Attachment E

Geotechnical Investigation for WCS CISF

(347 pages)

February 18, 2020

Waste Control Specialists, LLC 17101 Preston Road, Suite 15 Dallas, Texas 75248

ATTENTION: Mr. Ben Mason, Director of Engineering

bmason@wcstexas.com

Subject: REPORT OF GEOTECHNICAL EXPLORATION

Consolidated Interim Storage Facility

Andrews, Texas

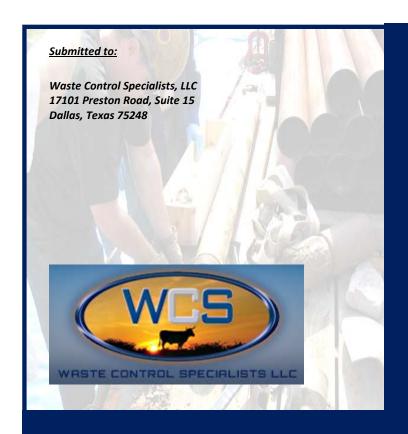
GEOServices Project No. 31-151247.R2

Dear Mr. Mason:

We are submitting the results of the geotechnical exploration performed for the proposed Consolidated Interim Storage Facility (CISF) in Andrews, Texas. The geotechnical exploration was performed in accordance with GEOServices' Proposal No. 13-151124Rev1 dated June 23, 2015 and authorized by you.

The following report presents our findings and recommendations for the proposed construction of the Consolidated Interim Storage Facility project. Should you have any questions regarding this report, or if we can be of any further assistance, please contact us at your convenience.

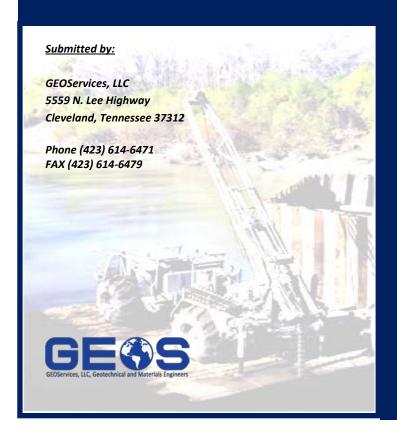
Sincerely,


GEOServices, LLC

Derek K. Kilday, P.E. (TN)

Vice President

Dennis A. Huckaba, P.E.


Principal

REPORT OF GEOTECHNICAL EXPLORATION

CONSOLIDATED INTERIM STORAGE FACILITY (CISF)

ANDREWS, TEXAS

GEOSERVICES, LLC PROJECT NO. 31-151247.R2

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	
1.1 PURPOSE	
1.2 PROJECT INFORMATION AND SITE DESCRIPTION	
1.3 SCOPE OF STUDY	3
2.0 EXPLORATION AND TESTING PROGRAMS	4
2.1 FIELD EXPLORATION	
2.2 LABORATORY TEST PROGRAM	5
3.0 SITE CONDITIONS	7
3.1 GEOLOGIC CONDITIONS	7
3.2 SUBSURFACE CONDITIONS	7
3.2.1 Encountered Soils	7
3.2.2 Subsurface Water	8
3.2.3 Auger Refusal Conditions	
3.2.4 General	9
3.2.5 Additional Provided Resources	
4.0 CONCLUSIONS AND RECOMMENDATIONS	11
4.1 SITE ASSESSMENT	
4.2 SITE PREPARATION	
4.2.1 Subgrade	
4.2.2 Structural Soil Fill	
4.3 FOUNDATIONS	
4.3.1 Administration Building Foundations	
4.3.1.1 Administration Building Settlement	
4.3.1.2 Slabs-on-Grade (Administration Building)	
4.3.2 Transfer Facility (Cask Handling Building) Foundations	
4.3.2.1 Transfer Facility (Cask Handling Building) Settlement Analysis	
4.3.2.2 Slabs-on-Grade (Cask Handling Building)	
4.3.3 CISF Pad Foundations	
4.3.3.1 CISF Mat Foundation Recommendations	
4.3.3.2 CISF Settlement Analysis	
4.3.4 Shear Wave Testing Results	
4.3.5 Liquefaction Potential	
4.3.6 Seismic Densification Analysis	
4.4 LATERAL EARTH PRESSURES	
5.0 CONSTRUCTION CONSIDERATIONS	24
5.1 EXCAVATIONS	
5.2 MOISTURE SENSITIVE SOILS	
5.3 DRAINAGE AND SURFACE WATER CONCERNS	
5.4 SINKHOLE CONSIDERATIONS	
6.0 LIMITATIONS	27

APPENDICES

APPENDIX A – Figures and Boring Logs

APPENDIX B – Soil Laboratory Data

APPENDIX C – Soil Site Characteristic Summary Table

APPENDIX D – Static Elastic Modulus Calculation

APPENDIX E – On-site Shear Wave Velocity Study

APPENDIX F – Seismic Densification Analysis

APPENDIX G – Sample Bearing Capacity Calculations

APPENDIX H – Settlement Calculations for the CISF Pads and CHB

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this geotechnical exploration was to characterize the subsurface conditions for the design and construction of the Consolidated Interim Storage Facility (CISF) in Andrews, Texas. This report provides recommendations for general site preparation, foundation design and slabon-grade construction.

1.2 PROJECT DESCRIPTION

The project site is located at the existing Waste Control Specialists (WCS) Andrews facility located at 9998 Highway 176 West in Andrews, Texas. The proposed construction will consist of a 200-acre storage facility. The Consolidated Interim Storage Facility (CISF) will consist of eight consolidated interim storage facilities, transfer facility (Cask Handling Building), and administration building. The scope of this exploration was limited to one of the consolidated interim storage facilities, the transfer facility, and the administration building.

Each of the consolidated interim storage facilities (CISF) are planned to be 280,000 square feet (800 feet by 350 feet) in size. We understand that each CISF will consist of a gravel pad with a number of smaller cast-in-place reinforced concrete mat foundations that will each hold 24 (3x8 array) storage casks when full loaded. The individual mat foundations measure approximately 7,425 square feet (55 feet by 135 feet). Based on the loading provided by Enercon, each of the casks will have a diameter of 11'-4" and a height of just under 19 feet. The casks will have a maximum loaded weight of 360 kips. In addition to the weight of the casks, an operational and

occupancy live load of 200 psf will be utilized. Based on the provided loading, the mats will impart a bearing pressure of 4,500 psf or less to the underlying subgrade.

The transfer facility (Cask Handling Building) is a two-bay Important to Safety (ITS) – Category B steel structure. The Cask Handling Building measures 175 feet by 193 feet in plan dimension and has a height of 72 feet. The structure will have rail access to facilitate cask unloading operations, canister transfer operations, and other maintenance activities. Two overhead bridge cranes will be utilized within the structure to facilitate rail car unloading. Based on information provided by AECOM, we understand that the foundations for the proposed cask handling building will bear at a depth of 10 to 11 feet below existing grade. Based on the loading information provided, we understand that maximum service level bearing pressure of less than 3.5 kips per square foot (ksf) are expected, while maximum limit state bearing pressures will approach 5.5 ksf.

The administration building will be traditional commercial construction and will consist of a single-story steel frame construction with a slab-on-grade. At the time this report was prepared, the administration building had not yet been designed. However, based on our experience with similar structures, we anticipate maximum column loads of less than 75 kips and maximum wall loads of 2 to 4 kips per linear foot.

The 200-acre tract of land is currently undeveloped with the exception of access roads that cross from one property to the adjacent property. Based on information obtained from internet research, site elevations range from approximately 3,505 feet Mean Sea Level (MSL) along the eastern property boundary to approximately 3,490 feet MSL along the western property boundary. Based on the provided grading plan, we anticipate average cuts and fills on the order of three feet or less will be required for this project.

1.3 SCOPE OF SERVICES

This geotechnical exploration involved a site reconnaissance, field exploration, laboratory testing, and engineering analysis. The following sections of this report present discussions of the field exploration, laboratory testing programs, site conditions, and conclusions and recommendations. Following the text of this report, figures, boring logs, and laboratory test results are provided in the appendices. Appendix A provides figures and boring logs. Appendix B provides laboratory tests performed and the results of these tests. Appendix C provides a summary table of the Site Soil Characteristics. Appendix D provides the static elastic modulus calculation. Appendix E provides the results of the on-site shear wave velocity study. Appendix F provides the seismic densification analysis calculations. Appendix G provides bearing capacity analyses and commentary. Appendix H provides the settlement analysis for the CISF pads and Cask Handling Building.

The scope of services did not include an environmental assessment for determining the presence or absence of wetlands, or hazardous or toxic materials in the soil, bedrock, surface water, subsurface water, or air, on, or below, or around this site. Any statements in this report or on the boring logs regarding odors, colors, and unusual or suspicious items or conditions are strictly for informational purposes.

2.0 EXPLORATION AND TESTING PROGRAMS

2.1 FIELD EXPLORATION

The site subsurface conditions were explored with eighteen soil test borings. The following is a breakdown of the boring layout:

STRUCTURE	Number of Borings	Boring Designation
Dranged Transfer Cacility	Г	TF-1 and TF-4
Proposed Transfer Facility	5	TF-2, TF-3, and TF-5
CISF – Phase I	11	B-101 and B-111
CISF — Pridse i	11	B-102 through B-110
Administration Building	2	AB-1 and AB-2

Table 1 – Boring Breakdown

The boring locations and depths were selected by GEOServices. The borings were surveyed in the field by WCS personnel. Drilling was performed between July 13th and July 21th, 2015. The soil test borings were advanced using a Cannon skid rig (air rotary) and a CME-55 track rig. The drill crew worked in general accordance with ASTM D6151 (HSA Drilling). Sampling of overburden soils was accomplished using the standard penetration test procedure (ASTM D1586). The borings were backfilled with soil cuttings prior to leaving the site.

In split—spoon sampling, a standard 2-inch O.D. split-spoon sampler is driven into the bottom of the boring with a 140 pound hammer falling a distance of 30 inches. The number of blows required to advance the sampler the last 12 inches of the standard 18 inches of total penetration

is recorded as the Standard Penetration Resistance (N-value). These N-values are indicated on the boring logs at the testing depth, and provide an indication of the relative density of granular materials and strength of cohesive materials.

2.2 LABORATORY TEST PROGRAM

Soil samples collected during drilling were transported to our laboratory for visual classification and laboratory testing. The following laboratory testing was performed on select samples to determine the various soil properties.

- Atterberg Limits (ASTM D4318): Three Atterberg Limits tests were performed. These tests help
 us to confirm our visual classifications according to the AASHTO Classification System and the
 Unified Soil Classification System (USCS). The plastic limit and liquid limit represent the moisture
 content at which a cohesive soil changes from a semi-solid to a plastic state and from a plastic
 state to liquid state, respectively.
- <u>Natural Moisture Content (ASTM D2216):</u> One-hundred thirty-four moisture content determinations were performed. The natural moisture content is defined as the ratio of the weight of water present in the soil to the dry weight of soil.
- <u>200 Wash Analysis (ASTM D1140):</u> Nine particle size analyses were performed. The particle size analysis is used to determine the soil classification and determine drainage properties of the material.
- Resistivity of Soil (ASTM G187): Four soil resistivity tests were performed. The resistivity tests
 provide information related to corrosive properties of soil.
- Consolidated Undrained Triaxial Test (ASTM D4767): Consolidated undrained triaxial tests were
 planned, however, undisturbed Shelby tubes were not able to be performed due to the caliche

present. This test provides data useful in determining strength and deformation properties of cohesive soils.

- <u>Standard Proctor Moisture-Density Tests (ASTM D698):</u> One standard Proctor test was
 performed on a composite soil sample. This test provides information concerning the
 relationship between moisture content, compaction effort, and density.
- <u>California Bearing Ratio (CBR) Tests (ASTM D1883):</u> One CBR test was performed on a composite soil sample. This test provides a CBR value, which is used in pavement design to represent the support of the soil subgrade.
- <u>Consolidation (ASTM D2435)</u>: Consolidation tests were originally planned, however, undisturbed Shelby tube samples could not be obtained due to the caliche. The test results are used to evaluate the settlement potential of the clay stratum.

The test results of the laboratory testing are presented in the Soil Data Summary enclosed in Appendix B.

3.0 SITE CONDITIONS

3.1 GEOLOGIC CONDITIONS

The WCS site is located over the north-central portion of a prominent subsurface structural feature known as the Central Basin Platform. The geologic formations of concern, beneath of the WCS facility comprise, from oldest to youngest, the Triassic Dockum Group, the Cretaceous Trinity Group Antlers Formation, the Late Tertiary Ogallala Formation, the Late Tertiary/Quaternary Gatuña Formation or Cenozoic Alluvium (note that the Gatuña Formation and Cenozoic Alluvium are sometimes used interchangeably), the Pleistocene windblown sands of the Blackwater Draw Formation, Holocene windblown sands and playa deposits. A regional hard caliche pedisol, termed the Caprock caliche, developed on all pre-Quaternary formations before the Blackwater Draw sands were deposited.

3.2 SUBSURFACE CONDITIONS

3.2.1 Encountered Soils

The geologic profile for the CISF area consists of loose cover sands which overlay caliche, the Blackwater Draw, and Ogallala Formation. A combination of these materials was encountered in each of the eighteen soil test borings to auger refusal and/or boring termination depths ranging from 25 to 45 feet below the existing ground surface elevation.

Cover sands were encountered in five of the eighteen soil test borings (AB-2, B-101, B-102, B-103, TF-2, and TF-5) to depths ranging from 2.5 to 6.5 feet. These sands were generally loose to very loose in consistency. We anticipate that the cover sands will be encountered in other area

of the site as well. Clearing activities to access some of the boring locations likely removed some of the thinner layers of cover sands.

Beneath the cover sands, caliche with silty sands (SM) were encountered to auger refusal and/or boring termination depths ranging from 25 to 45 feet below the existing ground surface elevation. The N-values of the standard penetration resistance test (SPT) are used to evaluate the relative consistency or density of the subsurface soils. The N-values for the encountered soils ranged from 13 bpf to 100 blows per 1 inch of penetration, indicating a relative density of medium dense to very dense.

The natural moisture content of the sampled soils ranged from 2.5 to 9 percent. Atterberg limits testing on three selected residual samples revealed liquid limits (LL) ranging from 26 to 29 percent and each sample was non-plastic. Wash 200 tests performed on eight soil samples revealed 24 to 45 percent finer than the 200 sieve.

3.2.2 Subsurface Water

Subsurface water was not observed in any of the soil test borings either during or at the completion of drilling activities. Subsurface water levels may fluctuate due to seasonal changes in precipitation amounts or due to construction activities in the area. The groundwater information presented in this report is the information that was collected at the time of our field activities.

3.2.3 Auger Refusal Conditions

Auger refusal materials were encountered in four of the eighteen soil test borings (B-101, B-111, TF-1, and TF-4) at depths ranging from 37 to 45 feet below the existing ground surface elevation. The remaining soil test borings were terminated at a depth of 25 feet prior to encountering

refusal materials. Refusal is a designation applied to any material that cannot be penetrated by the power auger. The following table presents the auger refusal depths. Auger refusals could indicate a number of materials, however, we understand that in the CISF area the altered portion of the Ogallala Formation, or the Caprock Caliche, is horizontally present across the entire CISF footprint. The caliche is present in various stages of development (Machette, 1985) both vertically and horizontally across the CISF site. The location of the well-developed (stage 3-5) caliche at the CISF is generally indicated by auger refusal in geotechnical borings. Based on this information, it appears the auger refusal materials consisted of stage 3-5 caliche. Rock coring was beyond the scope of this exploration, so the character and continuity of the refusal materials was not determined. The following table should be reviewed for auger refusal depths:

AUGER REFUSAL DEPTHS			
Location	Refusal Depth (feet)		
B-101	45		
B-111	37		
TF-1	40		
TF-4	40		

Table 2 - Auger Refusal Depths

3.2.4 General

The above subsurface description is of a generalized nature to highlight the major subsurface stratification features and material characteristics. The boring logs included in Appendix A should be reviewed for specific information at individual boring locations. The depth and thickness of the subsurface strata indicated on the test records were generalized from and interpolated between boring locations. The transition between materials will be more or less gradual than indicated and may be abrupt. Information on actual subsurface conditions exists only at the specific test locations and is relevant to the time the exploration was performed. Variations may occur and should be

expected between boring locations. The stratification lines were used for our analytical purposes and, unless specifically stated otherwise, should not be used as the basis for design or construction cost estimates.

3.2.5 Additional Provided Resources

As mentioned previously, of the eighteen borings performed for the CISF project only four of the borings encountered auger refusal. The auger refusal depths ranged from 37 to 45 feet below the ground surface (bgs). Industry standards would typically result in an extension of one or more of the borings to a greater depth. The purpose of the extension would be to obtain the soil parameters necessary for settlement analysis. In this case, shear wave surveys were performed in conjunction with the geotechnical exploration and shear wave velocities are provided to depths of 100 feet bgs. Additionally, multiple previous geotechnical investigations have been performed on the WCS property as well as shear wave testing. The historical data outlined below was utilized to extend the soil profile and engineering parameters to a depth of 600 feet. This depth satisfies general industry guidance for settlement evaluation depth. The depth of 600 feet was selected as the termination depth due to encountering the Trujillo Sandstone Layer.

The section below outlines the previous studies which were utilized to extend the soil column to a depth of 600 feet. Additional information regarding the soil column development and soil parameters obtained for use in the settlement analysis are provided in Appendices C, D and H.

Provided Additional Documents:

- 1. AECOM. (2016). Site-Specific Seismic Hazard Evaluation and Development of Seismic Design Ground Motions, WCS Centralized Interim Storage Facility Project. Dated March 18, 2016.
- 2. WCS. (2007). (Waste Control Specialists LLC). Application for License to Authorize Near Surface Land Disposal of Low-Level Radioactive Waste. Dated March 2007.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 SITE ASSESSMENT

The results of the subsurface exploration indicate that the site is adaptable for the proposed construction. However, as is the case with most sites, some inherent challenges are associated with this development of this site. These challenges include the presence of isolated zones of loose cover sands.

As mentioned previously, very loose to loose sands were encountered in five of the eighteen soil test borings (AB-2, B-101, B-102, B-103, TF-2, and TF-5) to depths ranging from 2.5 to 6.5 feet. While we anticipate that foundation excavations would penetrate the majority of the loose cover sands, we anticipate that some undercutting of cover sands will be required were encountered in structural and roadway areas. Where undercutting is required, the depths of undercut and replacement materials should be provided by the geotechnical engineer of record during constructions. Based on the proposed foundation loads and bearing elevations, we anticipate the undercuts can be backfilled with caliche compacted to the requirements outlined in Section 4.2.2.

4.2 SITE PREPARATION

4.2.1 Subgrade

All vegetation, organic soils, rock fragments greater than 6 inches, and other debris should be removed from the proposed construction area. The actual depth of removal should be determined by a representative of the geotechnical engineer at the time of construction.

After completion of stripping operations and any required excavations to reach planned subgrade elevation, we recommend that the subgrade be proofrolled with a fully-loaded, tandem-axle dump truck or other pneumatic-tired construction equipment of similar weight. The geotechnical engineer or his representative should observe proofrolling. Areas to receive structural soil fill should also be proofrolled prior to the placement of any fill. Based on the results of the drilling activities, very loose to loose sands were encountered in five of the 18 soil test borings (AB-2, B-101, B-102, B-103,TF-2, and TF-5) to depths ranging from 2.5 to 6.5 feet. We anticipate that these soils encountered will perform unsatisfactorily during proofrolling activities. The project budget should include a contingency for required undercutting of the upper loose soils within the proposed building footprints and roadway sections and replacement with properly compacted fill.

4.2.2 Structural Soil Fill

Characteristics of recommended fill soils and the placement and compaction criteria for fill are provided in the table on the following page. The results of our limited laboratory testing indicate that **SOME** of the on-site materials **DO** meet the criteria for reuse as structural fill. However, we recommend that the near surface silty sands NOT be reused as compacted fill. Therefore, dependent on grading requirements, some fill materials may need to be imported during grading. The grading contractor should include provisions in their bid for importing new soil materials and exporting excess materials.

The near surface fill materials consists of sands that contain more than 15 percent fines. Experience indicates these materials can be moisture sensitive and degrade rapidly under heavy rubber-tired equipment. Therefore, the contractor should be aware that if these materials will be reused as fill or are present at the subgrade level, some repairs of subgrades that degrade during the construction may be required prior to pavement construction.

Prior to initiating grading activities, samples of proposed fill soils should be submitted for Atterberg limits and moisture-density relationship determination testing (i.e., standard Proctor). This testing typically requires at least 3 to 4 days to complete. To avoid delays during grading, samples of proposed fill materials (both on-site and off-site) should be collected during site preparation activities.

SUMMARY OF RECOMMENDED FILL CRITERIA

MATERIAL TYPE	CHARACTERISTICS	COMPACTION PROCEDURES	COMPACTION CONTROL
COARSE- GRAINED SOILS (CALICHE)	 Maximum gravel size – 1 inch Maximum gravel content – 30 percent retained on a ³/₄-inch sieve Maximum allowable organic content – 5 percent by weight, but no large roots should be allowed USCS Classification SP, SC, SM 	 Maximum loose lift thickness – 6 inches Compaction requirement¹: The fill should be compacted by making multiple passes with an appropriately sized sheepsfoot roller. Compaction should be at least 95 percent of the standard Proctor maximum (ASTM D 698) Moisture content for fill: At time of compaction – within minus 2 and plus 2 percent of the optimum moisture content 	Building and pavement areas: One test every 2,500 to 5,000 square feet per lift, with a minimum of two tests per lift Trench areas: One test every 100 linear feet per lift Minimum requirement: Two tests per lift (for preliminary planning only, our technician or engineer should determine the actual test frequency)

¹ In addition, the fill must be stable under the influence of the compaction equipment. After the soil fill is properly placed and compacted, it will be advisable to limit the amount of heavy construction traffic on the soil subgrade.

Table 3 – Summary of Fill Criteria

4.3 FOUNDATION AND STRUCTURAL RECOMMENDATIONS

4.3.1 Administration Building Foundations

The security and administration building will be traditional commercial construction and will consist of a single-story steel frame construction with a slab-on-grade. Foundations for the proposed construction will be supported on the underlying caliche with sand and/or properly compacted structural fill materials. The recommended preliminary allowable bearing capacity for design of the foundations is 3,000 pounds per square foot (psf) or less. A one-third increase in the allowable bearing capacity for all load conditions that include transient loads (wind, seismic, other short term loads) is permitted. The 33% increase in allowable bearing capacity (stress) can be applied to load combinations that consider transient loads in conjunction with dead loads. This increase in allowable stress cannot be applied solely to dead loads. We recommend that continuous foundations be a minimum of 18 inches wide and isolated spread footings be a minimum of 24 inches wide to reduce the possibility of a localized punching shear failure. All exterior footings should be designed to bear at least 36 inches below finished exterior grade.

Foundation excavations should be opened, the subgrade evaluated, remedial work performed, and concrete placed in an expeditious manner. Exposure to weather often reduces foundation support capabilities, thus necessitating remedial measures prior to concrete placement. It is also important that proper surface drainage be maintained both during construction (especially in terms of maintaining dry footing trenches) and after construction.

4.3.1.1 Administration Building Settlement

As mentioned previously, at the time this report was prepared the Administration Building was still being designed. Therefore detailed loading and foundations sizes were not available. Based on the conditions encountered in our borings, and the anticipated loading (maximum column loads of 75 kips or less) we anticipate that total settlements will be less 0.5 inches for the administration building. This is based on the assumption the foundations will bear in the caliche and sand matrix or newly placed structural soil fill. Once the building design is finalized these settlement calculations can be updated to include the actual foundation loads and sizes.

4.3.1.2 Slabs-on-Grade (Administration Building)

For slab-on-grade construction for the administration building, the site should be prepared as previously described. If moisture mitigation through the slab is a concern, we recommend that the subgrade be topped with a minimum 6-inch layer of crushed stone. A polyethylene vapor barrier is not required if the designer utilizes a dense graded aggregate base. If a dense aggregate base is not utilized a vapor barrier should be placed beneath the slab. The vapor barrier material should be in compliance with ASTM E 1745 and have a thickness of at least 10 mils (0.3 mm), as recommended by ACI 302.1R-04 "Guide for Concrete Floor and Slab Construction". The vapor barrier material should be of sufficient strength and durability to resist puncture during reinforcing steel and concrete placement. Placement of the vapor barrier should be in accordance with manufacturer's recommendations.

The subgrade should be proofrolled and approved prior to the placement of the crushed stone. Based on the conditions encountered on this site, we recommend that the floor slabs be designed using a subgrade modulus of 150 pounds per cubic inch (pci). This subgrade modulus value is for small diameter loads (i.e., a 1 foot by 1 foot plate) and should be adjusted for wider loads such as large mat foundations.

4.3.2 Transfer Facility (Cask Handling Building) Foundations

The transfer facility (Cask Handling Building) is a two-bay ITS – Category B steel structure. The Cask Handling Building measures 175 feet by 193 feet in plan dimension and has a height of 72 feet. Based on information provided by AECOM, we understand that the foundations for the proposed cask handling building will bear at a depth of 10 to 11 feet below existing grade. Foundations for the cask handling building will bear in the Caliche with Sand Matrix. The recommended allowable bearing capacity for the service level design of the foundations is 4,000 pounds per square foot (psf) or less. An allowable bearing pressure for limit state loadings of 6,000 psf can be utilized. This bearing pressure is based on a foundation bearing depth of 10 feet below grade. Should the foundation elevations be changed, the geotechnical engineer should be contacted to evaluate the bearing capacity and settlement at the new foundation elevation. Bearing capacity calculations are provided in Appendix G of this report.

4.3.2.1 Transfer Facility (Cask Handling Building) Settlement Analysis

Settlement analysis for the transfer facility was performed using the soil column outlined in Appendix D. The settlement calculation was performed utilizing Settle3 a finite difference software produced by RocScience. Settle3 allows for the input of the foundation loads for the entire footprint so that any stress overlaps between adjacent foundations can be analyzed. For the Cask Handling Building the service level loads shown on AECOM drawing WCS01-13-2001 dated December 24, 2019 were utilized for the analysis. Both a dead load sustained case and a seismic case were analyzed. The gross bearing pressures provided were used for the analysis. It should be noted that if the bearing pressure or bearing depth changes, the geotechnical engineer should be contacted to update the calculations. The results of the analysis are shown below. Detailed settlement calculations are provided in Appendix H.

Load Combination	Maximum Total Settlement	
Dead (1.0D)	Less Than 0.25 inches	
Seismic (1.0D + 0.7E)	Less Than 0.50 inches	

Table 4 – Summary of Cask Handling Building Settlement Results

4.3.2.2 Slabs-on-Grade (Cask Handling Building)

For slab-on-grade construction for the administration building, the site should be prepared as previously described. If moisture mitigation through the slab is a concern, we recommend that the subgrade be topped with a minimum 6-inch layer of crushed stone. A polyethylene vapor barrier is not required if the designer utilizes a dense graded aggregate base. If a dense aggregate base is not utilized a vapor barrier should be placed beneath the slab. The vapor barrier material should be in compliance with ASTM E 1745 and have a thickness of at least 10 mils (0.3 mm), as recommended by ACI 302.1R-04 "Guide for Concrete Floor and Slab Construction". The vapor barrier material should be of sufficient strength and durability to resist puncture during reinforcing steel and concrete placement. Placement of the vapor barrier should be in accordance with manufacturer's recommendations.

The subgrade should be proofrolled and approved prior to the placement of the crushed stone. Based on the conditions encountered on this site, we recommend that the floor slabs be designed using a subgrade modulus of 150 pounds per cubic inch (pci). This subgrade modulus value is for small diameter loads (i.e., a 1 foot by 1 foot plate) and should be adjusted for wider loads such as large mat foundations. Once preliminary slab pressures are provided we can assist the structural engineer in adjusting the subgrade modulus values to account for wider loads. The procedure outlined in section 4.3.3.1 of this report can be utilized.

4.3.3 CISF Pad Foundations

Each of the consolidated interim storage facilities (CISF) are planned to be 280,000 square feet (800 feet by 350 feet) in size. We understand that each CISF will consist of a gravel pad with a number of smaller cast-in-place reinforced concrete mat foundations that will each hold 24 (3x8 array) storage casks when full loaded. The individual mat foundations measure approximately 7,425 square feet (55 feet by 135 feet). The concrete mat foundation will measure 36 inches in thickness and bear at a depth of 4 feet below grade. The concrete mat foundation will be based on a minimum of 12 inches of dense graded aggregate.

As mentioned previously in the site assessment, loose cover sands are prevalent beneath the CISF site to depths of up to depths of up to 7.5 feet. Where encountered, these soils will have to be undercut and replaced with properly compacted caliche or crushed stone to provide adequate support of the proposed CISF pads. Provided the recommendations in the site assessment are followed, an allowable bearing pressure of 5 ksf can be utilized for design. Bearing capacity calculations are provided in Appendix G of this report.

4.3.3.1 CISF Mat Foundation Recommendations

The CISF Pads experience a series of complex loadings due to the number of casks on the pads and the fact the casks are loaded individually onto the pads. The use of a single modulus of subgrade reaction (k_s) for a mat with a loading of this complexity will not generate realistic deflections. In order to obtain realistic deflections with the complex loading, the subgrade modulus values must be adjusted to account for wider loads. To address this issue, GEOServices has worked with the structural engineer (Enercon) to adjust the subgrade modulus through an iterative process. The process proceeded as follows:

- 1) The first iteration of the settlement analysis was performed using mat pressures provided by Enercon.
- 2) These pressures were used to develop a Settle3 model (finite difference software) with the end goal of formulating values of subgrade modulus (k). The program calculates settlements beneath the mat based on the pressures provided. The modulus values are calculated at distinct points by dividing pressure/settlement.
- 3) The resulting new values of subgrade modulus were then submitted to Enercon to be integrated into the GTSTRUDL analysis.
- 4) The next iteration combined the applied loads with a much more accurate estimate of soil response (calculate k-values) thus refining the mat pressure distribution.
- 5) The results of the refined GTSTRUDL analysis were then provided and used to update the pressures in the Settle3 model. The result was an updated set of subgrade modulus for the entire mat.
- 6) This iterative process was continued until model convergence (calculated soil modulus values and displacements did not change more than 10 percent between consecutive iterations) was achieved.

The analysis was performed on the four loading configurations shown on Figure 7-9 in Chapter 7 of the SAR. These configurations include fully loaded, quarter loaded, half loaded, and three quarter loaded. Plots showing the converged models and the subsequent subgrade modulus values are provided in Appendix H of this document.

4.3.3.2 CISF Settlement Analysis

Settlement analysis for the CISF pads was performed using the soil column outlined in Appendix D. The settlement calculation was performed utilizing Settle3 a finite difference software produced by RocScience. Settle3 allows for the input of the foundation loads for the entire footprint so that any

stress overlaps between adjacent foundations can be analyzed. For the CISF pads, the final pressures from the iterative process (designed to provide an accurate estimate of soils response beneath the mat) were utilized. For the CISF pads, a settlement distribution for each of the four loading configurations shown of Figure 7-9 in Chapter of SAR is provided. Additionally, due to the number of pads which will be installed in the CISF Area (18 total) and the spacing between pads (20 feet edge to edge) an additional case including four pads was analyzed. This analysis was performed to take into account any stress overlap between adjacent pads and provide the impacts in terms of settlement. In each instance the maximum total settlements were less than 0.75 inches. The comprehensive results of the analysis are provided in Appendix H of this document.

4.3.4 Shear Wave Testing Results

We evaluated the site seismic class of the upper 100 feet to determine the seismic site class per the criteria in Table 1613.5.2 of the International Building Code (IBC, 2006/2012). The on-site shear wave velocity was determined using the refraction micro-tremor (ReMi) method. The testing used a Seismic Source DAQ Link II 24 seismograph and 10 Hz vertical geophones. The geophones were deployed along an approximately 300-foot long linear array and spaced on approximately 26-foot centers. Once the field data was collected, a computer model was used to determine the subsurface shear wave velocity profile. The test results are attached to this report.

The attached seismic velocity model displays the shear-wave velocity profiles for the upper 100 feet. The results of the models revealed the following shear wave velocities.

	Run 1	Run 2	Run 3	Run 4	Average
Donth	Shear	Shear	Shear	Shear	Shear
Depth (foot)	Wave	Wave	Wave	Wave	Wave
(feet)	Velocity	Velocity	Velocity	Velocity	Velocity
	(feet/sec)	(feet/sec)	(feet/sec)	(feet/sec)	(feet/sec)
0 - 5	820	1020	989	843	918
5 - 15	1107	985	978	1036	1027
15 - 25	1498	1302	1549	1432	1445
25 - 35	1498	2253	2120	1889	1940
35 - 55	2558	2731	2252	2058	2400
55 - 75	2228	1231	1417	2153	1757
75 - 100	2228	3205	3383	3322	3035

Table 5 – Summary of Shear Wave Velocity Results

The location of each of the shear wave arrays as well as the plot for each individual run is provided in Appendix E of this report.

4.3.5 Liquefaction Potential

Liquefaction occurs when soil, primarily saturated cohesionless soils, undergo a loss in strength due to monotonic, transient, or repeated disturbance that commonly occurs during a seismic event (Kramer 1996). This loss of strength occurs due to increased pore water pressures caused by an undrained condition. The increase in pore water pressure decreases the effective stress in the soil, thus reducing the soils ability to support any applied loads. For liquefaction to occur, there must be an increase in poor pressure meaning the soil must be saturated and be able to behave in an undrained condition. According to the NHI 2011 Reference Manual on LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations, if any of the following criteria are satisfied then a significant liquefaction hazard does not exist:

- The geologic materials underlying the site are either bedrock or have very low liquefaction susceptibility according to the relative susceptibility ratings shown in the Estimated Susceptibility of Sedimentary Deposits to Liquefaction During Strong Ground Motion table presented by Youd and Perkins in 1978.
- The soils below the groundwater table at the site are one of the following
 - Clayey soils which have a clay content greater than 15%, liquid limit greater than
 35%, or natural water content less than 90% of the liquid limit.
 - \circ Sand with a minimum corrected SPT (N₁)₆₀ value of 30 blows/foot.
 - The water table is deeper than 50 feet below the ground surface or proposed finished grade at the site.

Since groundwater was not encountered in any of the eighteen soil test borings and given that some of the borings penetrated as deep as 45 feet below the ground surface, it can be concluded that a liquefaction hazard does not exist for the subject development.

4.3.6 Seismic Densification Analysis

While a liquefaction hazard does not exist for the subject project, there is a potential for settlement of the loose sands that exist in some areas of the CISF. According to Kramer (1996), the tendency of sands to densify when subjected to earthquake shaking is well documented and occurs very rapidly. This densification is usually completed by the end of the earthquake.

Calculations were performed to determine the magnitudes of settlements/densification that could occur during an earthquake event using the Pradel method. The calculations show that the seismic densification for the design earthquake will be negligible (on the order of 0.02 inches or less). Detailed information regarding the calculation, results, and procedure can be found in Appendix F.

4.4 LATERAL EARTH PRESSURES

At this time, we are not aware of planned retaining walls for the CISF project, however, we understand that some foundations may bear as deep as 10 to 11 feet below grade. Therefore, we are providing soil parameters and earth pressure coefficients for the materials we expect to be encountered on site as well as the potential backfill materials.

Earth Pressure Condition	Backfill Type	Unit Weight (pcf)	Friction Angle (deg.)	Earth Pressure Coefficient
Active (Ka)	Silty Sands	95	27	0.376
	Caliche	130	35	0.271
At-Rest (Ko)	Silty Sands	95	27	0.546
	Caliche	130	35	0.426
Passive (Kp)	Silty Sands	95	27	2.663
	Caliche	130	35	3.690

Table 6 – Earth Pressure Summary

Note: In each instance the earth pressure coefficients provided are unfactored.

For rigid, cast-in-place concrete walls, a friction factor of 0.45 between foundation concrete and the bearing soils may be used when evaluating friction. If a stone leveling course is utilized beneath the foundation, a friction factor of 0.55 between foundation concrete and the dense graded aggregate base may be used when evaluating friction.

5.0 CONSTRUCTION CONSIDERATIONS

5.1 EXCAVATIONS

Auger refusal materials were encountered in four of the 18 soil test borings (B-101, B-111, TF-1, and TF-4) at depths ranging from 37 to 45 feet below the existing ground surface elevation. Typically, soils penetrated by augers can be removed with conventional earthmoving equipment. However, excavation equipment varies, and field refusal conditions may vary. Some of the very dense caliche may require difficult excavation techniques such as ripping, prior to excavation.

Excavations should be sloped or shored in accordance with local, state, and federal regulations, including OSHA (29 CFR Part 1926) excavation trench safety standards. The contractor is usually solely responsible for site safety. This information is provided only as a service and under no circumstances should GEOServices be assumed to be responsible for construction site safety.

5.2 FOUNDATION CONSTRUCTION

Foundation excavations should be opened, the subgrade evaluated, remedial work performed, and concrete placed in an expeditious manner. Exposure to weather often reduces foundation support capabilities, thus necessitating remedial measures prior to concrete placement. It is also important that proper surface drainage be maintained both during construction (especially in terms of maintaining dry footing trenches) and after construction. Soil backfill for footings should be placed in accordance with the recommendations for structural fill presented herein.

Foundation subgrade observations should be performed by a GEOServices geotechnical engineer, or his qualified representative, so that the recommendations provided in this report are consistent with the site conditions encountered. A dynamic cone penetrometer (DCP) is commonly utilized to provide information that is compared to the data obtained in the geotechnical report. Where unacceptable materials are encountered, the material should be excavated to stiff, suitable soils or remediated at the geotechnical engineer's direction. Typical remedial measures consist of undercutting, overexcavation, or combinations thereof.

5.3 MOISTURE SENSITIVE SOILS

The upper fine-grained soils encountered at this site will be sensitive to disturbances caused by construction traffic and changes in moisture content. During wet weather periods, increases in the moisture content of the soil can cause significant reduction in the soil strength and support capabilities. Construction traffic patterns should be varied to prevent the degradation of previously stable subgrade.

In addition, soils which become wet may be slow to dry and thus significantly retard the progress of grading and compaction activities. It will, therefore, be advantageous to perform earthwork and foundation construction activities during dry weather. Climate data for Andrews, Texas, obtained from Weatherbase indicate in the following table the average monthly precipitation. The average amount of precipitation does not vary much throughout the year.

PRECIPITATION AVERAGES

Month	Monthly Precipitation Average (Inches)	Month	Monthly Precipitation Average (Inches)
January	0.7	July	1.9
February	0.5	August	1.5
March	0.3	September	1.5
April	0.9	October	1.8
May	2.1	November	0.4
June	1.6	December	0.6

Table 7 – Average Monthly Precipitation

5.4 DRAINAGE AND SURFACE WATER CONCERNS

To reduce the potential for undercut activities, water should not be allowed to collect in the foundation excavations, on floor slab areas, or on prepared subgrades of the construction area either during or after construction. Undercut or excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater, subsurface water, or surface runoff. Positive site surface drainage should be provided to reduce infiltration of surface water around the perimeter of the buildings and beneath the floor slab. The grades should be sloped away from the buildings and surface drainage should be collected and discharged such that water is not permitted to infiltrate the backfill and floor slab areas of the buildings.

6.0 LIMITATIONS

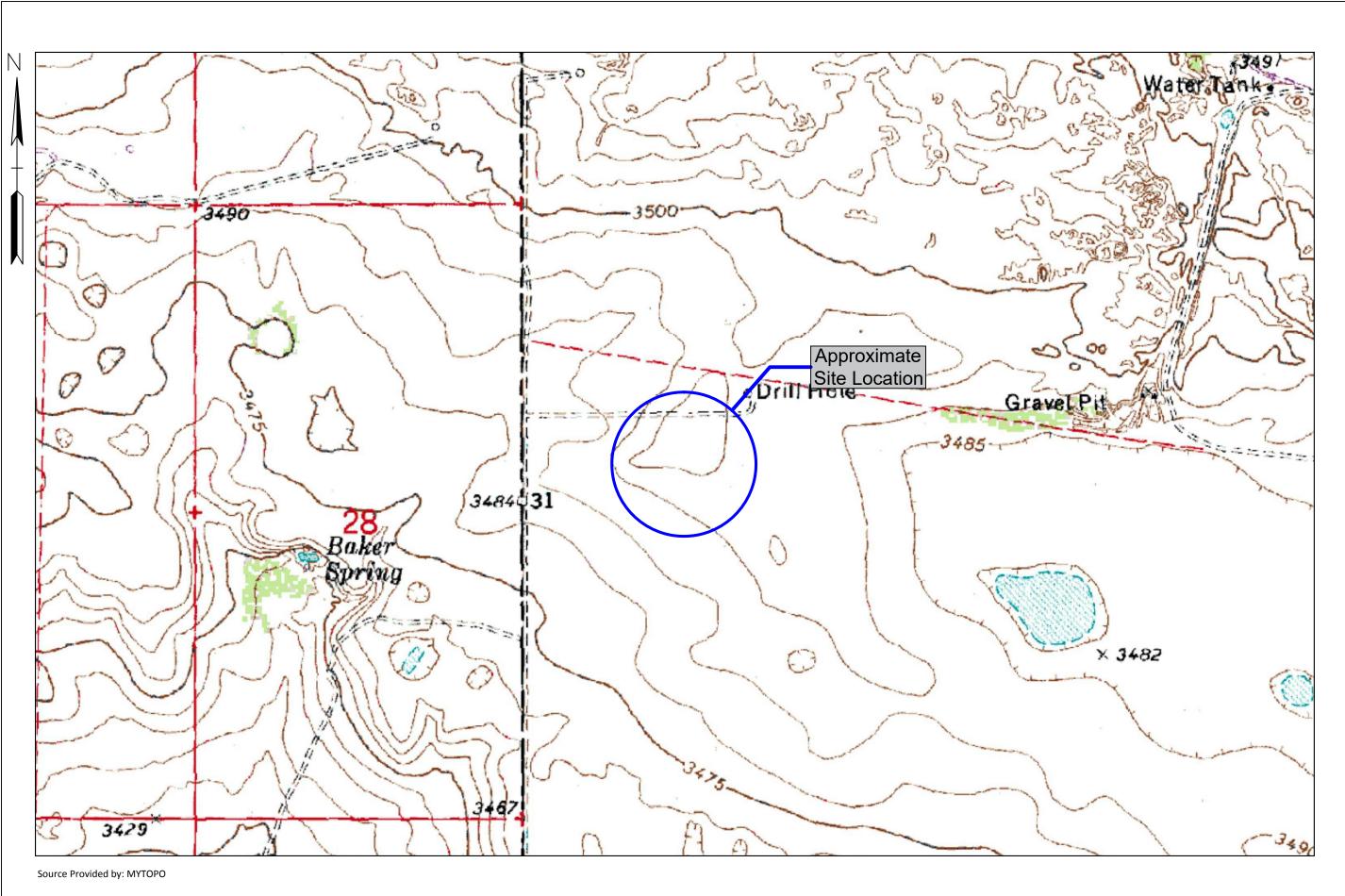
This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. This report is for our geotechnical work only, and no environmental assessment efforts have been performed. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, express or implied, is made.

