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ACCELERATING QUALIFICATION OF NEW (AMT)
MATERIALS

= Overview of the key challenges in rapid qualification of new materials and qualifying AMT
materials, focusing on high temperature reactors:

— AMTs
« Expect higher variability compared to conventional processing
» Manufacturers/vendors have greater control over process
 Limited data on nuclear materials

— High temperature materials
» Long-term properties control design, short term tests provide limited information
 Limited test data on AMT materials

» Three key tools for using modeling and simulation to accelerate qualification:
— Tool 1: Physically-based models
— Tool 2: Staggered qualification test programs
— Tool 3: Uncertainty quantification through statistical inference

= One vision of how these tools could be used to accelerate the qualification of a new AMT

material
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WHAT ARE THE CHALLENGES QUALIFYING AM
MATERIALS IN GENERAL?
Creep at same

= Variability in AM material properties is much Wrought 316L conditions AM 316L
greater than for conventional wrought/cast T 300 um ,"";K
material — more akin to welds TR
— Less understood processes !
— Many processing parameters controllable by 1} &
users
— Wide variety of technologies
— Manufacturing likely to occur at a number of
smaller sites, rather than at large, central
production facilities
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= AM methods often result in significant material
property variations within a single build

= We want a process that can take advantage of the
flexibility of AM processes — not trying to simply
3D print conventional material

AM material good, bad, or just different?

AM creep specimens courtesy UW Madison
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WHAT ARE THE CHALLENGES QUALIFYING MATERIALS
FOR HIGH TEMPERATURE SERVICE?

.""-n-..‘_

= At high temperatures long-term, time-dependent T
material properties control design:
— Creep strength and ductility
— Creep-fatigue life
— Thermal aging characteristics
— Environmental degradation

Creep cavitation

= Short-term tests might tell you very little about (INL)

important long-term properties

= Statistical variation in mechanical properties T
tends to be high, even for well-controlled Seam pipe failure at

traditional wrought material processes coal power station
(Viswanathan and

= Weld resilience can be challenging Stringer, 2000)

= Very little long-term mechanical test data on AM
material for properties relevant to high

temperature design HRSG tube failure

. (EPRI, 2005)




TOOL #1: PHYSICALLY-BASED MODELS

Physically-based model: model the physical mechanisms that T 13

underlie a process z }
* Opposed to an empirical model correlating data to outcome g o
» Types of physically-based models: o Preciptates
* Microstructural model: (some of) the model parameters are 9; .
measurable microstructural characteristics @ pitcatons
* Multiscale model: hierarchical model propagating physical 1 e
descriptions of processes on smaller length scales to higher Z Incusion o0 bdrg)
|ength ScaleS % i N Lattice defects
7]
How physically-based models can improve property % T

predictions and accelerate qualification: a

1. Direct link to microstructure: connection to in-situ olsersstal grains
process monitoring and process models

2. Better chance of accurate extrapolation: physics
remains the same regardless of lengths scale, time
scale, environmental conditions...

—4-10"m
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5 Engineering component

MATIONAL LABORATORY




AN EXAMPLE OF HOW PHYSICALLY-BASED
MODELING CAN SPEED QUALIFICATION

Wrought Grade 91
B Creep rate (hrs?)

1073 200 MPal80 MPa

] 160 MPa
10_4'!
1075

120 MPa
Grain bulk: Grain boundaries: 10-5-; 1008(l\)/|K>/|aPa
*  Solid finite elements «  Interface-cohesive formulatio 60 MPh
(tetl0) (DG method) 1071 g
° Constitutive model . Constitutive model Captures: e R S N G S Ty i ey 6
captures: . «  Cavity nucleation 10t 10° 10' 10 10° 10 10° 10
T Dislocanon *  GBdiffusionmediatec  cajipration data: ~~ Time (hrs) =
mediated creep on i :
BOC slin Systoms .o %rlg‘é‘ggty Kimura (2009) at 160, 140, 120, and Experimentally
mediated creep void growth >_100,000 hours
«  Viscous GB sliding life

Model predicts full creep curves, including rupture time
6 Argonne &
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EVALUATING CREEP UNDER TRIAXIAL LOAD

* We typically test creep specimens with uniaxial Error: 2D calibration/2D evaluation
stresses 0.25
» Occasionally we have biaxial test data 0.2

(pressure tubes) 0.15
» Notched tests are difficult to interpret 0.1
« Key question: how to extrapolate this data to 0.05

realistic 3D states of stress?

o

» Usual engineering approach: find an effective & c'}QQ} Q\\}é\ @,Q . @e% @fz?“ @éé\
stress measure that converts 3D — 1D so that & Q‘\\Q \2@* er@ QQ* \@6\
the 1D rupture correlation predicts 3D rupture h @‘Z* <7 o4 <

» But we don’t have 3D creep test data or long- & <
term 2D data Error: 3D calibration/3D evaluation

* We can use the physical model to predict triaxial
rupture and assess different engineering models 0 é
(or develop new ones!) 0.6

0.4

Key outcomes of study: 0.2 I . . l

» All the effective stress measures are about 0
equally accurate when calibrated and compared & & & \2&@ & & S
to biaxial rupture data N Q<\°° \2@‘\ N oF S

« Some are much better than others when © ®& o 3 OQ'@ S

calibrated and evaluated against 3D data
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TOOL #2 STAGGERED QUALIFICATION
APPROACHES

How would this work? Key questions

1. Initiate long-term property tests on many candidate 1. Can vendors/designers work like this? You won't have
materials (you can terminate the tests for the materials “certain” design data in the beginning and the mean of the
that don’t pan out) property distribution might change.

