APPENDIX U

HEC-RAS MODEL FOR THE CALCULATION OF THE 500-YEAR AND PMP WATER SURFACE PROFILES ANTECEDENT MOISTURE CONDITION III

HEC-RAS Plan: PMP AMRI River, Ditch A Reach: 5

HEC-RAS Pla	in: PMP AMIII													
Reach	RiverSta	Q Total	Min Ch El	W.S. Elev	Cm W.S	Max Chi Dpth					Sta W.S. Rgt			Froude # Chi
		(cfs)	(ft)	(ft)	(ft)	(ft)	(11)		(fVs)	(ft)	(ft)	(sq fl)		
5	12674	976,00	3477.00	3478.76		1.75	3478.88	0.003056	2.90	327,16	682.56	357.89	355.40	0.46
5	12674	1850.00	3477,00	3479.26	3478.68	2.26	3479.45	0,003167	3.69	291.95	714.24	553.45	422.29	0.49
5	11337	976.00	3469.00	3470.81	3470.81	1.81	3471.39	0.013220	6.21	417.53	566,66	164.80	149.13	0.95
5	11337	1850.00	3469.00	3471.47	3471,46	2.47	3472.26	0.010865	7.39	403,34	580,18	272.36	176.84	0.93
5	10937	976.00	3464.00	3466.24	3466.08	2.24	3466,66	0.010235	5.21	455.99	618.01	188.24	162.01	0,83
5	10937	1850.00	3464.00	3466.72	3465.72	2.72	3467.45	0.013153	6.91	438.39	635,61	273.71	197.22	0.98
				<u> </u>										
5	10288	976.00	3456.00	3457.22	3457,22	1.22	3457.51	0.020477	4,31	374.31	788.29	226.46	413.97	1,03
5	10288	1850,00	3456.00	3457.57	3457.53	1.57	3457.93	0.015410	4.82	339.97	819,21	383.80	479.25	0.98
													l	
5	9690	1242.00	1	3451.93	3451.51	1.93	3452.09		3,13		793.60	396.40	404.17	0.56
5	9690	2689.00	3450.00	3452.40	3452.06	2.40	3452.72	0,006338	4.52	345.06	818.68	603.04	473.62	9.67
						722	87.2	8.411.		ļ			<u></u>	X R.
5).	9009	1242.00			3446.75	1.90	3447.19	0.011195	4.31	416.94	751.61	288.10	334,67	0.82
5	9009	2689,00	3445.00	3447.65		2.65	3447.96	0.007751	4,51	354.62	846,77	596.64	492.15	0.72
	200							0.000	2 22		854,27		437.11	0.47
5	8130	1242.00					3442.15	0.003422	2.73 4.06			455.81 674,08	1	0.58
5	8130	2689.00	3440,00	3442.50	3442.03	2,50	3442,75	0.004847	4.08	390.07	887.66	6/4,08	497.59	U,SE
		1000		2422.04	0400.04		3439.38	0.018011	4,88	307,16	657.99	254.54	350,81	1.01
5	7717	1242.00			3439,01	1.21 1.94	3440.11	0,009311	4.84		723.77	555.05	471.42	0.79
5	7717	2689.00	3437.80	3439.74	ļ	1.94	3440,11	0,009311	4.04	202.00	120.11	355.05	471.42	0.73
	13050	4402.00	3435.00	3436.81	3436.16	1,81	3436,89	0.001808	2.29	382.26	946,12	684,86	563,87	0.35
5	7253	1483,00 5399,00		1	1	I	3438.13	0.001808	4.42		997.14	1299.73	667.97	0.51
5	7253	5599.00	3433.00	3437.04	3437.00	2.04	2430,13	0,003103	7.42	020.11	337.14	1200.10		0.0
	6040	2888.00	3430.00	3431,11	3431.11	1,11	3431.57	0.016513	5.44	724.42	1307.78	531,26	583,36	1.00
5	6343 6343	7144.00	1		1	1.94	3432.64	0.012039	6.76		1534.53	1091.24	1	0.94
3	6343	7144.00	3430.00	5431,84	3401.54	1,54	0402.04	0,012000	0,70		1004.00	7001.24		
5	5383	2888.00	3425.00	3426.84	3426.14	1.84	3426.94	0.001869	2.54	660.98	1645.22	1198,09	984,24	0.3
5	5383	7144.00							3,65			2169.17	1242,81	0.42
	19900				1								1	
5	4221	3286,00	3420.00	3421.49	3421,49	1.49	3421.94	0,015261	5.39	444.14	1172.66	624.24	728.53	0.9
5	4221	7766.00						0.013358			1337,10	1256.74	1043.46	0.9
									-	 			<u> </u>	······································
5	3489	3286,00	3416.00	3417,66	3417.07	2.66	3417.76	0.002329	2.66	-122.29	903,15	1293.45	1025.44	0,40
5	3489	7766.00		3418,44	3417.60	3.44	3418.65	0.002671	3.78	-136,55	950.96	2110.92	1087.51	0.40
	1		 	<u> </u>										***************************************
5	2988	3286.00	3413.80	3414.95	3414,95	1.15	3415.36	0.016461	5.40	47.78	836.22	645,74	788.45	1.0
5	2989	7766.00	3413.80	3415,68	3415.59	1.88	3416.28	0.011352	6,62	-6,70	894,15	1259.21	900.85	0.93
		·	 	· .	·		1	•		*****	***************************************		1	***************************************
5	2774	3286.00	3409.00	3414.41	3412,71	5.41	3414.50	0,000645	3.37	-418.02	658,08	1773.70	1076.10	0.20
5	2774	7766.00	3409.00	3415,12	3413.54	6.12	3415.31	0.001303	5,22	-438,85	687.85	2554.86	1126.70	0.3
						1								
5	2773	Culver		I			1	I						
							1							
5	2794	3286,00		1	1	1	.]			1		665,51	431.91	0.6
5	2734	7766.00	3408,90	3414,37	3414.37	5.47	3414.83	0.003331	7.66	-1467.17	584,55	2185,09	2051.72	0.6
Service and Services				I								<u> </u>		
5	1888	3327.00										1225.09		0.4
5	1888	7864.00	3408,00	3410,58	3409.82	2.59	3410.80	0.002839	3.70	-259.09	1206.15	2224.23	1465.23	0,4
				<u> </u>				1		ļ			ļ	
5	1060	3473.00			1	1.97		J	5.85			593.57	573.29	1.0
I PANSA SARA SARA SARA	1080	8124.00	3402.70	3405.55	3405,55	2.85	3406.22	0.014413	6.58	460.16	1380.29	1235.07	920.12	1.0

HEC-RAS Version 3.0.1 Mar 2001 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616-4687 (916) 756-1104

Х	х	XXXXXX	XX	XX		XX	XX	Х	X	XXXX
X	X	Х	X	X		X	X	X	X	X
X	Х	Х	X			X	X	X	X	X
XXX	XXXX	XXXX	X		XXX	XX	XX	XXX	XXX	XXXX
X	X	X	X			X	X	X	X	X
X	X	X	X	X		X	X	X	X	X
X	X	XXXXXX	XX	XX		X	X	X	X	XXXXX

PROJECT DATA

Project Title: WCS

Project File : FloodPlain.prj

Run Date and Time: 3/30/06 9:32:01 AM

Project in English units

PLAN DATA

Plan Title: Plan 38

Plan File: D:\program files\WCS\FloodPlain.p38

Geometry Title: PMP1-20-04SecRemoved

Geometry File: D:\program files\WCS\FloodPlain.g04

: pmp NOD AMIII Flow Title

: D:\program files\WCS\FloodPlain.f30 Flow File

Plan Summary Information:

Mulitple Openings = Number of: Cross Sections = 18 0

Inline Weirs Culverts 1

Bridges 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculaton tolerance = 0.01 Maximum number of interations = 20 = 0..3 Maximum difference tolerance Flow tolerance factor = 0.001

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed Flow

FLOW DATA

Flow Title: pmp NOD AMIII

Flow File : D:\program files\WCS\FloodPlain.f30

Flow Data (cfs)									
River Ditch A	Reach 5 5 5 5 5 5 5	RS 12674 9690 7253 6343 4221 1888 1060		PF 97 124 148 288 328 332 347	6 2 3 8 6 7	PF 3 1850 2689 5399 7144 7766 7864 8124			
Boundary Condition	ons								
River stream	Reach	Profil	е		Upstre	eam .	Down		
Ditch A itical	5	PF 2			Crit	cical	Cr		
GEOMETRY DATA									
Geometry Title: PMP1-20-04SecRemoved Geometry File: D:\program files\WCS\FloodPlain.g04									
CROSS SECTION REACH: 5		: Ditch A : 12674							
INPUT Description: Star Station Elevation Sta Elev 100 3482 964 3482	Data nu Sta	m= 6 Elev Sta 3478 560		Sta 635		Sta Elev 761 3480			
Manning's n Value Sta n Val 100 .033	Sta n	m= 3 Val Sta .033 635							
Bank Sta: Left 380	Right Les 635	ngths: Left 1206	Channel 1337	Right 1433	Coeff Cont				
CROSS SECTION OUT	'PUT Prof	ile #PF 2							
E.G. Elev (ft)	3	478.88 E1	ement		Left (OB Channel	Right OB		
Vel Head (ft)		0.12 Wt	. n-Val.		0033	0.033	0.033		
W.S. Elev (ft)	3-	47876 Re	ach Len.	(ft)	1206.00	1337.00	1433.00		
Crit W.S. (ft)	3-	478.27 Fl	ow Area	(sq ft)	19.94	32000	17.95		
E.G. Slope (ft/	ft) 0.0	003056 Ar	ea (sq ft	:)	19.94	32000	17.95		
Q Total (cfs)	!	976.00 F1	ow (cfs)		25.93	926.74	23.34		
Top Width (ft)	:	355.40 To	p Width	(ft)	52.84	25500	47.56		

Vel Total (ft/s)	2.73	Avg. Vel. (ft/s)	1.30	2,90	130
Max Chl Dpth (ft)	175	Hydr. Depth (ft)	038	125	0,38
Conv. Total (cfs)	176540	Conv. (cfs)	469.0	16762.9	422.1
Length Wtd. (ft)	1336.00	Wetted Per. (ft)	52.85	255.01	4756
Min Ch El (ft)	3477.00	Shear (lb/sq ft)	0.07	0.24	0 0 7
Alpha	1.08	Stream Power (lb/ft s)	009	0.69	009
Frctn Loss (ft)	7 45	Cum Volume (acre-ft)	22.71	137.88	4 08
C & E Loss (ft)	0.05	Cum SA (acres)	2433	121.69	6.69

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3479.45	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.19	Wt. n-Val.	0.033	0.033	0033
W.S. Elev (ft)	347926	Reach Len. (ft)	1206.00	133700	1433.00
Crit W.S. (ft)	3478.68	Flow Area (sq ft)	55.,37	448,24	4984
E.G. Slope (ft/ft)	0.003167	Area (sq ft)	5537	448.24	49,84
Q Total (cfs)	1850.00	Flow (cfs)	102.99	165432	92.69
Top Width (ft)	422 29	Top Width (ft)	88.05	255.00	7924
Vel Total (ft/s)	3 , 34	Avg. Vel. (ft/s)	186	3.69	1.86
Max Chl Dpth (ft)	2.26	Hydr. Depth (ft)	0 " 63	1.,76	0.63
Conv. Total (cfs)	32873.9	Conv. (cfs)	18301	29396.7	1647.1
Length Wtd. (ft)	133481	Wetted Per. (ft)	8806	255.01	79 25
Min Ch El (ft)	347700	Shear (lb/sq ft)	0.12	035	0.12
Alpha	1,12	Stream Power (lb/ft s)	0.23	1.28	023
Frctn Loss (ft)	714	Cum Volume (acre-ft)	5474	234.96	14.97
C & E Loss (ft)	0.06	Cum SA (acres)	51.06	13720	20.21

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the n eed for

Page 3

additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons..

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr

oss

section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: Ditch A REACH: 5 RS: 11337

INPUT

INFO.	L									
Desci	riptio	on: Sta.	11337							
Stat:	ion E.	levation	1 Data	num=	8					
	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
	100	3477	315	3474	392	3472	435	3470	499	3469
	550	3470	591	3472	694	3474				
Mann	ing's	n Value	es .	num=	3					
	Sta	n Val	Sta	n Val	Sta	n Val				
	100	.033	435	.033	550	. 033				
				,	T C: 0	., ,	70 July 10	055	a +	D
Bank	Sta:		Right	Lengths:			Right	Coeii	Contr.	Expan.
		435	550		545	400	332		"Т	3

CROSS SECTION OUTPUT	Profile #PF	
----------------------	-------------	--

E.G. Elev (ft)	3471.39	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.58	Wt. n-Val.	0.033	0033	0.033
W.S. Elev (ft)	3470.81	Reach Len. (ft)	54500	400.00	332.00
Crit W.S. (ft)	3470.81	Flow Area (sq ft)	7.10	150.94	677
E.G. Slope (ft/ft)	0.013220	Area (sq ft)	7.10	150.94	6.77
Q Total (cfs)	97600	Flow (cfs)	20.14	936.66	19.20
Top Width (ft)	149.13	Top Width (ft)	17.47	11500	16.66
Vel Total (ft/s)	5.92	Avg. Vel. (ft/s)	2.84	621	2.84
Max Chl Dpth (ft)	181	Hydr. Depth (ft)	0.41	1.31	0.41
Conv. Total (cfs)	84886	Conv. (cfs)	175.2	8146.4	167.0
Length Wtd. (ft)	400.78	Wetted Per. (ft)	17.49	115 . 02	16.68
Min Ch El (ft)	346900	Shear (lb/sq ft)	033	1.08	0.33
Alpha	1.06	Stream Power (lb/ft s)	095	6.72	0.95
Frctn Loss (ft)	4.64	Cum Volume (acre-ft)	22.34	130.65	3., 67
C & E Loss (ft)	0.05	Cum SA (acres)	23.35	116.01	564

Warning: The energy equation could not be balanced within the specified number of iterations.

The program selected the water surface that had the least amount of error between computed

Page 4

and assumed values.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr

section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to

critical depth, the calculated water surface came back below critical depth. This i

ndicates

that there is not a valid subcritical answer. The program defaulted to critical dep

CROSS SECTION	OUTPUT	Profile	#PF	3
---------------	--------	---------	-----	---

E.G. Elev (ft)	347226	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.79	Wt. n-Val.	0.033	0.033	0.033
W.S. Elev (ft)	3471.47	Reach Len. (ft)	545.00	40000	332.00
Crit W.S. (ft)	3471.46	Flow Area (sq ft)	23.31	226.83	2222
E.G. Slope (ft/ft)	0.010885	Area (sq ft)	23.31	226.83	2222
Q Total (cfs)	1850.00	Flow (cfs)	8920	1675.75	85,05
Top Width (ft)	176.84	Top Width (ft)	31,66	115.00	30.18
Vel Total (ft/s)	6.79	Avg. Vel. (ft/s)	3.83	7,39	3.83
Max Chl Dpth (ft)	2 ., 47	Hydr. Depth (ft)	0.,74	1.97	0.74
Conv. Total (cfs)	17732.1	Conv. (cfs)	8550	160619	815.2
Length Wtd. (ft)	401.47	Wetted Per. (ft)	31.69	115.02	30.22
Min Ch El (ft)	3469.00	Shear (lb/sq ft)	0.50	1.34	0.50
Alpha	1.10	Stream Power (lb/ft s)	191	9.,90	1.91
Frctn Loss (ft)	4.79	Cum Volume (acre-ft)	53.65	224 60	13.78
C & E Loss (ft)	0.02	Cum SA (acres)	49.40	131.52	18.41

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION REACH: 5

RIVER: Ditch A RS: 10937

INPUT

Description: Sta. 10937

Station	Elevation	рата	num=	9					
Sta	a Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
100	3470	351	3468	428	3467	465	3466	536	3464
543	3464	609	3466	683	3468	811	3472		

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
100 .033 428 .033 609 ..033

Bank Sta: Left Right 428 609		FloodPlain.rep eft Channel Right 729 649 445	Coeff Contr.	Expan.	
CROSS SECTION OUTPUT	Profile #PF	2			
E.G. Elev (ft)	3466.66	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.42	Wt., n-Val.		0033	0.033
W.S. Elev (ft)	3466.24	Reach Len. (ft)	729.00	649.00	445.00
Crit W.S. (ft)	3466.08	Flow Area (sq ft)		18715	110
E.G. Slope (ft/ft)	0.010235	Area (sq ft)		187.15	110
Q Total (cfs)	97600	Flow (cfs)		974.77	1.23
Top Width (ft)	162.01	Top Width (ft)		153.01	9.01
Vel Total (ft/s)	518	Avg. Vel. (ft/s)		5.21	112
Max Chl Dpth (ft)	2.24	Hydr. Depth (ft)		122	0.12
Conv. Total (cfs)	9647.4	Conv. (cfs)		96352	121
Length Wtd. (ft)	64887	Wetted Per. (ft)		153.07	9.01
Min Ch El (ft)	346400	Shear (lb/sq ft)		0.,78	008
Alpha	1.01	Stream Power (lb/ft s)	4.07	0.09
Frctn Loss (ft)	9.12	Cum Volume (acre-ft)	22.29	129.10	3.64
C & E Loss (ft)	0.04	Cum SA (acres)	2325	114.78	5.54

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross

section. This may indicate the need for additional cross sections.

Profile #PF 3

6.76

CROSS SECTION OUTPUT

Vel Total (ft/s)

E.G. Elev (ft) 3467.45 Element Left OB Channel Right OB Vel Head (ft) 0..73 Wt. n-Val. 0.033 0.033 W.S. Elev (ft) 3466.72 Reach Len. (ft) 729.00 649.00 445..00 Crit W.S. (ft) 3466,72 Flow Area (sq ft) 264.14 9.57 264.14 9,57 E.G. Slope (ft/ft) 0.013153 Area (sq ft) 1825.01 1850..00 Flow (cfs) 24.99 Q Total (cfs) 197..22 Top Width (ft) 170.61 26.61 Top Width (ft)

Page 6

Avg. Vel. (ft/s)

6.91

2.61

2.72	FloodPlain.rep Hydr. Depth (ft)		1.55	0.36
16130.8	Conv. (cfs)		15913.0	2179
647.62	Wetted Per. (ft)		170.68	26.62
3464.00	Shear (lb/sq ft)		1.27	0.30
1.03	Stream Power (lb/ft s)		8.78	0.77
9.21	Cum Volume (acre-ft)	53.50	222.35	1366
0.11	Cum SA (acres)	49.20	130.21	18.19
	16130.8 647.62 3464.00 1.03 9.21	2.72 Hydr. Depth (ft) 16130.8 Conv. (cfs) 647.62 Wetted Per. (ft) 3464.00 Shear (lb/sq ft) 1.03 Stream Power (lb/ft s) 9.21 Cum Volume (acre-ft)	2.72 Hydr. Depth (ft) 16130.8 Conv. (cfs) 647.62 Wetted Per. (ft) 3464.00 Shear (lb/sq ft) 1.03 Stream Power (lb/ft s) 9.21 Cum Volume (acre-ft) 53.50	2.72 Hydr. Depth (ft) 1.55 16130.8 Conv. (cfs) 15913.0 647.62 Wetted Per. (ft) 170.68 3464.00 Shear (lb/sq ft) 1.27 1.03 Stream Power (lb/ft s) 8.78 9.21 Cum Volume (acre-ft) 53.50 222.35

Warning: The energy equation could not be balanced within the specified number of iterations. The

program selected the water surface that had the least amount of error between computed

and assumed values.

Warning: The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross

section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to

critical depth, the calculated water surface came back below critical depth. This i

that there is not a valid subcritical answer. The program defaulted to critical dep

CROSS SECTION RIVER: Ditch A REACH: 5 RS: 10288

INPUT

1141.01								
Description:	Sta. 10288							
Station Eleva	ation Data	num=	12					
Sta H	Elev Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
100	3464 177	3462	238	3460	298	3458	493	3456
519	3456 662	3457	778	34571	857	3458	903	3460
947	3462 989	3464						
			_					
Manning's n \	/alues	num≔	3					

Manning's	n Values		num≔	3	
Sta	n Val	Sta	n Val	Sta	n Val
100	.033	298	033	857	.033

Bank Sta: I	Left	Right	Lengths:	Left	Channel	Right	Coeff	Contr.	Expan,
					598			.1	

CROSS SECTION OUTPUT Profile #PF 2

E.G. Elev (ft)	3457.51	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.29	Wt. n-Val.		0.033	
W.S. Elev (ft)	3457.,22	Reach Len. (ft)	552.00	598.00	63300
Crit W.S. (ft)	345722	Flow Area (sq ft)		226.46	
E.G. Slope (ft/ft)	0020477	Area (sq ft)		226.46	
Q Total (cfs)	976.00	Flow (cfs)		976.00	

Page 7

		FloodPlain.rep			
Top Width (ft)	413.97	Top Width (ft)		413.97	
Vel Total (ft/s)	431	Avg. Vel. (ft/s)		4.31	
Max Chl Dpth (ft)	1.22	Hydr. Depth (ft)		055	
Conv. Total (cfs)	68204	Conv. (cfs)		68204	
Length Wtd. (ft)	598.00	Wetted Per. (ft)		41398	
Min Ch El (ft)	3456.00	Shear (lb/sq ft)		0.70	
Alpha	100	Stream Power (lb/ft s)		3.01	
Frctn Loss (ft)	4.,93	Cum Volume (acre-ft)	22.29	126.01	3.64
C & E Loss (ft)	0.04	Cum SA (acres)	23.25	110.56	5.49

Warning: The energy equation could not be balanced within the specified number of iterations. The

program used critical depth for the water surface and continued on with the calculat

ions.

th.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr

section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to

critical depth, the calculated water surface came back below critical depth. This i
ndicates

that there is not a valid subcritical answer. The program defaulted to critical dep

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3457.93	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.36	Wt. n-Val.		0.033	
W.S. Elev (ft)	345757	Reach Len. (ft)	552.00	59800	633.00
Crit W.S. (ft)	345753	Flow Area (sq ft)		383,.80	
E.G. Slope (ft/ft)	0.015410	Area (sq ft)		383.80	
Q Total (cfs)	185000	Flow (cfs)		1850.00	
Top Width (ft)	47925	Top Width (ft)		479.25	
Vel Total (ft/s)	482	Avg. Vel. (ft/s)		4.82	
Max Chl Dpth (ft)	1,57	Hydr. Depth (ft)		0.80	
Conv. Total (cfs)	14902.9	Conv. (cfs)		14902.9	
Length Wtd. (ft)	59795	Wetted Per. (ft)		479.26	
Min Ch El (ft)	3456,00	Shear (lb/sq ft)		077	

Page 8

Alpha		100	<pre>FloodPlain rep Stream Power (lb/ft s)</pre>		3.71		
Frctn	Loss (ft)	5.20	Cum Volume (acre-ft)	53.50	217.52	13.61	
C & E	Loss (ft)	0.01	Cum SA (acres)	49.20	125.36	18.06	
Warning:	Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti						
ons.							
Warning: oss	The energy loss was	greater	than 1.0 ft (0.3 m) betwee	n the curr	ent and prev	ious cr	
	section This man i	ndicate	the need for additional cro	ee eaction	•		

0 W. section. This may indicate the need for additional cross sections. CROSS SECTION RIVER: Ditch A REACH: 5 RS: 9690 INPUT Description: Sta. 9690 Station Elevation Data num= 8 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 3450 3454.5 3454 3452 632 3450 638 100 202 381 799 3452 897 3454 3458 1010 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val . 033 100 .. 033 381 799 .. 033 Coeff Contr. Bank Sta: Left Right Lengths: Left Channel Right Expan. .. 3 381 799 639 681 658 ., 1 CROSS SECTION OUTPUT Profile #PF 2 E.G. Elev (ft) 3452.09 Element Left OB Channel Right OB Wt. n-Val. 0.033 Vel Head (ft) 0.15 W.S. Elev (ft) 3451.93 Reach Len. (ft) 639,00 681..00 658.00 Crit W.S. (ft) 3451..51 . Flow Area (sq ft) 396.40 E.G. Slope (ft/ft) Area (sq ft) 396.40 0.004969 Q Total (cfs) 1242..00 Flow (cfs) 1242.00 Top Width (ft) 404.17 Top Width (ft) 404.17 Vel Total (ft/s) 3.13 Avg. Vel. (ft/s) 3,13 0.98 Hydr. Depth (ft) Max Chl Dpth (ft) 1.93 17619.0 Conv. Total (cfs) 17619..0 Conv. (cfs) Wetted Per. (ft) Length Wtd. (ft) 681.00 404..19 Min Ch El (ft) 3450..00 Shear (lb/sq ft) 0.30 1.00 Stream Power (lb/ft s) 0.95 Alpha Frctn Loss (ft) 4..88 Cum Volume (acre-ft) 22.29 121.74 3.64 0.01 Cum SA (acres) 23..25 104..94 5.49 C & E Loss (ft)

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr oss section. This may indicate the need for additional cross sections.

