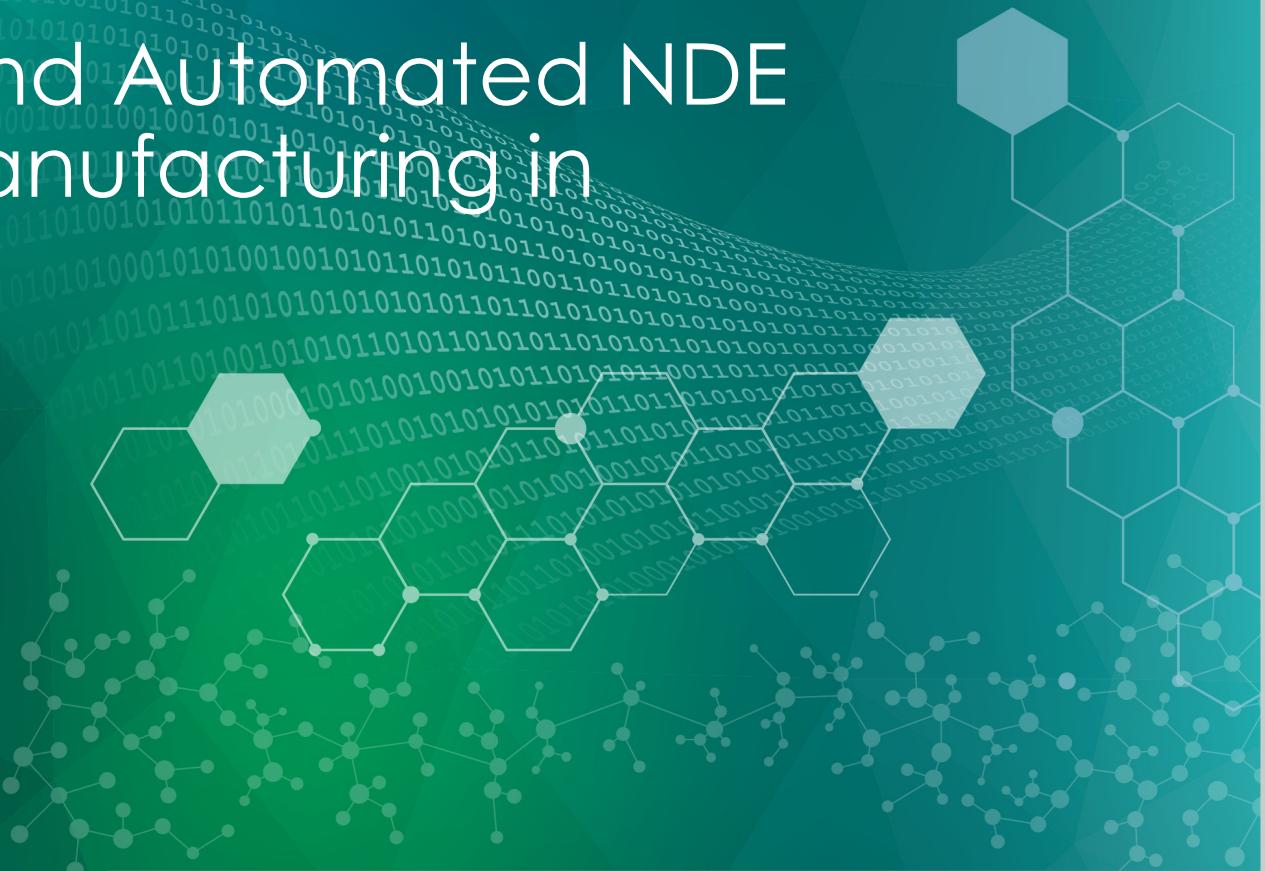


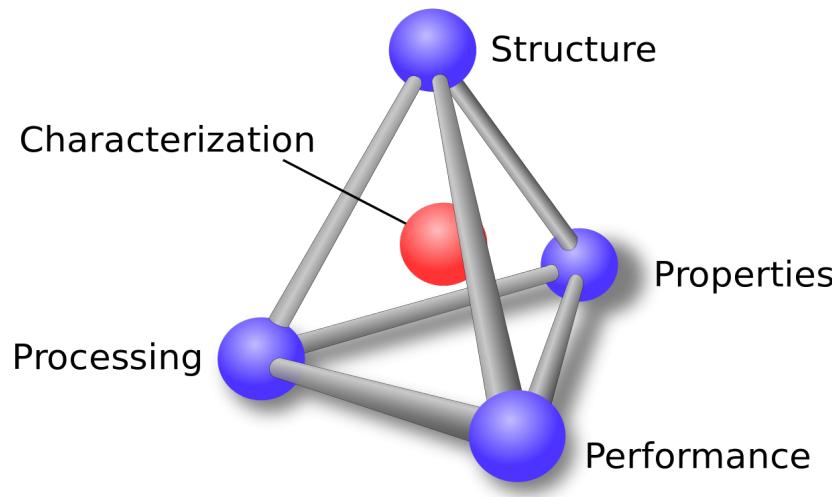
High Throughput, Rapid and Automated NDE for Optimizing Additive Manufacturing in Nuclear Applications

**Amir Koushyar Ziabari,
Andres Marquez Rossy, Zackary Snow,
Luke Scime, Selda Nayir, Holden Hyer,
Joslin Chase, Caleb Massey, Peeyush
Nandwana, Vincent Paquit, Ryan Dehoff**

ORNL is managed by UT-Battelle, LLC for the US Department of Energy



Characterization is critical for understanding processing, microstructure, properties, and performance



Challenges in Additive Manufacturing (AM):

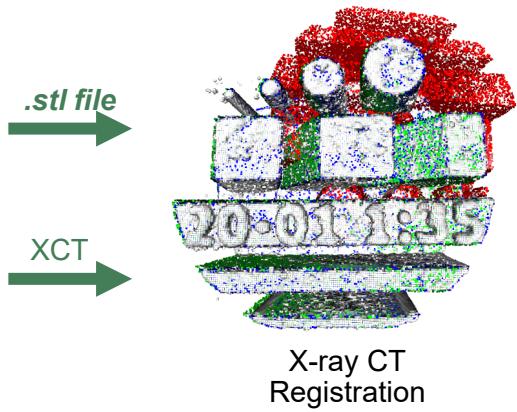
- Characterizing complex, spatially varying, multi-scale microstructures
- Characterize defect distribution
- Correlate to performance
- Learn to drive AM processes towards predictable, repeatable results

With current qualification approaches, it can take a decade to qualify a material for nuclear applications.

Rapid Qualification requires fast high-throughput characterization

AMMT Rapid Qualification Thrust Pathway

- Develop and leverage **automated fast characterization** to aid in understanding of **process-structure-property-performance** relationships, and in turn **finding optimum printing process window** for fully dense 316 printing.



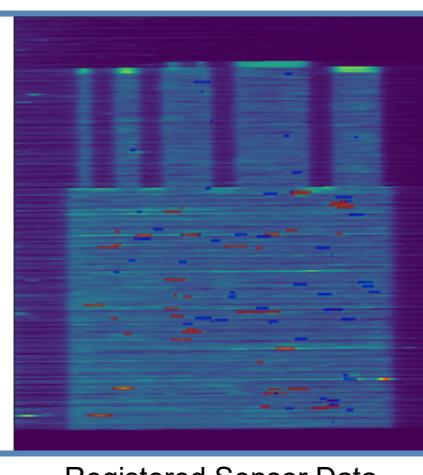
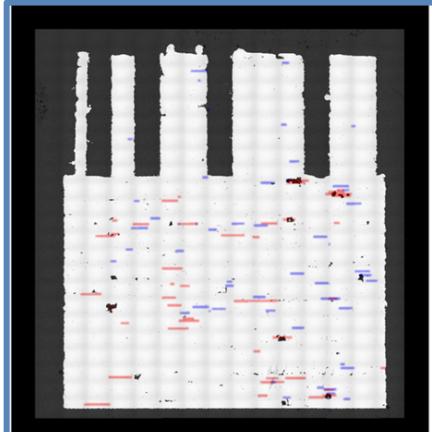
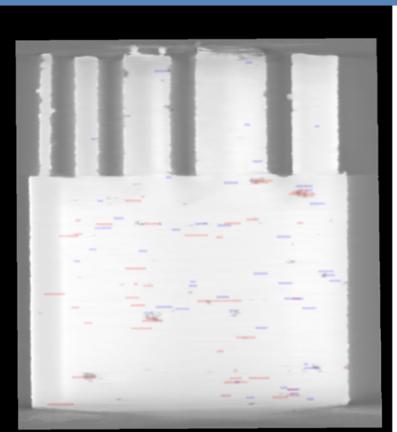
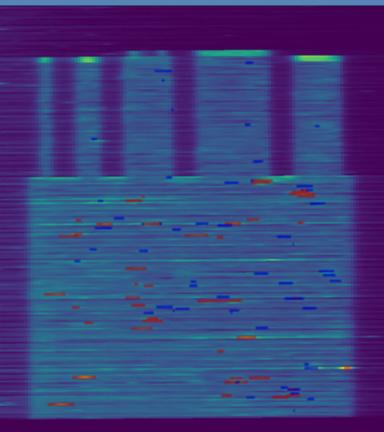
registered
XCT

raw
micrograph

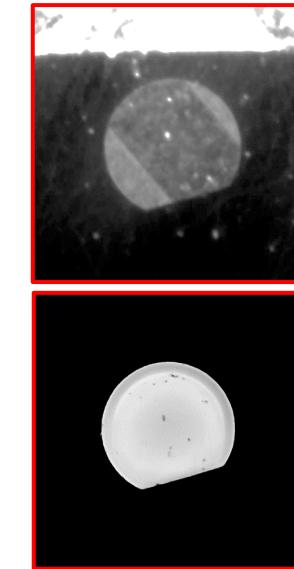
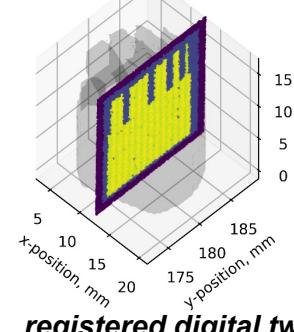


Microscopy
Registration

registered
micrograph

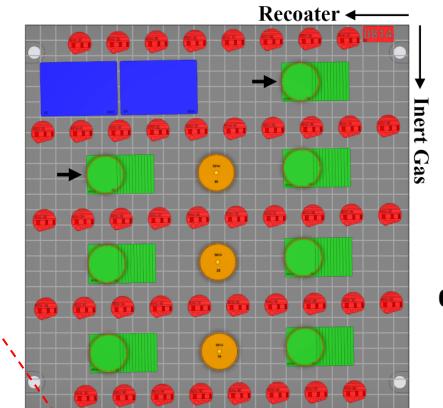


Registered Sensor Data

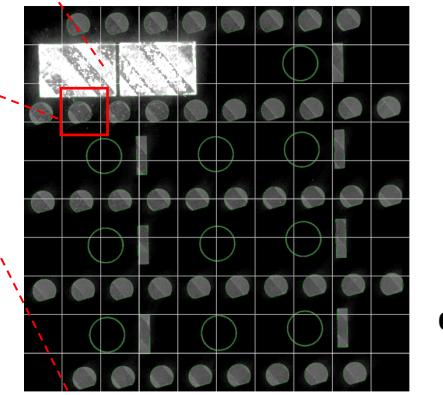


registered digital twin

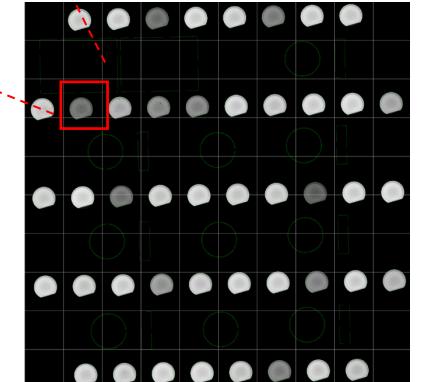
Multi-Dimensional Data Correlation (MDDC)



