Utilizing the Nuclear Energy Institute (NEI) 07-07 Industry Groundwater Protection Initiative as a Foundation for Addressing Subsurface Site Assessments

USNRC 2nd Annual Public Workshop on Subsurface Investigations – Via MS Teams May 11th, 2022

Matt Darois, CGWP, Corp. Environmental & Engineering Manager

Radiation Safety & Control Services Inc. medarois@radsafety.com

Outline

- Recap of graded approach to subsurface characterization (July 2021 Workshop)
 - Triad and graded approach at nuclear sites
 - Use of a Conceptual Site Model (CSM)
- NEI's 07-07 Groundwater Protection Initiative
 - Scope (subsurface investigations/decommissioning)
 - Hydrogeologic CSM within the 07-07 Framework
 - 07-07 GWMP Objectives to address and plan subsurface site assessment
 - Hydrogeology: aquifer(s), preferential flow paths, barriers to flow, fixed head boundaries, anthropogenic effects etc.,
 - System, structure, component and work practice risk ranking
 - Remediation and record keeping
 - Oversight/updates
- Applied examples and discussion

Triad Approach

- Systematic Planning:
 - Land use Survey / Historical Site Assessment
 - Develop a dynamic Conceptual Site Model (CSM)
 - CSM drives characterization plan and methods

- DQO's
- The characterization plan's tech basis is the CSM
- Characterization <u>data driven</u> decision making in the field
 - Characterization and Remediation
- Characterization methods selected to meet DQO's with rapid deployment capabilities/tech

Real-Time Measurements:

- Mobile labs, and instrumentation
- Remote sensing, GIS/GPS data integration with digital twins

https://triadcentral.clu-in.org/

What is a Hydrogeologic CSM?

"A hydrogeologic CSM is a description of various natural and anthropogenic factors that govern and contribute to the movement of groundwater in the subsurface"

Kresic N., Mikszewski A., CRC Press 2013

- Collection of tested hypotheses that iteratively attempt to answer:
 - Where is GW coming from?
 - What type of porous media is it flowing through?
 - How much GW is there and how fast is it flowing?
 - Where is GW going?
 - How did GW behave in the past and how will it change in the future (natural and anthropogenic)?
 - What are the past, present and future contamination risks to GW?
 - How do contaminants move in GW? (F&T)

NUCLEAR ENERGY 07-07 Industry Groundwater Protection Initiative

- Initially developed in 2007 to describe the industry's Groundwater Protection Initiative
- Applicability: Operating and decommissioning nuclear power plants and new plants under construction after 2006
- Voluntary program that all US commercial nuclear fleet Chief Nuclear Officers (CNO's) agreed to
 - Subsequently USNRC added review of GW monitoring programs to routine REMP inspection procedures (71124.07 "Radiological Environmental Monitoring Programs")
- Initiative provides utilities improved management and response to inadvertent release of radioisotopes that may result in low but detectable plant-related materials in subsurface soils and water.
 - Three Parts:
 - 1) GW Protection Program
 - 2) Communication
 - 3) Program Oversight

Part 1: NET NUCLEAR Groundwater Protection Program

- Manage inadvertent Rad releases that enter GW:
 - Objective 1: Site Hydrology and Geology:

"Ensure site characterization provides an understanding of predominant GW gradients based on current site conditions. This characterization is the basis of the CSM"

Objective 2: Site Risk Assessment

"Evaluate all systems structures, components [and work practices] that could contain lic. material where there is a credible mechanism [for a release] to groundwater"

Objective 3: On-going Groundwater Monitoring

"Establish an on-site GW monitoring program to ensure timely detection of inadvertent radiological releases to GW"

Objective 4: Remediation

"Establish a remediation protocol to prevent migration of lic. material off-site and to minimize decommissioning impacts"

Objective 5: Record Keeping

"Records of leaks, spills and remediation efforts are retained to meet the requirements of 10 CFR 50.75(g)"

Objective 1: Site Hydrology and Geology:

- Aquifers
- Recharge/discharge
- Gradients/hydraulic head trends
- Hydraulic head boundaries
- Anthropogenic effects
- Barriers to flow
- Preferential flow
- Backfill and native fill distributions

Tested Hypotheses

Bedrock Surface/Soil Thickness:

Bedrock Lithology:

Surficial Aquifer Flow Net:

Bedrock Aquifer Flow Net:

Objective 2: Site Risk Assessment:

- Evaluate SSC's and WP's that contain or could contain licensed material with a credible pathway to reach GW
 - Identify all SSC's; examples: SFPs, outdoor tanks, buried pipes, foundation joints etc.
 - Identify existing leak detection methods for these SSCs: GWM wells, leak detection systems, integrity testing etc.
 - Identify WPs that could result in a leak, spill/release of lic. Material
 - Evaluate for potential enhancements to leak detection systems or programs
 - NEI 09-14 Underground pipe and tank inspection initiative:
 - SSC Risk Rank = consequence X Susceptibility (all safety related piping and tanks)
 - Evaluate potential enhancements to prevent spills or leaks from reaching GW
 - Identify tracking for corrective actions
 - Establish a frequency for periodic review of SSCs/WPs

*"credible pathway": single barrier between SSC/WP and environment

Objective 3: On-going Groundwater Monitoring

• <u>Timely detection of inadvertent releases:</u>

- [Hydrology and Geology] + [Risk assessment] = Initial CSM
- Initial Hydrogeologic CSM becomes basis for GW monitoring well array and monitoring program
 - Identify gaps in CSM (develop monitoring array and SSC/WP wells)
- Establish sampling and analysis protocols
- Establish a formal written program for long-term monitoring (SAPs/SOPs)
- Periodic review of lab(s) analytical capabilities/protocols
- Long term PM of wells
- Establish frequency [and triggers] for periodic review of the GWMP

*Program reviews and updates should trigger revision of Hydrogeologic CSM

Remediation, Record Keeping and D&D/SAFSTOR Impacts

Objective 4: Remediation

"Establish a remediation protocol to prevent migration of lic. material off-site and to minimize decommissioning impacts" *mitigation vs. remediation *

Mitigation: Reduce Threat, Remediation: Remove Threat

Objective 5: Record Keeping

"Records of leaks, spills and remediation efforts are retained to meet the requirements of 10 CFR 50.75(g)"

- Objective 6:D&D/SAFSTORImpacts
 - CSM and Risk
 Ranking needs to
 align with new site
 conditions and
 changes

Part 3: NET NUCLEAR Program Oversight

- a. Initial independent program self assessment
- b. Assessment of GPI program every 5 years
 - CSM review and update as necessary
 - More frequent review of update in response to site changes/events
- c. 5-year assessments to review GPI objectives

*Provides a programmatic path to routing CSM updates and record keeping through D&D!

Applied Examples

Common Data Environment (CDE) Use:

Applied Examples

284.00 283.00 S 282.00 € 281.00 280.00 279.00 278.00 5 277.00 · Linear (Avg/Yr) 276.00 275.00 274.00 273.00 1/1/2005 12/31/2008 12/31/2010 12/30/2012 12/30/2014 12/29/2016 12/29/2018

Climate change considerations

Triggers for CSM updates

Structure Dewatering:

Structure Dewatering & Well Pumping:

Comments, Questions

Matt Darois, CGWP, Corp. Environmental & Engineering Manager

Radiation Safety & Control Services Inc.

medarois@radsafety.com