	0 D 0 D T 0 3 T	ATTEM #357703	B #13-	# DE	2
CROSS	SECTION	OUTPUT	Profile	#PE	3

E.G. Elev (ft)	3452.72	Element	Left OB	Channel	Right OB
Vel Head (ft)	032	Wt. n-Val.	0.033	0 033	0033
W.S. Elev (ft)	3452.40	Reach Len. (ft)	63900	68100	65800
Crit W.S. (ft)	345206	Flow Area (sq ft)	722	591.87	3.95
E.G. Slope (ft/ft)	0006338	Area (sq ft)	7.22	591.87	3.95
Q Total (cfs)	2689.,00	Flow (cfs)	8.87	2675.27	4.86
Top Width (ft)	473 62	Top Width (ft)	35.94	418.00	19.68
Vel Total (ft/s)	4 , 46	Avg. Vel. (ft/s)	1.23	4 52	123
Max Chl Dpth (ft)	2.40	Hydr, Depth (ft)	020	1 42	0.20
Conv. Total (cfs)	337770	Conv. (cfs)	111.4	33604.5	61.0
Length Wtd. (ft)	680.91	Wetted Per. (ft)	3595	418.02	1968
Min Ch El (ft)	345000	Shear (lb/sq ft)	0.08	0.56	0 08
Alpha	102	Stream Power (lb/ft s)	0.10	253	0.10
Frctn Loss (ft)	4.76	Cum Volume (acre-ft)	53.46	210.83	13.59
C & E Loss (ft)	0 . 00	Cum SA (acres)	48.97	119.21	17.91

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: Ditch A REACH: 5 RS: 9009

INPUT

Description: Sta. 9009

Station Elevation Data 9 num= Elev Sta Elev Sta Elev Sta Elev Şta Sta Elev 492 3446 596 3445 3450 325 3448 100 3452 203 892 3448 1007 3450 1124 3452 3446 637

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
100 .033 325 .033 892 .033

Bank Sta: Left Right 325 892		FloodPlain.rep eft Channel Right 898 879 794	Coeff Contr.	Expan.	
CROSS SECTION OUTPUT	Profile #PF	2			
E.G. Elev (ft)	3447.19	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.29	Wt. n-Val.		0033	
W.S. Elev (ft)	3446.90	Reach Len. (ft)	89800	879.00	794.00
Crit W.S. (ft)	3446.75	Flow Area (sq ft)		288.10	
E.G. Slope (ft/ft)	0.011195	Area (sq ft)		288.10	
Q Total (cfs)	124200	Flow (cfs)		1242.00	
Top Width (ft)	334 67	Top Width (ft)		33467	
Vel Total (ft/s)	4 31	Avg. Vel. (ft/s)		431	
Max Chl Dpth (ft)	1.90	Hydr. Depth (ft)		0.86	
Conv. Total (cfs)	11738.3	Conv. (cfs)		11738.3	
Length Wtd. (ft)	879.00	Wetted Per. (ft)		33470	
Min Ch El (ft)	3445.00	Shear (lb/sq ft)		060	
Alpha	1.00	Stream Power (lb/ft s)	259	
Fretn Loss (ft)	499	Cum Volume (acre-ft)	22.29	116.39	3.64
C & E Loss (ft)	0.05	Cum SA (acres)	23.25	99.17	5.49

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr

oss section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #PF 3

E.	.G. Elev (ft)	3447.96	Element	Left OB	Channel	Right OB
Ve	el Head (ft)	0.32	Wt, n-Val.		0.033	
W.	.S. Elev (ft)	344765	Reach Len. (ft)	898.00	87900	794.00
Cr	rit W.S. (ft)		Flow Area (sq ft)		596.64	
Ε.	.G. Slope (ft/ft)	0.007751	Area (sq ft)		596.64	
Q	Total (cfs)	2689.00	Flow (cfs)		268900	
To	op Width (ft)	492.15	Top Width (ft)		492.15	
Ve	el Total (ft/s)	4 51	Avg. Vel. (ft/s)		4.51	

Page 11

Max Chl Dpth (ft)	2 , 65	FloodPlain.rep Hydr. Depth (ft)		121	
Conv. Total (cfs)	305434	Conv. (cfs)		30543.4	
Length Wtd. (ft)	878.86	Wetted Per. (ft)		492.18	
Min Ch El (ft)	3445.00	Shear (lb/sq ft)		0.59	
Alpha	1.00	Stream Power (lb/ft s)		264	
Frctn Loss (ft)	519	Cum Volume (acre-ft)	53.40	201.54	13.56
C & E Loss (ft)	0.02	Cum SA (acres)	48.71	112.09	1777
C & E Loss (ft)	002	Cum SA (acres)	48.71	112.09	1777

Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION	RIVER:	Ditch A
REACH: 5	RS:	8130

REACH:)		V2: 0T20						
INPUT		0120							
_	tion: Sta			_					
Station	Elevation	on Data	num=	8					
St	a Elev	r Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
10	3448	303	3444	419	3442	654	3440	663	3440
85	3442	995	3444	1104	3446				
Manning	's n Valu	ies	num=	3					
St	a n Val	Sta	n Val	Sta	n Val				
10		419	., 033	852	.033				
Bank St	a: Left 419	Right 852	Lengths:	Left Cl	nannel 413	Right 456	Coeff	Contr.	Expan.
	419	0,02		377	413	230		11 -4-	3

CROSS SECTION OUTPUT	Profile #PF 2	2			
E.G. Elev (ft)	3442.15	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.12	Wt, n-Val.	0.033	0.,033	0033
W.S. Elev (ft)	344203	Reach Len. (ft)	39900	413.00	456.00
Crit W.S. (ft)	3441.49	Flow Area (sq ft)	0.03	45574	0.04
E.G. Slope (ft/ft)	0.003422	Area (sq ft)	003	455.74	0.04
Q Total (cfs)	1242,00	Flow (cfs)	000	1241.99	0.01
Top Width (ft)	437.11	Top Width (ft)	1.84	43300	227
Vel Total (ft/s)	272	Avg. Vel. (ft/s)	0.17	2.73	0.17
Max Chl Dpth (ft)	2.03	Hydr. Depth (ft)	002	1.05	0.02
Conv. Total (cfs)	21233.1	Conv. (cfs)	0.1	21232., 9	0.1
Length Wtd. (ft)	41300	Wetted Per, (ft)	1.84	43302	227
Min Ch El (ft)	344000	Shear (lb/sq ft)	000	0.22	0.00

Page 12

Alpha	1.00	FloodPlain rep Stream Power (lb/ft s)	000	061	000
Frctn Loss (ft)	2.74	Cum Volume (acre-ft)	22.29	108.88	3 , 63
C & E Loss (ft)	0.03	Cum SA (acres)	23 . 23	91.42	5 4 7

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons.

Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cr oss section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3442.75	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.25	Wt. n-Val.	0033	0.033	0.033
W.S. Elev (ft)	3442.50	Reach Len. (ft)	399.00	413.00	456,00
Crit W.S. (ft)	3442.03	Flow Area (sq ft)	7.21	657.,97	8.89
E.G. Slope (ft/ft)	0.004647	Area (sq ft)	721	657.97	889
Q Total (cfs)	2689.00	Flow (cfs)	877	2669.41	10.82
Top Width (ft)	497.59	Top Width (ft)	2893	43300	3566
Vel Total (ft/s)	3.99	Avg. Vel. (ft/s)	122	406	1.22
Max Chl Dpth (ft)	2.50	Hydr. Depth (ft)	0.25	1,52	0 . 25
Conv. Total (cfs)	39445.5	Conv. (cfs)	128.7	39158.1	1587
Length Wtd. (ft)	413.06	Wetted Per. (ft)	28.93	433.02	35.67
Min Ch El (ft)	3440.00	Shear (lb/sq ft)	007	044	0.07
Alpha	1.03	Stream Power (lb/ft s)	009	1.79	009
Frctn Loss (ft)	2,64	Cum Volume (acre-ft)	53.33	188.88	13.47
C & E Loss (ft)	0.01	Cum SA (acres)	48.41	102.76	17.44

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross

section. This may indicate the need for additional cross sections.

CROSS SECTION REACH: 5

RIVER: Ditch A RS: 7717

INPUT

Description: Sta 7717

Station Elevation Data num= 8

Page 13

		FloodPlai	-	71	0+-	E3 oza	
	ta Elev 33 3440	Sta Elev 383 3438			Sta 510	Elev 3438	
657 3439 7	47 3440	879 3442					
Manning's n Values	num=	3					
	ta n Val 33 -033	Sta n Val 747 .033					
Bank Sta: Left Right	Lengths:	Left Channel	Right	Coeff C	ontr.	Expan.	
233 747	_	444 464			.1	" 3	
CROSS SECTION OUTPUT	Profile #PF	2					
	2420 20	77.3		T 0.6	+ OD	Channel	Di∝h← OD
E.G. Elev (ft)	3439.38			тет	t OB		Right OB
Vel Head (ft)	0.37	Wt. n-Val.				0033	
W.S. Elev (ft)	3439.01	Reach Len.	(ft)	444	00	464.00	510.00
Crit W.S. (ft)	343901	Flow Area	(sq ft)			254.54	
E.G. Slope (ft/ft)	0.018011	Area (sq ft	=)			25454	
Q Total (cfs)	124200	Flow (cfs)				124200	
Top Width (ft)	350.81	Top Width	(ft)			350.81	
Vel Total (ft/s)	488	Avg. Vel.	(ft/s)			488	
Max Chl Dpth (ft)	1.21	Hydr. Depth	ı (ft)			0.73	
Conv. Total (cfs)	92545	Conv. (cfs)	•			92545	
Length Wtd. (ft)	464.16	Wetted Per	(ft)			350.82	:
Min Ch El (ft)	343780	Shear (1b/s	sq ft)			082	
Alpha	100	Stream Powe	er (lb/ft	s)		3 , 98	
Frctn Loss (ft)	1.77	Cum Volume	(acre-ft) 22	.29	105.52	3 , 63
C & E Loss (ft)	0.09	Cum SA (acı	ces)	23	22	87.70	5.46

Warning: The energy equation could not be balanced within the specified number of iterations. The

program used critical depth for the water surface and continued on with the calculat

ions.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons. Warning: The energy loss was greater than $1.0\ {\rm ft}\ (0.3\ {\rm m})$. between the current and previous cross

section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to

critical depth, the calculated water surface came back below critical depth. This i

that there is not a valid subcritical answer. The program defaulted to critical dep

CROSS SECTION OUTPUT Profile #PF 3

Page 14

E.G. Elev (ft)	3440.11	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.36	Wt. n-Val.		0.,033	
W.S. Elev (ft)	343974	Reach Len. (ft)	444.00	464.00	510.00
Crit W.S. (ft)		Flow Area (sq ft)		555.05	
E.G. Slope (ft/ft)	0.009311	Area (sq ft)		555.05	
Q Total (cfs)	268900	Flow (cfs)		2689.00	
Top Width (ft)	47142	Top Width (ft)		47142	
Vel Total (ft/s)	484	Avg. Vel. (ft/s)		4.84	
Max Chl Dpth (ft)	194	Hydr. Depth (ft)		1.18	
Conv. Total (cfs)	27866.5	Conv. (cfs)		27866.5	
Length Wtd. (ft)	464.62	Wetted Per. (ft)		47144	
Min Ch El (ft)	343780	Shear (lb/sq ft)		068	
Alpha	100	Stream Power (lb/ft s)		3.32	
Frctn Loss (ft)	1.95	Cum Volume (acre-ft)	53.30	183,13	13.43
C & E Loss (ft)	002	Cum SA (acres)	48.28	9847	17.25

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: Ditch A REACH: 5 RS: 7253

INPUT

Description: Sta. 7253

Station E	Elevation	Data	num≕	9					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
100	3438	109	3438.7	321	3438	424	3436	668	3435
906	3436	1005	3438	1200	3440	1365	3442		

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
100 .033 424 .033 906 .033

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 424 906 756 910 980 .1 .3

CROSS SECTION OUTPUT Profile #PF 2

E.G. Elev (ft) 3436.89 Element Left OB Channel Right OB

Vel Head (ft) 0.08 Wt. n-Val. 0.033 0.033 0.033

W.S. Elev (ft)	3436.81	Reach Len. (ft)	75600	91000	98000
Crit W.S. (ft)	3436.16	Flow Area (sq ft)	16.92	631.68	16.26
E.G. Slope (ft/ft)	0.001808	Area (sq ft)	1692	631.68	16.26
Q Total (cfs)	148300	Flow (cfs)	17.73	1448.22	17.05
Top Width (ft)	563.87	Top Width (ft)	41.74	48200	4012
Vel Total (ft/s)	2 23	Avg. Vel. (ft/s)	1.05	2.29	105
Max Chl Dpth (ft)	1.81	Hydr. Depth (ft)	0.41	1.31	0.41
Conv. Total (cfs)	348808	Conv. (cfs)	417.1	34062.8	400.9
Length Wtd. (ft)	909.65	Wetted Per. (ft)	4175	482.00	40.13
Min Ch El (ft)	3435.00	Shear (lb/sq ft)	005	0.15	005
Alpha	104	Stream Power (lb/ft s)	0.05	034	0 05
Frctn Loss (ft)	528	Cum Volume (acre-ft)	22.21	100.80	3 , 54
C & E Loss (ft)	004	Cum SA (acres)	23.01	83.27	5.22

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Profile #PF 3

CROSS SECTION OUTPUT

51.000 2201au. 001111	,				
E.G. Elev (ft)	343813	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.29	Wt. n-Val.	0033	0.033	0.033
W.S. Elev (ft)	3437.84	Reach Len. (ft)	75600	910.00	98000
Crit W.S. (ft)	3437.06	Flow Area (sq ft)	8730	1128.51	83 , 91
E.G. Slope (ft/ft)	0.003105	Area (sq ft)	87.30	1128,51	83.91
Q Total (cfs)	539900	Flow (cfs)	207.28	499250	199.22
Top Width (ft)	66797	Top Width (ft)	9483	482.00	91.14
Vel Total (ft/s)	4 15	Avg. Vel. (ft/s)	237	4.42	237
Max Chl Dpth (ft)	284	Hydr. Depth (ft)	0.92	234	0.92
Conv. Total (cfs)	96891.5	Conv. (cfs)	3719.8	895963	35753
Length Wtd. (ft)	909.03	Wetted Per. (ft)	9485	48200	91.16
Min Ch El (ft)	343500	Shear (lb/sq ft)	0,18	0.45	018
Alpha	1.07	Stream Power (lb/ft s)	0.42	2.01	0.42
		Page 16			

Frctn Loss (ft)	5 , 45	Cum Volume (acre-ft)	52 . 85	174.16	12.94
C & E Loss (ft)	0.04	Cum SA (acres)	47,79	93.39	16.72

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION R	IVER: Ditch RS: 6343	A			
INPUT Description: Sta 6343 Station Elevation Data Sta Elev Sta 100 3434 346 981 3430 1273	Elev 3433	663 3432 732	Elev Sta 3431 860 3432	Elev 3430.2	
Manning's n Values Sta n Val Sta 100 .033 663		3 Sta n Val 1320033			
Bank Sta: Left Right 663 1320		eft Channel Right 767 980 1051	Coeff Contr.	Expan3	
CROSS SECTION OUTPUT	Profile #PF	2			
E.G. Elev (ft)	3431.57	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.46	Wt, n-Val.		0.033	
W.S. Elev (ft)	3431.11	Reach Len. (ft)	76700	980.00	1051.00
Crit W.S. (ft)	3431.11	Flow Area (sq ft)		531.26	
E.G. Slope (ft/ft)	0.016513	Area (sq ft)		53126	
Q Total (cfs)	2888.00	Flow (cfs)		288800	
Top Width (ft)	583.36	Top Width (ft)		583.36	
Vel Total (ft/s)	5.44	Avg. Vel. (ft/s)		5 . 44	
Max Chl Dpth (ft)	1.11	Hydr. Depth (ft)		0.91	
Conv. Total (cfs)	22474.4	Conv. (cfs)		22474.4	
Length Wtd. (ft)	97958	Wetted Per. (ft)		583.38	
Min Ch El (ft)	343000	Shear (1b/sq ft)		0.94	
Alpha	100	Stream Power (lb/ft s)		5.10	

Page 17

Cum SA (acres)

Cum Volume (acre-ft)

4.10

0..11

Frctn Loss (ft)

C & E Loss (ft)

22.06

22..64

88..65

72.14

3..36

4..77

Warning: The energy equation could not be balanced within the specified number of iterations. The

program used critical depth for the water surface and continued on with the calculat

ions.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than $1.0\ {
m ft}\ (0.3\ {
m m})$, between the current and previous cross

section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates

that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3432.64	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.70	Wt. n-Val.		0.033	0033
W.S. Elev (ft)	3431.94	Reach Len. (ft)	767.00	980.00	1051.00
Crit W.S. (ft)	3431,94	Flow Area (sq ft)		1044.47	46.77
E.G. Slope (ft/ft)	0.012039	Area (sq ft)		1044.47	46.77
Q Total (cfs)	7144.00	Flow (cfs)		7060.30	8370
Top Width (ft)	867.12	Top Width (ft)		65259	214.53
Vel Total (ft/s)	655	Avg. Vel. (ft/s)		6.76	179
Max Chl Dpth (ft)	1.94	Hydr. Depth (ft)		1.60	0.22
Conv. Total (cfs)	651110	Conv. (cfs)		64348.1	7629
Length Wtd. (ft)	979 22	Wetted Per. (ft)		652.62	214.53
Min Ch El (ft)	343000	Shear (lb/sq ft)		1.20	0.16
Alpha	1.05	Stream Power (lb/ft s)		8,13	0.29
Frctn Loss (ft)	4.09	Cum Volume (acre-ft)	52.09	151.46	11.47
C & E Loss (ft)	0.15	Cum SA (acres)	46.97	81.54	13.28

Warning: The energy equation could not be balanced within the specified number of iterations.

The

program selected the water surface that had the least amount of error between computed

and assumed values.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the n eed for

additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less

Page 18

than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This i ndicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION REACH: 5	RIVER: RS:	Ditch 5363	A
INPUT			

Description:	Sta.	5363							
Station Elev	ation	Data	num=	10					
Sta	Elev	Sta	Elev	Sta	${ t Elev}$	Sta	Elev	Sta	Elev
100	3432	282	3430	550	3428	742	3426	885	3425
1097	3425	1476	3426	1877	3428	1966	3428	2160	3430
Manning's n	Values	;	num=	3					
Sta n	. Val	Sta	n Val	Sta	n Val				
100	033	742	. 033	1476	.033				

Bank Sta: Left	Right	Lengths:	Left	Channel	Right	Coeff Contr.	Expan.
	1476			1142		1	., 3

~~ ~ ~ ~	0T 0T T 017	OTTO DETER	D 4:1 -	ADE O
CROSS	SECTION	OUTPUT	Profile	# 2 2

E.G. Elev (ft)	342694	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.10	Wt. n-Val.	0033	0.033	0.033
W.S. Elev (ft)	3426.84	Reach Len. (ft)	1199.00	1142.00	71300
Crit W.S. (ft)	3426,14	Flow Area (sq ft)	34.19	1092.49	71.41
E.G. Slope (ft/ft)	0.001869	Area (sq ft)	34.19	1092.49	71.41
Q Total (cfs)	288800	Flow (cfs)	37.45	277235	78,21
Top Width (ft)	984 . 24	Top Width (ft)	81.02	734.00	169,22
Vel Total (ft/s)	2.41	Avg. Vel. (ft/s)	1.10	2.54	110
Max Chl Dpth (ft)	184	Hydr. Depth (ft)	0.42	149	0.42
Conv. Total (cfs)	668029	Conv. (cfs)	866.1	64127.7	1809.0
Length Wtd. (ft)	1137.41	Wetted Per. (ft)	81.03	734.00	169.22
Min Ch El (ft)	342500	Shear (lb/sq ft)	0.05	0.17	005
Alpha	1.07	Stream Power (lb/ft s)	0.05	0 ., 44	005
Frctn Loss (ft)	497	Cum Volume (acre-ft)	21.,76	7038	2,50
C & E Loss (ft)	003	Cum SA (acres)	2193	57.32	2.73

Page 19

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons.

Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cr

oss

section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT	Profile #PF 3	3			
E.G. Elev (ft)	3427.91	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.19	Wt. n-Val.	0.033	0.033	0.033
W.S. Elev (ft)	342772	Reach Len. (ft)	1199.00	114200	713.00
Crit W.S. (ft)	3426.80	Flow Area (sq ft)	141.35	1732.59	29522
E.G. Slope (ft/ft)	0.002096	Area (sq ft)	141.35	1732.59	295.22
Q Total (cfs)	7144.00	Flow (cfs)	26309	6331.42	549,49
Top Width (ft)	1242.81	Top Width (ft)	16474	73400	34407
Vel Total (ft/s)	3.29	Avg. Vel. (ft/s)	1.86	3 . 65	1.86
Max Chl Dpth (ft)	2.72	Hydr. Depth (ft)	0.86	2.36	0.86
Conv. Total (cfs)	1560566	Conv. (cfs)	57470	138306.4	12003,2
Length Wtd. (ft)	1129.22	Wetted Per. (ft)	16475	73400	344.08
Min Ch El (ft)	3425.00	Shear (lb/sq ft)	0.11	0 . 31	0.11
Alpha	1.13	Stream Power (lb/ft s)	0.21	1.13	0.21
Frctn Loss (ft)	5.04	Cum Volume (acre-ft)	50.85	120.22	7.34
C & E Loss (ft)	0.04	Cum SA (acres)	45.,52	6594	6.54

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr oss

section. This may indicate the need for additional cross sections.

RIVER: Ditch A CROSS SECTION RS: 4221 REACH: 5

INPUT

Description: Sta. 4221

12 Station Elevation Data num≃ Şta Elev Elev Sta Elev Sta Elev Sta Sta Elev 3420 100 3423 341 3422 544 3421 640 3420 669 1030 3421 1320 3422 3420 3420.2 829 3420 837 753 1407 3423 1497 3424

Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val .. 033 544 .033 1407 .. 033 100

,	Bank Sta: Left Right 544 1407		FloodPlain.rep eft Channel Right 749 732 843	Coeff Contr.	Expan.	
	CROSS SECTION OUTPUT	Profile #PF 2	2			
	E.G. Elev (ft)	342194	Element	Left OB	Channel	Right OB
	Vel Head (ft)	0 44	Wt. n-Val.	0033	0033	
	W.S. Elev (ft)	3421.49	Reach Len. (ft)	74900	732 , 00	843.00
	Crit W.S. (ft)	342149	Flow Area (sq ft)	24.56	59968	
	E.G. Slope (ft/ft)	0.015261	Area (sq ft)	24.,56	59968	
	Q Total (cfs)	328600	Flow (cfs)	5364	3232.36	
	Top Width (ft)	728.53	Top Width (ft)	99.86	628.66	
	Vel Total (ft/s)	5.26	Avg. Vel. (ft/s)	2.18	5.39	
	Max Chl Dpth (ft)	1.49	Hydr. Depth (ft)	0.25	0.95	
	Conv. Total (cfs)	26599.8	Conv. (cfs)	434.2	261.656	
	Length Wtd. (ft)	737.24	Wetted Per. (ft)	99.87	628.67	
	Min Ch El (ft)	342000	Shear (lb/sq ft)	0.23	0.91	
	Alpha	1.03	Stream Power (lb/ft s	0.51	4.90	
	Frctn Loss (ft)	3.55	Cum Volume (acre-ft)	20.95	48.20	191
	C & E Loss (ft)	010	Cum SA (acres)	19.44	39.46	135

Warning: The energy equation could not be balanced within the specified number of iterations. The

program used critical depth for the water surface and continued on with the calculat

ions. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons. Warning: The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cr

OSS

section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to

critical depth, the calculated water surface came back below critical depth. This i ndicates

that there is not a valid subcritical answer. The program defaulted to critical dep th.