Build Design



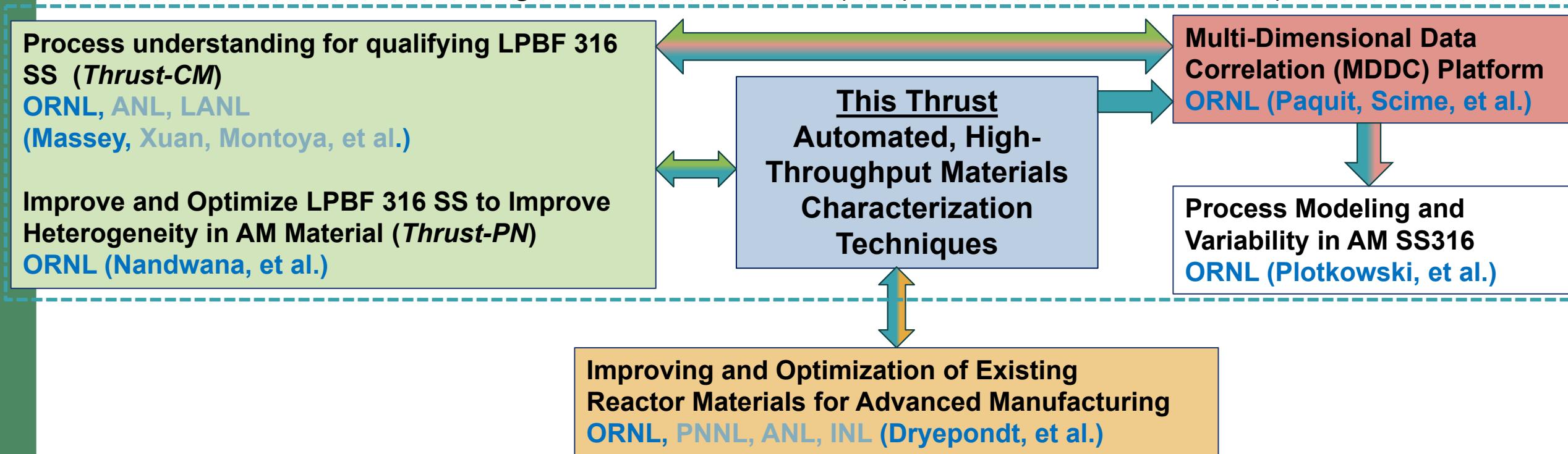
In Situ Sensing



Characterization

High Level Connection between Thrusts

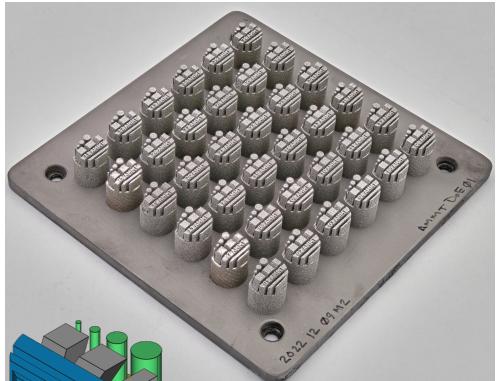
Understanding Process-Structure-Property-Performance Relationships



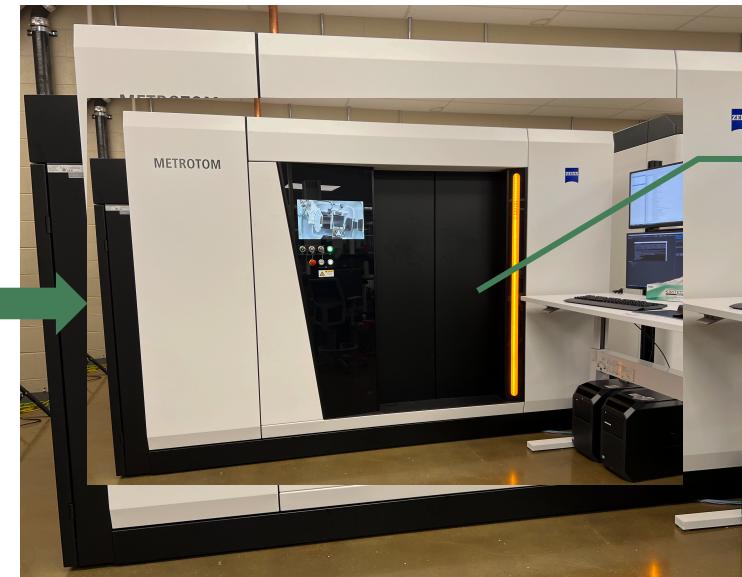
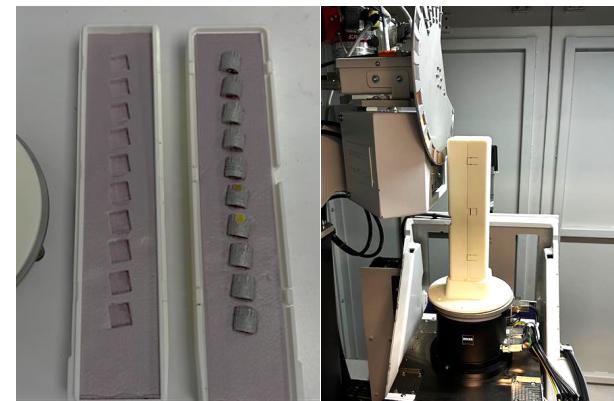
- This diagram is solely based on current collaborations.

Rapid Characterization Process

Design of Experiment

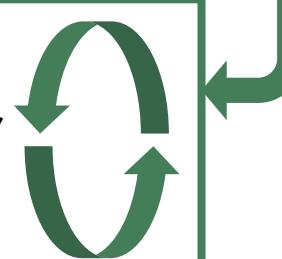


**Thrust-CM,
Thrust-PN**



1. Loads 10 coupons at a time
2. Quickly scan a coupon
3. Output the data

1. Receive the data (after each scan)
2. **Perform fast DL-based reconstruction, segmentation, and image analysis**
3. Generate and save output

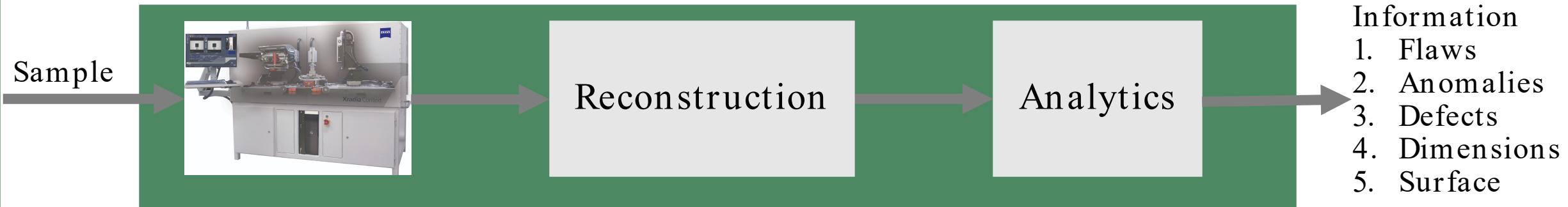


1. Register the data to the in-situ and Peregrine data
2. Produce report
3. Store the data

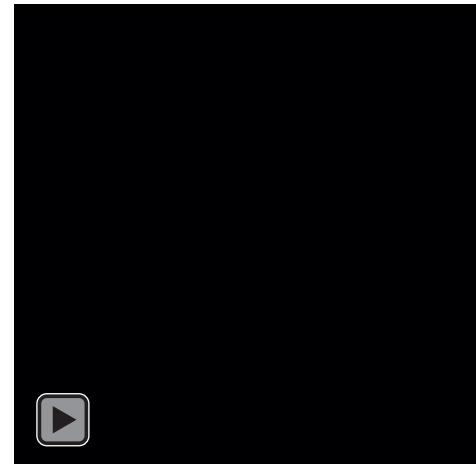
Characterization summaries and data

MDDC

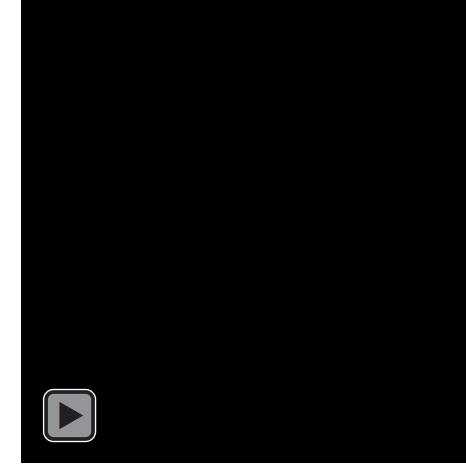
Non-Destructive Characterization (NDC) Process Using XCT



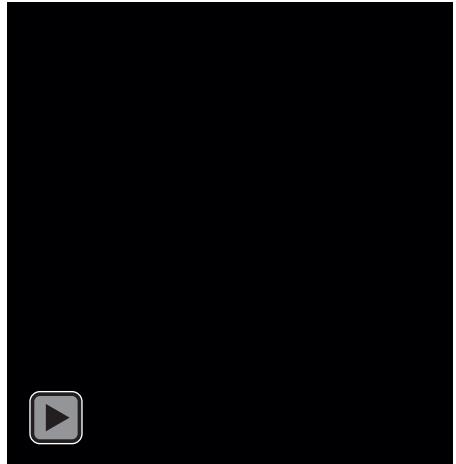
Sample



Raw Measurement

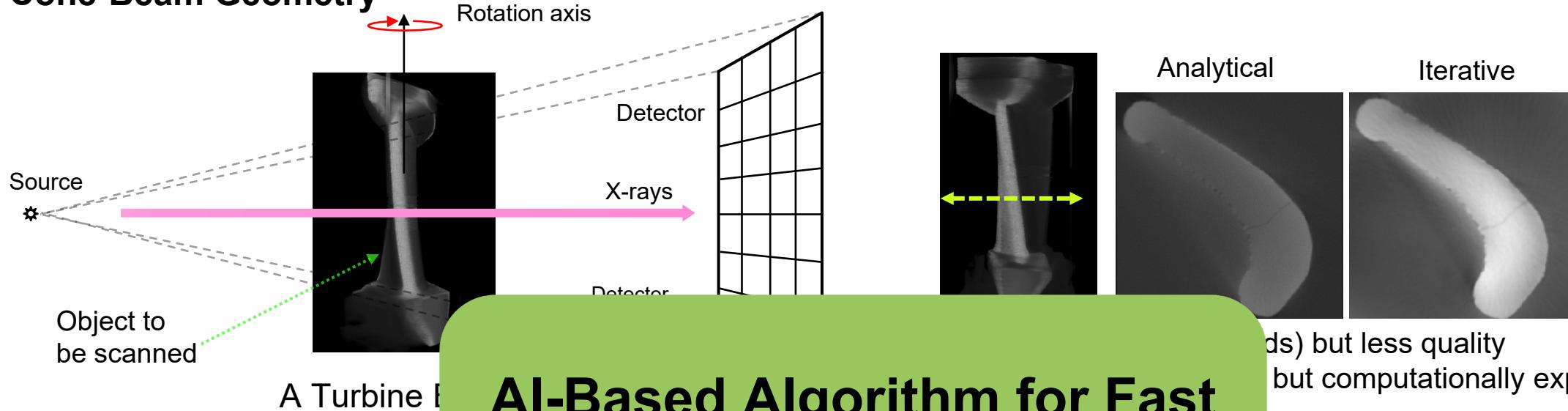


Reconstruction



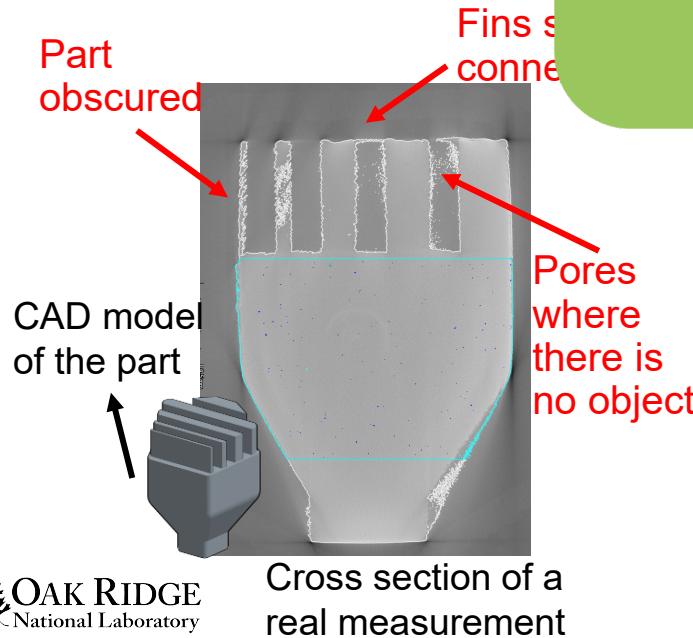
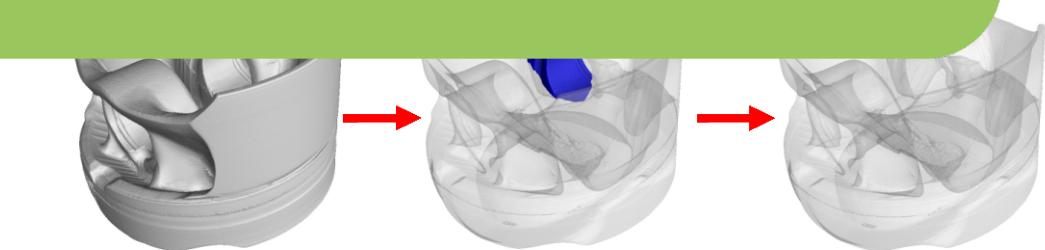
Segmentation

