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Overview

Long-term objective:

Develop, implement, verify, and validate a new computational methodology to provide sensitivities
and uncertainty quantification metrics for metal-based additively manufactured components

What is new with our approach?

Uses hypercomplex algebra combined with traditional finite element methods to compute arbitrary-order high-accuracy
derivatives.

Arbitrary order, shape, material, and loading parameters available. — V
Linear, nonlinear, or time dependent

Step size independent method ensures high accuracy.
The traditional real-valued results are still obtained and can be reused.

N 2 2 2\ 2

Non-Intrusive — a postprocessing code is programmed using hypercomplex algebra
— Traditional functions still used, e.g., same shape functions, etc.

Methodology 1s programmed based on a user element (UEL) for the Abaqus commercial software.
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Partial Derivative Calculation

du(a,) _u(a, + HOu(a,)

Finite Differentiation

Method (FDM)
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h

Determining h is
problematic
No code modifications

Complex Taylor Series
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Step Size h
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If a 1s perturbed along
multiple imaginary
directions high order
sensitivities (interactions)

are obtained

h can be unitary
Exact derivative
Requires specific
algebra packages
Algebra accounts for
composition and
chain rule
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Mathematical model, f(x)

Nodal derivatives using HYPAD

. L 0f(x) af(x) 0%f(x) I*f (%) 0°f(x)
Differentiation (HYPAD) T ox, oxt amdn, 9

HYPercomplex Automatic

Taylor series expansion of nodal
outputs

of (x)
gxf (i = p)
l

Uncertainty Quantification
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Quantifying Uncertainty in Finite Element Outputs with the Taylor Series

Random Variables Mathematical Model, f(x) Output
X = m;.?Cl, X2, un) xr]

Probability
04
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0.1

\\\\\\\\\\

Sobol’ Indices

‘‘‘‘‘‘‘ | Surrogate Model "sz
0 = =~y B

(nt"-order Taylor series expansion)
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Heated Fin: Verification Problem [1]

Goal: Quantify uncertainty of temperature at tip of fin through time

Distribution COV= 0,/

Thermal conductivity, k Log-Normal
Specific heat, ¢, Log-Normal
Density, p Log-Normal
Heat transfer coefficient, hy Log-Normal
Ambient temperature, T, Triangular
Heat source temperature, T,, Uniform

Length of fin, b Uniform

7.1 W/(m - K)
580 J/(kg - K)
4430 kg/m3
114 W/(m? - K)
283 K
389 K
51 mm

« Analytical solution was used for verification [2]

« HYPAD-UQ conducted with a 2D FEM model (using OTl-based HYPAD)

0.20
0.20
0.20
0.20
0.01
0.20
0.20

Convection
+

Radiation

Ty

T(t)

« Compared computational performance against linear regression-based
stochastic perturbation finite element method

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite

Element Method. doi: 10.1115/1.4062459.

[2] Rincon-Tabares, J.-S., Velasquez-Gonzalez, J. C., Ramirez-Tamayo, D., Montoya, A., Millwater, H., & Restrepo, D. (2022). Sensitivity Analysis for Transient Thermal Problems Using the Complex-
Variable Finite Element Method. Appl. Sci., 12(5), 2738. doi: 10.3390/app12052738
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Hypercomplex-based Taylor Series vs Linear Regression-based Taylor Series

Computational performance of HYPAD-UQ was compared to linear regression

HYPAD-UQ
« Taylor series expansion of f(x) about the mean values of x

m 8 m
f(w)%f(ﬂ’m>‘|‘za$ ,Ula:)“‘ Z@xaxj(aji_ﬂmi)(x‘j_’umﬂ')_‘_.“
=1 7

zy—

 Derivatives calculated with HYPAD

Linear Regression-based Stochastic Perturbation Finite Element Method [1]
« Taylor series expansion of f(x) (same polynomial basis)

~ by +Zb z; + waxzxz

2,7=1
« Samples drawn from f(x)

« Unknown coefficients, b;, approximated by Ordinary Least Squares (OLS)

[1] Kaminski, M., 2022, Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based finite element method, Finite Elements in Analysis and Design, 200, 3.
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HYPAD Derivative Accuracy and CPU Time

Normalized Root Mean Square
Error (NRMSE) - Derivatives calculated using OTI Algebra [1]