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3422.82	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.63	Wt. n-Val.	0033	0033	
W.S. Elev (ft)	3422.20	Reach Len. (ft)	74900	732 00	843.00

Page 21

Crit W.S. (ft)	3422 20	FloodPlain rep Flow Area (sq ft)	14605	1110 . 69	
CITE W.S. (IE)	5422.20	rion area (oq re)	110.00	4110 " 03	
E.G. Slope (ft/ft)	0.013358	Area (sq ft)	146.05	1110.69	
Q Total (cfs)	776600	Flow (cfs)	53065	7235.35	
Top Width (ft)	1043.46	Top Width (ft)	250.36	79310	
Vel Total (ft/s)	6.18	Avg. Vel. (ft/s)	3.63	6.51	
Max Chl Dpth (ft)	2.20	Hydr. Depth (ft)	0.58	1.40	
Conv. Total (cfs)	67192.6	Conv. (cfs)	45913	626013	
Length Wtd. (ft)	737.87	Wetted Per. (ft)	25037	793.11	
Min Ch El (ft)	3420.00	Shear (lb/sq ft)	0.49	1.17	
Alpha	1.06	Stream Power (lb/ft s)	1.77	7., 61	
Frctn Loss (ft)	376	Cum Volume (acre-ft)	46.89	8295	4.92
C & E Loss (ft)	0 , 12	Cum SA (acres)	39.81	45.93	3.73

Warning: The energy equation could not be balanced within the specified number of iterations. The

program selected the water surface that had the least amount of error between comput

ed

and assumed values.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr

oss

section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to

critical depth, the calculated water surface came back below critical depth. This i ndicates

that there is not a valid subcritical answer. The program defaulted to critical dep th.

CROSS SECTION RIVER: Ditch A RS: 3489 REACH: 5

INPUT

Description: Sta. 3489 Station Elevation Data num= 22 Sta Elev Elev Sta Elev Sta Sta Elev Sta Elev -138 3418.5 -126 3418 -104 3416 -91 3415.5 -286 3420 258 299 100 3417 3416.5 3416 -76 3416 -21 3417 309 3415 318 3416 405 3416 422 3416 539 3416.4 3416.2 642 3416.4 744 3416 830 3416 918 3418 581 1159 1068 3420 3421 Manning's n Values num= 3 Sta n Val n Val Sta n Val Sta 539 .033 918 .033 -286 .. 033

Lengths: Left Channel Right Coeff Contr. Expan.. Bank Sta: Left Right 500 539 918 464 457 .. 1 , 3

Page 22

FloodPlain.rep

CROSS SECTION OUTPUT Profile #PF 2

Alpha

Frctn Loss (ft)

C & E Loss (ft)

E.G. Elev (ft)	3417.76	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.10	Wt. n-Val.	0033	0033	
W.S. Elev (ft)	341766	Reach Len. (ft)	464.00	500.00	457.00
Crit W.S. (ft)	341707	Flow Area (sq ft)	800.11	493.34	
E.G. Slope (ft/ft)	0.002329	Area (sq ft)	800.11	493.34	
Q Total (cfs)	328600	Flow (cfs)	1973.59	1312.41	
Top Width (ft)	1025.44	Top Width (ft)	66129	364.15	
Vel Total (ft/s)	2 54	Avg. Vel. (ft/s)	2.47	2.66	
Max Chl Dpth (ft)	2 66	Hydr. Depth (ft)	1.21	1.35	
Conv. Total (cfs)	68095.7	Conv. (cfs)	40898.7	271970	
Length Wtd. (ft)	481 91	Wetted Per. (ft)	66150	364.17	
Min Ch El (ft)	3416.00	Shear (lb/sq ft)	0.18	0.20	

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross

section. This may indicate the need for additional cross sections.

Cum SA (acres)

Stream Power (lb/ft s)

Cum Volume (acre-ft)

1..00

2..37

0.03

0.43

13.86

12.90

0.52

39.02

31,12

1.91

1.35

CROSS SECTION OUTPUT	Profile #PF 3	3			
E.G. Elev (ft)	3418.65	Element	Left OB	Channel	Right OB
Vel Head (ft)	021	Wt. n-Val.	0.033	0.033	0.033
W.S. Elev (ft)	3418 . 44	Reach Len. (ft)	464.00	500.00	457.00
Crit W.S. (ft)	3417.60	Flow Area (sq ft)	1318.41	78527	7.24
E.G. Slope (ft/ft)	0.002671	Area (sq ft)	1318.41	785.27	7 24
Q Total (cfs)	7766.00	Flow (cfs)	4790.13	2969.74	6.14
Top Width (ft)	1087.51	Top Width (ft)	67555	379.00	32.96
Vel Total (ft/s)	3., 68	Avg. Vel. (ft/s)	3.63	3.78	0.85
Max Chl Dpth (ft)	3.44	Hydr. Depth (ft)	1.95	2.07	0.,22
Conv. Total (cfs)	1502716	Conv. (cfs) Page 23	926887	57464.2	1187

Length Wtd. (ft)	480 92	Wetted Per. (ft)	67578	379.02	32 ., 96
Min Ch El (ft)	3416.00	Shear (lb/sq ft)	0.33	035	0.04
Alpha	1.01	Stream Power (lb/ft s)	118	1.31	003
Frctn Loss (ft)	2.33	Cum Volume (acre-ft)	34.30	6702	4.85
C & E Loss (ft)	0.04	Cum SA (acres)	31.85	36.08	3.41

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

0115 ..

Warning: The energy loss was greater than $1.0\ {\rm ft}\ (0.3\ {\rm m})$, between the current and previous cross

section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: Ditch A REACH: 5 RS: 2989

INPUT

Description: Sta. 29	189							
Station Elevation Da	ita	num=	14					
Sta Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-31 3416	59	3414.8	170	3414.8	196	3414	436	3413.8
613 3414	651	3414	700	3414	747	3414	761	3414
841 3415 01	920	3416	976	3418	1067	3420		
Manningle n Value			3					

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-31 .033 436 .033 841 .033

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan 436 841 317 215 172 .3 .5

CROSS SECTION OUTPUT Profile #PF 2

E.G. Elev (ft)	341536	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.41	Wt. n-Val.	0.033	0033	
W.S. Elev (ft)	341495	Reach Len. (ft)	31700	215 , 00	17200
Crit W.S. (ft)	3414.95	Flow Area (sq ft)	283.67	362.07	
E.G. Slope (ft/ft)	0.016461	Area (sq ft)	283.67	362.07	
Q Total (cfs)	3286.00	Flow (cfs)	1329.43	1956.57	
Top Width (ft)	788.45	Top Width (ft)	388 " 22	400.22	
Vel Total (ft/s)	5.09	Avg. Vel. (ft/s)	469	5.40	
Max Chl Dpth (ft)	1.15	Hydr. Depth (ft)	073	0.90	
Conv. Total (cfs)	25611.5	Conv. (cfs)	103617	15249.8	
Length Wtd. (ft)	255.96	Wetted Per (ft)	38824	400.23	
Min Ch El (ft)	3413.80	Shear (lb/sq ft)	0.75	093	
		Page 24			

Alpha	101	Stream Power (lb/ft s)	3,52	502	
Frctn Loss (ft)	0.46	Cum Volume (acre-ft)	8.09	34.11	191
C & E Loss (ft)	0.16	Cum SA (acres)	7.31	2673	135

Warning: The energy equation could not be balanced within the specified number of iterations. The

program selected the water surface that had the least amount of error between comput

and assumed values.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates

that there is not a valid subcritical answer. The program defaulted to critical dep

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3416.28	Element	Left OB	Channel	Right OB
Vel Head (ft)	061	Wt. n-Val.	0.033	0.033	0.033
W.S. Elev (ft)	3415.68	Reach Len. (ft)	317.00	21500	172.00
Crit W.S. (ft)	3415.59	Flow Area (sq ft)	585.43	656,09	17.70
E.G. Slope (ft/ft)	0.011352	Area (sq ft)	585.43	656.09	17.70
Q Total (cfs)	7766.00	Flow (cfs)	3383., 66	434155	4079
Top Width (ft)	900.85	Top Width (ft)	44270	405.00	53 15
Vel Total (ft/s)	6.17	Avg. Vel. (ft/s)	5.78	6.62	2.30
Max Chl Dpth (ft)	188	Hydr. Depth (ft)	132	1.62	0.33
Conv. Total (cfs)	72888.6	Conv. (cfs)	317577	40748.1	3829
Length Wtd. (ft)	263.06	Wetted Per. (ft)	442.72	40501	5315
Min Ch El (ft)	3413.80	Shear (lb/sq ft)	0.94	115	024
Alpha	1.03	Stream Power (lb/ft s)	5.42	7.60	054
Frctn Loss (ft)	0.76	Cum Volume (acre-ft)	24.16	58.75	4.72
C & E Loss (ft)	0.20	Cum SA (acres)	25.89	31.58	2.96

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Elev

3410

511

RIVER: Ditch A CROSS SECTION

REACH: 5 RS: 2774

INPUT

Description: Sta. 2774 Upstream of culverts Station Elevation Data num= Elev Elev Sta Sta Elev Sta Sta Elev Sta -13 3413.8 298 3411.2 -453 3416 -4373415 -405 3414 -289 3413.8

100 3413.8 175 3413.8 3412 204 261 3412 402 3410.9 437 3410 469 3409 491 3409 560 3412 641 3414 725 3416

Manning's n Values num= 3 Sta n Val Sta n Val n Val Sta .. 033 .033 .033 -453 437 511

Lengths: Left Channel Bank Sta: Left Right Right Coeff Contr. Expan. num= 2 40 .. 5 511 40 40 .. 3 437

Ineffective Flow Elev Permanent Sta L Sta R -888 F 888 F

CROSS SECTION OUTPUT Profile #PF 2

E.G. Elev (ft)	3414.50	Element	Left OB	Channel	Right OB
Vel Head (ft)	009	Wt. n-Val.	0.033	0.033	0033
W.S. Elev (ft)	3414.41	Reach Len. (ft)	40.00	40.00	40.00
Crit W.S. (ft)	3412.71	Flow Area (sq ft)	1115.26	37410	284.35
E.G. Slope (ft/ft)	0000645	Area (sq ft)	1115.26	374.10	28435
Q Total (cfs)	3286.00	Flow (cfs)	1522.17	1259.45	50438
Top Width (ft)	1076.10	Top Width (ft)	855.02	74.00	147.08
Vel Total (ft/s)	1.85	Avg. Vel. (ft/s)	1.36	3.37	177
Max Chl Dpth (ft)	541	Hydr. Depth (ft)	130	506	193
Conv. Total (cfs)	129409.2	Conv. (cfs)	599460	49599.6	19863.6
Length Wtd. (ft)	40.00	Wetted Per. (ft)	85510	74.04	14715
Min Ch El (ft)	340900	Shear (lb/sq ft)	0 , 05	0.20	0.08
Alpha	1.66	Stream Power (lb/ft s)	007	0 ., 68	014
Frctn Loss (ft)		Cum Volume (acre-ft)	300	32.29	1.35
C & E Loss (ft)		Cum SA (acres)	2.78	2556	1.06

Warning: The cross section had to be extended vertically during the critical depth calculatio Warning: The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS	SECTION	OUTPUT	Profile	#PF	3

E.G. Elev (ft)	3415.31	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.20	Wt, n-Val.	0.033	0033	0.033
W.S. Elev (ft)	3415.12	Reach Len. (ft)	40.00	40.00	4000
Crit W.S. (ft)	3413.54	Flow Area (sq ft)	1729.17	426.55	399.14
E.G. Slope (ft/ft)	0.001303	Area (sq ft)	1729.17	426.55	399.14
Q Total (cfs)	7766.00	Flow (cfs)	4422.39	222779	1115.82
Top Width (ft)	1126.70	Top Width (ft)	875.85	7400	176.85
Vel Total (ft/s)	3.04	Avg. Vel. (ft/s)	2.56	5.22	2.80
Max Chl Dpth (ft)	6,12	Hydr. Depth (ft)	1.97	5.,76	2.26
Conv. Total (cfs)	215162.4	Conv. (cfs)	122525.4	61722.5	30914.5
Length Wtd. (ft)	40.00	Wetted Per. (ft)	875.,94	74.,04	176,93
Min Ch El (ft)	3409.00	Shear (lb/sq ft)	0.16	0.47	0.18
Alpha	1,37	Stream Power (lb/ft s)	0.41	2.45	0.51
Frctn Loss (ft)		Cum Volume (acre-ft)	15.74	56.08	3.90
C & E Loss (ft)		Cum SA (acres)	2109	30.40	2.50

CULVERT	RIVER:	Ditch A
REACH: 5	RS:	2773
INPUT		
Description:		

Distance from Upstream XS = 8 Deck/Roadway Width = 24 Weir Coefficient = 3 Upstream Deck/Roadway Coordinates

560

3412

 num=
 6

 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord

 26 3413.8
 100 3413.8
 402 3412.7

 500 3412.8
 600 3413.9
 700 3415.7

Upstream Bridge Cross Section Data Station Elevation Data num= 18 Elev 3415 Elev Sta Elev Sta Elev Sta Elev Sta Sta -13 3413.8 -437 -405 3414 -289 3413.8 -453 3416 175 3413.8 437 3410 100 3413.8 402 3410.9 298 3411.2 204 469 261 3412 3412 3409 491 3409 511 3410

725

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-453 033 437 033 511 033

3414

641

Bank Sta: Left Right Coeff Contr. Expan. 437 511 .3 .5
Ineffective Flow num= 2

Page 27

3416

```
Sta L Sta R Elev Permanent
-888
          F.
          F
888
Downstream Deck/Roadway Coordinates
    num=
              6
                               Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
     Sta Hi Cord Lo Cord
                                                       402 3412.7
700 3415.7
                              100 3413.8
      26 3413.8
                               600 3413.9
     500 3412.8
Downstream Bridge Cross Section Data
Station Elevation Data num=
Sta Elev Sta Elev

        Sta
        Elev
        Sta
        Elev

        26
        3413.8
        100
        3412.4

                                      Sta Elev
                                                                        155
   -1721
            3416
                    -1410 3414
                                                                                3412
   299 3411.4 349 3410
400.2 3408.9 404.6 3408.9
568 3414 658 3416
                                       387 3408.9
409 3408.9
                             3410
                                                      391.4 3408.9
                                                                       395.8 3408.9
                                                                      487
                                                      434 3410
                                                                                3412
Manning's n Values
                          num≔
                                      3
    Sta n Val Sta n Val
-1721 .033 349 .033
                                       Sta
                                            n Val
                            .. 033
                                             .. 033
   -1721
                                      434
Bank Sta: Left Right Coeff Contr. Expan.
          349 434 .3
re Flow num= 2
Ineffective Flow
 Sta L Sta R
                     Elev Permanent
-888
           F
888
          F
Upstream Embankment side slope = 3 horiz. to 1.0 vertical Downstream Embankment side slope = 3 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .95
Elevation at which weir flow begins = 3412.7
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                              = Broad Crested
Number of Culverts = 1
Culvert Name Shape Rise Culvert #1 Pipe Arch 1.833
                Shape
                                      Span
                                    2,43
FHWA Chart # 34- 18 inch corner radius; Corrugated metal
FHWA Scale # 1 - 90 Degree headwall
Solution Criteria = Highest U.S. EG
Culvert Upstrm Dist Length n Value Entrance Loss Coef Exit Loss Coef
                         39
                                .. 024
                                                            . 5
Number of Barrels = 6
Upstream Elevation = 3409
Centerline Stations
    Sta. Sta. Sta. Sta. Sta. 469 473.4 477.8 482.2
                                     Sta.
                                     486.6 491
Downstream Elevation = 3408.9
Centerline Stations
                   Sta.
                                             Sta.
                                      Sta.
                             Sta.
    Sta. Sta.
                   395.8 400.2
           391..4
                                    404.6
                                               409
CROSS SECTION
                       RIVER: Ditch A
                          RS: 2734
REACH: 5
INPUT
Description: Sta. 2734 Downstream of culverts
Station Elevation Data num= 17
                                     Sta Elev
26 3413.8
                                                                      Sta Elev
                                                    Sta Elev
100 3412.4
    Sta Elev Sta Elev
           3416
                                                                         155
   -1721
                   -1410
                             3414
                                                                                3412
                  349
                             3410
                                       387 3408.9
                                                      391.4 3408.9
                                                                      395.8 3408.9
     299 3411..4
                                             Page 28
```

FloodPlain.rep 434 3410 487 3412 400.2 3408.9 404.6 3408.9 409 3408.9 658 3416 3414 568 3 Manning's n Values num= Sta Sta n Val n Val n Val Sta -1721 ., 033 349 .. 033 434 . 033 Coeff Contr. Bank Sta: Left Right Lengths: Left Channel Right Expan. .. 5 745 846 1015 ,, 3 349 434 Ineffective Flow num= Sta L Sta R Elev Permanent -888 E 888 E CROSS SECTION OUTPUT Profile #PF 2

E.G. Elev (ft)	3413.25	Element	Left OB	Channel	Right OB
Vel Head (ft)	055	Wt. n-Val.	0.033	0.033	0033
W.S. Elev (ft)	3412.71	Reach Len. (ft)	745.00	846.00	101500
Crit W.S. (ft)	3412.71	Flow Area (sq ft)	275.89	288.99	100,64
E.G. Slope (ft/ft)	0.004812	Area (sq ft)	275.89	288.99	100.64
Q Total (cfs)	328600	Flow (cfs)	884.51	2040.31	361.18
Top Width (ft)	43191	Top Width (ft)	265.26	8500	81.65
Vel Total (ft/s)	4 94	Avg. Vel. (ft/s)	3.21	7.06	359
Max Chl Dpth (ft)	3.81	Hydr. Depth (ft)	1.04	3.40	1.23
Conv. Total (cfs)	47371.8	Conv. (cfs)	12751.3	294136	5206.9
Length Wtd. (ft)	841.72	Wetted Per. (ft)	265.28	85.04	81.70
Min Ch El (ft)	3408.90	Shear (lb/sq ft)	0.31	102	0.37
Alpha	1.44	Stream Power (lb/ft s)	1.00	721	133
Frctn Loss (ft)	3.01	Cum Volume (acre-ft)	2.36	31.99	1.17
C & E Loss (ft)	022	Cum SA (acres)	2 , 27	25.49	0,95

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of error between comput ed and assumed values. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr OSS section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This i ndicates that there is not a valid subcritical answer. The program defaulted to critical dep th. Warning: The parabolic search method failed to converge on critical depth. The program will

FloodPlain.rep

try the

cross section slice/secant method to find critical depth.

CROSS SECTION OUTP	JT Profile	#PF	3
--------------------	------------	-----	---

E.G. Elev (ft)	3414.83	Element	Left OB	Channel	Right OB
Vel Head (ft)	0 46	Wt. n-Val.	0033	0.033	0033
W.S. Elev (ft)	341437	Reach Len. (ft)	745.00	846.00	101500
Crit W.S. (ft)	3414.37	Flow Area (sq ft)	1462.63	430.11	292.31
E.G. Slope (ft/ft)	0003331	Area (sq ft)	1462.63	430.11	292.31
Q Total (cfs)	7766.00	Flow (cfs)	3290.35	329362	1182.03
Top Width (ft)	2051.72	Top Width (ft)	1816.17	8500	150.55
Vel Total (ft/s)	355	Avg. Vel. (ft/s)	2.25	7., 66	4.04
Max Chl Dpth (ft)	547	Hydr. Depth (ft)	0.81	506	194
Conv. Total (cfs)	134550.1	Conv. (cfs)	57007.1	570638	20479.3
Length Wtd. (ft)		Wetted Per. (ft)	1816.21	8504	150.61
Min Ch El (ft)	340890	Shear (lb/sq ft)	0.17	1.05	040
Alpha	234	Stream Power (lb/ft s)	038	8.06	163
Frctn Loss (ft)		Cum Volume (acre-ft)	14.28	55., 69	358
C & E Loss (ft)		Cum SA (acres)	19.86	3032	2 35

Warning: The energy equation could not be balanced within the specified number of iterations.

The program used critical depth for the water surface and continued on with the calculat ions.

Warning: The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross

section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: Ditch A REACH: 5 RS: 1888

INPUT

Description: Sta. 1888

Station	Elevation	Data	num=	10					
Sta	Elev	Sta	Elev	Sta	${ t Elev}$	Sta	Elev	Sta	Elev
-775	3412	-41	3410	81	3410	100	3410.2	110	3410
331			3408						

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-775 .033 100 .033 1180 .033

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan-100 1180 305 828 980 ...1 ...3

CROSS SECTION OUTPUT Profile #PF 2

E.G. Elev (ft)	3409.92	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.11	Wt. n-Val.		0033	
W.S. Elev (ft)	3409.80	Reach Len. (ft)	305.00	828.00	98000
Crit W.S. (ft)	3409.14	Flow Area (sq ft)		1225.09	
E.G. Slope (ft/ft)	0002775	Area (sq ft)		1225.09	
Q Total (cfs)	3327.00	Flow (cfs)		3327.00	
Top Width (ft)	999.96	Top Width (ft)		999.96	
Vel Total (ft/s)	2.72	Avg. Vel. (ft/s)		272	
Max Chl Dpth (ft)	1.80	Hydr. Depth (ft)		1,23	
Conv. Total (cfs)	631589	Conv. (cfs)		631589	
Length Wtd. (ft)	82800	Wetted Per. (ft)		99997	
Min Ch El (ft)	340800	Shear (lb/sq ft)		0.21	
Alpha	100	Stream Power (lb/ft s)		0 . 58	
Frctn Loss (ft)	4 67	Cum Volume (acre-ft)		17.28	
C & E Loss (ft)	0.04	Cum SA (acres)		14.95	

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross

section. This may indicate the need for additional cross sections.

Note: Hydraulic jump has occurred between this cross section and the previous upstream section.

OUTPUT Profile #PF	3
OUTPUT Profile #P.	Ŀ.

E.G. Elev (ft)	3410.80	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.21	Wt. n-Val.	0.033	0.033	0033
W.S. Elev (ft)	341059	Reach Len. (ft)	305.00	828.00	98000
Crit W.S. (ft)	3409.82	Flow Area (sq ft)	146.69	2069.78	7.77
E.G. Slope (ft/ft)	0.002839	Area (sq ft)	14669	2069.78	777
Q Total (cfs)	786400	Flow (cfs)	19376	7661.,94	8.30
Top Width (ft)	1465.23	Top Width (ft)	359.09	108000	26.15
Vel Total (ft/s)	3.54	Avg. Vel. (ft/s)	1.32	3.70	107
Max Chl Dpth (ft)	2.59	Hydr. Depth (ft)	0.41	1.92	0.30

Page 31

Conv. Total (cfs)	147583.8	FloodPlain.rep Conv. (cfs)	36363	143791.8	155., 7
Length Wtd. (ft)	821.74	Wetted Per, (ft)	359.09	1080.02	26.15
Min Ch El (ft)	3408.00	Shear (lb/sq ft)	007	0.34	0.05
Alpha	1.07	Stream Power (lb/ft s)	010	1.26	0.06
Frctn Loss (ft)	453	Cum Volume (acre-ft)	051	31.41	0.09
C & E Loss (ft)	005	Cum SA (acres)	126	19.01	0.29

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross secti

ons.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cr

oss section. This may indicate the need for additional cross sections.

Hydraulic jump has occurred between this cross section and the previous upstream sec Note: tion.