The analyses and recommendations submitted herein are based, in part, upon the data obtained from the exploration. The nature and extent of variations between the borings will not become evident until construction. We recommend that GEOServices be retained to observe the project construction in the field. GEOServices cannot accept responsibility for conditions which deviate from those described in this report if not retained to perform construction observation and testing. If variations appear evident, then we will re-evaluate the recommendations of this report. In the event that any changes in the nature, design, or location of the structures are planned, the conclusions and recommendations contained in this report will not be considered valid unless the changes are reviewed and conclusions modified or verified in writing. Also, if the scope of the project should change significantly from that described herein, these recommendations may have to be reevaluated.

APPENDICES

APPENDIX A

Figures and Boring Logs



Site Vicinity Plan WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015 GEOS Project No. 31-151247

FIGURE:

1) Aerial Provided by: Google Earth Pro, (02/12/2014)

USGS Site Vicinity Plan WCS Consolidated Interim Storage Facility WCS Andrews, Texas

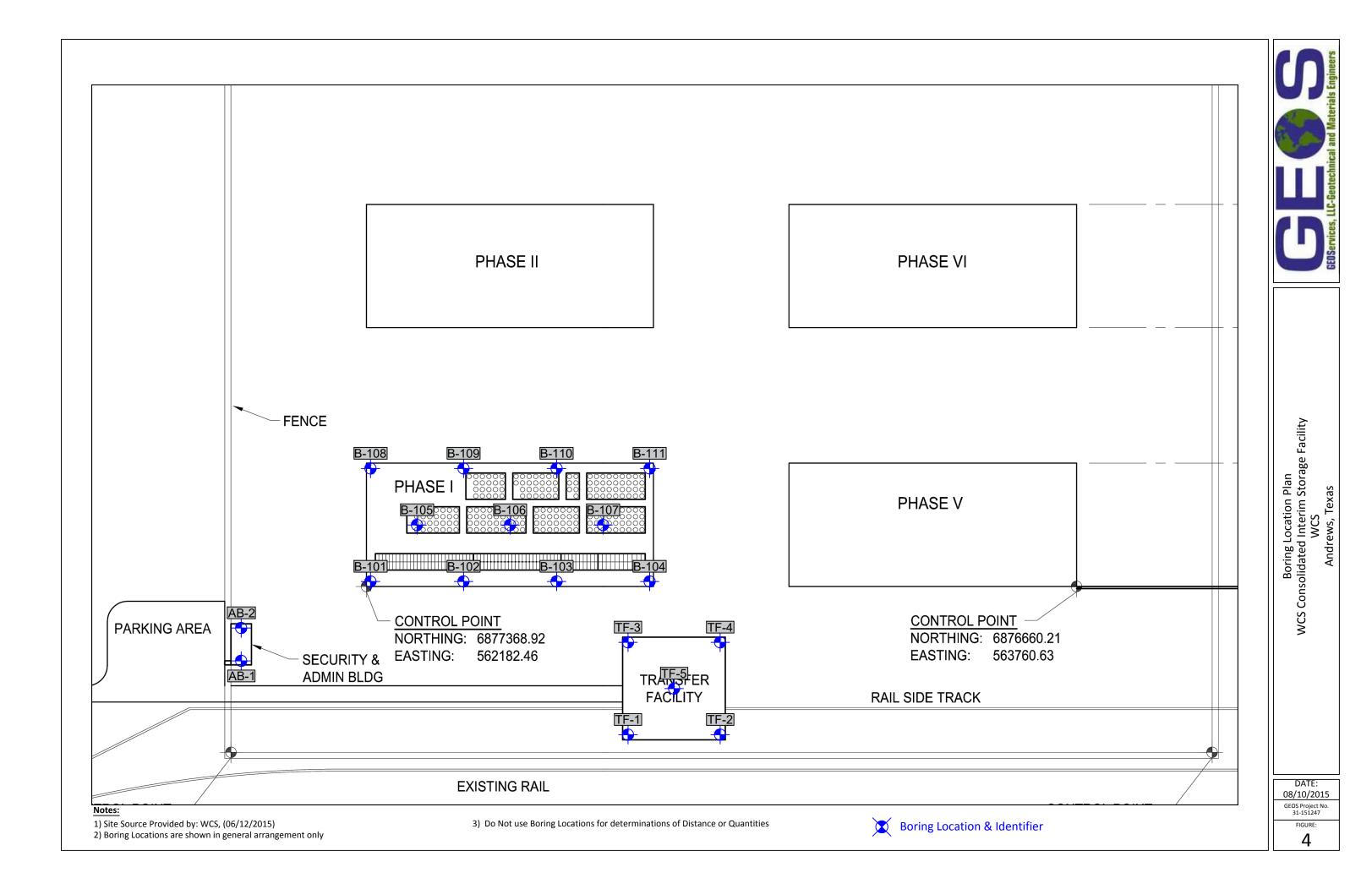
DATE: 08/10/2015

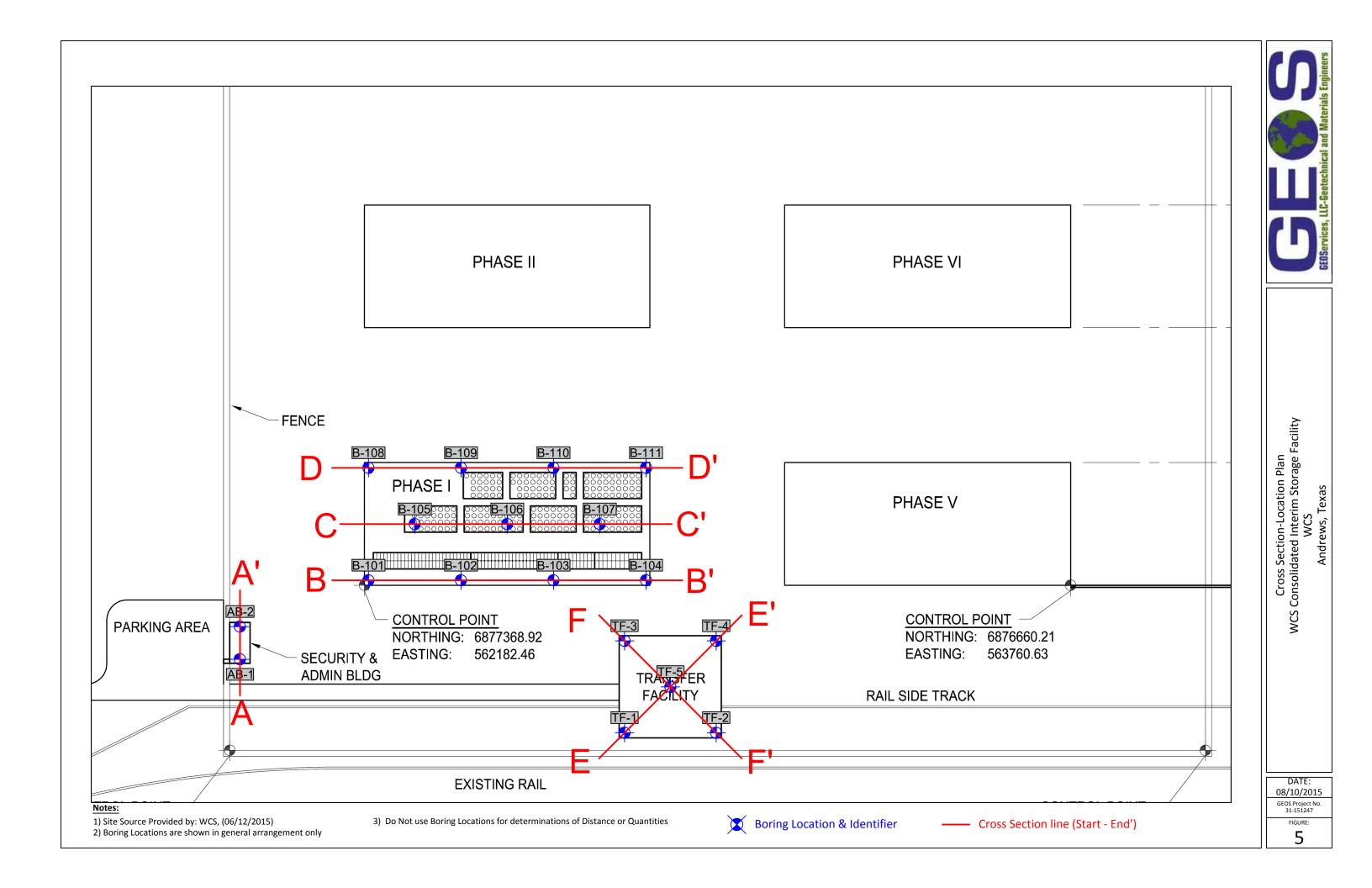
GEOS Project No. 31-151247 FIGURE:

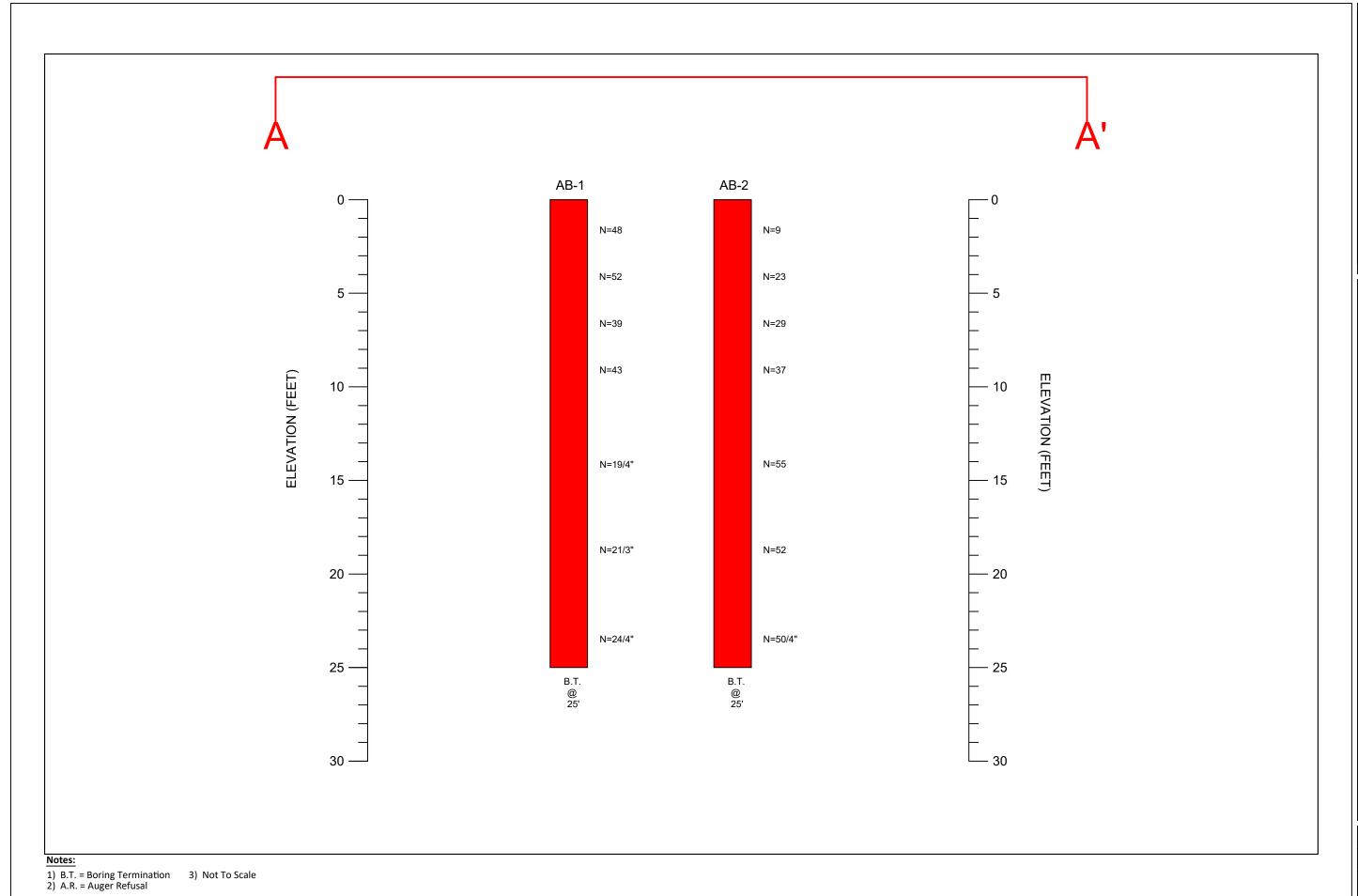
2

SEOServices, LLC-Beotechnical and Materials Engineers

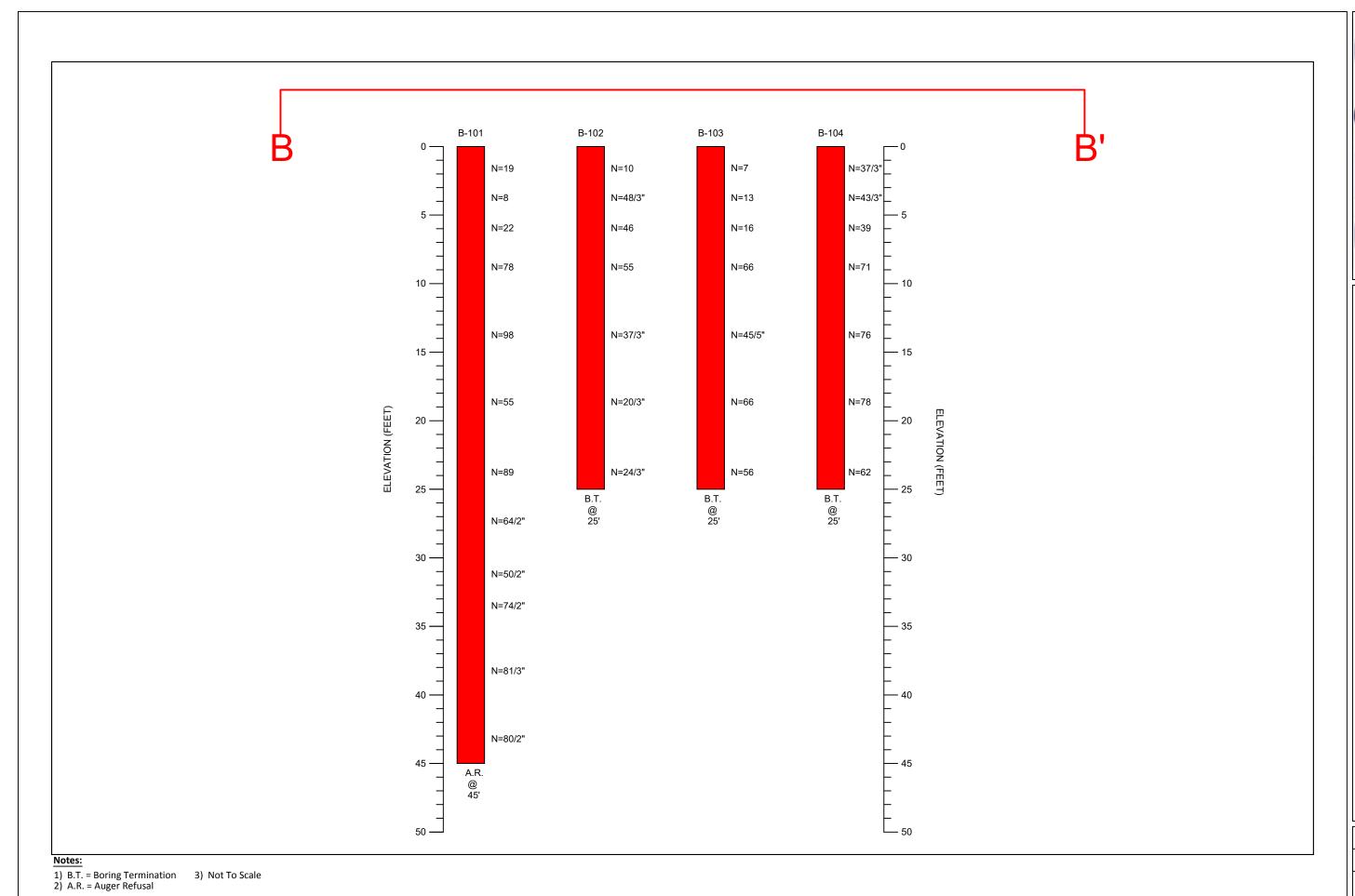
Boring Location Plan WCS Consolidated Interim Storage Facility WCS Andrews, Texas


DATE: 08/10/2015


GEOS Project No. 31-151247 FIGURE:


Site Source Provided by: WCS, (06/12/2015)
 Boring Locations are shown in general arrangement only

3) Do Not use Boring Locations for determinations of Distance or Quantities

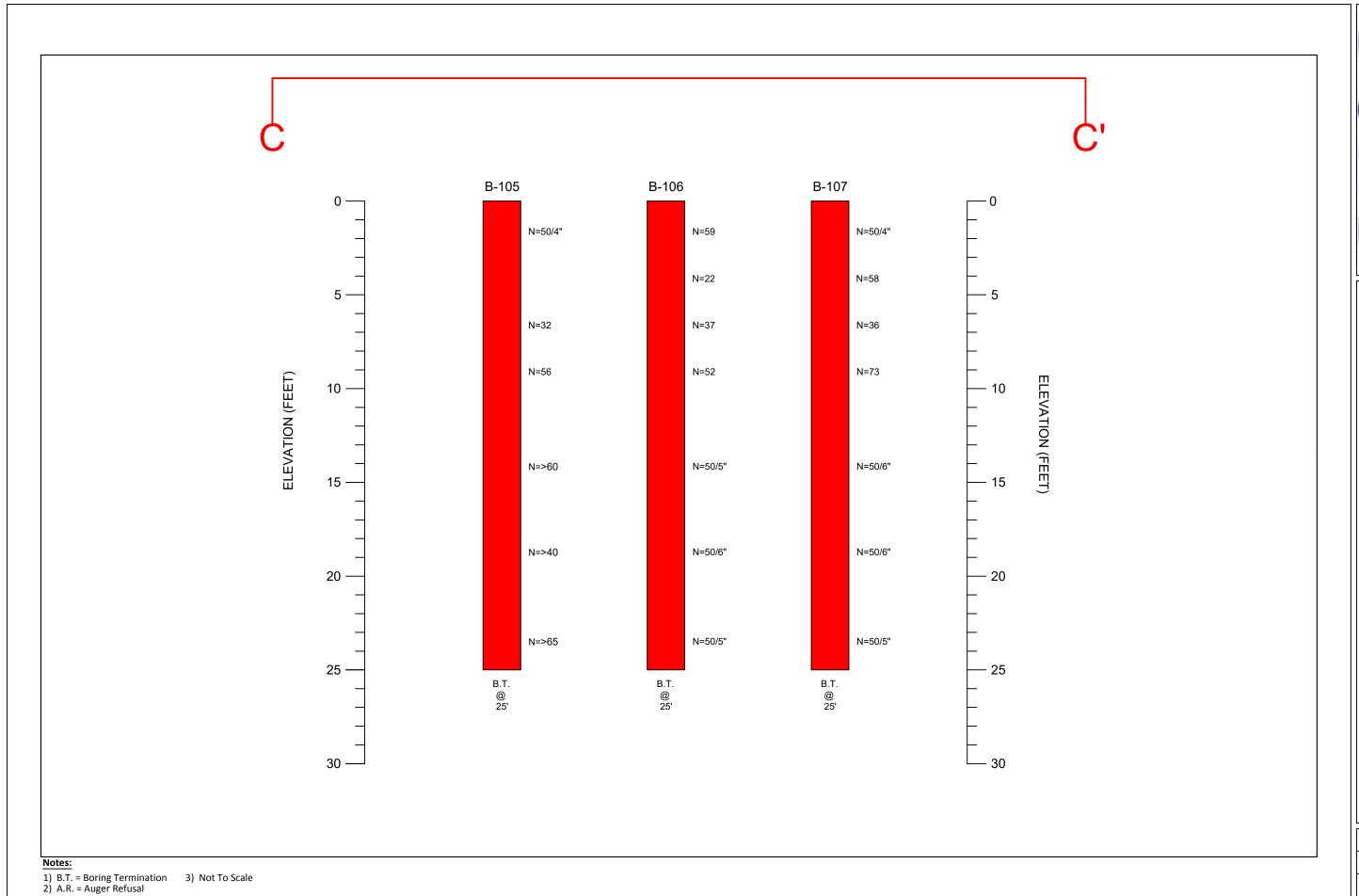

GEDServices, LLC-Geotechnical and Materials Engineers

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247

FIGURE:

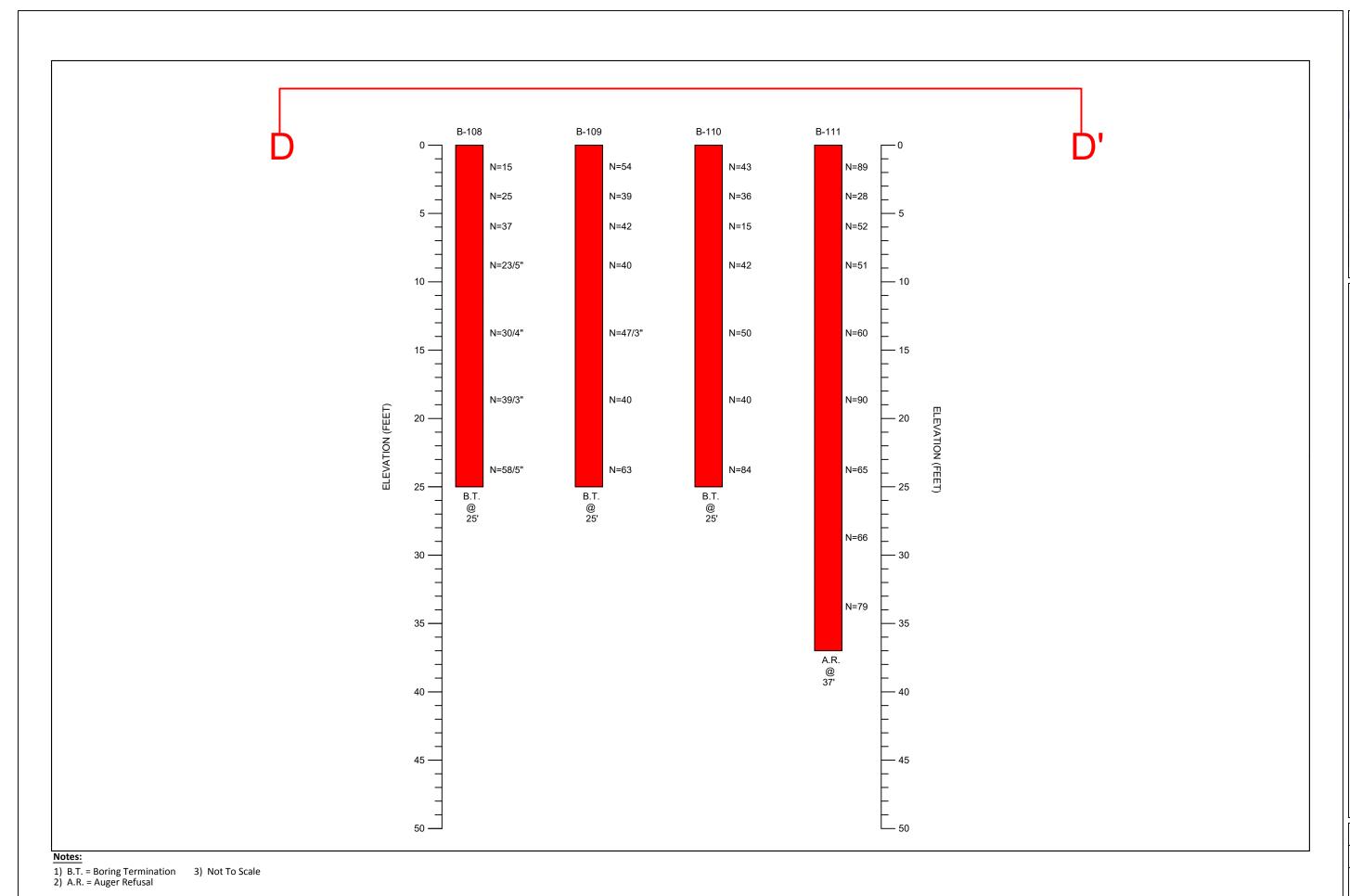


GEOServices, LLC-Geotechnical and Materials Eng

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247 FIGURE:

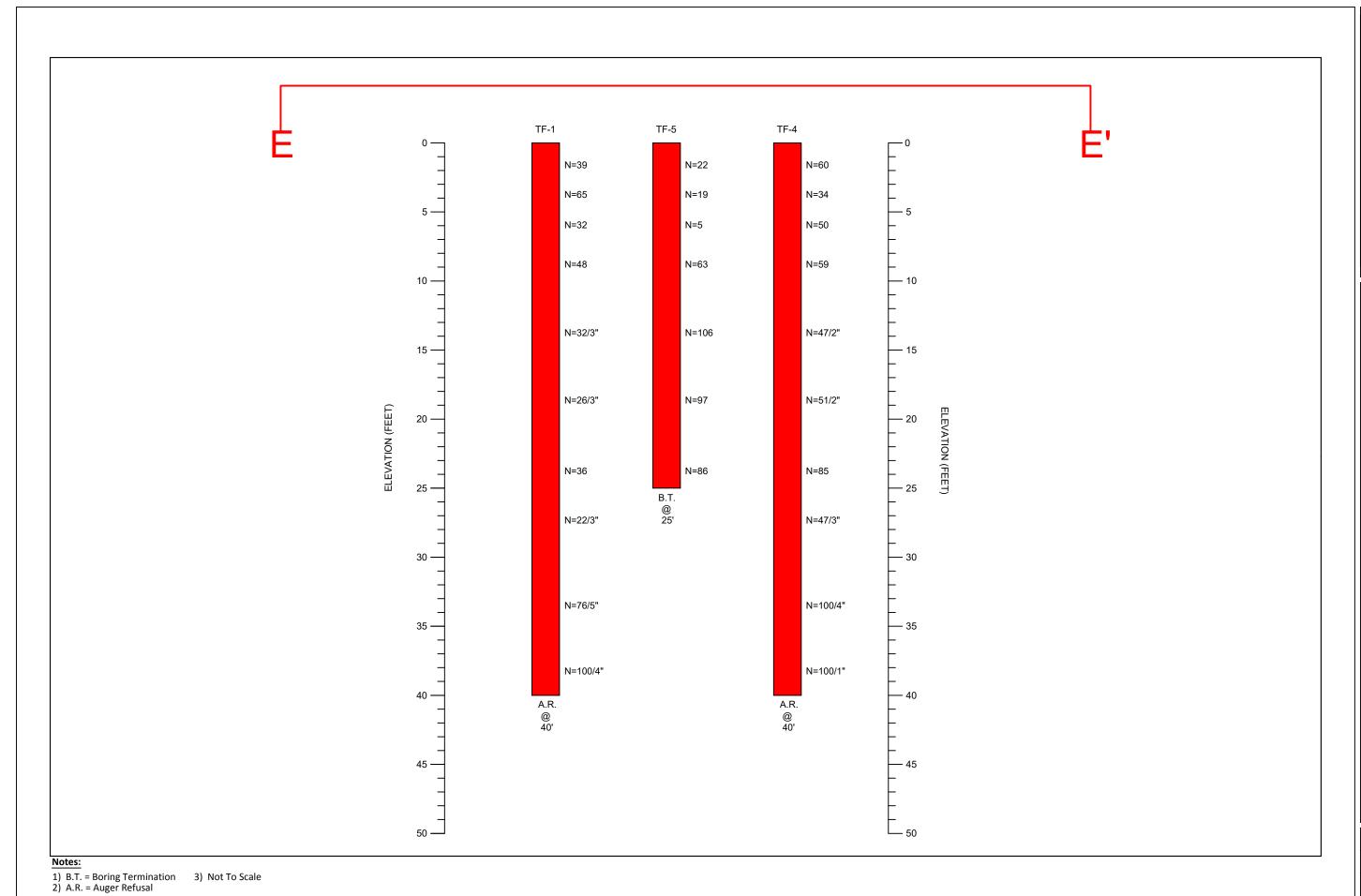


GEOServices, LLC-Geotechnical and Materials Engine

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247 FIGURE:

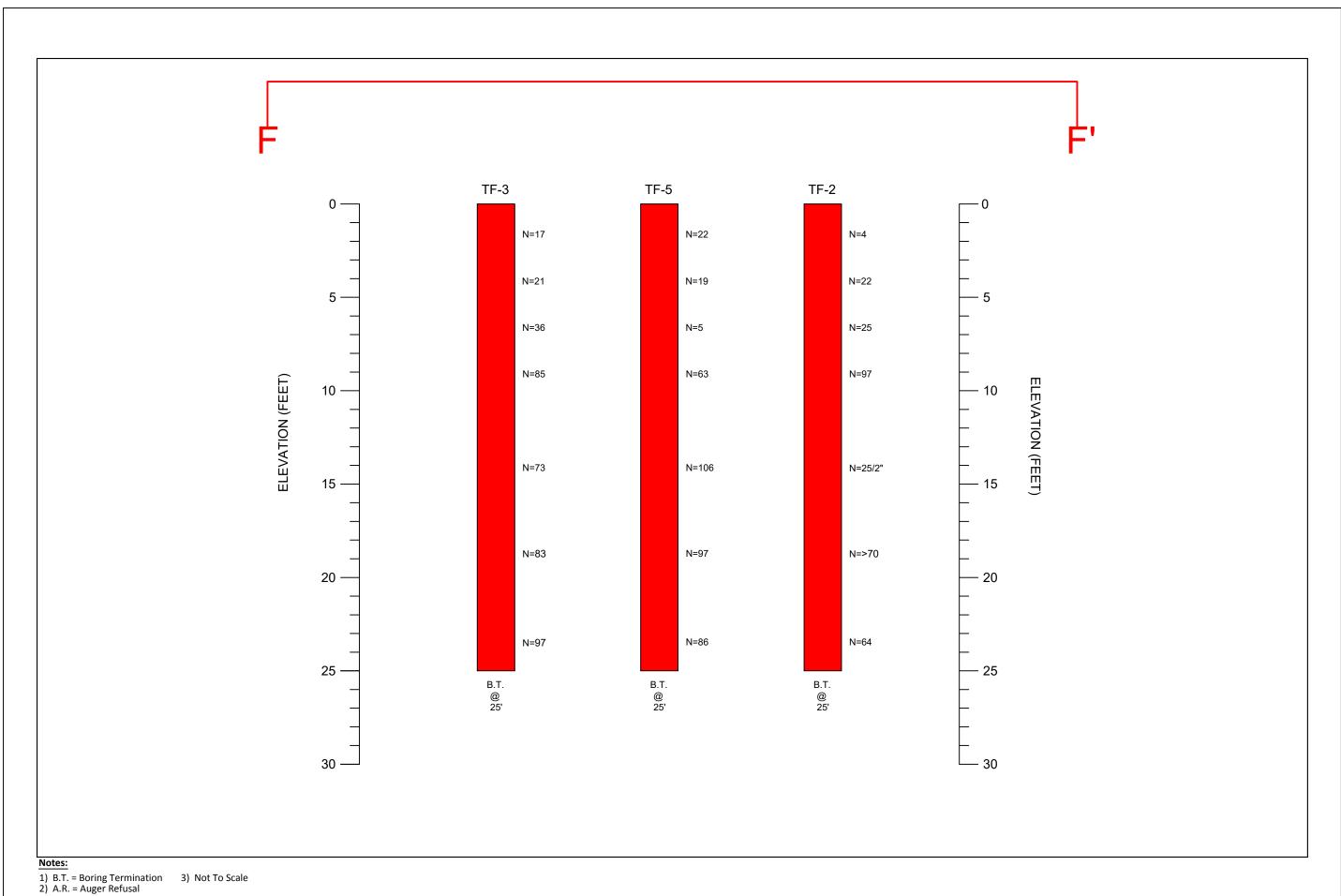


GEOServices, LLC-Geotechnical and Materials Engineer

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247 FIGURE:



SEDServices, LLC-Geotechnical and Materials Engineer

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247 FIGURE:

SEOServices, LLC-Geotechnical and Materials Engineer

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247 FIGURE:

FINE AND COARSE GRAINED SOIL PROPERTIES

PARTICLE SIZE

COARSE GRAINED SOILS (SANDS & GRAVELS)

FINE GRAINED SOILS (SILTS & CLAYS)

BOULDERS: GRAVEL: COARSE SAND: MEDIUM SAND: FINE SAND: SILTS & CLAYS:

GREATER THAN 300 mm 75 mm to 300 mm 4.74 mm to 75 mm 2 mm to 4.74 mm 0.425 mm to 2 mm 0.075 mm to 0.425 mm LESS THAN 0.075 mm

RELATIVE DENSITY N-VALUE VERY LOOSE 5 - 10 11 - 30 LOOSE MEDIUM DENSE DENSE VERY DENSE 31 - 50 OVER 50

Qu, PSF CONSISTENCY N-VALUE 0 - 2 VERY SOFT 0 - 500 3 - 4 5 - 8 SOFT 500 - 1000 1000 - 2000 9 - 15 STIFF 2000 - 4000 16 - 30 VERY STIFF 4000 - 8000 OVER 31 8000 +

STANDARD PENETRATION TEST (ASTM D1586)

THE STANDARD PENETRATION TEST AS DEFINED BY ASTM D1586 IS A METHOD TO OBTAIN A DISTURBED SOIL SAMPLE FOR EXAMINATION AND TESTING AND TO OBTAIN RELATIVE DENSITY AND CONSISTENCY INFORMATON. THE 1.4 INCH I.D./2.0 INCH O.D. SAMPLER IS DRIVEN 3-SIX INCH INCREMENTS WITH A 140 LB. HAMMER FALLING 30 INCHES. THE BLOW COUNTS REQUIRED TO DRIVE THE SAMPLER THE FINAL 2 INCREMENTS ARE ADDED TOGETHER AND DESIGNATED THE N-VALUE. AT TIMES, THE SAMPLER CAN NOT BE DRIVEN THE FULL 18 INCHES. THE FOLLOWING REPRESENTS OUR INTERPRETATION OF THE STANDARD PENETRATION TEST WITH VARIATIONS.

BLOWS/FOOT (N-VALUE)

DESCRIPTION

25	25 BLOWS DROVE SAMPLER 12" AFTER INITIAL 6" SEATING
75/10"	75 BLOWS DROVE SAMPLER 10" AFTER INITIAL 6" SEATING
50/PR	PENETRATION REFUSAL OF SAMPLER AFTER INITIAL 6" SEATING

SAMPLING SYMBOLS

ST: UNDISTURBED SAMPLE SPLIT SPOON SAMPLE CORF ROCK CORE SAMPLE AUGER OR BAG SAMPLE AU:

SOIL PROPERTY SYMBOLS

STANDARD PENETRATION, BPF MOISTURE CONTENT % LL: LIQUID LIMIT % PLASTICITY INDEX %

POCKET PENETROMETER VALUE, TSF UNCONFINED COMPRESSIVE STRENGTH, TSF DRY UNIT WEIGHT, PCF

ROCK PROPERTIES

ROCK HARDNESS

ROCK QUALITY DESIGNATION (RQD)

PERCENT QUALITY 90 TO 100 EXCELLENT 75 TO 90 GOOD 50 TO 75 FAIR 25 TO 50 POOR VERY POOR 0 TO 25

ROCK DISINTEGRATES OR EASILY COMPRESSES VERY SOFT: TO TOUCH: CAN BE HARD TO VERY HARD SOIL.

ROCK IS COHERANT BUT BREAKS EASILY TO THUMB PRESSURE

SOFT: AT SHARP EDGES AND CRUMBLES WITH FIRM HAND PRESSURE.

SMALL PIECES CAN BE BROKEN OFF ALONG SHARP EDGES BY CONSIDERABLE HARD THUMB PRESSURE: CAN BE BROKEN BY LIGHT HAMMER BLOWS. MODERATELY HARD:

ROCK CAN NOT BE BROKEN BY THUMB PRESSURE, BUT CAN HARD:

VERY HARD: ROCK CAN BE BROKEN BY HEAVY HAMMER BLOWS.