Cone-Beam Geometry



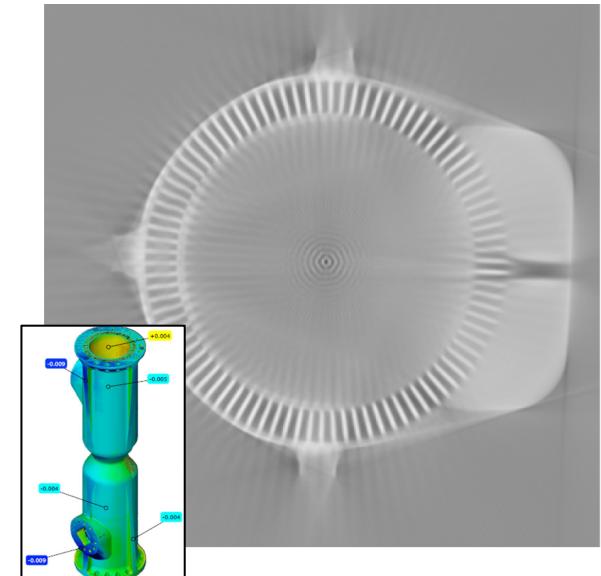
AI-Based Algorithm for Fast and High-Quality 3D Image Reconstruction

- ❑ Noise and artifacts limits detection
- ❑ Trade-off between resolution and quality



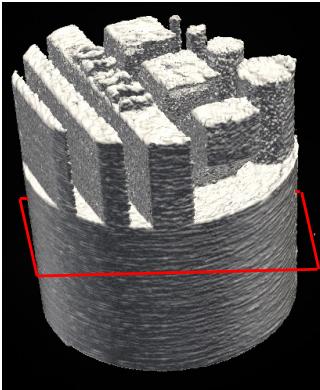
but less quality
but computationally expensive (hours)

- ❑ Artifacts due to complex geometries of Metal AM



IMPROVED THE RECONSTRUCTION QUALITY w/o TIME COMPROMISE

REDUCED THE SCAN
TIME AND COST



X-ray CT Reconstruction Framework
Simurgh
An X-ray CT Reconstruction Framework

REDUCE MAINTENCANCE
NEEDs AND COST

ENABLE HIGH-THROUGHPUT and
SCALABLE CHARACTERIZATION

LOWER THE COST OF
IMPLEMENTATION

- ❖ DOE TCF award
- ❖ Licensed by ZEISS
- ❖ Patent and paper

ENABLES FAST POSTPROCESS
DATA ANALYSIS w/ ENHANCED
DEFECT DETECTION CAPABILITY

CAD-, Physics- and Deep Learning-Based Image Reconstructions

2.5D CAD-DLMBIR

1. Generate Reference Data

- CAD Models
- Physics-based Beam Hardening parameters

Reference High-quality Reconstruction

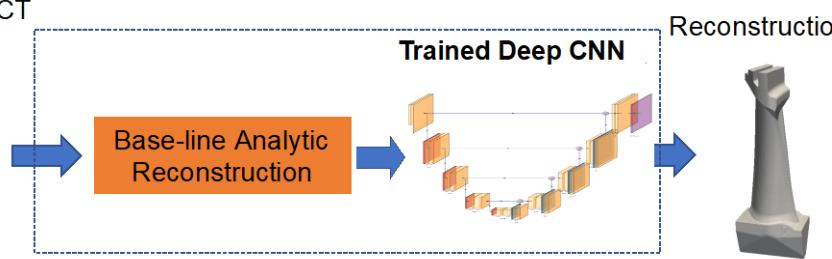
2. Train Deep CNN

- Fast, high-quality reconstructions, reducing scan-time, reducing cost and labor.

- Higher TRL research product.
- Has been integrated into the characterization framework

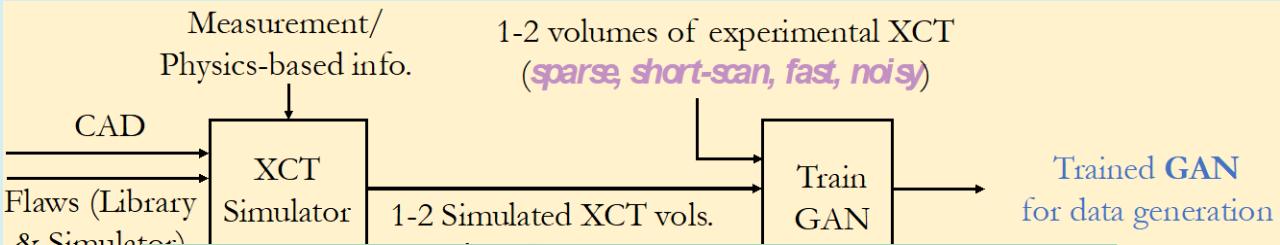
3. Test Deep CNN on new data!

Noisy, beam-hardened CT Projection data



Simurgh

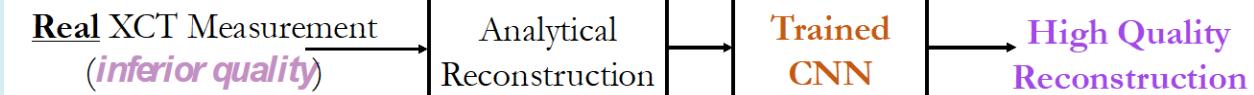
1. Train GAN using CAD (Data Generator!)



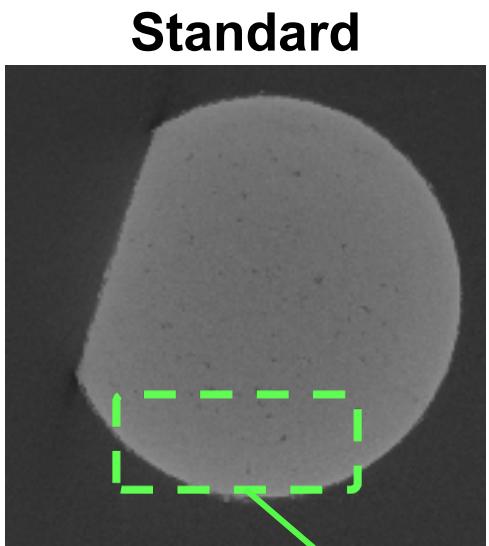
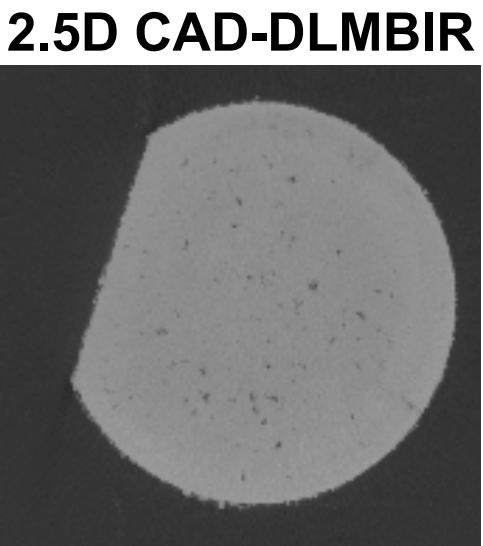
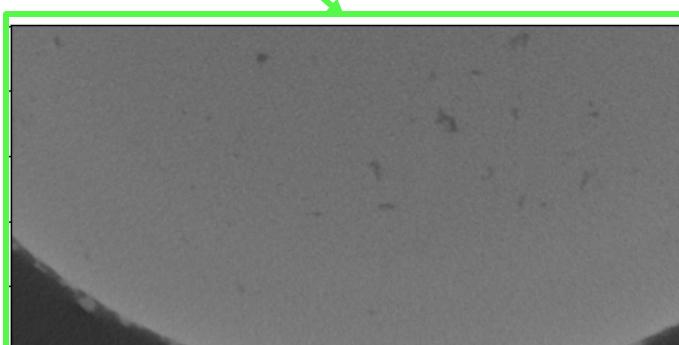
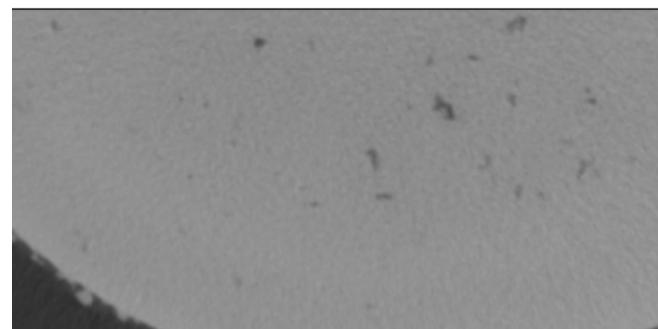
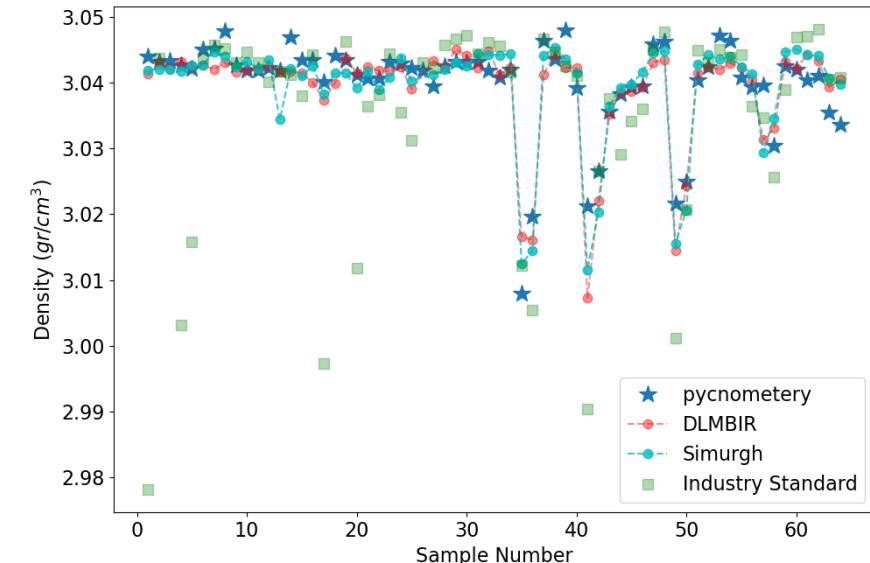
2. Synthesis

- State-of-the-art
- Addresses challenges with CAD-DLMBIR and can produce even more high-quality reconstructions
- To be integrated into the characterization framework

