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Overview
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Develop, implement, verify, and validate a new computational methodology to provide sensitivities 
and uncertainty quantification metrics for metal-based additively manufactured components

Long-term objective:

What is new with our approach?

Uses hypercomplex algebra combined with traditional finite element methods to compute arbitrary-order high-accuracy 
derivatives.

→ Arbitrary order, shape, material, and loading parameters available.
→ Linear, nonlinear, or time dependent
→ Step size independent method ensures high accuracy.
→ The traditional real-valued results are still obtained and can be reused.
→ Non-Intrusive – a postprocessing code is programmed using hypercomplex algebra

→  Traditional functions still used, e.g., same shape functions, etc.

Methodology is programmed based on a user element (UEL) for the Abaqus commercial software.
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Partial Derivative Calculation
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Finite Differentiation 
Method (FDM)

Complex Taylor Series 
Expansion (CTSE)

𝑑𝑑𝐮𝐮 𝑎𝑎𝑜𝑜
𝑑𝑑𝑑𝑑

≈
𝐮𝐮 𝑎𝑎𝑜𝑜 + ℎ − 𝐮𝐮 𝑎𝑎𝑜𝑜

ℎ
𝑑𝑑𝐮𝐮 𝑎𝑎𝑜𝑜
𝑑𝑑𝑑𝑑

≈
𝐼𝐼𝐼𝐼 𝐮𝐮 𝑎𝑎𝑜𝑜 + 𝒊𝒊ℎ

ℎ

Set of Hypercomplex Numbers

Complex

𝒂𝒂∗ = 𝒂𝒂𝑹𝑹𝑹𝑹 + 𝒊𝒊𝒂𝒂𝑰𝑰𝑰𝑰
𝒊𝒊𝟐𝟐 = −𝟏𝟏

Dual - OTI

𝒂𝒂∗ = 𝒂𝒂𝑹𝑹𝑹𝑹 + 𝝐𝝐𝒂𝒂𝝐𝝐
𝝐𝝐𝟐𝟐 = 𝟎𝟎

𝑑𝑑𝐮𝐮 𝑎𝑎𝑜𝑜
𝑑𝑑𝑑𝑑

=
𝐼𝐼𝑚𝑚𝜖𝜖 𝐮𝐮 𝑎𝑎𝑜𝑜 + 𝝐𝝐ℎ

ℎ
• ℎ can be unitary
• Exact derivative
• Requires specific 

algebra packages
• Algebra accounts for 

composition and 
chain rule 

HYPAD: 
HYPercomplex Automatic Differentiation

If 𝑎𝑎 is perturbed along 
multiple imaginary 

directions high order 
sensitivities (interactions) 

are obtained 

ZTSEHYPAD

• Determining ℎ is 
problematic

• No code modifications

• ℎ can be “very” small 
~10−30

• Built-in in languages 
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HYPercomplex Automatic 
Differentiation (HYPAD)

Mathematical model, 𝑓𝑓 𝒙𝒙

Nodal derivatives using HYPAD
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥12

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

,
𝜕𝜕3𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥13

, …

Taylor series expansion of nodal 
outputs

𝑓𝑓 𝒙𝒙 ≈ 𝑓𝑓 𝝁𝝁𝒙𝒙 + �
𝑖𝑖=1

𝑚𝑚
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥𝑖𝑖 + ⋯

Uncertainty Quantification

4
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Quantifying Uncertainty in Finite Element Outputs with the Taylor Series
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OutputMathematical Model, 𝑓𝑓 𝒙𝒙

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑟𝑟

Random Variables
 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑟𝑟

…

𝑓𝑓 𝒙𝒙

Surrogate Model
𝑓𝑓 𝒙𝒙 ≈ 𝑌𝑌𝑛𝑛 

(𝑛𝑛𝑡𝑡𝑡-order Taylor series expansion) 𝑥𝑥4

𝑥𝑥3

𝑥𝑥2

𝑥𝑥3, 𝑥𝑥4 𝑥𝑥1

Sobol’ Indices



Arturo Montoya– Arturo.Montoya@utsa.edu Montoya, et al.AMT Workshop – October 25, 2023

The University of Texas at San Antonio

Heated Fin: Verification Problem [1]

6

Goal: Quantify uncertainty of temperature at tip of fin through time

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite 
Element Method. doi: 10.1115/1.4062459.