GEOServices Project No.: 31-151247

LOG OF BORING	B-101
SHEET 1 OF	3

DRILLING CO	Apex Geoscience Inc.
DRILLER	

BORING NO. / LOCATION B-10			B-101				LOGGED BY	Sa	mmy Joe A	llison	
DATE	July 21, 20)15		SURFACE ELEV.		FT.		WATER LE	EVEL DATA	(IF APPLIC	CABLE)
REFUSAL:	Yes	DEPTH	45.0 F	ELEV.		FT.		COMPLETION:	DEPTH	Dry FT.	
SAMPLED	45.0 FT.		13.7 M	_					ELEV.	FT.	
TOP OF ROCK		DEPTH	45.0 F	ELEV.		FT.			_		
BEGAN CORING		DEPTH	F	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A FT.	
FOOTAGE CORED	(LF)		F	·.					ELEV.	FT.	
BOTTOM OF HOLE	DEPTH	,	45.0 F	ELEV.		FT.			_		
BORING ADVANCE	D BY:			POWER ALIGERING	Y		WASHBORING	•			

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%M	
- - - 2.52.5	1.0	2.5	1	SS	3-12-7 N=19				3.6	- - - -
- -	3.0	4.5	2	SS	5-5-3 N=8				3.9	Silty SAND (SM) with caliche - brown; fine grained; loose and medium dense; dry
5.0 — -5.0	5.0	6.5	3	SS	4-10-12 N=22				6.5	
7.57.5 	8.0	9.5	4	SS	17-30-48 N=78				7.8	- - - - - -
12.512.5 12.5 15.0 15.0	13.0	14.5	5	SS	30-59-39 N=98				6.7	Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry
	18.0	19.5	6	SS	20-24-31 N=55				5.7	

G	ES	S
GEOServices, LLI	C-Geotechnical and Mater	ials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING	B-101

SHEET 2 OF 3

DRILLING CO	Apex Geoscience Inc.
DRILLER	
LOGGED BY	Sammy Joe Allison

BORING NO. / LOCA	ATION				B-101		 LOGGED BY	S	ammy J	oe Allison	
DATE	July 21, 20	15		_	SURFACE ELEV.	FT.	WATER LE	VEL DATA	(IF AP	PLICABL	E)
REFUSAL:	Yes	DEPTH	45.0	FT.	ELEV.	FT.	COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	45.0 FT.		13.7	М				ELEV.		FT.	
TOP OF ROCK		DEPTH	45.0	FT.	ELEV.	FT.		_		_	
BEGAN CORING		DEPTH		FT.	ELEV.	FT.	AFTER 24 HRS.	DEPTH	N/A	FT.	
OOTAGE CORED	(LF)			FT.	_			ELEV.		FT.	
BOTTOM OF HOLE	DEPTH	•	45.0	FT.	ELEV.	FT.		_		_	

BORING ADVANCED BY: POWER AUGERING X WASHBORING

STRATUM	SAMPL	SAMPLE DEPTH			FIELD	LABORA		LABORATORY		ABORATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	RESULTS		STRATUM DESCRIPTION		
FT. ELE	. FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М			
22.522 22 25 25	23.0	24.5	7	SS	23-34-55 N=89				5.7	- CONTINUED		
27.527 27 30 30	28.0	28.7	8	SS	42-64/2" N=64/2"							
	31.0	31.2	9	SS	N=50/2"				5.7	——————————————————————————————————————		
- - -	33.0	33.2	10	SS	N=74/2"				7.7	_ _ _		
35.0 — -35 — — —										- - - -		
37.537 40.040	38.0	38.3	11	SS	N=81/3"					- - - -		

REMARKS: _____

GE		S
GEOServices, LLC-G	eatechnical and Mater	ials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING B-101
SHEET 3 OF 3

DRILLING CO	Apex Geoscience Inc.
DRILLER	

BORING NO. / LOCATION															
REFUSAL: Yes DEPTH 45.0 FT. ELEV. FT. COMPLETION: DEPTH Dry FT. SAMPLED 45.0 FT. 13.7 M ELEV. FT. TOP OF ROCK DEPTH 45.0 FT. ELEV. FT. BEGAN CORING DEPTH FT. ELEV. FT. FOOTAGE CORED (LF) FT. BOTTOM OF HOLE DEPTH 45.0 FT. ELEV. FT.	BORING NO. / LOCATION					B-101			LOGGED BY	S	Sammy .	Joe Allison			
SAMPLED 45.0 FT. 13.7 M ELEV. FT. TOP OF ROCK DEPTH 45.0 FT. ELEV. FT. BEGAN CORING DEPTH FT. ELEV. FT. FOOTAGE CORED (LF) FT. ELEV. FT. BOTTOM OF HOLE DEPTH 45.0 FT. ELEV. FT.	DATE	July 21	1, 201	5		_	SURFACE ELEV.		FT.		WATER LEVEL DATA (IF APPLICAE			PLICABLE)	
TOP OF ROCK DEPTH 45.0 FT. ELEV. FT. AFTER 24 HRS. DEPTH N/A FT. BEGAN CORING DEPTH FT. FT. AFTER 24 HRS. DEPTH N/A FT. FOOTAGE CORED (LF) FT. ELEV. FT. ELEV. FT. BOTTOM OF HOLE DEPTH 45.0 FT. ELEV. FT.	REFUSAL:	Yes		DEPTH	45.0	FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
BEGAN CORING DEPTH FT. ELEV. FT. AFTER 24 HRS. DEPTH N/A FT. FOOTAGE CORED (LF) FT. ELEV. FT. BOTTOM OF HOLE DEPTH 45.0 FT. ELEV. FT.	SAMPLED	45.0	FT.	-	13.7	М			•			ELEV.		FT.	
FOOTAGE CORED (LF) FT. ELEV. FT. BOTTOM OF HOLE DEPTH 45.0 FT. ELEV. FT.	TOP OF ROCK			DEPTH	45.0	FT.	ELEV.		FT.			•			
BOTTOM OF HOLE DEPTH 45.0 FT. ELEV. FT.	BEGAN CORING			DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
	FOOTAGE CORED ((LF)		-		FT.			•			ELEV.		FT.	
BORING ADVANCED BY: POWER AUGERING X WASHBORING	BOTTOM OF HOLE	DEPTH			45.0	FT.	ELEV.		FT.			•		<u> </u>	
· · · · · · · · · · · · · · · · · · ·	BORING ADVANCE	D BY:			-		POWER AUGERING	X	_	WASHBORING		,			

STRATUM	SAMPLE	E DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 42.542.5 - -	43.0	43.2	12	SS	N=80/2"					CONTINUED - Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry -
45.0 — -45.0 — — — — —										AUGER REFUSAL AT 45 FEET
47.547.5 - -										_ - - -
50.0 — -50.0 — - — —										- - - -
52.552.5 										_ - - -
55.0 — -55.0 — — — —										- - - -
57.557.5 										- - - - -
60.0 — -60.0							1			

GEOServices Project No.: 31-151247

LOG OF BORING	B-102
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

								DIVILLEIX					
BORING NO. / LOCA	TION				B-102			LOGGED BY	Sammy Joe Allison				
DATE	July 16, 20	15		SURFA	CE ELEV.	FT.		WATER L	WATER LEVEL DATA (IF APPLICABLE)				
REFUSAL:	No	DEPTH		FT.	ELEV.	FT.		COMPLETION:	DEPTH Dry FT.				
SAMPLED	25.0 FT.		7.6	М					ELEV. FT.				
TOP OF ROCK		DEPTH		FT.	ELEV.	FT.							
BEGAN CORING		DEPTH		FT.	ELEV.	FT.		AFTER 24 HRS.	DEPTH N/A FT.				
FOOTAGE CORED (L	_F)	_		FT.					ELEVFT.				
BOTTOM OF HOLE I	DEPTH		25.0	FT.	ELEV.	FT.							
BORING ADVANCED	BY:			POWER A	UGERING	Х	WASHBORING	;					
STRATUM	SAMP	LE DEPTH		SAMPLE		FIELD	LABORATORY						
DEPTH	FROM	T	0	OR	SAMPLE	RESULTS	RESULTS	s	TRATUM DESCRIPTION				

- 10.010.0 9.5 4 SS 25-28-27 N=55 4.0 -	STRATUM	SAMPLE	E DEPTH	SAMPLE		FIELD		LABOR	ATORY		
1.0 2.5 1 SS 7-6-4 N=10 3.4 Silty SAND (SM) with caliche - brown; fine grained; losse to very dense; dry sand (SM) with caliche - brown; fine grained; losse to very dense; dry sand (SM) with caliche - brown; fine grained; losse to very dense; dry sand (SM) with caliche - light brown; fine grained; dense to very dense; dry sand (SM) with caliche - light brown; fine grained; dense to very dense; dry sand (SM) with caliche - light brown; fine grained; dense to very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; very dense; dry sand (SM) with caliche - orangish brow fine grained; dense to very dense; dry sand (SM) with caliche - orangish brow fine grained; dense to very dense; dry sand (SM) with caliche - orangis	DEPTH	FROM	то	OR	SAMPLE	RESULTS		RE	SULTS		STRATUM DESCRIPTION
2.52.5 1 SS N=10 3.4 Sitty SAND (SM) with caliche - brown; fine grained; loose to very dense; dry 2.8 -	FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
5.0 — -5.0 5.0 — -5.0 5.0 — -5.0 - — — — — — — — — — — — — — — — — — —						N=10					
Sity SAND (SM) with caliche - light brown; light prowing a grained; dense to very dense; dry	- - - 5.05.0 -					N=48/3" 16-26-20					<u>-</u> - - -
13.0 13.8 5 SS 34-37/3" - 15.0 — -15.0 — Silty SAND (SM) with caliche - orangish brown fine grained; very dense; dry - 17.5 — -17.5 — 18.0 18.8 6 SS 43-20/3" - 18.0 18.8 6 SS 43-20/3"	- - -	8.0	9.5	4	ss					4.0	Silty SAND (SM) with caliche - light brown; fine grained; dense to very dense; dry
	- - -	13.0	13.8	5	SS					6.0	- Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry
20.0 — -20.0	- - -	18.0	18.8	6	SS	43-20/3" N=20/3"				5.8	- - - - -

GE		S
GEOServices, LLC-Geo	technical and Mater	rials Engineers

BORING ADVANCED BY:

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING B-102 SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	

BORING NO. / LOCA	ATION			B-102				LOGGED BY Sammy Joe Allison			
DATE	July 16, 2	2015		SURFACE ELEV.		FT.		WATER LEVEL DATA (IF APPLICABLE)			
REFUSAL:	No	DEPTH	F	T. ELEV.		FT.		COMPLETION:	DEPTH Dry	FT.	
SAMPLED	25.0 FT	-	7.6 N						ELEV.	FT.	
TOP OF ROCK		DEPTH	F	T. ELEV.		FT.					
BEGAN CORING		DEPTH	F	T. ELEV.		FT.		AFTER 24 HRS.	DEPTH N/A	FT.	
FOOTAGE CORED ((LF)		F	Т.					ELEV.	FT.	
BOTTOM OF HOLE	DEPTH	·	25.0 F	T. ELEV.		FT.					
BORING ADVANCED	D BY:			POWER AUGERING	Х	_	WASHBORING		•		

STRATUM	SAMPLE	E DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS			SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - -										CONTINUED
22.5 – -22.5 – –	23.0	23.8	7	SS	26-24/3" N=24/3"				2.9	Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry
25.0 — -25.0 — —										BORING TERMINATED AT 25 FEET
27.527.5										
30.0 — -30.0										 _ _ _ _
32.532.5										
35.0 — -35.0 —										_ _ _ _
37.537.5 - -										- - - -
- 40.0 - -40.0										_

GEOServices Project No.: 31-151247

LOG OF BORING	B-103
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER
LOGGED BY Sammy Joe Allison

BORING NO. / LOCA	TION			B-103				•		LOGGED BY Sammy Joe Allison
DATE	July 17, 20	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	M			_				ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (I	_F)		FT.							ELEV. FT.
BOTTOM OF HOLE	DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER A	AUGERING	Х	-		WASHI	BORIN	G
STRATUM	SAMI	PLE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RE	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 2.52.5	1.0	2.5	1	SS	2-3-4 N=7 8-5-8		26	NP	4.3	Silty SAND (SM) with caliche - brown; fine grained; loose; dry
5.0 — -5.0 —	5.0	6.5	3	SS SS	N=13 7-7-9 N=16				5.8	
7.57.5 	8.0	9.5	4	ss	16-27-39 N=66				7.1	- Silty SAND (SM) with caliche - light brown; fine grained; medium dense to very dense; dry
12.512.5 12.5 15.0	13.0	14.4	5	SS	23-35-45/5" N=45/5"				6.3	- - - - - - -
17.5 — -17.5 — — — — — — — — — — — — — — — — — — —	18.0	19.5	6	SS	17-26-40 N=66				6.1	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
REMARKS:										

GE		S
GEOServices, LLC-G	eatechnical and Mater	ials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING B-103
SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	

												DIVILLE				
BORING NO. / LOC	CATION					B-103	LOGGED BY Sammy Joe A					Joe Allison				
DATE	July 1	17, 2015			SURFACE ELEV.			FT.				WATER LE	EVEL DATA (IF APPLICABLE)			E)
REFUSAL:	No		DEPTH		FT.	ELEV.			FT.			COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0	FT.		7.6	М				-				ELEV.		FT.	
TOP OF ROCK			DEPTH		FT.	ELEV.			FT.						_	
BEGAN CORING			DEPTH		FT.	ELEV.			FT.			AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED	(LF)				FT.				-				ELEV.		FT.	
BOTTOM OF HOLE	DEPTH			25.0	FT.	ELEV.			FT.				_		_	
BORING ADVANCE	ED BY:			-		POWER AUGERING		Χ			WASHBORING		ı			

STRATUM	SAMPL	E DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV	. FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- -										_ CONTINUED
22.5 – -22. – –	23.0	24.5	7	SS	17-23-33 N=56				4.5	 Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
25.0 — -25. — — — —										BORING TERMINATED AT 25 FEET
27.5 – -27. —	5									 _ _ _
30.0 — -30. — —)									- - - -
32.532. - -	5									- - - -
35.0 — -35. — — — —	0									- - - -
37.537. - - -	5									- - - -
40.0 — -40. REMARK										

GEOServices Project No.: 31-151247

LOG OF BORING	B-104
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.

DRILLER

LOGGED BY Sammy Joe Allison

BORING NO. / LOCAT	ΓΙΟΝ			B-104						LOGGED BY Sammy Joe Allison
DATE	July 16, 20	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	M			_				ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	.F)		FT.							ELEVFT.
BOTTOM OF HOLE D	DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER	AUGERING	Х	_	,	WASH	BORIN	G
STRATUM	SAME	PLE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RE	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	1.0	2.3	1	SS	2-32-37/3" N=37/3"				3.1	Silty SAND (SM) with caliche - brown; fine grained; very dense; dry
5.0 — -5.0 — -	5.0	3.8 6.5	3	SS SS	64-43/3" N=43/3" 13-18-21 N=39				2.5 4.1	- Silty SAND (SM) with caliche - light brown; fine
7.57.5 	8.0	9.5	4	ss	17-26-45 N=71				6.9	grained; very dense; dry
12.512.515.015.017.517.5	13.0	14.5	5	SS	18-33-43 N=76				6.0	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
	18.0	19.5	6	SS	23-28-50 N=78				4.6	<u> </u>
REMARKS:										

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

BORING ADVANCED BY:

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING B-104 SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	

														_
BORING NO. / LOCA	ATION					B-104				LOGGED BY	S	ammy J	oe Allison	
DATE	July 1	6, 201	15		_	SURFACE ELEV.		FT.		WATER LI	EVEL DATA	(IF AP	PLICABLE	:)
REFUSAL:	No	-	DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0	FT.	_	7.6	М		,				ELEV.		FT.	
TOP OF ROCK		='	DEPTH		FT.	ELEV.		FT.					_	
BEGAN CORING			DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
OOTAGE CORED	(LF)				FT.						ELEV.		FT.	
BOTTOM OF HOLE	DEPTH		_	25.0	FT.	ELEV.		FT.					_	
BORING ADVANCE	D BY:			ē		POWER AUGERING	Х		WASHBORING		•			_
														_

ST	RATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABORATORY			
	DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	ULTS		STRATUM DESCRIPTION
FT.	ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	- - -										_ CONTINUED
22.5	22.5 - -	23.0	24.5	7	SS	15-23-39 N=62				3.1	 Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
25.0	- 25.0 - -										BORING TERMINATED AT 25 FEET
27.5	27.5 -										
30.0											<u>-</u> - -
32.5	32.5 -										- - - -
35.0	- 35.0 - -										- - - -
37.5	37.5 - -										- - -
40.0	-40.0			l	<u>l</u>						

GEOServices Project No.: 31-151247

LOG OF BORING	B-105
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCA	TION					B-105				LOGGED BY Sammy Joe Alliso			
DATE	July 15, 2015 SURFACE ELEV. FT.				WATER LEVEL DATA (IF APPLICABLE)								
REFUSAL:	No		DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.
SAMPLED	25.0	FT.	•	7.6	М	_					ELEV.		FT.
TOP OF ROCK			DEPTH		FT.	ELEV.		FT.			•		_
BEGAN CORING			DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.
FOOTAGE CORED (LF)		·		FT.	_					ELEV.		FT.
BOTTOM OF HOLE	DEPTH		,	25.0	FT.	ELEV.		FT.			-		_
BORING ADVANCED	D BY:					POWER AUGERING	Х		WASHBORING				

BORING ADVANCED	DT.		POWER A	AUGERING				WASH	BUKIN	
STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 2.52.5	1.0	1.8	1	88	6-50/4" N=50/4"				3.3	Silty SAND (SM) with caliche - brown; fine grained; very dense; dry
5.0 — -5.0 —	5.0	6.5	2	SS	10-14-18 N=32				5.3	
7.57.5 	8.0	9.5	3	SS	14-27-29 N=56				8.1	
12.512.5 15.015.0	13.0	13.5	4	ss	60+ N=>60				4.8	Silty SAND (SM) with caliche - orangish brown; fine grained; dense to very dense; dry
17.5 17.5 20.0	18.0	19.0	5	SS	30-40+ N=>40				4.1	 - - - -
REMARKS:										

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

REMARKS:

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING B-105

SHEET	2 OF	
	_	

DRILLING CO Apex Geoscience Inc.
DRILLER
LOGGED BY Sammy Joe Allison

WATER LEVEL	DATA (IF	APPLICABLE)

COMPLETION: DEPTH Dry FT.

ELEV. FT.

AFTER 24 HRS. DEPTH N/A FT.

ELEV. FT.

BORING NO. / LOCA	TION							
DATE	July 16, 20	15		_	SURFACE ELEV.		FT.	
REFUSAL:	No	DEPTH		FT.	ELEV.		FT.	
SAMPLED	25.0 FT.	-	7.6	М	_			
TOP OF ROCK		DEPTH		FT.	ELEV.		FT.	
BEGAN CORING		DEPTH		FT.	ELEV.		FT.	
FOOTAGE CORED (LF)				FT.				
BOTTOM OF HOLE	DEPTH		25.0	FT.	ELEV.		FT.	
BORING ADVANCE	D BY:			POWER AUGERING	Х		WASHBORING	

ST	RATUM	SAMPLE	E DEPTH	SAMPLE		FIELD		LABORATORY			
	DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT.	ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
22.5	- - - 22.5										CONTINUED - Silty SAND (SM) with caliche - orangish brown; fine grained; dense to very dense; dry
25.0	_ _ _ 25.0	23.0	23.5	6	SS	65+ N=>65					BORING TERMINATED AT 25 FEET
27.5	- - - 27.5										_ - - -
30.0	- - 30.0										- - - -
32.5	_ 32.5 										- - - -
35.0	35.0 										- - - -
37.5	37.5 										 - _ _ _
40.0	- -40.0										

GEOServices Project No.: 31-151247

LOG OF BORING	B-106
SHEET 1 OF	2

DRILLING CO	Apex Geoscience Inc.
DRILLER	

											DIVILLE				
BORING NO. / LOCATION				B-106							LOGGED BY	Sa	ammy Joe	Allison	
DATE	July 16, 20	15	SURF			ACE ELEV. FT.					WATER LEVEL DATA (IF APPLICABLE)				
REFUSAL:	No	DEPTH	-	FT.	ELEV.		FT.				COMPLETION:	DEPTH	Dry F	T.	
SAMPLED	25.0 FT.	_	7.6	М			-					ELEV.	F	T.	
TOP OF ROCK		DEPTH		FT.	ELEV.		FT.								
BEGAN CORING		DEPTH		FT.	ELEV.		FT.				AFTER 24 HRS.	DEPTH	N/A F	T.	
FOOTAGE CORED (I	LF)	_		FT.								ELEV.	F	T.	
BOTTOM OF HOLE	DEPTH	_	25.0	FT.	ELEV.		FT.								
BORING ADVANCED BY:			POWER A	UGERING	X	-	١	WASH	BORING		,				
STRATUM	SAME	LE DEPTH		SAMPLE		FIELD		LABORATORY							
DEPTH	FROM	TO	0	OR	SAMPLE	RESULTS		RESULTS		STRATUM DESCRIPTION					
-: -:/	FT		. –	DUN NO	TVDE	NI Walio	0	5. 0/84							

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABORATORY		LABORATORY			
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION		
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М			
_ _ _ _ 2.52.5	1.0	2.5	1	SS	13-33-26 N=59				4.5	Silty SAND (SM) with caliche - brown; fine grained; very dense; dry		
-	3.0	4.5	2	ss	9-14-8 N=22				3.9	<u>-</u> -		
5.0 — -5.0 — — — — —	5.0	6.5	3	SS	11-16-21 N=37				3.9			
7.57.5 	8.0	9.5	4	SS	7-19-33 N=52				5.3	Silty SAND (SM) with trace caliche - light brown; fine grained; medium dense to very dense; dry		
12.512.5 15.0 15.0	13.0	13.9	5	ss	33-50/5" N=50/5"				6.7	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry		
17.517.5 	18.0	19.5	6	SS	25-35-50/6" N=50/6"				6.8	- - - -		

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING B-106
SHEET 2 OF 2

ORILLING CO	Apex Geoscience Inc.	
DRILLER		
		7

BORING NO. / LOCATION					B-106				LOGGED BY	Sammy Joe Allison				
DATE	July 1	16, 20	15		_	SURFACE ELEV.		FT.		WATER LE	EVEL DAT	A (IF AP	PLICABLE)	
REFUSAL:	No		DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0	FT.		7.6	М			<u>_</u>			ELEV.		FT.	
TOP OF ROCK			DEPTH		FT.	ELEV.		FT.			-		_	
BEGAN CORING			DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED	(LF)		•		FT.	•					ELEV.		FT.	
BOTTOM OF HOLE	DEPTH		,	25.0	FT.	ELEV.		FT.			-			
BORING ADVANCE	D BY:					POWER AUGERING	Х		WASHBORING					
					т —									

STRATUM	SAMPLI	DEPTH	SAMPLE		FIELD		LABOR			
DEPTH	FROM	то	OR	SAMPLE	RESULTS	_	RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
22.522.5 25.0	23.0	24.4	7	SS	12-37-50/5" N=50/5"				6.2	CONTINUED Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
25.0 — -25.0 - - - - 27.5 — -27.5 —										BORING TERMINATED AT 25 FEET
30.0 — -30.0 — — — — — — — — — — — — — — — — — — —										<u>-</u> - - - - -
35.0 — -35.0 — - — — — — — — — — — — — — — — — — — —										- - - - - -
- 40.0 — -40.0										-

GEOServices Project No.: 31-151247

LOG OF BORING	B-107
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCA	CATION B-107							LOGGED BY	Sa	ammy Jo	e Allison	
DATE	July 16, 20	15		SURFACE ELEV. F				WATER LEVEL DATA (IF APPLIC			LICABLE)	
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0 FT.	•	7.6 M	_					ELEV.		FT.	
TOP OF ROCK	·	DEPTH	FT.	ELEV.		FT.						
BEGAN CORING		DEPTH	FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED ((LF)	_	FT.						ELEV.		FT.	
BOTTOM OF HOLE	DEPTH		25.0 FT.	ELEV.		FT.			_			
BORING ADVANCE	D BY:			POWER AUGERING	Х		WASHBORING					

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABORATORY			
DEPTH	FROM	то	OR	SAMPLE	RESULTS			SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - - 2.52.5	1.0	1.8	1	SS	7-50/4" N=50/4"				5.3	Silty SAND (SM) with caliche - brown; fine grained; very dense; dry
- - -	3.0	4.5	2	SS	7-25-33 N=58				4.5	
5.0 — -5.0 — — — —	5.0	6.5	3	SS	9-16-20 N=36				4.1	- Silty SAND (SM) with trace caliche - light brown
7.57.5 	8.0	9.5	4	SS	22-32-41 N=73				5.7	fine grained; very dense; dry fine grained; very dense; dry
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	14.0	5	SS	31-50/6" N=50/6"				7.2	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
17.517.5	18.0	19.5	6	SS	16-32-50/6" N=50/6"				6.3	- - - - -

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

DATE July 16, 2015

TOP OF ROCK DEPTH FT.

BEGAN CORING DEPTH FT.

FOOTAGE CORED (LF) FT.

No DEPTH FT.

25.0 FT. 7.6 M

25.0 FT.

BORING NO. / LOCATION

BOTTOM OF HOLE DEPTH

REMARKS:

REFUSAL: SAMPLED TOP OF ROCK

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

ELEV. FT.

ELEV. _____FT.

B-107

SURFACE ELEV. _____FT.

ELEV. FT.

LOG OF BORING B-107
SHEET 2 OF 2

RILLING CO	Apex Geoscience Inc.
DRILLER	

 LOGGED BY	S	oe Allison								
WATER LE	LEVEL DATA (IF APPLICABLE)									
COMPLETION:	DEPTH	Dry	FT.							
	ELEV.		FT.							
AFTER 24 HRS.	DEPTH_	N/A	FT.							
	ELEV.		FT.							

BORING ADVANCED BY: POWER AUGERING X WASHBORING

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ABORATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
FT. ELEV.	FT. 23.0	FT. 24.4	RUN NO.	SS	N-Value 15-32-50/5" N=50/5"	Qp	LL	PI	4.2	CONTINUED Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry BORING TERMINATED AT 25 FEET
30.0 — -30.0 — — — — — — — — — — — — — — — 32.5 — -32.5										- - - - - - -
35.0 — -35.0 — — — — —										<u>-</u> - - - - -
37.537.5 										- - - -

GEOServices Project No.: 31-151247

LOG OF BORING	B-108
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

									DIVILLEIN			
BORING NO. / LOCA	TION				B-108				LOGGED BY	son		
DATE	July 15, 20	15	SURFACE ELEV. FT.					WATER LI	EVEL DATA	(IF APPLICA	BLE)	
REFUSAL:	No	DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry FT.	
SAMPLED	25.0 FT.	_	7.6	М						ELEV.	FT.	
TOP OF ROCK		DEPTH		FT.	ELEV.		FT.			_		
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A FT.	
FOOTAGE CORED (LF)	_		FT.						ELEV.	FT.	
BOTTOM OF HOLE	DEPTH	_	25.0	FT.	ELEV.		FT.					
BORING ADVANCED	D BY:			POWER A	AUGERING	Х	_	WASHBORING		,	-	
STRATIIM	SAMI	PI F DEPTH		SAMPLE		FIFI D		LABORATORY				

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABORATORY			
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 2.52.5	1.0	2.5	1	SS	1-5-10 N=15				4.9	Silty SAND (SM) with caliche - brown to light brown; fine grained; medium dense; dry
- - -	3.0	4.5	2	SS	2-9-16 N=25				4.9	
5.0 — -5.0 — — — —	5.0	6.5	3	SS	10-17-20 N=37				6.0	<u> </u>
7.5 — -7.5 — - — — - 10.0 — -10.0	8.0	9.4	4	SS	14-32-23/5" N=23/5"				6.3	- - - - - -
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	13.8	5	SS	22-30/4" N=30/4"				8.4	Silty SAND (SM) with caliche - orangish brown; fine grained; dense to very dense; dry
17.517.5 17.5 20.0	18.0	18.8	6	SS	38-39/3" N=39/3"				6.6	- - - -

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

DATE _____ July 15, 2015

BORING NO. / LOCATION

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING B-108

	SHEET 2 OF 2	
0_	Apex Geoscience Inc.	

WATER LEVEL DATA (IF APPLICABLE)									
LOGGED BY	Sammy Joe Allison								
DRILLER									
DRILLING CO	Apex Geoscience Inc.								

***********		(,
COMPLETION:	DEPTH	Dry	FT.
	ELEV.		FT.
AFTER 24 HRS.	DEPTH	N/A	FT.

ELEV. FT.

REFUSAL: No DEPTH FT. ELEV. FT.

SAMPLED 25.0 FT. 7.6 M

TOP OF ROCK DEPTH FT. ELEV. FT.

BEGAN CORING DEPTH FT. ELEV. FT.

FOOTAGE CORED (LF) FT. 25.0 FT. ELEV. _____FT. BOTTOM OF HOLE DEPTH POWER AUGERING X WASHBORING BORING ADVANCED BY:

B-108

 July 15, 2015
 SURFACE ELEV.
 FT.

 No
 DEPTH
 FT.
 ELEV.
 FT.

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ABORATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	RESULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 22.522.5 - -	23.0	23.4	7	SS	N=58/5"				6	CONTINUED Silty SAND (SM) with caliche - orangish brown; fine grained; dense to very dense; dry
25.0 — -25.0 — — —										BORING TERMINATED AT 25 FEET -
27.527.5 - - -										- - - -
30.0 — -30.0										
32.5 — -32.5 — — — — — —										<u>-</u> -
35.0 — -35.0 — — — — — —										
37.5 — -37.5 — — — — — — — — — — — — — — — — — — —										
40.0 — -40.0										

GEOServices Project No.: 31-151247

LOG OF BORING B-109
SHEET 1 OF 2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCATION					B-109				LOGGED BY	Sa	ammy Jo	e Allison	
DATE	July 15, 20	15		SURFA	ACE ELEV.		FT.		WATER LI	EVEL DATA	(IF APP	LICABLE)	
REFUSAL:	No	DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0 FT.	_	7.6	М			_			ELEV.		FT.	
TOP OF ROCK		DEPTH		FT.	ELEV.		FT.			_			
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED (L	_F)			FT.						ELEV.		FT.	
BOTTOM OF HOLE [DEPTH	_	25.0	FT.	ELEV.		FT.			_			
BORING ADVANCED	BY:			POWER A	UGERING	Х	_	WASHBORING		,			
STRATUM	SAME	PLE DEPTH		SAMPLE		FIELD		LABORATORY					

STRATUM		E DEPTH	SAMPLE		FIELD		LABOR			
DEPTH FT. ELEV.	FROM FT.	TO FT.	OR RUN NO.	SAMPLE TYPE	RESULTS N-Value	Qp	RE:	PI	%М	STRATUM DESCRIPTION
- - - - 2.52.5	1.0	2.5	1	SS	3-31-23 N=54	φ ₁	LL	FI	3.4	Silty SAND (SM) with caliche - brown; fine grained; very dense; dry
- - -	3.0	4.5	2	SS	6-15-24 N=39				4.2	<u>-</u> -
5.0 — -5.0 — — — — — — — — — — — — — — — — — — —	5.0	6.5	3	SS	10-18-24 N=42				3.8	- Silty SAND (SM) with caliche - light brown; fine
7.5 — -7.5 — — — — — — — — — — — — — — — — — — —	8.0	9.0	4	SS	29-40+ N=>40				3.2	grained; dense to very dense; dry
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	13.3	5	SS	47/3" N=47/3"				8.5	- Silty SAND (SM) with caliche - orangish brown fine grained; very dense; dry
17.5 — -17.5 — — — — — — — — — — — — — — — — — — —	18.0	18.7	6	SS	42-40+ N=>40				6.3	

GE		S
GEOServices, LLC-G	eatechnical and Mater	ials Engineers

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING B-109 SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	

											_				
BORING NO. / LOCATION						B-109			LOGGED BY	Sa	ammy J	oe Allison			
DATE	July 15, 2015 SURFACE ELEV. FT.				WATER LEVEL DATA (IF APPLIC			PLICABLE)							
REFUSAL:	No		DEPTH		FT.	ELEV.			₹T.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0	FT.	-	7.6	М							ELEV.		FT.	
TOP OF ROCK			DEPTH		FT.	ELEV.		Į.	FT.			_		_	
BEGAN CORING			DEPTH		FT.	ELEV.		ı	FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED	(LF)				FT.							ELEV.		FT.	
BOTTOM OF HOLE	DEPTH			25.0	FT.	ELEV.			=T.						
BORING ADVANCE	D BY:			-		POWER AUGERING		Х		WASHBORING					

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS			SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
1111										CONTINUED
22.522.5 - - -	23.0	24.5	7	SS	32-33-30 N=63				4.7	 Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry
25.0 — -25.0 — — —										BORING TERMINATED AT 25 FEET -
27.527.5 - - -										<u>-</u> - -
30.0 — -30.0										_ - _ _
32.532.5 - -										- - - -
35.0 — -35.0 — — — — —										_ - - -
37.537.5 - - -										- - - -
40.0 — -40.0						<u> </u>	<u> </u>	<u> </u>		

GEOServices Project No.: 31-151247

LOG OF BORING	B-110
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.

DRILLER

LOGGED BY Sammy Joe Allison

BORING NO. / LOCAT	TION			B-110						LOGGED BY Sammy Joe Allison
DATE	July 16, 20	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	M	•		_				ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	-F)		FT.	•		='				ELEV. FT.
BOTTOM OF HOLE [DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER A	AUGERING	Χ	_	,	WASHI	BORIN	IG
STRATUM	SAMP	LE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
2.5 – -2.5	1.0	2.5	1	SS	4-27-16 N=43		29	NP	5.0	Silty SAND (SM) with caliche - brown; fine grained; dense; dry
- -	3.0	4.5	2	ss	14-18-18 N=36				4.7	<u>-</u> -
5.0 — -5.0 — — —	5.0	6.5	3	SS	8-7-6 N=15				6.0	- - -
7.57.5 	8.0	9.5	4	SS	9-14-28 N=42				8.9	Silty SAND (SM) with caliche - light brown; fine grained; medium dense to very dense; dry
12.512.5 12.5 15.0	13.0	14.0	5	ss	23-50+ N=>50				7.1	- - - - - - -
17.5 — -17.5 — — — — — — — — — — — — — — — — — — —	18.0	19.0	6	SS	36-40+ N=>40				5.1	Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry
REMARKS:										

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

BORING ADVANCED BY:

REMARKS:

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

POWER AUGERING

LOG OF BORING B-110
SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	
LOCOED DV	Community Alliana

									DIVILLE				
ORING NO. / LOCATION						B-110			LOGGED BY	Sa	ammy Jo	oe Allison	
DATE	July 1	6, 20	15		_	SURFACE ELEV.	FT.		WATER LE	VEL DATA	(IF API	PLICABLE)	
REFUSAL:	No		DEPTH		FT.	ELEV.	FT.	C	COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0	FT.		7.6	М					ELEV.		FT.	
OP OF ROCK	· ·		DEPTH		FT.	ELEV.	FT.			_		_	
BEGAN CORING			DEPTH		FT.	ELEV.	FT.	A	AFTER 24 HRS.	DEPTH	N/A	FT.	
OOTAGE CORED	(LF)				FT.					ELEV.		FT.	
SOTTOM OF HOLE	DEPTH			25.0	FT.	ELEV.	FT.					_	

WASHBORING

STRATUM SAMPLE DEPTH SAMPLE FIELD LABORATORY DEPTH FROM RESULTS RESULTS то SAMPLE STRATUM DESCRIPTION FT. ELEV. RUN NO. PI %M FT. FT. TYPE N-Value LL CONTINUED -22.5 Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry 20-32-52 23.0 24.5 SS 4.4 N=84 25.0 — -25.0 **BORING TERMINATED AT 25 FEET** -27.5 -30.0 30.0 — -32.5 35.0 — -35.0 -37.5 40.0 -- -40.0

GEOServices Project No.: 31-151247

LOG OF BORING	B-111
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

									1				
BORING NO. / LOCATION					B-111			LOGGED BY Sammy Joe Alliso			oe Allison		
DATE	July 20, 20	15			SURFACE ELEV.	SURFACE ELEV. FT.				EVEL DATA	DATA (IF APPLICABLE)		
REFUSAL:	Yes	DEPTH	37.0	FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	37.0 FT.		11.3	М						ELEV.		FT.	
TOP OF ROCK	· ·	DEPTH	37.0	FT.	ELEV.		FT.					_	
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED	(LF)			FT.						ELEV.		FT.	
BOTTOM OF HOLE	DEPTH	•	37.0	FT.	ELEV.		FT.			_		_	
BODING ADVANCE	D RV:				POWER ALIGERING	Y		WASHBORING	-				

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	1.0	2.5	1	SS	5-24-65 N=89				6.7	Silty SAND (SM) with caliche - brown; fine grained; very dense; dry
_ 	3.0	4.5	2	SS	15-16-12 N=28				4.5	
5.0 — -5.0 — — — —	5.0	6.5	3	SS	12-19-33 N=52				5.2	
7.5 — -7.5 — - — — - 10.0 — -10.0	8.0	9.5	4	SS	14-19-32 N=51				4.3	Silty SAND (SM) with trace caliche - light brown fine grained; medium dense to very dense; dry
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	14.0	5	SS	35-60+ N=>60				6.6	- Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
17.5 — -17.5 — - — — — — — — — — — — — — — — — — — —	18.0	19.0	6	ss	32-90+ N=>90				5.8	

G	ES	S
GEOServices, LLI	C-Geotechnical and Mater	ials Engineers

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING	B-111
SHEET 2 OF	2

DRILLING CO Apex Geoscience Inc. DRILLER

BORING NO. / LOCA				B-111				LOGGED BY	Sar	nmy J	oe Allison		
DATE	July 20, 20	15			SURFACE ELEV.		FT.		WATER LE	VEL DATA (IF AP	PLICABLE	<u> </u>
REFUSAL:	Yes	DEPTH	37.0	FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	37.0 FT.	·-	11.3	М			_			ELEV.		FT.	
TOP OF ROCK		DEPTH	37.0	FT.	ELEV.		FT.					_	
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED (L	_F)			FT.			=			ELEV.		FT.	
BOTTOM OF HOLE [DEPTH		37.0	FT.	ELEV.		FT.					_	
BORING ADVANCED	BY:		-		POWER AUGERING	Χ	-	WASHBORING					

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 22.522.5 -	23.0	24.0	7	SS	37-65+				6	CONTINUED
25.0 — -25.0 — - — — —	200		·		N=>65					
27.5 — -27.5 — — — — — — 30.0 — -30.0	28.0	29.5	8	SS	34-33-33 N=66				4.3	- Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry -
	33.0	34.5	9	SS	24-31-48 N=79				2.5	- - - - - -
										AUGER REFUSAL AT 37 FEET

GEOServices Project No.: 31-151247

LOG OF BORING	AB-1
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.

DRILLER

LOGGED BY Sammy Joe Allison

BORING NO. / LOCAT	TION	(AB-1				•		LOGGED BY Sammy Joe Allison
DATE	July 15, 20	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.			FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	М	•		•				ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	-F)		FT.							ELEV. FT.
BOTTOM OF HOLE [DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER A	AUGERING	Х		,	WASHI	BORIN	G
STRATUM	SAMP	LE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RE	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	1.0	2.5	1	SS	20-32-16 N=48				3.3	Silty SAND (SM) with caliche - brown; fine grained; dense; dry
- - -	3.0	4.5	2	SS	22-30-22 N=52				3.9	Silty SAND (SM) with caliche - light brown; fine grained; very dense; dry
5.0 — -5.0 — — —	5.0	6.5	3	SS	13-20-19 N=39				6.7	<u>-</u> -
7.5 — -7.5 — — — — — — — — — — — — — — — — — — —	8.0	9.5	4	SS	13-19-24 N=43				6.2	Silty SAND (SM) with caliche - orangish brown;
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	14.3	5	SS	16-19-19/4" N=19/4"				4.3	fine grained; dense to very dense; dry fine grained; dense to very dense; dry
17.5 — -17.5 — — — — — — — — — — — — — — — — — — —	18.0	18.8	6	SS	29-21/3" N=21/3"				4.9	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
REMARKS:										

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING AB-1
SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	
LOGGED BY	Sammy Ioe Allison

							DIVILLE				
BORING NO. / LOC	ATION			AB-1		LOGGED BY	Sammy J	oe Allison			
DATE July 15, 2015				SURFACE ELEV.	FT.		WATER LE	LEVEL DATA (IF APPLICABLE)			
REFUSAL:	No	DEPTH	FT.	ELEV.	FT.		COMPLETION:	DEPTH Dry	FT.		
SAMPLED	25.0 FT.	_	7.6 M					ELEV.	FT.		
TOP OF ROCK		DEPTH	FT.	ELEV.	FT.				_		
BEGAN CORING		DEPTH	FT.	ELEV.	FT.		AFTER 24 HRS.	DEPTH N/A	FT.		
FOOTAGE CORED	(LF)	_	FT.					ELEV.	FT.		
BOTTOM OF HOLE	DEPTH	_	25.0 FT.	ELEV.	FT.				_		

BORING ADVANCED BY: POWER AUGERING X WASHBORING

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY										
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RESULTS											STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М									
- - -										_ CONTINUED 								
22.522.5 - - - -	23.0	23.8	7	SS	26-24/4" N=24/4"				3.2	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry								
25.0 — -25.0 — — —										BORING TERMINATED AT 25 FEET								
27.527.5 - - -										- - - -								
30.0 — -30.0 — — —										_ - _ -								
32.532.5 - -										_ _ _ _								
35.0 — -35.0 — — —										- - -								
37.537.5 										- - - -								
40.0 — -40.0																		

GEOServices Project No.: 31-151247

LOG OF BORING	AB-2
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER
LOGGED BY Sammy Joe Allison

BORING NO. / LOCAT	ION			AB-2						LOGGED BY Sammy Joe Allison
DATE	July 13, 20	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	М	•		='				ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	F)	1	FT.							ELEVFT.
BOTTOM OF HOLE D	DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER /	AUGERING	Х	_		WASH	BORIN	G
STRATUM	SAMF	LE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RE	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
										-
_					4-4-5					Silty SAND (SM) with caliche - brown; fine
_	1.0	2.5	1	SS	N=9				4.8	grained; loose; dry
2.5 – -2.5										_
										
_	3.0	4.5	2	SS	10-10-13 N=23				5.7	-
_					N-23					
5.0 — -5.0										Silty SAND (SM) with caliche - light brown; fine
_	F 0	6.5	3	SS	11-12-17				<i></i>	grained; medium dense; dry
_	5.0	6.5	3	33	N=29				5.5	-
_										-
— 7.5 – -7.5										_
7.5 – -7.5										<u></u>
_					10-17-20					_
_	8.0	9.5	4	SS	N=37				3.7	Cilda CAND (CM) with trace callaba arrayalah
-										_ Silty SAND (SM) with trace caliche - orangish brown; dense; dry
10.0 — -10.0										
_										-
_										
_										
12.5 – -12.5										_
_										_
_	13.0	14.5	5	SS	7-25-30				3.4	_
_					N=55					_
										<u></u>
-10.0										_
_										Silty SAND (SM) with caliche - orangish brown; fine grained; very dense; dry
_										- line grained, very derise, dry
_										-
17.517.5										-
_					16-22-30					
_	18.0	19.5	6	SS	N=52				3.1	<u>_</u>
_										_
20.0 — -20.0		ļ	ļ			<u> </u>				<u> </u>
REMARKS:										

G	ES	S
GEOServices. L	C-Geotechnical and Mate	rials Engineers

DATE _____ July 13, 2015

 REFUSAL:
 No
 DEPTH
 FT.
 ELEV.
 FT.

 SAMPLED
 25.0
 FT.
 7.6
 M
 M
 TOP OF ROCK
 DEPTH
 FT.
 ELEV.
 FT.

 BEGAN CORING
 DEPTH
 FT.
 ELEV.
 FT.

 FOOTAGE CORED (LF)
 FT.
 ELEV.
 FT.

 BOTTOM OF HOLE DEPTH
 25.0
 FT.
 ELEV.
 FT.

No DEPTH FT.

BORING NO. / LOCATION

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

SURFACE ELEV. ____FT.

AB-2

LOG OF BORING AB-2 SHEET 2 OF 2

DRILLING CO	Anay Cassisnes Inc
DRILLING CO	Apex Geoscience Inc.
DRILLER	

LOGGED BY	Sammy Joe Allison								
WATER LEVEL DATA (IF APPLICABLE)									
COMPLETION:	DEPTH	Dry	FT.						
	ELEV.		FT.						
AFTER 24 HRS.	DEPTH	N/A	FT.						

ELEV. FT.

