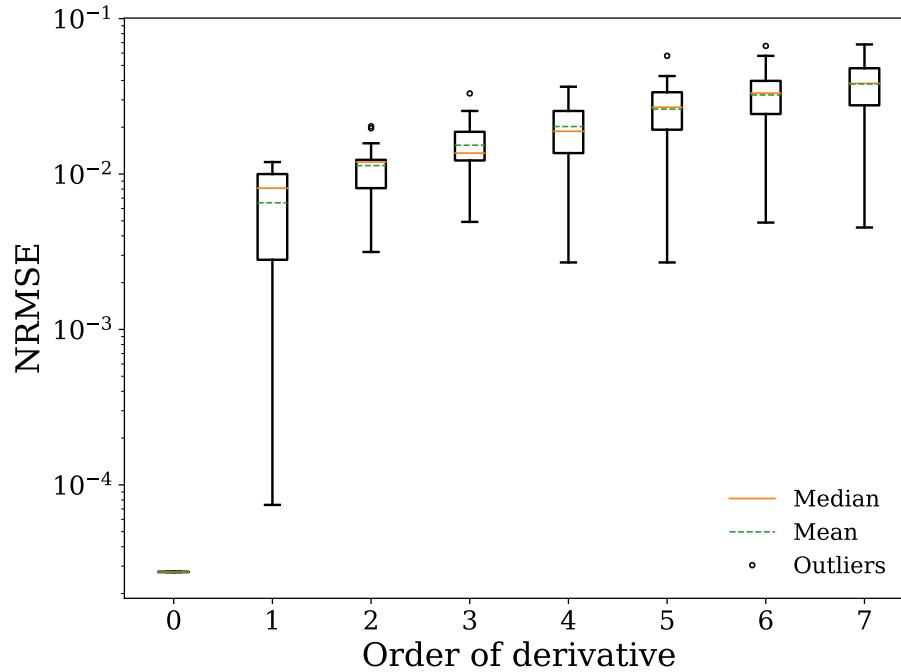
- Samples drawn from $f(\mathbf{x})$
- Unknown coefficients, b_i , approximated by Ordinary Least Squares (OLS)

[1] Kaminski, M., 2022, Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based finite element method, *Finite Elements in Analysis and Design*, 200, 3.

HYPAD Derivative Accuracy and CPU Time

Normalized Root Mean Square

Error (NRMSE)



- Derivatives calculated using OTI Algebra [1]
- Each run computes all 1^{st} - through n^{th} -order partial derivatives
- NRMSE** measured using derivatives of the analytic solution
- Error increases with order of derivative

$$\text{NRMSE} = \sqrt{\frac{\sum_{i=1}^N \left(\phi_{\text{approx}}^{(i)} - \phi_{\text{analytic}}^{(i)} \right)^2}{N}} / \max(\phi_{\text{analytic}})$$

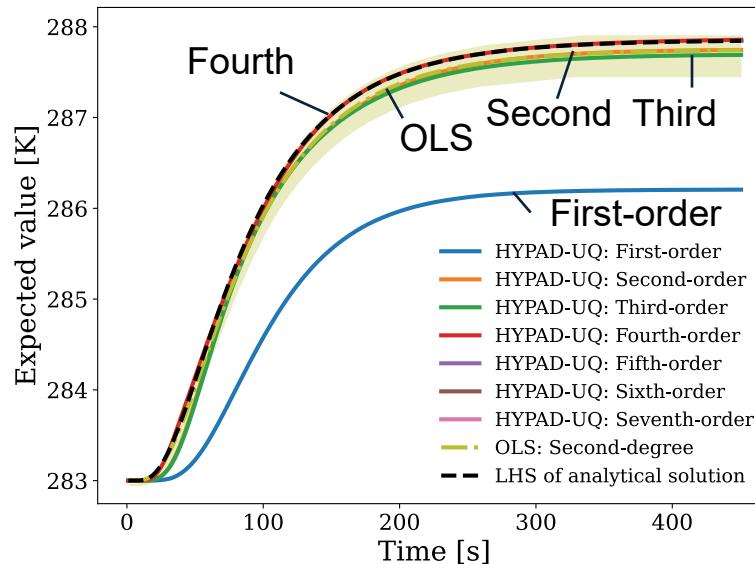
Derivative order, n	First	Second	Third	Fourth	Fifth	Sixth	Seventh
Total computed derivatives	7	35	119	329	791	1715	3431
CPU time relative to a single real analysis	2.60	5.00	10.4	22.1	64.7	133.5	205.5

[1] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.

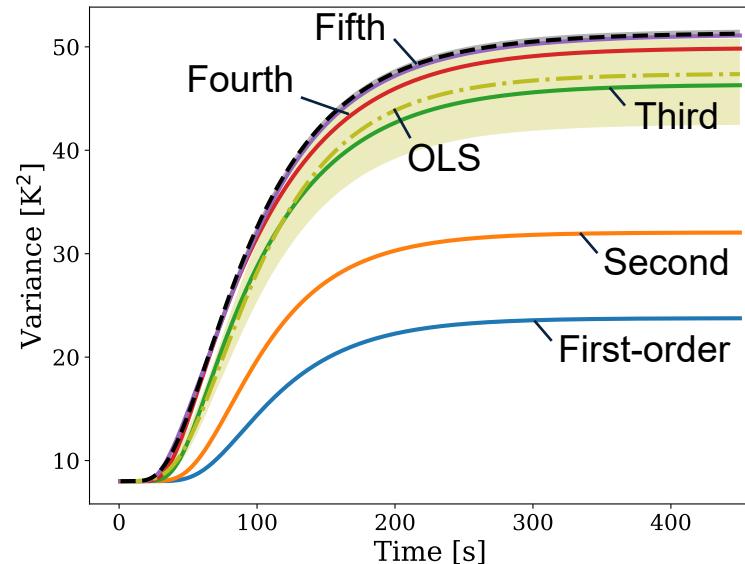
[2] Balcer, M., Aristizabal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite Element Method. doi: 10.1115/1.4062459.

Central Moments

Expected Value

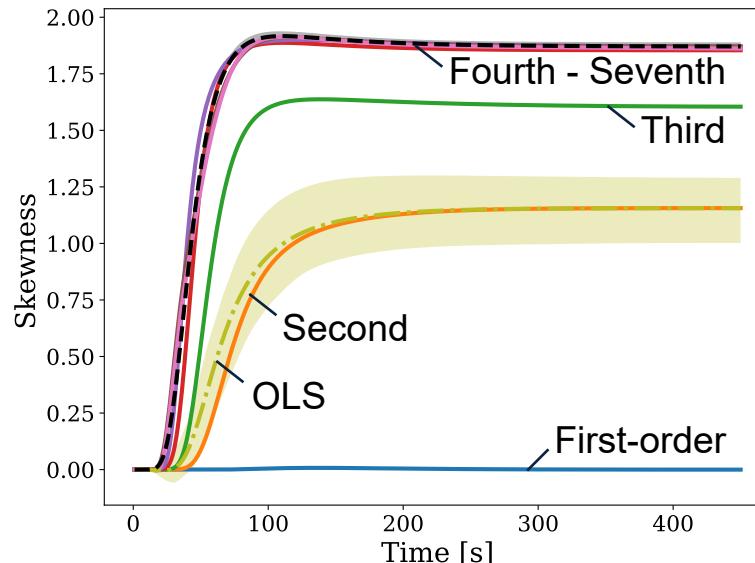


Variance

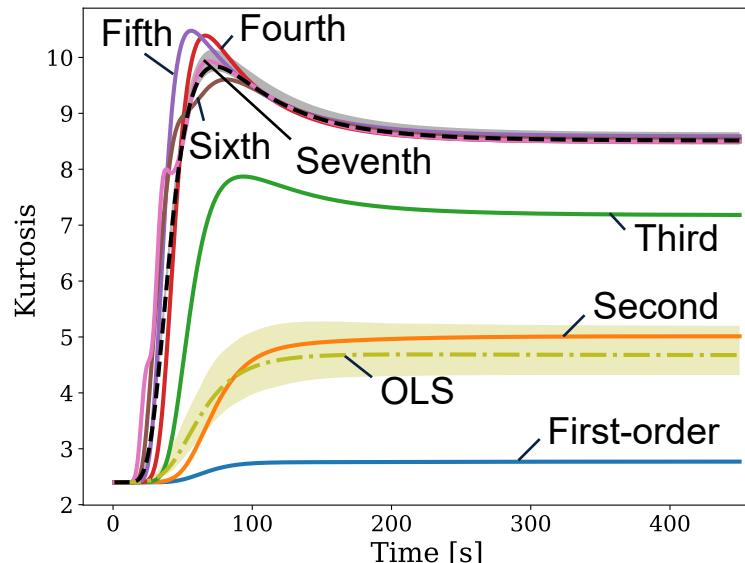


- LHS of analytic solution (1E7 samples)
- 95 % Confidence Interval (CI) of LHS
- 95 % CI of OLS model

Skewness



Kurtosis

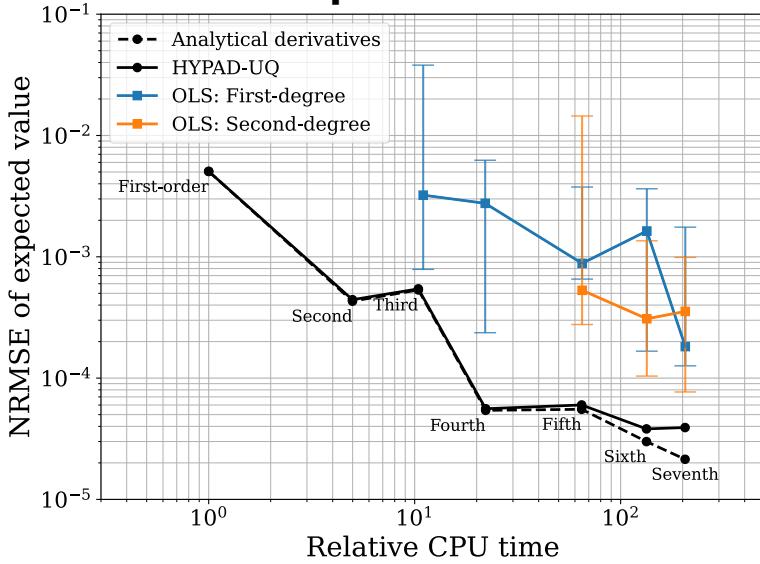


HYPAD-UQ is compared to:

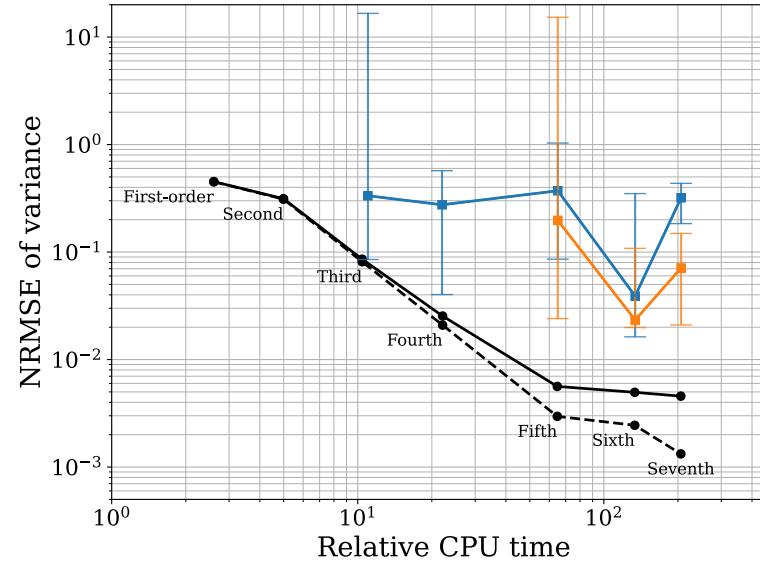
- LHS of analytical solution (1E7 samples)
- 2nd-degree OLS regression, trained with 206 samples