[2] Rincon-Tabares, J.-S., Velasquez-Gonzalez, J. C., Ramirez-Tamayo, D., Montoya, A., Millwater, H., & Restrepo, D. (2022). Sensitivity Analysis for Transient Thermal Problems Using the Complex-
Variable Finite Element Method. Appl. Sci., 12(5), 2738. doi: 10.3390/app12052738

Fin tip

• Analytical solution was used for verification [2]
• HYPAD-UQ conducted with a 2D FEM model (using OTI-based HYPAD)
• Compared computational performance against linear regression-based 

stochastic perturbation finite element method

Variable Distribution Mean, 𝝁𝝁𝒙𝒙 COV= 𝝈𝝈𝒙𝒙/𝝁𝝁𝒙𝒙 
Thermal conductivity, 𝑘𝑘 Log-Normal 7.1 W/(m � K) 0.20
Specific heat, 𝑐𝑐𝑝𝑝 Log-Normal 580 J/(kg � K) 0.20
Density, 𝜌𝜌 Log-Normal 4430 kg/m3 0.20
Heat transfer coefficient, ℎ𝑈𝑈 Log-Normal 114 W/(m2 � K) 0.20
Ambient temperature, 𝑇𝑇∞ Triangular 283 K 0.01
Heat source temperature, 𝑇𝑇𝑤𝑤 Uniform 389 K 0.20
Length of fin, 𝑏𝑏 Uniform 51 mm 0.20
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Hypercomplex-based Taylor Series vs Linear Regression-based Taylor Series 
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HYPAD-UQ
• Taylor series expansion of 𝑓𝑓 𝒙𝒙  about the mean values of 𝒙𝒙

• Derivatives calculated with HYPAD

Computational performance of HYPAD-UQ was compared to linear regression

Linear Regression-based Stochastic Perturbation Finite Element Method [1]
• Taylor series expansion of 𝑓𝑓 𝒙𝒙  (same polynomial basis)

• Samples drawn from 𝑓𝑓 𝒙𝒙
• Unknown coefficients, 𝑏𝑏𝑖𝑖, approximated by Ordinary Least Squares (OLS) 

[1] Kaminski, M., 2022, Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based finite element method, Finite Elements in Analysis and Design, 200, 3.
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HYPAD Derivative Accuracy and CPU Time
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[1] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.
[2] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite Element 

Method. doi: 10.1115/1.4062459.

Normalized Root Mean Square 
Error (NRMSE) • Derivatives calculated using OTI Algebra [1]

• Each run computes all 1𝑠𝑠𝑠𝑠- through 𝑛𝑛𝑡𝑡𝑡-order 
partial derivatives

• NRMSE measured using derivatives of the 
analytic solution

• Error increases with order of derivative

Derivative order, 𝑛𝑛 First Second Third Fourth Fifth Sixth Seventh 
Total computed derivatives 7 35 119 329 791 1715 3431

CPU time relative to a 
single real analysis 2.60 5.00 10.4 22.1 64.7 133.5 205.5
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Central Moments
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HYPAD-UQ is compared to:
• LHS of analytical 

solution (1E7 samples)
• 2𝑛𝑛𝑛𝑛-degree OLS 

regression, trained with 
206 samples

First-order

Second

Third
Fourth - Seventh

OLS

Fifth

Second

First-order

Third

Fourth

Sixth Seventh

OLS

First-order

Fourth
Second  Third

OLS

First-order

Second

Third

Fifth
Fourth

OLS

LHS of analytic solution
(1E7 samples)

95 % Confidence Interval (CI) 
of LHS

95 % CI of OLS model

Expected Value Variance

Skewness Kurtosis
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Error of Central Moments
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• HYPAD-UQ moments 
converge to lower errors 
than OLS within the same 
CPU time

• Higher-order expansions 
can increase accuracy
• Higher-order 

expansions do not 
guarantee monotonic 
convergence

Expected Value Variance

Skewness Kurtosis

Second-degree OLS

First-degree OLS

HYPAD-UQ

Exact Taylor series
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Cumulative Distribution at Steady-State
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• HYPAD-UQ accurate near mean of 
temperature

