

QA and QC Tools for Metal AM and implementing them in EU NUCOBAM project

Pasi Puukko

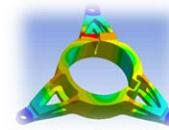
VTT Technical Research Centre of Finland Ltd.

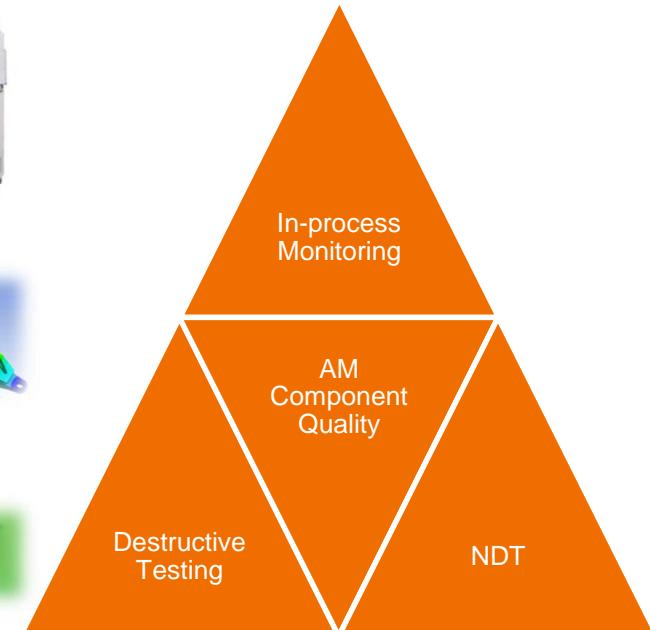
AMT Workshop, 7-10 December, 2020

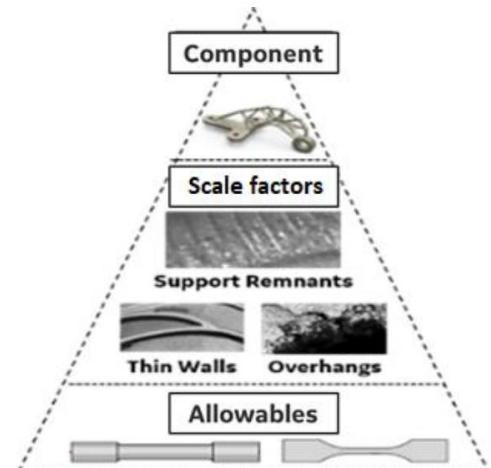
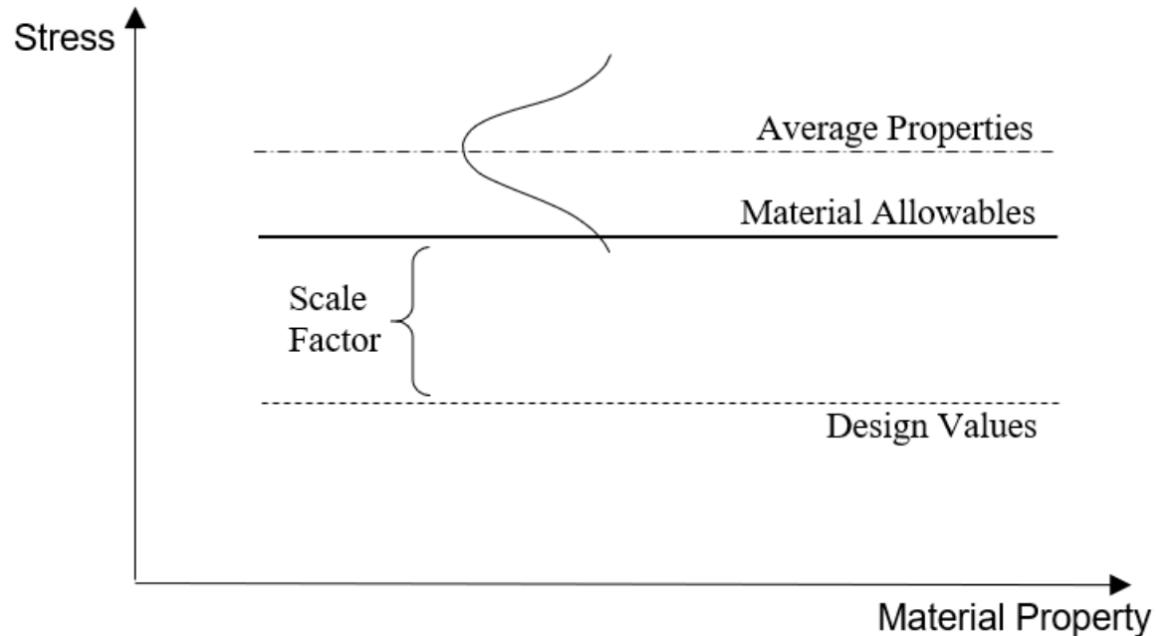
23.9.2020 VTT – beyond the obvious