1071
 Each run computes all 15t- through nt"-order
: EJTH partial derivatives
o ﬂ ? « NRMSE measured using derivatives of the
g analytic solution
z 107 » Error increases with order of derivative
) N () )
107%4 1 Median Z’iil (Qbapprox o ¢analytic)
------ Mean
_'_ | | | | | °' Outlie'rs NRMSE _ N
0 1 2 3 4 5 6 7 max (Qba,nalytic)

Order of derivative

Total computed derivatives 7 119 1715 3431

CPU time relative to a

single real analysis
[1] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.
[2] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite Element
Method. doi: 10.1115/1.4062459.
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Central Moments
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— LHS of analytic solution
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of LHS
95 % CI of OLS model

HYPAD-UQ is compared to:

« LHS of analytical
solution (1E7 samples)

« 2M_degree OLS
regression, trained with
206 samples
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Error of Central Moments

NRMSE of expected value

NRMSE of skewness
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NRMSE of variance

NRMSE of kurtosis
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HYPAD-UQ moments
converge to lower errors
than OLS within the same
CPU time

Higher-order expansions
can increase accuracy
* Higher-order
expansions do not
guarantee monotonic
convergence

Montoya, et al.



Cumulative Distribution at Steady-State

Gaussian Probability Plot, t = 450 s

99.9999 ;

98533: First-order
2 909 Se;;’[;j « HYPAD-UQ accurate near mean of
g temperature
< 90 1 .
S s « Higher-order HYPAD-UQ Taylor
§ ) series expansions can diverge near
2 0] Analytic solution (black) the tails of distribution
2 1 - « (Qdd-ordered Taylor series diverge
S5 01 ifth -t
© 001 g \ near low probabilities

0.0014 ISRV Fourth, Sixth

0.0001 ' — - = | |
200 225 250 275 300 325 350 375
Temperature [K]

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite
Element Method. doi: 10.1115/1.4062459.
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HYPAD-based Taylor Series Prediction vs Actual Temperature

Actual vs Predicted Temperature, t = 450 s

« HYPAD: First-order

3601+ =+ HYPAD: Second-order
HYPAD: Third-order
HYPAD: Fourth-order
HYPAD: Fifth-order
HYPAD: Sixth-order
HYPAD: Seventh-order

— Analytical solution

« 1E6 evaluations

» Taylor series converges to
analytical solution for most
of the random variable
domain

« Certain combinations of
random variables lead to
large error in higher-order
Taylor series expansions

340 1

320

Analytical Solution of T [K]
w
o
o

)
%,
S
4
4

200 225 250 275 300 325 350 375
HYPAD Taylor Series Prediction of T [K]

[1] Balcer, M., Aristizibal, M., Rincon-Tabares, J.-S., Montoya, A., Restrepo, D., & Millwater, H. (2023). HYPAD-UQ: A Derivative-based Uncertainty Quantification Method Using a Hypercomplex Finite
Element Method. doi: 10.1115/1.4062459.
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, ]
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AM Application: Physics Involved

Thermal Profile
Transient heat transfer: Thermomechanical
*  Fourier equation * T-dependent
*  Convection/Radiation boundary properties
conditions Thermal *Residual thermal
*  Moving heat source boundary history strain o
condition *Thermoelasticity
*  Temperature-dependent properties *Thermoplasticity
3D Sequential Model
Scanning Direction Heat Source Beam Melting
Current layer
Pz Temperature
. . e . N
Previously Solidified Layers Initial/Room
Temperature

Outputs
Thermal Residual Stresses, Final Track Shape, Thermal HiStOl'y
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AM Application: Bare Plate Single Track 3D Model

Goal: Quantify uncertainty in mean surface temperature

Laser 6 elements

in 0.1 mm
Top surface

Convection and
Radiation

(X0, Y0, Zo)

\ A
[ —
/ 2]
N
4))

%

Assumptions: solid conduction, radiation,
convection, moving laser, variable properties,
linear solid-liquid-solid phase change, latent heat
Physics disregarded: internal convection,