• Higher-order HYPAD-UQ Taylor 
series expansions can diverge near 
the tails of distribution
• Odd-ordered Taylor series diverge 

near low probabilities

Gaussian Probability Plot, 𝒕𝒕 = 𝟒𝟒𝟒𝟒𝟒𝟒 s
First-order

Second
Third

Fourth, Sixth

Fifth

Seventh

Analytic solution (black)

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite 
Element Method. doi: 10.1115/1.4062459.
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HYPAD-based Taylor Series Prediction vs Actual Temperature
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• 1E6 evaluations
• Taylor series converges to 

analytical solution for most 
of the random variable 
domain 

• Certain combinations of 
random variables lead to 
large error in higher-order 
Taylor series expansions

Actual vs Predicted Temperature, 𝒕𝒕 = 𝟒𝟒𝟒𝟒𝟒𝟒 s

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite 
Element Method. doi: 10.1115/1.4062459.
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Sobol’ Indices
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Second-order HYPAD-UQ Third-order HYPAD-UQ

• Max of 28% of the total 
variance is due to 
interactions

• First-order HYPAD-UQ 
correctly identifies important 
variables  

• Second-order HYPAD-UQ 
captures most of the 
interaction effect

Interaction Effects at Steady-State

LHS of Analytic Solution 
(𝟕𝟕 × 𝟏𝟏𝟎𝟎𝟕𝟕 samples)

First-order 
HYPAD-UQ
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AM Application: Physics Involved
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Thermal Profile

Transient heat transfer:
• Fourier equation
• Convection/Radiation boundary 

conditions
• Moving heat source boundary 

condition 
• Temperature-dependent properties

Thermomechanical
• T-dependent 
properties
•Residual thermal 
strain
•Thermoelasticity 
•Thermoplasticity

Thermal 
history

Thermal Residual Stresses, Final Track Shape, Thermal History
Outputs

3D Sequential Model
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AM Application: Bare Plate Single Track 3D Model 

15

Goal: Quantify uncertainty in mean surface temperature

Top surface
Convection and 

Radiation 

Laser
𝑃𝑃, 𝜂𝜂

𝑏𝑏
=

3.
2 
𝑚𝑚𝑚𝑚
𝑇𝑇

𝑇𝑇𝑠𝑠

𝑇𝑇0

(𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) 16 𝜇𝜇𝜇𝜇

0.243 𝑚𝑚𝑚𝑚

Element 
size

Symmetrical 
domain in the laser 
plane

0.5 𝑚𝑚𝑚𝑚

6 elements 
in 0.1 𝑚𝑚𝑚𝑚

Assumptions: solid conduction, radiation, 
convection, moving laser, variable properties, 
linear solid-liquid-solid phase change, latent heat
Physics disregarded: internal convection, 
vaporization, chemical reactions, calibration 
parameters 
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AM Application: Random Variable Distribution Parameters
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Type Physics Parameter Mean, 𝝁𝝁𝒙𝒙 [1] COV= 𝝈𝝈𝒙𝒙/𝝁𝝁𝒙𝒙  (%)

Constant

Laser

Radius, 𝑟𝑟𝑥𝑥 0.1 𝑚𝑚𝑚𝑚 5.0
Depth, 𝑟𝑟𝑦𝑦 0.1 𝑚𝑚𝑚𝑚 5.0

Absorption, 𝜂𝜂 0.43 2.5
Power, 𝑃𝑃 195 𝑊𝑊 2.5 [2]

Initial location, 𝑥𝑥0 −2 𝑚𝑚𝑚𝑚 1.5
Initial location, 𝑦𝑦0 0 𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆 = 1.5𝑒𝑒 − 4

Scanning speed, 𝑉𝑉𝑥𝑥 800 𝑚𝑚𝑚𝑚/𝑠𝑠 1.5 [2]

Build Chamber 
Conditions

Chamber temperature, 𝑇𝑇∞ 303𝐾𝐾 1.5
Convection, ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 18 𝑊𝑊/𝑚𝑚𝑚𝑚 5.0

Emissivity, 𝜖𝜖 0.4 3.0
Initial Condition Temperature, 𝑇𝑇0 303 𝐾𝐾 1.5

Phase Change
Energy, 𝛥𝛥𝐻𝐻𝐿𝐿𝐿𝐿 290 𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘 𝐾𝐾 3.0