3. Test Deep CNN on new data!



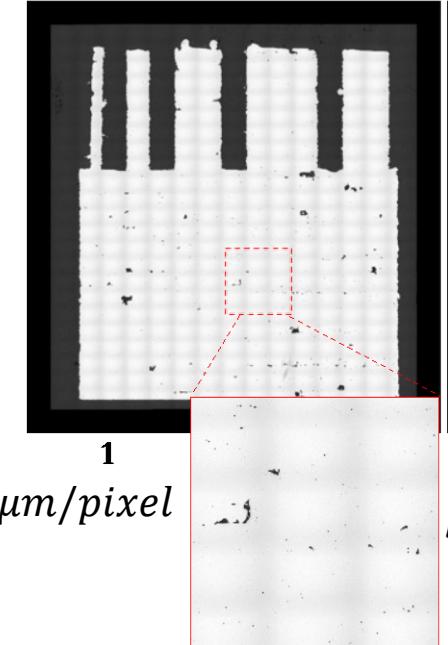
Results for a Lower Density Alloy



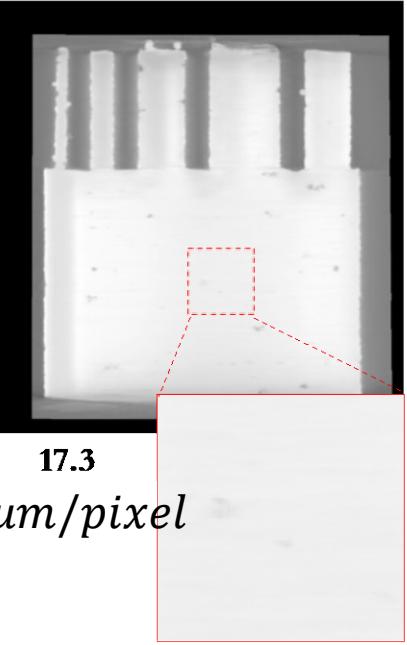
- 64 test data volumes
- Simurgh is only trained on synthetic data
- Further reduce the scan time and dealing with denser materials

Inconel 718 Results (Highly Density Alloy)

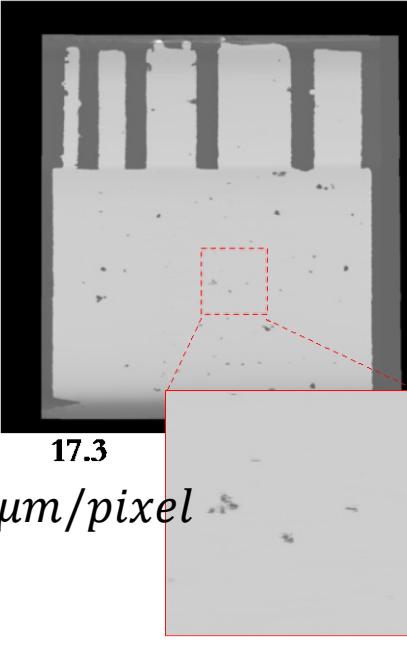
Microscopy



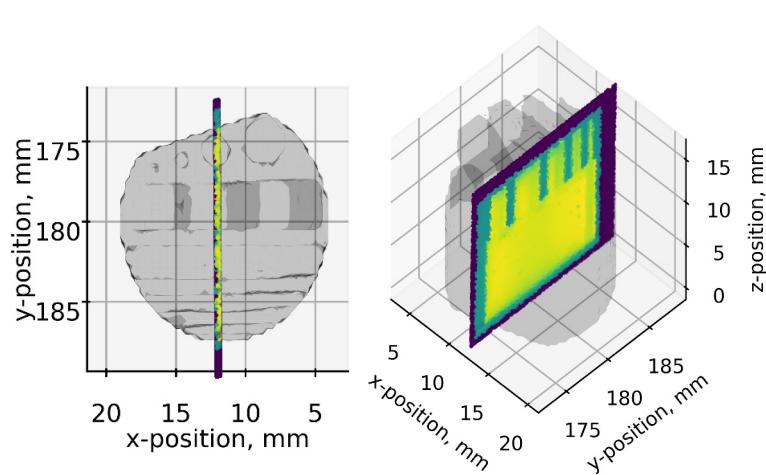
2.5D DL-MBIR



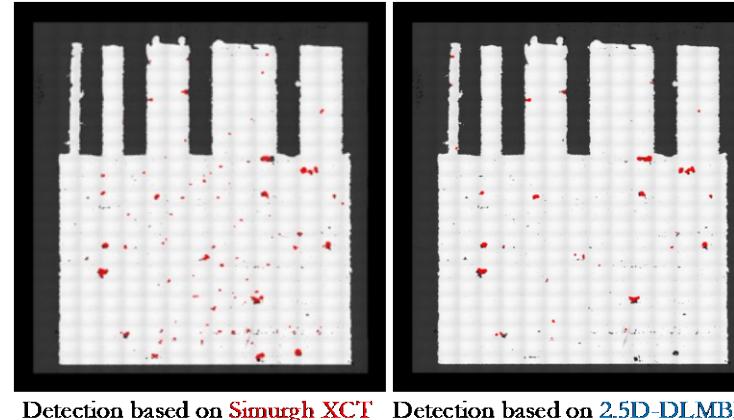
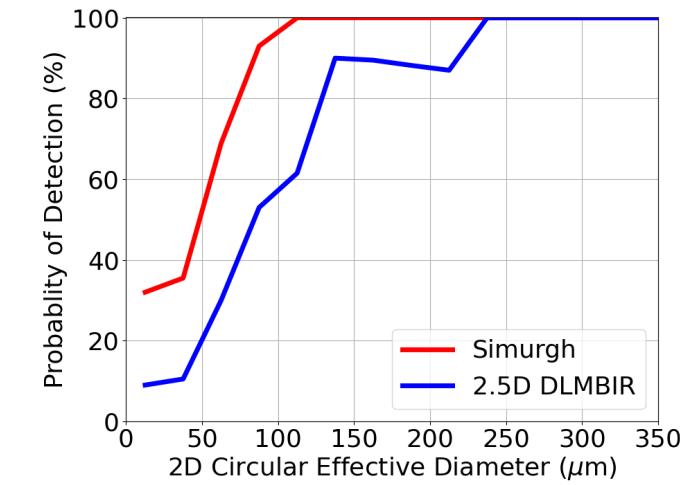
Simurgh



- 1 μm resolution optical microscopy as ground truth.
- 3.5X better detection capability at sub-voxel resolution.
- Allows for detection of 100% of defects $>100\mu\text{m}$ effective diameter!
- 2.5D DLMBIR already outperforms standard approaches by $\sim 4\times$!

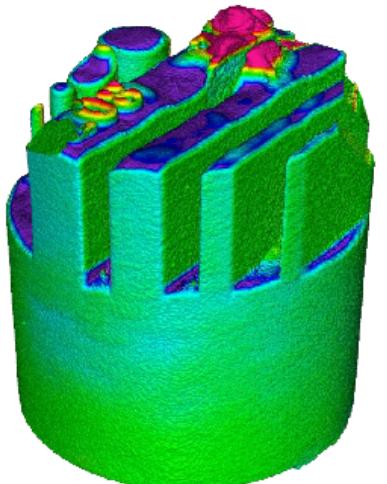


Detections Overlayed on Microscopy

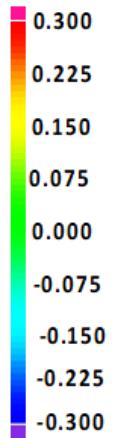
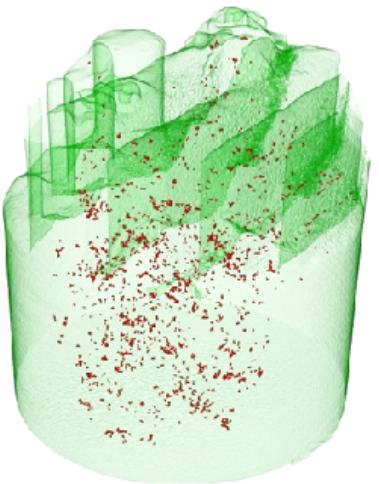


Fast Automated Characterization for Process Parameter Selection

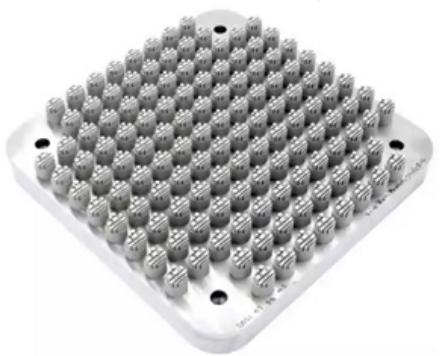
1. Design of Experiment (DoE) Parameters (**A Novel Material**)
2. Print the build plate. Remove parts from plate: (~100 parts per plate)
3. X-ray CT at **fraction** of optimal scan time based on material
- 4. Fast, consistent and accurate AI-Based X-ray CT Reconstruction**
5. Analysis (segmentation, flaw detection, porosity & morphology, Metrology)



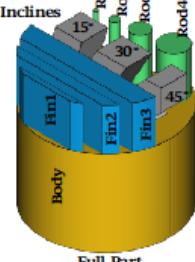
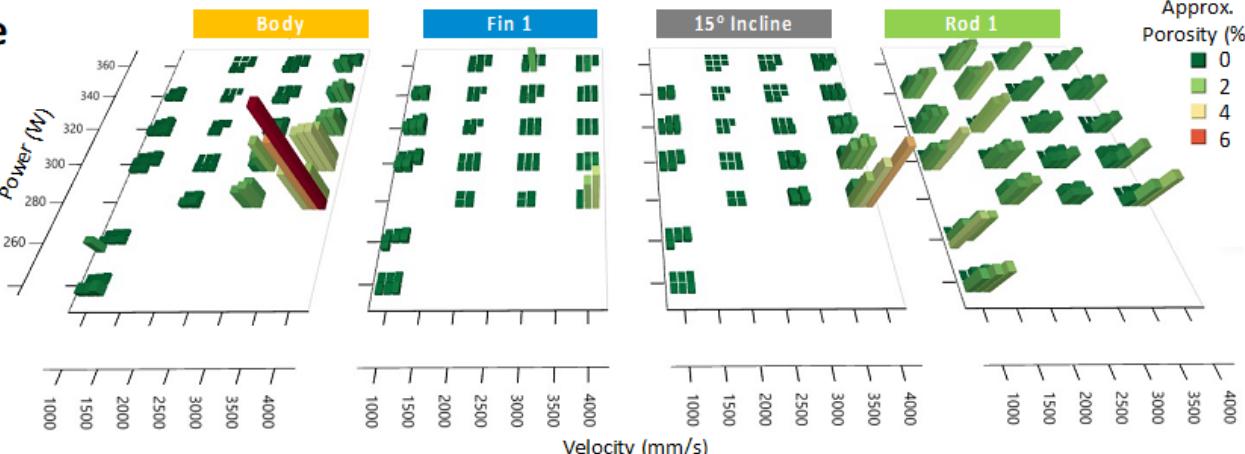
Deviation Map