6 vaporization, chemical reactions, calibration
parameters

N Symmetrical

s domain in the laser
plane
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AM Application: Random Variable Distribution Parameters

iabl re normally distribut
All variables are normally distributed INC625 Properties [3]
Radius, r, 0.1 mm 5.0 s Liquid
Depth, 7, 0.1 mm 5.0 a) =
Absorption, 0.43 2.5 2 Solid
Laser Power, P 195 W 2.5 2] =78
Initial location, x —2mm 1.5 2 3
Initial location, y, 0 mm Std = 1.5e — 4 TK] L 10°
Scanning speed, V, 800 mm/s 1.5 [2] Specific heat
Constant Build Chamber Chamber temperature, Ty 303K 1.5 z . .
Conditions Convection, h 18 W /mK 5.0 b) z Solid { Liquid
Emissivity, € 0.4 3.0 i
Initial Condition Temperature, T, 303 K 1.5 =
Energy, AH, ¢ 290 kJ /kg K 3.0 ) i
Phase Change Solidus temperature, T 1563 K 0.5 K 10
Liquidus temperature, T, 1623 K 0.5 Thermal conductivity
Density, pq Figure (a) 3.0 30 —
Temperature Material Properties Specific heat, cp, Figure (b) 3.0 [2] Solid /. Liquid
-dependent Thermal conductivity, kg Figure (c) 3.0 [2] c) g 20
Solid layers length, ! 14 mm 0.5 [2] z
Geometry : : ~
Dependent Solid layers thickness, b 3.2mm 0.5 [2] 10
1 2 3
* Values were assumed TKI 0]

[1] Heigel, J.C.; Lane, B.M.; Levine, L.E. In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Atrtifacts. Integr. Mater. Manuf. Innov. 2020, 9, 31-53, doi:10.1007/s40192-020-00170-8.
[2] Moges, T.; Witherell, P.; Ameta, G. On characterizing uncertainty sources in laser powder bed fusion additive manufacturing models. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); American

Society of Mechanical Engineers (ASME): Salt Lake City, UT, USA IMECE2019-11727, 2019; Vol. 2A-2019.
[3] AFRL Additive Manufacturing ( AM ) Modeling Challenge Series; 2019;

Arturo Montoya— Arturo.Montoya@utsa.edu
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AM Application: First-order Sensitivities of Temperature, S} = Z—;

Laser Power (P) Laser speed (Vy) Initial Temperature Laser absorption (1
x10° 102 (To) x 10°
__ FD of Built-in | 3 | |
20 ™ Abaqus elemept NRMSE=0.078 20" NRMSE=0.041

M - zFEM M5
~ o 10} , —~ [_‘O
A N |5 NRMSE-0.149 ; _ 7@

0. NRMSE=0.050 Y ) | -\ |

2 -1 0 1 2 -1 0 1 2 -1 0 1 1

d (mm) d (mm) d (mm) d (mm)
Specific heat Thermal
Latent heat (L) Track length (1) solid (Cp_(T)) conductivity
x10> x 10> O><102 - o X10%

— 2 NRMSE-0.034 | | 5 NRMSE=0.094 N ' | NRMSES0.07

11 E. 4+ Fﬁ -4

0 Hmcgf -6 Ut 6

-8 - NRMSE=0.048 -8 L
i 2 B 0 1 -2 1 | 0 !
d (mm) d (mm) d (mm) (mm)
Liquid phase __ Solid phase First-order HYPAD CPU Time = ~2x a single real analysis
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AM Application: Uncertainty in Mean Surface Temperature

3000
—— MCS: Mean

MCS: £20

[\
o1
o
()

[\
o
-
o

1000

Surface temperature, T [K]
o
o
-

----- HYPAD-UQ: Mean |
HYPAD-UQ: +20

— Cost: 495 X

— Cost; 2 X

Laser Scan
Direction

Solid Two Phase Liquid Solid
500+
Laser Spot
-0.8 —0.6 -0.4 -0.2 0.0 0.2

Distance from center of laser, d [mm]
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Sobol’ Indices: First-order HYPAD-UQ

] Phase - Phase
Solhd Change qulwd Change

Solid temp., Ts

Solid
l

_
o

Laser depth, 7,

o
o

Laser absorption, n |

|
Laser
‘radius, 7,

o
o)

Liquid
conductivity, k;,

Solid thermal Solid specific Solid
conductivity, ks heat, ¢, density, p,

ol' Indices: First-order HYPAD-UQ
o
=~

Initial
temp., T,

-0.8 ~0.6 —0.4 —0.2 0.0 0.2
Distance from laser spot [mm]
Laser Scan Direction w==p Laser Spot
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Sobol’ Indices: First-order HYPAD-UQ vs First-degree PCE