Solidus temperature, 𝑇𝑇𝑆𝑆 1563 𝐾𝐾 0.5
Liquidus temperature, 𝑇𝑇𝐿𝐿 1623 𝐾𝐾 0.5

Temperature
-dependent Material Properties

Density, 𝜌𝜌𝑠𝑠 Figure (a) 3.0
Specific heat, 𝑐𝑐𝑃𝑃𝑠𝑠 Figure (b) 3.0 [2]

Thermal conductivity, 𝑘𝑘𝑠𝑠 Figure (c) 3.0 [2]
Mesh 

Dependent Geometry
Solid layers length, 𝑙𝑙 14 𝑚𝑚𝑚𝑚 0.5 [2]

Solid layers thickness, 𝑏𝑏 3.2 𝑚𝑚𝑚𝑚 0.5 [2]

[1] Heigel, J.C.; Lane, B.M.; Levine, L.E. In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Artifacts. Integr. Mater. Manuf. Innov. 2020, 9, 31–53, doi:10.1007/s40192-020-00170-8.
[2] Moges, T.; Witherell, P.; Ameta, G. On characterizing uncertainty sources in laser powder bed fusion additive manufacturing models. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); American 

Society of Mechanical Engineers (ASME): Salt Lake City, UT, USA IMECE2019-11727, 2019; Vol. 2A-2019.
[3] AFRL Additive Manufacturing ( AM ) Modeling Challenge Series; 2019;

INC625 Properties [3] 
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Thermal conductivity

Solid
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a)

b)

c)

* Values were assumed

All variables are normally distributed
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AM Application: First-order Sensitivities of Temperature, 𝑆𝑆𝜃𝜃𝑇𝑇 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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First-order HYPAD CPU Time = ~2x a single real analysis

Laser Power (𝑷𝑷) Laser speed (𝑽𝑽𝑿𝑿) Laser absorption (𝜼𝜼)

NRMSE=0.041

Latent heat (𝑳𝑳) Track length (𝒍𝒍) Specific heat 
solid (𝑪𝑪𝑷𝑷𝒔𝒔(𝑻𝑻))

Thermal 
conductivity 

(𝒌𝒌𝑺𝑺(𝑻𝑻))

NRMSE=0.050

FD of Built-in 
Abaqus element
ZFEM 

NRMSE=0.149

NRMSE=0.078

NRMSE=0.074NRMSE=0.034 NRMSE=0.094

NRMSE=0.048

Initial Temperature 
(𝑻𝑻𝟎𝟎)
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AM Application: Uncertainty in Mean Surface Temperature
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Cost: 2 X

Cost: 495 X

Laser Spot

Laser Scan 
Direction

Two PhaseSolid Liquid Solid
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Sobol’ Indices: First-order HYPAD-UQ

Solid thermal 
conductivity, 𝑘𝑘𝑆𝑆

Laser absorption, 𝜂𝜂

Laser power, 𝑃𝑃

Initial 
temp., 𝑇𝑇0

Laser 
radius, 𝑟𝑟𝑥𝑥

Laser depth, 𝑟𝑟𝑦𝑦
Liquid. 

temp., 𝑇𝑇𝐿𝐿

Solid 
density, 𝜌𝜌𝑠𝑠

Solid temp., 𝑇𝑇𝑆𝑆

19

Liquid 
conductivity, 𝑘𝑘𝐿𝐿

Scan velocity, 𝑉𝑉𝑥𝑥

Phase 
ChangeSolid Liquid Solid

Laser Spot

Phase 
Change

Laser Scan Direction

Solid specific 
heat, 𝑐𝑐𝑝𝑝𝑠𝑠
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Sobol’ Indices: First-order HYPAD-UQ vs First-degree PCE
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First-order HYPAD-UQ (CPU Time = 3 X) First-degree Polynomial Chaos Expansion (PCE), 
100 training points from MCS design
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Sobol’ Indices: First-order HYPAD-UQ vs Second-degree PCE

Initial 
temp., 𝑇𝑇0

Laser 
radius, 𝑟𝑟𝑥𝑥

Solid 
density, 𝜌𝜌𝑠𝑠

21

First-order HYPAD-UQ (CPU time = 3 X) Second-degree Polynomial Chaos Expansion (PCE), 
495 training points from MCS design
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Summary
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• Higher-order partial derivatives were calculated with 
HYPAD in finite elements
• Significantly faster than finite difference with no step size issues