Error of Central Moments

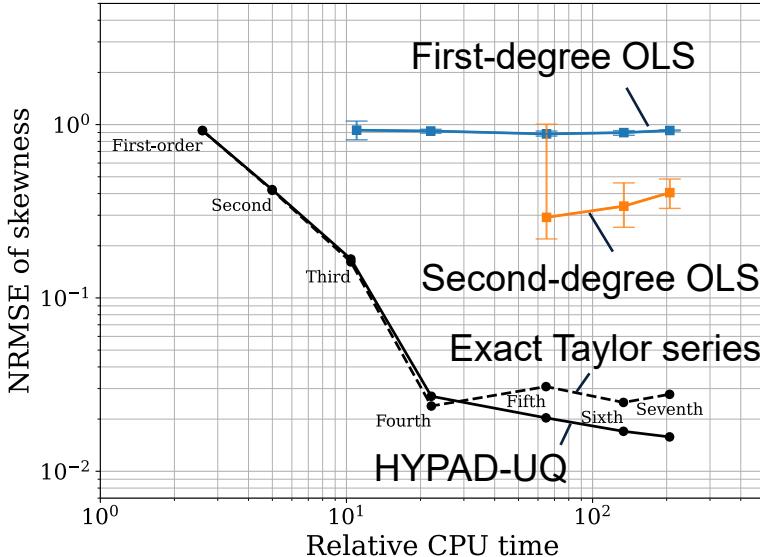
Expected Value



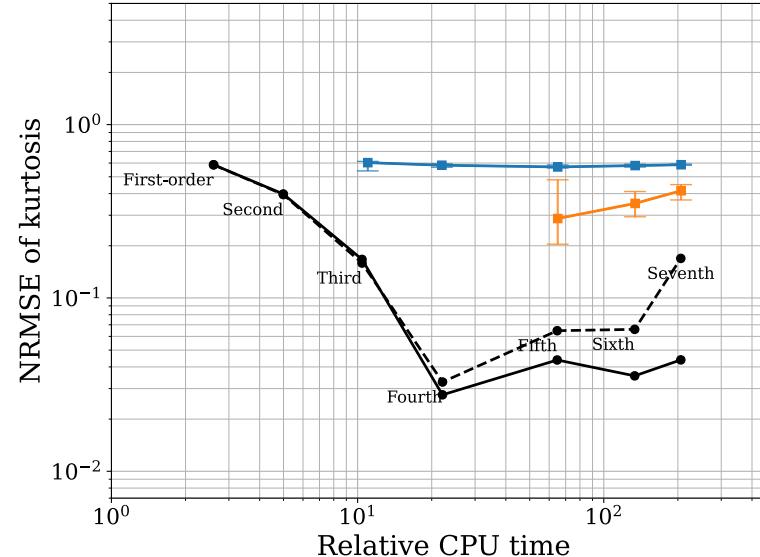
Variance



Skewness

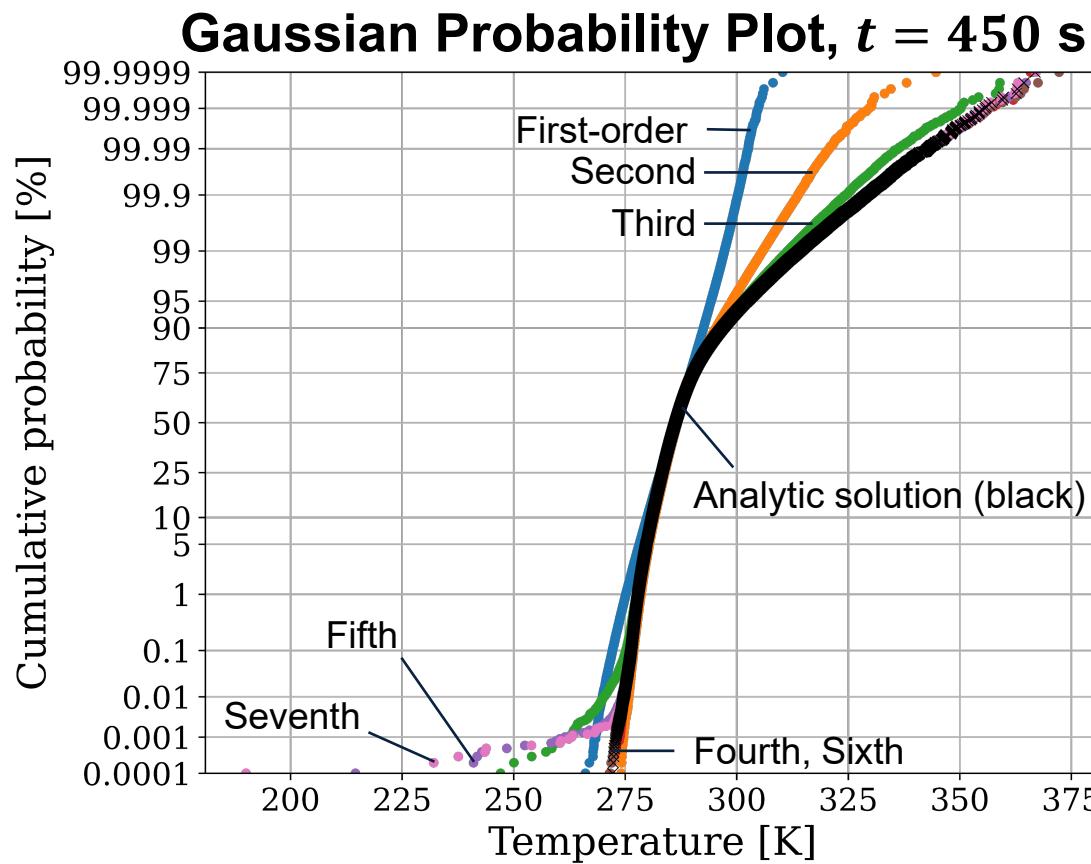


Kurtosis



- HYPAD-UQ moments converge to lower errors than OLS within the same CPU time
- Higher-order expansions can increase accuracy
 - Higher-order expansions do not guarantee monotonic convergence

Cumulative Distribution at Steady-State

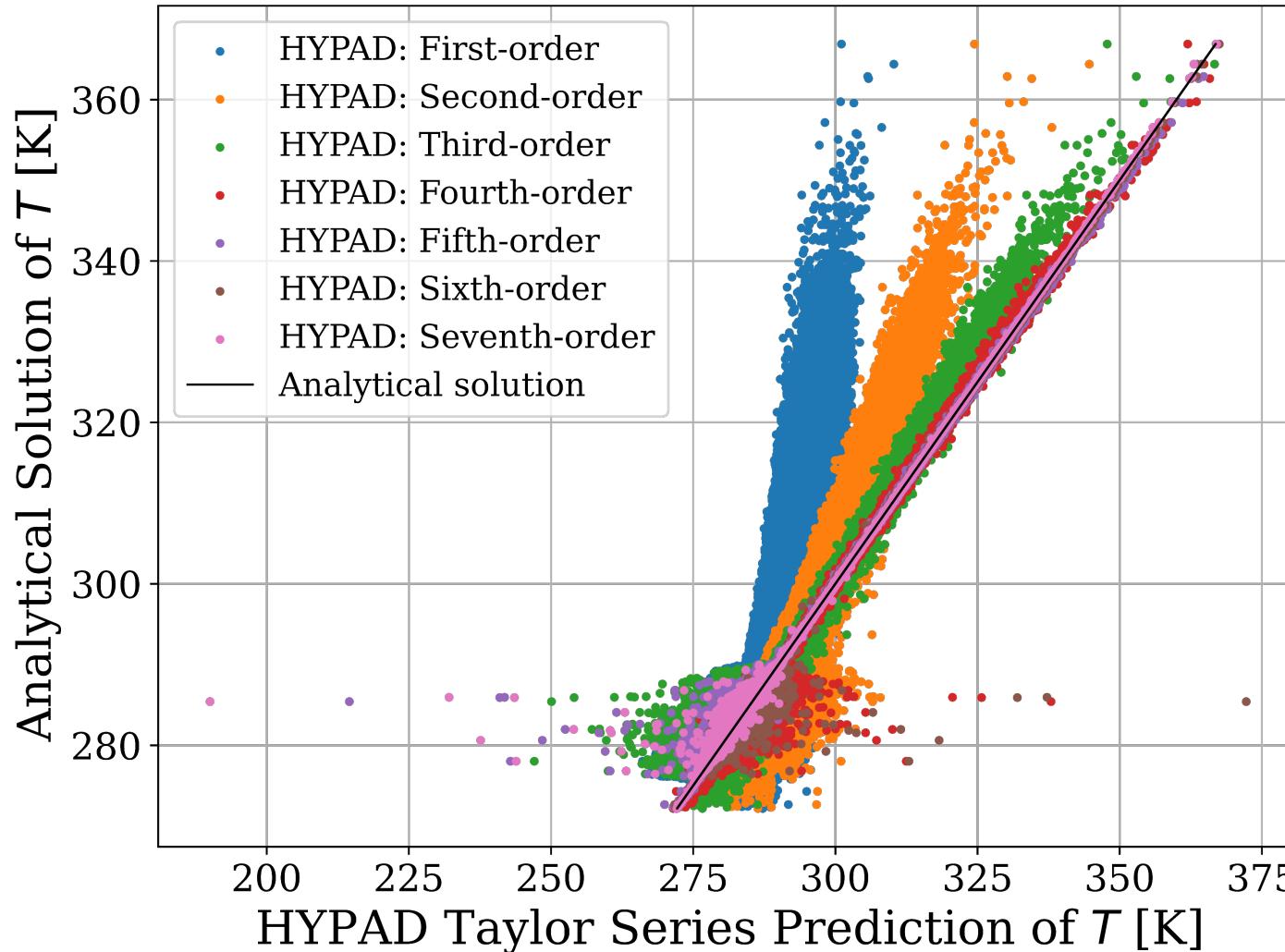


- HYPAD-UQ accurate near mean of temperature
- Higher-order HYPAD-UQ Taylor series expansions can *diverge* near the *tails* of distribution
 - Odd-ordered Taylor series diverge near low probabilities

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite Element Method. doi: 10.1111/1.4062459.

HYPAD-based Taylor Series Prediction vs Actual Temperature

Actual vs Predicted Temperature, $t = 450$ s

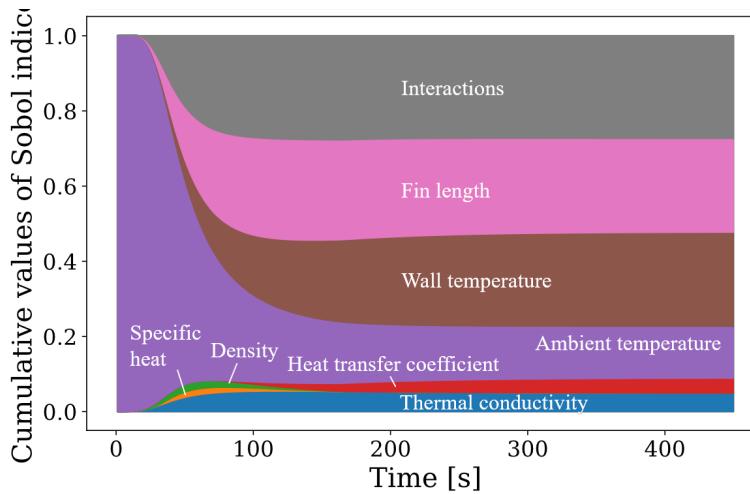


- 1E6 evaluations
- Taylor series converges to analytical solution for most of the random variable domain
- Certain combinations of random variables lead to large error in *higher-order* Taylor series expansions

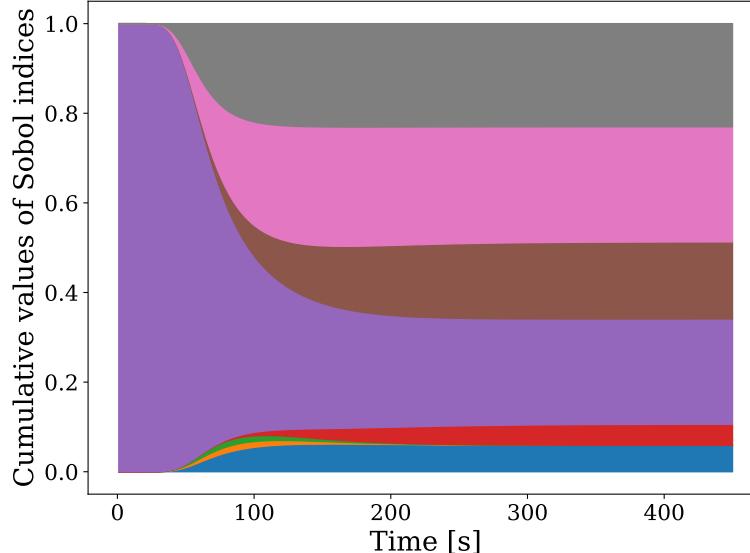
[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite Element Method. doi: 10.1115/1.4062459.