RIVER: Ditch A CROSS SECTION RS: 1060 REACH: 5

INPUT

Description Station Ele			num=	6			N	6 1	77.
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
100	3408	394	3406	879	34027	909	34027	1206	3405
1523	3406								

Manning's n Values 3 num= n Val Sta n Val Sta n Val Sta .033 100 .033 394 ., 033 1523

Coeff Contr. Expan. Right Lengths: Left Channel Right Bank Sta: Left .. 3 60 60 60 .. 1 394 1523

Profile #PF 2 CROSS SECTION OUTPUT

E.G. Elev (ft)	340520	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.53	Wt, n-Val.		0.033	
W.S. Elev (ft)	340467	Reach Len. (ft)			
Crit W.S. (ft)	3404.67	Flow Area (sq ft)		593,57	
E.G. Slope (ft/ft)	0.016121	Area (sq ft)		593.57	
Q Total (cfs)	347300	Flow (cfs)		3473.00	
Top Width (ft)	573.29	Top Width (ft)		573.29	
Vel Total (ft/s)	585	Avg. Vel. (ft/s)		5,85	
Max Chl Dpth (ft)	1.97	Hydr. Depth (ft)		1.04	
Conv. Total (cfs)	27353.4	Conv. (cfs)		27353.4	
Length Wtd. (ft)		Wetted Per. (ft)		573.31	
		Page 32			

Min Ch El (ft)	3402.70	Shear (lb/sq ft)	104
Alpha	100	Stream Power (lb/ft s)	6.10
Fretn Loss (ft)		Cum Volume (acre-ft)	
C & E Loss (ft)		Cum SA (acres)	

CROSS SECTION OUTPUT Profile #PF 3

E.G. Elev (ft)	3406.22	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.67	Wt. n-Val.		0.033	
W.S. Elev (ft)	340555	Reach Len. (ft)			
Crit W.S. (ft)	3405.55	Flow Area (sq ft)		1235.07	
E.G. Slope (ft/ft)	0.014413	Area (sq ft)		1235,07	
Q Total (cfs)	8124 00	Flow (cfs)		8124.00	
Top Width (ft)	920.12	Top Width (ft)		920.12	
Vel Total (ft/s)	6.,58	Avg. Vel. (ft/s)		6.58	
Max Chl Dpth (ft)	2.85	Hydr. Depth (ft)		134	
Conv. Total (cfs)	67669.9	Conv. (cfs)		676699	
Length Wtd. (ft)		Wetted Per. (ft)		920.14	
Min Ch El (ft)	340270	Shear (lb/sq ft)		1.21	
Alpha	100	Stream Power (lb/ft s)		7.94	
Fretn Loss (ft)		Cum Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

SUMMARY OF MANNING'S N VALUES

River:Ditch A

Reach	River Sta.	n1	n2	n3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12674 11337 10937 10288 9690 9009 8130 7717 7253	033 033 033 033 033 033 033	033 033 033 033 033 033 033	033 033 033 033 033 033 033

		FloodPlain.rep					
5	6343	033	.033	.033			
5	5363	. 033	.033	. 033			
5	4221	. 033	. 033	. 033			
5	3489	, 033	., 033	. 033			
5	2989	, 033	033	. 033			
5	2774	.033	033	.033			
5	2773	Culvert					
5	2734	, 033	033	., 033			
5	1888	033	033	., 033			
5	1060	. 033	.033	033			

SUMMARY OF REACH LENGTHS

River: Ditch A

Reach	River Sta.	Left	Channel	Right
5	12674	1206	1337	1433
5	11337	545	400	332
5	10937	729	649	445
5 5 5 5 5	10288	552	598	633
5	9690	639	681	658
5	9009	898	879	794
5	8130	399	413	456
5	7717	444	464	510
5	7253	756	910	980
5 5 5 5 5 5	6343	767	980	1051
5	5363	1199	1142	713
5	4221	749	732	843
5	3489	464	500	457
5	2989	317	215	172
5	2774	40	40	40
5	2773	Culvert		
5	2734	745	846	1015
5	1888	305	828	980
5 5	1060	60	60	60

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Ditch A

Reach	River Sta.	Contr.	Expan.
5	12674	. 1	. 3
5	11337	1	., 3
5	10937	.1	3
5	10288	.1	3
5 5	9690	. 1	3
5	9009	1	., 3
5	8130	1	., 3
5 5 5 5	7717	1	. 3
5	7253	1	., 3
5	6343	1	., 3
5	5363	.1	., 3
5	4221	. 1	3
5	3489	., 1	., З
5	2989	., 3	. 5
5	2774	" З	. 5
5	2773	Culvert	

Page 34

FloodPlain.rep

5	2734	. 3	. 5
5	1888	. 1	. 3
5	1060	1	, 3

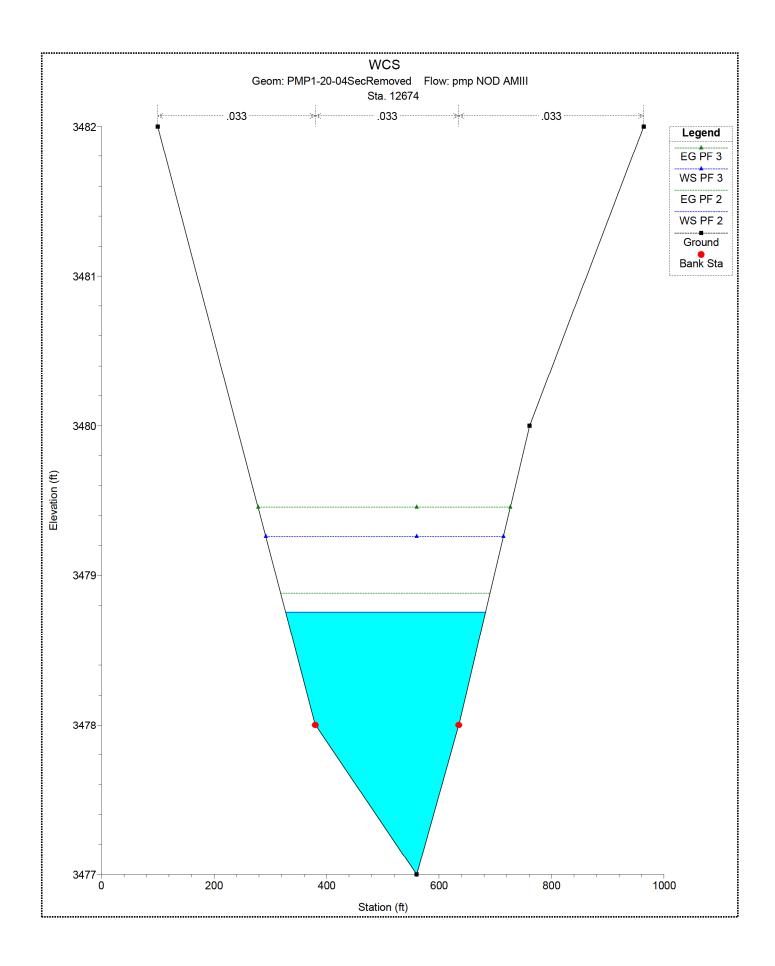
Profile Output Table - Standard Table 1

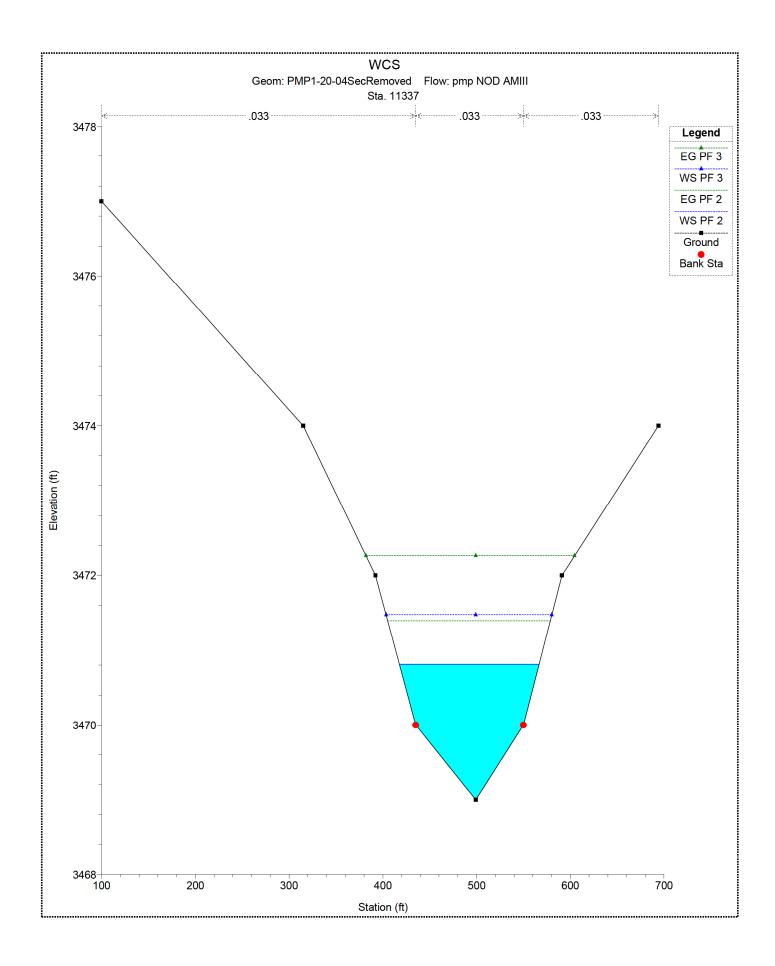
Read	ch	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. S
lope	Vel Chnl	Flow Area	Top Width Fro	oude # Chl				
15+1	/£+ /a\	(sq ft)	(cfs)	(ft)	(ft)	(ft)	(ft)	(f.t
/It)	(It/S)	(SQ IC)	(10)					
						2470 07	2470 00	
5 3056	2 90	12674	976.00 355.40	3477.00 0.46	347876	3478.27	347888	000
5056	2,,90	12674	1850.00	3477.00	347926	3478.68	3479.45	0.00
3167	369	12674 553.45	42229	0.49				
5		11337	97600		3470.81	3470.81	3471.39	0.01
3220	6.21		149.13	0.95 3469.00	0.471 47	2477 46	2470 06	0.01
5 0885	7 30	11337 27236	1850,00 176,84	3469.00 0.93	3471.47	3471.46	347226	001
0000	7.39	27230	170.04	0.75				
_		10007	076 00	2464 00	3466 34	3466.08	346666	0.01
5 0235	5.21	10937 18824	976.00 162.01	3464.00 0.83	3466.24	3400,00	3400.00	0.01
5		10937	1850.00	3464.00	346672	346672	3467,45	0.01
3153	6.91	273.71	19722	0.98				
5		10288	976.00	3456.00	345722	3457.22	3457.51	002
0477	431	226,46	413.97	1.03 3456.00	345757	3457.53	345793	0.01
5 5410		10288 383.80	1850.00 479.25	0,,95	345757	3457.33	343793	0.01
0.120								
5		9690	124200	3450.00	3451,93	3451.51	3452.09	000
4969	3.13	39640	404.17	0.56	0401,03	3431.01	3102.03	0.,00
5		9690	2689.00 473.62	3450.00	3452.40	345206	345272	0 0 0
6338	4.52	603.04	47362	0.67				
5		9009		3445.00	3446.90	3446.75	3447,19	0.01
1195 5	4.31	288.10 9009	334.67 2689.00	0.82 3445.00	344765		3447.96	000
7751	451	59664	492.15	0.72				
5		8130	1242.00	3440.00	3442.03	3441,49	344215	000
3422	2.73	455,81	437.11	0.47				
5 4647	4.06	8130 674.08	2689.00 497.59	3440.00 0.58	3442.50	3442.03	3442.75	000
404/	4.00	074.00	497.39	0,50				
_			1040 00	2427.00	2420 01	2420 01	2420 20	0 01
5 8011	4 88	7717 254.,54	1242.00 350.81	3437.80 1.01	3439.01	3439.01	343938	0.01
5	400	7717	2689.00	3437.80	3439.74		3440,11	0 00
9311	484	55505	471.42	079				
5		7253	1483.00	3435.00	3436.81	3436.16	343689	000
1808	2.29		563.87	0.35 3435.00	3437.84	3437.06	343813	000
5		7253	539900		343/.04	3437.00	2420"12	0.00
				Page 35				

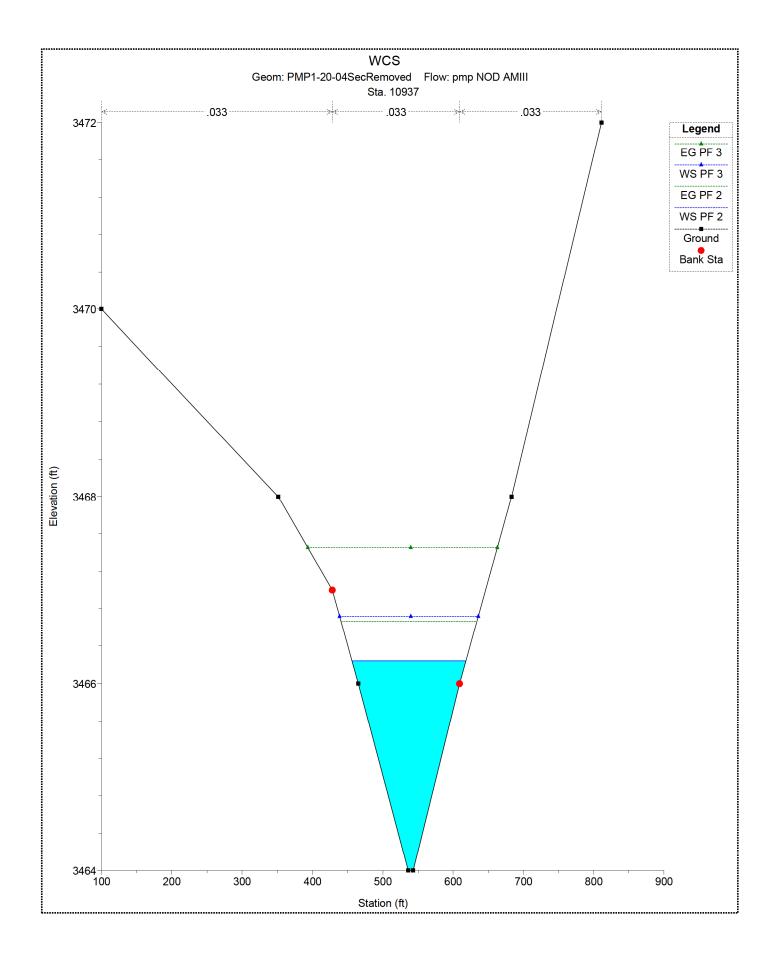
3105	4.42 1299.73	F10	odPlain.rep 0.51				
5	6343	2888.00	3430.00	3431.11	3431.11	3431.57	0.01
6513 5 2039	5.44 531.26 6343 6.76 1091.24	583.36 7144.00 867.12	1.00 3430.00 0.94	3431.94	343194	3432.64	0.01
2039	070 1091.24	007#12	0.54				
5 1869	5363 2.54 1198.09	2888.00 98 4. 24	3425.00 0.37	3426.84	342614	342694	0 00
5 2096	5363 3.65 2169.17	7144.00 1242.81	3425.00 0.42	342772	342680	342791	000
5 5261	4221 5,,39 624,,24	328600 728 . 53	3420.00 0.97	3421 49	3421.49	3421.94	0.01
5 3358	4221 6.51 1256.74	7766.00 1043.46	3420.00 0.97	3422 20	3422,20	3422.82	0.01
5 2329	3489 2,66 1293,45	328600 1025.44	3416.00 0.40	3417.66	3417.07	341776	000
5 2671	3489 3.78 2110.92	7766.00 1087.51	3416.00 0.46	3418.44	3417.60	3418.65	0.,00
2071	570 211092	1007 11 01	J., 10				
5 6461	2989 5.40 645.74	3286.00 788.45	3413.80 1.00	341495	3414.95	3415.36	001
5 1352	2989 6.62 1259.21	7766.00 900.85	3413.80 0.92	3415.,68	341559	3416.28	0.01
5 0645	2774 3.37 1773,70	3286.00 1076.10	3409.00 0.26	3414,41	3412.71	3414.50	0.00
5 1303	2774 5.22 2554.86	7766.00 1126.70	3409.00 0.38	3415.12	3413,54	3415.31	0.00
1000							
5	2773	Culvert					
5 4812	2734 706 66551	3286.00 431.91	3408.90 0.67	341271	341271	3413.25	0.00
5 3331		7766.00	3408.90 0.60	341437	3414.37	3414.83	0.00
JJJI	7,00 2103,03	2001012	J. 00				
5 2775	1888 2.72 1225.09	332700 999.96	3408.00 0.43	3409.80	3409.14	3409.92	000
5 2839	1888 3.70 2224.23	786400	3408.00 0.47	3410.59	3409.82	3410.80	000
5 6121	1060 5.85 593.57	3473.00 573.29	3402.70 1.01	340467	3404,67		001
5 4413	1060 6.58 1235.07	8124.00 920.12	3402.70 1.00	3405.55	340555	340622	0.01

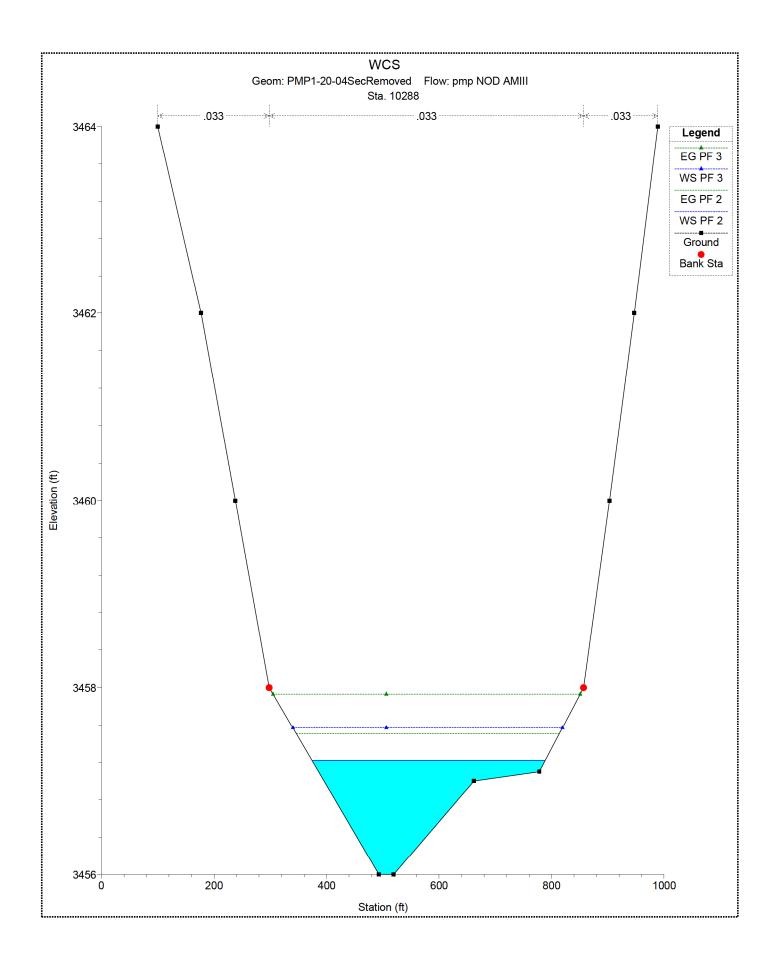
Profile Output Table - Report Standard Table 1

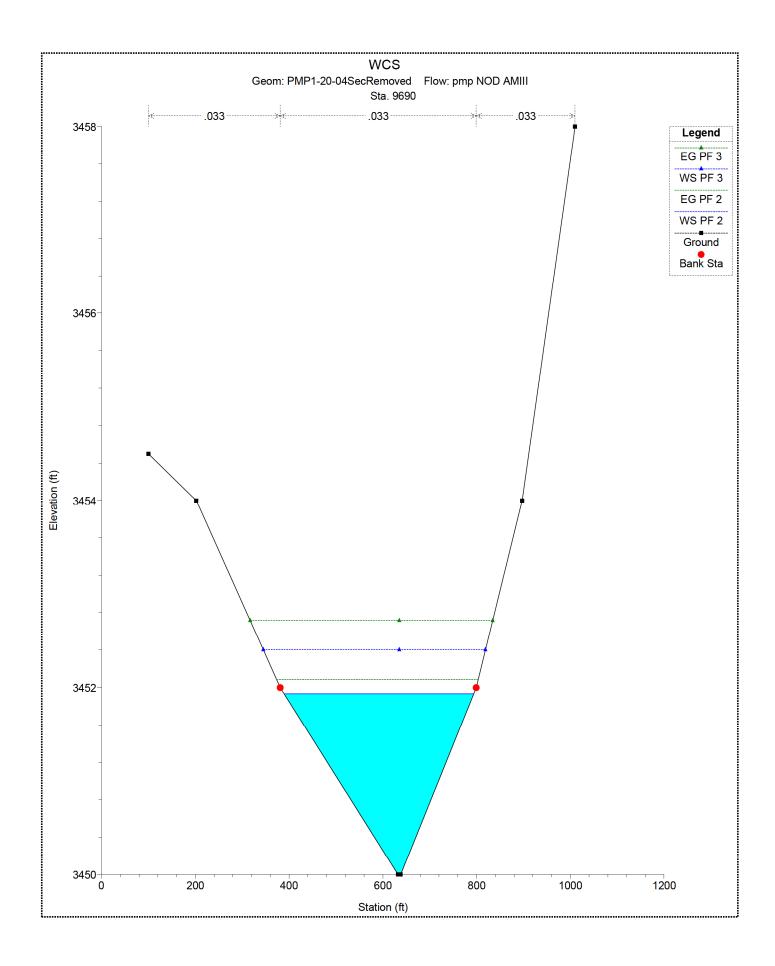
Page 36

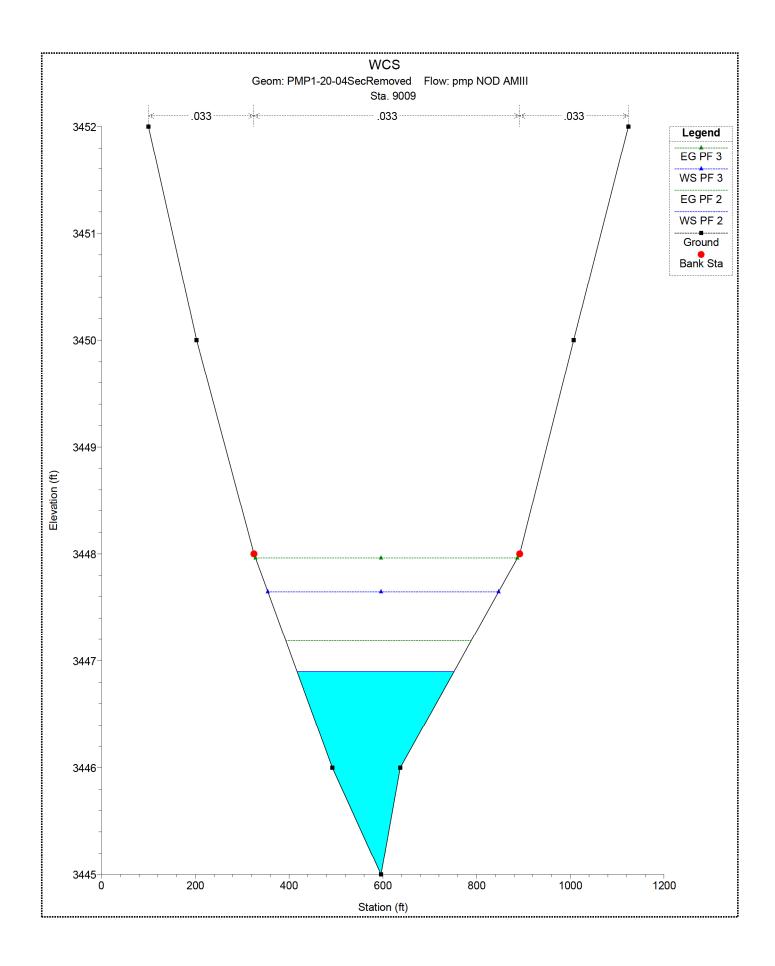

FloodPlain.rep

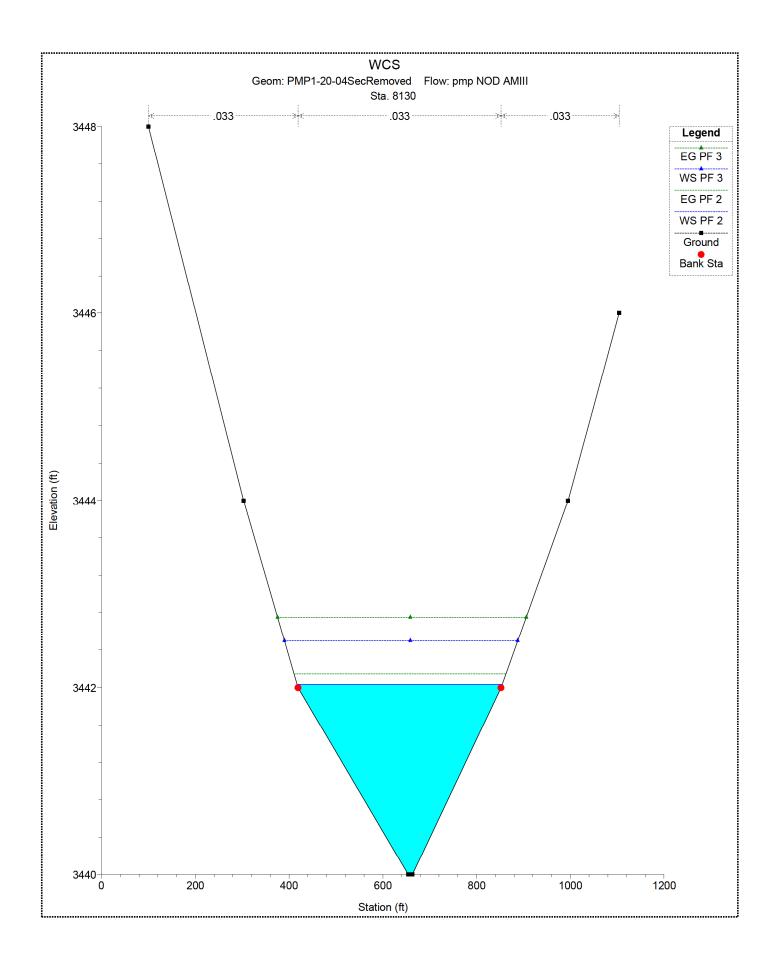

Reach Elev	River E.G. Slope V	Sta Tel Chnl	Q Total M Sta W.S. Lft	Min Ch El Sta W.S.	₩.S. Rgt	Elev Cr Flow Are	it W.S. Max a Top Width	Chl Dpth E.G Froude # Chl
(ft)	(ft/ft)	(ft/s)	(cfs) (ft)	(ft)	(ft)	(ft) (sq ft	(ft)) (ft)	(ft)
								1.75 3 0.46
5 47945	12674 0003167	3 69	1850.00 291.95	347700 71	347 4.24	926 5534	3478.68 5 422.29	2.26 3
								1.81 3 0.95
5 472.26	11337 0.010885	739	1850.00 403.34	346900 58	347 0.18	1.47 272.3	3471.46 6 176.84	2.47 3
								2.24 3
5 46745	10937 0.013153	6.91	1850.00 438.39	3464.00 63	346 5.61	6.72 273.7	3466.72 1 197.22	2.72 3
5 457.51	10288 0.020477	4.31	976.00 374.31	3456.00 78	345 8.29	7.22 226.4	345722 6 41397	1.22 3
5 457 _" 93	10288 0.015410	482	1850.00 339.97	345600 81	345 9.21	7.,57 383.,8	3457.53 0 479.25	1.57 3 0.95
5 452.09	9690 0004969	3.13	1242.00 389.43	3450.00 793	345 360	1 93 : 396.40	3451.51 0 404.17	1.93 3 0.56
5 45272	9690 0.006338	4.52	2689.00 345.06	3450.00 818	345: 3.68	2.40 3 603.04	3452.06 4 473.62	2.40 3 0.67
5 44719	9009 0.011195	4.31	1242.00 416.94	3 44 500 753	344 L.61	6.90 (288.10	344675 0 33467	1.90 3
5 44796	9009 0.007751	4.51	2689.00 354.62	344500 846	344° 6.77	7 65 596 64	4 492.15	2.65 3 0.72
5	8130		1242.00 P	3440.00 age 37	3442	203 3	3441 49	203 3

