

NRC Meeting: Probabilistic Safety Analysis Overview

May 17th, 2023

Introductions

- NRC Staff
- Holtec Staff

- Introductions
- Purpose and Outcome
- Overview of PSA Quality Control Process
- Overview of Sample Approaches

Purpose and Outcome

PURPOSE: To provide a high-level overview of the SMR-160 PSA modeling approaches and address specific NRC questions related to SMR-160 PSA and design.

OUTCOME: To obtain feedback from the NRC staff on the high-level overview and identify specific topics that the NRC would like to discuss further in future meetings.

Overview of PSA Quality Control Process

- Overview of PSA Quality Control Process
 - ✓ Compliance with RG 1.200 requirements
 - ✓ Compliance with NUREG-0800 requirements and level of detail
 - ✓ Following ANS/ASME Standards, including those "in-process"
 - ASME/ANS RA-Sa-2009 (Lvl 1 Standard Endorsed by RG 1.200)
 - ASME/ANS RA-S-1.1-2022 (Lvl 1 Std Issued May 31, 2022)
 - ANS/ASME-58.22-2014 (LPSD Pilot Standard)
 - ASME/ANS-RA-S-1.2-2019 (DRAFT Updated Level 2 Standard)
 - ✓ PSA Groundrules and Assumptions Document (HI-2210453)
 - ✓ PSA Model Maintenance Procedure (HPP-160-3112)
 - ✓ Gap Assessment(s)

- Initiating Events (HI-2200399 for Level 1 PSA)
 - ✓ Generic
 - Industry Standards (NUREG/CR-5750)
 - Other Plant PSAs (IAEA TECHDOC-749/R)
 - ✓ Plant Specific
 - System Level Review
 - Master Logic Diagram

- Level 1 PSA Accident Sequence Analysis (HI-2200652)
 - ✓ Four Primary Considerations for Preventing Core Damage
 - Reactivity Control
 - Short Term Decay Heat Removal
 - Inventory Control
 - Long Term Decay Heat Removal
 - ✓ Event Tree Development
 - Use RELAP5-3D to Evaluate Plant Response to each Level 1 Initiating Event
 - Vary available systems/train to support event tree development
 - Verify Event Tree using specific scenarios for each path

- Accident Sequence Analysis
 - ✓ Level 2 PSA
 - Group Level 1 Core Damage Sequences into PDS Bins
 - ATWS or Non-ATWS Scenario
 - Bypass or Non-Bypass Scenario
 - RCS Pressure
 - Availability of Long Term Cooling for Low Pressure Scenarios
 - Availability of CVCS Injection for loss of DHR Scenarios
 - Develop Containment Event Tree
 - Use MELCOR for Level 2 PDS Accident Progression
 - Evaluate Containment/Containment System Response
 - Determine maximum pressures, temperatures, timing
 - Determine release characteristics

- Success Criteria
 - ✓ Develop Systems/Trains Required for Each Event Tree Node
 - ✓ Develop System Models based on Success Criteria Determinations

- Systems Analysis
 - ✓ Review of System Design Documents
 - ✓ Discussions with Designers
 - ✓ Identify Data Needs coordinate with Data analyst
 - ✓ System Level Models Developed and Quantified (~20 Systems)
 - Insights and Design Change Recommendations Provided to Designers
 - ✓ Integrated System Models Developed and Quantified
 - Included Support Systems
 - Insights and Design Change Recommendations Provided to Designers

- Data
 - ✓ Generic
 - Initiating Events (NUREG/CR-6928, NUREG-1829, NUREG/CR-5750)
 - Component Types and Failure Modes
 - Common Cause Failures
 - Test & Maintenance
 - ✓ Design Specific
 - MELCO DI&C Data

- Human Reliability Analysis
 - ✓ Pre-Initiators
 - ASEP Screening Methodology (NUREG/CR-4772)
 - Post-Initiators
 - SPAR-H Methodology (NIREG/CR-6883)
 - ✓ Plan is to Update to THERP Methodology (NUREG/CR-1278) when procedures are available

