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Characterization is critical for understanding processing, 
microstructure, properties, and performance

Challenges in Additive Manufacturing (AM):
❑ Characterizing complex, spatially varying, multi-scale 

microstructures
❑ Characterize defect distribution
❑ Correlate to performance
❑ Learn to drive AM processes towards predictable, 

repeatable results

With current qualification approaches, it can take a decade to qualify a 
material for nuclear applications.

Rapid Qualification requires fast high-throughput characterization



33

AMMT Rapid Qualification Thrust Pathway
 Develop and leverage automated fast characterization to aid in understanding of 

process-structure-property-performance relationships, and in turn finding optimum 
printing process window for fully dense 316 printing.
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High Level Connection between Thrusts

Process understanding for qualifying LPBF 316 
SS  (Thrust-CM)
ORNL, ANL, LANL 
(Massey, Xuan, Montoya, et al.)

Improve and Optimize LPBF 316 SS to Improve 
Heterogeneity in AM Material (Thrust-PN) 
ORNL (Nandwana, et al.)

Improving and Optimization of Existing 
Reactor Materials for Advanced Manufacturing​
ORNL, PNNL, ANL, INL (Dryepondt, et al.)

Multi-Dimensional Data 
Correlation (MDDC) Platform
ORNL (Paquit, Scime, et al.)

Process Modeling and 
Variability in AM SS316
ORNL (Plotkowski, et al.)

This Thrust
Automated, High-

Throughput Materials 
Characterization 

Techniques

 This diagram is solely based on current collaborations. 

Understanding Process-Structure-Property-Performance Relationships 
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Rapid Characterization Process

1. Loads 10 coupons at a time
2. Quickly scan a coupon
3. Output the dataThrust-CM, 

Thrust-PN

Design of Experiment

1. Receive the data (after each scan)
2. Perform fast DL-based reconstruction, 

segmentation, and image analysis 
3. Generate and save output

1. Register the data to the in-situ and Peregrine 
data

2. Produce report
3. Store the data 

MDDC
Characterization 
summaries and data

1. Receive the data (after each scan)
2. Perform fast DL-based reconstruction, 

segmentation, and image analysis 
3. Generate and save output
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Non-Destructive Characterization (NDC) Process Using XCT

Sample 
Analytics

Information  
1. Flaws 
2. Anomalies
3. Defects
4. Dimensions
5. Surface

Reconstruction

Raw Measurement  Sample Reconstruction Segmentation
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 Noise and artifacts limits  defect detection in metal AM
 Trade-off between resolution, time and field of view

CAD model 
of the part

Pores 
where 
there is 
no object 

Fins seem 
connectedPart 

obscured

Cross section of a 
real measurement

A Turbine Blade

Object to 
be scanned

Source

Detector

X-rays

Detector 
Pixel

Rotation axisCone-Beam Geometry

Analytical Iterative

 Analytical: Fast (seconds) but less quality
 Iterative: better quality, but computationally expensive (hours)

 Artifacts due to complex 
geometries of Metal AM

AI-Based Algorithm for Fast 
and High-Quality 3D Image 

Reconstruction 
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REDUCED THE SCAN 
TIME AND COST

LOWER THE COST OF 
IMPLEMENTATION

ENABLES FAST POSTPROCESS 
DATA ANSLYSIS w/ ENHANCED 
DEFECT DETECTION CAPABILITYENABLE HIGH-THROUGHPUT and 

SCALABLE CHARACTERIZATION

IMPROVED THE RECONSTRUCTION 
QUALITY w/o TIME COMPROMISE  

REDUCE MAINTENCANCE 
NEEDs AND COST

X-r ay CT Recon st r uct ion  Fr am ewor k
Simurgh

An X-ray CT Reconstruction  
Framework

 DOE TCF award
 Licensed by ZEISS
 Patent and paper
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CAD-, Physics- and Deep Learning-Based Image Reconstructions
2.5D CAD-DLMBIR Simurgh

MBIR

 CAD Models
 Physics-based 

Beam Hardening 
parameters

Reference High-
quality Reconstruction

1. Generate Reference Data

2. Train Deep Convolutional Neural Network (CNN)

3. Test Deep CNN on new data!

1. Train GAN using CAD (Data Generator!)

2. Synthesize Reference Data and Train Deep CNN!

3. Test Deep CNN on new data!

Fast, high-quality reconstructions, 
reducing scan-time, reducing cost and 
labor. 

Higher TRL research product.

Has been integrated into the 
characterization framework

 State-of-the-art

 Addresses challenges with CAD-DLMBIR 
and can produce even more high-quality 
reconstructions

 To be integrated into the characterization 
framework
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Results for a Lower Density Alloy

❑ 64 test data volumes
❑ Simurgh is only trained on synthetic data 
❑ Further reduce the scan time and dealing with denser materials

Standard 2.5D CAD-DLMBIR Simurgh

Ziabari, et al. IEEE ICIP, 2022.
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Inconel 718 Results (Highly Density Alloy)

 1𝜇𝜇m resolution optical microscopy 
as ground truth.

 3.5X better detection capability at 
sub-voxel resolution. 

 Allows for detection of 100% of 
defects >100𝜇𝜇m effective diameter!