Rationale

- We need to ensure that Additively Manufactured components are built defect free and fit for purpose consistently and reliably.
- This is true for every industry, but specially for those in which components are safety critical as some applications of nuclear energy are.
- AM enables manufacturing of complex geometries and one-off components which brings added challenges to quality assurance.


General approach for AM qualification


- to ensure that the general process is controlled and repeatable and can produce components within quality requirements
- This includes: **Machine, Powder, Operator**



- to ensure that a particular part can be printed within quality requirements given a certain design and use requirements

- to ensure that every single part is printed within quality requirements. And if it is not, that defects are properly detected and the non-conformity properly recorded.

Principle for Design values

EU NUCOBAM project

EU NUCOBAM Project

- Additive Manufacturing (AM) will allow nuclear industry:
 - to tackle component obsolescence challenges
 - to manufacture and operate new components with optimized design in order to increase reactor efficiency and safety
- NUclear COmponents Based on Additive Manufacturing aims at:
 - developing the qualification process
 - provide the evaluation of the in-service behavior allowing the use of additively manufactured components for nuclear installations

Demonstrators (316L):

- Coordinator: CEA, Pierre-François GIROUX
- Partners: 12 from 6 countries + EU JRC
- Total Project Cost: ~4 M€
- Duration: 4 years (10/2020-9/2024)
- 7 Work Packages

Valve block body

Workpackages:

- **WP1 “Methodology for AM qualification standardization” - CEA**
 - focus on establishment of a qualification methodology for AM components and on reviewing the existing standards and qualification processes
- **WP2 “AM process qualification” - VTT**
 - aim to create a general methodology for qualifying L-PBF process for nuclear energy industry applications so that components manufacture by L-PBF meet the quality expectations and design functions
- **WP3 “Qualification as processed: NDE & mechanical properties vs microstructure” – Naval Group**
 - focus on nondestructive tests and characterization as manufactured to ensure the capability to decide of the qualification as processed

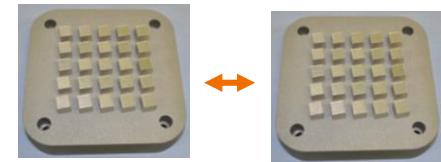
Workpackages

- **WP4 “In-pile Behaviour of Additively Manufactured Samples (IBAMS)” - FRAMATOME**
 - deal with the description of the sample sets, irradiation conditions (fluence, temperature...), microstructure characterization, determination of the mechanical properties and documentation
- **WP5 “Performance assessment of ex-core user case: valve component” - ENGIE Tractebel**
 - assess the operational performance of ex-core valve component that will be produced by L-PBF process
- **WP6 “Dissemination and exploitation” - EDF**
 - ensure dissemination and then exploitation, by reaching out to industry, standardization and regulatory bodies
- **WP7 “Project Management” - CEA**
 - ensure effective coordination and management to monitor the progress of the project towards its planned objectives


WP2 Objective

- To create a general methodology for qualifying L-PBF process for nuclear energy industry applications so that components manufacture by L-PBF meet the quality expectations and design functions. The study of machine-to-machine variations in properties will be studied.
- Advanced quality control methods will be evaluated with the objective of increasing safety by detecting defects during production and ensure batch consistency.
- Demonstration components and test coupons to be tested in other WPs will be manufactured.