• HYPAD sensitivities were used to construct Taylor 
series expansions for UQ (HYPAD-UQ)

• HYPAD-UQ was conducted on:
• Transient linear thermal analysis of a fin
• Non-linear thermal analysis of an AM PBF process

Mathematical model, 𝑓𝑓 𝒙𝒙

Nodal derivatives with HYPAD
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥12

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

,
𝜕𝜕3𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥13

, …

Taylor series expansion of nodal 
outputs

𝑓𝑓 𝒙𝒙 ≈ 𝑓𝑓 𝝁𝝁𝒙𝒙 + �
𝑖𝑖=1

𝑚𝑚
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥𝑖𝑖 + ⋯

Uncertainty Quantification
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Future Work 
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• The current development will allow the investigation of 
the uncertainty propagation starting from the process 
parameters, to the material microstructure and the bulk 
mechanical properties of the fabricated parts.
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Questions ?

24

Learn how to compute 
derivatives with HYPAD!
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Backup
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HYPAD Libraries
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MultiZ [1]
• Multicomplex and multidual algebra support

• Type declarations
• Operation overloading (+,−,×,÷)
• Mathematical operation support (sine, cosine, exponential, log, sqrt, and power)
• Arbitrary-order of hypercomplex numbers available

• Can be used with FEA simulation and other codes for sensitivity analysis
• Fortran and Python languages supported

OTI Library [2]
• Order Truncated Imaginary (OTI) algebra support
• Can be used with FEA simulation and other codes for sensitivity analysis
• Python, C, and Fortran versions developed

[1] Aguirre-Mesa, A. M., Garcia, M. J., and Millwater, H. (2020). Multiz: A library for computation of high-order derivatives using multicomplex or multidual numbers. ACM Trans. Math. Softw., 46(3).
[2] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.
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HYPAD-UQ Method Overview
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Advantages
• HYPAD computes accurate Taylor series expansions
• Higher-order expansions can yield accurate results for large variation in random variables
• Works with any distribution of random variables
• Change in standard deviation or distribution is trivial to recalculate (mean stays the same)
• Computationally efficient compared to finite difference, stochastic perturbation finite element 

method, and random sampling

Limitations
• Potentially many terms in the Taylor series expansion
• Increase in order of expansion does not guarantee monotonic increase in accuracy
• HYPAD is intrusive – requires source code alterations

• Once implemented, the code can be reused to compute sensitivities evaluated at any 
parameter
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Hypercomplex Finite Element Method 

28

• Real-valued variables are “uplifted” to hypercomplex variables
• External library used to “overload” elemental algebraic operations with hypercomplex algebra

• Hypercomplex numbers can be expressed in matrix form to allow real-only linear algebra 
operations (avoids use of external library, but inefficient)

• Additional degrees of freedom to nodes for each imaginary direction

Degrees of freedom in an OTI element for 
truncation order of 𝒏𝒏 = 𝟐𝟐 and 𝒓𝒓 = 𝟐𝟐 variables

[*] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.
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Block Forward Substitution to Solve Hypercomplex System of Equations
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Full OTI system of 
equations for 𝑛𝑛 = 2 
and 𝑟𝑟 = 2 variables

→

Solve real-only system

Solve first-order system

Solve second-order 
system
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Summary of HYPAD
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Advantages
• Simplicity – No new formulation of equations; same shape functions, integration schemes, 

time-integration algorithms, etc. 
• Robust - No step size considerations (use very small step size or dual variables).
• Comprehensive - Once “hypercomplexified”, derivatives with respect to ANY parameter 

available. Selection made from the input file.
• Scalable – Mixed and higher order derivatives available.
• Intrinsic support (1st order only) - No additional libraries required for first order derivatives 

using complex variables.
Disadvantages
• Intrusive – requires source code modification.
• Library support (mixed and higher order) - libraries required to support hypercomplex 

operations for mixed and higher order derivatives.
• Efficiency - Increased run time.
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Taylor Series Expansions of Central Moments
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Expected Value Variance

Taylor series expansion of the 𝑟𝑟𝑡𝑡𝑡 central moment

can be computed with algebraically for any distribution of random variables, 𝒙𝒙 

where,

𝜇𝜇𝑟𝑟𝑟𝑟 = 𝜇𝜇𝑟𝑟 𝑥𝑥𝑖𝑖
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Sobol’ Indices (Global Sensitivity Analysis)
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1. Decompose function into High Dimensional Model Representation (HDMR)