BORING	ADVANCI	ED BY:	_	POWER	AUGERING	Х	_	,	WASH	BORIN	G
STI	RATUM	SAMPL	LE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
D	EPTH	FROM	то	OR	SAMPLE	RESULTS		RESULTS			STRATUM DESCRIPTION
FT.	ELEV	. FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	_										CONTINUED
-	_										_
	_										-
22.5	- -22.5	5									Silty SAND (SM) with caliche - orangish brown;
	_					00 50/48					— fine grained; very dense; dry
	_	23.0	23.8	7	SS	38-50/4" N=50/4"					-
-	_										
25.0 -	- -25.0)									DODING TERMINATER AT OF FEET
	_										BORING TERMINATED AT 25 FEET
-	_										_
_	_										<u>-</u>
27.5	-27.5	5									_
-	_										_
_	_										<u>-</u>
	_										_
30.0 -	-30.0)									-
_	_										<u></u>
	_										_
-	_										_
32.5	32.5	5									_
_	_										- -
-	_										_
05.0	_										_
35.0 -	- -35.0)									_
-	_										_
	_										-
37.5	— 37.5										_
37.3		'									_
	_										_
-	_										-
40 0 -	- -40.0	, L									-
	REMARK	s									

REMARKS:

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING	TF-1
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCAT	ION			TF-1						LOGGED BY Sammy Joe Allison
DATE	July 16, 2015		SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	Yes D	DEPTH 40.0	FT.	ELEV.		FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	40.0 FT.	12.2	М			_				ELEV. FT.
TOP OF ROCK		DEPTH 40.0	FT.	ELEV.		FT.				
BEGAN CORING	D	DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	.F)		FT.			_				ELEV. FT.
BOTTOM OF HOLE [DEPTH	40.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER A	AUGERING	X	-	,	WASH	BORIN	le
STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
_										-
_										Silty SAND (SM) with caliche - grayish brown
_	1.0	2.5	1	SS	4-24-15				3.0	and brown; fine grained; dense; dry
<u> </u>					N=39					
2.52.5										_
_					24-38-27					_
_	3.0	4.5	2	SS	N=65				2.8	_
_										-
5.0 — -5.0										-
_	5.0	6.5	3	SS	11-12-20				4.8	-
_					N=32					_
_										Silty SAND (SM) with caliche -light brown to
7.5 – -7.5										brown; fine grained; very dense to dense; dry
— ····										_
_	0.0	0.5		00	20-20-28				0.0	_
_	8.0	9.5	4	SS	N=48				2.8	<u> </u>
-										-
10.0 — -10.0										 -
_										-
_										_
_										
12.512.5										_
_										_
_	13.0	14.3	5	SS	20-48-32/3"				5.8	_
-	13.0	14.3	5	55	N=32/3"				5.8	-
-										-
15.0 — -15.0										Silty SAND (SM) with trace caliche - orangish
_										brown; fine grained; very dense; dry
_										
<u> </u>										
17.517.5										_
										<u> </u>
_	18.0	19.3	6	SS	26-48-26/3"				5.4	-
_	10.0	19.3	, o	33	N=26/3"				0.4	 -

G	ES	S
GEOServices. L	C-Geotechnical and Mate	rials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING	TF-1
SHEET 2 OF	2

DRILLING CO	Apex Geoscience Inc.	
DRILLER		
LOGGED BY	Sammy Joe Allison	

								DIVILLEIX			
BORING NO. / LOCA	ATION			TF-1				LOGGED BY	Sammy J	loe Allison	_
DATE	July 21	, 2015	2015			SURFACE ELEV. FT.		WATER LE	VEL DATA (IF AP	PLICABLE)	
REFUSAL:	Yes	DI	EPTH	40.0	FT.	ELEV.	FT.	COMPLETION:	DEPTH Dry	FT.	
SAMPLED	40.0	FT.		12.2	М	·			ELEV.	FT.	
TOP OF ROCK		DI	EPTH	40.0	FT.	ELEV.	FT.			_	
BEGAN CORING		DI	EPTH_		FT.	ELEV.	FT.	AFTER 24 HRS.	DEPTH N/A	FT.	
FOOTAGE CORED	(LF)				FT.	·			ELEV.	FT.	
BOTTOM OF HOLE	DEPTH			40.0	FT.	ELEV.	FT.			_	

BORING ADVANCED BY: POWER AUGERING X WASHBORING

STRATUM SAMPLE DEPTH SAMPLE FIELD LABORATORY

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	LABORATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RESULTS			STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
22.522.5 25.0 25.0	23.0	24.5	7	SS	15-16-20 N=36				2.7	CONTINUED CONTINUED Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
27.527.5 30.0 30.0	28.0	29.3	8	SS	28-50-22/3" N=22/3"				3.0	- - - - - -
32.532.5 35.0 35.0	33.0	33.4	10	SS	N=76/5"				3.7	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
37.5 — -37.5 — — — — — — — — — — — — — — — — — — —	38.0	38.3	11	SS	N=100/4"				4.6	- - - - - - AUGER REFUSAL AT 40 FEET

AUGER REFUSAL AT 40 FEET
REMARKS:

GEOServices Project No.: 31-151247

LOG OF BORING	TF-2
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCA	TION			TF-2				•		LOGGED BY Sammy Joe Allison
DATE	July 16, 201	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.			FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	M			-				ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	_F)		FT.							ELEV. FT.
BOTTOM OF HOLE [DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:		POWER A	AUGERING	X	-	,	WASH	BORIN	NG
STRATUM	SAMP	LE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RE	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 2.52.5	1.0	2.5	1	SS	1-2-2 N=4		28	NP	4.3	Silty SAND (SM) with trace caliche - brown; fine grained; very loose; dry
<u>-</u> -	3.0	4.5	2	SS	9-11-11 N=22				4.8	- -
5.0 — -5.0 — —	5.0	6.5	3	SS	8-10-15 N=25				3.9	Silty SAND (SM) with trace caliche - light brown;
7.57.5 	8.0	9.5	4	SS	15-40-57 N=97				6.7	fine grained; medium dense to very dense; dry
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	14.2	5	SS	25-55-25/2" N=25/2"				5.9	Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
17.517.5 	18.0	18.8	6	SS	23-70+ N=>70				5.9	- - - - -
REMARKS:										

GE		S
GEOServices, LLC-Geo	technical and Mater	rials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING TF-2
SHEET 2 OF 2

Apex Geoscience Inc.

									DRILLER				
BORING NO. / LOCATION			TF-2							S	ammy J	Joe Allison	
DATE	July 16, 20	15		S	URFACE ELEV.		FT.		WATER LE	LEVEL DATA (IF APPLICABLE)			
REFUSAL:	No	DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0 FT.		7.6	M						ELEV.		FT.	
TOP OF ROCK		DEPTH		FT.	ELEV.		FT.					_	
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED (LF)			FT.						ELEV.		FT.	
BOTTOM OF HOLE	DEPTH		25.0	FT.	ELEV.		FT.						
BORING ADVANCE	D BY:			POW	ER AUGERING	Х	_	WASHBORING	3				
STRATUM	SAMI	PLE DEPTH		SAMPL	E	FIELD		LABORATORY					

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY				
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION		
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М			
FT. ELEV.	FT. 23.0	FT. 24.5	RUN NO.	TYPE SS	N-Value 8-29-35 N=64	Qp	LL	PI	% M	CONTINUED Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry BORING TERMINATED AT 25 FEET		
27.527.5 - -										- - - -		
30.0 — -30.0 — -										- - - -		
32.532.5 										- - -		
35.0 — -35.0 — — — — — — — — — — — — — — — — — — —										<u>-</u> - -		
37.5 — -37.5 — — — — — — — 40.0 — -40.0										- - -		

REMARKS:

GEOServices Project No.: 31-151247

LOG OF BORING	TF-3
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCA	ATION	-		TF-3				LOGGED BY	Sa	ammy Joe A	llison
DATE	July 16, 20	15		SURFACE ELEV.		FT.		WATER LE	VEL DATA	(IF APPLIC	ABLE)
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry FT.	
SAMPLED	25.0 FT.	•	7.6 M	_		_			ELEV.	FT.	
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.			_		
BEGAN CORING		DEPTH	FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A FT.	
FOOTAGE CORED ((LF)	·-	FT.	_		_			ELEV.	FT.	
BOTTOM OF HOLE	DEPTH	-	25.0 FT.	ELEV.		FT.			_		
BORING ADVANCED	D BY:			POWER AUGERING	Х		WASHBORING				

STRATUM	SAMPLI	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	1.0	2.5	1	SS	11-9-8 N=17				4.3	Silty SAND (SM) with caliche - grayish brown fine grained; medium desne; dry
- - -	3.0	4.5	2	ss	17-11-10 N=21				4.6	<u>-</u>
5.0 — -5.0 — -	5.0	6.5	3	SS	14-16-20 N=36				3.9	Silty SAND (SM) with caliche - brown; fine grained; very dense to dense; dry
7.5 — -7.5 — — — — — — — — — — — — — — — — — — —	8.0	9.5	4	SS	17-37-48 N=85				5.5	- - - -
12.512.5 15.0 15.0	13.0	14.5	5	SS	18-28-45 N=73				9.0	Silty SAND (SM) with trace caliche - orangis brown; fine grained; very dense; dry
17.5 — -17.5 — -	18.0	19.5	6	SS	17-33-50 N=83				4.5	

G	ES	S
GEOServices, L	LC-Geotechnical and Mate	rials Engineers

REMARKS:

Consolidated Interim Storage Facility Andrews, Texas

GEOServices Project No.: 31-151247

LOG OF BORING TF-3
SHEET 2 OF 2

DRILLING CO	Apex Geoscience Inc.
DRILLER	
_	

								DRILLER		
BORING NO. / LOCA	ATION			TF-3			_	LOGGED BY	Sammy Joe Allison	
DATE	July 16,	2015		SURFACE ELEV.	F	T.		WATER LE	EVEL DATA (IF APPLICABLE)	
REFUSAL:	No	DEPTH	FT	ELEV.	F	T.		COMPLETION:	DEPTH Dry FT.	
SAMPLED	25.0 F	Γ.	7.6 M		-				ELEV. FT.	
TOP OF ROCK		DEPTH	FT	ELEV.	F	T.				
BEGAN CORING		DEPTH	FT	ELEV.	F	T.		AFTER 24 HRS.	DEPTH N/A FT.	
FOOTAGE CORED	(LF)		FT	.	-				ELEV. FT.	
BOTTOM OF HOLE	DEPTH		25.0 F1	ELEV.	F	T.				
BORING ADVANCE	D BV:			POWER ALIGERING	Y		WASHBODING			_

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABORATORY			
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	RESULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
										_ CONTINUED
22.5 – -22.5 – -	23.0	24.5	7	SS	34-37-60 N=97				3.8	 Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
25.0 — -25.0 — —										BORING TERMINATED AT 25 FEET
27.527.5 										- - - -
30.0 — -30.0 — — — —										- - -
32.532.5 - -										 _ _ _ _
35.0 — -35.0 — — — — —										- - - -
37.537.5 										- - - -
40.0 — -40.0										

GEOServices Project No.: 31-151247

LOG OF BORING	TF-4
SHEET 1 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

BORING NO. / LOCA	ATION		TF-4 LOGGED BY Sammy Joe A					oe Allison					
DATE)15	SURFACE ELEV.				FT.		WATER LEVEL DATA (IF APPLICABLE)					
REFUSAL:	Yes	DEPTH	40.0	FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	40.0 FT.	•	12.2	М						ELEV.		FT.	
TOP OF ROCK	·	DEPTH		FT.	ELEV.		FT.			_		_	
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED	(LF)	- -		FT.			_			ELEV.		FT.	
BOTTOM OF HOLE	DEPTH		40.0	FT.	ELEV.		FT.			_		_	
	D DV:				DOWER ALICERING	~		WASHDODING.	<u> </u>				

STRATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
	1.0	2.5	1	SS	4-40-20 N=60				3.7	Silty SAND (SM) with caliche - grayish brown; fine grained; very dense; dry
<u>-</u> -	3.0	4.5	2	SS	18-18-16 N=34				3.9	<u>-</u> _
5.0 — -5.0 —	5.0	6.5	3	SS	20-20-30 N=50				6.6	Silty SAND (SM) with trace caliche - light brown fine grained; dense to very dense; dry
7.57.5 10.0 10.0	8.0	9.5	4	SS	14-24-35 N=59				7.4	- - - - -
12.5 — -12.5 — — — — — — — — — — — — — — — — — — —	13.0	14.2	5	SS	20-35-47/2" N=47/2"				5.2	- Silty SAND (SM) with trace caliche - brown; fine grained; very dense; dry
17.517.5 17.5 20.020.0	18.0	19.2	6	SS	19-34-51/2" N=51/2"				4.3	- - - - - -

G	ES	S
GEOServices. L	C-Geotechnical and Mate	rials Engineers

GEOServices Project No.: 31-151247

LOG OF BORING	TF-4
SHEET 2 OF	2

DRILLING CO Apex Geoscience Inc.
DRILLER

LOGGED BY Sammy Ico Allicon

BORING NO. / LOCA	TION				TF-4			_	LOGGED BY	S	ammy J	loe Alliso
DATE	July 21, 20	15		_	SURFACE ELEV.		T.		WATER LE	VEL DATA	A (IF AP	PLICAB
REFUSAL:	Yes	DEPTH	40.0	FT.	ELEV.		T.		COMPLETION:	DEPTH	Dry	FT.
SAMPLED	40.0 FT.	•	12.2	М	_					ELEV.		FT.
TOP OF ROCK	<u> </u>	DEPTH	40.0	FT.	ELEV.	I	T.			_		_
BEGAN CORING		DEPTH		FT.	ELEV.		T.		AFTER 24 HRS.	DEPTH	N/A	FT.
FOOTAGE CORED (I	LF)	•		FT.	·-					ELEV.		FT.
BOTTOM OF HOLE	DEPTH	•	40.0	FT.	ELEV.	1	T.			_		

BORING ADVANCED BY: POWER AUGERING X WASHBORING

STR	RATUM	SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
	EPTH	FROM	то	OR	SAMPLE	RESULTS		RES	ULTS		STRATUM DESCRIPTION
FT.	ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%M	
22.5 - - 22.5 - - - 25.0 -	22.5 22.5 25.0	23.0	24.5	7	88	20-34-51 N=85				3.9	CONTINUED CONTINUED Silty SAND (SM) - orangish brown; fine grained; very dense; dry
- - -	27.5 30.0	28.0	28.8	8	SS	62-47/3" N=47/3"				6.5	- - - -
- - -	32.5 32.5 	33.0	33.3	9	SS	N=100/4"				3.3	
37.5 - - - - - - 40.0 -	37.5 37.5 40.0	38.0	38.1	10	SS	N=100/1"				3.5	- - - - - - AUGER REFUSAL AT 40 FEET

REMARKS: AUGER REFUSAL AT 40 FEET

GEOServices Project No.: 31-151247

LOG OF BORING TF-5
SHEET 1 OF 2

DRILLING CO Apex Geoscience Inc.
DRILLER

									5				
BORING NO. / LOCA	TION				TF-5				LOGGED BY	Sa	ammy Jo	oe Allison	
DATE	July 16, 20	015		SURFA	ACE ELEV.		FT.		WATER LE	EVEL DATA	(IF API	PLICABLE)	
REFUSAL:	No	DEPTH		FT.	ELEV.		FT.		COMPLETION:	DEPTH	Dry	FT.	
SAMPLED	25.0 FT.		7.6	М			<u></u>			ELEV.		FT.	
TOP OF ROCK		DEPTH		FT.	ELEV.		FT.			_		_	
BEGAN CORING		DEPTH		FT.	ELEV.		FT.		AFTER 24 HRS.	DEPTH	N/A	FT.	
FOOTAGE CORED (I	LF)			FT.						ELEV.		FT.	
BOTTOM OF HOLE	DEPTH	•	25.0	FT.	ELEV.		FT.			_		_	
BORING ADVANCED	BY:			POWER A	UGERING	Х	_	WASHBORING					
STRATUM	SAM	PLE DEPTH		SAMPLE		FIELD		LABORATORY					
				1									

STRATUM		SAMPLE	DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH		FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. EL	EV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
- - - 2.52	2.5	1.0	2.5	1	SS	18-10-12 N=22				4.6	Silty SAND (SM) with caliche - grayish brown; fine grained; medium dense; dry
- - -		3.0	4.5	2	SS	6-11-8 N=19				5.2	- -
5.0 — -5 — —	5.0	5.0	6.5	3	SS	2-2-3 N=5				5.5	Silty SAND (SM) with caliche - light brown; fine
7.57 10.010		8.0	9.5	4	SS	15-24-39 N=63				8.1	grained; medium dense to loose to very dense; dry
12.5 — -12 — — — — — — — — — — — — — — — — — — —		13.0	14.5	5	SS	26-46-60 N=106				6.4	- Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry
17.517 17 20.020		18.0	19.3	6	SS	22-39-58 N=97				5.0	- - - - -
REMAR	RKS:										

GEOServices Project No.: 31-151247

LOG OF BORING	TF-5
SHEET 2 OF	2

DRILLING CO	Apex Geoscience Inc.
DRILLER	

BORING NO. / LOCAT	ΓΙΟΝ			TF-5						LOGGED BY Sammy Joe Allison
DATE	July 16, 201	15	SURF	ACE ELEV.		FT.				WATER LEVEL DATA (IF APPLICABLE)
REFUSAL:	No	DEPTH	FT.	ELEV.		FT.				COMPLETION: DEPTH Dry FT.
SAMPLED	25.0 FT.	7.6	М	•						ELEV. FT.
TOP OF ROCK		DEPTH	FT.	ELEV.		FT.				
BEGAN CORING		DEPTH	FT.	ELEV.		FT.				AFTER 24 HRS. DEPTH N/A FT.
FOOTAGE CORED (L	.F)	,	FT.							ELEVFT.
BOTTOM OF HOLE	DEPTH	25.0	FT.	ELEV.		FT.				
BORING ADVANCED	BY:	-	POWER	AUGERING	Х		,	WASH	BORIN	G
STRATUM	SAMP	LE DEPTH	SAMPLE		FIELD		LABOR	ATORY		
DEPTH	FROM	то	OR	SAMPLE	RESULTS		RES	SULTS		STRATUM DESCRIPTION
FT. ELEV.	FT.	FT.	RUN NO.	TYPE	N-Value	Qp	LL	PI	%М	
22.522.5 25.0 25.0 27.5 27.5 30.0 - 30.030.0 30.0 30.0 35.0 35.0 37.5 37.5 40.0	23.0	24.5	7	SS	24-41-45 N=86				4.2	CONTINUED Silty SAND (SM) with trace caliche - orangish brown; fine grained; very dense; dry BORING TERMINATED AT 25 FEET BORING TERMINATED AT 25 FEET
REMARKS:										

APPENDIX B

Soil Laboratory Data

Consolidated Interim Storage Facility - Andrews, Texas GEOServices Project No. 31-151247

		 		st 5, 2015			Finer than	
D	G 1 -	Donat	Natural	A 1				G - 11
Boring	Sample	Depth	Moisture		tterberg Lim		200 Sieve	Soil
Number	Number	(feet)	Content	LL	PL	PI	(%) 48	Type
	1	1.0 - 2.5	3.6%				48	
	2	3.0 - 4.5	3.9%				+	
	3	5.0 - 6.5	6.5%				27	
D 101	4	8.0 - 9.5	7.8%				37	
B-101	5	13.0 - 14.5	6.7%					
	6	18.0 - 19.5	5.7%					
	7	23.0 - 24.5	5.7%				1	
	9	31.0 - 31.2	5.7%				+	
	10	33.0 - 33.2	7.7%					
	1	1025	2.40/				1	
	1	1.0 - 2.5	3.4%					
	2	3.0 - 3.8	2.8%				1	
D 100	3	5.0 - 6.5	2.9%				+	
B-102	4	8.0 - 9.5	4.0%				1	
	5	13.0 - 13.8	6.0%				<u> </u>	
	6	18.0 - 18.8	5.8%					
	7	23.0 - 23.8	2.9%					
							1	
	1	1.0 - 2.5	4.3%	26	N.P.			
	2	3.0 - 4.5	4.8%					
	3	5.0 - 6.5	5.8%					
B-103	4	8.0 - 9.5	7.1%					
	5	13.0 - 14.4	6.3%					
	6	18.0 - 19.5	6.1%					
	7	23.0 - 24.5	4.5%					
	1	1.0 - 2.3	3.1%					
	2	3.0 - 3.8	2.5%					
	3	5.0 - 6.5	4.1%					
B-104	4	8.0 - 9.5	6.9%					
	5	13.0 - 14.5	6.0%					
	6	18.0 - 19.5	4.6%					
	7	23.0 - 24.5	3.1%					
	1	1.0 - 1.8	3.3%					
	2	5.0 - 6.5	5.3%					
B-105	3	8.0 - 9.5	8.1%					
	4	13.0 - 13.5	4.8%					
	6	18.0 - 19.0	4.1%					

Consolidated Interim Storage Facility - Andrews, Texas GEOServices Project No. 31-151247

	T	, ,		ist 5, 2015 1	<u>'</u>		Finer than	
D. 1	G 1	D. 4	Natural	A. 1 T. 5				G. 1
Boring	Sample	Depth	Moisture		tterberg Limi		200 Sieve	Soil
Number	Number	(feet)	Content	LL	PL	PI	(%)	Type
	1	1.0 - 2.5	4.5%					
	2	3.0 - 4.5	3.9%	1				
D 106	3	5.0 - 6.5	3.9%	1			41	
B-106	4	8.0 - 9.5	5.3%	1			41	
	5	13.0 - 13.9	6.7%					
	6	18.0 - 19.5	6.8%					
	7	23.0 - 24.4	6.2%	<u> </u>				
					1		1	
	1	1.0 - 1.8	5.3%					
	2	3.0 - 4.5	4.5%					
D 107	3	5.0 - 6.5	4.1%					
B-107	4	8.0 - 9.5	5.7%				1	
	5	13.0 - 14.0	7.2%					
	6	18.0 - 19.5	6.3%					
	7	23.0 - 24.4	4.2%					
							1	
	1	1.0 - 2.5	4.9%					
	2	3.0 - 4.5	4.9%					
	3	5.0 - 6.5	6.0%					
B-108	4	8.0 - 9.4	6.3%					
	5	13.0 - 13.8	8.4%					
	6	18.0 - 18.8	6.6%					
	7	23.0 - 23.4	6.0%					
	-							
	1	1.0 - 2.5	3.4%					
	2	3.0 - 4.5	4.2%					
	3	5.0 - 6.5	3.8%					
B-109	4	8.0 - 9.0	3.2%					
	5	13.0 - 13.3	8.5%					
	6	18.0 - 18.7	6.3%					
	7	23.0 - 24.5	4.7%					
	1	1.0 - 2.5	5.0%	29	N.P.			
	2	3.0 - 4.5	4.7%					
	3	5.0 - 6.5	6.0%					
B-110	4	8.0 - 9.5	8.9%					
	5	13.0 - 14.0	7.1%					
	6	18.0 - 19.0	5.1%					
	7	23.0 - 24.5	4.4%					

Consolidated Interim Storage Facility - Andrews, Texas GEOServices Project No. 31-151247

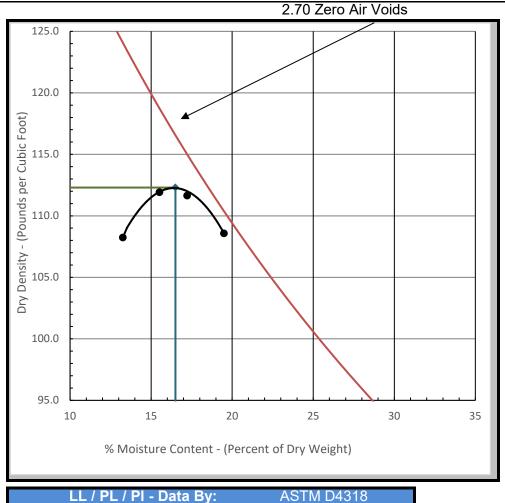
		1 1		st 3, 2013	'		I = 1	
			Natural				Finer than	
Boring	Sample	Depth	Moisture		tterberg Lim		200 Sieve	Soil
Number	Number	(feet)	Content	LL	PL	PI	(%)	Type
	1	1.0 - 2.5	6.7%					
	2	3.0 - 4.5	4.5%				44	
	3	5.0 - 6.5	5.2%					
	4	8.0 - 9.5	4.3%					
B-111	5	13.0 - 14.0	6.6%				30	
	6	18.0 - 19.0	5.8%					
	7	23.0 - 24.0	6.0%					
	8	28.0 - 29.5	4.3%					
	9	33.0 - 34.5	2.5%					
	1	1.0 - 2.5	3.3%					
	2	3.0 - 4.5	3.9%					
	3	5.0 - 6.5	6.7%					
AB-1	4	8.0 - 9.5	6.2%				24	
	5	13.0 - 14.3	4.3%				1 1	
	6	18.0 - 18.8	4.9%				1 1	
	7	23.0 - 23.8	3.2%					
	·							
	1	1.0 - 2.5	4.8%				35	
	2	3.0 - 4.5	5.7%				+	
	3	5.0 - 6.5	5.5%				1	
AB-2	4	8.0 - 9.5	3.7%				1	
	5	13.0 - 14.5	3.4%				1	
	6	18.0 - 19.5	3.1%				1	
	Ů	10.0 19.0	5.170		1			
	1	1.0 - 2.5	3.0%					
	2	3.0 - 4.5	2.8%				45	
	3	5.0 - 6.5	4.8%				1	
	4	8.0 - 9.5	2.8%				1	
	5	13.0 - 14.3	5.8%				1	
TF-1	6	18.0 - 19.3	5.4%				1 1	
	7	23.0 - 24.5	2.7%				+	
	8	28.0 - 29.3	3.0%		<u> </u>		+ +	
	9	33.0 - 33.4	3.7%				+	
	10	38.0 - 38.3	4.6%		<u> </u>		+ +	
	10	30.0 - 30.3	4.070					
	1	1.0 - 2.5	4.3%	28	N.P.		T T	
	2	3.0 - 4.5	4.8%	20	11111		+ +	
	3	5.0 - 6.5	3.9%				+ +	
TF-2	4	8.0 - 9.5	6.7%				+ +	
11 -2	5	13.0 - 14.2	5.9%				+ +	
	6	18.0 - 18.8	5.9%		 		+ +	
	7	23.0 - 24.5	4.2%				+ +	
	/	23.0 - 24.3	4.∠70					

Consolidated Interim Storage Facility - Andrews, Texas GEOServices Project No. 31-151247

		1		31 3, 2013			Ein au 4h a ::	
Danina	Commlo	Donth	Natural Moisture	Attaulana I insita			Finer than 200 Sieve	Soil
Boring	Sample	Depth		Atterberg Limits				
Number	Number	(feet)	Content	LL	PL	PI	(%)	Type
	1	1.0 - 2.5	4.3%					
	2	3.0 - 4.5	4.6%					
	3	5.0 - 6.5	3.9%					
TF-3	4	8.0 - 9.5	5.5%					
	5	13.0 - 14.5	9.0%					
	6	18.0 - 19.5	4.5%					
	7	23.0 - 24.5	3.8%					
	1	1.0 - 2.5	3.7%					
	2	3.0 - 4.5	3.9%					
	3	5.0 - 6.5	6.6%					
	4	8.0 - 9.5	7.4%					
TF-4	5	13.0 - 14.2	5.2%				34	
1Γ -4	6	18.0 - 19.2	4.3%					
	7	23.0 - 24.5	3.9%					
	8	28.0 - 28.8	6.5%					
	9	33.0 - 33.3	3.3%					
	10	38.0 - 38.1	3.5%					
					1			
	1	1.0 - 2.5	4.6%					
	2	3.0 - 4.5	5.2%					
	3	5.0 - 6.5	5.5%				1	
TF-5	4	8.0 - 9.5	8.1%					
	5	13.0 - 14.5	6.4%					
	6	18.0 - 19.5	5.0%					
	7	23.0 - 24.5	4.2%					

LABORATORY COMPACTION OF SOILS ASTM D 698 Method C

GEOS Project Name: WCS CISF - Andrews, TX


GEOS Project Number: 31-151247 Report Date: December 31, 2018

GEOS Log #: NA Date Received: December 24, 2018

Sample Location: B-101

Sample Depth: 0 - 10'

Sample Description: Brown Silty Sandy Clay with rock

Plasticity Index

Soil Type

Max. Dry Density (pcf)

112.3

Optimum Moisture (%)

16.5

As Received W%	TNP
Rammer Type	Manual
Prep Method	Dry

ASTM D4718

Percent Oversize Material

60.09

OS Bulk Specific Gravity

TNP

Oversize Corrected Data Corrected MDD (pcf)

NA

Corrected Opt Moisture %

7.2

SOIL SPECIFIC GRAVITY
BY ASTM D854
ASSUMED 2.70

OTES

Liquid Limit

Plastic Limit

TIP = Test In Progress

22

13

9

CL

LABORATORY COMPACTION OF SOILS ASTM D 698 Method B

GEOS Project Name: WCS CISF - Andrews, TX

GEOS Project Number: 31-151247 Report Date: December 31, 2018

GEOS Log #: Date Received: December 24, 2018

Sample Location: B-111

Sample Depth: 0 - 10'

Sample Description: Brown Silty Clay with rock

2.70 Zero Air Voids 125.0 120.0 120.0 10

May	DEV	Density	(\mathbf{nof})
IVIAX.	עוע	Delibity	

113.3

Optimum Moisture (%)

14.9

As Received W%	TNP
Rammer Type	Manual
Prep Method	Dry

ASTM D4718

Percent Oversize Material

47.72

OS Bulk Specific Gravity

TNP

Oversize Corrected Data Corrected MDD (pcf)

TNP

Corrected Opt Moisture %

8.3

Liquid Limit TIP Plasticity Index TIP
Plastic Limit TIP Soil Type TIP

SOIL SPECIFIC GRAVITY
BY ASTM D854
ASSUMED 2.70

OTES

TIP = Test In Progress

CALIFORNIA BEARING RATIO ASTM D1883

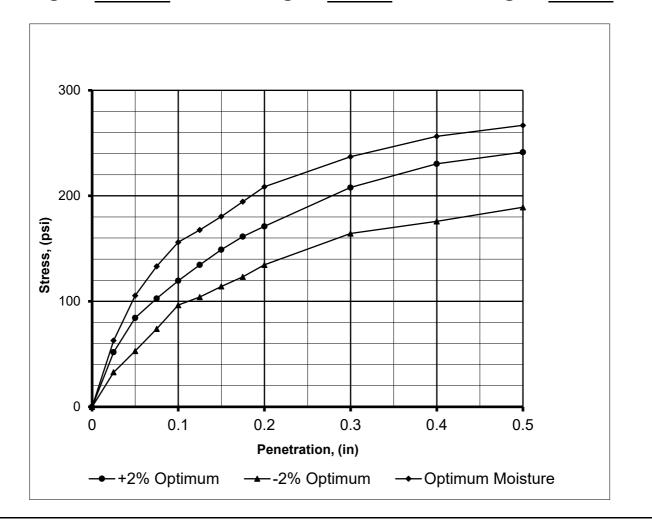
Project Name: WCS - CISF

Project #: 31-151247

Sample ID: B-101

Sample Description: Brown Silty Sand with Rock (CBR on -3/4 material)

@ + 2% Optimum Moisture


Wet Density 128.0 pcf **Dry Density** 108.5 pcf Water Content 17.9% Compaction 96.6% Swell 0.09% CBR @ .1" 12.0 CBR @ .2" 11.4

@ Optimum Moisture Content

Wet Density 124.8 pcf Dry Density 107.1 pcf Water Content 16.6% Compaction 95.4% Swell 0.11% CBR @ .1" 15.6 CBR @ .2" 13.9

@ -2% Optimum Moisture

Wet Density 120.4 pcf Dry Density 105.1 pcf Water Content 14.5% Compaction 93.6% Swell -0.07% CBR @ .1" 9.6 CBR @ .2" 9.0

CALIFORNIA BEARING RATIO ASTM D1883

Project Name: WCS CISF

Project #: 31-151247

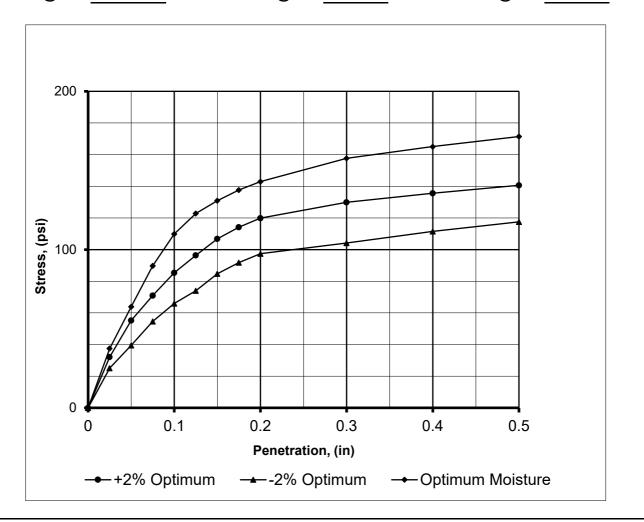
Sample ID: B-111

Sample Description: Brown Silty Sand with Rock (CBR on -3/8 material)

@ + 2% Optimum Moisture

Wet Density 126.8 pcf Dry Density 109.1 pcf Water Content 16.2% Compaction 96.3% Swell 0.31% CBR @ .1" 8.5 CBR @ .2" 8.0

@ Optimum Moisture Content


 Wet Density
 125.1 pcf

 Dry Density
 109.1 pcf

 Water Content Compaction Swell
 96.3% 0.13%

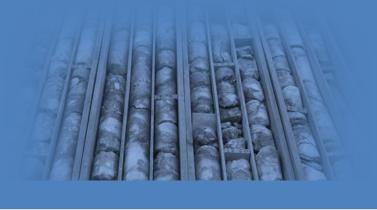
@ -2% Optimum Moisture

Wet Density 122.5 pcf Dry Density 109.3 pcf Water Content 12.1% Compaction 96.5% Swell 0.48% CBR @ .1" 6.6 CBR @ .2" 6.5

GEOS Project Name: WCS CISF

SOIL RESISTIVITY & pH

ASTM G57 & D4972


GEOS Project Name:	WCS CISF	Report Date:	January 7, 2019
GEOS Project Number:	31-151247	Date Received:	
O-marks ID	Donath		
Sample ID	Depth	Resistivity (ohm/cm)	рН
B-101 / Bulk	1.0 - 2.5'	2,550	7.9
B-111 / Bulk	3.5 - 5.0'	2,900	8.1
Notes:			

APPENDIX C

Generalized Soil Column

Appendix C – Generalized Soil Column CISF Site

Top (feet)	Bottom (feet)	Layer Description
0	2	Cover Sands
2	10	Caliche with Sand Matrix - Moderately Hard
10	20	Caliche with Sand Matrix - Moderately Hard
20	25	Caliche - Very Hard
25	35	Caliche - Very Hard
35	50	Ogallala - Sand with Gravel
50	80	Ogallala - Sand with Gravel
80	100	Ogallala - Sand with Gravel
100	130	Dockum - Claystone and Siltstone
130	230	Claystone and Siltstone
230	275	Dockum – Claystone
275	300	Dockum - Silty Sands
300	360	Dockum – Claystone
360	600	Dockum – Claystone

As can be seen above the soil column for the site was extended to 600 feet. Only four of the eighteen borings performed for the CISF project encountered auger refusal. The auger refusal depths ranged from 37 to 45 feet below the ground surface (bgs) that existed at the time of the exploration. Shear wave surveys were performed in conjunction with the geotechnical exploration and shear wave velocities are provided to depths of 100 feet bgs. Additionally, multiple previous geotechnical investigations have been performed at the site as well as shear wave testing. The historical data outlined below was utilized to extend the soil profile and engineering parameters to a depth of 600 feet. The depth of 600 feet was selected as the termination depth due to encountering the Trujillo Sandstone Layer.

The sections below reference the previous studies which were performed along with the methodology for obtaining the necessary soil parameters to perform the settlement analyses.

Provided Additional Documents:

- 1. Cook-Joyce, Inc. (2007). Geology Report. Dated May 1, 2007.
- AECOM. (2016). Site-Specific Seismic Hazard Evaluation and Development of Seismic Design Ground Motions, WCS Centralized Interim Storage Facility Project. Dated March 18, 2016.
- 3. WCS. (2007). (Waste Control Specialists LLC). Application for License to Authorize Near Surface Land Disposal of Low-Level Radioactive Waste. Dated March 2007.

Methodology:

The information from the eighteen borings and shear wave data included in this Report of Geotechnical Exploration was supplemented with data obtained from the additionally provided documents. This data was used to produce a soil stratigraphic column to 600 feet. Figure 1 shown below displays the locations of the historical borings provided.

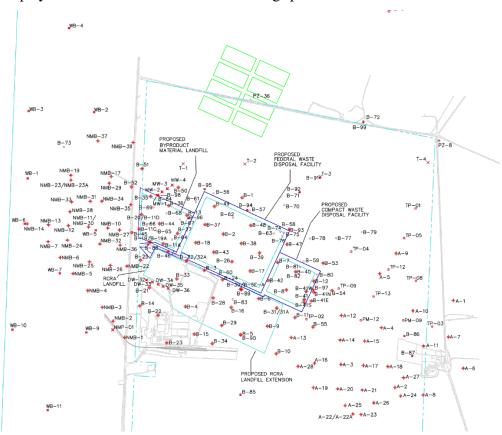


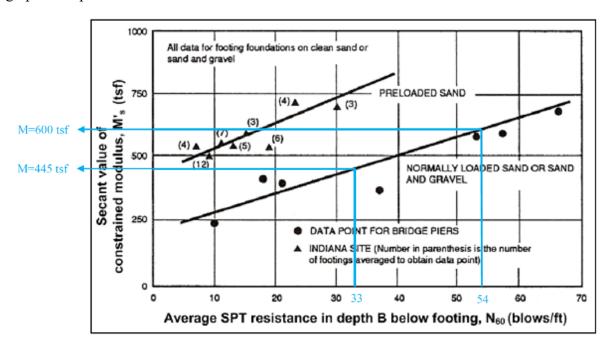
Figure 1: Historical Borings at WCS Site

Stratigraphy Development:

- The upper stratigraphy (to a depth of 45 feet) was based solely on the results of the eighteen soil test borings
- From a depth of 45 to 100 feet below ground surface (bgs) the stratigraphy was based on the Geologic Column of the CISF Area (Figure 7-30 of the SAR).
- From 100 feet to 600 feet bgs, the Geologic Column of the CISF Area (Figure 7-30 of the SAR), WCS (2007) Plate 2-2, and deeper historical borings were utilized to generate the stratigraphy.

APPENDIX D

Static Elastic Modulus Calculation



Appendix D – Static Elastic Modulus Calculation

As mentioned previously, it was determined that the settlement analysis would be extended to a depth of 600 feet (the top of the Trujillo Sandstone Formation). Therefore, constrained modulus values needed to be calculated for each of the stratigraphic layers. This was accomplished utilizing two distinct methodologies. The methodologies were selected due to the information available from the borings and shear wave profiles performed as part of this study and the available historical data.

Methodology 1:

To a depth of 20 feet bgs the constrained modulus was correlated to the SPT N-values obtained in the borings. The SPT N-Values were correlated to constrained modulus using the method outlined in Tan, C.K., Duncan, J.M., Rojiani, K.B., and Barker, R.M. (1991). This methodology allows correlation of constrained modulus to N-value for N-values up to 70 blows per foot. The graphical representation is shown below.

Methodology 2:

The borings performed for the CISF site were only advanced to maximum depths of 45 feet. Additionally, the methodology outlined in Tan, C.K., Duncan, J.M., Rojiani, K.B., and Barker, R.M. (1991) is only valid up to N-values of 70 blows per foot. Based on the N-values obtained

this methodology could only be extended to a depth of 20 feet below ground surface. Therefore, a second methodology had to be utilized to generate the constrained modulus from depths of 20 feet to 600 feet.

To supplement the information obtained in preparation of the Report of Geotechnical Exploration, GEOServices was provided with a Site-Specific Seismic Hazard Evaluation and Development of Seismic Ground Motions prepared by AECOM (2016). This document provided shear wave velocity profiles at the site to depths of approximately 1200 feet.

The shear wave velocities were converted to constrained modulus using the following relationship:

$$V_S \xrightarrow{G = V_S^2 * \rho} G \xrightarrow{M = \frac{2G(1-\nu)}{(1-2\nu)}} M$$

Where, Vs = shear wave velocity

G =shear modulus

M = constrained modulus

v = Poisson's ratio

 ρ = unit weight

- From 20 feet to 100 feet bgs, constrained modulus values were obtained from converting the shear wave velocities provided in this study to constrained modulus using the unit weight and Poisson's ratio.
- From 100 feet to 600 feet bgs, constrained modulus values were obtained from converting the shear wave velocities provided in AECOM (2016) to constrained modulus using the unit weight and Poisson's ratio.

Results

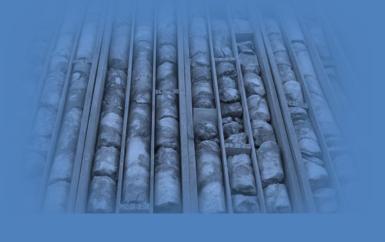
The table below provides the constrained modulus values for each of the stratigraphic layers. These values were utilized to calculate the anticipated settlements for the CISF pads and Cask Handling Building. The results of the settlement analysis are provided in Appendix H of this document.

Top (feet)	Bottom (feet)	N-Value (bpf)	Average Shear Wave Velocity (ft/s)	Layer Description	Constrained Modulus (ksf)
0	2	33		Cover Sands	890
2	10	54		Caliche with Sand Matrix - Moderately Hard	1200
10	20	54		Caliche with Sand Matrix - Moderately Hard	1200
20	25		1530	Caliche - Very Hard	35815
25	35		1900	Caliche - Very Hard	55232
35	50		2290	Ogallala - Sand with Gravel	80233
50	80		1840	Ogallala - Sand with Gravel	53870
80	100		2790	Ogallala - Sand with Gravel	123857
100	130		2300	Dockum - Claystone and Siltstone	84172
130	230		2755	Claystone and Siltstone	120769
230	275		2755	Dockum - Claystone	120769
275	300		2755	Dockum - Silty Sands	120679
300	360		2755	Dockum - Claystone	120679
360	600		3115	Dockum - Claystone	154394

References:

Tan, C.K., Duncan, J.M., Rojiani, K.B., and Barker, R.M. (1991). Engineering Manual for Shallow Foundations, prepared for the National Cooperative Highway Research Program (NCHRP Project 24-4) in cooperation with Virginia Polytechnic Institute and State University. Sponsored by American Association of State Highway and Transportation Officials and Federal Highway Administration, Washington, D.C., Blacksburg, VA, 171 pp.

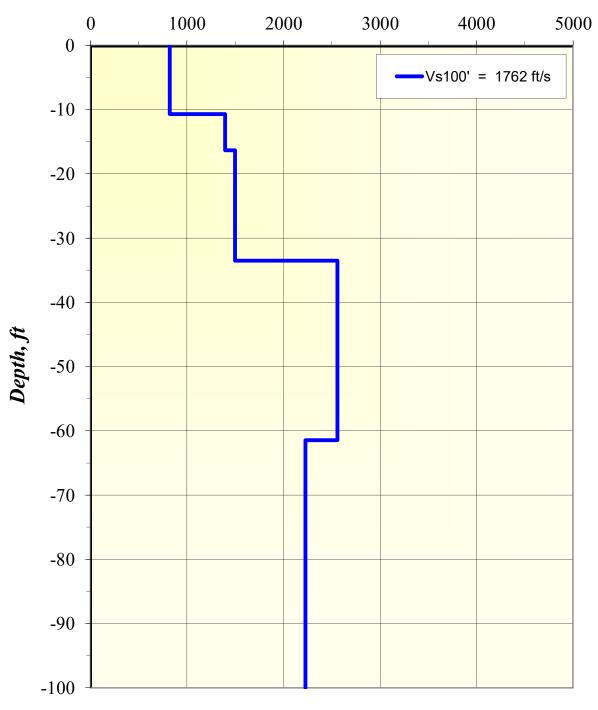
WCS. (2007). (Waste Control Specialists LLC). Application for License to Authorize Near Surface Land Disposal of Low-Level Radioactive Waste. Dated March 2007.


AECOM. (2016). Site-Specific Seismic Hazard Evaluation and Development of Seismic Design Ground Motions, WCS Centralized Interim Storage Facility Project. Dated March 18, 2016.