Sobol' Indices

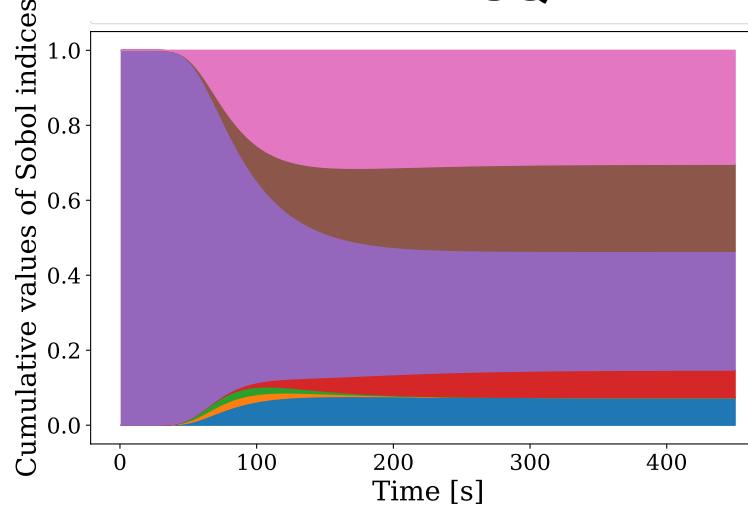
LHS of Analytic Solution (7×10^7 samples)



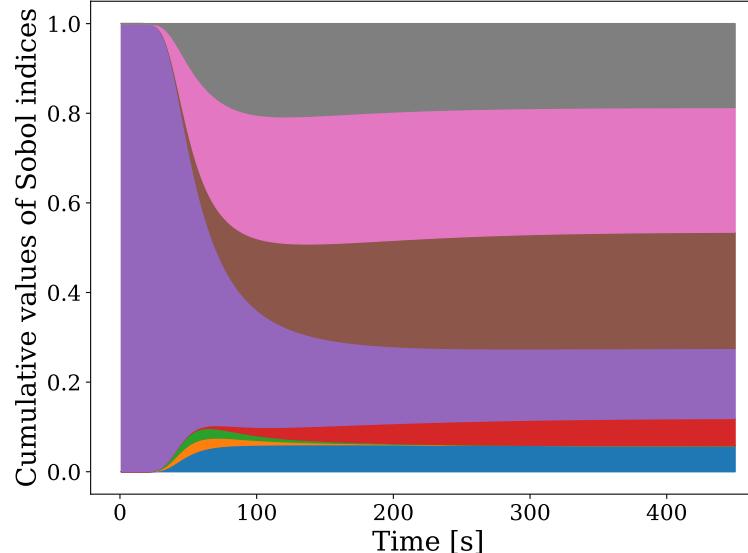
Second-order HYPAD-UQ



First-order HYPAD-UQ

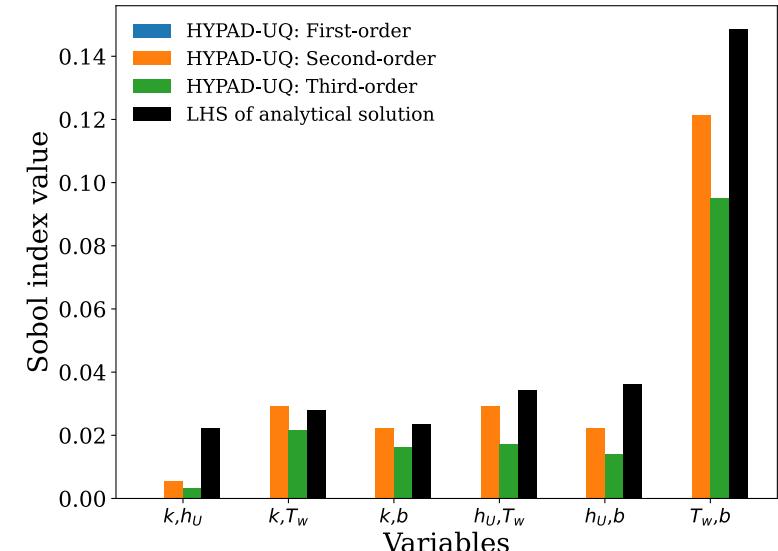


Third-order HYPAD-UQ



- Max of 28% of the total variance is due to *interactions*
- First-order HYPAD-UQ correctly identifies important variables
- Second-order HYPAD-UQ captures most of the interaction effect

Interaction Effects at Steady-State



AM Application: Physics Involved

Thermal Profile

Transient heat transfer:

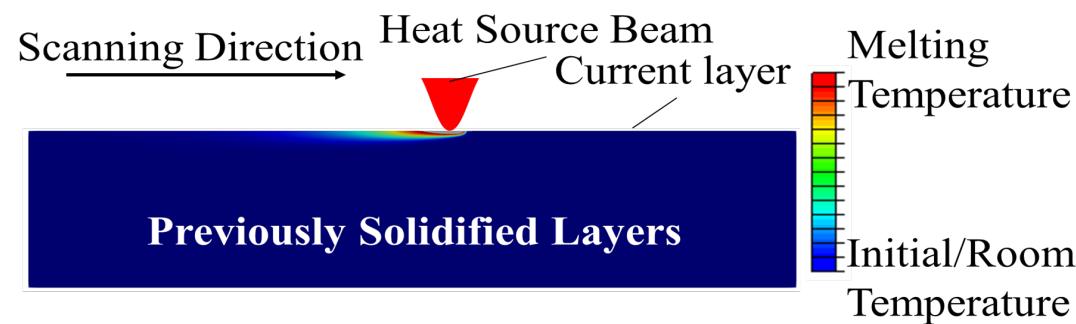
- Fourier equation
- Convection/Radiation boundary conditions
- Moving heat source boundary condition
- Temperature-dependent properties

Thermomechanical

- T-dependent properties
- Residual thermal strain
- Thermoelasticity
- Thermoplasticity

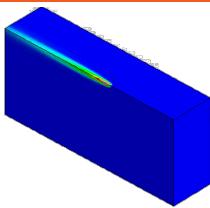
Thermal history

3D Sequential Model



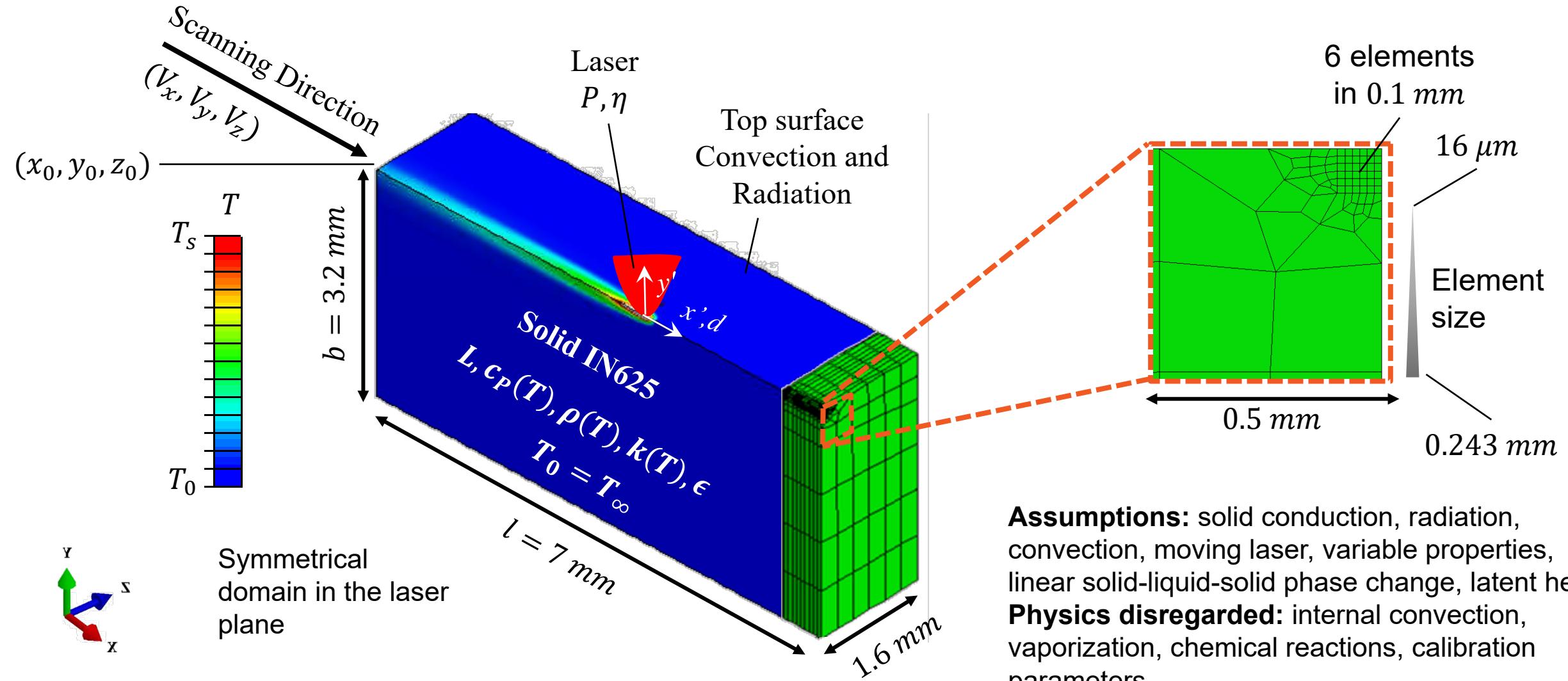
Outputs

Thermal Residual Stresses, Final Track Shape, **Thermal History**



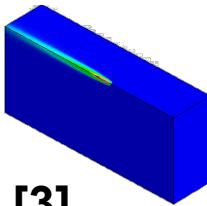
AM Application: Bare Plate Single Track 3D Model

Goal: Quantify uncertainty in mean surface temperature



Assumptions: solid conduction, radiation, convection, moving laser, variable properties, linear solid-liquid-solid phase change, latent heat

Physics disregarded: internal convection, vaporization, chemical reactions, calibration parameters



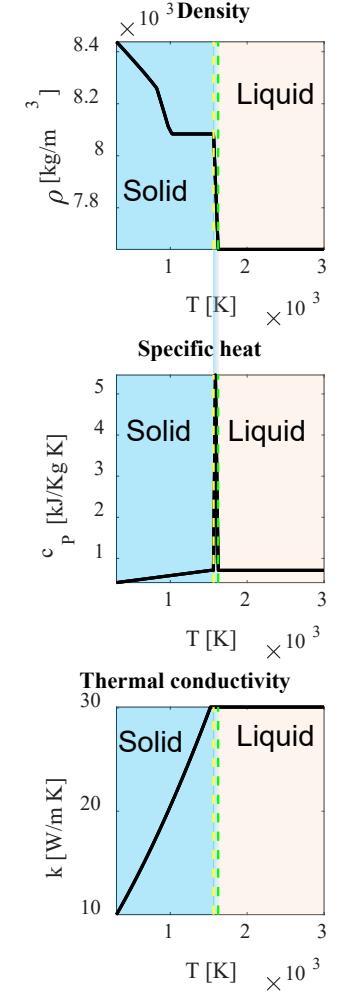
AM Application: Random Variable Distribution Parameters

All variables are normally distributed

Type	Physics	Parameter	Mean, μ_x [1]	COV= σ_x/μ_x (%)
Constant	Laser	Radius, r_x	0.1 mm	5.0
		Depth, r_y	0.1 mm	5.0
		Absorption, η	0.43	2.5
		Power, P	195 W	2.5 [2]
		Initial location, x_0	-2 mm	1.5
		Initial location, y_0	0 mm	$Std = 1.5e - 4$
		Scanning speed, V_x	800 mm/s	1.5 [2]
	Build Chamber Conditions	Chamber temperature, T_∞	303 K	1.5
		Convection, h_{conv}	18 W/mK	5.0
		Emissivity, ϵ	0.4	3.0
Temperature -dependent	Initial Condition	Temperature, T_0	303 K	1.5
		Energy, ΔH_{LS}	290 kJ/kg K	3.0
	Phase Change	Solidus temperature, T_S	1563 K	0.5
		Liquidus temperature, T_L	1623 K	0.5
		Density, ρ_s	Figure (a)	3.0
Mesh Dependent	Material Properties	Specific heat, c_{P_s}	Figure (b)	3.0 [2]
		Thermal conductivity, k_s	Figure (c)	3.0 [2]
		Solid layers length, l	14 mm	0.5 [2]
		Solid layers thickness, b	3.2 mm	0.5 [2]

* Values were assumed

INC625 Properties [3]



a)

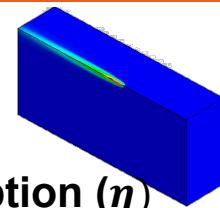
b)

c)