- ) . First-degree Polynomial Chaos Expansion (PCE),
First-order HYPAD-UQ (CPU Time = 3 X) 100 training points from MCS design

o010 1.0
2
A o3} P
= 8 - v,
& . -
T 0.8 308 . b
.. (&) |8
w0 o—
o} "g . G
% — .
Laser " — Laser " |
S 0.6 radius, 7, Initial temp., Ty 8 0.6 | radius, 7, Initial temp., T, —
'-3 8 | o
S — €
ﬁ o - G,
b Solid thermal conductivity, & Solid 0 Solid thermal conductivity, & —
o 04 Ol ermal conauctivity, < denS|ty, Ps z 04 Ol ermal conauctivity, K¢ density, a - Yo
(’) —
o o "
e > 5 - o
Tg Solid specific heat, c,, 4 Solid specific heat, c,, DHs
© ] T
> 0.2 £0.2 - T
] =) . X,
= g -
E’ 8] -
S
0 0.0 0.0
-0.8 -0.6 -0.4 -0.2 0.0 0.2 -0.8 -0.6 -0.4 -0.2 0.0 0.2
Distance from center of laser, d [mm] Distance from center of laser, d [mm]
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Sobol’ Indices: First-order HYPAD-UQ vs Second-degree PCE

: L Second-degree Polynomial Chaos Expansion (PCE),
First-order HYPAD-UQ (CPU time = 3 X) 495 training points from MCS design

P b N mon o o . TS . T, P b . o mon oo oy ml TS B heony
. v, o . 7, € .y, AH;s . X N heony - v, o/ . 7, £ .y, AHs . x I Interactions
. ks I Cp ke N Gy ., T . ks . Cp, kg |__ ey -y n . T,

=495

1' Indices: First-order HYPAD-UQ

Sobol Indices, PCE: m

-0.8 -0.6 —0.4 0.2 0.0 02 -0.8 —0.6 —0.4 —0.2 0.0 02
Distance from laser spot [mm] Distance from laser spot mm
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Summary

Mathematical model, f(x)

« Higher-order partial derivatives were calculated with
HYPAD in finite elements

« Significantly faster than finite difference with no step size issues

« HYPAD sensitivities were used to construct Taylor Nodal derivatives with HYPAD
2 2 3
series expansions for UQ (HYPAD-UQ) af(x)’af(x)’a f(x),a f(x),a f(x),...
0x, ' 0x, = 0x? '0x.0x," 0x3

« HYPAD-UQ was conducted on:

« Transient linear thermal analysis of a fin

:

Taylor series expansion of nodal
outputs

f(x

l

Uncertainty Quantification

* Non-linear thermal analysis of an AM PBF process

FG) ~ fluo) + Z — ) +

Arturo Montoya— Arturo.Montoya@utsa.edu
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Future Work

Density
Heat Capacity _ ‘ Laser Power
« The current development will allow the investigation of .ff‘{‘ﬂfm?;?“ﬂd“‘m“ﬁ’ 1 l J [ TCaser Specd
. . . 1SCOS1
the uncertainty propagatl_on st_artlng from the process “Thermal Diffusivity I ™ Build Orfentation
parameters, to the material microstructure and the bulk Solidus Temperature e iz « —
mechanical properties of the fabricated parts. Liquidus Temperature, e
I Thermal History
Liquidus slope h 4
Melting temperature
Nucleationdensity |  Grain Growth
* Acknowledgements: Growth rate ; |
 Department of Energy CONNECT Consortium lr Microstructural Details:
Grain size, Porosity,
« Army Research Office under grant | _ Crystallography
W911NF2010315. Dr. Michael Bakas Program Elasticproperties | ooy rica)
M Plasticity parameters Response
anager. B (
* National Nuclear Security Administration [ Stress - Strain Response
under grant DE-NA0003948. Dr. David Canty 4

Program Manager.
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Learn how to compute
derivatives with HYPAD!

Questions ?