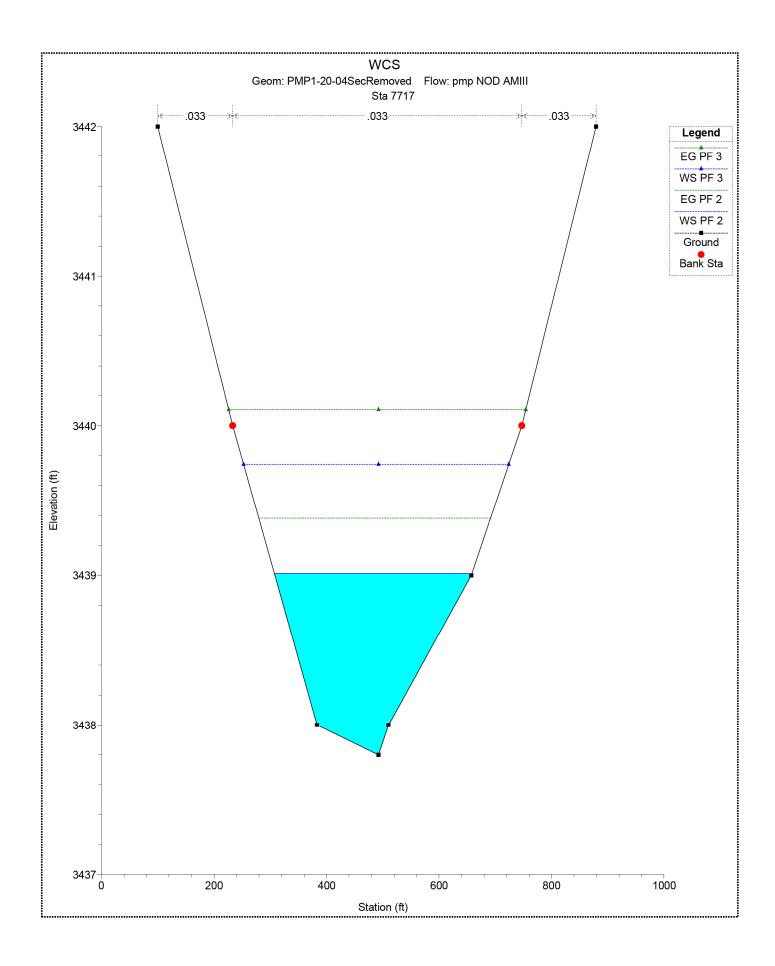

440 15	0.003433	2 72	F100	dPlain.rep 854.27	455 Q1	127 11	0.47
44275	0004647	4.06	390.07	3440.00 3442 887.66	67408	49759	0.58
5	7717	1 88	1242.00	3437.80 3439 657.99	.01 3439	001 350 81	1,21 3
440.11	0009311	4.84	25235	3437.80 3439 723.77	55505	47142	0.79
5 436 89	7253 0 001808	2 29	1483.00 382.26	3435.00 3436 946.12	.81 3436 664.86	5.16 563.87	1.81 3 0.35
				3435.00 3437 997.14			
438.13	0.003105	4.,42	329.17	997.14	1299.73	66797	0.51
5 43157	6343 0.016513	5.44	2888.00 724.42	3430.00 3431 1307.78	.11 3431 531.26	11 583.36	1.11 3
				3430.00 3431 1534.53			
43264	0.012039	6.76	667.41	153453	1091.24	867.12	0.94
5 426.94	5363 0.001869	2.54	2888.00 660.98	3425.00 3426. 1645.22	.84 3426 1198.09	14 98424	1.84 3
				342500 3427. 182007			
42791	0002096	3 . 65	5/7.26	1820.07	2169.17	1242.81	0.42
5 42194	4221 0.015261	5.39	3286.00 444.14	3420.00 3421. 1172.66	.49 3421 624.24	.49 728.53	1.49 3 0.97
5	4221	C E1	7766.00	342000 3422. 133710	.20 3422	.20	220 3
422.82	0.013338	651	233.04	1337.10	1230,74	1043.40	097
5 417.76	3489 0.002329	2.66	3286.00 -122.29	3416.00 3417. 903.15	.66 3417 1293.45	.07 1025.44	2.66 3 0.40
5 418 65	3489	3 70	7766.00 -136 55	3416.00 3418. 950.96	.44 3417 2110 92	60 1087 . 51	3.44 3
410,00	0.002071	5.70	£30"33	230,20	2440.72	100,,01	0.40
	2989 0.016461	5 , 40	3286.00 47.78	3413.80 3414. 836.22	.95 3414 64574	. 95 788 . 45	1.15 3 1.00

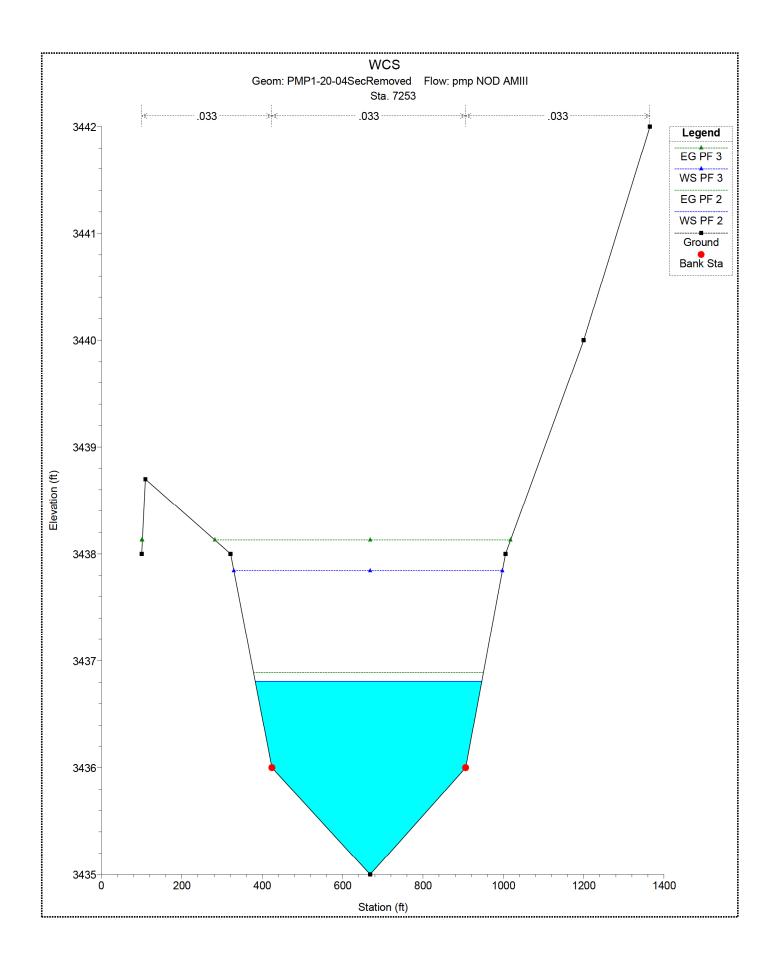

Page 38

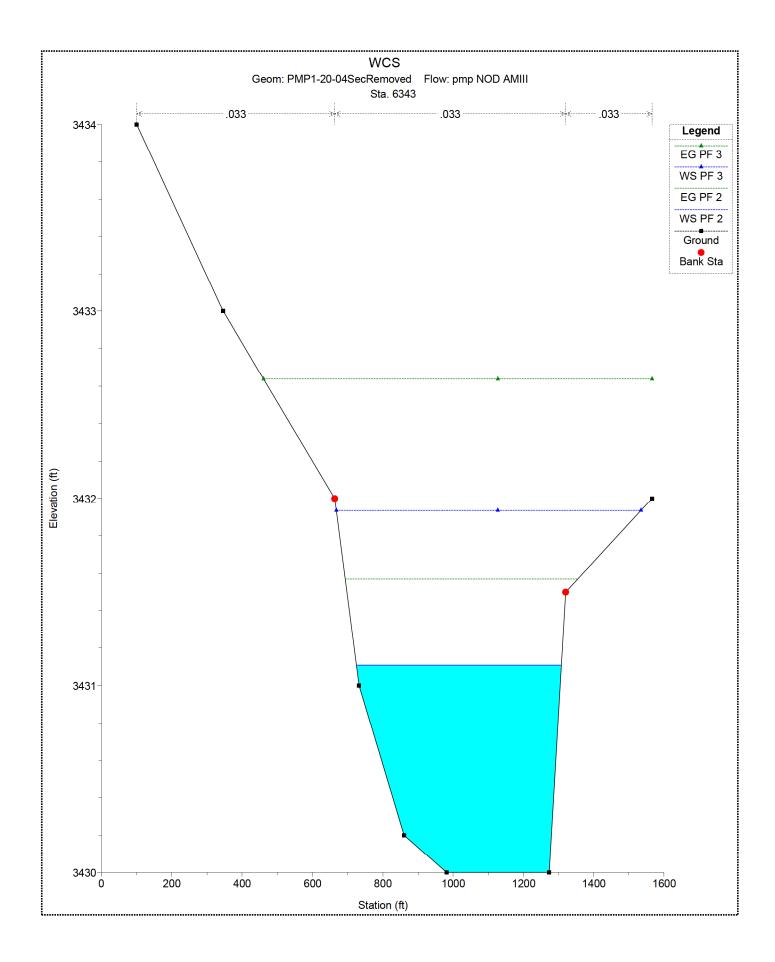

			Floo	dPlain, rep	
5	2989	6,62	776600	3413.80 3415.68 3415.59 1	1.88 3
41628	0.011352		-670	894.15 1259.21 900.85	0.92
5	2774	3.37	3286.00	3409.00 3414.41 3412.71 5	5.41 3
414.50	0.000645		-418.02	658.08 1773.70 1076.10	0.26
5	2774	5 ., 22	7766.00	3409.00 3415.12 3413.54 6	5.12 3
41531	0.001303		-438.85	687.85 2554.86 1126.70	0.38
5	2773		Culvert		
5	2734	7.06	3286.00	3408.90 3412.71 3412.71 3	3.81 3
413.25	0.004812		83.74	515.65 665.51 431.91	0.67
5	2734	7., 66	7766.00	3408.90 3414.37 3414.37 5	5.47 3
414.83	0.003331		-1467.17	584.55 2185.05 2051.72	0.60
5	1888	2.72	3327.00	3408.00 3409.80 3409.14 1	L.80 3
40992	0.002775		131.77	1131.73 1225.09 999.96	0.43
5	1888	3.70	7864.00	3408.00 3410.59 3409.82 2	2.59 3
41080	0002839		-259.09	1206.15 2224.23 1465.23	0.47
5	1060	5.85	3473.00	3402.70 3404.67 3404.67 1	197 3
40520	0.016121		589.80	1163.09 593.57 573.29	101
				3402.70	