APPENDIX E

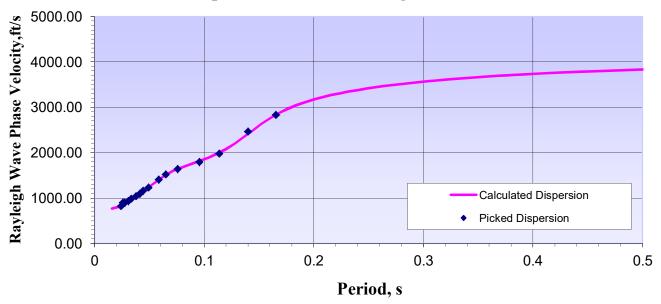
On-Site Shear Wave Velocity Study

Seismic Shear Wave Velocity Location Plan Consolidated Interim Storage Facility Andrews, Texas

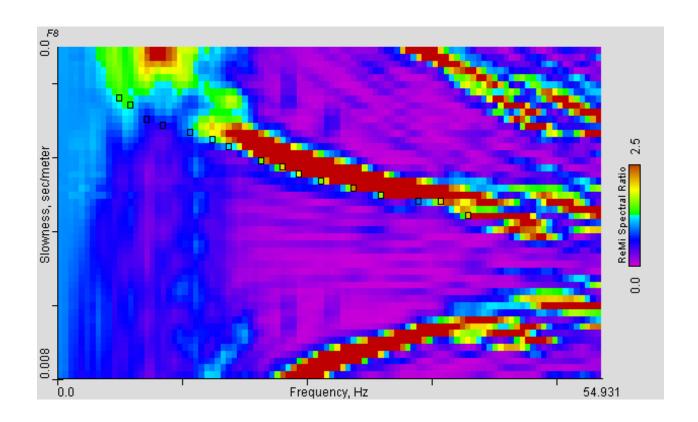

DATE: 07/14/2016

GEOS Project No. 31-151247

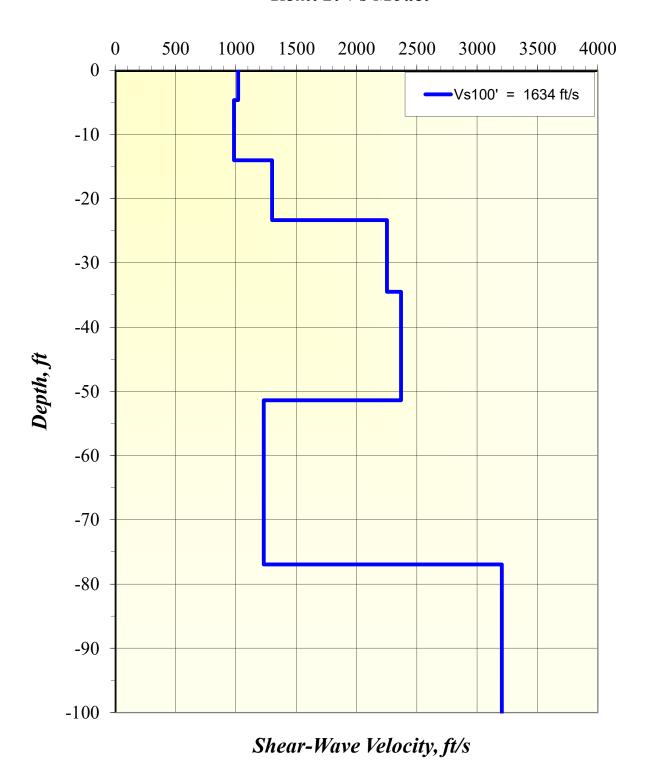
FIGURE: 12

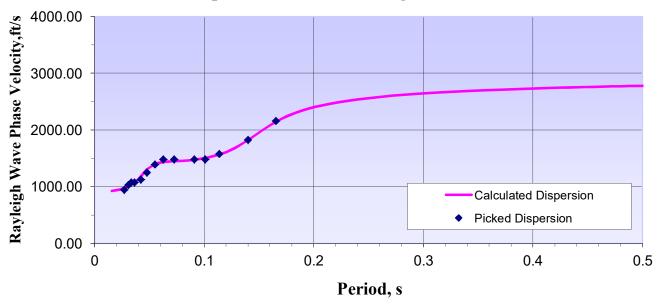

Aerial Source Provided by: Google Earth Pro, (02/12/2014)

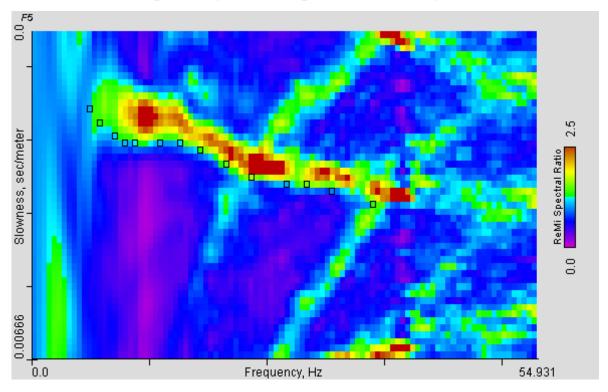
Remi 1: Vs Model

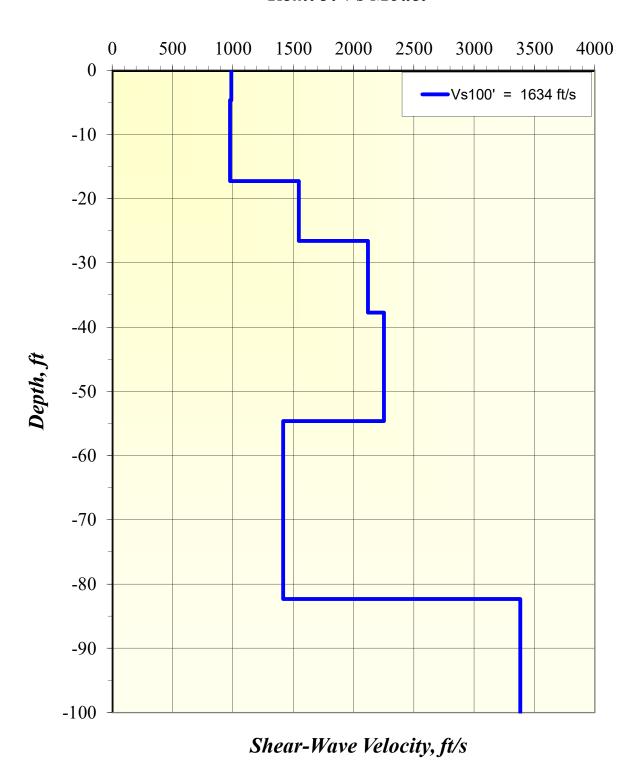


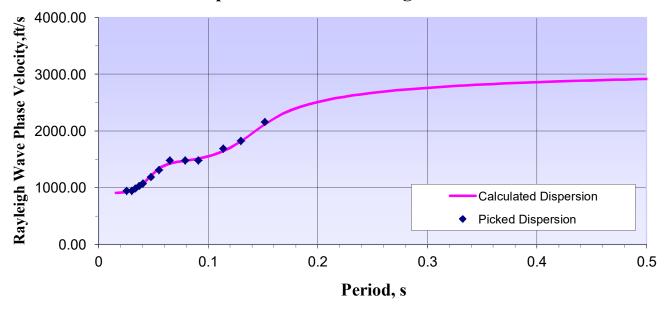
Shear-Wave Velocity, ft/s

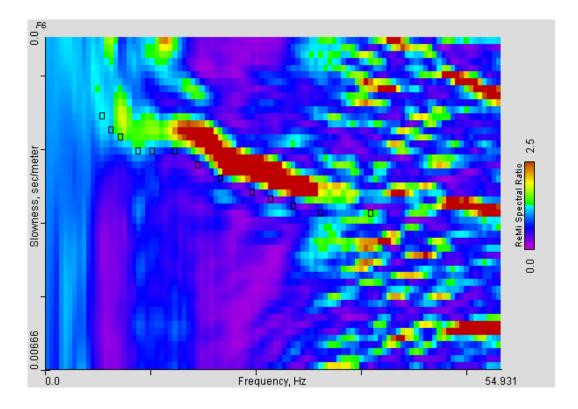

Remi 1: Supportive Illustration Dispersion Curve Showing Picks and Fit

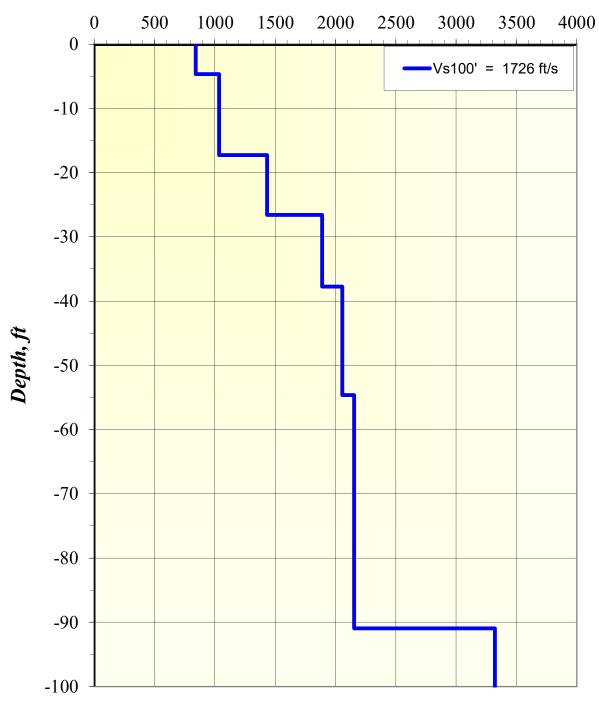

p-f Image with Dispersion Modeling Picks


Remi 2: Vs Model

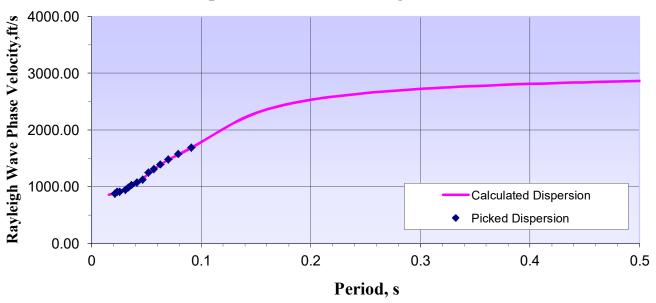

Remi 2: Supportive Illustration
Dispersion Curve Showing Picks and Fit


p-f Image with Dispersion Modeling Picks

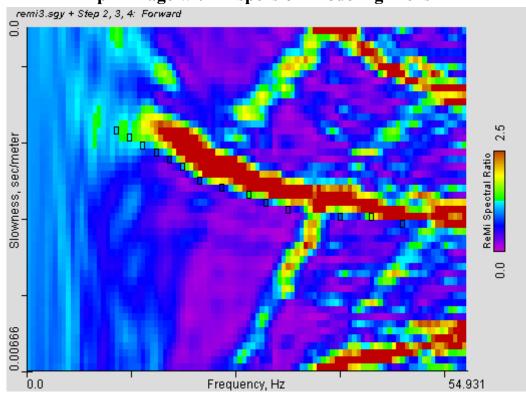

Remi 3: Vs Model


Remi 3: Supportive Illustration Dispersion Curve Showing Picks and Fit

p-f Image with Dispersion Modeling Picks



Remi 4: Vs Model



Shear-Wave Velocity, ft/s

Remi 4: Supportive Illustration
Dispersion Curve Showing Picks and Fit

p-f Image with Dispersion Modeling Picks

APPENDIX F

Seismic Densification Analysis

TECHNICAL MEMORANDUM

Seismic Densification CISF Site Andrews, TX DBA Project No. 19-017

To: Derek Kilday, P.E./GEOServices

From: Timothy C. Siegel, P.E, G.E., D.GE

Tayler J. Day, P.E.

Date: 18 February 2020

1. Introduction

Dan Brown and Associates, P.C. (DBA) performed seismic densification calculations as part of our scope of services for the subject project. The calculations show that the seismic densification for the design earthquake will be negligible (on the order of 0.02 inches or less). The basis of our calculations is described in the remaining sections of this TM. The calculations are provided in the Attachments.

2. Design Earthquake

Our calculations use an earthquake magnitude of 5 and a peak ground acceleration of 0.25g. According the AECOM report¹, these values represent the design earthquake determined as part of the site-specific seismic hazard evaluation.

3. Soil Profile

The soil column at the CISF Storage Pad site consists of approximately 2 ft of cover sands overylying a caliche and sand matrix with normalized SPT N-values ranging 10 to 57 over the top 20 feet. This profile was developed based on the boring information (B-101 thru B-110) and laboratory test results presented in the GEOServices report². We expect the cemented caliche materials described below a depth of 20ft to exhibit significantly more resistance to seismic densification than the partially cemented and uncemented sands near the ground surface. Therefore, we intentionally limited our calculations to the upper 20 ft where the sands and caliche/sand matrix appear to exhibit less cementation.

¹ AECOM (2016) Site-Specific Seismic Hazard Evaluation and Development of Seismic Design Ground Motions, WCS Centralized Interim Storage Facility, Project No. 31787-001, Study No. WCS-12-05-100-001.

² GEOServices (2020) Report of Geotechnical Exploration, Consolidated Interim Storage Facility, Andrews, TX, GEOServices Project No. 31-151247.R1.

4. Methodology

DBA used the methodology proposed by Pradel³ to compute the seismic densification. The Pradel method is applicable to sands and silty sands and we expect that it could tend to overpredict the seismic densification of soils with partial to full cementation. For the design earthquake and soil profile for this project, the computed seismic densification above the cemented layers is very small.

5. Concluding Remarks

DBA appreciates the opportunity be a part of this project. Please contact the following if you would like to discuss this document or this project.

Timothy C. Siegel, P.E., G.E., D.GE CEO/Senior Principal Engineer Dan Brown and Associates PC 6424 Baum Dr. Knoxville, TN 37919 Mobile: 865-809-4883

tim@dba.world

Tayler J. Day, P.E.
Project Engineer
Dan Brown and Associates PC
6424 Baum Dr.
Knoxville, TN 37919
Mobile: 217-371-2185
tday@dba.world

³ Pradel, D. (1998) Procedure to Evaluate the Earthquake-Induced Settlements of Dry Sandy Soils, Journal of Geotech. and Geoenv. Engineering, 124(4), 364-368.

Attachments

Seismic Densification Calculations

Seismic Densification Calculation for Upper 20 ft CISF Andrews, TX 18-Feb-20

> M = 5.00 Nc = 1.0

Depth (ft)	(N1)60	σ'v (tsf)	CSR	CSR * σ'v (tsf)	φ (deg)	Go (tsf)	K	p (tsf)	R	а	b	γ(%)	evol15 (%)	evol (%)	
2.00	21	0.12	0.13	0.015	30	345.291	0.500	0.080	0.004%	0.127	30131.266	0.01%	0.01%	0.00%	0.001
4.00	10	0.24	0.16	0.038	30	382.268	0.500	0.160	0.010%	0.130	19879.222	0.02%	0.04%	0.01%	0.006
6.00	13	0.36	0.16	0.057	30	510.522	0.500	0.240	0.011%	0.133	15586.357	0.02%	0.03%	0.01%	0.004
8.00	35	0.48	0.16	0.075	30	817.382	0.500	0.320	0.009%	0.136	13115.395	0.01%	0.01%	0.00%	0.001
14.00	57	0.84	0.15	0.124	30	1270.107	0.500	0.560	0.010%	0.145	9374.725	0.01%	0.00%	0.00%	0.001
19.00	36	1.14	0.14	0.161	30	1271.435	0.500	0.760	0.013%	0.152	7805.185	0.02%	0.01%	0.00%	0.003
М	Earthquake	magnitude												S (IN) =	0.016

Computed from design earthquake acceleration (No reduction for M lower than 7.5)

Computed from SPT boring data

Typical value of sand

Computed from depth x soil unit weight

Computed based on based on Seed and Idriss (1970)

Nc Number of equivalent cycles

(N1)60 Normalized N-value σ'v (tsf) Effective vertical stress CSR Cyclic stress ratio

φ (deg) Effective friction angle

Go (tsf) Small strain shear modulus

K At-rest horizontal pressure coefficient

p (tsf) Mean stress
R Ave shear stress/G

a coefficient to determine shear strainb coefficient to determine shear strain

γ(%) Shear strain

(N1)60, cs Normalized N-value, clean sand Ic Soil behavior type index

evol15 (%) Volumetric strain after 15 cycles

evol (%) olumetric strain adjusted for actual cycles

S (in) Ground surface settlement from seismic compression

References:

Pradel, D. (1998) "Procedure to Evaluate Earthquake-Induced Settlement in Dry Sandy Soils" J. Geotech Engrg, ASCE, 124(4), 364-368
Robertson, P.K. and Shao, L. (2010) "Estimation of Seismic Compression of Dry Soils Using the CPT" Proc, Fifth International Conf on Recent Advances in Earthquake Engineering and Soil Dynamics.
Seed, H.B. and Idriss, I.M. (1970) "Soil moduli and damping factors for dynamic response analyses" Rep No. EERC 70-10, Earthquake Engineering Research Center, University of CA, Berkeley.

Project CISF
Project No. 19-017
Sheet 1 of 4
Date 2 / 17 / 2020
Engineer TCS
Checked by TJD

The following calculations for liquefaction of soils with sand-like behavior are based on Soil Liquefaction During Earthquakes - Monograph MNO-12 by I.M. Idriss and R.W. Boulanger (2008) published by the Earthquake Engineering Research Institute.

Soil Stress Conditions -

Jon Suess (onditions -					
	average total unit	weight of soil		$\gamma_{total} := 120 pcf$		
	unit weight of wa	ater		$\gamma_{\text{water}} := 62.4 \text{pcf}$		
	water table depth	below ground surfaceve	ry d			
	sample depth	Boring B-103 Sample No. 1		z := 2ft		
	total vertical stres	ss		$\sigma tot_{v} := \gamma_{total} \cdot z$	$\sigma tot_{V} = 240 \cdot ps$	f
	static water press	ure		$u_0 := 0$	$u_0 = 0 \cdot psf$	
	effective vertical	stress		$\sigma eff_{V} := \sigma tot_{V} - u_{O} \sigma tot_{V}$	$eff_V = 240 \cdot psf$	
Standard P	Penetration N-value	e Correction -			<u>Hammer</u> Doughnut	<u>CE</u> 0.5-1.0
	Standard Penetrat	tion Test N-value		$N_m := 12$	Safety Automatic	0.7-1.2
	fines content			FC := 48	(Skempton, 1986)	0.8-1.3
	energy correction	1		$C_E := 0.75$		
	borehole diameter	r correction		$C_B = 1.05$	Borehole dia.	CB
	rod length correct	tion		$C_{R} := 0.75$	65-115mm	1.0
	sampler correction	n		$C_S := 1$	150mm 200mm (Skempton, 1986	1.05 1.15
	SPT N-value for	an energy ratio of 60%	N	$C_{60} := C_E C_B \cdot C_R \cdot C_S \cdot N_m$	Rod length	CR
			N	$a_{60} = 7.1$	< 3m	0.75
			11	60 - 7.1	3-4m 4-6m	0.80 0.85
	overburden corre (based on overbu		C	$N_a := \left(\frac{P_a}{\sigma eff_V}\right)^{0.5}$	6-10m 10-30m	0.95 1.00
			C	$N_a = 2.969$		
	normalized SPT 1 (based on overbu		N	$\mathbf{I}_{1_{60}} \coloneqq \mathbf{C}_{\mathbf{N}_{a}} \cdot \mathbf{N}_{60}$	$N_{1_60} = 21$	

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>2</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by <u>TJD</u>

overburden correction factor (based on overburden stress and relative density)

$$\mathbf{C_{N_b}} \coloneqq \left(\frac{\mathbf{P_a}}{\mathbf{\sigma} \mathbf{eff_v}}\right)^{0.784 - 0.078 \cdot \left(\mathbf{N_{1_60}}\right)^{0.5}}$$

$$C_{N_b} = 2.529$$

overburden correction factor used in liquefaction analysis (max CN = 1.7) recalculated normalized SPT N-value

$$C_N := 2.64$$

$$N_{1_{60}} := C_N \cdot N_{60}$$

 $N_{1_{60}} = 18.7$

overburden correction factor used in liquefaction analysis

$$C_{N_check} \coloneqq \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{\text{N check}} = 2.643$$

fines content adjustment to SPT N-value

$$\Delta N_{1_{60}} := exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right]$$

$$\Delta N_{1_{-}60} = 5.6$$

normalized SPT N-value (clean sands)

$$N_{1_60_cs} := N_{1_60} + \Delta N_{1_60}$$

$$N_{1 60 cs} = 24.324$$

Earthquake Conditions -

peak ground accelerationl

$$a_{\text{max}} := 0.25 \cdot g$$

earthquake moment magnitude

$$M_w := 5$$

variable α for stress reduction factor

$$\alpha := -1.012 - 1.126 \cdot \sin \left(\frac{z}{3.28 \text{ft}} + 5.133 \right)$$

variable β for stress reduction factor

$$\beta := 0.106 + 0.118 \sin \left(\frac{z}{3.28 \text{ft}} + 5.142 \right)$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>3 of 4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

stress reduction factor

$$r_d := \exp(\alpha + \beta \cdot M_w)$$

$$r_d = 0.998$$

Liquefaction Calculations -

$$CSR := 0.65 \cdot \frac{\sigma tot_{V}}{\sigma eff_{V}} \cdot \frac{a_{max}}{g} \cdot r_{d} \qquad CSR = 0.162$$

cyclic resistance ratio

$$CRR_{M7.5_\sigma eff1} := exp \left[\frac{N_{1_60_cs}}{14.1} + \left(\frac{N_{1_60_cs}}{126} \right)^2 - \left(\frac{N_{1_60_cs}}{23.6} \right)^3 + \left(\frac{N_{1_60_cs}}{25.4} \right)^4 - 2.8 \right]$$

MSF :=
$$6.9 \exp\left(\frac{-M_W}{4}\right) - 0.058$$
 MSF = 1.919

coefficient for overburden correction factor (maximum
$$C\sigma$$
=0.3)

$$C_{\sigma} := \frac{1}{18.9 - 2.55 \cdot (N_{1_{60}})^{0.5}}$$
 $C_{\sigma} = 0.127$

$$K_{\sigma} := 1 - C_{\sigma} \cdot ln \left(\frac{\sigma eff_{V}}{P_{a}} \right)$$
 $K_{\sigma} = 1.277$

static shear stress on horizontal plane

$$\tau_{ho} := 0 psf$$

$$\phi_{eff} := atan \left(\frac{N_{60}}{12.2 + 20.3 \cdot \frac{\sigma_{eff_v}}{P_a}} \right)^{0.34} \qquad \phi_{eff} = 43.824 \cdot deg$$

$$K_o := (1 - \sin(\phi_{eff})) \qquad K_o = 0.308$$

$$Q := 10 \qquad \begin{array}{c} \underline{Grain \ type.} & Q \\ \hline quartz \ and \ feldspar \ 10 \\ limestone & 8 \\ anthracite & 7 \\ chalk & 5.5 \end{array}$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>4</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

relative state parameter (-0.61< $\xi R\!<\!0.11)$

$$\zeta_{R} := \frac{1}{Q - \ln \left[\frac{100 \cdot (1 + 2K_{o})\sigma eff_{v}}{3 \cdot P_{a}} \right]} - \left(\frac{N_{1}_{60}}{46} \right)^{0.5} \zeta_{R} = -0.516$$

alpha factor (maximum α=0.35)

$$a := 1267 + 636\alpha_{\text{factor}}^2 - 634 \cdot \exp(\alpha_{\text{factor}}) - 632 \cdot \exp(-\alpha_{\text{factor}})$$

$$b := \exp(-1.11 + 12.3\alpha_{\text{factor}}^2 + 1.31 \cdot \ln(\alpha_{\text{factor}} + 0.0001))$$

$$c := 0.138 + 0.126 \cdot \alpha_{factor} + 2.52 \cdot \alpha_{factor}^{3}$$

static shear stress correction factor

$$K_{\alpha} := a + b \cdot exp\left(\frac{-\zeta_R}{c}\right)$$
 $K_{\alpha} = 1$

corrected cyclic stress ratio

$$CRR_{M \ \sigma effv} := CRR_{M7.5 \ \sigma effl} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$

factor of safety for liquefaction

$$FS_{liq} := \frac{CRR_{M_\sigma effv}}{CSR}$$
 $FS_{liq} = 4.151$

Project CISF
Project No. 19-017
Sheet 1 of 4
Date 2 / 17 / 2020
Engineer TCS
Checked by TJD

The following calculations for liquefaction of soils with sand-like behavior are based on Soil Liquefaction During Earthquakes - Monograph MNO-12 by I.M. Idriss and R.W. Boulanger (2008) published by the Earthquake Engineering Research Institute.

Soil Stress Conditions -

Soil Stress (Conditions -					
	average total unit	t weight of soil	$\gamma_{\text{total}} :=$	= 120pcf		
	unit weight of w	ater	γ _{water} :	= 62.4pcf		
	water table depth	below ground surfaceve				
	sample depth	Boring B-101 Sample No. 2	z := 4ft			
	total vertical stres	SS	$\sigma tot_{V} :=$	$\gamma_{total} \cdot z$	$\sigma tot_{V} = 480 ps$	f
	static water press	sure	$u_0 := 0$		$u_0 = 0 \cdot psf$	
	effective vertical	stress	$\sigma eff_{V} :=$	$\sigma tot_{V} - u_{O} \sigma$	$eff_V = 480 psf$	
Standard F	Penetration N-valu	e Correction -			<u>Hammer</u> Doughnut	<u>CE</u> 0.5-1.0
	Standard Penetra	tion Test N-value	$N_m := 8$		Safety	0.7-1.2
	fines content		FC := 48	}	Automatic (Skempton, 1986)	0.8-1.3
	energy correction	1	$C_E = 0.$	75		
	borehole diamete	er correction	$C_B := 1.$	05	Borehole dia.	CB
	rod length correc	etion	$C_R := 0.$	75	65-115mm	1.0
	sampler correction	on	$C_S := 1$		150mm 200mm (Skempton, 1986	1.05 1.15
	SPT N-value for	an energy ratio of 60%	$N_{60} := C_E$	$C_{B'}C_{R'}C_{S'}N_{m}$	Rod length	<u>CR</u>
			$N_{60} = 4.7$		< 3m	0.75
			1460 – 4.7		3-4m 4-6m	0.80 0.85
	overburden corre (based on overbu	ection factor urden stress only)	$C_{N_a} := \left(\frac{1}{c}\right)$	$\left(\frac{P_a}{\text{reff}_V}\right)^{0.5}$	6-10m 10-30m	0.95 1.00
			$C_{N_a} = 2.1$			
	normalized SPT (based on overbu	N-value urden stress only)	$N_{1_{60}} := C$	N_a·N60	$N_{1_{60}} = 9.9$)

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>2</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by <u>TJD</u>

overburden correction factor (based on overburden stress and relative density)

$$\mathbf{C_{N_b}} \coloneqq \left(\frac{\mathbf{P_a}}{\mathbf{\sigma} \mathbf{eff_v}}\right)^{0.784 - 0.078 \cdot \left(\mathbf{N_{1_60}}\right)^{0.5}}$$

$$C_{N b} = 2.222$$

overburden correction factor used in liquefaction analysis (max CN = 1.7) recalculated normalized SPT N-value

$$C_N := 2.22$$

$$N_{1_{60}} := C_N \cdot N_{60}$$

 $N_{1_{60}} = 10.5$

overburden correction factor used in liquefaction analysis

$$C_{N_check} \coloneqq \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N check} = 2.2$$

fines content adjustment to SPT N-value

$$\Delta N_{1_{60}} := \exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right]$$

$$\Delta N_{1_{-}60} = 5.6$$

normalized SPT N-value (clean sands)

$$N_{1_60_cs} := N_{1_60} + \Delta N_{1_60}$$

$$N_{1 60 cs} = 16.103$$

Earthquake Conditions -

peak ground accelerationl

$$a_{\text{max}} := 0.25 \cdot g$$

earthquake moment magnitude

$$M_w := 5$$

variable α for stress reduction factor

$$\alpha := -1.012 - 1.126 \cdot \sin \left(\frac{z}{3.28 \text{ft}} + 5.133 \right)$$

variable β for stress reduction factor

$$\beta := 0.106 + 0.118 \sin \left(\frac{z}{3.28 \text{ft}} + 5.142 \right)$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>3 of 4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

stress reduction factor

$$r_d := \exp(\alpha + \beta \cdot M_w)$$

$$r_d = 0.986$$

Liquefaction Calculations -

$$CSR := 0.65 \cdot \frac{\sigma tot_{v}}{\sigma eff_{v}} \cdot \frac{a_{max}}{g} \cdot r_{d}$$

$$CSR = 0.16$$

cyclic resistance ratio

$$CRR_{M7.5_\sigma eff1} := exp \left[\frac{N_{1_60_cs}}{14.1} + \left(\frac{N_{1_60_cs}}{126} \right)^2 - \left(\frac{N_{1_60_cs}}{23.6} \right)^3 + \left(\frac{N_{1_60_cs}}{25.4} \right)^4 - 2.8 \right]$$

MSF :=
$$6.9 \exp\left(\frac{-M_W}{4}\right) - 0.058$$
 MSF = 1.919

coefficient for overburden correction factor (maximum
$$C\sigma$$
=0.3)

$$C_{\sigma} := \frac{1}{18.9 - 2.55 \cdot (N_{1_{60}})^{0.5}}$$
 $C_{\sigma} = 0.094$

overburden correction factor (maximum
$$K\sigma=1.1$$
)

$$K_{\sigma} := 1 - C_{\sigma} \cdot \ln \left(\frac{\sigma eff_{V}}{P_{a}} \right)$$
 $K_{\sigma} = 1.139$

static shear stress on horizontal plane

$$\tau_{ho} := 0 psf$$

$$\phi_{eff} := atan \left(\frac{N_{60}}{12.2 + 20.3 \cdot \frac{\sigma_{eff_v}}{P_a}} \right)^{0.34}$$
 $\phi_{eff} = 36.898 \cdot deg$

Ko for NC soil

$$K_o := (1 - \sin(\phi_{eff})) \qquad K_o = 0.4$$

empirical constant for dilatancy

$$Q := 10 \qquad \begin{array}{c} \underline{Grain \ type.} & Q \\ quartz \ and \ feldspar \ 10 \\ limestone & 8 \\ anthracite & 7 \\ chalk & 5.5 \end{array}$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>4</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

relative state parameter (-0.61< $\xi R\!<\!0.11)$

$$\zeta_{R} := \frac{1}{Q - \ln \left[\frac{100 \cdot (1 + 2K_{o})\sigma eff_{v}}{3 \cdot P_{a}} \right]} - \left(\frac{N_{1}_{60}}{46} \right)^{0.5} \zeta_{R} = -0.342$$

alpha factor (maximum α=0.35)

$$\alpha_factor := \frac{\tau_{ho}}{\sigma eff_v} \qquad \qquad \alpha_factor = 0$$

$$a := 1267 + 636\alpha_{\text{factor}}^2 - 634 \cdot \exp(\alpha_{\text{factor}}) - 632 \cdot \exp(-\alpha_{\text{factor}})$$

$$b := \exp(-1.11 + 12.3\alpha_{\text{factor}}^2 + 1.31 \cdot \ln(\alpha_{\text{factor}} + 0.0001))$$

$$c := 0.138 + 0.126 \cdot \alpha_{factor} + 2.52 \cdot \alpha_{factor}^{3}$$

static shear stress correction factor

$$K_{\alpha} := a + b \cdot exp\left(\frac{-\zeta_R}{c}\right)$$
 $K_{\alpha} = 1$

corrected cyclic stress ratio

$$CRR_{M \ \sigma effv} := CRR_{M7.5 \ \sigma effl} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$

factor of safety for liquefaction

$$FS_{liq} := \frac{CRR_{M_\sigma effv}}{CSR}$$
 $FS_{liq} = 2.261$

Project CISF
Project No. 19-017
Sheet 1 of 4
Date 2 / 17 / 2020
Engineer TCS
Checked by TJD

The following calculations for liquefaction of soils with sand-like behavior are based on Soil Liquefaction During Earthquakes - Monograph MNO-12 by I.M. Idriss and R.W. Boulanger (2008) published by the Earthquake Engineering Research Institute.

Soil Stress Conditions -

Soil Stress Conditions -			
average total unit weight of soil	$\gamma_{\text{total}} := 120 \text{pcf}$		
unit weight of water	$\gamma_{\text{water}} := 62.4 \text{pcf}$		
water table depth below ground surfacevery	y deep		
sample depth Boring B-110 Sample No. 3	z := 6ft		
total vertical stress	$\sigma tot_{v} := \gamma_{total} \cdot z$	$\sigma tot_{V} = 720 \cdot ps$	f
static water pressure	$\mathbf{u}_{\mathbf{o}} \coloneqq 0$	$u_0 = 0 \cdot psf$	
effective vertical stress	$\sigma eff_{V} := \sigma tot_{V} - u_{O} \sigma$	$reff_V = 720 \cdot psf$	
Standard Penetration N-value Correction -		<u>Hammer</u> Doughnut	<u>CE</u> 0.5-1.0
Standard Penetration Test N-value	$N_{\rm m} := 13$	Safety Automatic	0.7-1.2 0.8-1.3
fines content	FC := 37	(Skempton, 1986)	0.6-1.5
energy correction	$C_{E} := 0.75$		
borehole diameter correction	$C_B := 1.05$	Borehole dia.	CB
rod length correction	$C_R := 0.75$	65-115mm	1.0
sampler correction	$C_S := 1$	150mm 200mm (Skempton, 1986	1.05 1.15
SPT N-value for an energy ratio of 60%	$N_{60} \coloneqq C_E {\cdot} C_B {\cdot} C_R {\cdot} C_S {\cdot} N_m$	- Itou iciigui	<u>CR</u>
	$N_{60} = 7.7$	< 3m 3-4m	0.75 0.80
		4-6m	0.85
overburden correction factor (based on overburden stress only)	$C_{N_a} := \left(\frac{P_a}{\sigma eff_v}\right)^{0.5}$	6-10m 10-30m	0.95 1.00
	$C_{N_a} = 1.714$		
normalized SPT N-value (based on overburden stress only)	$\mathbf{N}_{1_60} \coloneqq \mathbf{C}_{\mathbf{N}_\mathbf{a}} \cdot \mathbf{N}_{60}$	$N_{1_{60}} = 13$.2

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>2</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by <u>TJD</u>

overburden correction factor (based on overburden stress and relative density)

$$C_{N_b} := \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N_b} = 1.716$$

overburden correction factor used in liquefaction analysis (max CN = 1.7) recalculated normalized SPT N-value

$$C_N := 1.71$$

$$N_{1_{60}} := C_N \cdot N_{60}$$

 $N_{1_{60}} = 13.1$

overburden correction factor used in liquefaction analysis

$$C_{N_check} \coloneqq \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N \text{ check}} = 1.717$$

fines content adjustment to SPT N-value

$$\Delta N_{1_{60}} := exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right]$$

$$\Delta N_{1_{-}60} = 5.5$$

normalized SPT N-value (clean sands)

$$N_{1_{60}cs} := N_{1_{60}} + \Delta N_{1_{60}}$$

$$N_{1 60 cs} = 18.67$$

Earthquake Conditions -

peak ground accelerationl

$$a_{\text{max}} := 0.25 \cdot g$$

earthquake moment magnitude

$$M_w := 5$$

variable α for stress reduction factor

$$\alpha := -1.012 - 1.126 \cdot \sin \left(\frac{z}{3.28 \text{ft}} + 5.133 \right)$$

variable β for stress reduction factor

$$\beta := 0.106 + 0.118 \sin \left(\frac{z}{3.28 \text{ft}} + 5.142 \right)$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>3 of 4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

stress reduction factor

$$r_d := \exp(\alpha + \beta \cdot M_w)$$

$$r_d = 0.973$$

Liquefaction Calculations -

$$CSR := 0.65 \cdot \frac{\sigma tot_{V}}{\sigma eff_{V}} \cdot \frac{a_{max}}{g} \cdot r_{d} \qquad CSR = 0.158$$

cyclic resistance ratio

$$CRR_{M7.5_\sigma eff1} := exp \left[\frac{N_{1_60_cs}}{14.1} + \left(\frac{N_{1_60_cs}}{126} \right)^2 - \left(\frac{N_{1_60_cs}}{23.6} \right)^3 + \left(\frac{N_{1_60_cs}}{25.4} \right)^4 - 2.8 \right]$$

MSF :=
$$6.9 \exp\left(\frac{-M_W}{4}\right) - 0.058$$
 MSF = 1.919

coefficient for overburden correction factor (maximum
$$C\sigma$$
=0.3)

$$C_{\sigma} := \frac{1}{18.9 - 2.55 \cdot (N_{1_{60}})^{0.5}}$$
 $C_{\sigma} = 0.104$

overburden correction factor (maximum
$$K\sigma=1.1$$
)

$$K_{\sigma} := 1 - C_{\sigma} \cdot ln \left(\frac{\sigma eff_{V}}{P_{a}} \right)$$
 $K_{\sigma} = 1.112$

static shear stress on horizontal plane

$$\tau_{ho} := 0 psf$$

$$\phi_{eff} := atan \left(\frac{N_{60}}{12.2 + 20.3 \cdot \frac{\sigma eff_v}{P_a}} \right)^{0.34} \qquad \phi_{eff} = 41.31 \cdot deg$$

$$K_o := (1 - \sin(\phi_{eff})) \qquad K_o = 0.34$$

$$Q := 10 \qquad \begin{array}{c} \underline{Grain \ type.} & Q \\ \hline quartz \ and \ feldspar \ 10 \\ limestone & 8 \\ anthracite & 7 \\ chalk & 5.5 \end{array}$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>4</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

relative state parameter (-0.61< $\xi R\!<\!0.11)$

$$\zeta_{R} := \frac{1}{Q - \ln \left[\frac{100 \cdot (1 + 2K_{o})\sigma eff_{v}}{3 \cdot P_{a}} \right]} - \left(\frac{N_{1}_{60}}{46} \right)^{0.5} \zeta_{R} = -0.392$$

alpha factor (maximum α =0.35)

$$\alpha_factor := \frac{\tau_{ho}}{\sigma eff_v} \qquad \qquad \alpha_factor = 0$$

$$a := 1267 + 636\alpha_{\text{factor}}^2 - 634 \cdot \exp(\alpha_{\text{factor}}) - 632 \cdot \exp(-\alpha_{\text{factor}})$$

$$b := \exp(-1.11 + 12.3\alpha_{\text{factor}}^2 + 1.31 \cdot \ln(\alpha_{\text{factor}} + 0.0001))$$

$$c := 0.138 + 0.126 \cdot \alpha_{factor} + 2.52 \cdot \alpha_{factor}^{3}$$

static shear stress correction factor

$$K_{\alpha} := a + b \cdot exp\left(\frac{-\zeta_R}{c}\right)$$
 $K_{\alpha} = 1$

corrected cyclic stress ratio

$$CRR_{M \ \sigma effv} := CRR_{M7.5 \ \sigma eff1} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$

factor of safety for liquefaction

$$FS_{liq} := \frac{CRR_{M_\sigma effv}}{CSR}$$
 $FS_{liq} = 2.573$

Project CISF
Project No. 19-017
Sheet 1 of 4
Date 2 / 17 / 2020
Engineer TCS
Checked by TJD

The following calculations for liquefaction of soils with sand-like behavior are based on Soil Liquefaction During Earthquakes - Monograph MNO-12 by I.M. Idriss and R.W. Boulanger (2008) published by the Earthquake Engineering Research Institute.