- Integration and Quantification (HI-2210104)
 - ✓ Event trees converted to equivalent fault trees to create one-top model
 - ✓ Top Logic integrated with system level logic based on required success criteria
 - ✓ Quantification (several rounds) performed with cut set reviews at each
 - CDF/LRF level
 - Sequence level
 - Initiating Event level
 - ✓ Risk Significant SSCs Identified Basis Discussed in Separate Meeting

SSC Parameter

Component level basic event System level basic event Component level basic event System level basic event Basic event/contributor

Criteria for Risk Significance Determination

Conditional CDF \geq 3 x 10⁻⁶/yr Conditional CDF \geq 1 x 10⁻⁵/yr Conditional LRF \geq 3 x 10⁻⁷/yr Conditional LRF \geq 1 x 10⁻⁶/yr

Total FV \geq 0.20

- Uncertainty and Sensitivity (HI-2210105)
 - ✓ Epistemic Uncertainty (EPRI 1016737)
 - ✓ Aleatory Uncertainty
 - UNCERT
 - 10,000 Samples
 - Monte Carlo Sampling Method
 - ✓ Sensitivity Analysis Performed
 - Recommendations for Design Improvement provided to designers

PSA Identified Design Change Suggestions

- PSA Identified Design Changes
 - **√** [[

]

PSA Identified Design Change Suggestions

[[

PSA Identified Design Change Suggestions

■ PSA Identified Design Changes

11

HOLTEC

PSA Identified Design Change Suggestions

Risk Importance Measures

■ Fussell-Vesely (FV), commonly known as fraction of total risk

$$\checkmark FV = \frac{P(top) - P(top \mid A success)}{P(top)}$$

Risk Achievement Worth (RAW), or risk increase ratio given a SSC fails

$$\checkmark RAW = \frac{P(top \mid A failed)}{P(top)}$$

■ Conditional CDF (CCDF), or increased CDF when a SSC fails

$$\checkmark$$
 $CCDF = CDF * RAW$

- RG 1.200, RG 1.201 risk-significance criteria
 - ✓ FV > 0.005
 - ✓ RAW > 2 for a component
 - ✓ RAW > 20 for common-cause failures (or system-level events)
- RG 1.174 risk-acceptance guidelines
 - \checkmark Permanent changes to a plant's licensing basis are considered if calculated ΔCDF is in the range of 10⁻⁶/yr to 10⁻⁵/yr and total CDF < 10⁻⁴/yr
- The ACRS noted that an inappropriately large number of SSCs may be identified as risk-significant using the RG 1.200 criteria for plants with very low estimated CDFs
 - ✓ Undue burden on both the licensee and regulatory staff

Need for SMR-160 Thresholds

- Current fleet has a baseline CDF of ~ 1 x 10⁻⁵/yr
 - ✓ RAW of 2 implies a \triangle CDF of 1 x 10⁻⁵/yr and CCDF of 2 x 10⁻⁵/yr is risk-significant
 - ✓ FV of 0.005 implies a CDF contribution of 5 x 10⁻⁸/yr is risk-significant
- SMR-160 has a baseline CDF of[[

]]

SMR-160 Thresholds and Justification

Preliminary Results

11

Conclusion

- SMR-160 developed new risk significance criteria
 - ✓ Consistent with risk significance criteria recently approved by the NRC
- Preliminary results show [[

11

Follow-up on NRC Staff Question: "Beyond Design Basis" Winds

- During the 5/3/23 design overview meeting PSA topic, the NRC staff asked how SMR-160 deals with "beyond design basis" winds

■ Does this answer the NRC's question regarding "beyond design basis" winds? If not, can the NRC staff provide further clarification to SMR-160 regarding the question and the definition of "beyond design basis" winds?

]]