 2.5D DLMBIR already outperforms 
standard approaches by ~4X!𝜇𝜇𝜇𝜇/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜇𝜇𝜇𝜇/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜇𝜇𝜇𝜇/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 



1212 Ziabari, et al. Nature Computational Materials, 2023.
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Standard FDK FDK w/ BH corr. CAD-DLMBIR Simurgh

ORNL Technologies

Large Complex Geometries
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ORNL and 
AMMT

15 builds, >540 coupons

Two systems

Builds with various 
process parameters per 
coupon

316L and 316H
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Deep Learning (DL) Based X-ray CT Reconstruction 
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DL-reconstruction allows for resolving  the flaws using 6X faster 
scans in thick dense 316L/H 
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Deep Learning (DL) Based X-Ray CT Segmentation
 Noticed that Standard segmentation has limited accuracy (through comparison to high resolution microscopy data). 

 Developed DL-based segmentation approach in this thrust

Red: Standard; Green: ORNL DL- Segmentation

DL-Segmentation, verified through high-res microscopy, demonstrates that 
true porosity can be underestimated by 60X with standard algorithms

Po
ro

sit
y 

(%
)

DL- Segmentation
Standard
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Build Consistency Analysis (B1 vs. B2)

❑ Parameters repeated on Parts 
01-18 & 19-36

❑ Randomized order to avoid 
systematic errors

❑ XCT, 20min per coupon

❑ Two builds showed consistent 
behavior

Correlation =  0.98
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ALL INNER Rod2 Rod4 Fin2 Inc15 Inc30

Body Outer Rod1 Rod3 Fin1 Fin3 Inc45

Top: 316L (Build 1)

ALL INNER Rod2 Rod4 Fin2 Inc15 Inc30

Body Outer Rod1 Rod3 Fin1 Fin3 Inc45
An example of  analysis that can be done 

Based on XCT data

Small data set (each build is 36 coupons), 
but even there, there is more consistency 
among different regions in 316H vs 316L

vs. Bottom: 316H (Build 5)
Hatch Spacing (µm)
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ROI Dependence of Process Parameters of Top 5 Coupons

 316L, 4 builds, 141 coupons

 316H, 1 build, 36 coupons

 Single track characterization (LANL), EOS:
316L: 54 J/mm^3
316H: 95 J/mm^3 

 Here with M2, is about 70J/MM^3 for both
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Parts With Same Energy Density (71J/mm3) And Different Process 
Variables

B1
-P

35
B4

-P
21

 Geometric features closer to desired tolerances
 Low power (200W), low speed (750mm/s), higher hatch (75mm)

 Pores distributed across the whole sample
 Larger geometric deviations
 High power (380W), higher speed (1800mm/s), smaller hatch (60mm)

Similar energy density, despite the 
change in individual parameters results 
in same yield strength and insignificant 
differences in UTS, BUT: 
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Variations in LPBF 316H SS Microstructure Within Minimized Porosity 
Process Space

Scientific Achievement
• A total of 252 SS Zeiss specimens (144 in 316L & 108 in 

316H) printed as part of the concept laser experiments.
• Two characteristic microstructures identified for future 

campaign testing (refined chevron structure and 
columnar structure).

Impact & Potential Application Space
• For complex components, both of these characteristic 

microstructures may be present, invalidating 
assumptions in historical qualification frameworks. 

Details
• High-throughput X-ray computed tomography (XCT) 

used to identify a minimum porosity process window for 
316L and 316H SS, followed by targeted electron 
microscopy.

Multiscale characterization using XCT, EBSD and STEM-EDS 
reveals variations in porosity, grain structure, and nanoscale 
segregation as a function of varying processing parameters.

Nanoscale Cellular Structure

Parameter Dependent Microstructure

Minimized Porosity Window

ST
EM

+E
DS

EB
SD

XCT
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High-Throughput XCT Identified Alternative Renishaw Processing 
Window for 316H

Scientific Achievement
• A total of 390 SS Zeiss specimens (210 in 316L and 

180 in 316H) printed as part of the Renishaw LPBF 
optimization efforts.

• High-throughput X-ray computed tomography 
(XCT) successfully used to probe geometry-specific 
porosity trends in AM parts.

Impact & Potential Application Space
• For samples printed using 316H SS, there is only a 

small processing window that successfully 
minimizes porosity within all geometric features in 
the experimental Zeiss coupon, requiring additional 
modeling and experimentation.

Details
• High-throughput XCT used to map porosity in 

different regions (inclines, rods, fins, etc.) in a 
miniature Zeiss specimen used for LPBF print 
optimization at ORNL.

Zeiss Geom
etry

Minimum 
Porosity
Region

XCT porosity trends for one 316H build PB performed on the 
Renishaw varying three processing parameters. In each plot, 
the area between solid and dashed lines indicates porosity 

below 0.1%. White regions indicate processing space where 
porosity is minimized for all overlaid curves.
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 Deep Learning (DL) models developed, tested, 
modified for our reconstruction framework for 316L 
and H.

 A new DL-Based Segmentation is developed to 
address some challenges with characterization

 >540 coupons characterized (15 build plates on two 
printing systems)

 Multimodal data from X-ray CT, microscopy, EBSD, as 
well as in-situ and mechanical testing were combined 
to identify optimum process parameter window for two 
printer systems.

 Work ongoing on expanding the process parameter 
set, and for complex geometries

mailto:ziabariak@ornl.gov
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Questions? 
(ziabariak@ornl.gov)
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