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Characterization is critical for understanding processing,
microstructure, properties, and performance

Characterization /4 | 0

Properties

U O

Performance

U

/ Structure Challenges in Additive Manufacturing (AM):

Characterizing complex, spatially varying, multi-scale
microstructures

Characterize defect distribution
Correlate to performance

Learn to drive AM processes towards predictable,
repeatable results

With current qualification approaches, it can take a decade to qualify a
material for nuclear applications.

Rapid Qualification requires fast high-throughput characterization
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AMMT Rapid Qualification Thrust Pathway  wuii-pimensiona pata

Correlation (MDDC)
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U Develop and leverage automated fast characterization to aid in understanding of
process-structure-property-performance relationships, and in turn finding optimum
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High Level Connection between Thrusts

Understanding Process-Structure-Property-Performance Relationships

|

Process understanding for qualifying LPBF 316 Multi-Dimensional Data E
SS (Thrust-CM) Correlation (MDDC) Platform |
ORNL, This Thrust ORNL (Paquit, Scime, etal.) !
(Massey, ) Automated, High- ll :
- Throughput Materials I

Improve and Optimize LPBF 316 SS to Improve Characterization Process Modeling and i
Heterogeneity in AM Material (Thrust-PN) Techniques Variability in AM SS316 :
ORNL (Nandwana, et al.) ﬁ ORNL (Plotkowski, et al.) !
_____________________________________________________________________________________________________ I

Improving and Optimization of Existing
Reactor Materials for Advanced Manufacturing
ORNL, (Dryepondt, et al.)

d This diagram is solely based on current collaborations.
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Rapid Characterization Process

%

Thrust-CM,
Thrust-PN
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=14 3. Oufput the data

1. Loads 10 coupons at a time §
2. Quickly scan a couponn

\V)

Receive the data (after each scan)
Perform fast DL-based reconstructiion,

segmentation, and image amallysis
Generate and save output

Register the data to the in-situ and Peregrine
data

Produce report

Store the data

Characterization
summaries and data




Non-Destructive Characterization (NDC) Process Using XCT

Information
Flaws
Anomalies
Defects
Dimensions
Surface

Reconstruction
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Sample Raw Measurement Reconstruction Segmentation
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IMPROVED THE RECONSTRUCTION
QUALITY w/o TIME COMPROMISE

REDUCED THE SCAN
TIME AND COST

LOWER THE COST OF
IMPLEMENTATION

X-ray CT Reconstruction Framework

% DOE TCF award
¢ Licensed by ZEISS
¢ Patent and paper

MDF

IOACE—0

REDUCE MAINTENCANCE
NEEDs AND COST

ENABLES FAST POSTPROCESS
DATA ANSLYSIS w/ ENHANCED

DEFECT DETECTION CAPABILITY
$0AK RIDGE ENABLE HIGH-THROUGHPUT and
Nackeal Laborséory SCALABLE CHARACTERIZATION



a CAD-, Physics- and Deep Learning-Based Image Reconstructions

1. Generate Reference Data 1. Train GAN using CAD (Data Generator!)
Measurement/ 1-2 volumes of experimental XCT
Qd CAD Models Physics-based into. ( )
0 Physics-based MBIR Reference High- CAD 1 L
Beam Hardening quality Reconstruction — xcr Teain Trained GAN
parameters F;\;'S (Ll1bra1;y Simulator | 1-2 Simulated XCT vols. GAN tor data generation
imulates — - :
U Fast, high-quality reconstructions, U State-of-the-art
2. teducing scan-time, reducing costand ~ NN) 2. Syr N!
el O Addresses challenges with CAD-DIL.MBIR
and can produce even more high-quality
O Higher TRL research product. N | COOISIEICIOng
Trained
- : : . CNN
" 0 Has been integrated into the %“g’iﬁ; [ To be integrated into the characterization
h T k L framework
Lo.  Characterization framewor ality
3. Test Deep CNN on new data! 3. Test Deep CNN on new data!
Noisy, beam-hardened CT Reconstruction
Projection data Trained Deep CNN
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Results for a Lower Density Alloy

Standard 2.5D CAD-DLMBIR Simurgh

Density (grfcm?)

O 64 test data volumes
d Simurgh is only trained on synthetic data
 Further reduce the scan time and dealing with denser materials
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Inconel 718 Results (Highly Density Alloy)

Microscopy 2.5D DL-MBIR
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Simurgh

C O 0O DO

17.3
um/pixel -+~ -

Detections Overlayed on Microscopy

1um resolution optical microscopy
as ground truth.

3.5X better detection capability at
sub-voxel resolution.

Allows for detection of 100% of
defects >100um effective diameter!
2.5D DLMBIR already outperforms
standard approaches by ~4X!