2. Take variance of HDMR function

Main Effects

Interaction Effects

Sobol’ indices 
sum to 100% of 
the total variance3.   Divide by total variance 𝑥𝑥4

𝑥𝑥3

𝑥𝑥2

𝑥𝑥3, 𝑥𝑥4 𝑥𝑥1

𝒙𝒙 are independent random variables
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Taylor Series Expansions of Sobol’ Indices
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Main Effects

First-order

Second-order

Interaction Effects

Second-order

Substitute 𝑓𝑓 𝒙𝒙 = 𝑌𝑌𝑛𝑛 𝒙𝒙  (𝑛𝑛’th-order Taylor series expansion)
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Iterative Construction of a Sparse Taylor Series Expansion
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Sparse Taylor series expansion
1. Compute first-order Taylor series expansion

• Sobol’ indices to identify unimportant variables (screening)
2. Compute second-order derivatives of important variables

An increase in:
• Number of random variables, 𝑟𝑟
• Order of expansion, 𝑛𝑛

Leads to an increase in:
• Number of partial derivatives, 𝑑𝑑
• Computational time to compute the complete 𝑛𝑛’th-order Taylor series
• Unnecessary derivative computations

• Some terms in the expansion will not significantly contribute to increasing the accuracy in the Taylor 
series estimation of the output variance
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Partial Derivative Calculation using Hypercomplex Algebra
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Complex-step Method for First-order Derivatives
• Perturb variable of interest along the imaginary axis
• Imaginary axis can be represented by a:

• Complex number, 𝑖𝑖2 = 1
• Dual number, 𝜖𝜖2 = 0

• The step size can be made arbitrarily small to 
neglect truncation error

Complex step

Finite difference step

HYPercomplex Automatic Differentiation (HYPAD) for Higher-order Derivatives
1. Variables are perturbed along multiple imaginary directions using hypercomplex numbers

• Multicomplex numbers generalizes imaginary numbers to any number of directions
• Multidual numbers generalizes dual numbers to any number of directions
• Order Truncated Imaginary (OTI) numbers efficiently compute all derivatives in Taylor series expansion in 

a single analysis
2. The function is evaluated using hypercomplex algebra
3. Derivatives are extracted from the imaginary parts of the output
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Hypercomplex Differentiation Implementation in Source Code
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Setup
• Initialize hypercomplex library (for algebraic operation overloading)
• Define variables of interest as hypercomplex
• Define functions that use these variables as hypercomplex
• If variable/function is an array, change syntax to match hypercomplex library
• Write code to extract real and non-real parts (derivatives) of output
Running the code
• Add a non-real step to variable(s) of interest
• Run code
• Real part of output = output evaluation
• First non-real part = first derivative
• Second non-real part = second derivative, etc.
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Multidual Code Conversion Example
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Real Code

Multidual CodeExample
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AM Application: Real Value of Mean Surface Temperature
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Melt Pool Section

𝑀𝑀𝑀𝑀𝑀𝑀
2

SolidLiquid

Mushy region

𝑑𝑑

𝑇𝑇[𝐾𝐾]

= 𝑇𝑇𝑆𝑆

= 𝑇𝑇𝐿𝐿

Melt Pool Length 𝑴𝑴𝑴𝑴𝑴𝑴
𝑀𝑀𝑀𝑀𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 = 0.782 𝑚𝑚𝑚𝑚
𝑒𝑒𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑀𝑀𝑀𝑀𝑀𝑀 = 33.7%

Mean surface temperature profile
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 1.92𝑒𝑒 − 3

Melt Pool Depth 𝑀𝑀𝑀𝑀𝐷𝐷
𝑀𝑀𝑀𝑀𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 0.091 𝑚𝑚𝑚𝑚
𝑒𝑒𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑀𝑀𝑀𝑀𝐷𝐷 = 38.6%

Melt Pool Width 𝑀𝑀𝑀𝑀𝑊𝑊
𝑀𝑀𝑀𝑀𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 = 0.133 𝑚𝑚𝑚𝑚
𝑒𝑒𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑀𝑀𝑀𝑀𝑊𝑊 = 16.8%

Model underpredicts dimensions

Mean Surface 
Temperature Profile

M
P
L

𝑇𝑇𝐿𝐿
𝑇𝑇𝑆𝑆

Experiment 

 [1,2]
Built-in 

 Abaqus (BI)
ZFEM

Simplifications of this model limit the precision compared to the experiments.  However, the trend is in agreement.