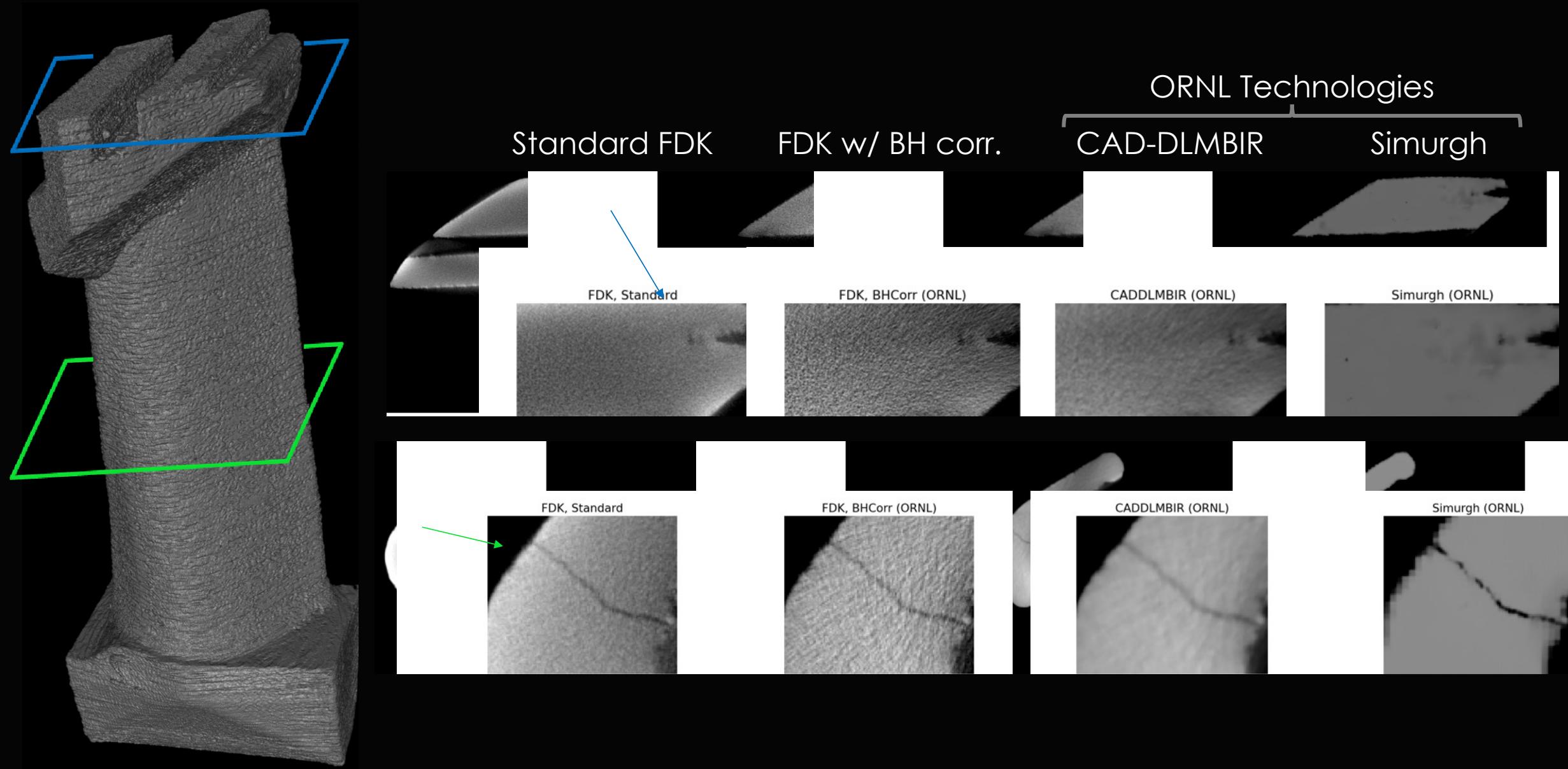
Segmented Flaws



Build Plate: Each coupon a Process Parameter



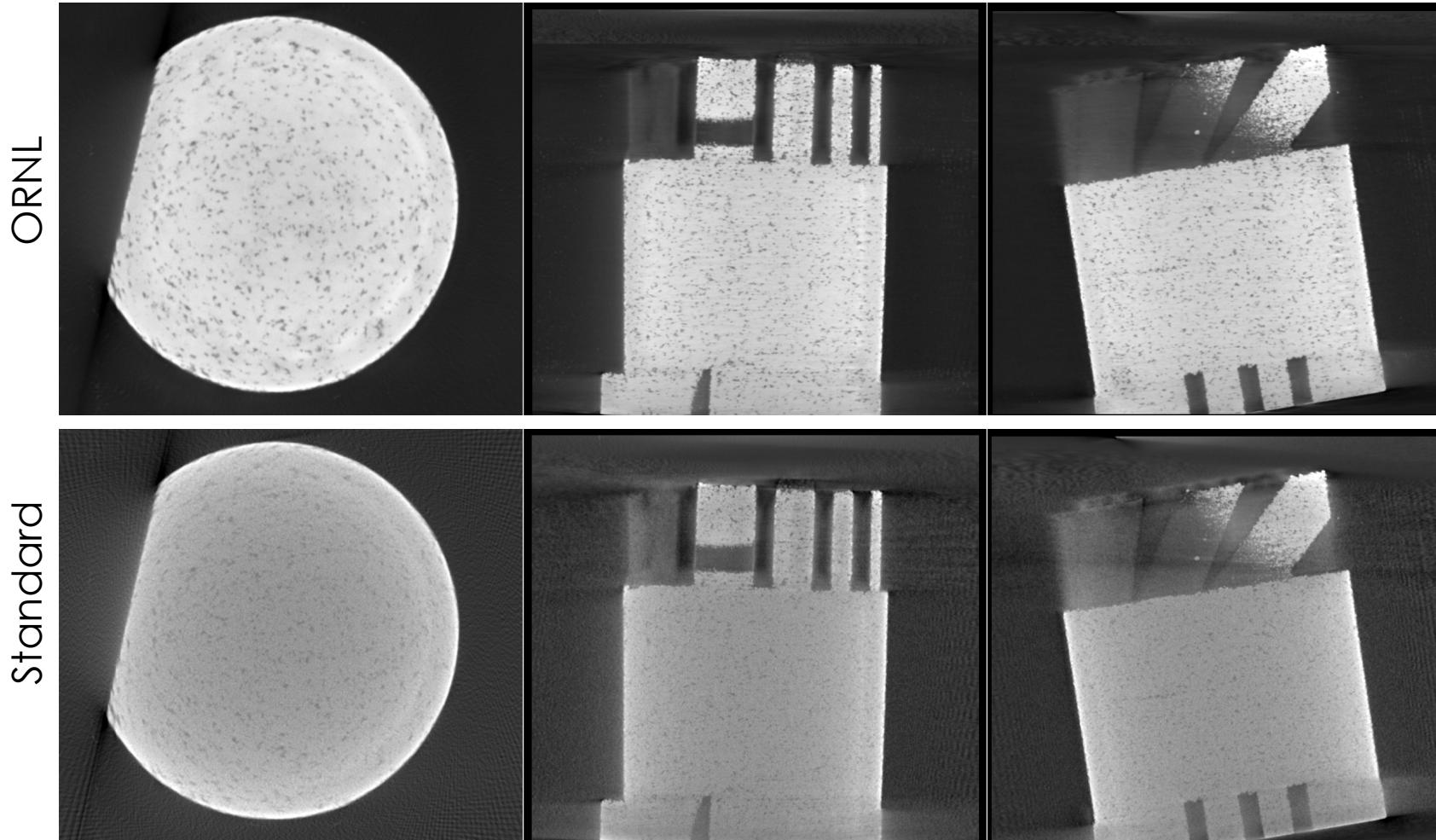
Large Complex Geometries



ORNL and AMMT

- 15 builds, >540 coupons
- Two systems
- Builds with various process parameters per coupon
- 316L and 316H

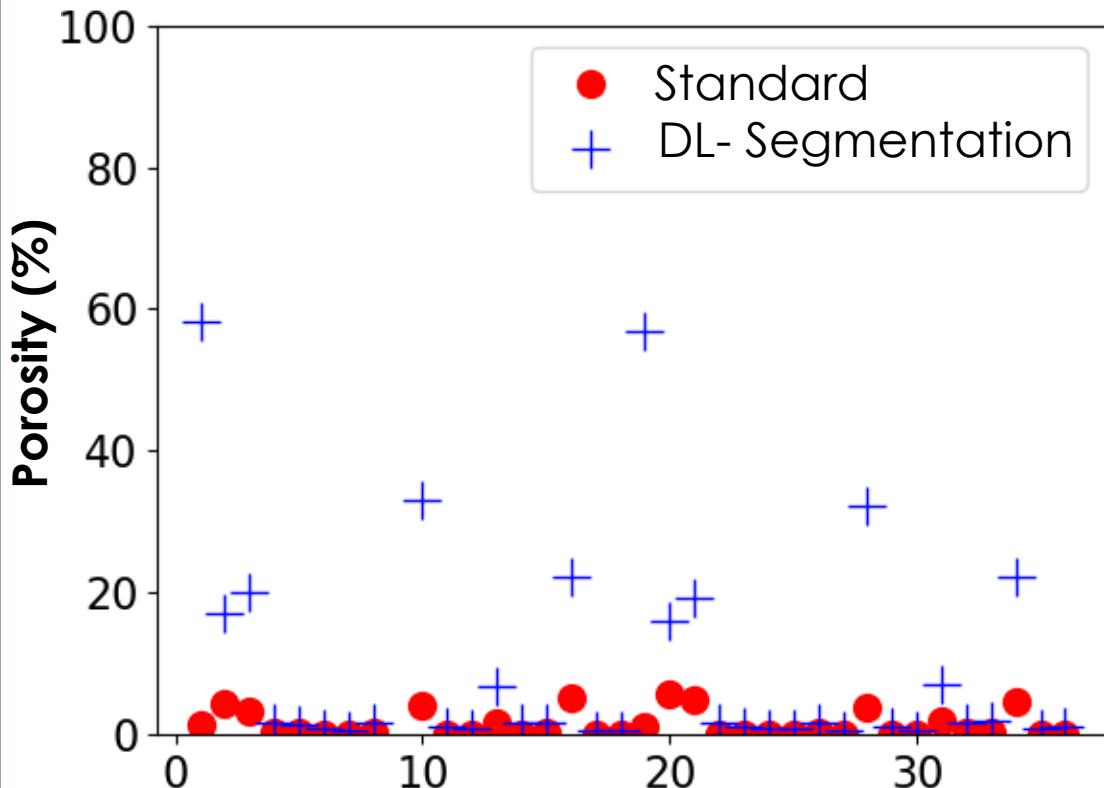
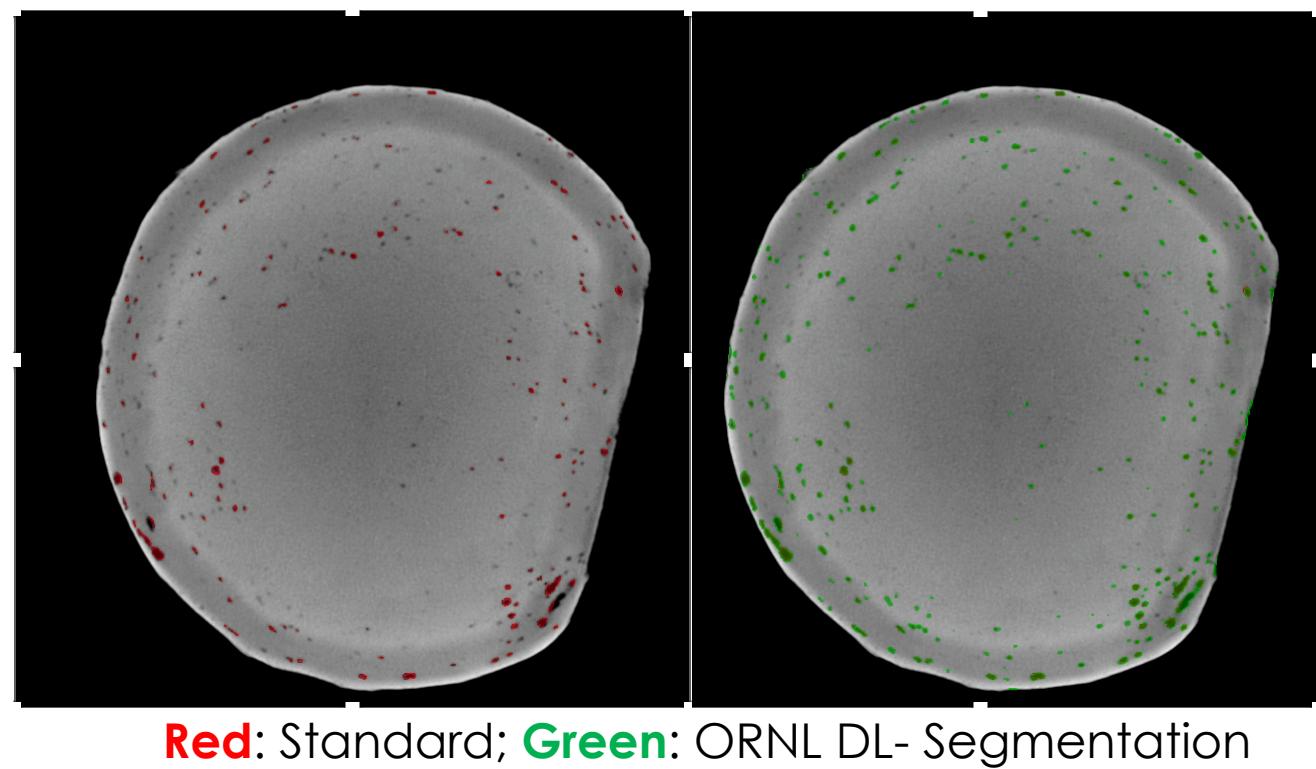
Deep Learning (DL) Based X-ray CT Reconstruction