Arturo Montoya— Arturo.Montoya@utsa.edu
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Backup
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HYPAD Libraries

MultiZ [1]
« Multicomplex and multidual algebra support
* Type declarations
» Operation overloading (+, —,%,+)
« Mathematical operation support (sine, cosine, exponential, log, sqrt, and power)
 Arbitrary-order of hypercomplex numbers available
« Can be used with FEA simulation and other codes for sensitivity analysis
« Fortran and Python languages supported

OTI Library [2]

* Order Truncated Imaginary (OTI) algebra support
« Can be used with FEA simulation and other codes for sensitivity analysis
« Python, C, and Fortran versions developed

[1] Aguirre-Mesa, A. M., Garcia, M. J., and Millwater, H. (2020). Multiz: A library for computation of high-order derivatives using multicomplex or multidual numbers. ACM Trans. Math. Softw., 46(3).
[2] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.
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HYPAD-UQ Method Overview

Advantages

« HYPAD computes accurate Taylor series expansions

« Higher-order expansions can yield accurate results for large variation in random variables
« Works with any distribution of random variables

« Change in standard deviation or distribution is trivial to recalculate (mean stays the same)

« Computationally efficient compared to finite difference, stochastic perturbation finite element
method, and random sampling

Limitations

» Potentially many terms in the Taylor series expansion

* Increase in order of expansion does not guarantee monotonic increase in accuracy
« HYPAD is intrusive — requires source code alterations

« Once implemented, the code can be reused to compute sensitivities evaluated at any
parameter

Arturo Montoya— Arturo.Montoya@utsa.edu
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Hypercomplex Finite Element Method

« Real-valued variables are “uplifted” to hypercomplex variables
« External library used to “overload” elemental algebraic operations with hypercomplex algebra

« Hypercomplex numbers can be expressed in matrix form to allow real-only linear algebra
operations (avoids use of external library, but inefficient)

« Additional degrees of freedom to nodes for each imaginary direction

Degrees of freedom in an OTI element for
truncation order of n = 2 and r = 2 variables

[*] Aristizabal Cano, M., (2020). Order truncated imaginary algebra for computation of multivariable high-order derivatives in finite element analysis, PhD thesis, Universidad EAFIT.
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Block Forward Substitution to Solve Hypercomplex System of Equations

 Kp 0 0 0 0 0 1 ( up ) ( frp )
Full OTI system of Ke  Krp 0 0 0 0 Ue, fe,
equations for n = 2 K*a* = f* - K, 0 Kr 0 0 0 Ues _ ) e
- u K. K, 0 Kz 0 0 | T fe
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Summary of HYPAD

Advantages

« Simplicity — No new formulation of equations; same shape functions, integration schemes,
time-integration algorithms, etc.

* Robust - No step size considerations (use very small step size or dual variables).

« Comprehensive - Once “hypercomplexified”, derivatives with respect to ANY parameter
available. Selection made from the input file.

» Scalable — Mixed and higher order derivatives available.

 Intrinsic support (15t order only) - No additional libraries required for first order derivatives
using complex variables.

Disadvantages
* Intrusive — requires source code modification.

» Library support (mixed and higher order) - libraries required to support hypercomplex
operations for mixed and higher order derivatives.

« Efficiency - Increased run time.
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Taylor Series Expansions of Central Moments

Taylor series expansion of the ‘" central moment

e (f () = pr (Yn) = E[(Y, — EY,])]

can be computed with algebraically for any distribution of random variables, x

Expected Value Variance
EYol =Y (e m 2
-0 () po (Y1) = Z (Df”) 2
E[Y1] = B[V i=1
E[V5] = E[Y1] + Z DS)M% p2 (Y2) = p2 (Y1) + Z{Z (fo)) (14
1=1 =
L/ 2\? o (1).(2)
" — 2 (D)) waitDi Dy psik
where, D(”) 0" f (x) 4< )
0x;0x;...

m 2
+ Z (fo)) H2i b2
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Sobol’ Indices (Global Sensitivity Analysis)

1. Decompose function into High Dimensional Model Representation (HDMR)

f( fO"_Zfz xz _I’wa 37@7373)+ _|_f12 m($19$27---733m)

1<g
x are mdependent random variables Main Effects S, = V,i/V
Jo=FE[f ()] Interaction Effects S Vi; IV
I ij — iJ
fi = EIf @)]ad] - fo -
fis = Ef (®) |wi, 5] — fi = f; — Jfo Sigam = ViV