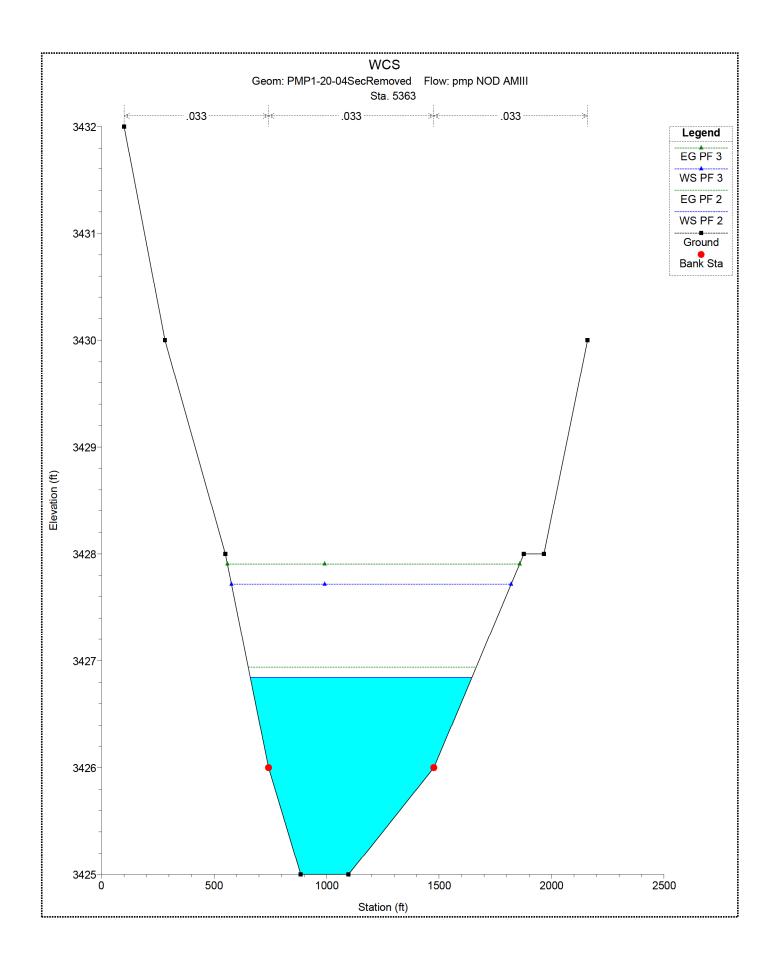


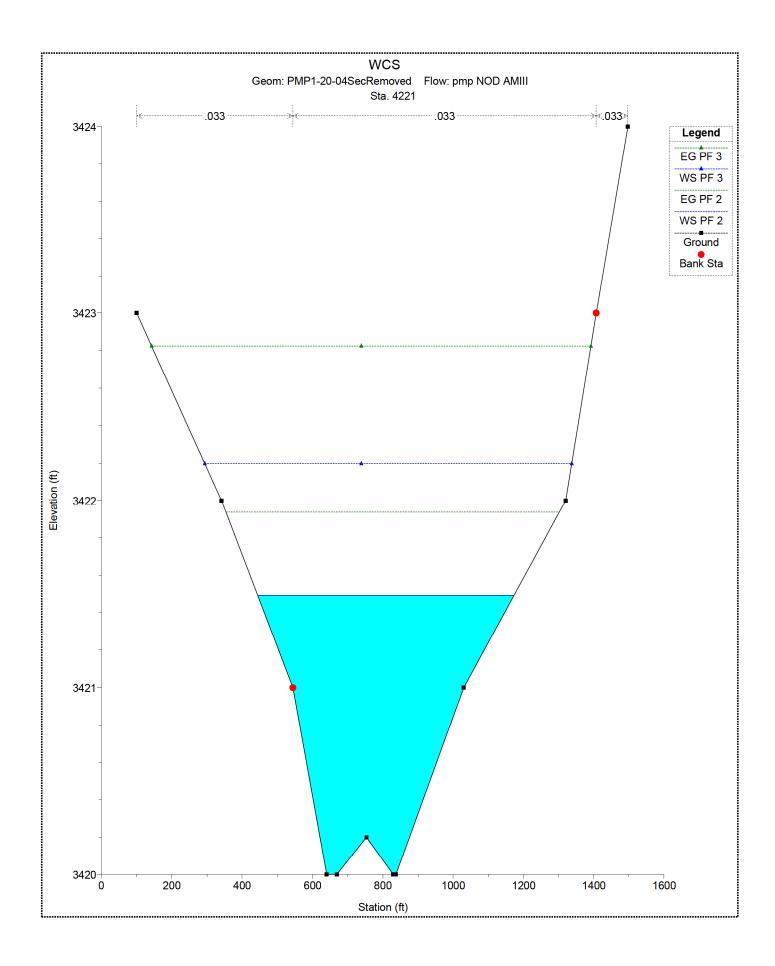


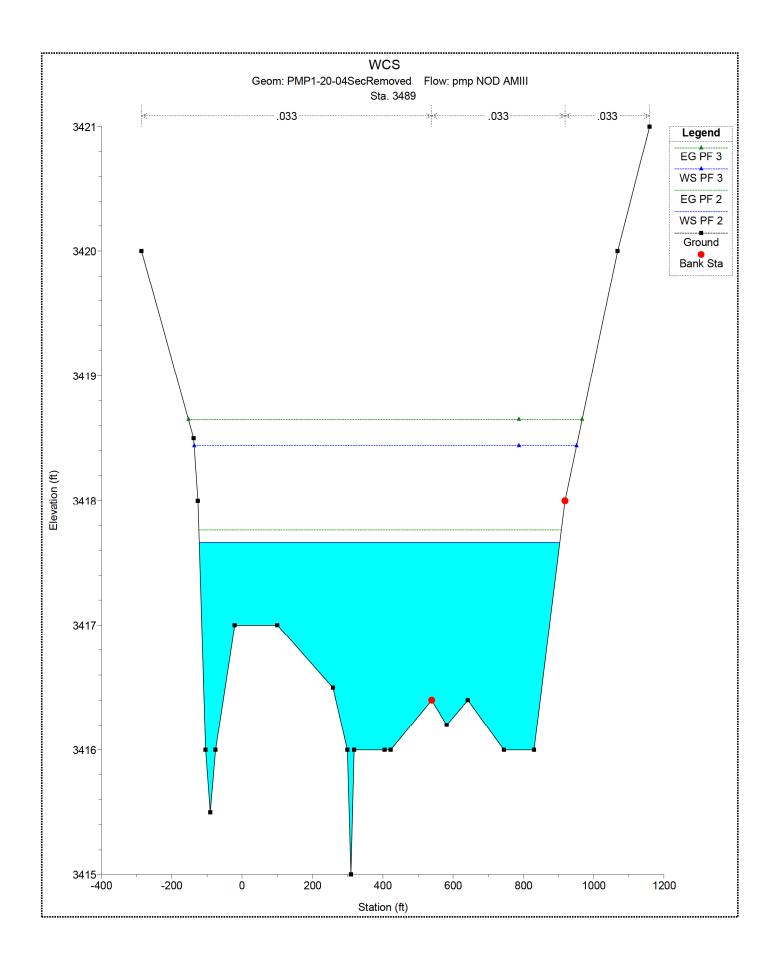


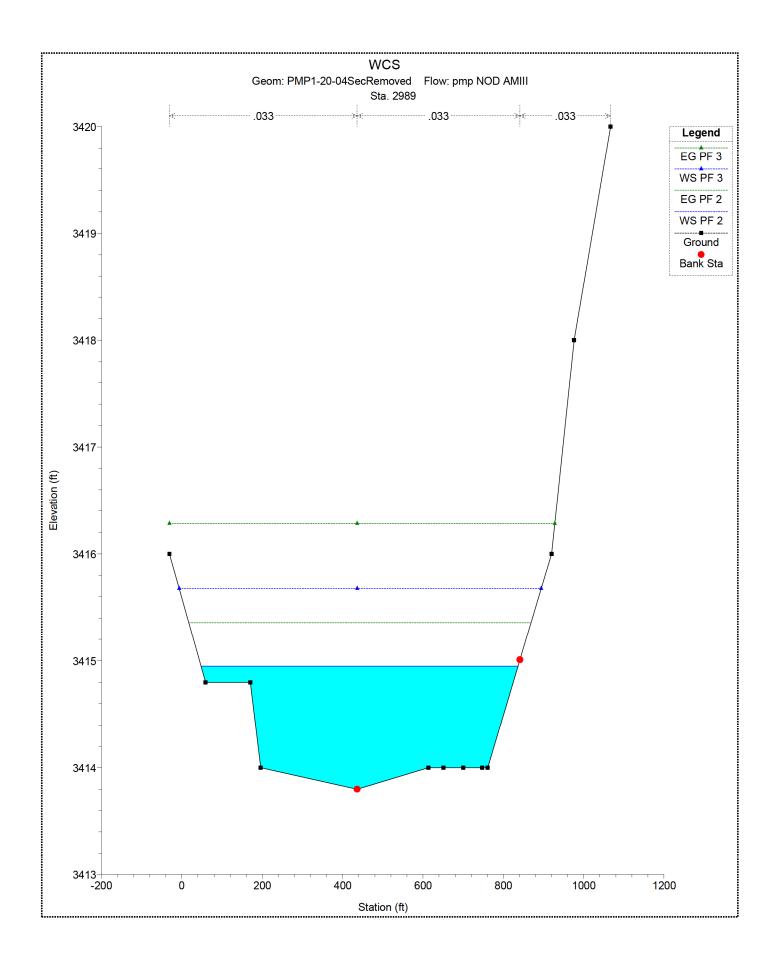


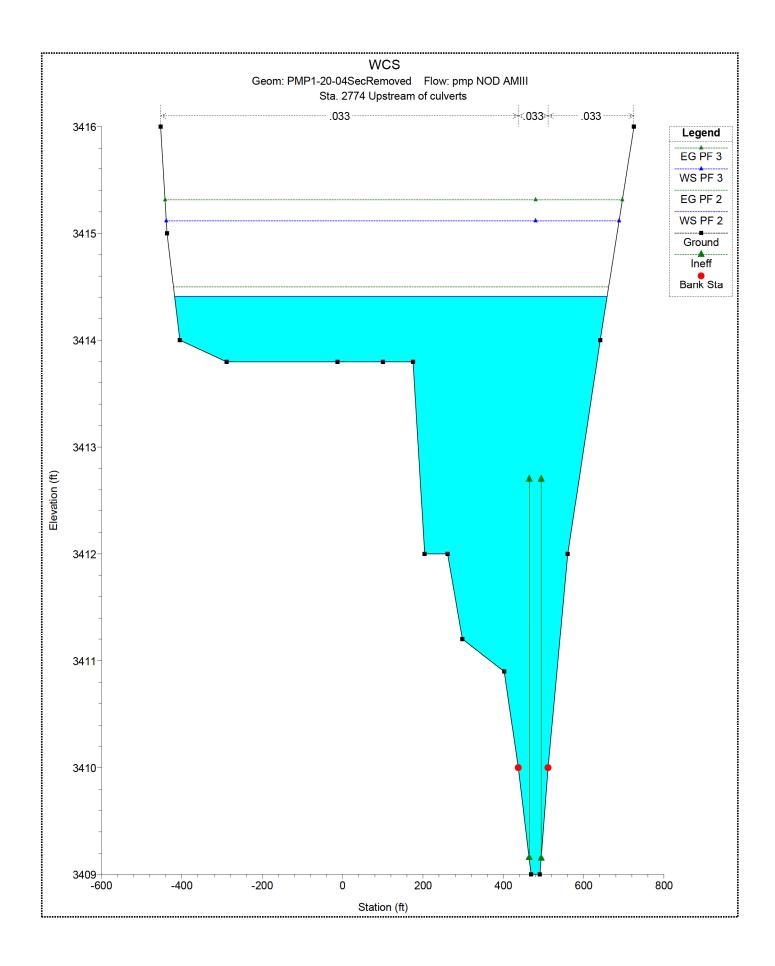


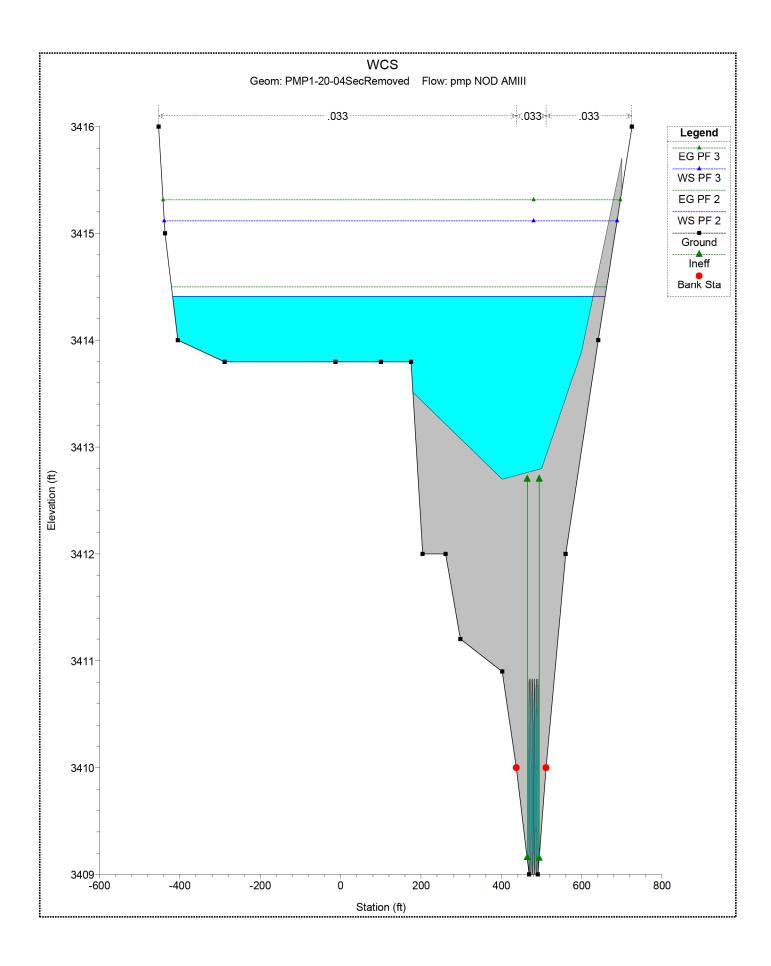


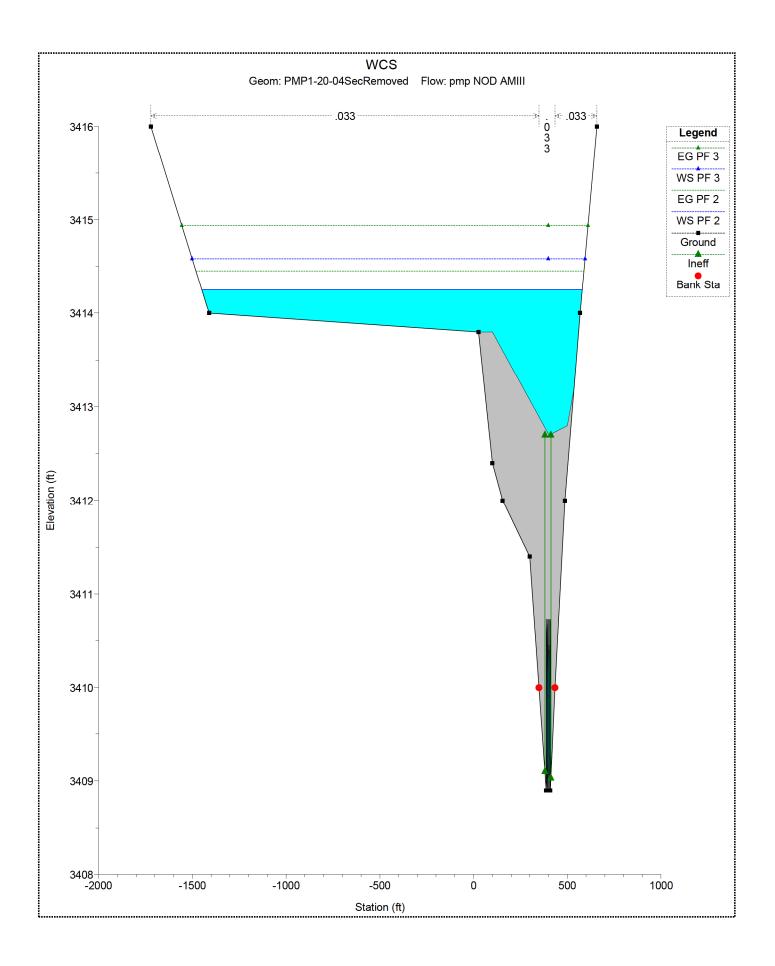


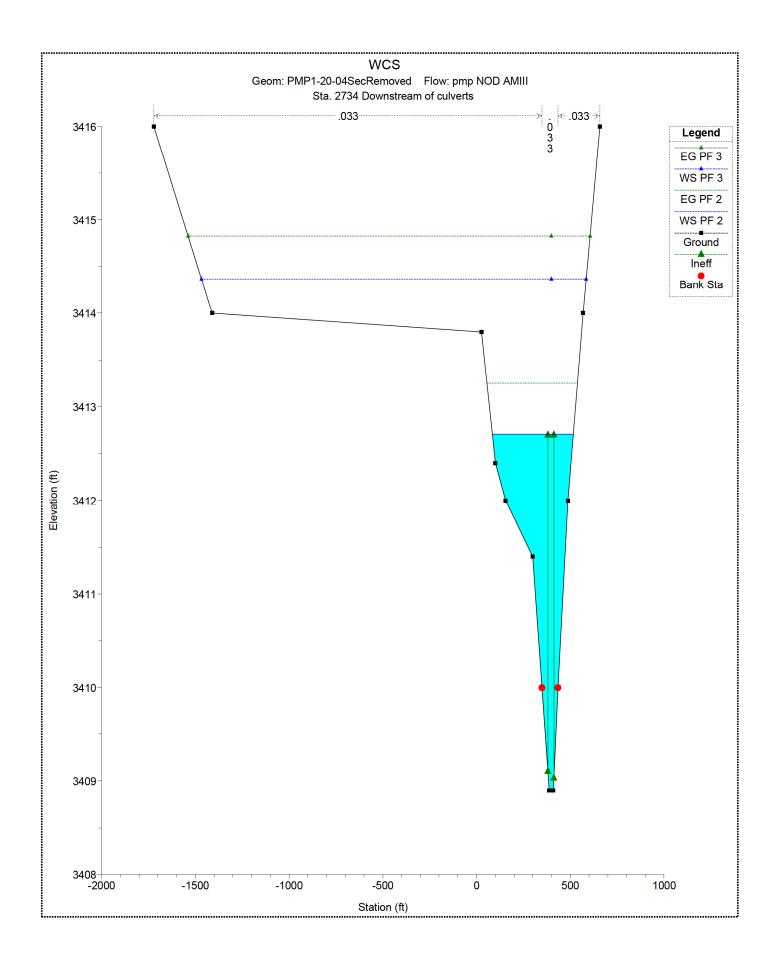


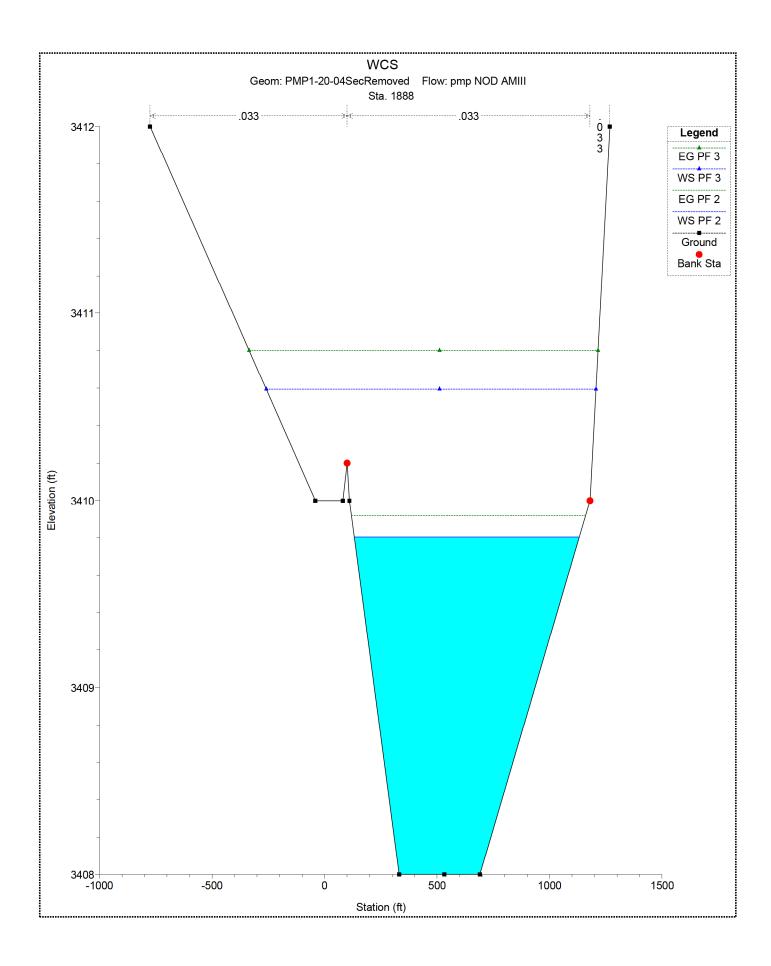


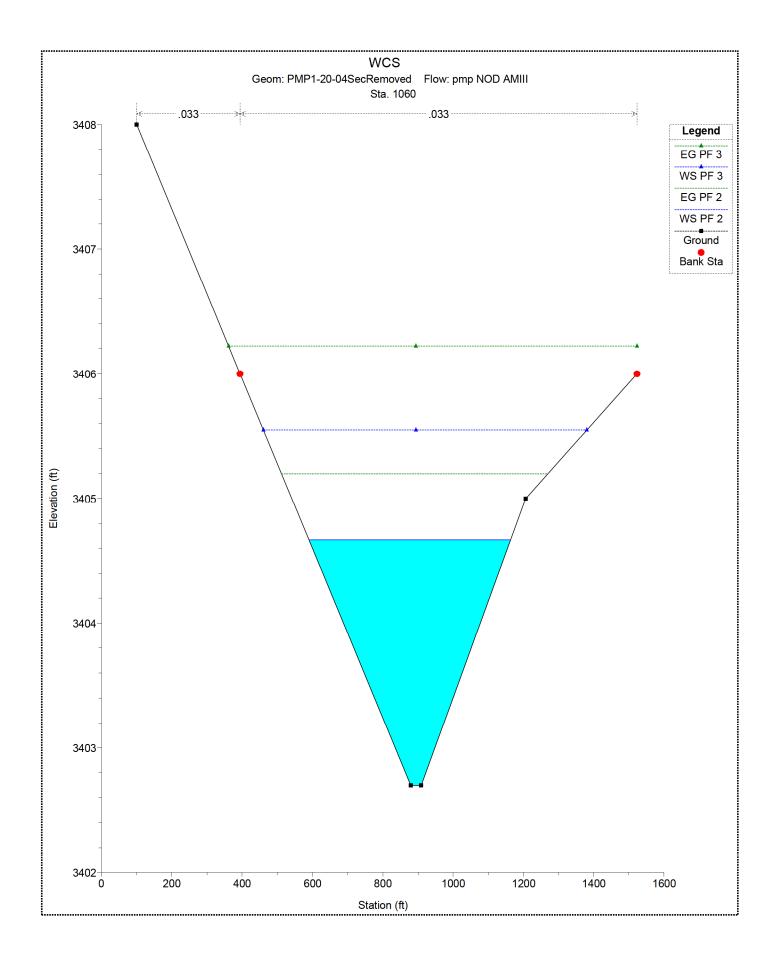












APPENDIX B SOIL STUDY

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource
Report for
Andrews County,
Texas, and Lea County,
New Mexico
wcs

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	7
Soil Map	8
Legend	11
Map Unit Legend	12
Map Unit Descriptions	12
Andrews County, Texas	15
BcB—Blakeney and Conger soils, gently undulating	15
FdB—Faskin and Douro soils, gently undulating	16
ImB—Ima loamy fine sand, 0 to 3 percent slopes	
JPC—Jalmar-Penwell association, undulating	
KmB—Kimbrough soils, gently undulating	
RaB—Ratliff soils, gently undulating	
TwB—Triomas and Wickett soils, gently undulating	
Lea County, New Mexico	
AB—Amarillo-Arvana loamy fine sands association	
BO—Brownfield-Springer association	
BS—Brownfield-Springer association, hummocky	
KM—Kermit soils and dune land, 0 to 12 percent slopes	
MU—Mixed alluvial land	
PG—Portales and gomez fine sandy loams	
SE—Simona fine sandy loam, 0 to 3 percent slopes	
SR—Simona-Upton association	
References	40

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

Custom Soil Resource Report

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

APP B-8

APP B-9

MAP LEGEND

0

\$

Δ

Water Features

Transportation

-

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

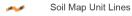
Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways


Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

A Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

♣ Saline Spot

sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at scales ranging from 1:20,000 to 1:31,700.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Andrews County, Texas Survey Area Data: Version 13, Sep 18, 2015

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 12, Sep 29, 2015

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Data not available.

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Andrews County, Texas (TX003)									
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
ВсВ	Blakeney and Conger soils, gently undulating	795.1	28.6%						
FdB	Faskin and Douro soils, gently undulating	40.8	1.5%						
ImB	Ima loamy fine sand, 0 to 3 percent slopes	61.8	2.2%						
JPC	Jalmar-Penwell association, undulating	907.7	32.6%						
KmB	Kimbrough soils, gently undulating	21.2	0.8%						
RaB	Ratliff soils, gently undulating	342.7	12.3%						
TwB	Triomas and Wickett soils, gently undulating	109.6	3.9%						
Subtotals for Soil Survey Area		2,278.8	82.0%						
Totals for Area of Interest		2,780.3	100.0%						

Lea County, New Mexico (NM025)									
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
АВ	Amarillo-Arvana loamy fine sands association	12.5	0.5%						
ВО	Brownfield-Springer association	47.5	1.7%						
BS	Brownfield-Springer association, hummocky	134.3	4.8%						
КМ	Kermit soils and dune land, 0 to 12 percent slopes	11.5	0.4%						
MU	Mixed alluvial land	19.4	0.7%						
PG	Portales and gomez fine sandy loams	17.9	0.6%						
SE	Simona fine sandy loam, 0 to 3 percent slopes	117.0	4.2%						
SR	Simona-Upton association	141.3	5.1%						
Subtotals for Soil Survey Area		501.5	18.0%						
Totals for Area of Interest		2,780.3	100.0%						

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Andrews County, Texas

BcB—Blakeney and Conger soils, gently undulating

Map Unit Setting

National map unit symbol: d53f Elevation: 1,500 to 3,600 feet

Mean annual precipitation: 10 to 17 inches
Mean annual air temperature: 63 to 68 degrees F

Frost-free period: 210 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeney and similar soils: 49 percent Conger and similar soils: 47 percent Minor components: 4 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeney

Setting

Landform: Ridges, divides

Landform position (two-dimensional): Summit

Down-slope shape: Convex

Across-slope shape: Convex, linear

Parent material: Loamy eolian deposits in the blackwater draw formation of pleistocene age overlying calcareous loamy alluvium in the ogallala formation of

miocene-pliocene age

Typical profile

H1 - 0 to 18 inches: fine sandy loam
H2 - 18 to 32 inches: cemented material
H3 - 32 to 68 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 70 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: Shallow 12-17" PZ (R077DY048TX)

Description of Conger

Setting

Landform: Ridges, divides

Landform position (two-dimensional): Summit

Down-slope shape: Convex

Across-slope shape: Convex, linear

Parent material: Loamy eolian deposits in the blackwater draw formation of pleistocene age overlying calcareous loamy alluvium in the ogallala formation of

miocene-pliocene age

Typical profile

H1 - 0 to 17 inches: loam

H2 - 17 to 39 inches: cemented material H3 - 39 to 75 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 8 to 20 inches to petrocalcic

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 70 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: Shallow 12-17" PZ (R077DY048TX)

Minor Components

Unnamed

Percent of map unit: 4 percent

FdB—Faskin and Douro soils, gently undulating

Map Unit Setting

National map unit symbol: d53h Elevation: 2,750 to 3,400 feet

Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 210 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Faskin and similar soils: 63 percent Douro and similar soils: 21 percent Minor components: 16 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Faskin

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Loamy eolian deposits from the blackwater draw formation of

pleistocene age

Typical profile

H1 - 0 to 8 inches: fine sandy loam H2 - 8 to 42 inches: sandy clay loam H3 - 42 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Sandy Loam 12-17" PZ (R077DY047TX)

Description of Douro

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Loamy eolian deposits in the blackwater draw formation of pleistocene age overlying calcareous loamy alluvium in the ogallala formation of

miocene-pliocene age

Typical profile

H1 - 0 to 9 inches: fine sandy loam
H2 - 9 to 30 inches: sandy clay loam
H3 - 30 to 51 inches: cemented material
H4 - 51 to 75 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 20 to 40 inches to petrocalcic

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 80 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: Sandy Loam 12-17" PZ (R077DY047TX)

Minor Components

Unnamed

Percent of map unit: 16 percent

ImB—Ima loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: d53j Elevation: 4,000 to 4,600 feet

Mean annual precipitation: 12 to 17 inches Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 210 days

Farmland classification: Not prime farmland

Map Unit Composition

Ima and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ima

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Sandy alluvium and eolian deposits derived from calcareous

sandstone of triassic and/or permian age

Typical profile

H1 - 0 to 14 inches: loamy fine sand H2 - 14 to 55 inches: fine sandy loam H3 - 55 to 80 inches: very fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 4.0

Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6c

Hydrologic Soil Group: A

Ecological site: Sandy 12-17" PZ (R077DY046TX)

JPC—Jalmar-Penwell association, undulating

Map Unit Setting

National map unit symbol: d53k Elevation: 2,400 to 3,500 feet

Mean annual precipitation: 10 to 17 inches
Mean annual air temperature: 61 to 70 degrees F

Frost-free period: 210 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Jalmar and similar soils: 56 percent Penwell and similar soils: 40 percent

Minor components: 4 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Jalmar

Setting

Landform: Sand sheets
Down-slope shape: Convex
Across-slope shape: Linear

Parent material: Sandy eolian deposits of holocene age over loamy eolian deposits

from the blackwater draw formation of pleistocene age

Typical profile

H1 - 0 to 14 inches: fine sand H2 - 14 to 26 inches: fine sand H3 - 26 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 25 percent Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Penwell

Setting

Landform: Sand sheets
Down-slope shape: Convex
Across-slope shape: Linear

Parent material: Sandy eolian deposits of holocene age

Typical profile

H1 - 0 to 13 inches: fine sand H2 - 13 to 80 inches: fine sand

Properties and qualities

Slope: 1 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Sand Hills 12-17" PZ (R077DY045TX)

Minor Components

Unnamed

Percent of map unit: 4 percent

KmB—Kimbrough soils, gently undulating

Map Unit Setting

National map unit symbol: d53l Elevation: 2,000 to 5,000 feet

Mean annual precipitation: 10 to 17 inches Mean annual air temperature: 57 to 75 degrees F

Frost-free period: 175 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kimbrough

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy alluvium in the ogallala formation of miocene-

pliocene age

Typical profile

H1 - 0 to 8 inches: loam

H2 - 8 to 31 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 20 inches to petrocalcic

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow 12-17" PZ (R077DY048TX)

RaB—Ratliff soils, gently undulating

Map Unit Setting

National map unit symbol: d53s Elevation: 2,500 to 3,400 feet

Mean annual precipitation: 13 to 17 inches
Mean annual air temperature: 63 to 70 degrees F

Frost-free period: 210 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Ratliff and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ratliff

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw

formation of pleistocene age

Typical profile

H1 - 0 to 10 inches: loam H2 - 10 to 25 inches: clay loam H3 - 25 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Limy Upland 12-17" PZ (R077DY042TX)

TwB—Triomas and Wickett soils, gently undulating

Map Unit Setting

National map unit symbol: d53w Elevation: 2,300 to 3,500 feet

Mean annual precipitation: 10 to 17 inches
Mean annual air temperature: 63 to 68 degrees F

Frost-free period: 210 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Triomas and similar soils: 78 percent Wickett and similar soils: 16 percent Minor components: 6 percent

willor components. 6 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Triomas

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Sandy eolian deposits from the blackwater draw formation of

pleistocene age

Typical profile

H1 - 0 to 16 inches: fine sand H2 - 16 to 68 inches: sandy clay loam H3 - 68 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 30 percent

Available water storage in profile: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Wickett

Setting

Landform: Plains

Landform position (three-dimensional): Talf

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Sandy eolian deposits overlying calcareous, loamy alluvium in the

ogallala formation of miocene-pliocene age

Typical profile

H1 - 0 to 16 inches: loamy fine sand H2 - 16 to 33 inches: fine sandy loam H3 - 33 to 53 inches: cemented material H4 - 53 to 67 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 20 to 40 inches to petrocalcic

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 85 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Minor Components

Unnamed

Percent of map unit: 6 percent

Lea County, New Mexico

AB—Amarillo-Arvana loamy fine sands association

Map Unit Setting

National map unit symbol: dmnr Elevation: 3,500 to 4,400 feet

Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 58 to 60 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Amarillo and similar soils: 50 percent Arvana and similar soils: 40 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Amarillo

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous alluvium and/or calcareous eolian deposits derived

from sedimentary rock

Typical profile

A - 0 to 8 inches: loamy fine sand Bt - 8 to 36 inches: sandy clay loam Bk - 36 to 60 inches: marly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Sandy Plains (R077CY056NM)

Description of Arvana

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous alluvium and/or calcareous eolian deposits derived

from sedimentary rock

Typical profile

A - 0 to 6 inches: loamy fine sand
Bt - 6 to 28 inches: sandy clay loam
Bkm - 28 to 38 inches: cemented material
BCk - 38 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 20 to 40 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Sandy Plains (R077CY056NM)

Minor Components

Portales

Percent of map unit: 2 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Brownfield

Percent of map unit: 2 percent

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Patricia

Percent of map unit: 2 percent

Ecological site: Sandy Plains (R077CY056NM)

Gomez

Percent of map unit: 2 percent

Ecological site: Sandy Plains (R077CY056NM)

Mansker

Percent of map unit: 1 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Tivoli

Percent of map unit: 1 percent

Ecological site: Sandy 12-17" PZ (R077DY046TX)

BO—Brownfield-Springer association

Map Unit Setting

National map unit symbol: dmpj Elevation: 3,500 to 4,400 feet

Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 58 to 60 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Brownfield and similar soils: 60 percent Springer and similar soils: 30 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brownfield

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 22 inches: fine sand

Bt - 22 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Springer

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 14 inches: loamy fine sand Bt - 14 to 60 inches: fine sandy loam Bk - 60 to 79 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 20 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Minor Components

Patricia

Percent of map unit: 4 percent

Ecological site: Sandy Plains (R077CY056NM)

Amarillo

Percent of map unit: 4 percent

Ecological site: Sandy 16-21" PZ (R077CY035TX)

Tivoli

Percent of map unit: 1 percent

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Gomez

Percent of map unit: 1 percent

Ecological site: Sandy Plains (R077CY056NM)

BS—Brownfield-Springer association, hummocky

Map Unit Setting

National map unit symbol: dmpk Elevation: 3,500 to 4,400 feet

Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 58 to 60 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Brownfield and similar soils: 65 percent Springer and similar soils: 25 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brownfield

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 22 inches: fine sand

Bt - 22 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Springer

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 7 inches: loamy fine sand Bt - 7 to 60 inches: fine sandy loam Bk - 60 to 79 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 20 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Moderate (about 7.4 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Minor Components

Amarillo

Percent of map unit: 4 percent

Ecological site: Sandy 16-21" PZ (R077CY035TX)

Arvana

Percent of map unit: 3 percent

Ecological site: Sandy 16-21" PZ (R077CY035TX)

Tivoli

Percent of map unit: 2 percent

Ecological site: Sandy 12-17" PZ (R077DY046TX)

Dune land

Percent of map unit: 1 percent

KM—Kermit soils and dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 15 inches
Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Dune land: 45 percent

Kermit and similar soils: 45 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kermit

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 3 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Sandhills (R042XC022NM)

Description of Dune Land

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8e

Hydrologic Soil Group: A

Minor Components

Palomas

Percent of map unit: 3 percent

Ecological site: Loamy Sand (R042XC003NM)

Pyote

Percent of map unit: 3 percent

Ecological site: Loamy Sand (R042XC003NM)

Maljamar

Percent of map unit: 2 percent

Ecological site: Loamy Sand (R042XC003NM)

Wink

Percent of map unit: 2 percent

Ecological site: Loamy Sand (R042XC003NM)

MU—Mixed alluvial land

Map Unit Setting

National map unit symbol: dmqg Elevation: 3,600 to 4,400 feet

Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Ustifluvents and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ustifluvents

Setting

Landform: Drainageways

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Mixed alluvium derived from sedimentary rock

Typical profile

C - 0 to 60 inches: stratified sand to loamy fine sand to loam to sandy clay loam to clay

Properties and qualities

Slope: 0 to 7 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very

high (0.06 to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Frequent Frequency of ponding: None

Calcium carbonate, maximum in profile: 20 percent

Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to moderately saline (0.0 to 8.0 mmhos/cm)

Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: Bottomland (R042XC017NM)

Minor Components

Amarillo

Percent of map unit: 7 percent

Ecological site: Sandy Plains (R077CY056NM)

Portales

Percent of map unit: 7 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Playas

Percent of map unit: 1 percent Landform: Flood-plain playas

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

PG—Portales and gomez fine sandy loams

Map Unit Setting

National map unit symbol: dmqm Elevation: 3,600 to 4,400 feet

Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 60 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Portales and similar soils: 45 percent Gomez and similar soils: 45 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gomez

Setting

Landform: Plains

Landform position (three-dimensional): Dip

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous alluvium and/or calcareous lacustrine deposits derived

from sedimentary rock

Typical profile

A - 0 to 6 inches: fine sandy loam

Bk1 - 6 to 22 inches: fine sandy loam

Bk2 - 22 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c

Hydrologic Soil Group: A

Ecological site: Sandy 16-21" PZ (R077CY035TX)

Description of Portales

Setting

Landform: Plains

Landform position (three-dimensional): Dip

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous alluvium and/or calcareous eolian deposits derived

from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sandy loam Bk - 8 to 60 inches: clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: High (about 11.0 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Sandy 16-21" PZ (R077CY035TX)

Minor Components

Lea

Percent of map unit: 4 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Arvana

Percent of map unit: 3 percent

Ecological site: Sandy 16-21" PZ (R077CY035TX)

Amarillo

Percent of map unit: 2 percent

Ecological site: Sandy Plains (R077CY056NM)

Playas

Percent of map unit: 1 percent

Landform: Playa floors

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Concave

SE—Simona fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: dmr2 Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 16 inches
Mean annual air temperature: 58 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sandy loam

Bk - 8 to 16 inches: gravelly fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): 6s Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow Sandy (R042XC002NM)

Minor Components

Kimbrough

Percent of map unit: 7 percent

Ecological site: Very Shallow 16-21" PZ (R077CY037TX)

Lea

Percent of map unit: 7 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Playas

Percent of map unit: 1 percent

Landform: Playa floors

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

SR—Simona-Upton association

Map Unit Setting

National map unit symbol: dmr3 Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 16 inches
Mean annual air temperature: 58 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 50 percent Upton and similar soils: 35 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly fine sandy loam Bk - 8 to 16 inches: fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow Sandy (R042XC002NM)

Description of Upton

Setting

Landform: Ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly loam

Bkm - 8 to 18 inches: cemented material BCk - 18 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 75 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow (R042XC025NM)

Minor Components

Stegall

Percent of map unit: 5 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Kimbrough

Percent of map unit: 5 percent

Ecological site: Very Shallow 16-21" PZ (R077CY037TX)

Slaughter

Percent of map unit: 4 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Playas

Percent of map unit: 1 percent

Landform: Playa floors

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX C CALCULATIONS

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT CURVE NUMBER CALCULATIONS

DES DD

9/6/2016

CHK

DD

3/8/2016

File: 15052 - CN

WCS

Revised 12/08/2016 Revised 09/13/19

DD DD

CURVE NUMBER

Reference: 1. drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P CN.dwg

2. Soil information taken from US Department Of Agriculture, Natural Resources Conservation Service Custom Soil Resource Report For Andrews County, Texas, And Lea County, New Mexico, dated December 22, 2015

(60 Min.)