100
80/
601
40

201 — Simurgh
— 2.5D DLMBIR

Probablity of Detection (%)
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Fast Automated Characterization for Process Parameter Selection

- : : : - :
1. Design of 2. Print the build 3. X-ray CT at 4. Fast, consistent 5. Analysis
Experiment (DoE) plate. Remove parts fraction of optimal and accurate Al- (segmentation, flaw
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Large Complex Geometries

T ORNL Tec.hnologies
: Standard FDK FDK w/ BH corr. ' CAD-DLMBIR Simurgh

CADDLMBIR (ORNL) Simurgh (ORNL)

FDK, Standard CADDLMBIR (ORNL} Simurgh (OR
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ORNL and
AMMT

CONCEPT

------

15 builds, >540 coupons
dTwo systems
dBuilds with various

process parameters per A B e
coupon il il

d316L and 316H
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Deep Learning (DL) Based X-ray CT Reconstruction

ORNL

Standard

DL-reconstruction allows for resolving the flaws using 6X faster
% OAK RIDGE scans in thick dense 316L/H
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Deep Learning (DL) Based X-Ray CT Segmentation

d Noticed that Standard segmentation has limited accuracy (through comparison to high resolution microscopy data).

d Developed DL-based segmentation approach in this thrust

100
® Standard

80 + DL- Segmentation
R
(72]
o
O 40-
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0 10 20 30 Red: Standard; Green: ORNL DL- Segmentation

DL-Segmentation, verified through high-res microscopy, demonstrates that
¥ OAK RIDGE true porosity can be underestimated by 60X with standard algorithms
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Build Consistency Analysis (B1 vs. B2)

d Parameters repeated on Parts
01-18 & 19-36

0 Randomized order to avoid
systematic errors

A XCT, 20min per coupon
Q Two builds showed consistent
behavior
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Void (%)

Void_All Porosity vs. Position on Build Plate
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¥OAKRIDGE  Top: 316L (Build 1) vs. Bottom: 316H (Build 5)
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ROl Dependence of Process Parameters of Top 5 Coupons

Top 5 Parts: Power (W) Top 5 Parts: Hatch Spacing (um)

w5 T T e ° ° Q 316L, 4 builds, 141 coupons

350 - o

325 - ° a 316H, 1 build, 36 coupons

300 0

_. = e Q Single track characterization (LANL), EOS:
- 316L: 54 J/mmA3

= . 316H: 95 J/mmA3

225 -

200- L R == A O Here with M2, is about 70J/MMAZ for both

All RODs FINs INCLINES Baody All RODs FINs INCLINES Baody
Top 5 Parts: Velocity (mm/s) Top 5 Parts: Energy Density (J/mm~™3) Top 5 Parts: Energy Density (J/mm~™3)
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Parts With Same Energy Density (71J/mm?3) And Different Process

Variables

AMMT DOE 01 04 Comparison

AMMT DOE 01 04 Comparison

Stress (MPa)

® (01P35:71 J/mm3
® 04P21:70J/mm3

400 —*
0

10 20 30 40 50 60 70
Elongation (%)

e (04P21:70 J/mm3

100’ e 01P35:71 J/mm3
0

0 10 20 30 40 50 60 70
Elongation (%)

Similar energy density, despite the
change in individual parameters results
in same yield strength and insignificant
differences in UTS, BUT:
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Dewation Histogram

B1-P35

Dewnation [mem

«» Geometric features closer to desired tolerances
s Low power (200W), low speed (750mm/s), higher hatch (75mm)

Deviation Histogram

B4-P21

+»» Pores distributed across the whole sample
s Larger geometric deviations
s High power (380W), higher speed (1800mm/s), smaller hatch (60mm)



Variations in LPBF 316H SS Microstructure Within Minimized Porosity
Process Space

3 15_@ XCT Minilmized. Porosi'ty Window  |g 3,

Scientific Achievement § 5 | E E 0 st

o A total of 252 SS Zeiss specimens (144 in 316L & 108 in 5‘; 107 "g i E E gmgg

316H) printed as part of the concept laser experiments. ¢ 5. | E E ; |G mess

» Two characteristic microstructures idenfified for future s v _! 'E 51 ® 5 & | e
campaign testing (refined chevron structure and S 20 L7 50\ 100  “ew_ 500 1000

i

columnar structure). L7 Energy Desity [4mm’] ~eo_
Impact & Potential Application Space -xe Parameter Dependent Mlcrostructure \

« For complex components, both of these characteristic
microstructures may be present, invalidating
assumptions in historical qualification frameworks.

Details

« High-throughput X-ray computed tomography (XCT)
used to identify a minimum porosity process window for
316L and 316H SS, followed by targeted electron
MICroscopy.

['Cll.ll] [o11]

Nanoscale CeIIuIar Structure

Multiscale characterization using XCT, EBSD and STEM-EDS
reveals variations in porosity, grain structure, and nanoscale

%OAK RIDGE segregation as a function of varying processing parameters.
National Laboratory

STEM+EDS




Scientific Achievement

A total of 390 SS Zeiss specimens (210 in 316L and
180 in 316H) printed as part of the Renishaw LPBF
optimization efforts.

High-throughput X-ray computed tomography
(XCT) successfully used to probe geometry-specific
porosity tfrends in AM parts.

Impact & Potential Application Space

For samples printed using 316H SS, there is only @
small processing window that successfully
minimizes porosity within all geometric features in
the experimental Zeiss coupon, requiring additional
modeling and experimentation.

Details

%

High-throughput XCT used to map porosity in
different regions (inclines, rods, fins, etc.) in a
miniature Zeiss specimen used for LPBF print
optimization at ORNL.
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High-Throughput XCT Identified Alternative Renishaw Processing
Window for 316H
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