DL-reconstruction allows for resolving the flaws using 6X faster scans in thick dense 316L/H

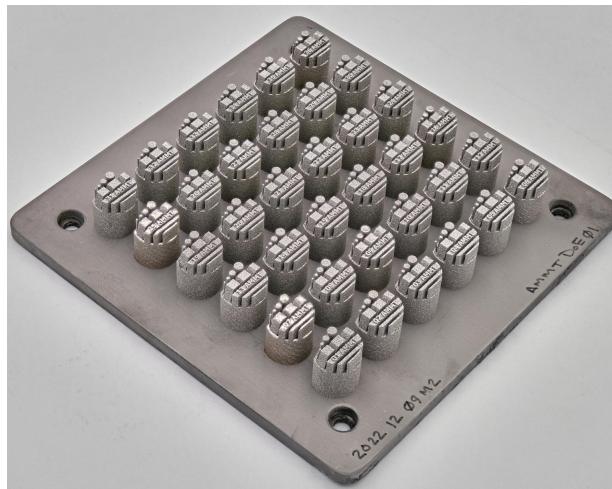
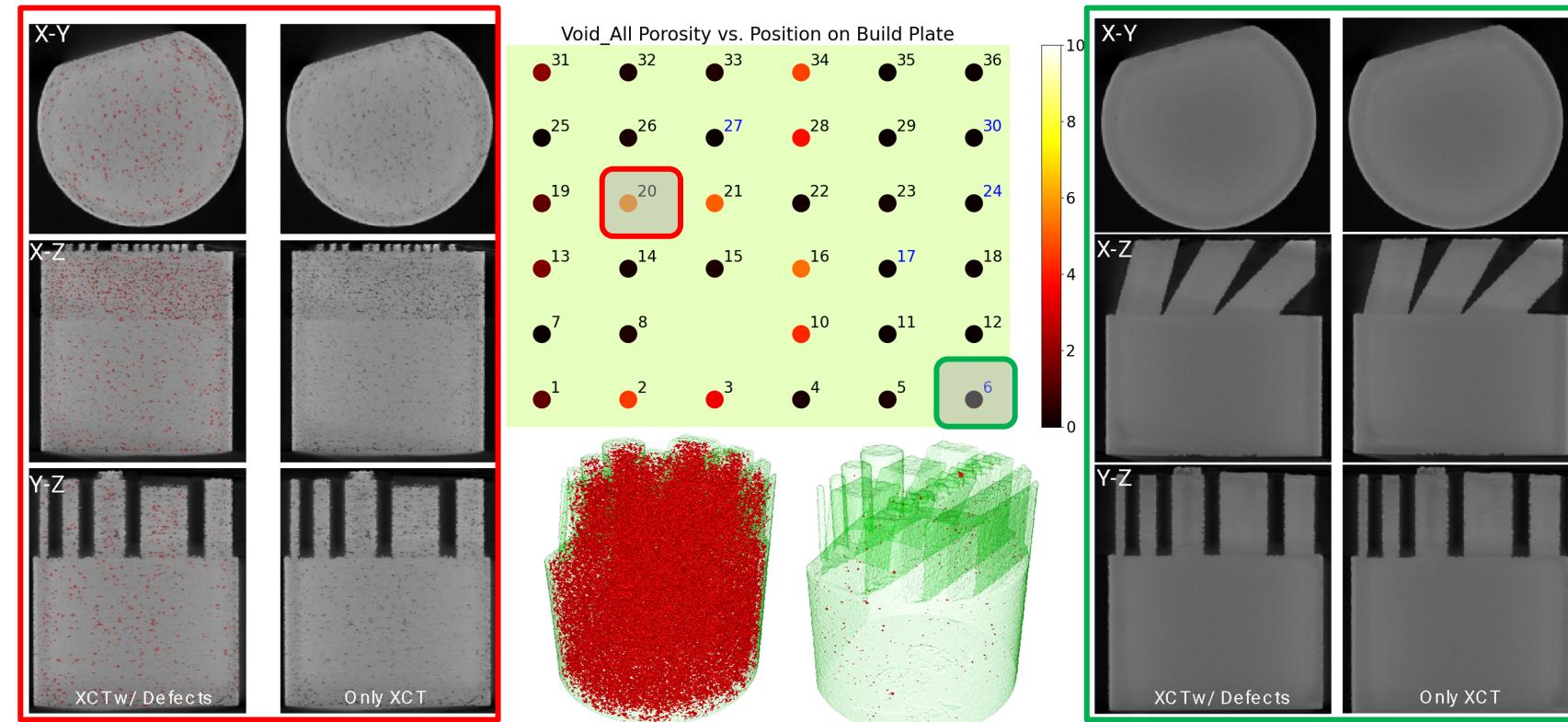
Deep Learning (DL) Based X-Ray CT Segmentation

- ❑ Noticed that Standard segmentation has limited accuracy (through comparison to high resolution microscopy data).
- ❑ Developed DL-based segmentation approach in this thrust

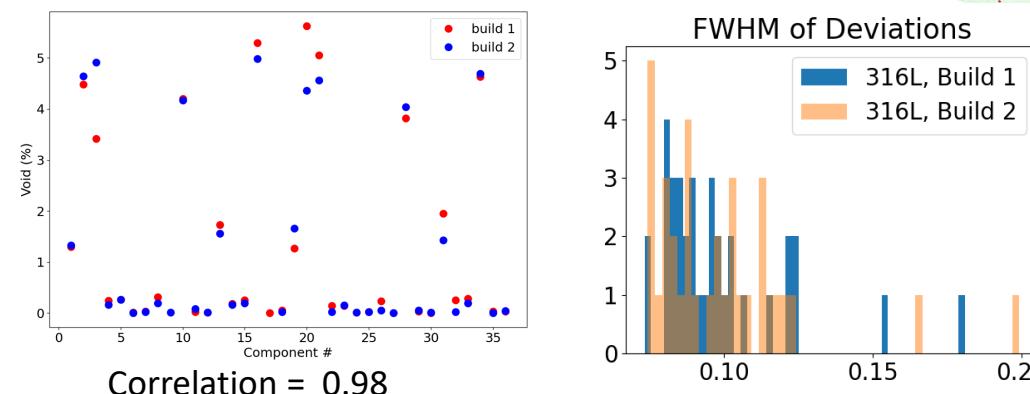


DL-Segmentation, verified through high-res microscopy, demonstrates that true porosity can be underestimated by 60X with standard algorithms

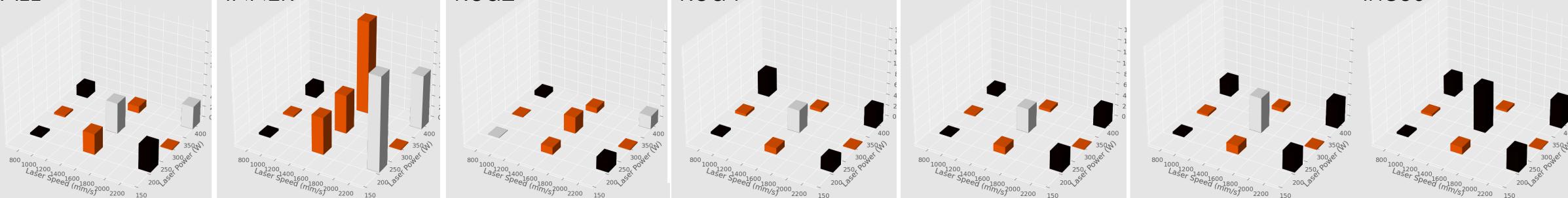
Build Consistency Analysis (B1 vs. B2)



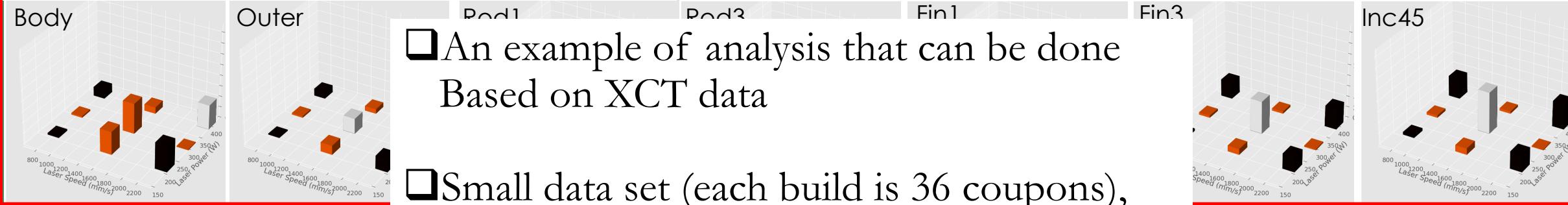
- ❑ Parameters repeated on Parts 01-18 & 19-36
- ❑ Randomized order to avoid systematic errors
- ❑ XCT, 20min per coupon
- ❑ Two builds showed consistent behavior



ALL



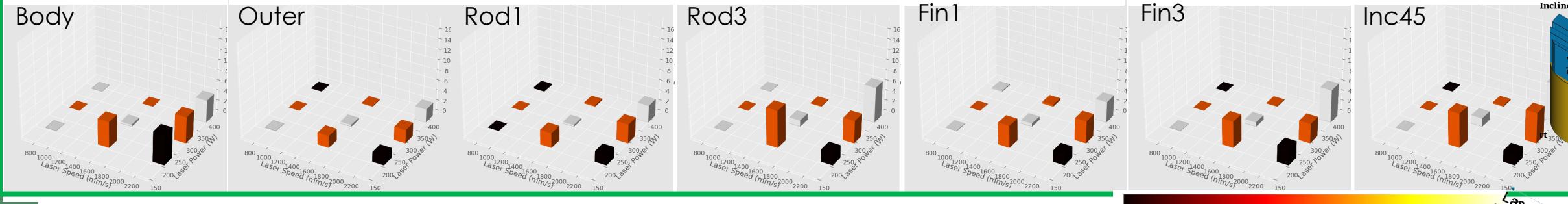
Body



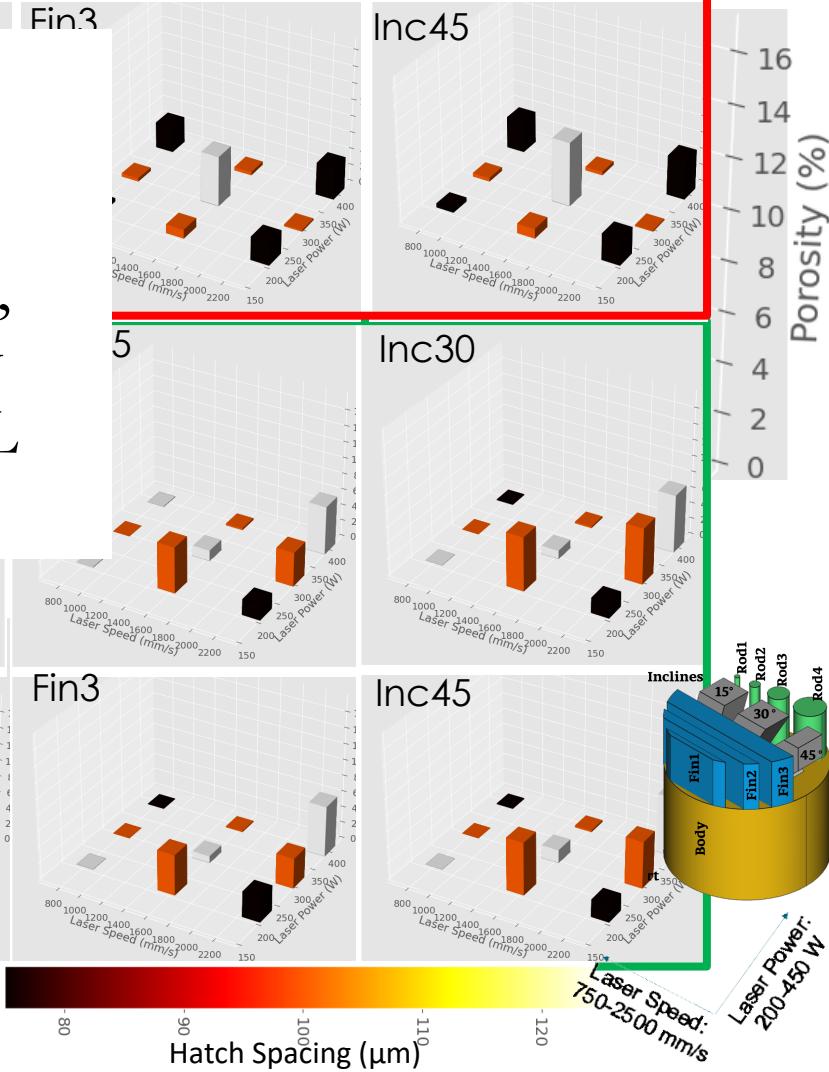
□ An example of analysis that can be done
Based on XCT data