2. Take variance of HDMR function

V= Z Vit ) Vij+ o+ Vizom Sobol’ indices

i<j sum to 100% of
3. D|V|de by total variance X4 the total variance
1_25 + 3 Sij+ o+ S12..m
1< X3
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Taylor Series Expansions of Sobol’ Indices

Substitute f(x) = Y,,(x) (n'th-order Taylor series expansion)

Vi
|74

2
First-order V;[Y1] = (D§1)) 2

Main Effects S; =

1 2 1 2
Second-order V;[Ys] =V, Y|+ 1 (Df?) Hai = 5 (DS)) 13 + D,E”D,ff)ugi

. Vi;
Interaction Effects S;; = 7‘7

2
Second-order V;; [Y3] = (DZ(JQ)> 2 (42
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Iterative Construction of a Sparse Taylor Series Expansion

An increase in:
* Number of random variables, r
* Order of expansion, n
Leads to an increase in:
» Number of partial derivatives, d
« Computational time to compute the complete n’th-order Taylor series
« Unnecessary derivative computations
« Some terms in the expansion will not significantly contribute to increasing the accuracy in the Taylor
series estimation of the output variance

Sparse Taylor series expansion
1. Compute first-order Taylor series expansion

« Sobol’ indices to identify unimportant variables (screening)
2. Compute second-order derivatives of important variables
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Partial Derivative Calculation using Hypercomplex Algebra

Complex-step Method for First-order Derivatives Im

» Perturb variable of interest along the imaginary axis

- Imaginary axis can be represented by a: Complex step }
« Complex number, i? =1 >

e Dual number, €2 =0

, Re
* The step size can be made arbitrarily small to h ?
neglect truncation error

Finite difference step

HYPercomplex Automatic Differentiation (HYPAD) for Higher-order Derivatives

1. Variables are perturbed along multiple imaginary directions using hypercomplex numbers
« Multicomplex numbers generalizes imaginary numbers to any number of directions
« Multidual numbers generalizes dual numbers to any number of directions

* Order Truncated Imaginary (OTIl) numbers efficiently compute all derivatives in Taylor series expansion in
a single analysis

2. The function is evaluated using hypercomplex algebra
3. Derivatives are extracted from the imaginary parts of the output
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Hypercomplex Differentiation Implementation in Source Code

Setup

« Initialize hypercomplex library (for algebraic operation overloading)
« Define variables of interest as hypercomplex

* Define functions that use these variables as hypercomplex

« If variable/function is an array, change syntax to match hypercomplex library
« \Write code to extract real and non-real parts (derivatives) of output
Running the code

« Add a non-real step to variable(s) of interest

Run code

Real part of output = output evaluation

First non-real part = first derivative

Second non-real part = second derivative, etc.
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Multidual Code Conversion Example

Example Multidual Code

To 1 program main
f (.’13) =€ S11 (.@1332) 2 use multiz ! use MultiZ library
3 implicit none
4 ! declare variables
L — [.Tl’an] — [273] 5 type (mduvec) x ! input: multidual vector
6 type (mdual) f ! output: multidual number
7 integer n ! size of multidual numbers for allocation
8 ! derivatives
9 real*8 d1, d2, 411, d12, 422, di111, d112, d122, d222
Real COde 10 n =26 ! for 6 non-real steps
11 ! allocate multidual vector
1 program main 12 call mallocate(x, n, 2)
2 implicit none 13 ! assign input with non-real steps
5 | declare variables 14 call mset(x, 1, 2.0d0 + eps(1l) + eps(2) + eps(3))
] 15 call mset(x, 2, 3.0d0 + eps(4) + eps(5) + eps(6))
4 real*8 x(2) ! input: real vector /6 | calculate output
5 real*x8 f ! output: real number 17 f = exp(mget(x,2))*sin(mget(x,1)*mget(x,2))
6 ] assign input 18 ! extract sergsit)ivities of (@) /3
_ 19 d1 = aimag(f,1 ! x 1
! x(1) = 2.0d0 20 d2 = aimag(f,4) 1 Of () /0xa
8 x(2) = 3.04d0 21 dil = aimag(f,[1,2]) t 92 f (x) /Ox?
9 !' calculate output 22 d12 = aimag(f,[1,4]) 1 92f (x) /Ox1012
10 f = exp(x(2))*sin(x(1)*x(2)) 23 d22 = aimag(f,[4,5]) t 92 f (x) /Ox3
11 end program 24 di11 = aimag(f,[1,2,3]) ! 83f(m)/8x:1)’
25 d112 = aimag(f,[1,2,41) ! 93f(x)/0x70z2
26 d122 = aimag(f,[1,4,51) ! O%f(x)/0x1023
27 d222 = aimag(f,[4,5,61) ! O0°f(=x)/0x3