Soil Stress Conditions -

Soil Stress Conditions -				
average total unit weigh	t of soil	$\gamma_{\text{total}} := 120 \text{pcf}$		
unit weight of water		$\gamma_{\text{water}} := 62.4 \text{pcf}$		
water table depth below	ground surfacevery	deep		
	ng B-110 ple No. 4	z := 8 ft		
total vertical stress		$\sigma tot_{v} := \gamma_{total} \cdot z$	$\sigma tot_{V} = 960 \cdot ps$	f
static water pressure		$u_0 := 0$	$u_0 = 0 \cdot psf$	
effective vertical stress		$ \sigma eff_{V} := \sigma tot_{V} - u_{O} \sigma e $	$eff_V = 960 \cdot psf$	
Standard Penetration N-value Corre			Hammer Doughnut	<u>CE</u> 0.5-1.0
Standard Penetration Te fines content	st N-value	$N_{\mathbf{m}} := 40$ $FC := 41$	Safety Automatic (Skempton, 1986)	0.7-1.2 0.8-1.3
energy correction		$C_E := 0.75$,	
borehole diameter corre	ction	$C_{\mathbf{B}} := 1.05$	Borehole dia.	<u>CB</u>
rod length correction		$C_{R} := 0.75$	65-115mm	1.0
sampler correction		$C_S := 1$	150mm 200mm (Skempton, 1986	1.05 1.15
SPT N-value for an ene		$N_{60} := C_{E} \cdot C_{B} \cdot C_{R} \cdot C_{S} \cdot N_{m}$ $N_{60} = 23.6$	Rod length < 3m	<u>CR</u> 0.75 0.80
overburden correction f (based on overburden s		$S_{N_a} := \left(\frac{P_a}{\sigma eff_v}\right)^{0.5}$ $S_{N_a} = 1.485$	4-6m 6-10m 10-30m	0.85 0.95 1.00
normalized SPT N-valu (based on overburden s		$\mathbf{N}_{1_60} \coloneqq \mathbf{C}_{\mathbf{N}_\mathbf{a}} \cdot \mathbf{N}_{60}$	$N_{1_{60}} = 35$.1

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>2</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by <u>TJD</u>

overburden correction factor (based on overburden stress and relative density)

$$\mathbf{C_{N_b}} \coloneqq \left(\frac{\mathbf{P_a}}{\mathbf{\sigma} \mathbf{eff_v}}\right)^{0.784 - 0.078 \cdot \left(\mathbf{N_{1_60}}\right)^{0.5}}$$

$$C_{N_b} = 1.29$$

overburden correction factor used in liquefaction analysis (max CN = 1.7) recalculated normalized SPT N-value

$$C_N := 1.31$$

$$N_{1_{60}} := C_N \cdot N_{60}$$

 $N_{1_{60}} = 30.9$

overburden correction factor used in liquefaction analysis

$$C_{N_check} \coloneqq \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N \text{ check}} = 1.319$$

fines content adjustment to SPT N-value

$$\Delta N_{1_{60}} := exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right]$$

$$\Delta N_{1_{-}60} = 5.6$$

normalized SPT N-value (clean sands)

$$N_{1_60_cs} := N_{1_60} + \Delta N_{1_60}$$

$$N_{1 60 cs} = 36.533$$

Earthquake Conditions -

peak ground accelerationl

$$a_{\text{max}} := 0.25 \cdot g$$

earthquake moment magnitude

$$M_w := 5$$

variable α for stress reduction factor

$$\alpha := -1.012 - 1.126 \cdot \sin \left(\frac{z}{3.28 \text{ft}} + 5.133 \right)$$

variable β for stress reduction factor

$$\beta := 0.106 + 0.118 \sin \left(\frac{z}{3.28 \text{ft}} + 5.142 \right)$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>3 of 4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

stress reduction factor

$$r_d := \exp(\alpha + \beta \cdot M_w)$$

$$r_d = 0.959$$

Liquefaction Calculations -

$$CSR := 0.65 \cdot \frac{\sigma tot_{V}}{\sigma eff_{V}} \cdot \frac{a_{max}}{g} \cdot r_{d} \qquad CSR = 0.156$$

cyclic resistance ratio

$$CRR_{M7.5_\sigma eff1} := exp \left[\frac{N_{1_60_cs}}{14.1} + \left(\frac{N_{1_60_cs}}{126} \right)^2 - \left(\frac{N_{1_60_cs}}{23.6} \right)^3 + \left(\frac{N_{1_60_cs}}{25.4} \right)^4 - 2.8 \right]$$

MSF :=
$$6.9 \exp\left(\frac{-M_W}{4}\right) - 0.058$$
 MSF = 1.919

coefficient for overburden correction factor (maximum
$$C\sigma$$
=0.3)

$$C_{\sigma} := \frac{1}{18.9 - 2.55 \cdot (N_{160})^{0.5}}$$
 $C_{\sigma} = 0.212$

overburden correction factor (maximum
$$K\sigma=1.1$$
)

$$K_{\sigma} := 1 - C_{\sigma} \cdot ln \left(\frac{\sigma eff_{V}}{P_{a}} \right)$$
 $K_{\sigma} = 1.168$

static shear stress on horizontal plane

$$\tau_{ho} := 0 psf$$

$$\phi_{eff} := atan \left(\frac{N_{60}}{12.2 + 20.3 \cdot \frac{\sigma eff_v}{P_a}} \right)^{0.34} \qquad \phi_{eff} = 53.879 \cdot deg$$

Ko for NC soil

$$K_o := (1 - \sin(\phi_{eff})) \qquad K_o = 0.192$$

empirical constant for dilatancy

$$Q := 10 \qquad \begin{array}{c} \underline{Grain \ type.} & Q \\ quartz \ and \ feldspar \ 10 \\ limestone & 8 \\ anthracite & 7 \\ chalk & 5.5 \end{array}$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>4</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

relative state parameter (-0.61< ξ R<0.11)

$$\zeta_{R} := \frac{1}{Q - \ln \left[\frac{100 \cdot (1 + 2K_{o})\sigma eff_{v}}{3 \cdot P_{a}} \right]} - \left(\frac{N_{1}_{60}}{46} \right)^{0.5} \zeta_{R} = -0.677$$

alpha factor (maximum α=0.35)

$$a := 1267 + 636\alpha_{\text{factor}}^2 - 634 \cdot \exp(\alpha_{\text{factor}}) - 632 \cdot \exp(-\alpha_{\text{factor}})$$

$$b := \exp(-1.11 + 12.3\alpha_{\text{factor}}^2 + 1.31 \cdot \ln(\alpha_{\text{factor}} + 0.0001))$$

$$c := 0.138 + 0.126 \cdot \alpha_{factor} + 2.52 \cdot \alpha_{factor}^{3}$$

static shear stress correction factor

$$K_{\alpha} := a + b \cdot exp\left(\frac{-\zeta_R}{c}\right)$$
 $K_{\alpha} = 1$

corrected cyclic stress ratio

$$CRR_{M \ \sigma effv} := CRR_{M7.5 \ \sigma effl} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$

factor of safety for liquefaction

$$FS_{liq} := \frac{CRR_{M_\sigma effv}}{CSR}$$
 $FS_{liq} = 22.457$

Project CISF
Project No. 19-017
Sheet 1 of 4
Date 2 / 17 / 2020
Engineer TCS
Checked by TJD

The following calculations for liquefaction of soils with sand-like behavior are based on Soil Liquefaction During Earthquakes - Monograph MNO-12 by I.M. Idriss and R.W. Boulanger (2008) published by the Earthquake Engineering Research Institute.

Soil Stress Conditions -

Soil Stress Conditions -			
average total unit weight of soil	$\gamma_{\text{total}} := 120 \text{pcf}$		
unit weight of water	$\gamma_{\text{water}} := 62.4 \text{pcf}$		
water table depth below ground surfacever	ry deep		
sample depth Boring B-104 Sample No. 5	z := 14ft		
total vertical stress	$\sigma tot_{v} := \gamma_{total} \cdot z$	$\sigma tot_{V} = 1680 \cdot p$	osf
static water pressure	$u_0 := 0$	$u_0 = 0 \cdot psf$	
effective vertical stress	$\sigma eff_{V} := \sigma tot_{V} - u_{O}$	$reff_V = 1680 \cdot psf$	
Standard Penetration N-value Correction -		<u>Hammer</u> Doughnut	<u>CE</u> 0.5-1.0
Standard Penetration Test N-value	$N_m := 76$	Safety	0.7-1.2
fines content	FC := 41	Automatic (Skempton, 1986)	0.8-1.3
energy correction	$C_E := 0.75$		
borehole diameter correction	$C_{\mathbf{B}} := 1.05$	Borehole dia.	<u>CB</u>
rod length correction	$C_R := 0.85$	65-115mm 150mm	1.0 1.05
sampler correction	$C_S := 1$	200mm (Skempton, 1986	1.15
SPT N-value for an energy ratio of 60%	$N_{60} := C_E \cdot C_B \cdot C_R \cdot C_S \cdot N_n$	1 Itou lengui	CR
	$N_{60} = 50.9$	< 3m 3-4m	0.75 0.80
	0.5	4-6m	0.85
overburden correction factor (based on overburden stress only)	$C_{N_{\underline{a}}} := \left(\frac{P_{\underline{a}}}{\sigma eff_{V}}\right)^{0.5}$	6-10m 10-30m	0.95 1.00
	$C_{N_a} = 1.122$		
normalized SPT N-value (based on overburden stress only)	$N_{1_60} \coloneqq C_{N_a} \cdot N_{60}$	$N_{1_{60}} = 57$.1

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>2</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by <u>TJD</u>

overburden correction factor (based on overburden stress and relative density)

$$\mathbf{C_{N_b}} \coloneqq \left(\frac{\mathbf{P_a}}{\mathbf{\sigma} \mathbf{eff_v}}\right)^{0.784 - 0.078 \cdot \left(\mathbf{N_{1_60}}\right)^{0.5}}$$

$$C_{N_b} = 1.046$$

overburden correction factor used in liquefaction analysis (max CN = 1.7) recalculated normalized SPT N-value

$$C_N := 1.05$$

$$N_{1_{60}} := C_N \cdot N_{60}$$

 $N_{1_{60}} = 53.4$

overburden correction factor used in liquefaction analysis

$$C_{N_check} \coloneqq \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N \text{ check}} = 1.051$$

fines content adjustment to SPT N-value

$$\Delta N_{1_{60}} := exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right]$$

$$\Delta N_{1_{-}60} = 5.6$$

normalized SPT N-value (clean sands)

$$N_{1 60 cs} := N_{1 60} + \Delta N_{1 60}$$

$$N_{1 60 cs} = 59$$

Earthquake Conditions -

peak ground accelerationl earthquake moment magnitude

$$a_{\text{max}} := 0.25 \cdot g$$

 $M_w := 5$

variable α for stress reduction factor

$$\alpha := -1.012 - 1.126 \cdot \sin \left(\frac{z}{3.28 \text{ft}} + 5.133 \right)$$

variable β for stress reduction factor

$$\beta := 0.106 + 0.118 \sin \left(\frac{z}{3.28 \text{ft}} + 5.142 \right)$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>3 of 4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

stress reduction factor

$$r_d := \exp(\alpha + \beta \cdot M_w)$$

$$r_d = 0.911$$

Liquefaction Calculations -

$$CSR := 0.65 \cdot \frac{\sigma tot_{V}}{\sigma eff_{V}} \cdot \frac{a_{max}}{g} \cdot r_{d} \qquad CSR = 0.148$$

cyclic resistance ratio

$$CRR_{M7.5_\sigma eff1} := exp \left[\frac{N_{1_60_cs}}{14.1} + \left(\frac{N_{1_60_cs}}{126} \right)^2 - \left(\frac{N_{1_60_cs}}{23.6} \right)^3 + \left(\frac{N_{1_60_cs}}{25.4} \right)^4 - 2.8 \right]$$

MSF :=
$$6.9 \exp\left(\frac{-M_W}{4}\right) - 0.058$$
 MSF = 1.919

coefficient for overburden correction factor (maximum
$$C\sigma$$
=0.3)

$$C_{\sigma} := \frac{1}{18.9 - 2.55 \cdot (N_{1_{60}})^{0.5}}$$
 $C_{\sigma} = 3.803$

$$K_{\sigma} := 1 - C_{\sigma} \cdot ln \left(\frac{\sigma eff_{V}}{P_{a}} \right)$$
 $K_{\sigma} = 1.877$

static shear stress on horizontal plane

$$\tau_{ho} := 0 psf$$

effective friction angle

$$\phi_{eff} := atan \left(\frac{N_{60}}{12.2 + 20.3 \cdot \frac{\sigma_{eff_v}}{P_a}} \right)^{0.34}$$
 $\phi_{eff} = 58.496 \cdot deg$

Ko for NC soil

$$K_o := (1 - \sin(\phi_{eff})) \qquad K_o = 0.147$$

empirical constant for dilatancy

$$Q := 10 \qquad \begin{array}{c} \underline{Grain \ type.} & Q \\ quartz \ and \ feldspar \ 10 \\ limestone & 8 \\ anthracite & 7 \\ chalk & 5.5 \end{array}$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>4</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

relative state parameter (-0.61< $\xi R\!<\!0.11)$

$$\zeta_{R} := \frac{1}{Q - \ln \left[\frac{100 \cdot (1 + 2K_{o})\sigma eff_{v}}{3 \cdot P_{a}} \right]} - \left(\frac{N_{1}_{60}}{46} \right)^{0.5} \zeta_{R} = -0.923$$

alpha factor (maximum α =0.35)

$$\alpha_factor := \frac{\tau_{ho}}{\sigma eff_v} \qquad \qquad \alpha_factor = 0$$

$$a := 1267 + 636\alpha_{\text{factor}}^2 - 634 \cdot \exp(\alpha_{\text{factor}}) - 632 \cdot \exp(-\alpha_{\text{factor}})$$

$$b := \exp(-1.11 + 12.3\alpha_{\text{factor}}^2 + 1.31 \cdot \ln(\alpha_{\text{factor}} + 0.0001))$$

$$c := 0.138 + 0.126 \cdot \alpha_{factor} + 2.52 \cdot \alpha_{factor}^{3}$$

static shear stress correction factor

$$K_{\alpha} := a + b \cdot \exp\left(\frac{-\zeta_R}{c}\right)$$
 $K_{\alpha} = 1.002$

corrected cyclic stress ratio

$$CRR_{M \text{ } \sigma effv} := CRR_{M7.5 \text{ } \sigma eff1} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$

factor of safety for liquefaction

$$FS_{liq} := \frac{CRR_{M_\sigma effv}}{CSR}$$
 $FS_{liq} = 8.725 \times 10^7$

Project CISF
Project No. 19-017
Sheet 1 of 4
Date 2 / 17 / 2020
Engineer TCS
Checked by TJD

The following calculations for liquefaction of soils with sand-like behavior are based on Soil Liquefaction During Earthquakes - Monograph MNO-12 by I.M. Idriss and R.W. Boulanger (2008) published by the Earthquake Engineering Research Institute.

Soil Stress Conditions -

Soil Stress Conditions -			
average total unit weight of soil	$\gamma_{\text{total}} := 120 \text{pcf}$		
unit weight of water	$\gamma_{\text{water}} := 62.4 \text{pcf}$		
water table depth below ground surfacever			
sample depth Boring B-101 Sample No. 6	z := 19ft		
total vertical stress	$\sigma tot_{v} := \gamma_{total} \cdot z$	$\sigma tot_{V} = 2280 \cdot p$	sf
static water pressure	$u_0 := 0$	$u_0 = 0 \cdot psf$	
effective vertical stress	$\sigma eff_{v} := \sigma tot_{v} - u_{o}$	$reff_V = 2280 \cdot psf$	
Standard Penetration N-value Correction -		<u>Hammer</u> Doughnut	<u>CE</u> 0.5-1.0
Standard Penetration Test N-value	$N_m := 55$	Safety Automatic	0.7-1.2 0.8-1.3
fines content	FC := 41	(Skempton, 1986)	0.6-1.5
energy correction	$C_E := 0.75$		
borehole diameter correction	$C_B := 1.05$	Borehole dia.	<u>CB</u>
rod length correction	$C_R := 0.85$	65-115mm	1.0
sampler correction	$C_S := 1$	150mm 200mm (Skempton, 1986)	1.05 1.15
SPT N-value for an energy ratio of 60%	$N_{60} := C_E \cdot C_B \cdot C_R \cdot C_S \cdot N_n$	n <u>Rod length</u>	CR
	$N_{60} = 36.8$	< 3m	0.75
	160 = 30.0	3-4m 4-6m	0.80 0.85
overburden correction factor (based on overburden stress only)	$C_{N_a} := \left(\frac{P_a}{\sigma eff_V}\right)^{0.5}$	6-10m 10-30m	0.95 1.00
	$C_{N_a} = 0.963$		
normalized SPT N-value (based on overburden stress only)	$N_{1_60} \coloneqq C_{N_a} \cdot N_{60}$	$N_{1_{60}} = 35$.5

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>2</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by <u>TJD</u>

overburden correction factor (based on overburden stress and relative density)

$$C_{N_b} := \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N_b} = 0.976$$

overburden correction factor used in liquefaction analysis (max CN = 1.7) recalculated normalized SPT N-value

$$C_N := 0.976$$

$$N_{1_{60}} := C_N \cdot N_{60}$$

 $N_{1_{60}} = 35.9$

overburden correction factor used in liquefaction analysis

$$C_{N_check} \coloneqq \left(\frac{P_a}{\sigma eff_v}\right)^{0.784 - 0.078 \cdot \left(N_{1_60}\right)^{0.5}}$$

$$C_{N \text{ check}} = 0.977$$

fines content adjustment to SPT N-value

$$\Delta N_{1_{60}} := exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right]$$

$$\Delta N_{1_60} = 5.6$$

normalized SPT N-value (clean sands)

$$N_{1 60 cs} := N_{1 60} + \Delta N_{1 60}$$

$$N_{1_60_cs} = 41.516$$

Earthquake Conditions -

peak ground accelerationl

$$a_{\text{max}} := 0.25 \cdot g$$

earthquake moment magnitude

$$M_w := 5$$

variable α for stress reduction factor

$$\alpha := -1.012 - 1.126 \cdot \sin \left(\frac{z}{3.28 \text{ft}} + 5.133 \right)$$

variable β for stress reduction factor

$$\beta := 0.106 + 0.118 \sin \left(\frac{z}{3.28 \text{ft}} + 5.142 \right)$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>3 of 4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

stress reduction factor

$$r_d := \exp(\alpha + \beta \cdot M_w)$$

$$r_d = 0.868$$

Liquefaction Calculations -

$$CSR := 0.65 \cdot \frac{\sigma tot_{V}}{\sigma eff_{V}} \cdot \frac{a_{max}}{g} \cdot r_{d} \qquad CSR = 0.141$$

cyclic resistance ratio

$$CRR_{M7.5_\sigma eff1} := exp \left[\frac{N_{1_60_cs}}{14.1} + \left(\frac{N_{1_60_cs}}{126} \right)^2 - \left(\frac{N_{1_60_cs}}{23.6} \right)^3 + \left(\frac{N_{1_60_cs}}{25.4} \right)^4 - 2.8 \right]$$

MSF :=
$$6.9 \exp\left(\frac{-M_W}{4}\right) - 0.058$$
 MSF = 1.919

coefficient for overburden correction factor (maximum
$$C\sigma$$
=0.3)

$$C_{\sigma} := \frac{1}{18.9 - 2.55 \cdot (N_{160})^{0.5}}$$
 $C_{\sigma} = 0.277$

$$K_{\sigma} := 1 - C_{\sigma} \cdot ln \left(\frac{\sigma eff_{V}}{P_{a}} \right)$$
 $K_{\sigma} = 0.979$

static shear stress on horizontal plane

$$\tau_{ho} := 0 psf$$

effective friction angle

$$\phi_{eff} := atan \left(\frac{N_{60}}{12.2 + 20.3 \cdot \frac{\sigma_{eff_v}}{P_a}} \right)^{0.34}$$
 $\phi_{eff} = 53.647 \cdot deg$

Ko for NC soil

$$K_o := (1 - \sin(\phi_{eff})) \qquad K_o = 0.195$$

empirical constant for dilatancy

$$Q := 10 \qquad \begin{array}{c} \underline{Grain \ type.} & Q \\ quartz \ and \ feldspar \ 10 \\ limestone & 8 \\ anthracite & 7 \\ chalk & 5.5 \end{array}$$

Project <u>CISF</u>
Project No. <u>19-017</u>
Sheet <u>4</u> of <u>4</u>
Date <u>2 / 17 / 2020</u>
Engineer <u>TCS</u>
Checked by TJD

relative state parameter (-0.61< $\xi R\!<\!0.11)$

$$\zeta_{R} := \frac{1}{Q - \ln \left[\frac{100 \cdot (1 + 2K_{o})\sigma eff_{v}}{3 \cdot P_{a}} \right]} - \left(\frac{N_{1}_{60}}{46} \right)^{0.5} \zeta_{R} = -0.72$$

alpha factor (maximum α =0.35)

$$\alpha_factor := \frac{\tau_{ho}}{\sigma eff_v} \qquad \qquad \alpha_factor = 0$$

$$a := 1267 + 636\alpha_{\text{factor}}^2 - 634 \cdot \exp(\alpha_{\text{factor}}) - 632 \cdot \exp(-\alpha_{\text{factor}})$$

$$b := \exp(-1.11 + 12.3\alpha_{\text{factor}}^2 + 1.31 \cdot \ln(\alpha_{\text{factor}} + 0.0001))$$

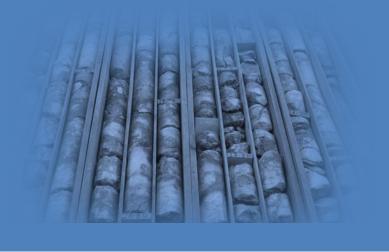
$$c := 0.138 + 0.126 \cdot \alpha_{factor} + 2.52 \cdot \alpha_{factor}^{3}$$

static shear stress correction factor

$$K_{\alpha} := a + b \cdot exp\left(\frac{-\zeta_R}{c}\right)$$
 $K_{\alpha} = 1$

corrected cyclic stress ratio

$$CRR_{M \ \sigma effv} := CRR_{M7.5 \ \sigma effl} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$


factor of safety for liquefaction

$$FS_{liq} := \frac{CRR_{M_\sigma effv}}{CSR}$$
 $FS_{liq} = 93.321$

APPENDIX G
Sample Bearing Capacity Calculations

Bearing Capacity Calculation	
CISF Storage Pad	

Date: 2/17/2020

Project: CISF Cask Storage Pads

Location: Andrews, Texas

Project No: 31-151247.R2

BEARING CAPACITY CALCULATIONS

Vesic Bearing Capacity Formulas

 $q_{ult} = c'N_c s_c d_c i_c b_c g_c + \sigma'_{ZD} N_q s_q d_q i_q b_q g_q + 0.5 \Upsilon' B N_\Upsilon s_\Upsilon d_\Upsilon i_\Upsilon b_\Upsilon g_\Upsilon$

where,

q_{ult} = ultimate bearing capacity

c' = effective cohesion for soil beneath foundation

φ' = effective friction angle for soil beneath foundation

σ'_{ZD} = vertical effective stress at depth D below ground surface

 Υ' = effective unit weight of the soil

D = depth of foundation below ground surface

B = width of foundation
L = length of foundation

 N_{c} , N_{q} , N_{γ} = Vesic bearing capacity factors = $f(\phi')$, factors follow

 $s_{c'}, s_{q'}, s_{Y}$ = shape factors $d_{c'}, d_{q'}, d_{Y}$ = depth factors

 $i_{c'}$ $i_{q'}$ $i_{q'}$ $i_{q'}$ = load inclination factors, not applicable in this analysis

 $b_{c'} b_{q'} b_{Y}$ = base inclination factors, not applicable in this analysis

 $g_{c'} g_{q'} g_{\Upsilon} = ground inclination factors, not applicable in this analysis$

	Vesic Bearing Capacity Factors										
ф' (deg)	N _c	N _q	Ν _Υ	ф' (deg)	N _c	Ν _q	Ν _Υ	ф' (deg)	N _c	Ν _q	N _Υ
11	8.8	2.7	1.4	21.0	15.8	7.1	6.2	31.0	32.7	20.6	26.0
12	9.3	3.0	1.7	22.0	16.9	7.8	7.1	32.0	35.5	23.2	30.2
13	9.8	3.3	2.0	23.0	18.0	8.7	8.2	33.0	38.6	26.1	35.2
14	10.4	3.6	2.3	24.0	19.3	9.6	9.4	34.0	42.2	29.4	41.1
15	11.0	3.9	2.6	25.0	20.7	10.7	10.9	35.0	46.1	33.3	48.0
16	11.6	4.3	3.1	26.0	22.3	11.9	12.5	36.0	50.6	37.8	56.3
17	12.3	4.8	3.5	27.0	23.9	13.2	14.5	37.0	55.6	42.9	66.2
18	13.1	5.3	4.1	28.0	25.8	14.7	16.7	38.0	61.4	48.9	78.0
19	13.9	5.8	4.7	29.0	27.9	16.4	19.3	39.0	67.9	56.0	92.2
20	14.8	6.4	5.4	30.0	30.1	18.4	22.4	40.0	75.3	64.2	109.4

Project Specific Information:

The CISF Pads will bear at an elevation of 4 feet below ground surface. The pads will consist of a reinforced concrete mat measuring 36 inches in thickness. Plan dimensions of the mat are 135 feet by 55 feet. The CISF Pads are anticipated to bear in the Caliche with Sand Matrix. An effective friction angle of 27 degrees and an effective unit weight of 95 pounds per cubic foot were utilized for the calculation.

c'	=	0	psf
φ'	=	27	degrees
σ'_{ZD}	=	380	psf
Υ'	=	95	pcf
D	=	4	feet
В	=	55	feet
L	=	135	feet

Step 1: Calculate Shape Factors

$$s_c = 1 + (B/L)(N_q/N_c)$$
 $s_c = 1.225$ $s_q = 1 + (B/L)tan\phi'$ $s_q = 1.208$ $s_{\gamma} = 1 - 0.4(B/L)$ $s_{\gamma} = 0.837$

Step 2: Calculate Depth Factors

$$d_c = 1 + 0.4k$$
 where $k = D/B$ $d_c = 1.029$ $d_q = 1 + 2ktan\varphi'(1-sin\varphi')^2$ $d_q = 1.022$ $d_{\gamma} = 1$

Step 3: Calculate Load Inclination Factors

Since the loads act perpendicular to the base of the footing, the I factors equal 1 and may be neglected.

Step 4: Calculate the Base Inclination Factors

Page 3 of 3

Since the base of the footing is level, all of the b factors equal to 1 and may be neglected.

Step 5: Calculate the Ground Inclination Factors

Since the ground surface is level the g factors equal to 1 and may be neglected.

Step 6: Calculate the Ultimate Bearing Capacity

$$q_{ult} = c'N_c s_c d_c i_c b_c g_c + \sigma'_{7D} N_a s_a d_a i_a b_a g_a + 0.5 Y'BN_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma}$$

removing the values which were equal to 1 results in the following:

psf

4,500

$$q_{ult} = c'N_c s_c d_c + \sigma'_{ZD} N_a s_a d_a + 0.5 \Upsilon' B N_{\Upsilon} s_{\Upsilon} d_{\Upsilon}$$

 $q_{ult} = 37899$ psf

Step 7: Calculate the Allowable Bearing Capacity

 $q_{all} = q_{ult}/FOS$

Factor of Safety of 3 utilized for bearing capacity

 $q_{all} =$

12633

Based on the loading provided by Enercon the CISF Mat Foundations will impart a maximum pressure of 4,500 psf to the subgrade

12633

>

Bearing Capacity OK

You will note that the calculated allowable bearing capacities often exceed those provided in the text of the report. Typically, on structures which are supported on shallow foundations bearing capacity (of the soil) does not control the foundation size.

Bearing Capacity Calculation	
Cask Handling Building – Main Columns	

Date: 2/17/2020

Project: CISF - Cask Handling Building (Main Columns)

Location: Andrews, Texas

Project No: 31-151247.R2

BEARING CAPACITY CALCULATIONS

Vesic Bearing Capacity Formulas

 $q_{ult} = c'N_c s_c d_c i_c b_c g_c + \sigma'_{ZD} N_q s_q d_q i_q b_q g_q + 0.5 \Upsilon' B N_\Upsilon s_\Upsilon d_\Upsilon i_\Upsilon b_\Upsilon g_\Upsilon$

where,

q_{ult} = ultimate bearing capacity

c' = effective cohesion for soil beneath foundation

φ' = effective friction angle for soil beneath foundation

σ'_{ZD} = vertical effective stress at depth D below ground surface

 Υ' = effective unit weight of the soil

D = depth of foundation below ground surface

B = width of foundation
L = length of foundation

 N_{c} , N_{q} , N_{γ} = Vesic bearing capacity factors = $f(\phi')$, factors follow

 $s_{c'}, s_{q'}, s_{Y}$ = shape factors $d_{c'}, d_{q'}, d_{Y}$ = depth factors

 i_c, i_q, i_Y = load inclination factors, not applicable in this analysis b_c, b_q, b_Y = base inclination factors, not applicable in this analysis

 $g_{c'} g_{q'} g_{\Upsilon} = ground inclination factors, not applicable in this analysis$

	Vesic Bearing Capacity Factors										
ф' (deg)	N _c	N _q	IN _Υ	ф' (deg)	IN _C	N _q	IN _Υ	ф' (deg)	IN _C	N _q	N _Υ
11	8.8	2.7	1.4	21.0	15.8	7.1	6.2	31.0	32.7	20.6	26.0
12	9.3	3.0	1.7	22.0	16.9	7.8	7.1	32.0	35.5	23.2	30.2
13	9.8	3.3	2.0	23.0	18.0	8.7	8.2	33.0	38.6	26.1	35.2
14	10.4	3.6	2.3	24.0	19.3	9.6	9.4	34.0	42.2	29.4	41.1
15	11.0	3.9	2.6	25.0	20.7	10.7	10.9	35.0	46.1	33.3	48.0
16	11.6	4.3	3.1	26.0	22.3	11.9	12.5	36.0	50.6	37.8	56.3
17	12.3	4.8	3.5	27.0	23.9	13.2	14.5	37.0	55.6	42.9	66.2
18	13.1	5.3	4.1	28.0	25.8	14.7	16.7	38.0	61.4	48.9	78.0
19	13.9	5.8	4.7	29.0	27.9	16.4	19.3	39.0	67.9	56.0	92.2
20	14.8	6.4	5.4	30.0	30.1	18.4	22.4	40.0	75.3	64.2	109.4

Project Specific Information:

The foundations for the Cask Handling Building will bear at an elevation of 10 to 11 feet below ground surface. The foundations for the main columns measure 28 feet by 183 feet while the foundations for the wind columns measure 26 feet 3 inches by 40 feet. The foundations for the cask handling building are anticipated to bear in the Caliche with Sand Matrix. An effective friction angle of 35 degrees and an effective unit weight of 130 pounds per cubic foot were utilized for the calculation.

c'	=	0	psf
φ'	=	35	degrees
σ'_{ZD}	=	1300	psf
γ'	=	130	pcf
D	=	10	feet
В	=	28	feet
L	=	183	feet

Step 1: Calculate Shape Factors

$$s_c = 1 + (B/L)(N_q/N_c)$$
 $s_c = 1.111$ $s_q = 1 + (B/L)tan\phi'$ $s_q = 1.285$ $s_Y = 1 - 0.4(B/L)$ $s_Y = 0.837$

Step 2: Calculate Depth Factors

$$d_c = 1 + 0.4k$$
 where $k = D/B$ $d_c = 1.143$ $d_q = 1 + 2ktan\varphi'(1-sin\varphi')^2$ $d_q = 1.091$ $d_{\gamma} = 1$

Step 3: Calculate Load Inclination Factors

Since the loads act perpendicular to the base of the footing, the I factors equal 1 and may be neglected.

Step 4: Calculate the Base Inclination Factors

Page 3 of 3

Since the base of the footing is level, all of the b factors equal to 1 and may be neglected.

Step 5: Calculate the Ground Inclination Factors

Since the ground surface is level the g factors equal to 1 and may be neglected.

Step 6: Calculate the Ultimate Bearing Capacity

$$q_{ult} = c'N_c s_c d_c i_c b_c g_c + \sigma'_{7D} N_a s_a d_a i_a b_a g_a + 0.5 Y'BN_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma}$$

removing the values which were equal to 1 results in the following:

$$q_{ult} = c'N_c s_c d_c + \sigma'_{ZD} N_a s_a d_a + 0.5 \Upsilon' B N_{\Upsilon} s_{\Upsilon} d_{\Upsilon}$$

133823 $q_{ult} =$ psf

Step 7: Calculate the Allowable Bearing Capacity

 $q_{all} = q_{ult}/FOS$

Factor of Safety of 3 utilized for bearing capacity

 $q_{all} =$

44608 psf

3,340

Based on the loading provided by AECOM the Cask Handling Building Main Columns will impart a maximum service level pressure of 3,340 psf to the subgrade

44608

Bearing Capacity OK

You will note that the calculated allowable bearing capacities often exceed those provided in the text of the report. Typically, on structures which are supported on shallow foundations bearing capacity (of the soil) does not control the foundation size.

Bearing Capacity Calculation	
Cask Handling Building – Wind Columns	

Date: 2/17/2020

Project: CISF - Cask Handling Building (Wind Columns)

Location: Andrews, Texas

Project No: 31-151247.R2

BEARING CAPACITY CALCULATIONS

Vesic Bearing Capacity Formulas

 $q_{ult} = c'N_c s_c d_c i_c b_c g_c + \sigma'_{ZD} N_q s_q d_q i_q b_q g_q + 0.5 \Upsilon' B N_\Upsilon s_\Upsilon d_\Upsilon i_\Upsilon b_\Upsilon g_\Upsilon$

where,

q_{ult} = ultimate bearing capacity

c' = effective cohesion for soil beneath foundation

φ' = effective friction angle for soil beneath foundation

σ'_{ZD} = vertical effective stress at depth D below ground surface

 Υ' = effective unit weight of the soil

D = depth of foundation below ground surface

B = width of foundation
L = length of foundation

 N_{c} , N_{q} , N_{γ} = Vesic bearing capacity factors = $f(\phi')$, factors follow

 $s_{c'}, s_{q'}, s_{Y}$ = shape factors $d_{c'}, d_{q'}, d_{Y}$ = depth factors

 i_c, i_q, i_T = load inclination factors, not applicable in this analysis b_c, b_0, b_T = base inclination factors, not applicable in this analysis

 g_c, g_q, g_Y = ground inclination factors, not applicable in this analysis

	Vesic Bearing Capacity Factors										
ф' (deg)	N _c	Nq	N _Υ	ф' (deg)	N _c	N _q	IN _Υ	ф' (deg)	N _c	N _q	N _Υ
11	8.8	2.7	1.4	21.0	15.8	7.1	6.2	31.0	32.7	20.6	26.0
12	9.3	3.0	1.7	22.0	16.9	7.8	7.1	32.0	35.5	23.2	30.2
13	9.8	3.3	2.0	23.0	18.0	8.7	8.2	33.0	38.6	26.1	35.2
14	10.4	3.6	2.3	24.0	19.3	9.6	9.4	34.0	42.2	29.4	41.1
15	11.0	3.9	2.6	25.0	20.7	10.7	10.9	35.0	46.1	33.3	48.0
16	11.6	4.3	3.1	26.0	22.3	11.9	12.5	36.0	50.6	37.8	56.3
17	12.3	4.8	3.5	27.0	23.9	13.2	14.5	37.0	55.6	42.9	66.2
18	13.1	5.3	4.1	28.0	25.8	14.7	16.7	38.0	61.4	48.9	78.0
19	13.9	5.8	4.7	29.0	27.9	16.4	19.3	39.0	67.9	56.0	92.2
20	14.8	6.4	5.4	30.0	30.1	18.4	22.4	40.0	75.3	64.2	109.4

Project Specific Information:

The foundations for the Cask Handling Building will bear at an elevation of 10 to 11 feet below ground surface. The foundations for the main columns measure 28 feet by 183 feet while the foundations for the wind columns measure 26 feet 3 inches by 40 feet. The foundations for the cask handling building are anticipated to bear in the Caliche with Sand Matrix. An effective friction angle of 35 degrees and an effective unit weight of 130 pounds per cubic foot were utilized for the calculation.

c'	=	0	psf
φ'	=	35	degrees
σ'_{ZD}	=	1300	psf
γ'	=	130	pcf
D	=	10	feet
В	=	26.25	feet
L	=	40	feet

Step 1: Calculate Shape Factors

$$s_c = 1 + (B/L)(N_q/N_c)$$
 $s_c = 1.474$ $s_q = 1 + (B/L)tan\phi'$ $s_q = 1.285$ $s_Y = 1 - 0.4(B/L)$ $s_Y = 0.837$

Step 2: Calculate Depth Factors

$$d_c = 1 + 0.4k$$
 where $k = D/B$ $d_c = 1.152$ $d_q = 1 + 2ktan\varphi'(1-sin\varphi')^2$ $d_q = 1.097$ $d_{\gamma} = 1$

Step 3: Calculate Load Inclination Factors

Since the loads act perpendicular to the base of the footing, the I factors equal 1 and may be neglected.

Step 4: Calculate the Base Inclination Factors

Page 3 of 3

Since the base of the footing is level, all of the b factors equal to 1 and may be neglected.

Step 5: Calculate the Ground Inclination Factors

Since the ground surface is level the g factors equal to 1 and may be neglected.

Step 6: Calculate the Ultimate Bearing Capacity

$$q_{ult} = c'N_c s_c d_c i_c b_c g_c + \sigma'_{7D} N_a s_a d_a i_a b_a g_a + 0.5 Y'BN_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma}$$

removing the values which were equal to 1 results in the following:

$$q_{ult} = c'N_c s_c d_c + \sigma'_{ZD} N_a s_a d_a + 0.5 \Upsilon' B N_{\Upsilon} s_{\Upsilon} d_{\Upsilon}$$

 $q_{ult} = 129590$ psf

Step 7: Calculate the Allowable Bearing Capacity

 $q_{all} = q_{ult}/FOS$

Factor of Safety of 3 utilized for bearing capacity

 $q_{all} =$

43197 psf

Based on the loading provided by AECOM the Cask Handling Building Wind Columns will impart a maximum service level pressure of 1,860 psf to the subgrade

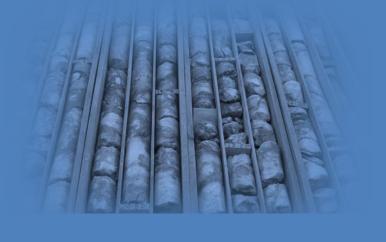
43197

>

1,860

Bearing Capacity OK

You will note that the calculated allowable bearing capacities often exceed those provided in the text of the report. Typically, on structures which are supported on shallow foundations bearing capacity (of the soil) does not control the foundation size.



APPENDIX H

Settlement Calculations

TECHNICAL MEMORANDUM

Settlement Analyses CISF Storage Pad Site Andrews TX DBA Project No. 19-017

To: Derek Kilday, P.E./GEOServices

From: Timothy C. Siegel, P.E, G.E., D.GE

Tayler J. Day, P.E.

Date: 17 February 2020

1. Introduction

This Technical Memorandum (TM) presents the results of settlement analyses for the waste interim storage pad system at the subject site in Andrews, Texas. Subsurface conditions were described as a soil column in correspondence from GEOServices as part of their revised recommendations to be included in the final geotechnical report. Loading and pad dimensions were provided to DBA by Enercon. The remaining sections of this TM briefly describe the soil column, analysis considerations and results.

2. Soil Column Used for Analysis

The settlement analyses were performed based on soil properties and stresses applied to the ground by the proposed structure. Geotechnical explorations were performed by AECOM¹ and GEOServices². Boring information collected by GEOServices extends to auger refusal at approximately 45 feet below the ground surface that existed at time of exploration. Typical settlement analyses consider a depth of influence of twice the least dimension of the loaded area. DBA understands that for this project, the team prefers to consider a greater depth. DBA's analyses consider the soil column to 600 feet below ground surface (top of the Trujillo Sandstone Formation) with the layers presented in Table 1.

¹ AECOM. (2016). Site-Specific Seismic Hazard Evaluation and Development of Seismic Design Ground Motions, WCS Centralized Interim Storage Facility Project. Dated March 18, 2016.

² GEOServices (2018) Report of Geotechnical Exploration: Consolidated Interim Storage Facility (CISF) Andrews, Texas Geoservices, LLC Project No. 31-151247.R1. Submitted to Waste Control Specialists, LLC. Dated 15 July 2016

Table 1 - Soil column layer information provided in revised GEOServices Report of Geotechnical Exploration

Top (feet)	Bottom (feet)	Layer Description			
0	2	Cover Sands			
2	10	Caliche with Sand Matrix - Moderately Hard			
10	20	Caliche with Sand Matrix - Moderately Hard			
20	25	Caliche - Very Hard			
25	35	Caliche - Very Hard			
35	50	Ogallala - Sand with Gravel			
50	80	Ogallala - Sand with Gravel			
80	100	Ogallala - Sand with Gravel			
100	130	Dockum - Claystone and Siltstone			
130	230	Claystone and Siltstone			
230	275	Dockum - Claystone			
275	300	Dockum - Silty Sands			
300	360	Dockum - Claystone			
360	600	Dockum - Claystone			

3. Settlement Analysis Parameters

Settlement analyses were performed using Settle3 ver. 5.001, a 3-dimensional program for the analysis of vertical consolidation and settlement under foundations and surface loads. Settle3 is designed to compute both immediate compression settlement and settlement due to consolidation. Immediate settlement occurs when a load is applied to materials that can be assumed to behave linear elastically. In this case, the composition of the soil column and relative stiffness (reported in boring logs and shear wave velocity profiles) coupled with the absence of a consistent high groundwater table identifies Immediate Settlement as the dominant deflection mechanism. Consolidation occurs in materials where excess pore pressures gradually dissipate. As there is no consistent permanent water table observed in the extensive geotechnical exploration of the areas, excess porewater pressures are unlikely to be generated so DBA concludes that primary consolidation will not significantly contribute to storage pad deflections in the reported conditions. The stress computation method used in this analysis was the Westergaard Solution for consideration of multiple layers with Poisson's ratio inputs.

Immediate settlement can be estimated in Settle3 using constrained modulus to represent the compressibility of the geotechnical material. Constrained modulus was not directly provided in the provided geotechnical explorations. The constrained modulus of soil was determined using a correlation with average standard penetration test (SPT) N-value that was proposed by Tan et al.³ The average SPT N-values (excluding refusal) in the GEOServices borings were compared to the "Normally Loaded Sand or Sand and Gravel" relationship to estimate the constrained modulus using the highest resolution measurements available. The majority of the SPT N-values

³ Tan, C.K., Duncan, J.M., Rojiani, K.B., and Barker, R.M.(1991) Engineering Manual for Shallow Foundations, prepared for the National Cooperative Highway Research Program (NCHRP Project 24-4) Sponsored by AASHTO and FHWA, Washington, D.C., 171pp

_

measured in the remaining layers of the GEOServices borings were larger than 70 blows/ft and are therefore considered outside the range of the correlation.

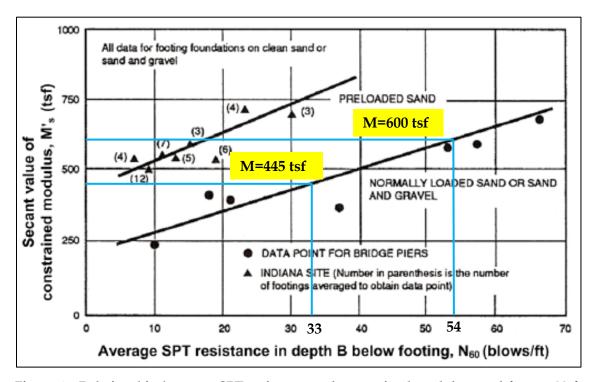


Figure 1 - Relationship between SPT resistance and constrained modulus used for top 20 feet of soil column (after Tan et al., 1991)

A summary of the estimated constrained moduli for the top 20 feet of the soil column is presented in Table 2. Several refusal SPT N-values in the top 20 feet were intentionally excluded from the average in recognition of potential reductions in modulus due to inconsistent or partial cementation in the Caliche Sand matrix as described to DBA by GEOServices.

Table 2 - Correlated constrained modulus values for top 20feet of soil column using Tan et al. (1991).