ALL

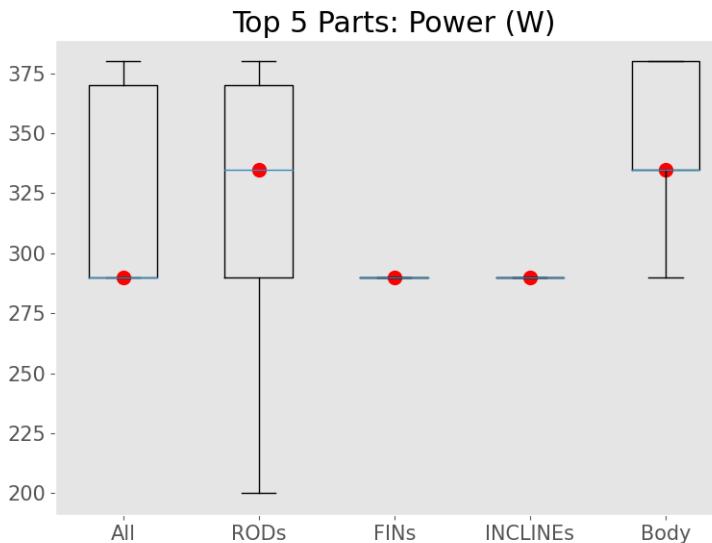
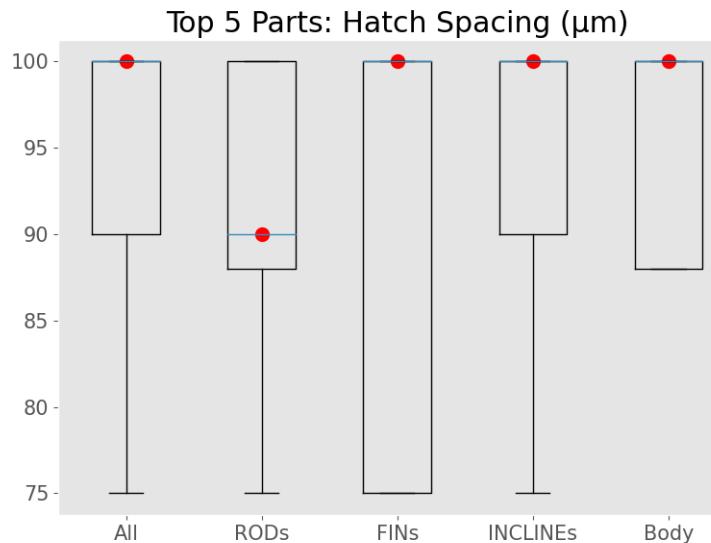
Body



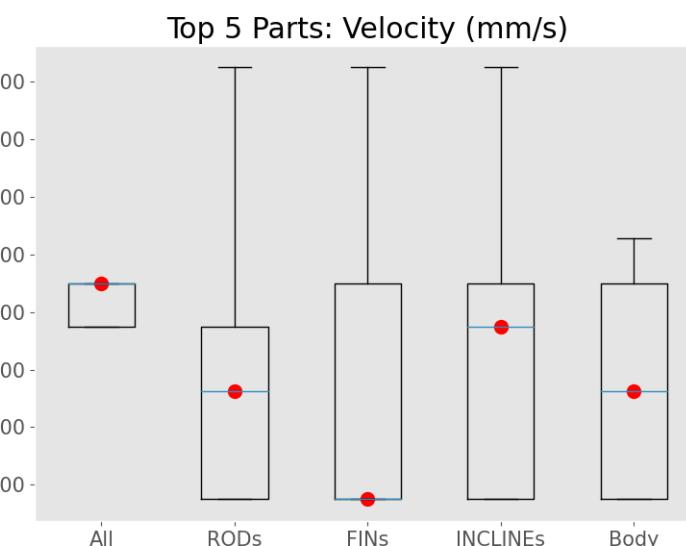
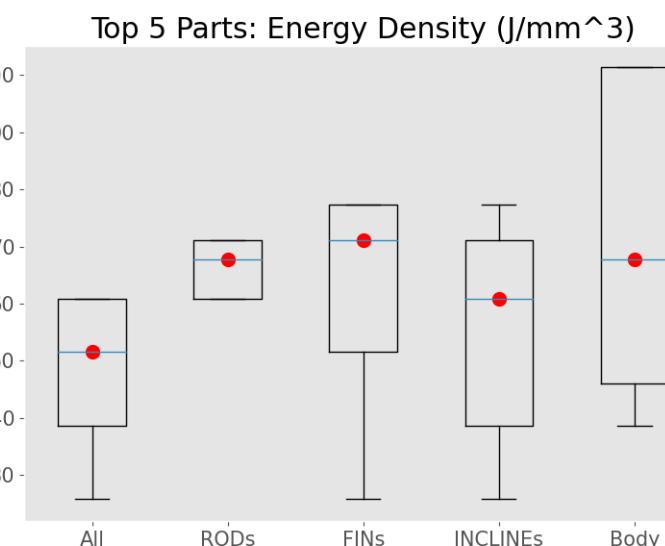
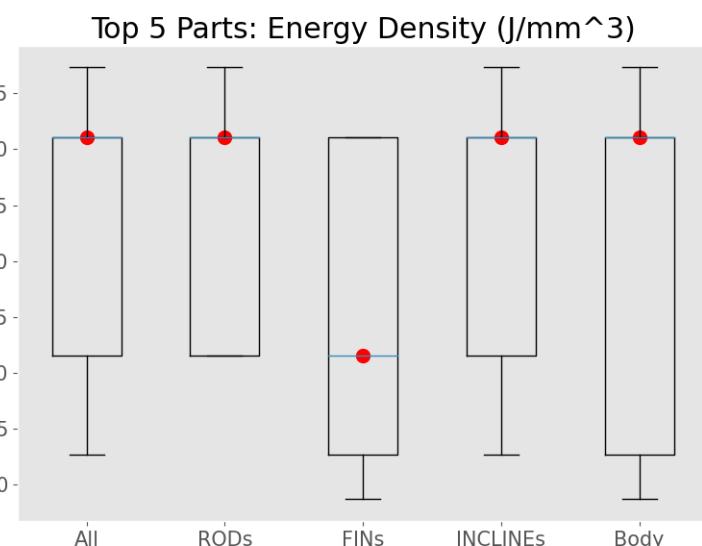
Top: 316L (Build 1) vs. Bottom: 316H (Build 5)



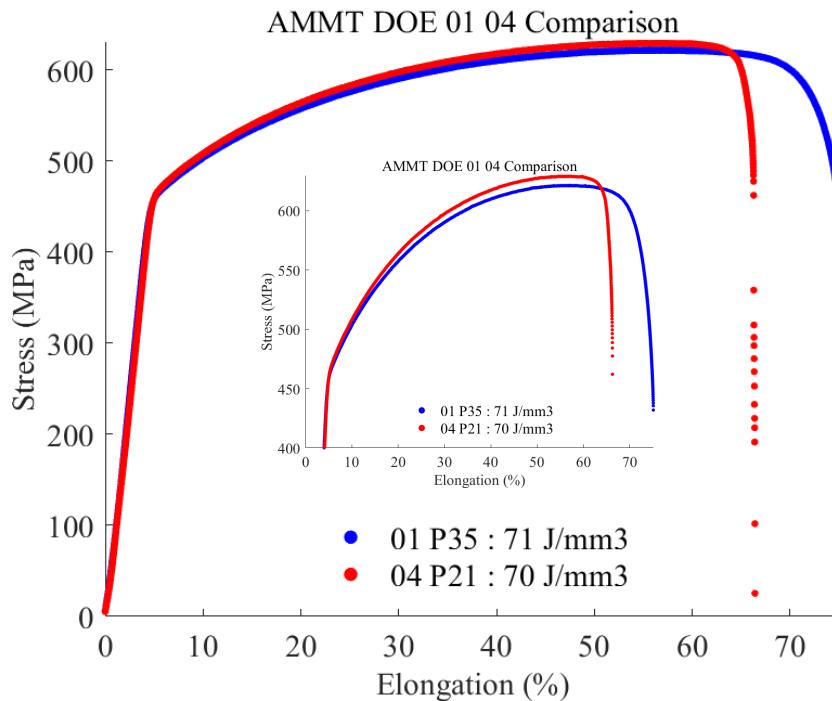
ROI Dependence of Process Parameters of Top 5 Coupons



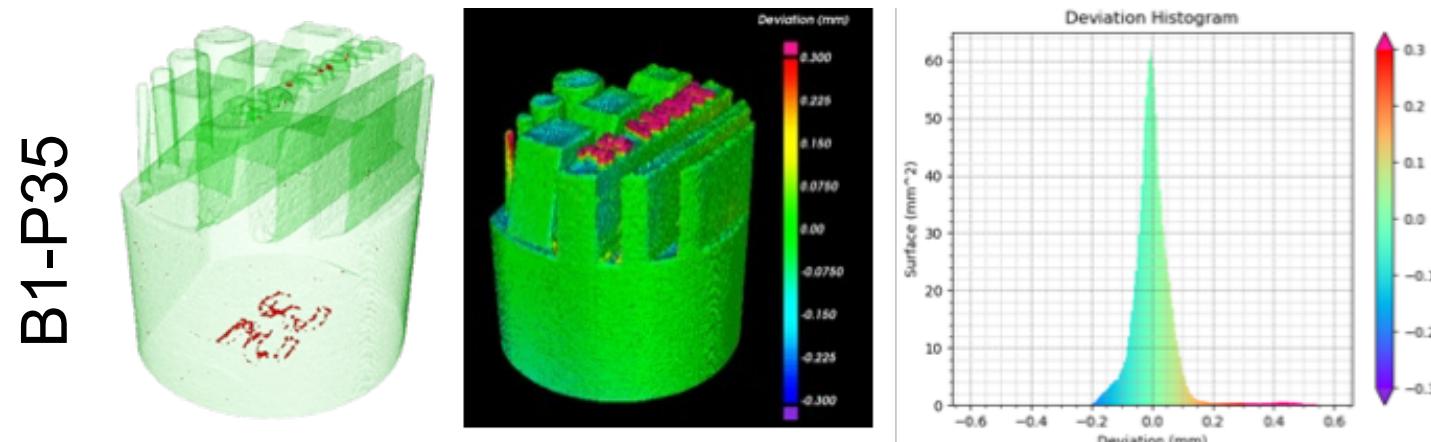
- 316L, 4 builds, 141 coupons
- 316H, 1 build, 36 coupons
- Single track characterization (LANL), EOS:
316L: 54 J/mm^3
316H: 95 J/mm^3
- Here with M2, is about 70 J/mm^3 for both