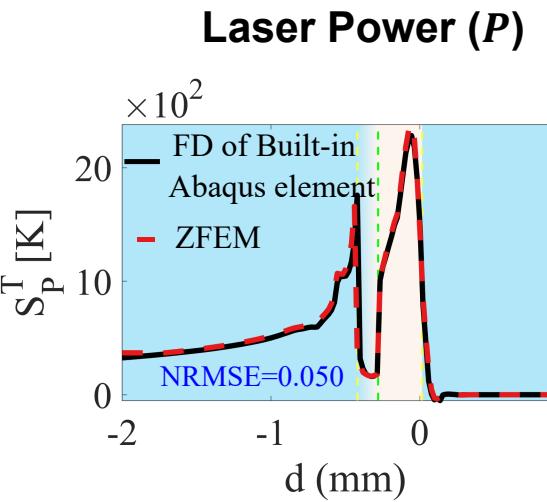
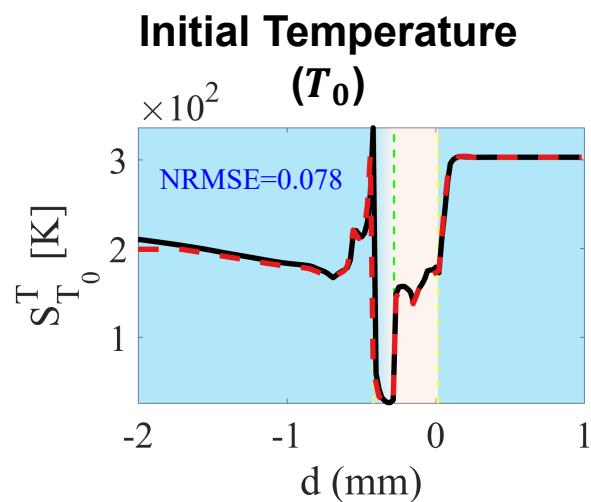
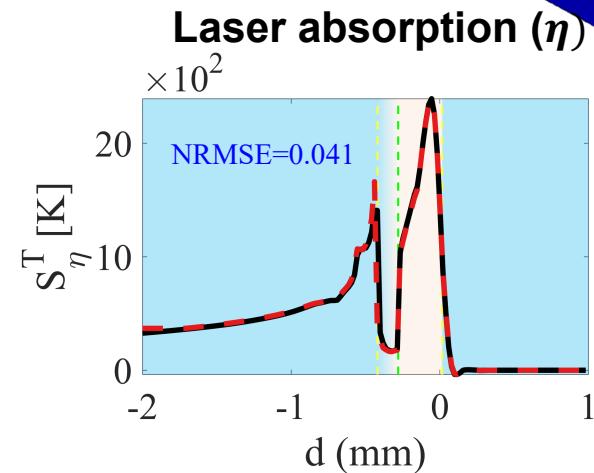
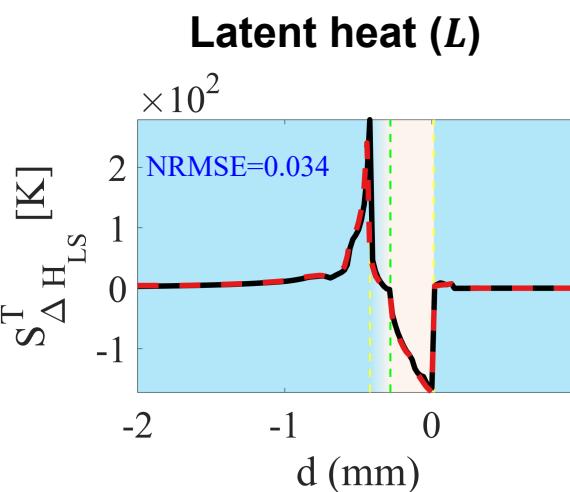
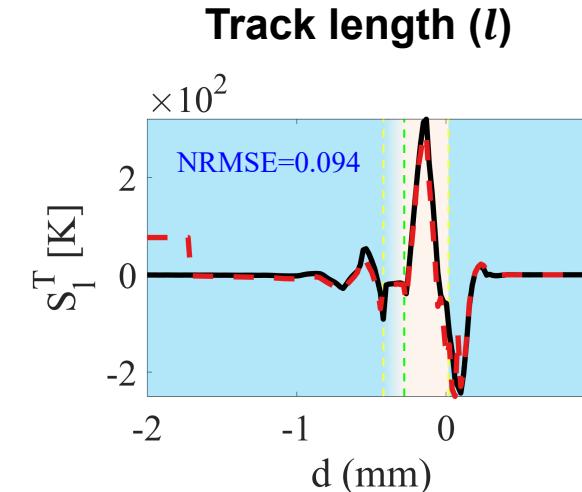
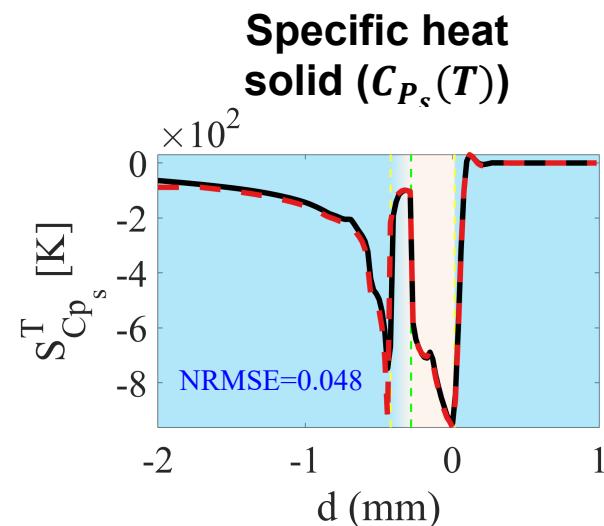
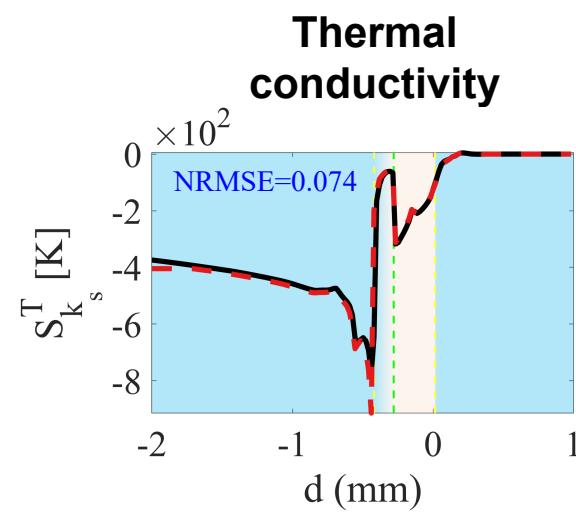
[1] Heigel, J.C.; Lane, B.M.; Levine, L.E. In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Artifacts. *Integr. Mater. Manuf. Innov.* **2020**, 9, 31–53, doi:10.1007/s40192-020-00170-8.

[2] Moges, T.; Witherell, P.; Ameta, G. On characterizing uncertainty sources in laser powder bed fusion additive manufacturing models. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); American Society of Mechanical Engineers (ASME): Salt Lake City, UT, USA IMECE2019-11727, 2019; Vol. 2A-2019.

[3] AFRL Additive Manufacturing (AM) Modeling Challenge Series; 2019;

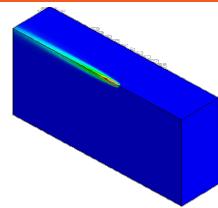


AM Application: First-order Sensitivities of Temperature, $S_\theta^T = \frac{\partial T}{\partial \theta}$