72

3. Texas Engineering Technical Note, No. 210-18-TX5, Estimating Runoff for Conservation Practices, 1990

Drainage Area - P DA 1	A=	101.5	101.5 Acres		9 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Desert Shrub Poor	JPC	B/A***	55.08	77	4241.2		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	TwB	В	12.79	77	984.8		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	BCB	D	13.19	88	1160.7		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	RaB	В	18.43	77	1419.1		
		Imp. Cover	2.00	98	196.0		
Total			101.5		8001.8		
COMPOSITE CN			79			62	91
Drainage Area - P DA 2A	A=	25.8	Acres	0.04	0 sq mi	ARC I Adjustment**	ARC III Adjustment**

Drainage Area - P DA 2A	A=	25.8	Acres	0.04	0 sq mi
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN
Desert Shrub Poor	BcB	D	25.75	88	2266.0
		Imp. Cover	0.00	98	0.0
Desert Shrub Poor	RaB	В	0.05	77	3.6
		Imp. Cover	0.00	98	0.0
Total			25.8		2269.6

75 95 COMPOSITE CN 88

Drainage Area - P DA 2B	A= 9.6 A		9.6 Acres 0.015 sq mi			ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Desert Shrub Poor	BcB	D	7.88	88	693.2		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	RaB	В	1.71	77	131.3		
		Imp. Cover	0.00	98	0.0		
Total			9.6		824.5		

86 COMPOSITE CN

(60 Min.)

94

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT CURVE NUMBER CALCULATIONS

Drainage Area - P DA 3	A=	42.8	Acres	0.06	7 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Desert Shrub Poor	RaB	В	2.95	77	227.1		
		Imp. Cover	0.00	0	0.0		
Desert Shrub Poor	BcB	D	34.20	88	3009.6		
		Imp. Cover	5.65	98	553.8		
Total			42.8		3790.5		
COMPOSITE CN			89			76	96
Drainage Area - P DA 4	A=	679.34	Acres	1.06	1 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Stockpile (Bare soil)		D	60.67	94	5703.3		
Desert Shrub Poor	JPC	B/A***	150.67	77	11601.5		
		Imp. Cover	21.88	98	2143.9		
Desert Shrub Poor	RaB	В	215.19	77	16569.4		
		Imp. Cover	4.48	98	439.3		
Desert Shrub Poor	BcB	D	98.43	88	8662.1		
		Imp. Cover	54.29	98	5320.2		
Desert Shrub Poor	TwB	В	25.88	77	1992.8		
		Imp. Cover	47.81	98	4685.8		
Total			679.3	·	57118.4		

84

68

93

COMPOSITE CN

^{*}Taken from Table 2c of Texas Engineering Technical Note, Hydrology, No. 210-18-TX5, Estimating Runoff for Conservation Practices

^{**}Taken from Table 3 of Texas Engineering Technical Note, Hydrology, No. 210-18-TX5, Estimating Runoff for Conservation Practices

^{***}USDA Soil Survey indicates 46% A and 50% B. CN is conservatively calculated to be 100% B

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT DRAINAGE AREA TIME OF CONCENTRATION

DES CHK

WCS DD 9/6/2016 DD 3/8/2016 Revised 12/08/16 DD

Revised 09/23/19 DD

Reference: 1. United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986

2. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs DD.dwg

		P DA 1			P DA 2A			P DA 2B			P DA 3			P DA 4	
Drainage Area	Α	101.5	(acres)	Α	25.8	(acres)	Α	9.6	(acres)	Α	42.8	(acres)	Α	679.3	(acres)
ű		0.159	(sqmi)		0.040	(sqmi)		0.015	(sqmi)		0.067	(sqmi)		1.061	(sqmi)
Sheet Flow			,			\ , ,			,			,			` ' '
Manning's roughness coef.1	n	0.15	n/a	n	0.011	n/a	n	0.011	n/a	n	0.011	n/a	n	0.15	n/a
Flow Length	L	300	feet												
2-year, 24-hour rainfall	P2	2.5	inches												
Slope	s	0.015	ft/ft	s	0.003	ft/ft	s	0.005	ft/ft	s	0.003	ft/ft	s	0.01400	ft/ft
Travel time ²	Tt	0.50	hours	Tt	0.11	hours	Tt	0.10	hours	Tt	0.11	hours	Tt	0.51	hours
		30.0	min.		6.8	min.		5.7	min.		6.8	min.		30.8	min.
Shallow Concentrated Flow															
Flow Length	L	1540	feet	L	1589	feet	L	784	feet	L	1681	feet	L	3545	feet
Slope	s	0.01650	ft/ft	s	0.00736	ft/ft	s	0.00714	ft/ft	s	0.00476	ft/ft	s	0.00555	ft/ft
Surface (1=paved or 2=unpaved)		2	n/a												
Velocity ³	V	2.07	ft/sec	V	1.38	ft/sec	V	1.36	ft/sec	V	1.11	ft/sec	V	1.20	ft/sec
Travel time	Tt	0.21	hours	Tt	0.32	hours	Tt	0.16	hours	Tt	0.42	hours	Tt	0.82	hours
		12.38	min.		19.13	min.		9.58	min.		25.17	min.		49.15	min.
Manning's Equation															
Flow Length	L	1605	feet	L	0	feet									
Slope	S	0.00460	ft/ft	S	0.00000	ft/ft									
roughness ⁴	n	0.028	n/a												
Open Channel															
Bottom Width	BW	150	feet	BW	0	feet									
Side Slopes (ft/ft, H:V) Rt.	H:V	125	feet	H:V	0	feet									
Side Slopes (ft/ft, H:V) Lt.	H:V	125	feet	H:V	0	feet									
Depth	d	0.5	feet	d	0	feet									
Flow Rate	Q	203	cfs	Q	0	cfs									
Velocity	V	1.91	ft/sec	V	0	ft/sec	V	0	ft/sec	V	1	ft/sec	V	1	ft/sec
Travel time	Tt	0.23	hours	Tt	0.00	hours									
		14.01	min.		0.00	min.									
Total Travel Time	T	0.94	hours	T	0.43	hours	T	0.26	hours	T	0.53	hours	T	1.33	hours
	T	56.34	min.	Т	25.89	min.	T	15.33	min.	Т	31.93	min.	Т	79.94	min.
Lag Time (Tc*0.6)	Tlag	0.56	hours	Tlag	0.26	hours	Tlag	0.15	hours	Tlag	0.32	hours	Tlag	0.80	hours
	Tlag	33.80	min.	Tlag	15.53	min.	Tlag	9.20	min.	Tlag	19.16	min.	Tlag	47.97	min.

Notes:

1. Manning's roughness coefficient taken from 'Table 3-1 Roughness coefficients (Manning's n) for sheet flow' - United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986

APP C-3

- 2. Equation 3-3, United States Department of Agriculture, *Urban Hydrology for Small Watersheds TR-55*, 1986
- 3. Figure 3-1, United States Department of Agriculture, *Urban Hydrology for Small Watersheds TR-55*, 1986
- 4. Reference Manning's 'n' calculations in APPDX C: POST-DEVELOPMENT HYDRAULIC CALCULATIONS
- S:\Projects\W Z\WCS (Waste Control Specialists)\draft\15052 Floodplain Analysis CISF\Engineering\15052 Tc.xls

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT HYDRAULIC CALCULATIONS

DES CHK

WCS AVV 3/8/2016 DD 3/8/2016

Reference: 1. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains, The

U.S. Department of Transportation, 1984

Manning's Roughness Coefficient

Eq. 3 $n = (n_0 + n_1 + n_2 + n_3 + n_4)m$

Where: n_0 = a base value of n for straight, uniform, smooth channel in natural materials

 n_1 = a value added to correct for the effect of surface irregularities

n₂= a value for variations in shape and size of the channel cross section

n₃= a value for obstructions

n₄= a value for vegetation and flow conditions

m= a correction factor for meandering of the channel

Channel Roughness

 $n_0 =$ 0.020 earth Table1 $n_1 =$ 0.000 smooth Table 2 $n_2 =$ 0.000 gradual Table 2 $n_3 =$ 0.000 neglible Table 2 0.008 low Table 2 n₄= 1.0 minor Table 2 m=

n = (0.02 + 000 + 000 + 000 + 0.008)1.0

= 0.028

DES CHK

WCS AVV 3/8/2016 DD 3/8/2016

Revised 12/09/2016 DD Revised 10/01/2019 DD

Reference: 1. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,

Texas 214-349-2190, 800-862-2190, Fax 214-349-2193.

2. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs DD.dwg

Manning's Formula

 $Q = vA = (1.49/n)AR^{2/3}s^{1/2}$

Where:

Q= Flow Rate (cfs) v= velocity, (ft/s) A= Flow Area, (ft²)

n= Manning's Roughness Coefficient

R= Hydraulic Radius, (ft) s= Channel Slope, (ft/ft)

AP-1 Stateline Road

Road Elevation at P AP 1: 3486.5 ft

AMCI

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	119.4	1.59	0.38

500 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	247.7	2.01	0.56

PMP

Ī	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
Ī	0.028	0.0046	125	125	150	413.3	2.35	0.73

AMC II

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	225.5	1.97	0.53

500 YR

Ī	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
Ī	0.028	0.0046	125	125	150	376.6	2.27	0.7

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	424.2	2.36	0.74

AMC III

100 YR

Ī	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
	0.028	0.0046	125	125	150	294.7	2.09	0.62

500 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	444.8	2.39	0.76

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	426.9	2.34	0.75

AP-2B Stateline Road

Road Elevation at P AP 2B: 3486.4 ft

 $\label{eq:Assumptions: Road is basically flat at this location, therefore use a large bottom width and$

relatively flat side slopes.

AMC I

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.007	500	500	500	37.1	0.76	0.09

500 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.007	500	500	500	65.5	0.97	0.12

PMP

I	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
	0.028	0.007	500	500	500	39.8	0.81	0.09

AMC II

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.007	500	500	500	53	0.87	0.11

500 YR

ĺ	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
	0.028	0.007	500	500	500	82.5	1.03	0.14

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.007	500	500	500	40.2	0.82	0.09

AMC III

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.007	500	500	500	59.9	0.89	0.12

500 YR

I	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
	0.028	0.007	500	500	500	88.5	1.03	0.15

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.007	500	500	500	40.3	0.82	0.09

Notes:

- 1. Channel geometry sources from aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.
- 2. See Manning's Roughness Coefficient calculation. Manning's n from Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains, The U.S. Department of Transportation, 1984
- 3. Peak velocity and depth calculated using AutoCAD Civil 3D Hydraflow Express 2019.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT ELEVATION-STORAGE TABLES

DES CHK

WCS AVV 2/1/2016 DD 2/4/2016

Revised 09/23/19 DD

Elevation-Storage-Discharge

Reference: 1. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project

Andrews County, Texas Project No. 29600

2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,

Texas 214-349-2190, 800-862-2190, Fax 214-349-2193.

3. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P GRND 9-23-19.dwg

P DA 2A

Elevation ¹	Storage	Storage
ft	cu yd	ac-ft
3480	0	0.0000
3481	0.24	0.0001
3482	4	0.0024
3483	23	0.0142
3484	61	0.0379
3485	201	0.1244
3486	436	0.2699
3486.4	476	0.2947

Notes:

1. Topographic elevations reference aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT ELEVATION-STORAGE TABLES

DES CHK

WCS AVV 2/1/2016 DD 2/4/2016

Elevation-Storage-Discharge

Reference:

- $1.\ 2008\ URS\ As-Built\ Rail\ Drawings-R/T\ Infrastructure\ Improvements\ Facilities\ G.E.\ Hudson\ River\ Project$
- Andrews County, Texas Project No. 29600
- 2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,
- 3. WCS CISF Rail Plans, 1/22/16
- 4. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 Elevation-Storage

Calcs.dwg.dwg

P DA 3

Elevation ¹	Storage	Storage
ft	cu yd	ac-ft
3484	0	0.0000
3486	12111	7.5068
3488	43926	27.2267
3490	103970	64.4437

Notes:

1. Topographic elevations reference aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT ELEVATION-STORAGE TABLES

DES CHK

WCS AVV 2/1/2016 DD 2/4/2016

Revised 12/08/16 DD

Elevation-Storage-Discharge

Reference: 1. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600

- 2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,
- 3. WCS CISF Rail Plans, 1/22/16
- 4. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Design\Surfaces\15052 EX TOPO & PROP.dwg

Playa

Elevation ¹	Storage	Storage
ft	cu yd	ac-ft
3476.65	0	0
3478	3559	2.2060
3480	34133	21.1567
3482	84014	52.0744
3484	172618	106.9938
3486	476370	295.2684
3487	762062	472.3489
3488	1104022	684.3060
3489	1514069	938.4654
3490	1963987	1217.3381

Notes:

1. Topographic elevations reference aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT NON-LEVEL DAM TOP CROSS SECTIONS

DES CHK

WCS AVV 3/8/2016 DD 3/8/2016

Revised: 09/27/2019 DD

Cross Sections

Reference:

1. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas, Texas 214-349-2190, 800-862-2190, Fax 214-349-2193.

2. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600

3. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P GRND 9-23-19.dwg (Alignment - Stateline RD Profile).

Non-Level Dam - P DA 2A

Profile	Station
Station	Elevation
100.00	3486.40
193.95	3486.22
346.64	3485.70
354.52	3485.41
382.77	3484.02
385.72	3484.02
402.37	3486.00
408.34	3486.40

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT NON-LEVEL DAM TOP CROSS SECTIONS

DES CHK

WCS AVV 3/8/2016 DD 3/8/2016

Cross Sections

Reference: 1. WCS CISF Rail Plans, 1/22/16

Non-Level Dam - P DA 3

	Rail XS	Station	Slope
	Station ¹	Elevation	Ahead
p-rail	5477.49	3489.00	-0.16%
p-rail	5489.81	3488.98	-0.13%
p-rail	5689.81	3488.72	-0.13%
p-rail	5889.81	3488.46	-0.13%
p-rail	6089.81	3488.20	-0.12%
p-rail	6262.89	3488.00	0.22%
p-rail	6632.18	3488.80	0.06%
p-rail	7407.91	3489.23	-

NOTES:

1. Proposed rail stations reference the proposed WCS CISF Rail Plans, 1/22/16

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT NON-LEVEL DAM TOP CROSS SECTIONS

DES CHK

WCS AVV 3/8/2016 DD 3/8/2016

Cross Sections

Reference:

- 1. 2008 URS As-Built Rail Drawings R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600
- 2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas, Texas 214-349-2190, 800-862-2190, Fax 214-349-2193.
- 3. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 P Hydraulic Calcs PMP.dwg

Non-Level Dam - P DA 4

	Rail	XS	Station	Slope
	Station	Station	Elevation	Ahead
ex-rail ¹	8500.00	8500.00	3489.96	-0.12%
ex-rail ¹	9900.00	9900.00	3488.28	-0.15%
ex-rail ¹	10017.67	10017.67	3488.10	-0.20%
ex-rail ¹	10387.00	10387.00	3487.36	-8.00%
topo ²	-	10404.00	3486.00	5.58%
topo ²	-	10439.87	3488.00	0.00%
topo ²	-	10742.10	3488.00	0.65%
topo ²	-	11051.85	3490.00	-

NOTES:

- 1. Existing rail stations reference 2008 URS rail as-built drawings R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600 and are approximate
- 2. Topographic elevations come from the topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT PAD OVERLAND DEPTH OF FLOW

DES CHK

WCS AVV 3/8/2016 DD 3/8/2016

Revised 11/11/16 Clarifications DD

Reference: 1. Reference Drawing: Figure 1.1.2-1

2. Fundamentals of Hydraluic Engineering Systems, Ned H.C. Hwang, 1982

Manning Equation

 $v = 1.49/n*R_h^{2/3}*s^{1/2}$

Where,

v= velocity (ft/s) n= Manning's n R_h= hydraulic radius s= slope (ft/ft)

And

q= v*y

Where,

q= unit discharge (ft²/s)

y= depth

For sheet flow and a wide rectangular channel:

 $R_h \cong y$ Reference 2, page 182

Therefore

q= $(1.49/n*y^{2/3}*s^{1/2})(y)$ = $1.49/n*y^{5/3}*s^{1/2}$

And

 $y=(q/(1.49/n*s^{1/2}))^{3/5}$

v = q/y

Where,

q= unit discharge (ft²/s) v= velocity (ft/s) n= Manning's n y= depth s= slope (ft/ft)

Max flow

 $q_{\text{Max}} = I * L$

Where,

q_{Max}= maximum unit discharge (ft²/s) I= maximum rainfaill Intensity

L= Length of Pad

Max depth

$$y_{max} = (q_{max}/(1.49/n*s^{1/2}))^{3/5}$$

Where,

y_{max}= Maximum depth of flow (ft) q_{Max}= Maximum unit discharge n= Manning's n

s= slope (ft/ft)

Max velocity

$$v_{max} = q_{max}/y_{max}$$

Where,

 q_{Max} = maximum unit discharge (ft²/s) y_{max} = Maximum depth of flow (ft)

Inputs

s= 0.0075 ft/ft phase slope L= 515 ft length of phase

I= 0.210 in/min Max 500 yr-24hr rainfall intensity (HEC-HMS 500 yr SCS Storm)

2.92E-04 ft/s

n= 0.015 manning's n for concrete

Calculation

 q_{Max} = I*L

 $q_{Max} = 1.50E-01 \text{ ft}^2/\text{s}$

y_{max} = 0.088154 ft = 1.1 in

v_{max}= 1.7 ft/s

APPENDIX D HEC-HMS OUTPUT

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 24Sep2019, 16:58:21 Control Specifications: Control 24 HR Storms

'	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 1	0.159	119.4	01Jan2016, 12:29	2.09

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 24Sep2019, 17:24:35 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharg	eTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	247.7	01Jan2016, 12:27	4.11

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC I End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 25Sep2019, 11:16:23 Control Specifications: Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(Ml2)	(CFS)		(IN)
P DA 1	0.159	413.3	03Jan2016, 06:01	33.97

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 25Sep2019, 11:32:56 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	eTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	225.5	01Jan2016, 12:26	3.68

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 25Sep2019, 11:35:21 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	376.6	01Jan2016, 12:26	6.17

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC II End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 25Sep2019, 11:37:05 Control Specifications: Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	424.2	03Jan2016, 06:00	37.48

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 25Sep2019, 11:39:00 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	294.7	01Jan2016, 12:25	4.96

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 25Sep2019, 11:40:30 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	444.8	01Jan2016, 12:25	7.63

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 1 AMC III End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 25Sep2019, 11:42:16 Control Specifications: Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.159	426.9	03Jan2016, 06:00	39.34

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 11:36:24 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.04	84.0	01Jan2016, 12:08	3.28
P DA 2A Storage	0.04	83.9	01Jan2016, 12:09	3.26

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 11:39:06 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.04	145.1	01Jan2016, 12:08	5.69
P DA 2A Storage	0.04	144.9	01Jan2016, 12:09	5.66

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC I End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 11:41:22 Control Specifications: Control PMP

Hydrologic Element	Drainage Area	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.04	106.4	03Jan2016, 06:00	36.76
P DA 2A Storage	0.04	106.4	03Jan2016, 06:00	36.74

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 11:30:40 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.04	115.4	01Jan2016, 12:08	4.63
P DA 2 STORAGE	0.04	115.1	01Jan2016, 12:08	4.60

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 11:53:08 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2A	0.04	177.1	01Jan2016, 12:08	7.26
P DA 2 STORAGE	0.04	177.1	01Jan2016, 12:08	7.24

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC II End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:01:54 Control Specifications: Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.04	107.3	03Jan2016, 06:00	38.91
P DA 2 STORAGE	0.04	107.3	03Jan2016, 06:00	38.89

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 12:05:41 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.040	127.5	01Jan2016, 12:08	5.41
P DA 2A STORAGE	0.040	127.4	01Jan2016, 12:08	5.39

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 11:09:09 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.040	187.5	01Jan2016, 12:08	8.11
P DA 2A STORAGE	0.040	187.6	01Jan2016, 12:08	8.08

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC III End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:09:06 Control Specifications: Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2A	0.040	107.5	03Jan2016, 06:00	39.88
P DA 2A STORAGE	0.040	107.5	03Jan2016, 05:59	39.85

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 12:25:35 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	37.1	01Jan2016, 12:03	2.99

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 12:28:57 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge		Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	65.5	01Jan2016, 12:02	5.32

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC I End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:30:05 Control Specifications: Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	39.8	03Jan2016, 06:00	36.18

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 12:46:27 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	53.0	01Jan2016, 12:02	4.41

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 12:47:47 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	82.5	01Jan2016, 12:02	7.02

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC II End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:49:44 Control Specifications: Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	40.2	03Jan2016, 06:00	38.61

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 12:50:48 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	59.9	01Jan2016, 12:02	5.30

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 12:52:12 Control Specifications: Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	88.5	01Jan2016, 12:02	7.99

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2B AMC III End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:53:41 Control Specifications: Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 2B	0.015	40.3	03Jan2016, 06:00	39.74

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 30Sep2019, 15:12:07 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	127.9	01Jan2016, 12:12	3.38
P DA 4	1.061	806.1	01Jan2016, 12:43	2.62
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 30Sep2019, 15:12:14 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	218.8	01Jan2016, 12:11	5.81
P DA 4	1.061	1527.6	01Jan2016, 12:42	4.84
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC I End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 30Sep2019, 15:11:58 Control Specifications: Control PMP

Hydrologic Element	Drainage Area	Peak Discharç (CFS)	g ∉ ime of Peak	Volume (IN)
P DA 3	0.067	178.4	03Jan2016, 06:00	36.94
P DA 4	1.061	2787.0	03Jan2016, 06:01	35.35
P DA 3 STORAGE	0.067	178.3	03Jan2016, 06:01	29.18
PLAYA	1.128	2875.1	03Jan2016, 06:19	26.75