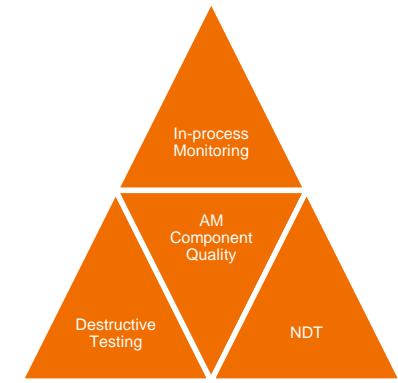
WP2 focuses on different variation sources


Improved Process Stability

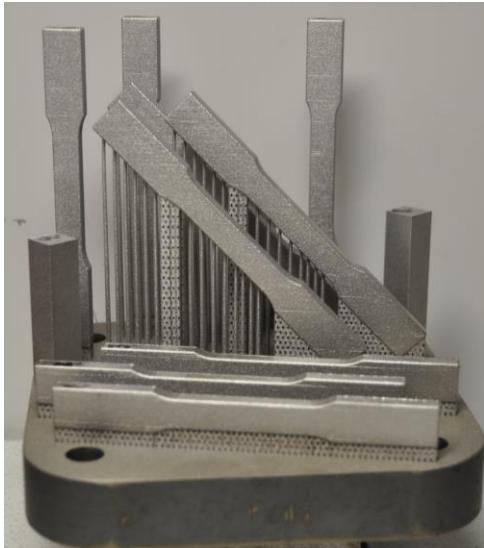
- High process stability within same platform (same manufacturing batch).

Improved Process Repeatability

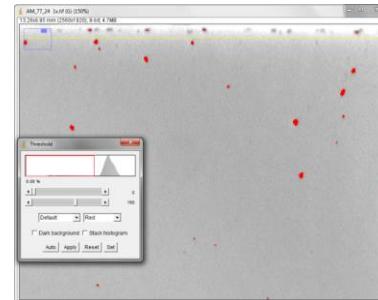
- High process repeatability from build to build on same equipment (different batch).


Improved Process Reproducibility

- High process reproducibility from build to build on different equipment

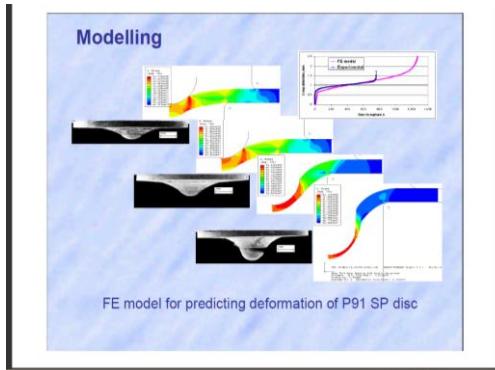

Some challenge related to LB-PBF QA & QC

- Qualification procedures are laborious and require lot of experimental trials
- Due the differences between the machines – results are not directly transferable
- Complex geometrics poses challenges for utilizing conventional non-destructive technologies (NDE)
- Destructive testing does not fit very well for single component testing
- Results of in-process monitoring are open to interpretations



Destructive Testing

Witness samples and microstructural microscopy



- Mechanical testing following recognized standards
- Specially useful for **process qualification**
- Usefulness reduced for component qualification and for single part quality control

Small Punch Testing

- Allows scooping small samples from critical areas
- Can complement standard methods for process and component qualification
- Can be used as a more cost alternative for batch QC
- **EN 10371** Small Punch Test Method for Metallic Materials to be voted in October 2020.

A repeating pattern of geometric shapes in white, blue, orange, and black, arranged in a staggered, three-dimensional grid-like structure.