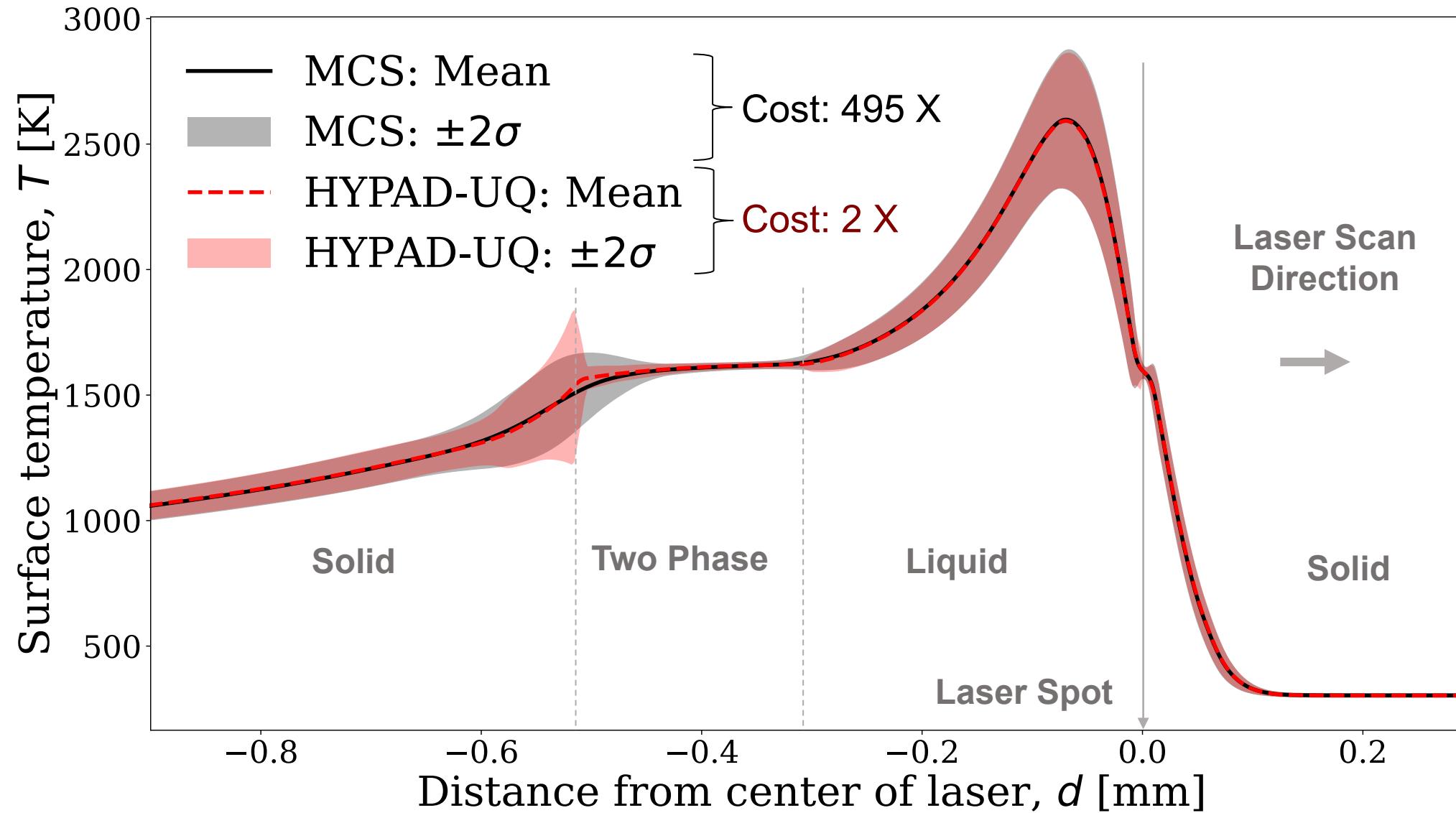


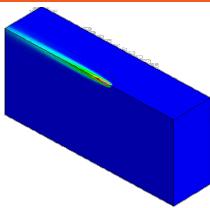
Liquid phase Solid phase

First-order **HYPAD** CPU Time = $\sim 2x$ a single real analysis

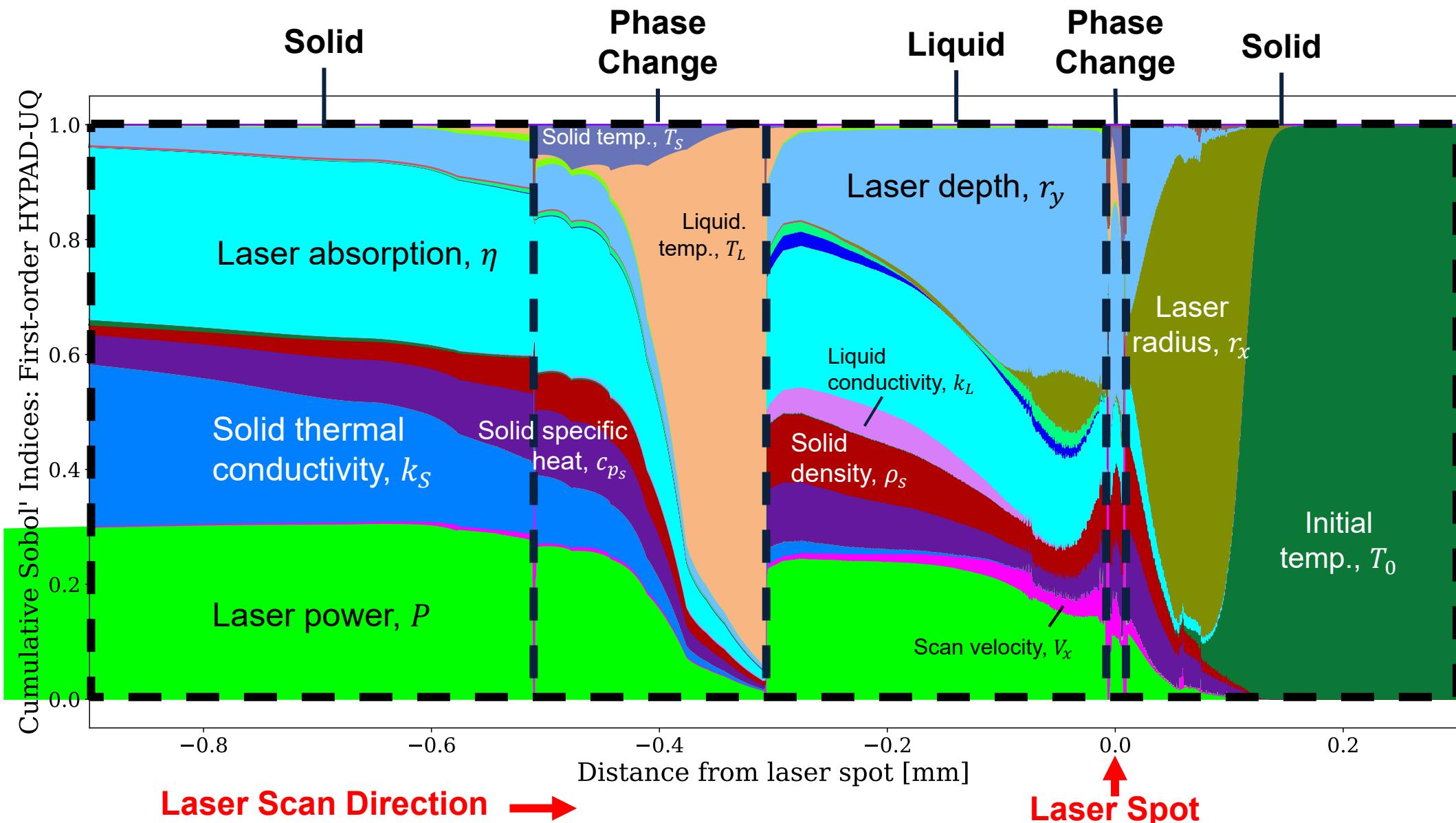


AM Application: Uncertainty in Mean Surface Temperature



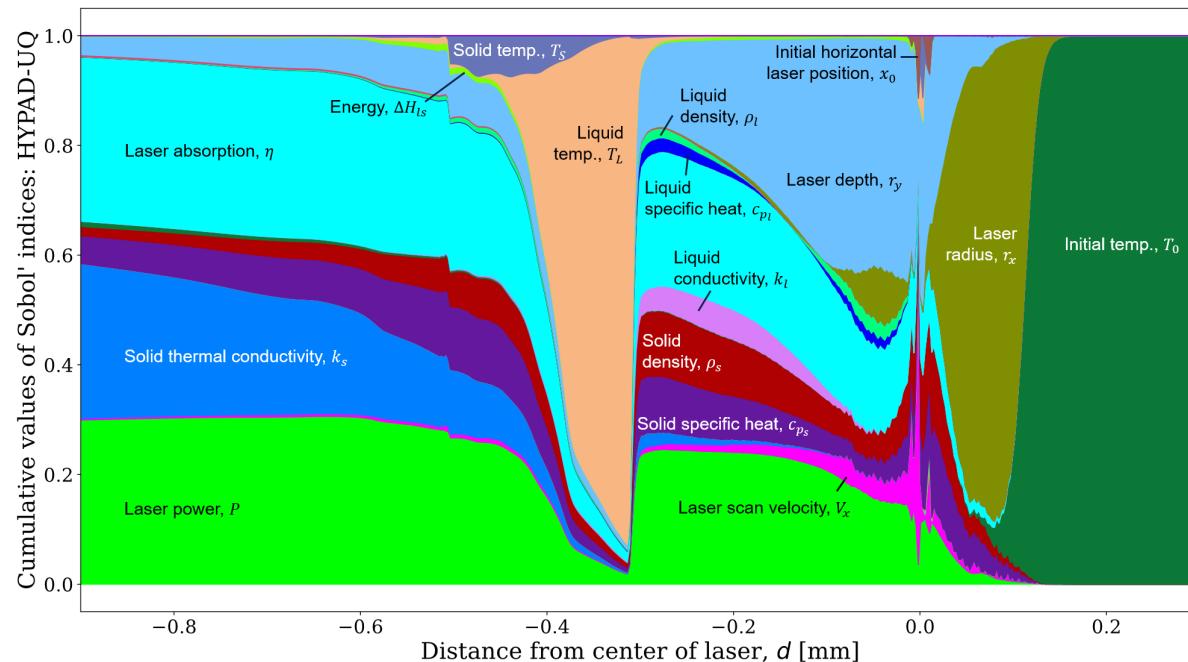


Sobol' Indices: First-order HYPAD-UQ

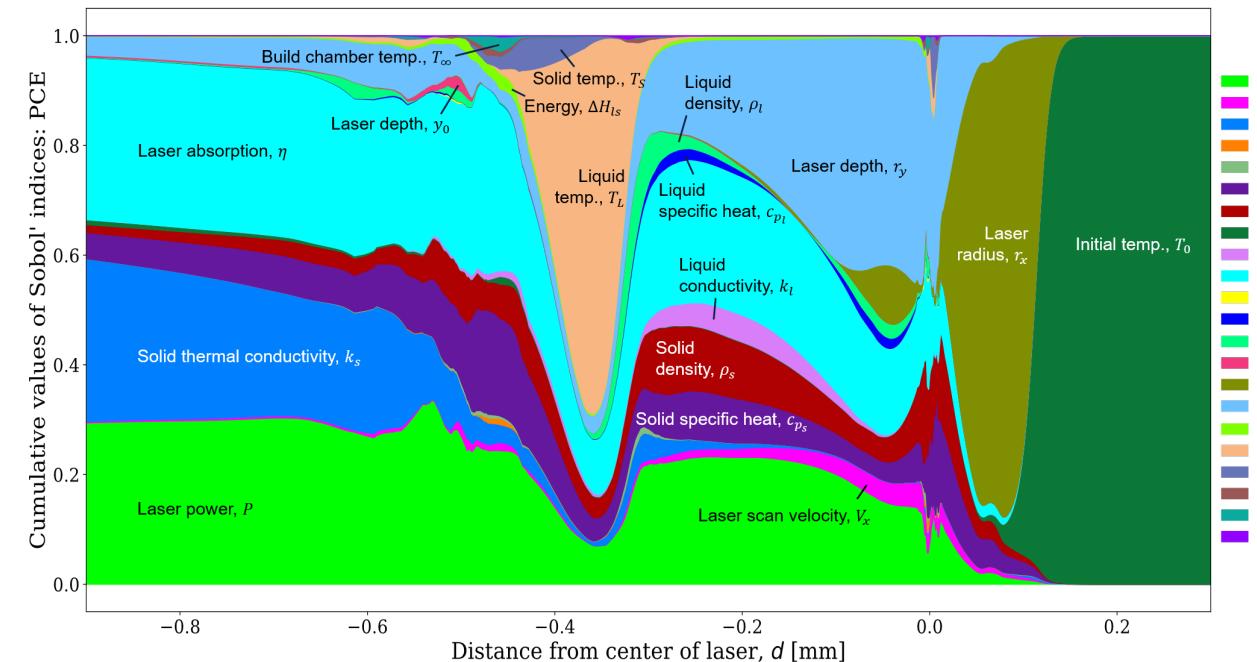


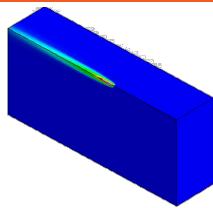
Sobol' Indices: First-order HYPAD-UQ vs First-degree PCE

First-order HYPAD-UQ (CPU Time = 3 X)



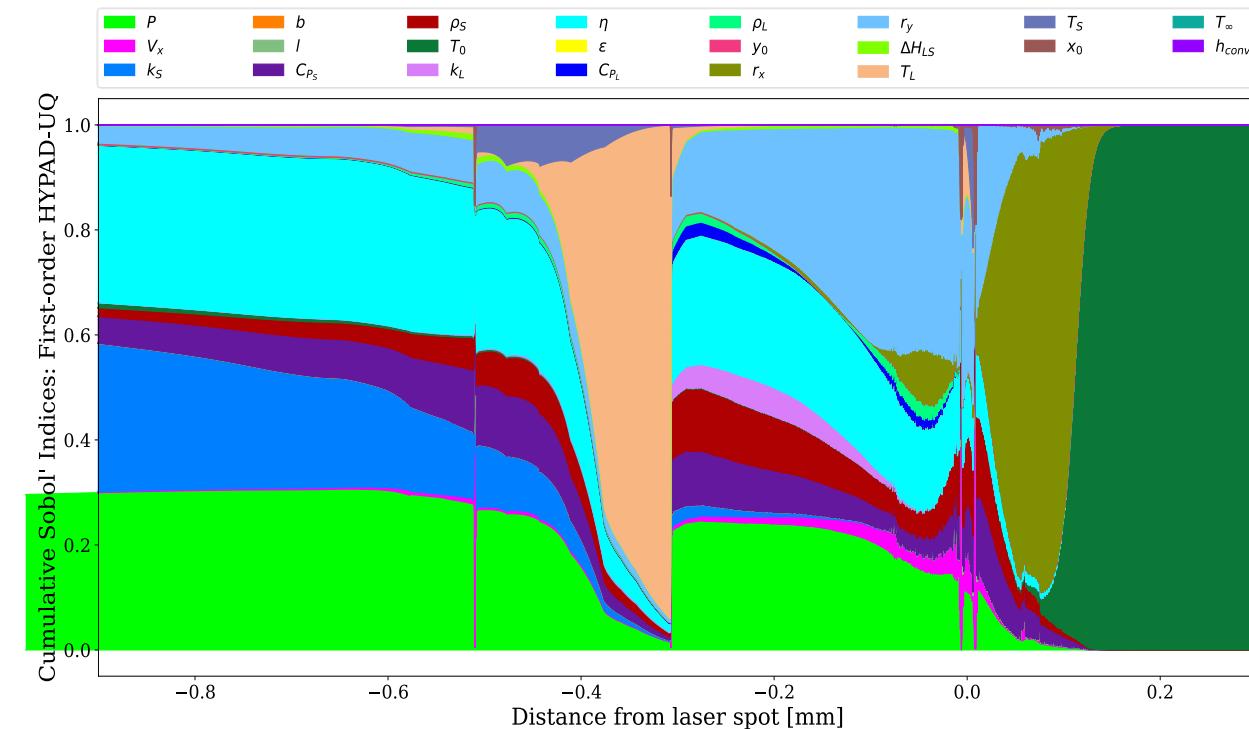
First-degree Polynomial Chaos Expansion (PCE),
100 training points from MCS design



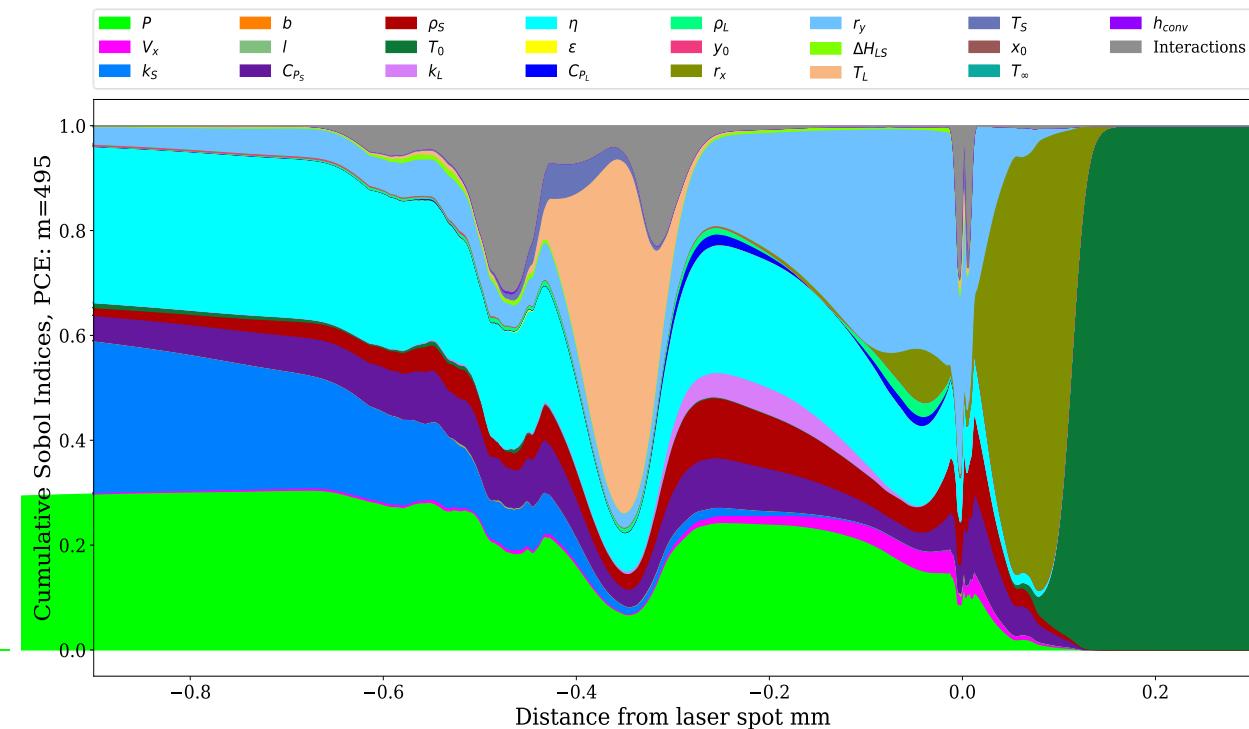


Sobol' Indices: First-order HYPAD-UQ vs Second-degree PCE

First-order HYPAD-UQ (CPU time = 3 X)



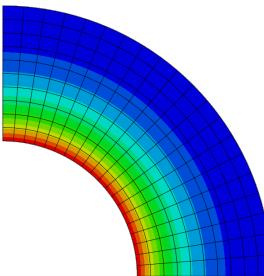
Second-degree Polynomial Chaos Expansion (PCE),
495 training points from MCS design