28 end program
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AM Application: Real Value of Mean Surface Temperature

Mean Surface
Temperature Profile Mean surface temperature profile

Melt Pool Section

30001 _ ; NRMSE(BI,ZFEM) = 1.92e — 3 _
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(2] | Melt Pool Length (MPL) |
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Simplifications of this model limit the precision compared to the experiments. However, the trend is in agreement.

Kollmannsberger, S., Carraturo, M., Reali, A., & Auricchio, F. (2019). Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. Integrating Materials and Manufacturing Innovation, 8(2), 167-177.
https://doi.org/10.1007/s40192-019-00132-9

Heigel, J. C., Lane, B. M., & Levine, L. E. (2020). In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Artifacts. Integrating Materials and Manufacturing Innovation, 9(1), 31-53. https://doi.org/10.1007/s40192-020-00170-8

K.-M. Hong, C. M. Grohol, and Y. C. Shin, “Comparative Assessment of Physics-Based Computational Models on the NIST Benchmark Study of Molten Pool Dimensions and Microstructure for Selective Laser Melting of Inconel 625,” Integr Mater Manuf Innov, vol. 10, no. 1, pp. 58-71, Mar. 2021,
doi: 10.1007/s40192-021-00201-y.
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AM Application: Central Moments of Mean Surface Temperature

MCS of ABAQUS built-in
simulation (356 samples)

1st-order HYPAD-UQ

« Higher-order Taylor
series expansion
needed to capture non-
Gaussian skewness
and kurtosis
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Partial Derivative Calculation using Hypercomplex Algebra

Alm

Complex-Step Differentiation Method

» Perturb variable of interest along the imaginary axis Complex step
« Imaginary axis can be represented by a complex T

h < h
number, i* =1 Re
 Machine precision derivatives f Finite
difference

HYPercomplex Automatic Differentiation (HYPAD) for Higher-order Derivatives

1. Variables are perturbed along multiple imaginary directions using hypercomplex numbers
« Multicomplex numbers generalizes imaginary numbers to any number of directions
« Multidual numbers generalizes dual numbers to any number of directions

* Order Truncated Imaginary (OTIl) numbers efficiently compute all derivatives in Taylor series expansion in
a single analysis

2. The function is evaluated using hypercomplex algebra
3. Derivatives are extracted from the imaginary parts of the output

Postprocess to Compute HYPAD Derivatives
« n’th-order derivatives computed from the residual of the converged finite element solution

Arturo Montoya— Arturo.Montoya@utsa.edu

AMT Workshop — October 25, 2023 Montoya, et al.



HYPAD-UQ Overview

HYPercomplex Automatic Differentiation (HYPAD)
» Accurate arbitrary-order partial derivatives

« Straight-forward implementation for any order of derivative
« Implemented in Finite Element Method (FEM)

Mathematical model, f(x)

Taylor series expansion of finite element outputs Nodal derivatives with HYPAD
« Taylor series constructed from HYPAD sensitivities af(x) 9f(x) 0%f(x) 9%f(x) 93f(x)
_ o _ . Ox, ~ 0x, * 0x2 '0x.0x;" o9x3
Uncertainty Quantification (UQ) with Taylor series I
« Taylor series is a surrogate model used to approximate: Taylor series expansions of
* Probability distributions nodal outputs

» Central moments
« Sobol’ indices (global sensitivity analysis)

0
f() ~ f(u) + za—f:,(xi ~ Hxg) + o
i=1 '
.

Uncertainty Quantification
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Mathematical model, f(x)

: . : . Nodal derivatives using HYPAD
Uncertainty Quantification using 0F () BF(x) T2F(x) 32F(x) 331 ()

HYPAD (HYPAD_UQ) 0x, ~ 0xy = 0x2 '0x.0x,  0x3 7

Taylor series expansion of nodal
outputs

of (x
axi

}

Uncertainty Quantification

f(x) zf(yx)+z )(xi_ﬂxi)+'“
i=1
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