1. Kollmannsberger, S., Carraturo, M., Reali, A., & Auricchio, F. (2019). Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. Integrating Materials and Manufacturing Innovation, 8(2), 167–177. 
https://doi.org/10.1007/s40192-019-00132-9 

2. Heigel, J. C., Lane, B. M., & Levine, L. E. (2020). In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Artifacts. Integrating Materials and Manufacturing Innovation, 9(1), 31–53. https://doi.org/10.1007/s40192-020-00170-8
3. K.-M. Hong, C. M. Grohol, and Y. C. Shin, “Comparative Assessment of Physics-Based Computational Models on the NIST Benchmark Study of Molten Pool Dimensions and Microstructure for Selective Laser Melting of Inconel 625,” Integr Mater Manuf Innov, vol. 10, no. 1, pp. 58–71, Mar. 2021, 

doi: 10.1007/s40192-021-00201-y.

https://doi.org/10.1007/s40192-019-00132-9
https://doi.org/10.1007/s40192-020-00170-8
https://doi.org/10.1007/s40192-021-00201-y
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AM Application: Central Moments of Mean Surface Temperature
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1st-order HYPAD-UQ

MCS of ABAQUS built-in 
simulation (356 samples)

• Higher-order Taylor 
series expansion 
needed to capture non-
Gaussian skewness 
and kurtosis

Expected Value Variance

Skewness Kurtosis

First-order 
HYPAD-UQ

MCS 
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Complex step

Finite 
difference

Partial Derivative Calculation using Hypercomplex Algebra

40

Complex-Step Differentiation Method
• Perturb variable of interest along the imaginary axis
• Imaginary axis can be represented by a complex 

number, 𝑖𝑖2 = 1
• Machine precision derivatives

HYPercomplex Automatic Differentiation (HYPAD) for Higher-order Derivatives
1. Variables are perturbed along multiple imaginary directions using hypercomplex numbers

• Multicomplex numbers generalizes imaginary numbers to any number of directions
• Multidual numbers generalizes dual numbers to any number of directions
• Order Truncated Imaginary (OTI) numbers efficiently compute all derivatives in Taylor series expansion in 

a single analysis
2. The function is evaluated using hypercomplex algebra
3. Derivatives are extracted from the imaginary parts of the output

Postprocess to Compute HYPAD Derivatives
• 𝑛𝑛’th-order derivatives computed from the residual of the converged finite element solution
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HYPAD-UQ Overview
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• Accurate arbitrary-order partial derivatives
• Straight-forward implementation for any order of derivative
• Implemented in Finite Element Method (FEM)

HYPercomplex Automatic Differentiation (HYPAD)

Taylor series expansion of finite element outputs
• Taylor series constructed from HYPAD sensitivities

Uncertainty Quantification (UQ) with Taylor series
• Taylor series is a surrogate model used to approximate:

• Probability distributions
• Central moments
• Sobol’ indices (global sensitivity analysis)

Mathematical model, 𝑓𝑓 𝒙𝒙

Nodal derivatives with HYPAD
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥12

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

,
𝜕𝜕3𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥13

, …

Taylor series expansions of 
nodal outputs

𝑓𝑓 𝒙𝒙 ≈ 𝑓𝑓 𝝁𝝁𝒙𝒙 + �
𝑖𝑖=1

𝑚𝑚
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥𝑖𝑖 + ⋯

Uncertainty Quantification
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Uncertainty Quantification using 
HYPAD (HYPAD-UQ)

Mathematical model, 𝑓𝑓 𝒙𝒙

Nodal derivatives using HYPAD
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥12

,
𝜕𝜕2𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

,
𝜕𝜕3𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥13

, …

Taylor series expansion of nodal 
outputs

𝑓𝑓 𝒙𝒙 ≈ 𝑓𝑓 𝝁𝝁𝒙𝒙 + �
𝑖𝑖=1

𝑚𝑚
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥𝑖𝑖 + ⋯

Uncertainty Quantification
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