Summary

- Higher-order partial derivatives were calculated with **HYPAD** in finite elements
 - Significantly faster than finite difference with no step size issues
- **HYPAD** sensitivities were used to construct Taylor series expansions for **UQ (HYPAD-UQ)**
- **HYPAD-UQ** was conducted on:
 - Transient linear thermal analysis of a fin
 - Non-linear thermal analysis of an AM PBF process

Mathematical model, $f(\mathbf{x})$



Nodal derivatives with **HYPAD**

$$\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2}, \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2}, \frac{\partial^3 f(\mathbf{x})}{\partial x_1^3}, \dots$$

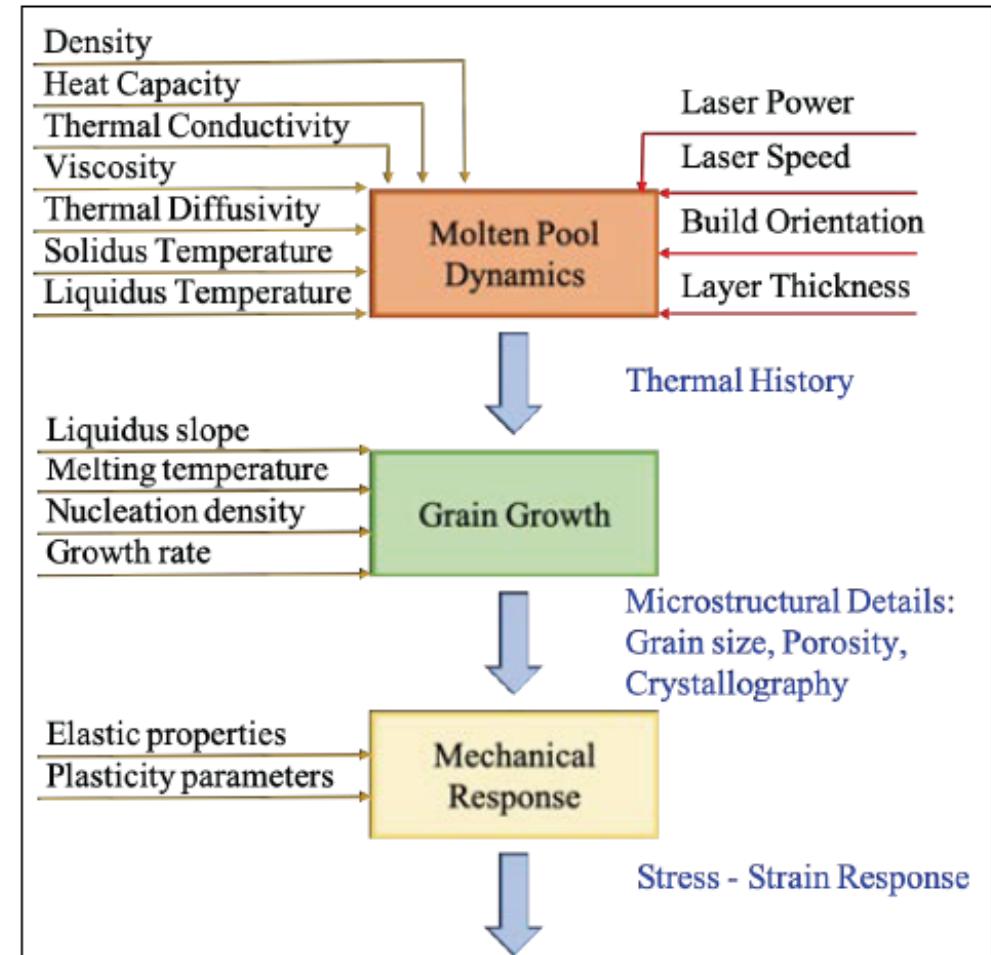
Taylor series expansion of nodal outputs

$$f(\mathbf{x}) \approx f(\boldsymbol{\mu}_{\mathbf{x}}) + \sum_{i=1}^m \frac{\partial f(\mathbf{x})}{\partial x_i} (x_i - \mu_{x_i}) + \dots$$

Uncertainty Quantification

Future Work

- The current development will allow the investigation of the uncertainty propagation starting from the process parameters, to the material microstructure and the bulk mechanical properties of the fabricated parts.
- Acknowledgements:
 - Department of Energy CONNECT Consortium
 - Army Research Office under grant W911NF2010315. Dr. Michael Bakas Program Manager.
 - National Nuclear Security Administration under grant DE-NA0003948. Dr. David Carty Program Manager.



Learn how to compute
derivatives with HYPAD!

Questions ?

Backup

HYPAD Libraries

MultiZ [1]

- Multicomplex and multidual algebra support
 - Type declarations
 - Operation overloading ($+, -, \times, \div$)
 - Mathematical operation support (sine, cosine, exponential, log, sqrt, and power)
 - Arbitrary-order of hypercomplex numbers available
- Can be used with FEA simulation and other codes for sensitivity analysis
- Fortran and Python languages supported

OTI Library [2]

- Order Truncated Imaginary (OTI) algebra support
- Can be used with FEA simulation and other codes for sensitivity analysis
- Python, C, and Fortran versions developed

[1] Aguirre-Mesa, A. M., Garcia, M. J., and Millwater, H. (2020). Multiz: A library for computation of high-order derivatives using multicomplex or multidual numbers. *ACM Trans. Math. Softw.*, 46(3).

[2] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.

HYPAD-UQ Method Overview

Advantages

- HYPAD computes accurate Taylor series expansions
- Higher-order expansions can yield accurate results for large variation in random variables
- Works with any distribution of random variables
- Change in standard deviation or distribution is trivial to recalculate (mean stays the same)
- Computationally efficient compared to finite difference, stochastic perturbation finite element method, and random sampling

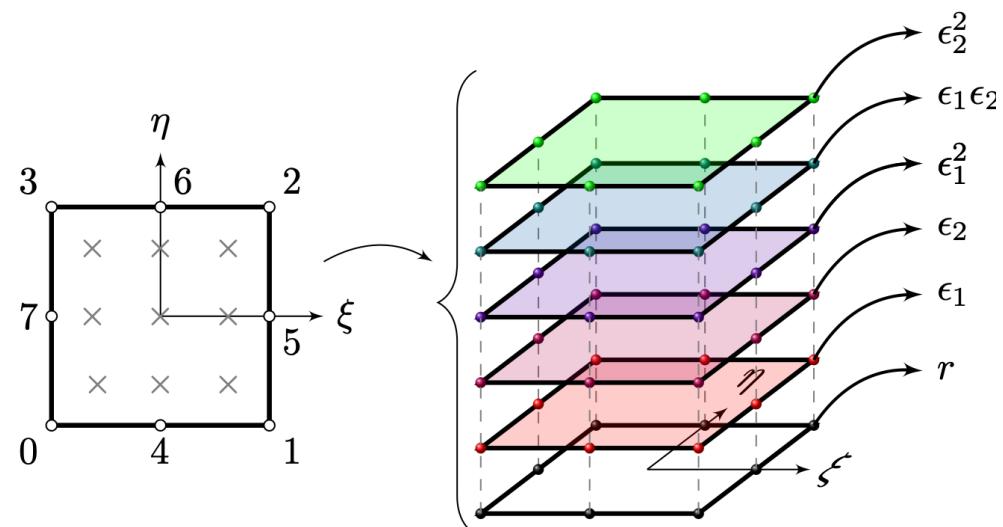
Limitations

- Potentially many terms in the Taylor series expansion
- Increase in order of expansion does not guarantee monotonic increase in accuracy
- HYPAD is intrusive – requires source code alterations
 - Once implemented, the code can be reused to compute sensitivities evaluated at any parameter

Hypercomplex Finite Element Method

- Real-valued variables are “uplifted” to **hypercomplex** variables
- External library used to “overload” elemental algebraic operations with **hypercomplex** algebra
 - **Hypercomplex** numbers can be expressed in matrix form to allow real-only linear algebra operations (avoids use of external library, but inefficient)
- Additional degrees of freedom to nodes for each imaginary direction

Degrees of freedom in an OTI element for truncation order of $n = 2$ and $r = 2$ variables



[*] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.

Block Forward Substitution to Solve Hypercomplex System of Equations

Full OTI system of equations for $n = 2$ and $r = 2$ variables

$$\mathbf{K}^* \mathbf{u}^* = \mathbf{f}^* \rightarrow \begin{bmatrix} \mathbf{K}_R & 0 & 0 & 0 & 0 & 0 \\ \mathbf{K}_{\epsilon_1} & \mathbf{K}_R & 0 & 0 & 0 & 0 \\ \mathbf{K}_{\epsilon_2} & 0 & \mathbf{K}_R & 0 & 0 & 0 \\ \mathbf{K}_{\epsilon_1^2} & \mathbf{K}_{\epsilon_1} & 0 & \mathbf{K}_R & 0 & 0 \\ \mathbf{K}_{\epsilon_1 \epsilon_2} & \mathbf{K}_{\epsilon_2} & \mathbf{K}_{\epsilon_1} & 0 & \mathbf{K}_R & 0 \\ \mathbf{K}_{\epsilon_2^2} & 0 & \mathbf{K}_{\epsilon_2} & 0 & 0 & \mathbf{K}_R \end{bmatrix} \begin{Bmatrix} \mathbf{u}_R \\ \mathbf{u}_{\epsilon_1} \\ \mathbf{u}_{\epsilon_2} \\ \mathbf{u}_{\epsilon_1^2} \\ \mathbf{u}_{\epsilon_1 \epsilon_2} \\ \mathbf{u}_{\epsilon_2^2} \end{Bmatrix} = \begin{Bmatrix} \mathbf{f}_R \\ \mathbf{f}_{\epsilon_1} \\ \mathbf{f}_{\epsilon_2} \\ \mathbf{f}_{\epsilon_1^2} \\ \mathbf{f}_{\epsilon_1 \epsilon_2} \\ \mathbf{f}_{\epsilon_2^2} \end{Bmatrix}$$

Solve real-only system $\mathbf{K}_R \mathbf{u}_R = \mathbf{f}_R$

Solve first-order system $\mathbf{K}_R \mathbf{u}_{\epsilon_1} = \mathbf{f}_{\epsilon_1} - \mathbf{K}_{\epsilon_1} \mathbf{u}_R$
 $\mathbf{K}_R \mathbf{u}_{\epsilon_2} = \mathbf{f}_{\epsilon_2} - \mathbf{K}_{\epsilon_2} \mathbf{u}_R$

Solve second-order system $\mathbf{K}_R \mathbf{u}_{\epsilon_1^2} = \mathbf{f}_{\epsilon_1^2} - \mathbf{K}_{\epsilon_1} \mathbf{u}_{\epsilon_1} - \mathbf{K}_{\epsilon_1^2} \mathbf{u}_R$
 $\mathbf{K}_R \mathbf{u}_{\epsilon_1 \epsilon_2} = \mathbf{f}_{\epsilon_1 \epsilon_2} - \mathbf{K}_{\epsilon_1} \mathbf{u}_{\epsilon_2} - \mathbf{K}_{\epsilon_2} \mathbf{u}_{\epsilon_1} - \mathbf{K}_{\epsilon_1 \epsilon_2} \mathbf{u}_R$
 $\mathbf{K}_R \mathbf{u}_{\epsilon_2^2} = \mathbf{f}_{\epsilon_2^2} - \mathbf{K}_{\epsilon_2} \mathbf{u}_{\epsilon_2} - \mathbf{K}_{\epsilon_2^2} \mathbf{u}_R$

Summary of HYPAD

Advantages

- Simplicity – No new formulation of equations; same shape functions, integration schemes, time-integration algorithms, etc.
- Robust - No step size considerations (use very small step size or dual variables).
- Comprehensive - Once “hypercomplexified”, derivatives with respect to ANY parameter available. Selection made from the input file.
- Scalable – Mixed and higher order derivatives available.
- Intrinsic support (1st order only) - No additional libraries required for first order derivatives using complex variables.

Disadvantages

- Intrusive – requires source code modification.
- Library support (mixed and higher order) - libraries required to support hypercomplex operations for mixed and higher order derivatives.
- Efficiency - Increased run time.