Non-Destructive Examination

NDI Technology applied to AM: gaps

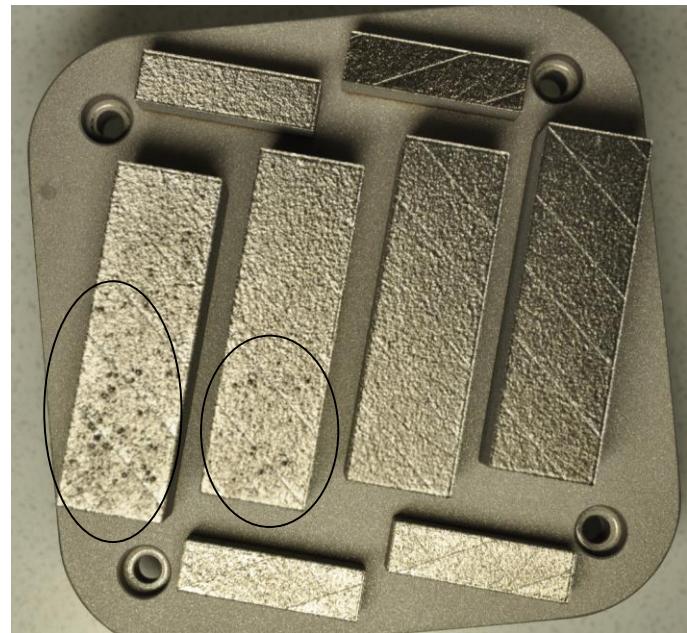
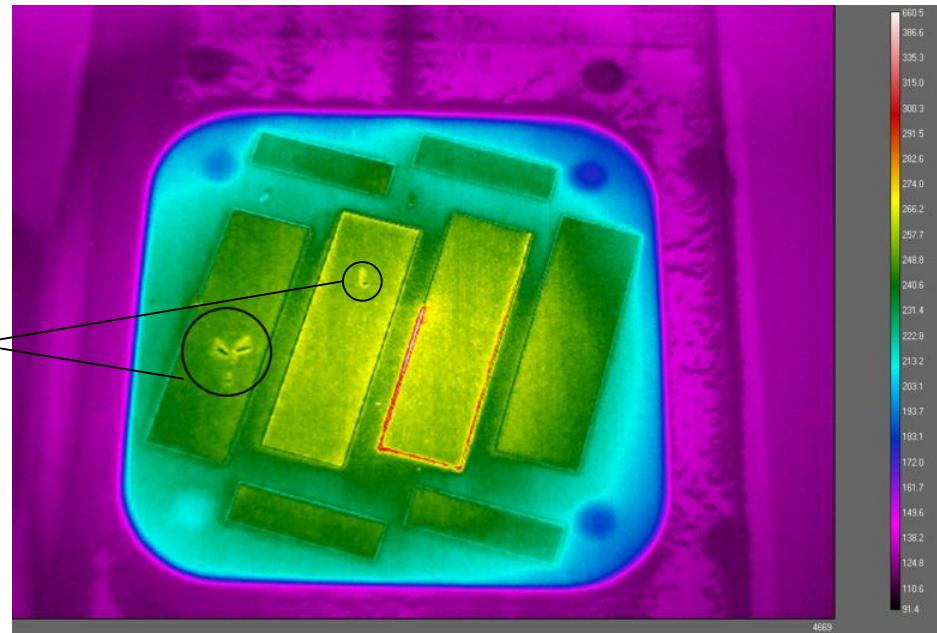
- Geometrical complexity
 - AM has practically no geometry-related limitations
- New defect types
 - Porosity: no reliable, cheap and easy-to-use method exists.
- New materials
 - Elastic anisotropy: Several ultrasound related problems
- New reference standards are required
 - NDI devices must be calibrated using known defects
- No POD data
 - Without POD methodology, the actual reliability of inspection cannot be determined

Applicability of NDI to AM

NDI Technique	Geometry Complexity Group					Comments
	1	2	3	4	5	
Visual Testing	Y	Y	P(c)	NA	NA	
Liquid Penetrant Testing	Y	Y	P(a)	NA	NA	
Magnetic Particle Testing	Y	Y	P(a)	NA	NA	Only for ferromagnetic materials
Leak Testing	P	P	P	P	P	Screening for containers, valves etc.
Eddy Current Testing	Y	Y	P(c)	NA	NA	
Ultrasonic Testing / Phased Array Ultrasonic Testing	Y	Y	P(b)	NA	NA	Quantitative methods are possible for GCG 1
Alternate & Direct Current Potential Drop	Y	Y	P(c)	NA	NA	
Process Compensated Resonance Testing	Y	Y	Y	Y	Y	Screening, size restrictions
Radiographic Testing	Y	Y	P(d)	NA	NA	
Computed Tomography	Y	Y	Y	Y	Y	Restrictions how small defects are detectable
μ -focus Computer Tomography	Y	Y	Y	Y	Y	Size restrictions for sample

So, what NDE method to use?