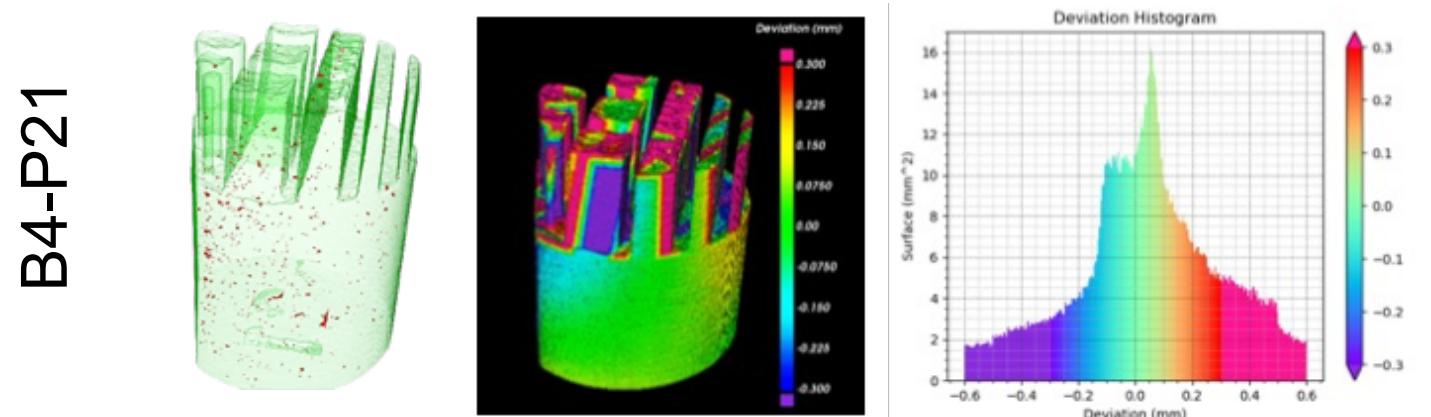
Parts With Same Energy Density (71J/mm^3) And Different Process Variables



Similar energy density, despite the change in individual parameters results in **same yield strength** and insignificant differences in UTS, **BUT:**



- ❖ Geometric features closer to desired tolerances
- ❖ Low power (200W), low speed (750mm/s), higher hatch (75mm)



- ❖ Pores distributed across the whole sample
- ❖ **Larger geometric deviations**
- ❖ High power (380W), higher speed (1800mm/s), smaller hatch (60mm)

Variations in LPBF 316H SS Microstructure Within Minimized Porosity Process Space

Scientific Achievement

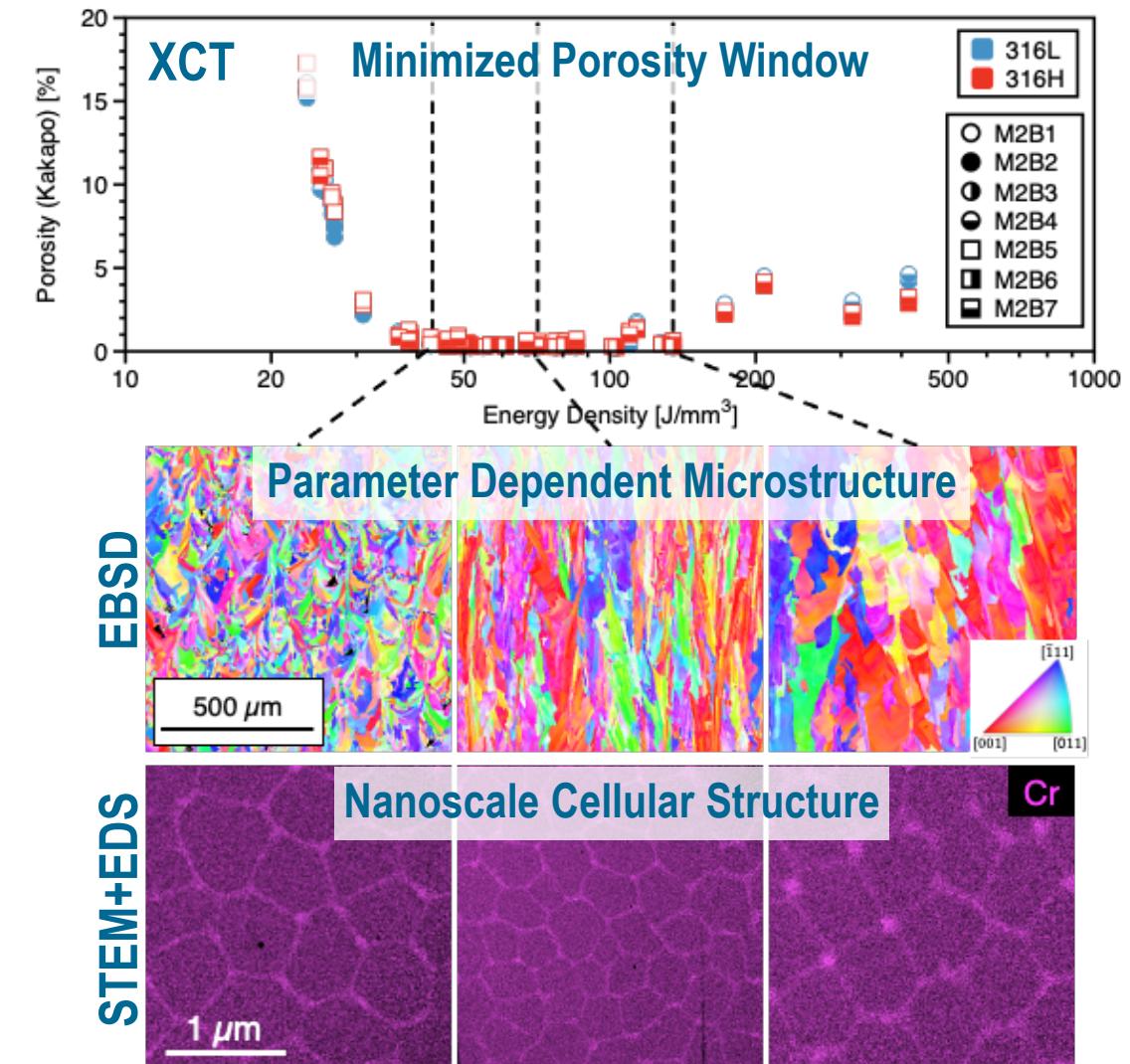
- A total of 252 SS Zeiss specimens (144 in 316L & 108 in 316H) printed as part of the concept laser experiments.
- Two characteristic microstructures identified for future campaign testing (refined chevron structure and columnar structure).

Impact & Potential Application Space

- For complex components, both of these characteristic microstructures may be present, invalidating assumptions in historical qualification frameworks.

Details

- High-throughput X-ray computed tomography (XCT) used to identify a minimum porosity process window for 316L and 316H SS, followed by targeted electron microscopy.



Multiscale characterization using XCT, EBSD and STEM-EDS reveals variations in porosity, grain structure, and nanoscale segregation as a function of varying processing parameters.

High-Throughput XCT Identified Alternative Renishaw Processing Window for 316H

Scientific Achievement

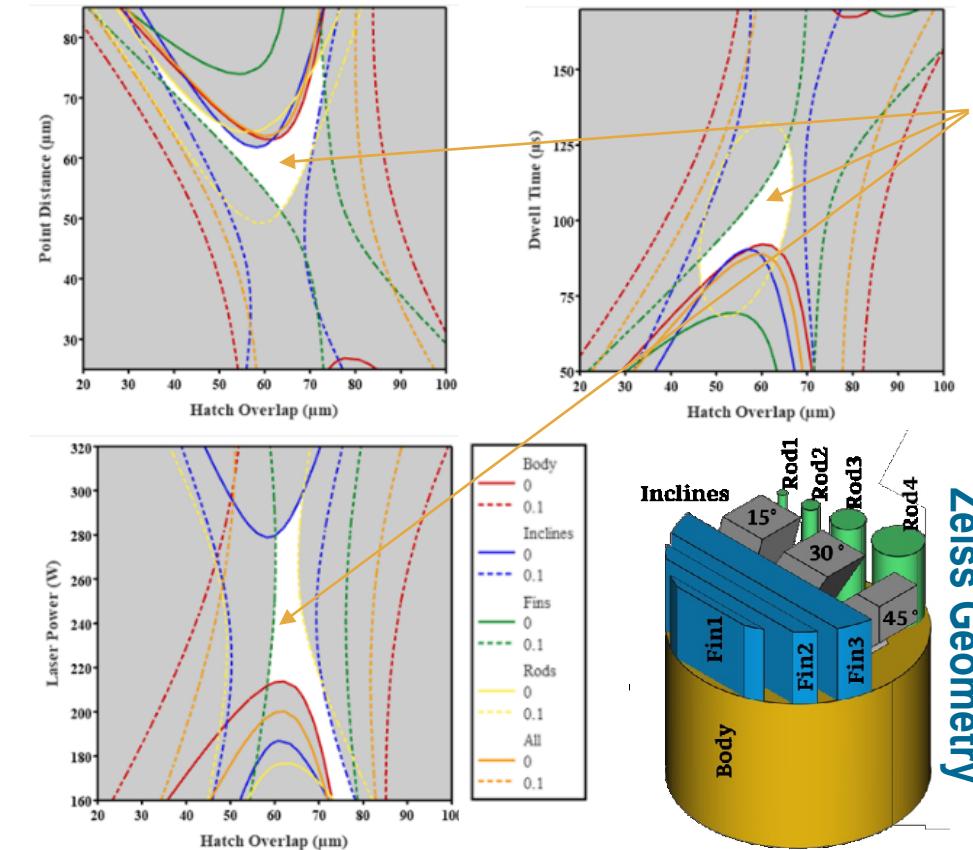
- A total of 390 SS Zeiss specimens (210 in 316L and 180 in 316H) printed as part of the Renishaw LPBF optimization efforts.
- High-throughput X-ray computed tomography (XCT) successfully used to probe geometry-specific porosity trends in AM parts.

Impact & Potential Application Space

- For samples printed using 316H SS, there is only a small processing window that successfully minimizes porosity within all geometric features in the experimental Zeiss coupon, requiring additional modeling and experimentation.

Details

- High-throughput XCT used to map porosity in different regions (inclines, rods, fins, etc.) in a miniature Zeiss specimen used for LPBF print optimization at ORNL.



XCT porosity trends for one 316H build PB performed on the Renishaw varying three processing parameters. In each plot, the area between solid and dashed lines indicates porosity below 0.1%. White regions indicate processing space where porosity is minimized for all overlaid curves.

- Deep Learning (DL) models developed, tested, modified for our reconstruction framework for 316L and H.
- A new DL-Based Segmentation is developed to address some challenges with characterization
- >540 coupons characterized (15 build plates on two printing systems)
- Multimodal data from X-ray CT, microscopy, EBSD, as well as in-situ and mechanical testing were combined to identify optimum process parameter window for two printer systems.
- Work ongoing on expanding the process parameter set, and for complex geometries

Amir Ziabari
ziabariak@ornl.gov

ORNL Team

Andres Marquez Rossy,
Zackary Snow, Luke Scime,
Selda Nayir, Holden Hyer,
Joslin Chase, Caleb Massey,
Peeyush Nandwana, Vincent
Paquit, Ryan Dehoff, et al.

ZEISS Team

Curtis Frederick,
Paul Brackman, Alex Lisovich

This work was performed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Research was sponsored the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, the Advanced Manufacturing Office, the Office of Nuclear Energy, and the Transformational Challenge Reactor Program.

Questions?

(ziabariak@ornl.gov)

U.S. DEPARTMENT OF
ENERGY | *Office of*
NUCLEAR ENERGY

OAK RIDGE
National Laboratory