2. Use the short-term test results, the best available 2. Can regulators work like this? You'll be asked to assess
processing information (in-situ process monitoring, designs with uncertain design data and/or accept designs
advanced characterization), and material simulations to configured for alterations if long-term testing results
predict long-term properties with uncertainty change the design assumptions.

3. Astests from #1 conclude, updated models in #2 to 3. Can codes and standards bodies work like this? It may
provide new best estimates and uncertainties require a move towards probabilistic design.

Property distributions

Short-term

B e R e e e - ‘/\
Medium-term Extrapolation, modeling and simulation...

L Y LT T > ‘/\
Long-term [

B R » /\
Full design life [
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ARE STAGGERED QUALIFICATION
APPROACHES FEASIBLE?

“What if” analysis pretending that 316H is a new material. Targets 200,000 hours life because we
have actual rupture data for this time

® Data
—— Bestfit
T Lower bound Rupture stress for 650° C, 200,000 hours
R* = 0.967

107 ] 72.5 - —— Average
g —— 95% lower prediction bound
¥ 70.0 -
=
& 67.5 Good news: average rupture stress never
104 A B s goes below initial lower bound
18000 20000 22000 24000 26000 28000 g ]
Larson Miller Parameter 3
o Dae S 62.5 1 Bad news: average and lower bound
—_— Db it .
= Lowersoun T e (design values) decrease a new data
R = 0959 2 becomes available
10 £ 57.5 1
-
#
55.0
o 0 50000 160000 150000 200000
. == Available rupture data (hrs)

18000 20000 22000 24000 26000

T We need a better way to quantify uncertainty
9
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TOOL #3: UNCERTAINTY QUANTIFICATION
THROUGH BAYESIAN INFERENCE

Challenoes applying staggered Current process

probabilistic approach with conventional \

modeling: oy

*  Mechanisms not present in short-term data! Available rupture Predicted rupture
« Little opportunity to take advantage of Saie strength

improved processing (data stays in

database...) \'{‘.\*

* Doesn’t take advantage of all available data
to narrow/improve statistical estimates

*  Processing data o Improved process using microstructure data
*  Microstructural characterization \

Empirical model + frequentist statistics

Physical models have a better chance of s
accurately capturing long-term properties from Available rupture
short term data data

Predicted rupture

Bayesian inference provides a framework ' | s strength

feeding in incomplete processing and

microstructure information to yield better = ™ {8 Processing/
predictions ) @ microstructure

characterization Physical model +
Bayesian inference " Ourewuswe




A HIGH LEVEL DESCRIPTION OF BAYESIAN
INFERENCE

Statistical inference: deduce properties of a underlying o el e
probability distribution, often one that is difficult to sample
directly

2
s}

]
o

Example:

= Traditional approach: fit a deterministic model to the
average response of several tension tests

= |Inference: infer the distribution of the model parameters
that explains the variation in the test data 100 1

8
o

Stress (MPa)

200

Importance: o

1 1 1 1~t1 1 0.0600 0.0625 0.0E)SO 0.06?5 0.0EI_OO 0.05_25 0.02|I_50 0.05_?5 0.0|200
= Quantify uncertainty in model predictions — not just a ctrain (mm/mm)

predicted material property + a confidence interval, but ]
an understanding of what causes the variation in the ’ ‘ ’ j

property !
= A method for understanding microstructural variation _/\

from limited characterization data, but lots of high Vouna's mod 'Y_ » "t ' Harden a
throughput property measurements 1 oUng's modulus ela stress ar en:;'rgg:;geuous
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COMBINING INFERENCE WITH PHYSICALLY-
BASED MODELS

Linking microstructural statistics to the corresponding material property statistics

Experimental rupture
Why? distribution

10

* If we can characterize the microstructure coming out
of the process we can translate that directly to (long-
term?) property predictions

* We can tune the process (via experimentation or
process modeling) to produce better materials

Example

* Back to wrought Grade 91

* Grain boundary diffusivity is a key property
controlling rupture life

* What distribution of GB diffusivity explains
distribution of Grade 91 rupture life?

* How could we control GB diffusivity (via GB
energy) to improve the rupture life of the !
material? Y0 s o s e s

) L. Log10 of the grain boundary diffusivity
Inferred GB diffusivity
distribution Argonne &
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ONE ROUTE TOWARDS RAPID QUALIFICATION

Alter or confirm * Provides initial, uncertain

) Ongoing .. . .
design/component conventional - predictions for initial design
service property testing Calibration/inference data R Extrapolates with ph sical
conditions/service life y. .
model, hopefully providing

better long-term design data
Physical model for » Updates design material
long-term ;
TR, data to ensure ongoing safe
interest operation
 Amenable to probabilistic

design methods

Evaluate

component/design

) Surrogate modeling
Appropriate
statistical bounds

Microstructural

characterization

Update design Inference for

uncertainty in

material data model predictions

Prior distributions

Posterior distributions
13 Argonne &



SUMMARY

» Modeling and simulation can play a role in accelerating the qualification of
new AMT materials

= Key gaps:
— Building regular, owner, and codes/standards confidence in new approaches
— Benchmark studies to test out rapid qualification approaches
« Low hanging fruit: try with well-characterized wrought material
e Round robin benchmarks for nuclear materials + AMTs
— Improved data-driven methods for material science problems and ways to
combine data-driven and physically-based modeling
« Comparatively sparse datasets
» Physical constraints on model predictions
— Better ways to bridge length scales and time scales in multiscale modeling

14 Argonne &
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