Taylor Series Expansions of Central Moments

Taylor series expansion of the r^{th} central moment

$$\mu_r (f(\mathbf{x})) \approx \mu_r (Y_n) = E [(Y_n - E [Y_n])^r]$$

can be computed with **algebraically** for any distribution of random variables, \mathbf{x}

Expected Value

$$E[Y_0] = Y(\mu_{\mathbf{x}})$$

$$E[Y_1] = E[Y_0]$$

$$E[Y_2] = E[Y_1] + \sum_{i=1}^m \frac{1}{2} \mathcal{D}_{ii}^{(2)} \mu_{2i}$$

where, $\mathcal{D}_{ij\dots}^{(n)} = \frac{\partial^n f(\mathbf{x})}{\partial x_i \partial x_j \dots}$

$$\mu_{ri} = \mu_r(x_i)$$

Variance

$$\mu_2 (Y_1) = \sum_{i=1}^m \left(\mathcal{D}_i^{(1)} \right)^2 \mu_{2i}$$

$$\begin{aligned} \mu_2 (Y_2) = & \mu_2 (Y_1) + \sum_{i=1}^m \left\{ \frac{1}{4} \left(\mathcal{D}_{ii}^{(2)} \right)^2 \mu_{4i} \right. \\ & - \frac{1}{4} \left(\mathcal{D}_{ii}^{(2)} \right)^2 \mu_{2i}^2 + \mathcal{D}_i^{(1)} \mathcal{D}_{ii}^{(2)} \mu_{3i} \} \\ & + \sum_{i < j}^m \left(\mathcal{D}_{ij}^{(2)} \right)^2 \mu_{2i} \mu_{2j} \end{aligned}$$

Sobol' Indices (Global Sensitivity Analysis)

1. Decompose function into High Dimensional Model Representation (HDMR)

$$f(\mathbf{x}) = f_0 + \sum_i f_i(x_i) + \sum_{i < j} f_{ij}(x_i, x_j) + \dots + f_{12\dots m}(x_1, x_2, \dots, x_m)$$

x are independent random variables

$$f_0 = E[f(\mathbf{x})]$$

$$f_i = E[f(\mathbf{x}) | x_i] - f_0$$

$$f_{ij} = E[f(\mathbf{x}) | x_i, x_j] - f_i - f_j - f_0$$

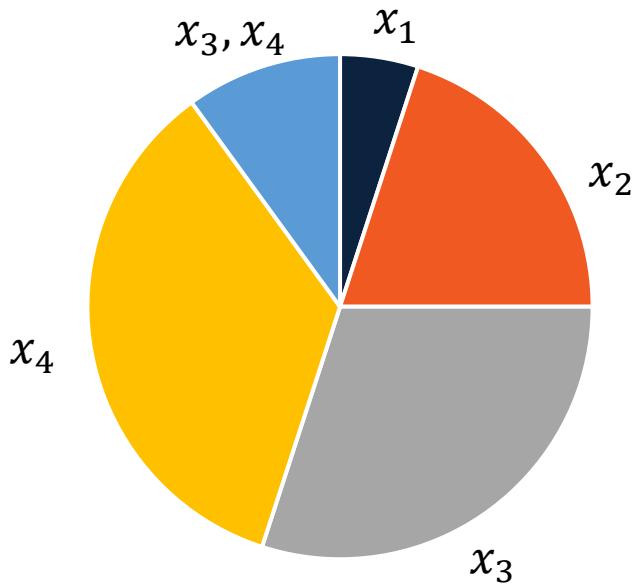
2. Take variance of HDMR function

$$V = \sum_i V_i + \sum_{i < j} V_{ij} + \dots + V_{12\dots m}$$

3. Divide by total variance

$$1 = \sum_i S_i + \sum_{i < j} S_{ij} + \dots + S_{12\dots m}$$

Main Effects	$S_i = V_i/V$
Interaction Effects	$S_{ij} = V_{ij}/V$
	$S_{ij\dots m} = V_{ij\dots m}/V$



Sobol' indices sum to 100% of the total variance

Taylor Series Expansions of Sobol' Indices

Substitute $f(x) = Y_n(x)$ (n 'th-order Taylor series expansion)

Main Effects

$$S_i = \frac{V_i}{V}$$

First-order

$$V_i [Y_1] = \left(\mathcal{D}_i^{(1)} \right)^2 \mu_{2i}$$

Second-order

$$V_i [Y_2] = V_i [Y_1] + \frac{1}{4} \left(\mathcal{D}_{ii}^{(2)} \right)^2 \mu_{4i} - \frac{1}{4} \left(\mathcal{D}_{ii}^{(2)} \right)^2 \mu_{2i}^2 + \mathcal{D}_i^{(1)} \mathcal{D}_{ii}^{(2)} \mu_{3i}$$

Interaction Effects

$$S_{ij} = \frac{V_{ij}}{V}$$

Second-order

$$V_{ij} [Y_2] = \left(\mathcal{D}_{ij}^{(2)} \right)^2 \mu_{2i} \mu_{2j}$$

Iterative Construction of a Sparse Taylor Series Expansion

An increase in:

- Number of random variables, r
- Order of expansion, n

Leads to an increase in:

- Number of partial derivatives, d
- Computational time to compute the complete n 'th-order Taylor series
- Unnecessary derivative computations
 - Some terms in the expansion will not significantly contribute to increasing the accuracy in the Taylor series estimation of the output variance

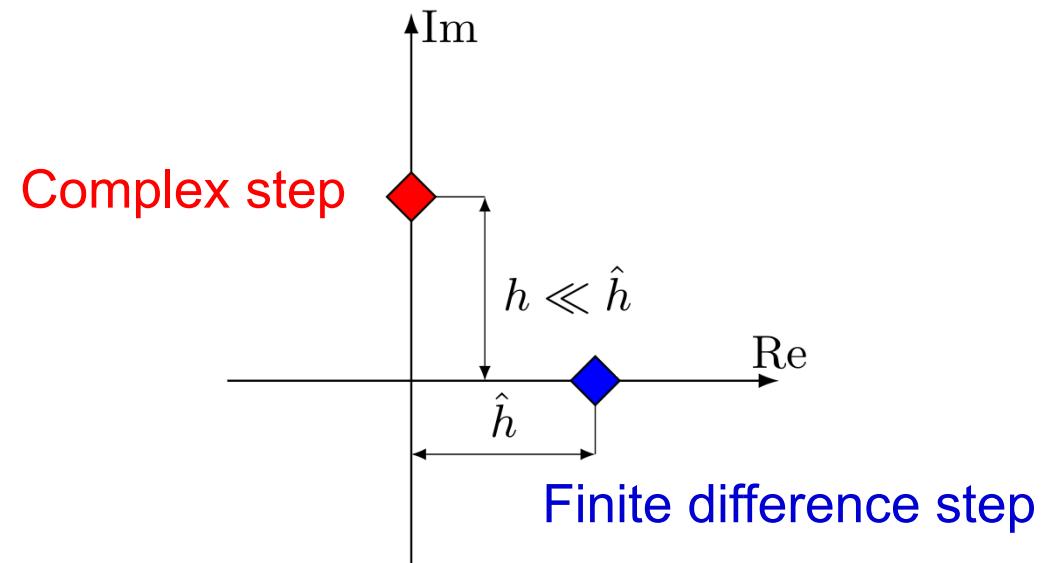
Sparse Taylor series expansion

1. Compute first-order Taylor series expansion
 - Sobol' indices to identify unimportant variables (screening)
2. Compute second-order derivatives of important variables

Partial Derivative Calculation using Hypercomplex Algebra

Complex-step Method for First-order Derivatives

- Perturb variable of interest along the imaginary axis
- Imaginary axis can be represented by a:
 - Complex number, $i^2 = 1$
 - Dual number, $\epsilon^2 = 0$
- The step size can be made arbitrarily small to neglect truncation error



HYPercomplex Automatic Differentiation (HYPAD) for Higher-order Derivatives

1. Variables are perturbed along **multiple** imaginary directions using **hyper**complex numbers
 - **Multicomplex** numbers generalizes imaginary numbers to any number of directions
 - **Multidual** numbers generalizes dual numbers to any number of directions
 - **Order Truncated Imaginary (OTI)** numbers efficiently compute all derivatives in Taylor series expansion in a single analysis
2. The function is evaluated using **hypercomplex** algebra
3. Derivatives are extracted from the imaginary parts of the output

Hypercomplex Differentiation Implementation in Source Code

Setup

- Initialize hypercomplex library (for algebraic operation overloading)
- Define variables of interest as hypercomplex
- Define functions that use these variables as hypercomplex
- If variable/function is an array, change syntax to match hypercomplex library
- Write code to extract real and non-real parts (derivatives) of output

Running the code

- Add a non-real step to variable(s) of interest
- Run code
- Real part of output = output evaluation
- First non-real part = first derivative
- Second non-real part = second derivative, etc.

Multidual Code Conversion Example

Example

$$f(\mathbf{x}) = e^{x_2} \sin(x_1 x_2)$$

$$\mathbf{x} = [x_1, x_2] = [2, 3]$$

Real Code

```

1 program main
2 implicit none
3 ! declare variables
4 real*8 x(2) ! input: real vector
5 real*8 f      ! output: real number
6 ! assign input
7 x(1) = 2.0d0
8 x(2) = 3.0d0
9 ! calculate output
10 f = exp(x(2))*sin(x(1)*x(2))
11 end program

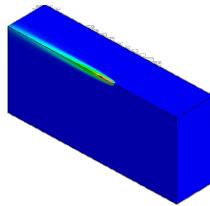
```

Multidual Code

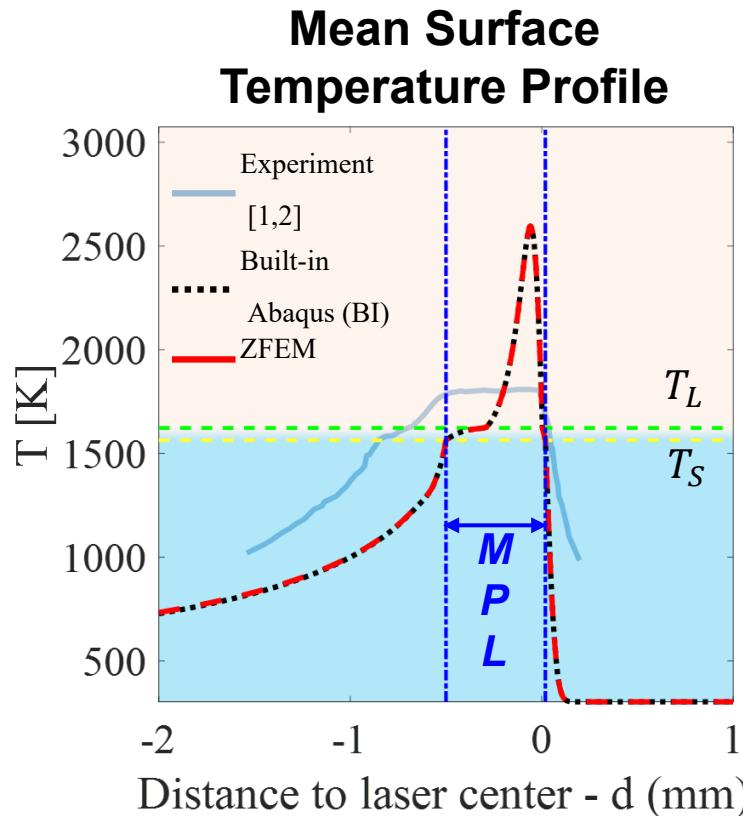
```

1 program main
2 use multiz          ! use MultiZ library
3 implicit none
4 ! declare variables
5 type(mdvec) x      ! input: multidual vector
6 type(mdual) f      ! output: multidual number
7 integer n           ! size of multidual numbers for allocation
8 ! derivatives
9 real*8 d1, d2, d11, d12, d22, d111, d112, d122, d222
10 n = 6               ! for 6 non-real steps
11 ! allocate multidual vector
12 call mallocate(x, n, 2)
13 ! assign input with non-real steps
14 call mset(x, 1, 2.0d0 + eps(1) + eps(2) + eps(3))
15 call mset(x, 2, 3.0d0 + eps(4) + eps(5) + eps(6))
16 ! calculate output
17 f = exp(mget(x,2))*sin(mget(x,1)*mget(x,2))
18 ! extract sensitivities
19 d1 = aimag(f,1)      !  $\partial f(\mathbf{x}) / \partial x_1$ 
20 d2 = aimag(f,4)      !  $\partial f(\mathbf{x}) / \partial x_2$ 
21 d11 = aimag(f,[1,2]) !  $\partial^2 f(\mathbf{x}) / \partial x_1^2$ 
22 d12 = aimag(f,[1,4]) !  $\partial^2 f(\mathbf{x}) / \partial x_1 \partial x_2$ 
23 d22 = aimag(f,[4,5]) !  $\partial^2 f(\mathbf{x}) / \partial x_2^2$ 
24 d111 = aimag(f,[1,2,3]) !  $\partial^3 f(\mathbf{x}) / \partial x_1^3$ 
25 d112 = aimag(f,[1,2,4]) !  $\partial^3 f(\mathbf{x}) / \partial x_1^2 \partial x_2$ 
26 d122 = aimag(f,[1,4,5]) !  $\partial^3 f(\mathbf{x}) / \partial x_1 \partial x_2^2$ 
27 d222 = aimag(f,[4,5,6]) !  $\partial^3 f(\mathbf{x}) / \partial x_2^3$ 
28 end program