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 30Sep2019, 14:59:07 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	174.3	01Jan2016, 12:11	4.74
P DA 4	1.061	1327.9	01Jan2016, 12:41	4.20
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 30Sep2019, 14:59:14 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	266.1	01Jan2016, 12:11	7.38
P DA 4	1.061	2120.0	01Jan2016, 12:40	6.78
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	4.6	02Jan2016, 01:53	0.09

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC II End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 30Sep2019, 14:58:59 Control Specifications: Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	179.8	03Jan2016, 06:00	39.05
P DA 4	1.061	2839.4	03Jan2016, 06:00	38.30
P DA 3 STORAGE	0.067	179.8	03Jan2016, 06:00	31.29
PLAYA	1.128	2980.9	03Jan2016, 06:14	29.65

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 3 AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 30Sep2019, 11:42:47 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (IN)
P DA 3	0.067	191.6	01Jan2016, 12:11	5.53
P DA 4	1.061	1579.3	01Jan2016, 12:40	5.18
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 3 AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 30Sep2019, 11:23:24 Control Specifications: Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	280.7	01Jan2016, 12:11	8.23
P DA 4	1.061	2353.7	01Jan2016, 12:40	7.87
P DA 3 STORAGE	0.067	2.7	02Jan2016, 00:18	0.41
PLAYA	1.128	16.0	02Jan2016, 01:22	0.35

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 3 AMC III End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 30Sep2019, 14:44:32 Control Specifications: Control PMP

Hydrologic Element	Drainage Area (Ml2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	180.1	03Jan2016, 06:00	40.00
P DA 4	1.061	2849.7	03Jan2016, 06:00	39.61
P DA 3 STORAGE	0.067	180.0	03Jan2016, 05:58	32.24
PLAYA	1.128	3005.0	03Jan2016, 06:11	30.94

Reservoir: P DA 2A Storage

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 11:36:24 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 84.0 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:07 Peak Discharge: 83.9 (CFS) Date/Time of Peak Discharge01Jan2016, 12:09

Inflow Volume: 3.28 (IN) Peak Storage: 0.2 (AC-FT)
Discharge Volume3.26 (IN) Peak Elevation: 3485.5 (FT)

Reservoir: P DA 2A Storage

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 11:39:06 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 145.1 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:07 Peak Discharge: 144.9 (CFS) Date/Time of Peak Discharge01Jan2016, 12:09

Inflow Volume: 5.69 (IN) Peak Storage: 0.2 (AC-FT)
Discharge Volume5.66 (IN) Peak Elevation: 3485.8 (FT)

Reservoir: P DA 2A Storage

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC I End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 11:41:22 Control Specifications: Control PMP

Volume Units: N

Computed Results

Peak Inflow: 106.4 (CFS) Date/Time of Peak Inflow: 03Jan2016, 05:59 Peak Discharge: 106.4 (CFS) Date/Time of Peak Discharge03Jan2016, 06:00

Inflow Volume: 36.76 (IN) Peak Storage: 0.2 (AC-FT)
Discharge Volume36.74 (IN) Peak Elevation: 3485.6 (FT)

Reservoir: P DA 2 STORAGE

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 11:44:45 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 115.4 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:07 Peak Discharge: 115.1 (CFS) Date/Time of Peak Discharge01Jan2016, 12:08

Inflow Volume: 4.63 (IN) Peak Storage: 0.2 (AC-FT)
Discharge Volume4.60 (IN) Peak Elevation: 3485.7 (FT)

Reservoir: P DA 2 STORAGE

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 11:53:08 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 177.1 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:07 Peak Discharge: 177.1 (CFS) Date/Time of Peak Discharge01Jan2016, 12:08

Inflow Volume: 7.26 (IN) Peak Storage: 0.3 (AC-FT)
Discharge Volume7.24 (IN) Peak Elevation: 3485.9 (FT)

Reservoir: P DA 2 STORAGE

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC II
End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:01:54 Control Specifications: Control PMP

Volume Units: N

Computed Results

Peak Inflow: 107.3 (CFS) Date/Time of Peak Inflow: 03Jan2016, 05:59 Peak Discharge: 107.3 (CFS) Date/Time of Peak Discharge03Jan2016, 06:00

Inflow Volume: 38.91 (IN) Peak Storage: 0.2 (AC-FT)
Discharge Volume38.89 (IN) Peak Elevation: 3485.6 (FT)

Reservoir: P DA 2A STORAGE

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 26Sep2019, 12:05:41 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 127.5 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:07 Peak Discharge: 127.4 (CFS) Date/Time of Peak Discharge01Jan2016, 12:08

Inflow Volume: 5.41 (IN) Peak Storage: 0.2 (AC-FT)
Discharge Volume5.39 (IN) Peak Elevation: 3485.7 (FT)

Reservoir: P DA 2A STORAGE

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 26Sep2019, 11:09:09 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 187.5 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:07 Peak Discharge: 187.6 (CFS) Date/Time of Peak Discharge01Jan2016, 12:08

Inflow Volume: 8.11 (IN) Peak Storage: 0.3 (AC-FT)
Discharge Volume8.08 (IN) Peak Elevation: 3486.0 (FT)

Reservoir: P DA 2A STORAGE

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 2A AMC III
End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 26Sep2019, 12:09:06 Control Specifications: Control PMP

Volume Units: N

Computed Results

Peak Inflow: 107.5 (CFS) Date/Time of Peak Inflow: 03Jan2016, 05:59 Peak Discharge: 107.5 (CFS) Date/Time of Peak Discharge03Jan2016, 05:59

Inflow Volume: 39.88 (IN) Peak Storage: 0.2 (AC-FT) Discharge Volume39.85 (IN) Peak Elevation: 3485.6 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 30Sep2019, 15:12:07 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow: 806.1 (CFS) Date/Time of Peak Inflow: 01Jan2016, 12:42
Peak Discharge: 0.0 (CFS) Date/Time of Peak Discharge 01Jan2016, 00:00
Inflow Volume: 2.47 (IN) Peak Storage: 148.3 (AC-FT)
Discharge Volume 0.00 (IN) Peak Elevation: 3484.4 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC I

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 30Sep2019, 15:12:14 Control Specifications: Control 24 HR Storms

Volume Units:IN

Computed Results

Peak Inflow:1527.6 (CFS)Date/Time of Peak Inflow:01Jan2016, 12:41Peak Discharge:0.0 (CFS)Date/Time of Peak Discharge01Jan2016, 00:00Inflow Volume:4.55 (IN)Peak Storage:273.8 (AC-FT)Discharge Volume0.00 (IN)Peak Elevation:3485.8 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC I
End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 30Sep2019, 15:11:58 Control Specifications: Control PMP

Volume Units:IN

Computed Results

Peak Inflow:2965.3 (CFS)Date/Time of Peak Inflow:03Jan2016, 06:00Peak Discharge:2875.1 (CFS)Date/Time of Peak Discharge03Jan2016, 06:19Inflow Volume:34.99 (IN)Peak Storage:894.8 (AC-FT)Discharge Volume26.75 (IN)Peak Elevation:3488.8 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 30Sep2019, 14:59:07 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow:1327.9 (CFS)Date/Time of Peak Inflow:01Jan2016, 12:40Peak Discharge:0.0 (CFS)Date/Time of Peak Discharge D1Jan2016, 00:00Inflow Volume:3.95 (IN)Peak Storage:237.5 (AC-FT)Discharge Volume 0.00 (IN)Peak Elevation:3485.4 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC II

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 30Sep2019, 14:59:14 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow:2120.0 (CFS)Date/Time of Peak Inflow:01Jan2016, 12:39Peak Discharge:4.6 (CFS)Date/Time of Peak Discharge02Jan2016, 01:53Inflow Volume:6.38 (IN)Peak Storage:381.5 (AC-FT)Discharge Volume0.09 (IN)Peak Elevation:3486.5 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP3 AMC II
End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 30Sep2019, 14:58:59 Control Specifications: Control PMP

Volume Units: N

Computed Results

Peak Inflow:3019.2 (CFS)Date/Time of Peak Inflow:03Jan2016, 05:59Peak Discharge:2980.9 (CFS)Date/Time of Peak Discharge 03Jan2016, 06:14Inflow Volume:37.88 (IN)Peak Storage:900.7 (AC-FT)Discharge Volume 29.65 (IN)Peak Elevation:3488.9 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 3 AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 30Sep2019, 14:44:12 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow:1579.3 (CFS)Date/Time of Peak Inflow:01Jan2016, 12:39Peak Discharge:0.0 (CFS)Date/Time of Peak Discharge 01Jan2016, 00:00Inflow Volume:4.87 (IN)Peak Storage:293.3 (AC-FT)Discharge Volume 0.00 (IN)Peak Elevation:3486.0 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 3 AMC III

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 30Sep2019, 11:23:24 Control Specifications: Control 24 HR Storms

Volume Units: N

Computed Results

Peak Inflow:2353.7 (CFS)Date/Time of Peak Inflow:01Jan2016, 12:39Peak Discharge:16.0 (CFS)Date/Time of Peak Discharge02Jan2016, 01:22Inflow Volume:7.42 (IN)Peak Storage:437.0 (AC-FT)Discharge Volume0.35 (IN)Peak Elevation:3486.8 (FT)

Reservoir: PLAYA

Start of Run: 01Jan2016, 00:00 Basin Model: P AP 3 AMC III
End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 30Sep2019, 14:44:32 Control Specifications: Control PMP

Volume Units: IN

Computed Results

Peak Inflow: 3029.7 (CFS) Date/Time of Peak Inflow: 03Jan2016, 05:59
Peak Discharge: 3005.0 (CFS) Date/Time of Peak Discharge03Jan2016, 06:11
Inflow Volume: 39.17 (IN) Peak Storage: 902.0 (AC-FT)
Discharge Volume30.94 (IN) Peak Elevation: 3488.9 (FT)

APPENDIX E HEC-HMS INPUT (CD)

ADDENDUM A BERM BREACH ANALYSIS

ADDENDUM A BERM BREACH ANALYSIS

FEBRUARY 2019 REVISED OCTOBER 2019 (FIGURE A-1 ONLY)

Prepared for:

Waste Control Specialists LLC P.O. Box 1129 Andrews, Texas 78714

Prepared by:

Cook-Joyce, Inc. 812 West 11th Street, Suite 205 Austin, Texas 78701

This report is issued for permitting or licensing purposes. It is not intended for bidding or construction purposes.

Diana Dworaczyk P.E. No. 63724 10 October 2019

TABLE OF CONTENTS

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	WATERSHED DESCRIPTION AND MODEL	1
3.0	BERM BREACH	

LIST OF FIGURES

FIGURE

A-1 DEVELOPED DRAINAGE AREA DITCHES

LIST OF APPENDICES

APPENDIX

APPENDIX A CALCULATIONS

APPENDIX B HEC-HMS OUTPUT

1.0 INTRODUCTION

This addendum presents the results of a hydrologic and hydraulic analysis for an unlikely berm breach of the proposed berm and ditch located just north of the protected area fence for the Centralized Interim Storage Facility (CISF). The same analysis methods, strategies and references that are found in the main part of the flood report are used in this analysis.

The diversion berms and collection ditches, A and B as shown on Figure A-1, will divert surface water runoff from the area north and upgradient of the CISF. Collection ditches A and B drainage areas that will contribute runoff to the ditches and berms are delineated on Figure A-1. Collection Ditch A drainage area is 4.3 acres and Collection Ditch B drainage area is 62.2 acres. Collection Ditch B has the largest drainage area contributing surface water runoff to it by a substantial amount and will carry the largest flow. Therefore, only a berm breach in Collection Ditch B is analyzed since it will yield the greatest potential surface water flow to the storage pads.

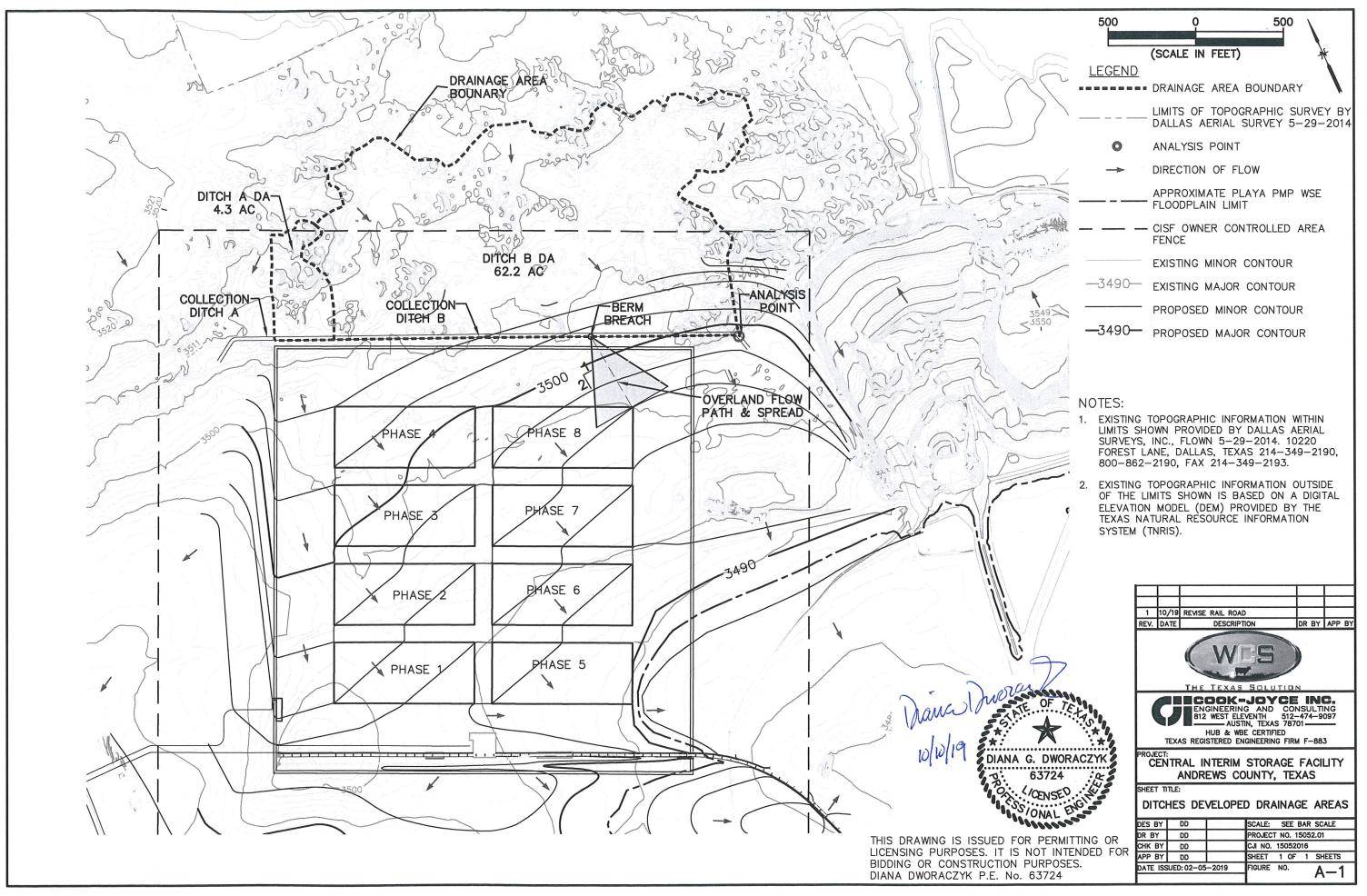
2.0 WATERSHED DESCRIPTION AND MODEL

Drainage Area Ditch B DA contains 62.2 acres and drains southeast toward the collection ditch and berm. Collection Ditch B drains to the east and ends several hundred feet past the northeast corner of the protected area fence. The soils in the area draining to Ditch B DA are the Jalmar-Pehnwell series and are classified as hydrologic group A/B as shown on Figure 2.2.1-1, Soils Boundary Map. Curve number (CN) and time of concentration parameters are found in Addendum A, Appendix A, Calculations.

The Ditch B DA parameters are input into the HEC-HMS model to determine peak runoff rates for Collection Ditch B. The 100-year, 500-year and PMP peak discharges for Collection Ditch B are 60 cubic feet per second (CFS), 129 CFS and 251 CFS, respectively. HEC-HMS model setup and inputs are found on the CD in Appendix E of the main part of the report. Results of the HEC-HMS modeling for Collection Ditch B are found in Addendum A, Appendix B, HEC-HMS Output.

3.0 BERM BREACH

Onsite surface water runoff will be mainly sheet flow off the sloped storage pads and the sloped areas in between the pads. The Collection Ditch B berm is 2.6 feet high and approximately 470 feet from the nearest storage pad at the northern side of the CISF as surface water flows, which is the Phase 8 storage pad. The worst-case for a berm breach will be when Collection Ditch B


has the greatest amount of surface water flowing in it and will be at the location where breach flow can still reach a storage pad. The peak flow, 251 CFS, in Collection Ditch B is calculated by HEC-HMS at the analysis point depicted on Figure A-1. The analyzed berm breach location is approximately 800 feet upstream from the analysis point, yet the peak flow is conservatively assumed to flow in Collection Ditch B at that location. The berm breach location is depicted on Figure A-1.

Assumptions for the overland depth of flow adjacent to the Phase 8 storage pad from a berm breach include the following: the berm breach is large enough to release the entire PMP flow, even though Ditch B will still be flowing to the southeast; all of the breach flow will reach the storage pad, even though the pads sit above the surrounding area; and the berm breach flow will spread out from the breach at approximately 2:1 angles from the breach area as it returns to overland flow over the approximately 470 feet to the nearest pad.

The estimated depth of flow adjacent to the pad is approximately 3 inches. Overland depth of flow calculations are found in Addendum A, Appendix A, Calculations.

FIGURE

APPENDICES

APPENDIX A CALCULATIONS

ADDENDUM A WCS - CISF DITCH B POST-DEVELOPMENT DRAINAGE AREA TIME OF CONCENTRATION

DES

wcs 2/5/2019 DD 1/31/2019 SC

1. United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986 Reference:

2. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs DD.dwg

		DITCH B	
Drainage Area	Α	62.2	(acres)
		0.097	(sqmi)
Sheet Flow			
Manning's roughness coef.1	n	0.15	n/a
Flow Length	L	408	feet
2-year, 24-hour rainfall	P2	2.5	inches
Slope	s	0.0098	ft/ft
Travel time ²	Tt	0.76	hours
		45.4	min.
Shallow Concentrated Flow			
Flow Length	L	1060	feet
Slope	s	0.00710	ft/ft
Surface (1=paved or 2=unpaved)		2	n/a
Velocity ³	V	1.36	ft/sec
Travel time	Tt	0.22	hours
		12.99	min.
Manning's Equation			
Flow Length	L	1383	feet
Slope	S	0.00500	ft/ft
roughness ⁴	n	0.028	n/a
Open Channel			
Bottom Width	BW	4	feet
Side Slopes (ft/ft, H:V) Rt.	H:V	3	feet
Side Slopes (ft/ft, H:V) Lt.	H:V	3	feet
Depth	d	2	feet
Flow Rate	Q	111	cfs
Velocity	V	4.2	ft/sec
Travel time	Tt	0.09	hours
		5.49	min.
Total Travel Time	Т	1.06	hours
	Т	63.90	min.
Lag Time (Tc*0.6)	Tlag	0.64	hours
	Tlag	38.34	min.

Notes:

- 1. Manning's roughness coefficient taken from 'Table 3-1 Roughness coefficients (Manning's n) for sheet flow' United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986
- 2. Equation 3-3, United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986
- Equation 3-1, United States Department of Agriculture, *Urban Hydrology for Small Watersheds TR-55*, 1986
 Reference Manning's 'n' calculations in APPDX C: POST-DEVELOPMENT HYDRAULIC CALCULATIONS
- S:\Projects\W Z\WCS (Waste Control Specialists)\draft\18059 ISP NRC Responses\Engineering Checks\Ditch B HEC\R190204_TC.xls

ADDENDUM A WCS - CISF DITCH B POST-DEVELOPMENT CURVE NUMBER CALCULATIONS

DES CHK

WCS Job No. 18059 File: R190204_CURVE NO 2/4/2019 SC 2/5/2019 DD

CURVE NUMBER

Reference: 1. CISF Drainage Evaluation and Floodplain Analysis Fig. No. 2.2.1-1, Soils Boundary Map

2. Soil information taken from US Department Of Agriculture, Natural Resources Conservation Service Custom Soil Resource Report For Andrews County, Texas, And Lea County, New Mexico, dated December 22, 2015 3. Texas Engineering Technical Note, No. 210-18-TX5, Estimating Runoff for Conservation Practices, 1990

Drainage Area - Ditch B	A=	62.2 Acres	0.097 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type 1	lyd. Soil Group	CN*	(60 Min.)	(60 Min.)
Desert Shrub Poor	JPC	B/A***	77	60	89

^{*}Taken from Table 2c of Texas Engineering Technical Note, Hydrology, No. 210-18-TX5, Estimating Runoff for Conservation Practices

^{**}Taken from Table 3 of Texas Engineering Technical Note, Hydrology, No. 210-18-TX5, Estimating Runoff for Conservation Practices

^{****}USDA Soil Survey indicates 46% A and 50% B. CN is conservatively calculated to be 100% B

ADDENDUM A WCS - CISF BERM BREACH POST-DEVELOPMENT BERM BREACH OVERLAND DEPTH OF FLOW

DES CHK

WCS DD 1/16/2019 SC 2/5/2019

Reference:

1. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs PMP.dwg

Dich B carries the largest flow.

Use the PMP peak flow in Ditch B to calculate the pad depth of flow.

Manning Equation

 $v= 1.49/n*R_h^{2/3}*s^{1/2}$

Where,

v= velocity (ft/s) n= Manning's n R_h= hydraulic radius s= slope (ft/ft)

Manning Equation for Sheet Flow

 $q = v*y = 1.49/n*y^{5/3}*s^{1/2}$

Therefore

 $y=(q/(1.49/n*s^{1/2}))^{3/5}$

v = q/y

Where,

q= unit discharge (ft²/s)

v= velocity (ft/s) n= Manning's n y= depth s= slope (ft/ft)

Max flow

 $q_{Max} = I*L$

Where,

 q_{Max} = maximum unit discharge (ft²/s)

I= Rainfaill Intensity L= Length of flow

Max depth at edge of pad

 $y_{max} = (q_{max}/(1.49/n*s^{1/2}))^{3/5}$

Where,

y_{max}= Maximum depth of flow (ft)

 q_{Max} = Maximum unit discharge

n= Manning's n
s= slope (ft/ft)

Max velocity

$$v_{max} = q_{max}/y_{max}$$

Where,

 q_{Max} = maximum unit discharge (ft²/s) y_{max} = Maximum depth of flow (ft)

Inputs

$$Q_{max}$$
 = 251 cfs From HEC-HMS Ditch B

Assumptions: Berm breach is large enough to release Ditch B PMP peak flow

The flow spreads out at approx. 1:2 on each side from center of berm breach, Length of flow from berm breach to phase 8 pad = 470 ft., See Fig. A-1

Width of flow at phase 8 pad = 470 f

The peak flow reaches a pad and flows onto a pad.

$$q_{Max} = 0.534043 \text{ ft}^2/\text{s}$$

 $I = q_{max}/L$

s= 0.011 ft/ft flow slope

L= 470 ft length of flow from berm breach to phase 8 pad, see Fig. A-1

n= 0.025 Manning's n for gravel

Calculation

Max y=	0.228549	ft
	2.7	in
Max v=	2.3	ft/s

APPENDIX B HEC-HMS OUTPUT

Project: 15052 - CISF Design Simulation Run: Collection Ditch B R

Start of Run: 01Jan2016, 00:00 Basin Model: Collection Ditch B revised

End of Run: 02Jan2016, 12:00 Meteorologic Model: 100 yr

Compute Time: 04Feb2019, 16:25:04 Control Specifications:Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
Collection Ditch B R	0.097	59.7	01Jan2016, 12:34	1.92

Project: 15052 - CISF Design Simulation Run: Collection Ditch B R 500 Yr

Start of Run: 01Jan2016, 00:00 Basin Model: Collection Ditch B revised

End of Run: 02Jan2016, 12:00 Meteorologic Model: 500 yr

Compute Time: 04Feb2019, 16:26:45 Control Specifications:Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
Collection Ditch B R	0.097	128.5	01Jan2016, 12:33	3.87

Project: 15052 - CISF Design Simulation Run: Collection Ditch B R PMP

Start of Run: 01Jan2016, 00:00 Basin Model: Collection Ditch B revised

End of Run: 05Jan2016, 00:00 Meteorologic Model: PMP Distribution A

Compute Time: 04Feb2019, 16:26:51 Control Specifications:Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
Collection Ditch B R	0.097	250.6	03Jan2016, 06:01	33.47