- CT/uCT is the method of choice currently as is the only method capable of handling complex geometries. But it is not a perfect solution:
 - Trade-off between resolution / sample size / equipment performance
 - For quality control quite expensive and time consuming technology
- For GCG1-2 parts, other methods can still have a major role:
 - Advantages in cost
 - Possibilities for in-service inspection.



In-Process Monitoring

AM Process Monitoring

- Detected process variations not necessarily linked to a specific defect.
Can be used for AM process qualification leading to reduced NDT requirements
- As it is done simultaneously while manufacturing: it might reduce system downtime.
- There are several process monitoring types commercially available:
 - Basic process and environmental sensors (oxygen level, gas flow rate..)
 - Powder bed monitoring
 - Thermal signatures monitoring
 - Off-axis, platform scale field-of-view (usually with IR/near-IR-cameras)
 - On-axis, high spatial and temporal resolution (usually with photodiodes)
- Currently no closed-loop control available.

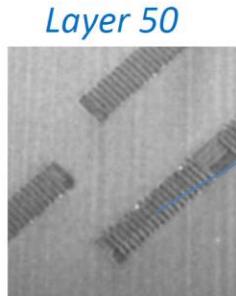
Off-axis thermal monitoring

Spatter landing at the left hand side parts

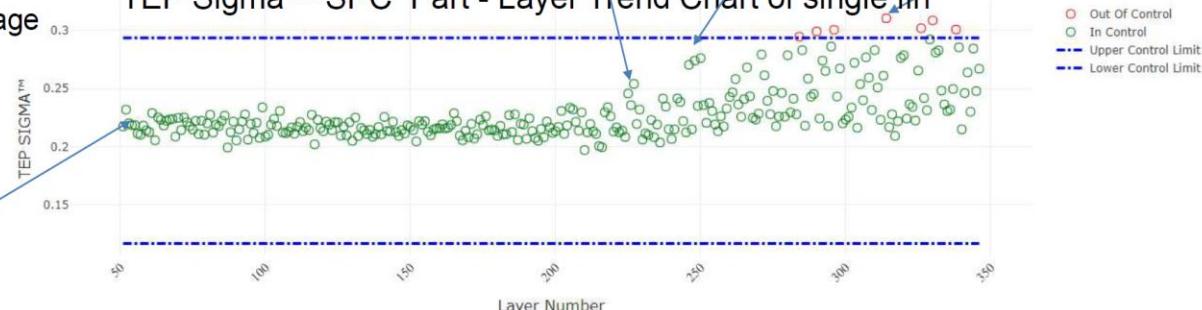
- Thermal camera FLIR A655sc at VTT
- Experimental material, non-optimal powder size & parameters caused excessive spattering

Example of Melt Pool Monitoring

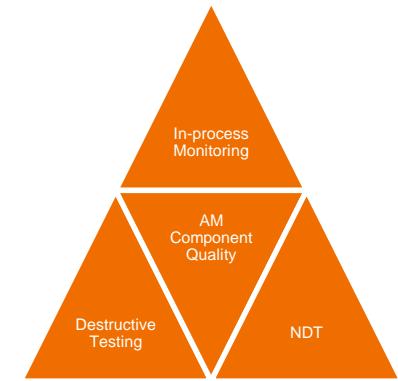
Inconel 625 : Evaluation of Thermal Signatures using Part-Layer SPC (Statistical Process Control) to detect powder disturbance



Qualitative versus Quantitative Approach


Method :- each fin categorized as separate part

EOS Powder Bed Image
Layer 50


TEP Sigma™ SPC Part - Layer Trend Chart of single fin

This document contains confidential and proprietary information of Sigma Labs, Inc and is protected by patent, copyright, trade secret and other State and Federal laws. Its receipt or possession does not convey any rights to reproduce, disclose its contents, or to manufacture, use or sell anything it may describe. Reproduction, disclosure, or use without specific written authorization of Sigma Labs, Inc is strictly forbidden.

Summary

- General models for AM qualification procedures exist
 - the challenge is to implementing them on different industrial domains and different requirements
- EU NUCOBAM project aims to develop and implement qualification procedures for Nuclear Industry
- There is no single magic bullet to ensure quality on a component
 - Combination of in-process monitoring, NDT and destructive testing can support our efforts.

bey⁰nd the obvious

Pasi Puukko
pasi.puukko@vtt.fi
+358 40 5251 684

@VTTFinland

www.vtt.fi