```



AM Application: Real Value of Mean Surface Temperature



Mean surface temperature profile
 $NRMSE(BI, ZFEM) = 1.92e - 3$

Melt Pool Length (MPL)

$$MPL_{exp} = 0.782 \text{ mm}$$

$$e_{ZFEM}(MPL) = 33.7\%$$

Melt Pool Depth (MPD)

$$MPD_{exp} = 0.091 \text{ mm}$$

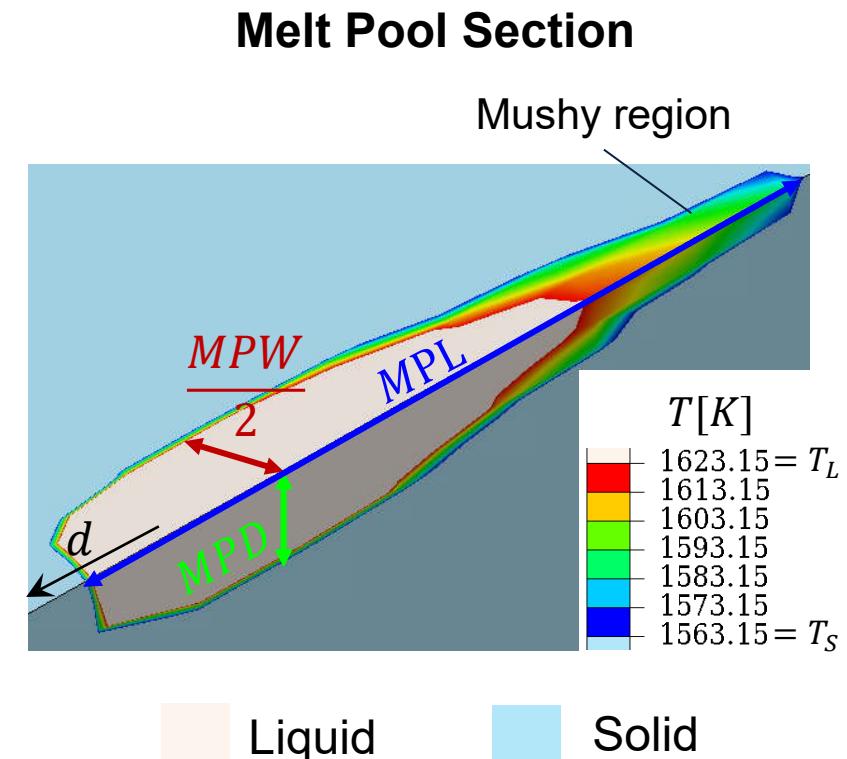
$$e_{ZFEM}(MPD) = 38.6\%$$

Melt Pool Width (MPW)

$$MPW_{exp} = 0.133 \text{ mm}$$

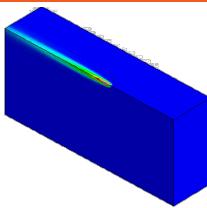
$$e_{ZFEM}(MPW) = 16.8\%$$

Model underpredicts dimensions



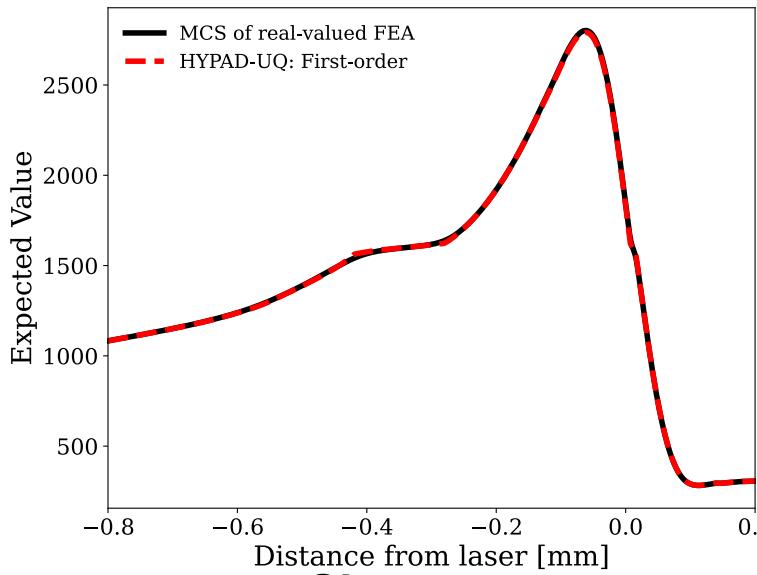
Simplifications of this model limit the precision compared to the experiments. However, the trend is in agreement.

1. Kollmannsberger, S., Carraturo, M., Reali, A., & Auricchio, F. (2019). Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. *Integrating Materials and Manufacturing Innovation*, 8(2), 167–177. <https://doi.org/10.1007/s40192-019-00132-9>
2. Heigel, J. C., Lane, B. M., & Levine, L. E. (2020). In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Artifacts. *Integrating Materials and Manufacturing Innovation*, 9(1), 31–53. <https://doi.org/10.1007/s40192-020-00170-8>
3. K.-M. Hong, C. M. Grohol, and Y. C. Shin, "Comparative Assessment of Physics-Based Computational Models on the NIST Benchmark Study of Molten Pool Dimensions and Microstructure for Selective Laser Melting of Inconel 625," *Integr Mater Manuf Innov*, vol. 10, no. 1, pp. 58–71, Mar. 2021, doi: [10.1007/s40192-021-00201-y](https://doi.org/10.1007/s40192-021-00201-y).

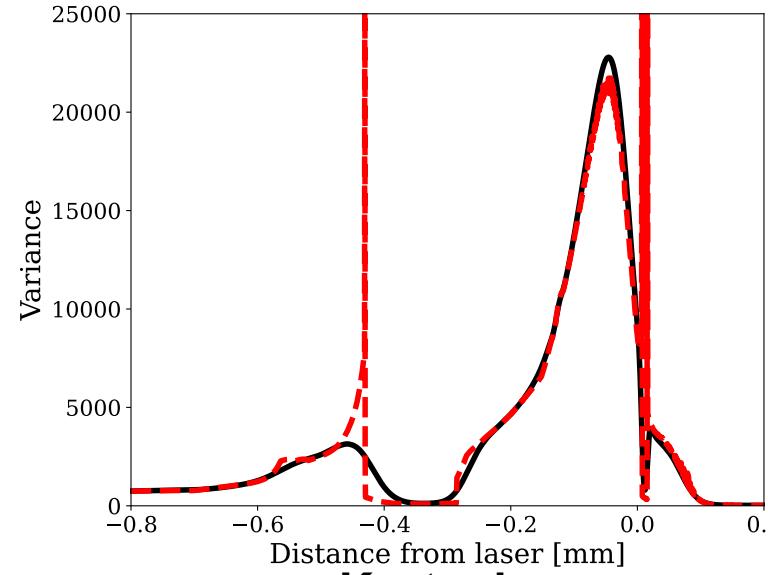


AM Application: Central Moments of Mean Surface Temperature

Expected Value

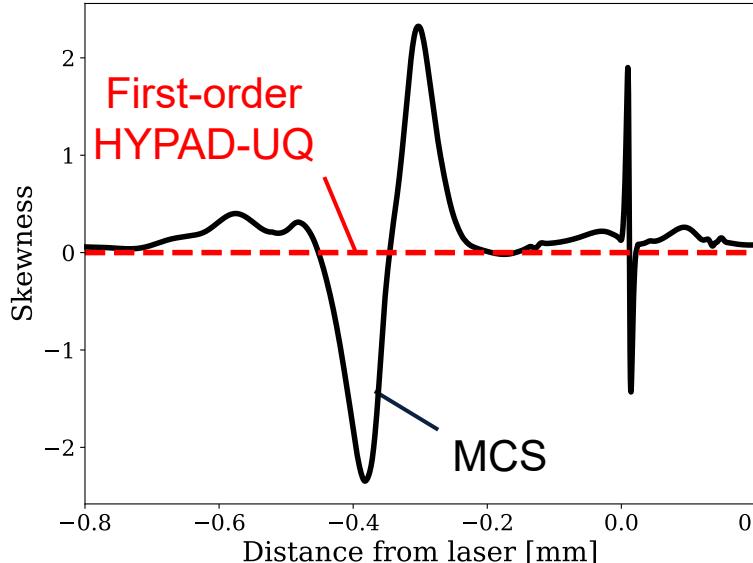


Variance

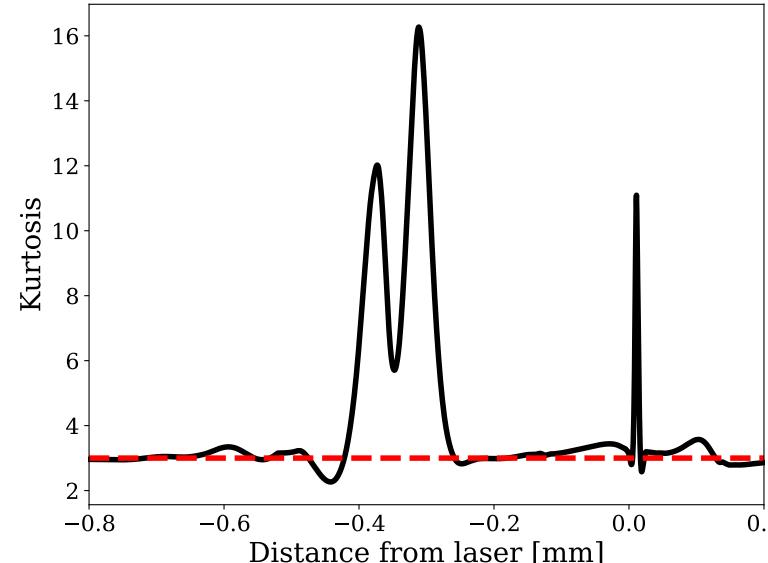


— MCS of ABAQUS built-in simulation (356 samples)
- - - 1st-order HYPAD-UQ

Skewness



Kurtosis

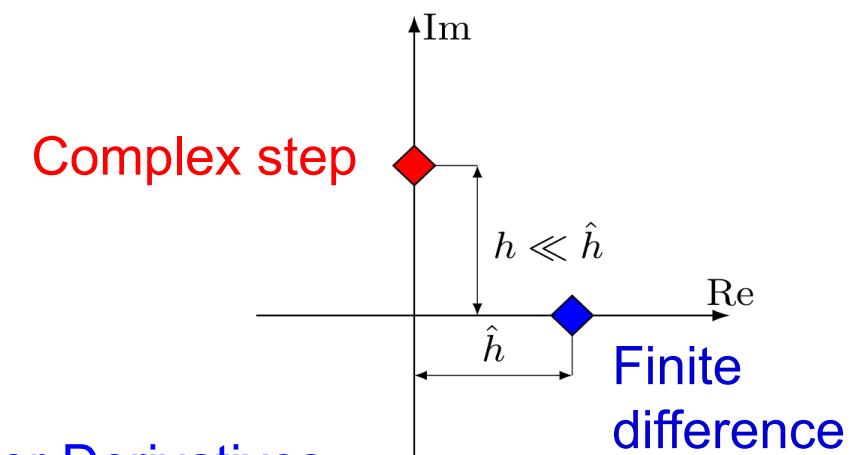


- Higher-order Taylor series expansion needed to capture non-Gaussian skewness and kurtosis

Partial Derivative Calculation using Hypercomplex Algebra

Complex-Step Differentiation Method

- Perturb variable of interest along the imaginary axis
- Imaginary axis can be represented by a complex number, $i^2 = 1$
- Machine precision derivatives



HYPercomplex Automatic Differentiation (HYPAD) for Higher-order Derivatives

1. Variables are perturbed along **multiple** imaginary directions using **hyper**complex numbers
 - **Multicomplex** numbers generalizes imaginary numbers to any number of directions
 - **Multidual** numbers generalizes dual numbers to any number of directions
 - **Order Truncated Imaginary (OTI)** numbers efficiently compute all derivatives in Taylor series expansion in a single analysis
2. The function is evaluated using **hypercomplex** algebra
3. Derivatives are extracted from the imaginary parts of the output

Postprocess to Compute HYPAD Derivatives

- n 'th-order derivatives computed from the residual of the converged finite element solution

HYPAD-UQ Overview

HYPercomplex Automatic Differentiation (HYPAD)

- Accurate *arbitrary*-order partial derivatives
- Straight-forward implementation for any order of derivative
- Implemented in Finite Element Method (FEM)

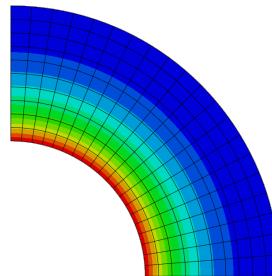
Taylor series expansion of finite element outputs

- Taylor series constructed from **HYPAD** sensitivities

Uncertainty Quantification (UQ) with Taylor series

- Taylor series is a surrogate model used to approximate:
 - Probability distributions
 - Central moments
 - Sobol' indices (global sensitivity analysis)

Mathematical model, $f(\mathbf{x})$



Nodal derivatives with **HYPAD**

$$\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2}, \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2}, \frac{\partial^3 f(\mathbf{x})}{\partial x_1^3}, \dots$$

Taylor series expansions of nodal outputs

$$f(\mathbf{x}) \approx f(\boldsymbol{\mu}_{\mathbf{x}}) + \sum_{i=1}^m \frac{\partial f}{\partial x_i} (\mathbf{x}_i - \boldsymbol{\mu}_{x_i}) + \dots$$

Uncertainty Quantification

Uncertainty Quantification using HYPAD (HYPAD-UQ)