		Average		Constrained Modulus
Top	Bottom	N-Value		(tsf) from Tan et al. (1991)
(feet)	(feet)	(bpf)	Layer Material (from GEOS Soil Column)	correlation
0	2	33	Cover Sands	445
2	10	54	Caliche with Sand Matrix - Moderately Hard	600
10	20	54	Caliche with Sand Matrix - Moderately Hard	600

Below a depth of 20feet, DBA relied upon the shear wave velocity profiles collected by GEOServices and the Site-Specific Seismic Hazard Evaluation and Development of Seismic Ground Motions prepared by AECOM (2016). The GEOServices study targeted the top 100feet of the profile while the AECOM study collected shear wave velocity measurements in the area to depths of 600feet below ground surface. Each layer in the soil column between 20feet and 100feet below ground surface were assigned average shear wave velocities using the GEOServices shear wave velocity

measurements. Layers between 100feet and 600feet below ground surface were assigned average shear wave velocities using the AECOM measurements. A summary of the layers, their associated Settle3 model layer names, and the average shear wave velocities is provided in Table 3.

Table 3 - Average shear wave velocities assigned to each soil column layer between 20 feet and 600 feet below ground surface.

Top (feet)	Bottom (feet)	Avg. Layer Shear Wave Velocity (ft/s)	Layer Material (From GEOS Column)
20	25	1530	Caliche - Very Hard
25	35	1900	Caliche - Very Hard
35	50	2290	Ogallala - Sand with Gravel
50	80	1840	Ogallala - Sand with Gravel
80	100	2790	Ogallala - Sand with Gravel
100	130	2300	Dockum - Claystone and Siltstone
130	230	2755	Claystone and Siltstone
230	275	2755	Dockum - Claystone
275	300	2755	Dockum - Silty Sands
300	360	2755	Dockum - Claystone
360	600	3115	Dockum - Claystone

Average shear wave velocities were then converted to constrained modulus using the following relationship:

$$V_S \xrightarrow{G = V_S^2 * \rho} G \xrightarrow{M = \frac{2G(1 - \nu)}{(1 - 2\nu)}} M$$

Where, Vs = shear wave velocity;

G = shear modulus;

M = constrained modulus;

v = Poisson's ratio (from AECOM report); and,

 ρ = unit weight.

The correlations between shear wave velocity and moduli are based on small-strain wave theory which is reasonable for use in engineering analysis of settlement of these hard/stiff layers which are unlikely to experience large strains as a result of the pressures exerted by the storage pads. A summary of the layers and modulus values used in this Settle 3 soil column is presented in Table 5.

Table 4 - Soil Layers and Parameters used in Settle3

Top (feet)	Bottom (feet)	N- Value (bpf)	Average Shear Wave Velocity (ft/s)	Layer Description	Constrained Modulus (ksf)
0	2	33		Cover Sands	890
2	10	54		Caliche with Sand Matrix - Moderately Hard	1200
10	20	54		Caliche with Sand Matrix - Moderately Hard	1200
20	25		1530	Caliche - Very Hard	35815
25	35		1900	Caliche - Very Hard	55232
35	50		2290	Ogallala - Sand with Gravel	80233
50	80		1840	Ogallala - Sand with Gravel	53870
80	100		2790	Ogallala - Sand with Gravel	123857
100	130		2300	Dockum - Claystone and Siltstone	84172
130	230		2755	Claystone and Siltstone	120769
230	275		2755	Dockum - Claystone	120769
275	300		2755	Dockum - Silty Sands	120679
300	360	-	2755	Dockum - Claystone	120679
360	600		3115	Dockum - Claystone	154394

4. Single Storage Pad Analysis and Results

The first objective of the settlement analyses was to perform multiple iterations between Settle3 and GTSTRUDL for four construction conditions of a single storage pad (135ft by 55ft in plan dimension) to develop appropriate bearing pressures and structural loads for pad design. Considered single storage pad configurations are summarized in Table 5.

Table 5 - Summary of analysis conditions and loading.

Condition	Loading
Configuration 1	Single Pad - 24 Loaded Casks
Configuration 2	Single Pad – 6 Loaded Casks
Configuration 3	Single Pad - 12 Loaded Casks
Configuration 4	Single Pad - 18 Loaded Casks

The first iteration of the settlement analysis was performed using the dead loads of the casks provided in WCS Consolidated Interim Storage Facility System Safety Analysis Report (Revision 2- June 2018) and the estimated footing weight. The resulting bearing pressures were used to develop an initial Settle3 model for each configuration using the soil column described previously with the end goal of estimating settlement and values of subgrade modulus k (psf/in). The calculated values of subgrade modulus were then submitted to Enercon to be integrated into the GTSTRUDL structural analysis of the storage pad. The resulting load distribution reported by Enercon was then a more accurate estimate of soil response thus refining the slab pressure

distribution. The results of the refined slab analysis were provided to DBA and used to update the Settle3 model resulting in revised subgrade modulus values.

4.1. Configurations 1-4 Loading Information and Iteration

After initial modeling of the dead loads applied directly to the soil column, DBA used the loading information provided by Enercon in the form of GTSTRUDL output of loads at individual node locations. DBA understands that Enercon grouped nodes into zones of similar modulus of subgrade reaction as identified in the initial Settle3 model (20+ zones for each configuration shown in the attachments). When revised loading was returned, DBA integrated the nodal loads in each zone to determine the revised zone bearing pressures. This approach considers effects of mat stiffness on the distribution of stresses to the soil. The resulting bearing pressures were then updated in the Settle3 model and revised values of modulus of subgrade reaction were determined for each zone. This iterative process continued for Configurations 1-4 until the change in modulus of subgrade reaction values was less than or equal to 10% when compared to the values resulting from the previous iteration. Generally, the zones identified in the analysis were one of four groups:

- Loaded Casks
- Mat Edges
- Intermediate (between casks) Areas
- Indirectly Loaded (no casks) Areas for Configurations 2, 3 and 4

The final pressure distributions for each configuration can be found in the attachments.

4.2. Configurations 1-4 Settlement Analysis Results

Computed settlements for Configurations 1-4 are summarized in Table 6. Maximum estimated settlements for all configurations occur under the center of the cask nearest the center of the loaded group. Settlements decrease radially from the heavier loaded cask zones. This behavior matches the expected behavior of a loaded mat. Settlement plots for each configuration and the inputs used for Settle3 are attached to this TM. It is important to note that the results of geotechnical settlement models are estimates that are input dependent. Therefore, settlement recommendations should be based on a combination of calculations and experience that acknowledges the calculations are not precise to the multiple decimal places reported by the program.

Condition	Loading	Estimated maximum settlement (in.)
Configuration 1	Single Pad - 24 Loaded Casks	0.7
Configuration 2	Single Pad - 6 Loaded Casks	0.6
Configuration 3	Single Pad - 12 Loaded Casks	0.7
Configuration 4	Single Pad – 18 Loaded Casks	0.7

Table 6 - Summary of single pad settlement estimates.

The Settle3 bearing pressure input files report a lower bearing pressure than the calculated zone bearing pressure in the attachments. To avoid loading edge effects caused by drastic changes in

bearing pressure over very small distance, the bearing pressure zones input into Settle3 are cumulative. An example of this concept is shown in Figure 2.

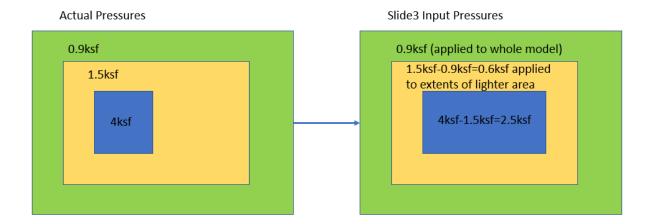


Figure 2 - Example of Slide3 bearing pressure input determination

5. Multiple Pad Analysis and Results

The second objective of the settlement analyses is to estimate the settlement of a configuration of four fully loaded pads in their final constructed condition. The converged Configuration 1 loads were applied in an orientation of four pads spaced per Figure 1-6 in the WCS CISF Safety Analysis Report. The maximum predicted settlement for the four pad scenario is similar to the single pad Configuration 1 case (0.7inches at the center of each pad). The main effect of the adjacent loaded pads is an increase of settlement estimated at the corner of the pads (0.2inches compared to 0.1inches), and the related slight decrease in predicted differential settlement between the center of the footings and the corners of the pads. This behavior results from overlapping stress influence from the loaded footings, which is consistent with predicted behavior. Inputs and results of the model are shown in the attachments.

6. Cask Handling Building Analysis and Results

DBA understands that an auxiliary structure will be utilized for handling the filling of the casks before they are moved to the storage pads. According to Chapter 7 of the WCS CISF Safety Analysis report, the Cask Handling Building (CHB) is a two-bay steel structure measuring 175ft by 193ft with a height of 72ft. Based on a preliminary foundation layout plan for the building, DBA understands the main column footings and wind column footings will be constructed to bear 10ft below ground surface. The soil column developed for storage pad analysis was used to estimate settlements of the CHB.

Based on provided loading information, DBA understands the maximum service level bearing pressure is approximately 3.5ksf or less with maximum limit state bearing pressures approaching 5.5ksf. It is standard practice in geotechnical shallow foundation design to analyze settlements for sustained loading and service loading so two models were developed for the CHB. Two dead load only cases were analyzed: 1.0 DL (1.79ksf for main column footings and 1.67ksf for wind column footings); and a net bearing pressure from Dead loading case (0.66ksf for main column

footings and 0.55ksf for wind column footings. The resulting settlements for both dead load cases are 0.25inches or less at the center of the footings. Estimated settlement for the maximum service load (3.5ksf for all footings) case is 0.5inches or less at the center of the footings.

7. Concluding Remarks

Please contact the following if you would like to discuss this document or this project.

Timothy C. Siegel, P.E., G.E., D.GE CEO/Senior Principal Engineer Dan Brown and Associates PC 6424 Baum Dr. Knoxville, TN 37919 Mobile: 865-809-4883

tim@dba.world

Tayler J. Day, P.E.
Project Engineer
Dan Brown and Associates PC
6424 Baum Dr.
Knoxville, TN 37919
Mobile: 217-371-2185
tday@dba.world

Attachments

Summary of Analysis Basis. GEOS Blow Count Profiles. GEOS Shear Wave Velocity Profiles. AECOM Shear Wave Velocity Profile. Enercon Model Configurations.

Configuration 1 Final Bearing Zones and Pressures, Settlement Results, and Modulus of Subgrade Reaction Values for Enercon Models.

Configuration 1 Settle3 Inputs.

Configuration 2 Final Bearing Zones and Pressures, Settlement Results, and Modulus of Subgrade Reaction Values for Enercon Models.

Configuration 2 Settle3 Inputs.

Configuration 3 Final Bearing Zones and Pressures, Settlement Results, and Modulus of Subgrade Reaction Values for Enercon Models.

Configuration 3 Settle3 Inputs.

Configuration 4 Final Bearing Zones and Pressures, Settlement Results, and Modulus of Subgrade Reaction Values for Enercon Models

Configuration 4 Settle3 Inputs.

Overall Pad Layout From WCS CISF Safety Analysis Report Four Pad Settle3 Analysis, Inputs and Results. Cask Handling Building Settle3 Analysis, Inputs, and Results.

Problem Statement

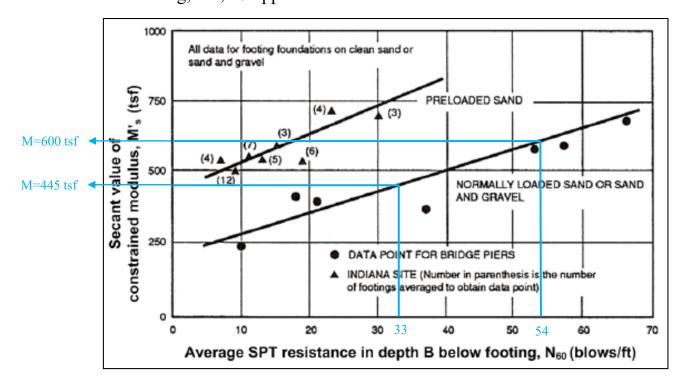
- Nuclear waste storage pads
- Settlement concerns so calculation of footing settlement required

DBA Approach

- Utilize extensive shear wave velocity data and soil boring explorations to create a constrained modulus profile
 - In general, the soil profile is caliche & sand with gravel to a depth of ~100ft overlying rock
- Convert SPT N-Values to constrained modulus using Tan, C. K., Duncan, J. M., Rojiani, K. B., and Barker, R. M. (1991) in top 20 feet.
- Convert the shear wave velocity to constrained modulus (M)

$$V_S \xrightarrow{G = V_S^2 * \rho} G \xrightarrow{M = \frac{2G(1 - \nu)}{(1 - 2\nu)}} M$$

- Create the constrained modulus profile combining the SPT data from 0 to 20 ft depth with the shear wave velocity data beyond 20 ft depth
- Use Westergaard's stress calculation method and the constrained modulus profile to calculate settlement in *Settle3 by Rocscience*
 - Loading information provided by the structural

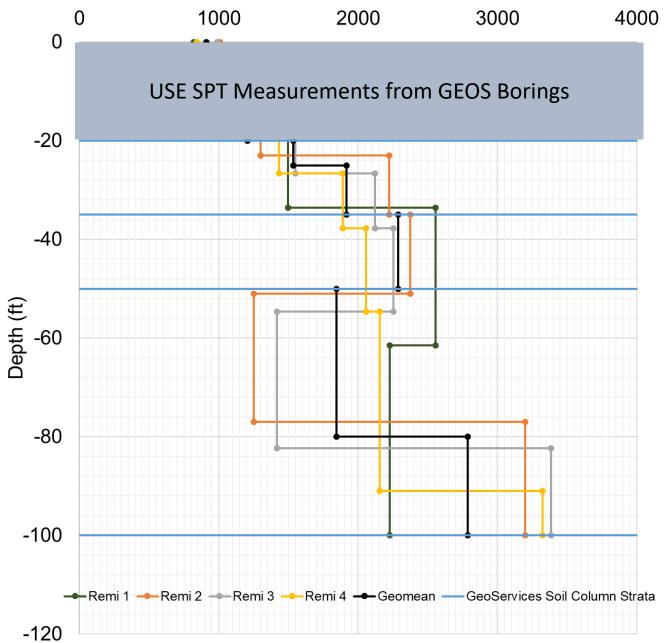

Layers based on Borings Performed by GEOS

- Interpreted from GEOS borings data only to 45 ft depth
- Layers below 20 ft will be determined using the shear wave velocity data. SPT N-Values from 20 to 45 ft are beyond the range of the correlation shown below

Top of	Bottom of	N-Value		Constrained
Layer (ft	E) Layer (ft)	(bpf)	Layer Material (From GEOS Column)	Modulus (tsf)
0	2	33	Cover Sands	445
2	10	54	Caliche w/ Sand Matrix – Mod. Hard	600
10	20	54	Caliche w/ Sand Matrix – Mod. Hard	600

SPT N-Value to Constrained Modulus Correlation

• Tan, C. K., Duncan, J. M., Rojiani, K. B., and Barker, R. M. (1991). Engineering Manual for Shallow Foundations, prepared for the National Cooperative Highway Research Program (NCHRP Project 24-4) in cooperation with Virginia Polytechnic Institute and State University. Sponsored by American Association of State Highway and Transportation Officials and Federal Highway Administration, Washington, DC., Blacksburg, VA, 171 pp.



Layers based on Average Shear Wave Velocity Measurements

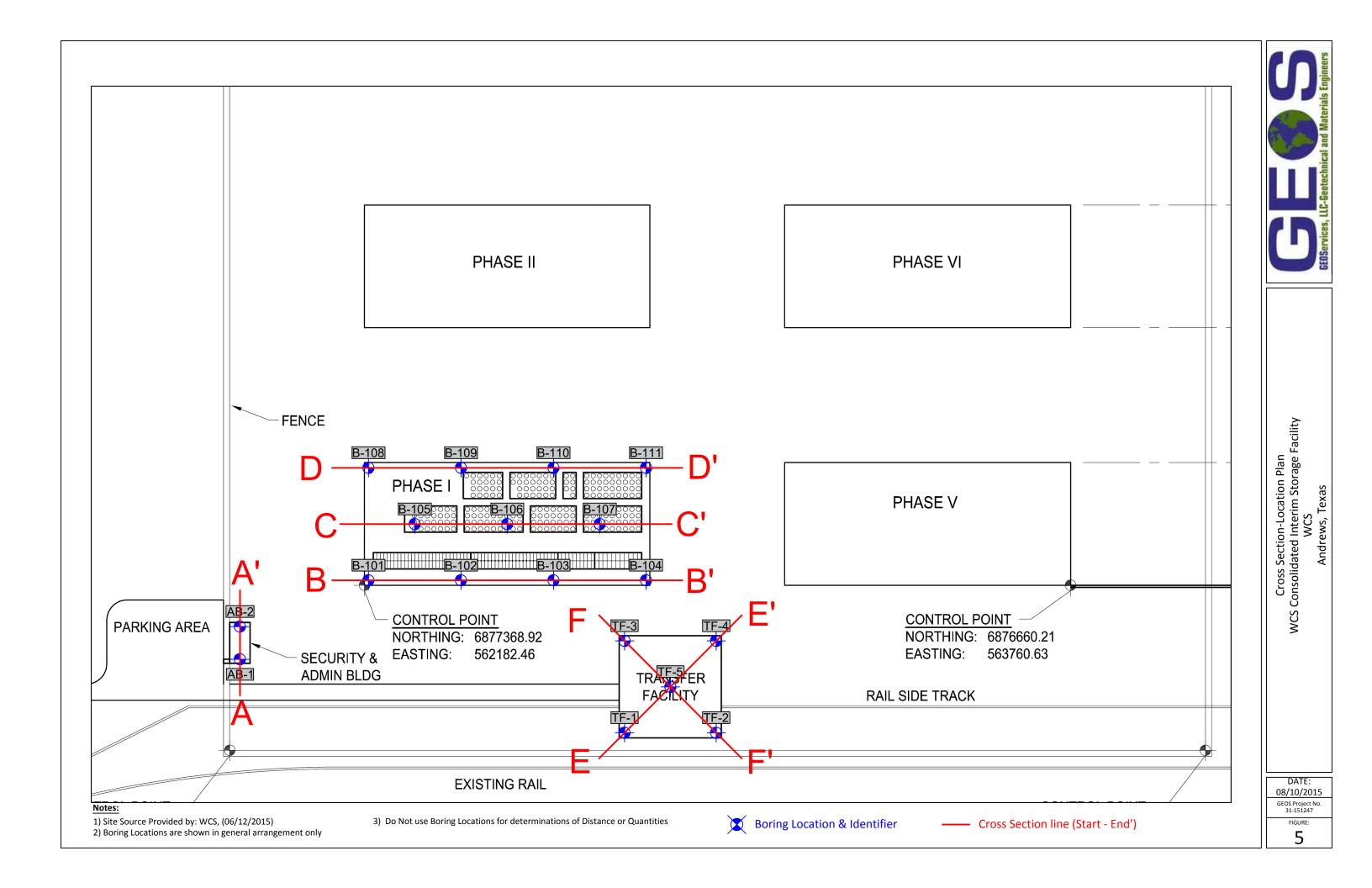
- Interpreted from all explorations and collaboration between GEOS and DBA.
- Top 100ft contains 7 stratum in 5 materials identified by GEOS

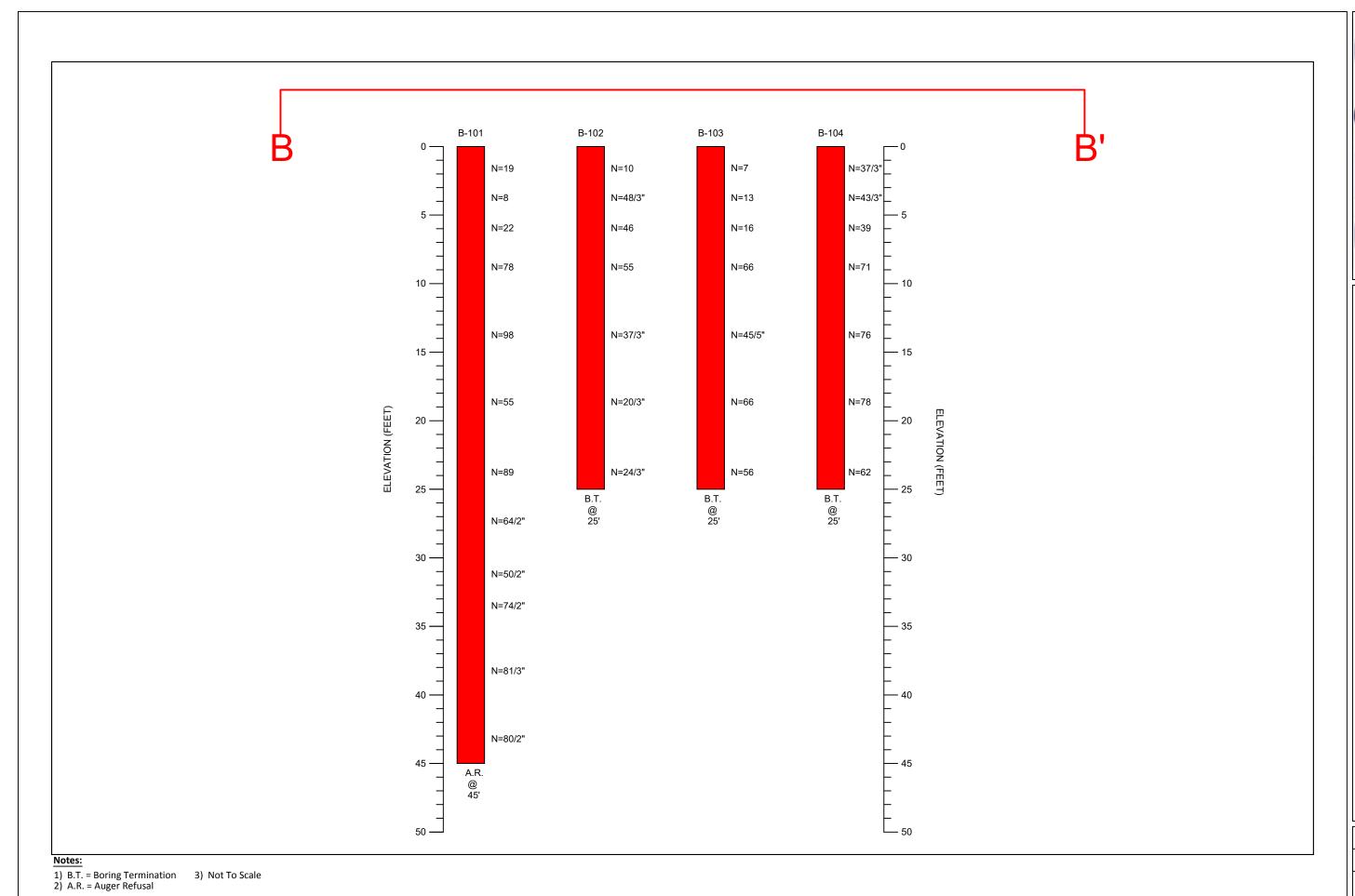
Soil Column Based on Average Shear Wave Velocity Measurements

- Interpreted from all explorations and collaboration between GEOS and DBA.
- Top 100ft contains 7 stratum in 5 materials identified by GEOS
- 100ft-600ft (approx. location of incompressible layers with sharp contrast of velocity) contains 3 average velocity values for 6 layers identified in the soil column provided by GEOS

Top (ft)	Bottom (ft)	Avg. Layer Shear Wave Velocity (ft/s)	Layer Material (From GEOS column)	Model Layer Name
20	25	1530	Caliche - Very Hard	Caliche Hard 1
25	35	1900	Caliche - Very Hard	Caliche Hard 2
35	50	2290	Ogallala - Sand with Gravel	Ogallala 1
50	80	1840	Ogallala - Sand with Gravel	Ogallala 2
80	100	2790	Ogallala - Sand with Gravel	Ogallala 3
100	130	2300	Dockum - Claystone and Siltstone	Dockum Claystone/Siltstone
130	230	2755	Claystone and Siltstone	Claystone and Siltstone
230	275	2755	Dockum - Clay/Claystone	Dockum Clay/Claystone1
275	300	2755	Dockum - Silty Sands	Dockum Silty/Sands
300	360	2755	Dockum - Clay/Claystone	Dockum Clay/Claystone 2
360	600	3115	Dockum - Clay/Claystone	Dockum Clay/Claystone 3

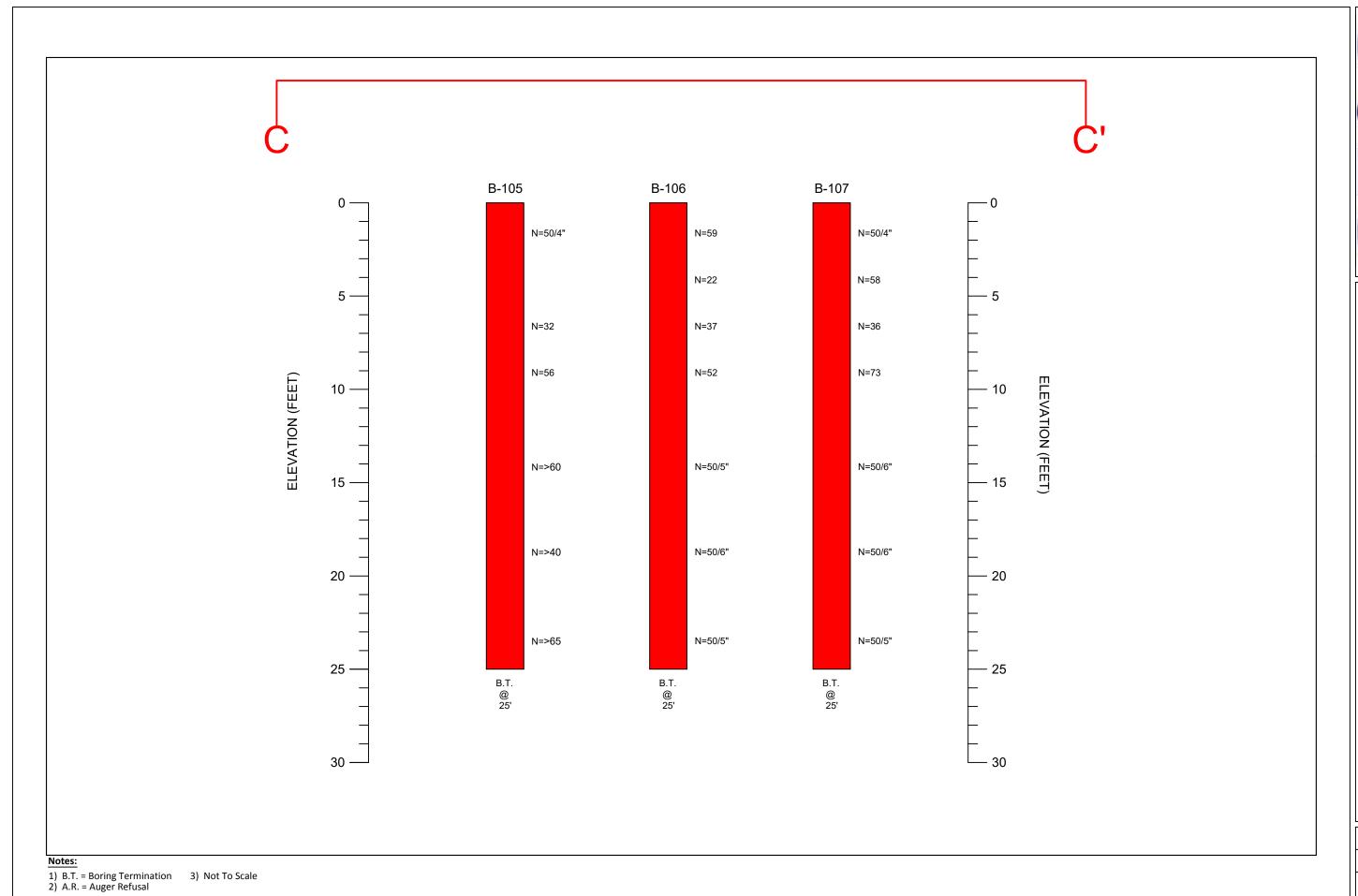
Top (ft)	Bottom (ft)	Avg. Layer Shear Wave Velocity (ft/s)	Unit weight (pcf)	Poisson's Ratio	Gmax (psf)
20	25	1530	125	0.33	9,087,345
25	35	1900	125	0.33	14,013,975
35	50	2290	125	0.33	20,357,531
50	80	1840	130	0.33	13,668,571
80	100	2790	130	0.33	31,426,491
100	130	2300	130	0.33	21,357,143
130	230	2755	130	0.33	30,642,958
230	275	2755	130	0.33	30,642,958
275	300	2755	130	0.33	30,642,958
300	360	2755	130	0.33	30,642,958
360	600	3115	130	0.33	39,174,511


Total Constrained Modulus Profile


- 0 to 20 ft depth
 - Constrained modulus obtained from GEOS SPT data and correlating N-Value with constrained modulus using Tan, C. K., Duncan, J. M., Rojiani, K. B., and Barker, R. M. (1991).
- 20 to 600 ft depth
 - Constrained modulus obtained from converting the GEOS shear wave velocity to constrained modulus using the unit weight and Poisson's ratio

Top (ft)	Bottom (ft)	Layer Material (From GEOS column)	Constrained Modulus (ksf)	
0	2	Cover Sands	890	
2	10	Caliche with Sand Matrix - Moderately Hard	1,200	
10	20	Caliche with Sand Matrix - Moderately Hard	1,200	
20	25	Caliche - Very Hard	35,815	
25	35	Caliche - Very Hard	55,232	
35	50	Ogallala - Sand with Gravel	80,233	
50	80	Ogallala - Sand with Gravel	53,870	
80	100	Ogallala - Sand with Gravel	123,857	
100	130	Dockum - Claystone and Siltstone	84,172	
130	230	Claystone and Siltstone	120,769	
230	275	Dockum - Clay/Claystone	120,769	
275	300	Dockum - Silty Sands	120,769	
300	360	Dockum - Clay/Claystone	120,769	
360	600	Dockum - Clay/Claystone	154,394	

GEOS Blow Count Profiles

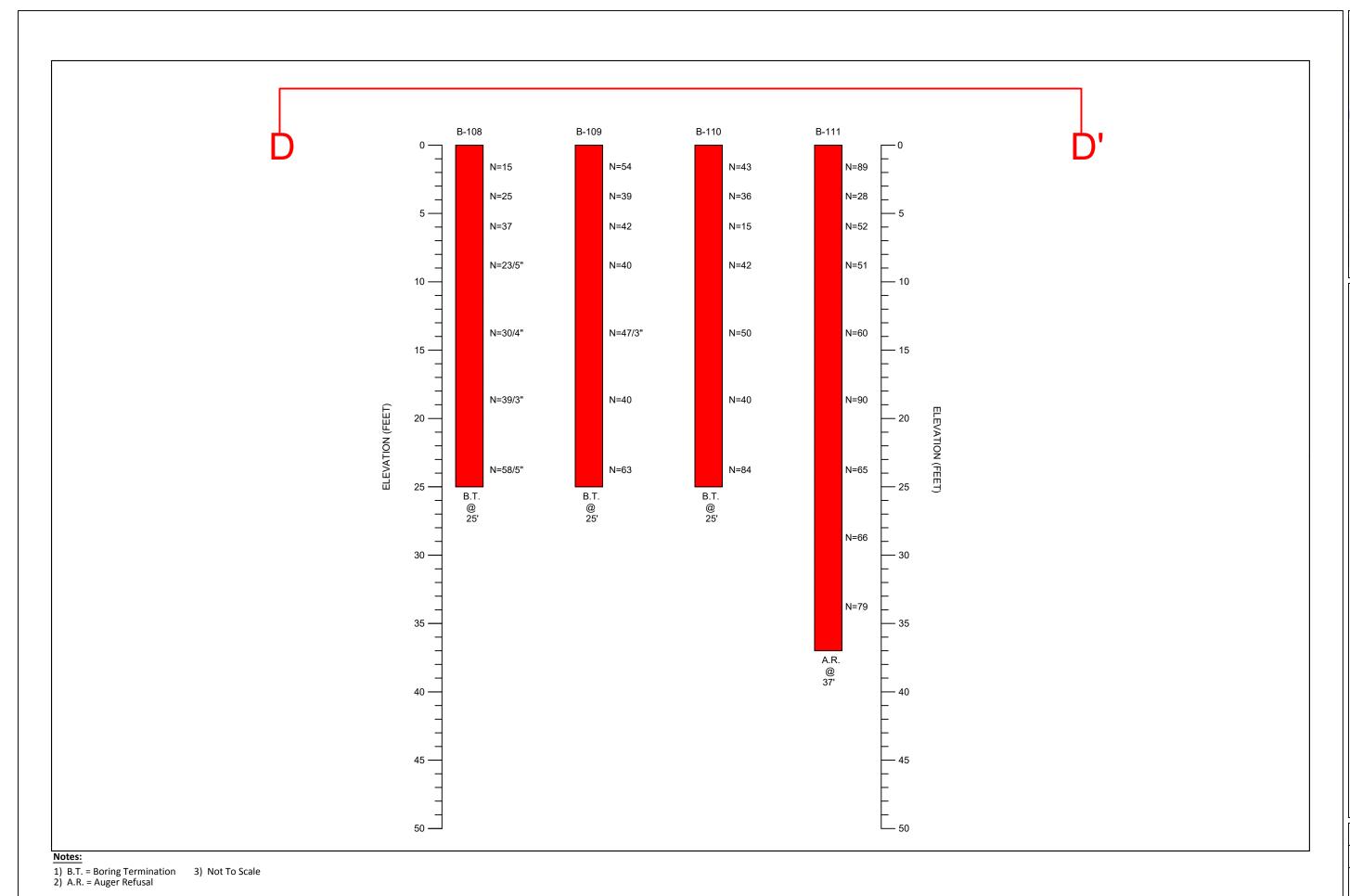

GEOServices, LLC-Geotechnical and Materials Eng

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

GEOS Project No. 31-151247 FIGURE:

7


GEOServices, LLC-Geotechnical and Materials Engine

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

DATE: 08/10/2015

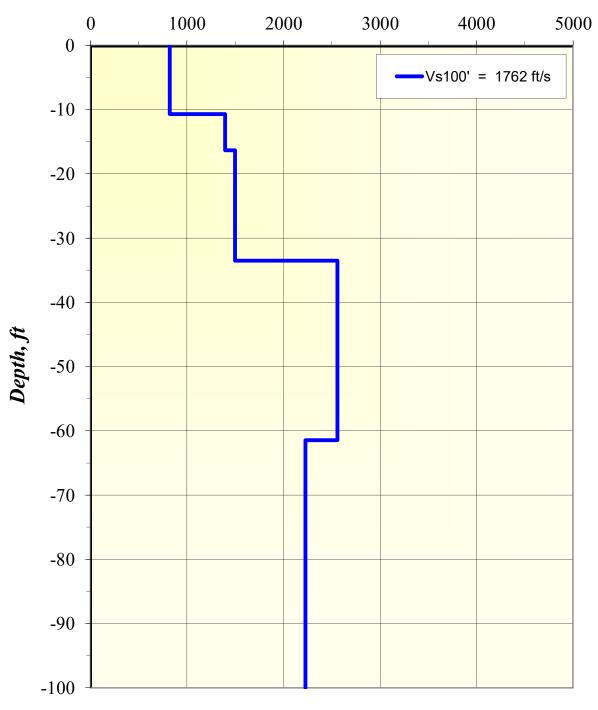
GEOS Project No. 31-151247 FIGURE:

8

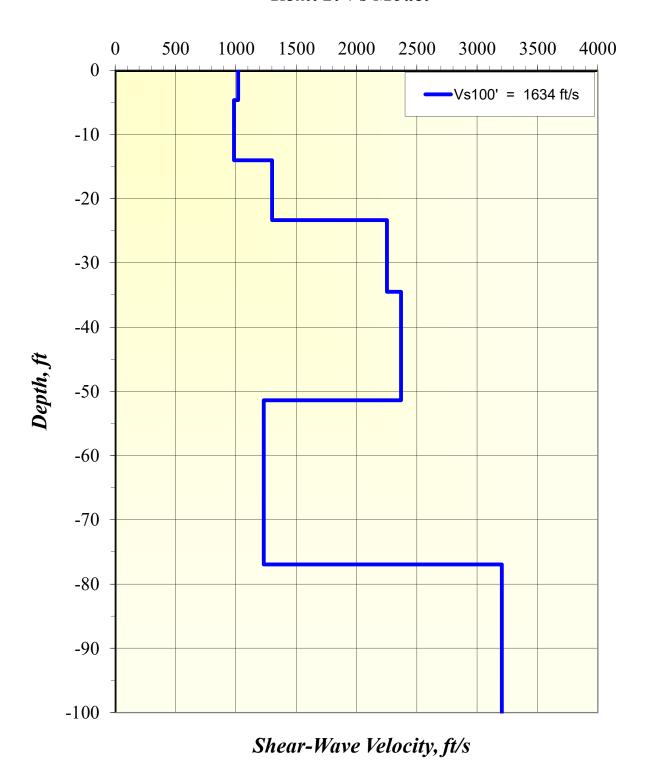
GEOServices, LLC-Geotechnical and Materials Engineer

Boring Cross-Section WCS Consolidated Interim Storage Facility WCS Andrews, Texas

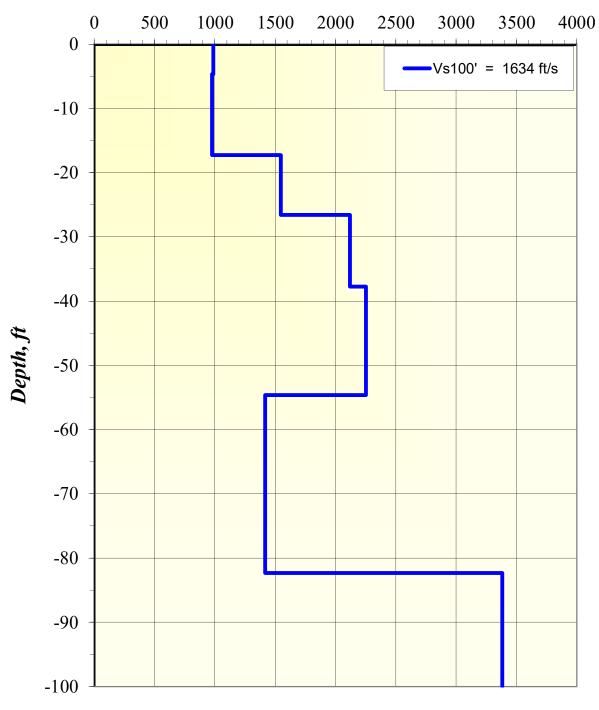
DATE: 08/10/2015


GEOS Project No. 31-151247 FIGURE:

9

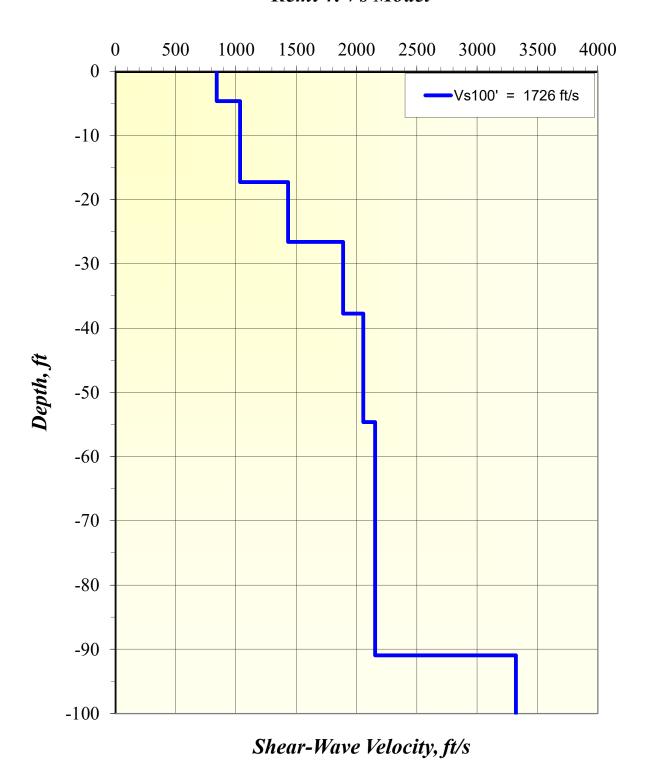

Shear Wave Velocity Profiles

Remi 1: Vs Model

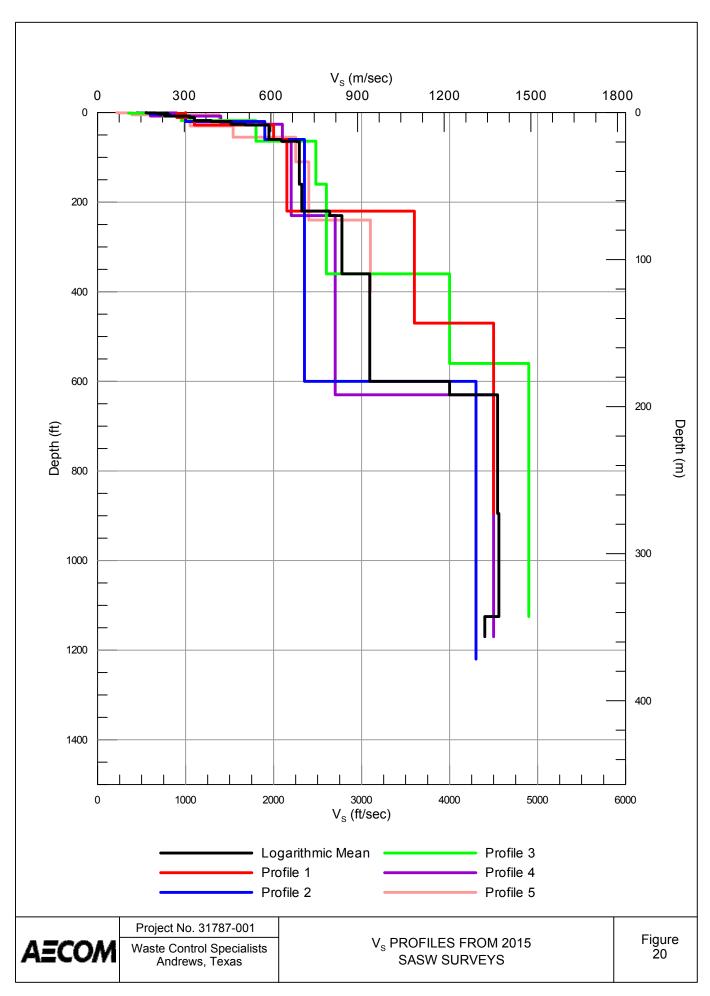


Shear-Wave Velocity, ft/s

Remi 2: Vs Model

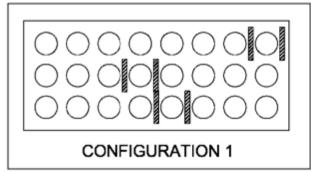


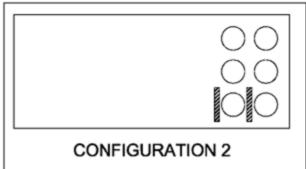
Remi 3: Vs Model

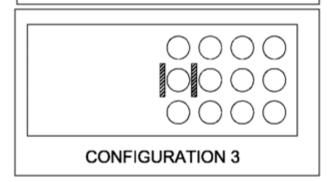

Shear-Wave Velocity, ft/s

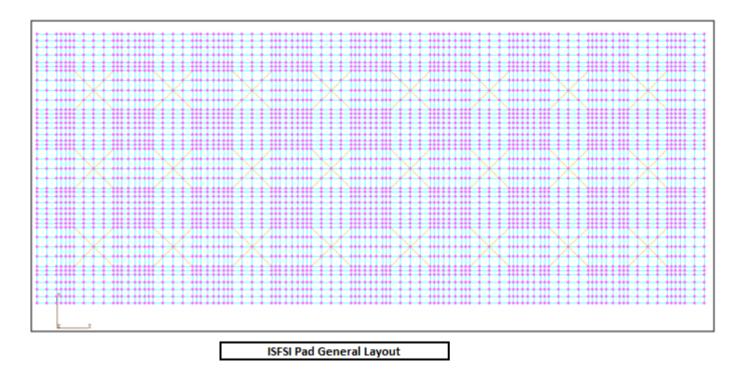
Remi 4: Vs Model

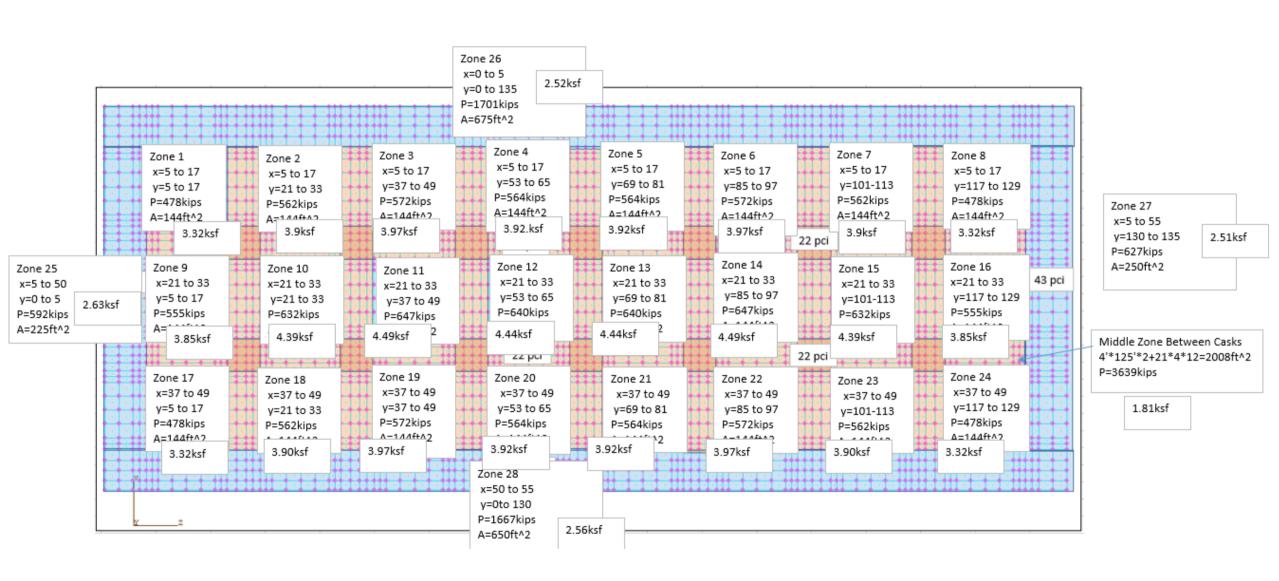
AECOM Shear Wave Velocity Profile



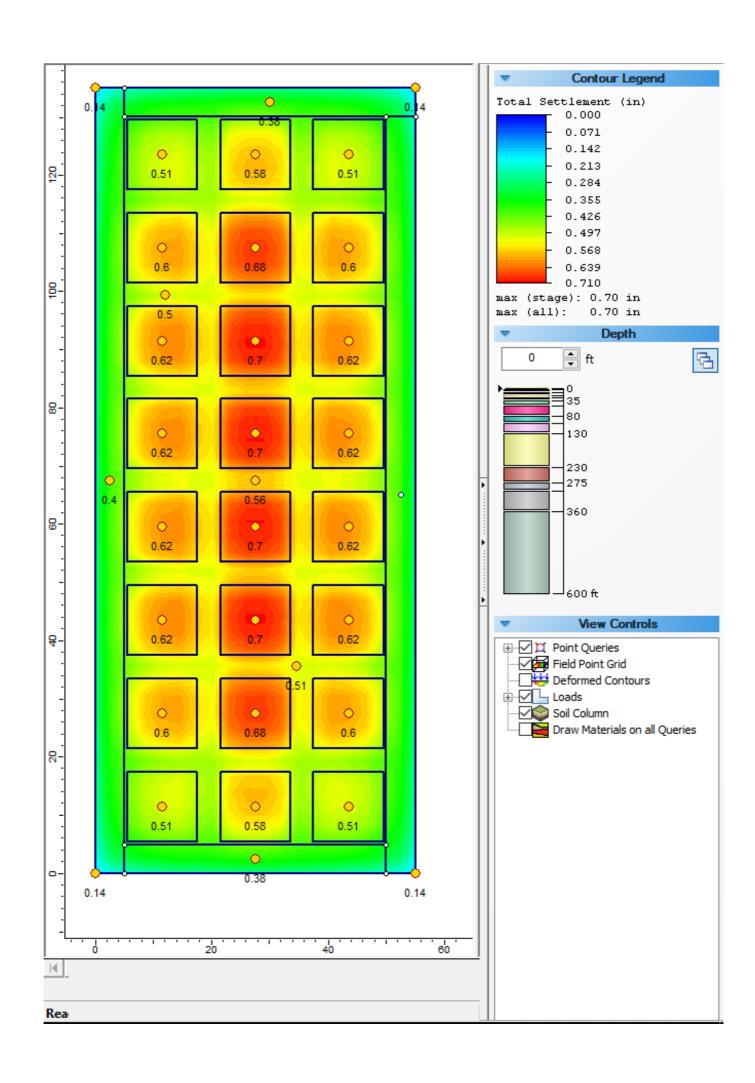



Enercon Model Configurations

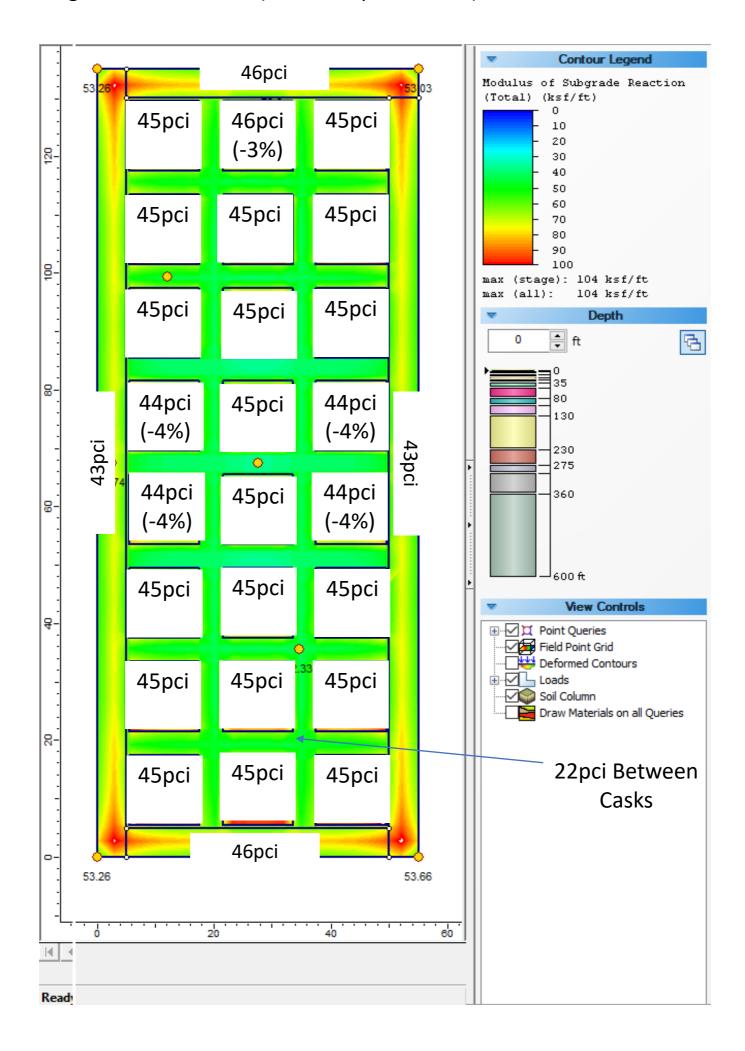

CISF Site Single Pad Analysis Andrews, TX



Configuration 1
Final Bearing Pressure Zones,
Settlement Results,
and Modulus of Subgrade Reaction
Values for Enercon Model


CISF Site Single Pad Analysis Andrews, TX

Configuration 1-Bearing Pressures (INPUT 5 Spreadsheet Loads)


CISF Site Andrews, TX Single Pad Analysis Results

Configuration 1-Settlement Estimate (INPUT 5 Spreadsheet Loads)

CISF Site Andrews, TX Single Pad Analysis Results

Configuration 1-k values (INPUT 5 Spreadsheet)

Configuration 1 Settle3 Inputs

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF Storage Pad Config 1 200214 INPUT 5.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.701508
Loading Stress ZZ [ksf]	0.034724	4.49

Loads

1. Polygonal Load: "Zone 29"

Label Zone 29
Load Type Flexible
Area of Load 7425 ft²
Load 1.81 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
0	0
55	0
55	135
0	135

2. Polygonal Load: "Zone 26"

Label Zone 26
Load Type Flexible
Area of Load 675 ft²
Load 0.71 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
0	0
5	0
5	135
0	135

3. Polygonal Load: "Zone 27"

LabelZone 27Load TypeFlexibleArea of Load250 ft²Load0.7 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
55	130
55	135
5	135
5	130

4. Polygonal Load: "Zone 28"

Label Zone 28
Load Type Flexible
Area of Load 650 ft²
Load 0.75 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
50	0
55	0
55	130
50	130

5. Polygonal Load: "Zone 25"

Label Zone 25
Load Type Flexible
Area of Load 225 ft²
Load 0.82 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5	0
50	0
50	5
5	5

6. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	5.5
17.5	5.5
17.5	17.5
5.5	17.5

7. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	5.5
49.5	5.5
49.5	17.5
37.5	17.5

8. Rectangular Load: "Zone 24"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	117.5
49.5	117.5
49.5	129.5
37.5	129.5

9. Rectangular Load: "Zone 8"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	117.5
17.5	117.5
17.5	129.5
5.5	129.5

10. Rectangular Load: "Zone 23"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.09 ksfDepth0 ftInstallation StageStage 1

X [ft]	Y [ft]
37.5	101.5
49.5	101.5
49.5	113.5
37.5	113.5

11. Rectangular Load: "Zone 22"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	85.5
49.5	85.5
49.5	97.5
37.5	97.5

12. Rectangular Load: "Zone 21"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	69.5
49.5	69.5
49.5	81.5
37.5	81.5

13. Rectangular Load: "Zone 20"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.1 ksfDepth0 ftInstallation StageStage 1

X [ft]	Y [ft]
37.5	53.5
49.5	53.5
49.5	65.5
37.5	65.5

14. Rectangular Load: "Zone 19"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	37.5
49.5	37.5
49.5	49.5
37.5	49.5

15. Rectangular Load: "Zone 18"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	21.5
49.5	21.5
49.5	33.5
37.5	33.5

16. Rectangular Load: "Zone 16"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	117.5
33.5	117.5
33.5	129.5
21.5	129.5

17. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	101.5
17.5	101.5
17.5	113.5
5.5	113.5

18. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	85.5
17.5	85.5
17.5	97.5
5.5	97.5

19. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	69.5
17.5	69.5
17.5	81.5
5.5	81.5

20. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	53.5
17.5	53.5
17.5	65.5
5.5	65.5

21. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
5.5	37.5
17.5	37.5
17.5	49.5
5.5	49.5

22. Rectangular Load: "Zone 2"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	21.5
17.5	21.5
17.5	33.5
5.5	33.5

23. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	5.5
33.5	5.5
33.5	17.5
21.5	17.5

24. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.58 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	21.5
33.5	21.5
33.5	33.5
21.5	33.5

25. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	37.5
33.5	37.5
33.5	49.5
21.5	49.5

26. Rectangular Load: "Zone 12"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	53.5
33.5	53.5
33.5	65.5
21.5	65.5

27. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	69.5
33.5	69.5
33.5	81.5
21.5	81.5

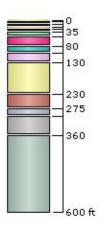
28. Rectangular Load: "Zone 14"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	85.5
33.5	85.5
33.5	97.5
21.5	97.5

29. Rectangular Load: "Zone 15"


Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.57 ksfDepth0 ftInstallation StageStage 1

X [ft]	Y [ft]
21.5	101.5
33.5	101.5
33.5	113.5
21.5	113.5

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft ³]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

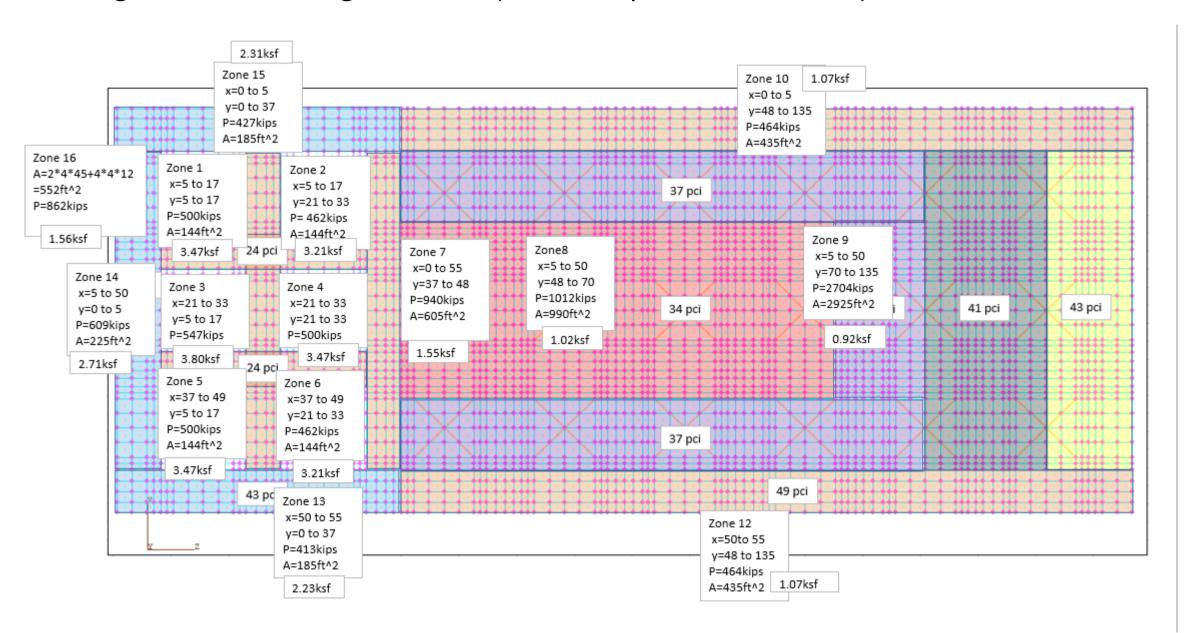
Point #	Query Point Name	(Y V) Location	Number of Divisions
1	Cask Point 1	11.5, 11.5	Auto: 101
2	Cask Point 2	11.5, 27.5	Auto: 101
3	Cask Point 3	11.5, 43.5	Auto: 101
4	Cask Point 4	11.5, 59.5	Auto: 101
5	Cask Point 5	11.5, 75.5	Auto: 101
6	Cask Point 6	11.5, 75.5	Auto: 101
7	Cask Point 7	11.5, 107.5	Auto: 101
8	Cask Point 8	11.5, 123.5	Auto: 101
9	Cask Point 9	27.5, 11.5	Auto: 101
10	Cask Point 10	27.5, 27.5	Auto: 101
11	Cask Point 11	27.5, 43.5	Auto: 101
12	Cask Point 12	27.5, 59.5	Auto: 101
13	Cask Point 13	27.5, 75.5	Auto: 101
14	Cask Point 14	27.5, 91.5	Auto: 101
15	Cask Point 15	27.5, 107.5	Auto: 101
16	Cask Point 16	27.5, 123.5	Auto: 101
17	Cask Point 17	43.5, 11.5	Auto: 101
18	Cask Point 18	43.5, 27.5	Auto: 101
19	Cask Point 19	43.5, 43.5	Auto: 101
20	Cask Point 20	43.5, 59.5	Auto: 101
21	Cask Point 21	43.5, 75.5	Auto: 101
22	Cask Point 22	43.5, 91.5	Auto: 101
23	Cask Point 23	43.5, 107.5	Auto: 101
24	Cask Point 24	43.5, 123.5	Auto: 101
25	Footing Bottom Left	0, 0	Auto: 101
26	Footing Bottom Right	55, 0	Auto: 101
27	Footing Top Left	0, 135	Auto: 101
28	Footing Top Right	55, 135	Auto: 101
29	Footing Center	27.5, 67.5	Auto: 101
30		11.973, 99.283	Auto: 101
31	Query Point 31	30, 132.5	Auto: 101
32	Query Point 32		Auto: 101
33		34.543, 35.669	Auto: 101
34	Query Point 34	27.5, 2.5	Auto: 101

Field Point Grid

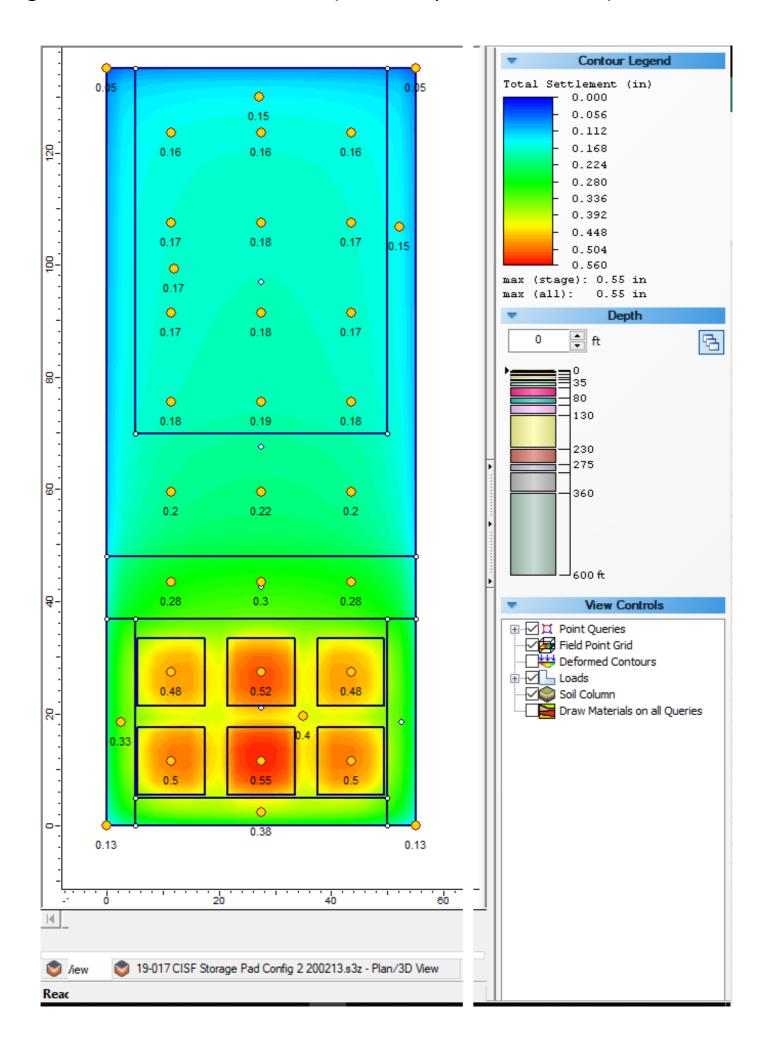
Number of points 1672 Expansion Factor 1

Grid Coordinates

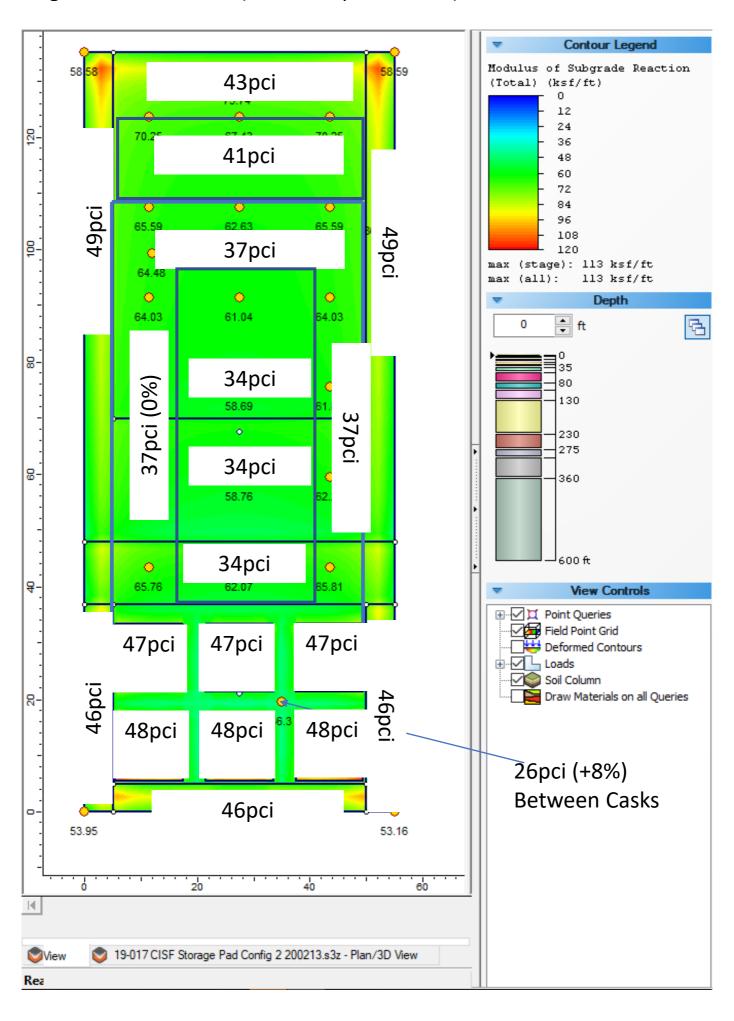
X [ft]	Y [ft]
122.5	202.5
122.5	-67.5
-67.5	-67.5
-67.5	202.5



Configuration 2
Final Bearing Pressure Zones,
Settlement Results,
and Modulus of Subgrade Reaction
Values for Enercon Model


CISF Site Single Pad Analysis Andrews, TX

Configuration 2-Bearing Pressures (INPUT 5 Spreadsheet Loads)


CISF Site Andrews, TX Single Pad Analysis Results

Configuration 2-Settlement Estimate(INPUT 5 Spreadsheet Loads)

CISF Site Andrews, TX Single Pad Analysis Results

Configuration 2-k values (INPUT 5 Spreadsheet)

Configuration 2 Settle3 Inputs

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF Storage Pad Config 2 200214.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.550882
Loading Stress ZZ [ksf]	0.0164762	3.8

Loads

1. Polygonal Load: "Base Zone"

Label Base Zone
Load Type Flexible
Area of Load 7425 ft²
Load 0.92 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
0	0
55	0
55	135
0	135

2. Polygonal Load: "Zone 8, 10, and 12"

Label Zone 8, 10, and 12

Load Type Flexible
Area of Load 1860 ft²
Load 0.14 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
55	48
55	135
50	135
50	70
5	70
5	135
0	135
0	48

3. Polygonal Load: "Zone 7"

Label Zone 7
Load Type Flexible
Area of Load 605 ft²
Load 0.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
55	37
55	48
0	48
0	37

4. Polygonal Load: "Zone 15"

Label Zone 15
Load Type Flexible
Area of Load 185 ft²
Load 1.38 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
0	0
5	0
5	37
0	37

5. Polygonal Load: "Zone 13"

Label Zone 13
Load Type Flexible
Area of Load 185 ft²
Load 1.31 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
50	0
55	0
55	37
50	37

6. Polygonal Load: "Zone 14"

Label Zone 14
Load Type Flexible
Area of Load 225 ft²
Load 1.78 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
5	0
50	0
50	5
5	5

7. Polygonal Load: "Zone 16"

Label Zone 16
Load Type Flexible
Area of Load 1440 ft²
Load 0.64 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
5	5
50	5
50	37
5	37

8. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.91 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	5.5
17.5	5.5
17.5	17.5
5.5	17.5

9. Rectangular Load: "Zone 2"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.65 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	21.5
17.5	21.5
17.5	33.5
5.5	33.5

10. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.91 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	21.5
33.5	21.5
33.5	33.5
21.5	33.5

11. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.24 ksf
Depth 0 ft
Installation Stage 1

Coordinates

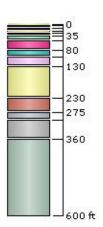
X [ft]	Y [ft]
21.5	5.5
33.5	5.5
33.5	17.5
21.5	17.5

12. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.91 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
37.5	5.5
49.5	5.5
49.5	17.5
37.5	17.5

13. Rectangular Load: "Zone 6"


Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load1.65 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
37.5	21.5
49.5	21.5
49.5	33.5
37.5	33.5

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft ³]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

Da!::4 #	Over Deint News	(V V) I anation	Number of Divisions
	Query Point Name		Number of Divisions
1	Cask Point 1	11.5, 11.5	Auto: 101
2	Cask Point 2	11.5, 27.5	Auto: 101
3	Cask Point 3	11.5, 43.5	Auto: 101
4	Cask Point 4	11.5, 59.5	Auto: 101
5	Cask Point 5	11.5, 75.5	Auto: 101
6	Cask Point 6	11.5, 91.5	Auto: 101
7	Cask Point 7	11.5, 107.5	Auto: 101
8	Cask Point 8	11.5, 123.5	Auto: 101
9	Cask Point 9	27.5, 11.5	Auto: 101
10	Cask Point 10	27.5, 27.5	Auto: 101
11	Cask Point 11	27.5, 43.5	Auto: 101
12	Cask Point 12	27.5, 59.5	Auto: 101
13	Cask Point 13	27.5, 75.5	Auto: 101
14	Cask Point 14	27.5, 91.5	Auto: 101
15	Cask Point 15	27.5, 107.5	Auto: 101
16	Cask Point 16	27.5, 123.5	Auto: 101
17	Cask Point 17	43.5, 11.5	Auto: 101
18	Cask Point 18	43.5, 27.5	Auto: 101
19	Cask Point 19	43.5, 43.5	Auto: 101
20	Cask Point 20	43.5, 59.5	Auto: 101
21	Cask Point 21	43.5, 75.5	Auto: 101
22	Cask Point 22	43.5, 91.5	Auto: 101
23	Cask Point 23	43.5, 107.5	Auto: 101
24	Cask Point 24	43.5, 123.5	Auto: 101
25	Footing Bottom Left	0, 0	Auto: 101
26	Footing Bottom Right	55, 0	Auto: 101
27	Footing Top Left	0, 135	Auto: 101
28	Footing Top Right	55, 135	Auto: 101
29	Footing Center	52.208, 106.8	Auto: 101
30	Query Point 30	11.973, 99.283	Auto: 101
31	Query Point 31	34.932, 19.529	Auto: 101
32	Query Point 32	2.5, 18.5	Auto: 101
33		27.105, 129.904	Auto: 101
34	Query Point 34	27.5, 2.5	Auto: 101

Field Point Grid

Number of points 1294 Expansion Factor 1

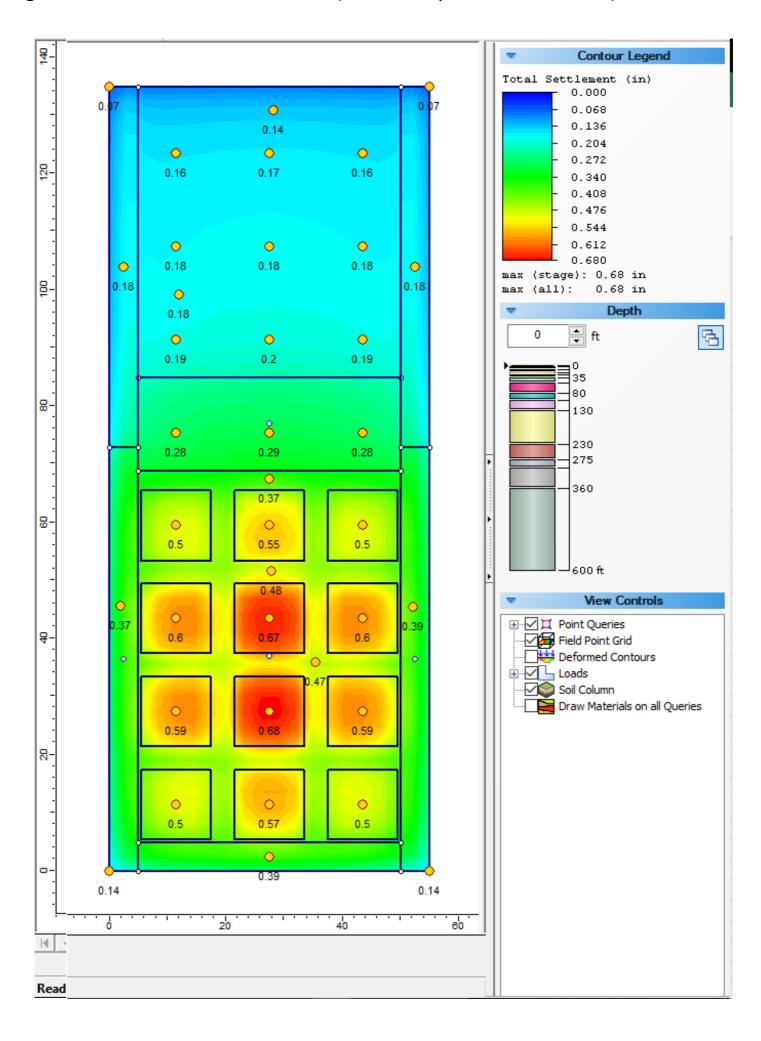
Grid Coordinates

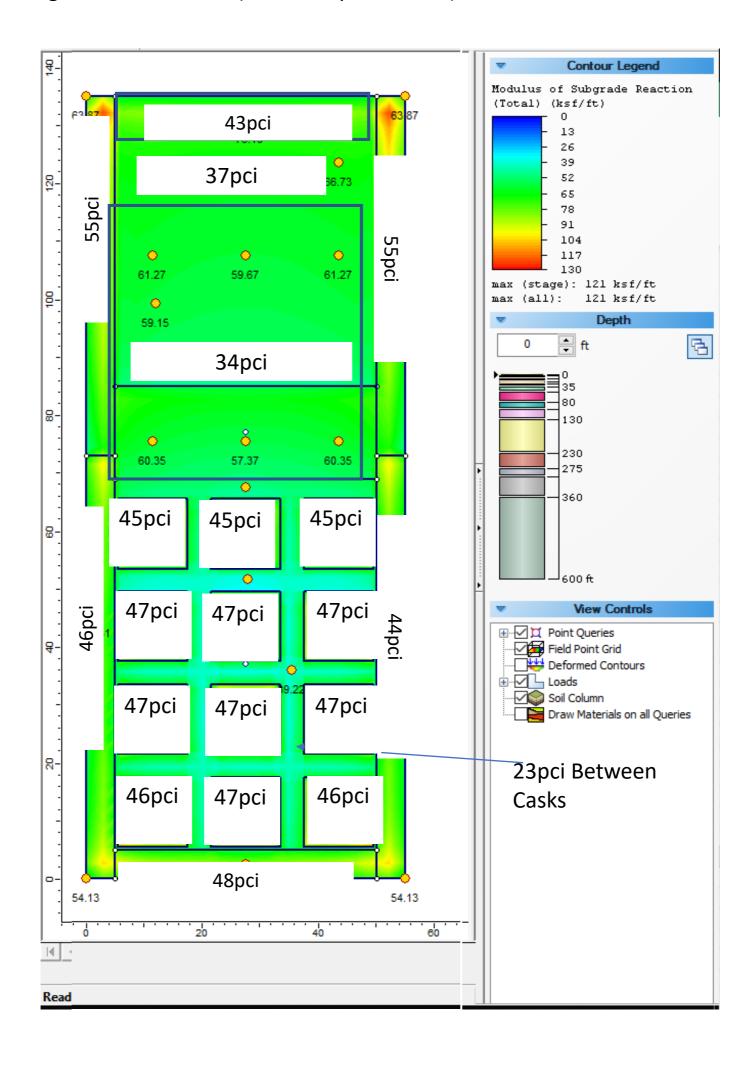
X [ft]	Y [ft]
122.5	202.5
122.5	-67.5
-67.5	-67.5
-67.5	202.5



Configuration 3
Final Bearing Pressure Zones,
Settlement Results,
and Modulus of Subgrade Reaction
Values for Enercon Model

CISF Site Single Pad Analysis Andrews, TX


Configuration 3-Bearing Pressures (INPUT 5 Spreadsheet Loads)


CISF Site Andrews, TX Single Pad Analysis Results

Configuration 3-Settlement Estimate (INPUT 5 Spreadsheet Loads)

CISF Site Andrews, TX Single Pad Analysis Results

Configuration 3 k values (INPUT 5 Spreadsheet)

Configuration 3 Settle3 Inputs

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF Storage Pad Config 3 200214 Input 5.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.677157
Loading Stress ZZ [ksf]	0.02225	4.58

Loads

1. Polygonal Load: "Base Zone"

Label Base Zone
Load Type Flexible
Area of Load 7425 ft²
Load 0.9 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
0	0
55	0
55	135
0	135

2. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.75 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	5.5
17.5	5.5
17.5	17.5
5.5	17.5

3. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.75 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	5.5
49.5	5.5
49.5	17.5
37.5	17.5

4. Rectangular Load: "Zone 12"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load1.67 ksfDepth0 ftInstallation StageStage 1

X [ft]	Y [ft]
37.5	53.5
49.5	53.5
49.5	65.5
37.5	65.5

5. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.46 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	37.5
49.5	37.5
49.5	49.5
37.5	49.5

6. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.46 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	21.5
49.5	21.5
49.5	33.5
37.5	33.5

7. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.67 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	53.5
17.5	53.5
17.5	65.5
5.5	65.5

8. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.46 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	37.5
17.5	37.5
17.5	49.5
5.5	49.5

9. Rectangular Load: "Zone 2"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.46 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
5.5	21.5
17.5	21.5
17.5	33.5
5.5	33.5

10. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.28 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	5.5
33.5	5.5
33.5	17.5
21.5	17.5

11. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 3.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	21.5
33.5	21.5
33.5	33.5
21.5	33.5

12. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.94 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	37.5
33.5	37.5
33.5	49.5
21.5	49.5

13. Rectangular Load: "Zone 8"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.03 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	53.5
33.5	53.5
33.5	65.5
21.5	65.5

14. Polygonal Load: "Zone 13"

Label Zone 13
Load Type Flexible
Area of Load 720 ft²
Load 0.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
50	69
50	85
5	85
5	69

15. Polygonal Load: "Zone 20"

Label Zone 20
Load Type Flexible
Area of Load 365 ft²
Load 1.59 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
0	0
5	0
5	73
0	73

16. Polygonal Load: "Zone 18"

Label Zone 18
Load Type Flexible
Area of Load 365 ft²
Load 1.59 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
50	0
55	0
55	73
50	73

17. Polygonal Load: "Zone 19"

Label Zone 19
Load Type Flexible
Area of Load 225 ft²
Load 1.77 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5	0
50	0
50	5
5	5

18. Polygonal Load: "Zone 17"

Label Zone 17
Load Type Flexible
Area of Load 310 ft²
Load 0.52 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
50	73
55	73
55	135
50	135

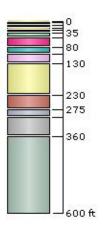
19. Polygonal Load: "Zone 15"

Label Zone 15
Load Type Flexible
Area of Load 310 ft²
Load 0.52 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
0	73
5	73
5	135
0	135

20. Polygonal Load: "Zone 21"


Label Zone 21
Load Type Flexible
Area of Load 2880 ft²
Load 0.64 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
5	5
50	5
50	69
5	69

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	8.0	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft3]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

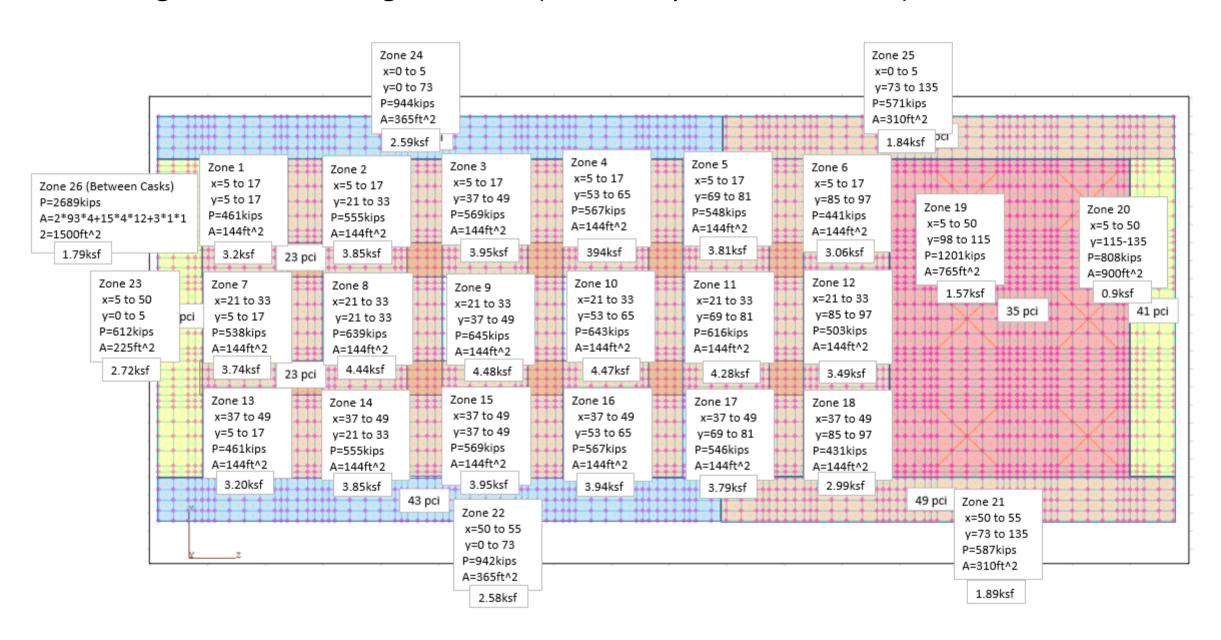
	•		Number of Divisions
1	Cask Point 1	11.5, 11.5	Auto: 101
2	Cask Point 2	11.5, 27.5	Auto: 101
3	Cask Point 3	11.5, 43.5	Auto: 101
4	Cask Point 4	11.5, 59.5	Auto: 101
5	Cask Point 5	11.5, 75.5	Auto: 101
6	Cask Point 6	11.5, 91.5	Auto: 101
7	Cask Point 7	11.5, 107.5	Auto: 101
8	Cask Point 8	11.5, 123.5	Auto: 101
9	Cask Point 9	27.5, 11.5	Auto: 101
10	Cask Point 10	27.5, 27.5	Auto: 101
11	Cask Point 11	27.5, 43.5	Auto: 101
12	Cask Point 12	27.5, 59.5	Auto: 101
13	Cask Point 13	27.5, 75.5	Auto: 101
14	Cask Point 14	27.5, 91.5	Auto: 101
15	Cask Point 15	27.5, 107.5	Auto: 101
16	Cask Point 16	27.5, 123.5	Auto: 101
17	Cask Point 17	43.5, 11.5	Auto: 101
18	Cask Point 18	43.5, 27.5	Auto: 101
19	Cask Point 19	43.5, 43.5	Auto: 101
20	Cask Point 20	43.5, 59.5	Auto: 101
21	Cask Point 21	43.5, 75.5	Auto: 101
22	Cask Point 22	43.5, 91.5	Auto: 101
23	Cask Point 23	43.5, 107.5	Auto: 101
24	Cask Point 24	43.5, 123.5	Auto: 101
25	Footing Bottom Left	0, 0	Auto: 101
26	Footing Bottom Right	55, 0	Auto: 101
27	Footing Top Left	0, 135	Auto: 101
28	Footing Top Right	55, 135	Auto: 101
29	Footing Center	27.5, 67.5	Auto: 101
30	Query Point 30	11.973, 99.283	Auto: 101
31	Query Point 31	28.128, 130.851	Auto: 101
32	Query Point 32	2.012, 45.679	Auto: 101
33	Query Point 33	52.141, 45.546	Auto: 101
34	Query Point 34	2.5, 104	Auto: 101
35	Query Point 35	52.5, 104	Auto: 101
36	Query Point 36	27.808, 51.568	Auto: 101
37	Query Point 37	35.388, 35.978	Auto: 101
38	Query Point 38	27.5, 2.5	Auto: 101

Field Point Grid

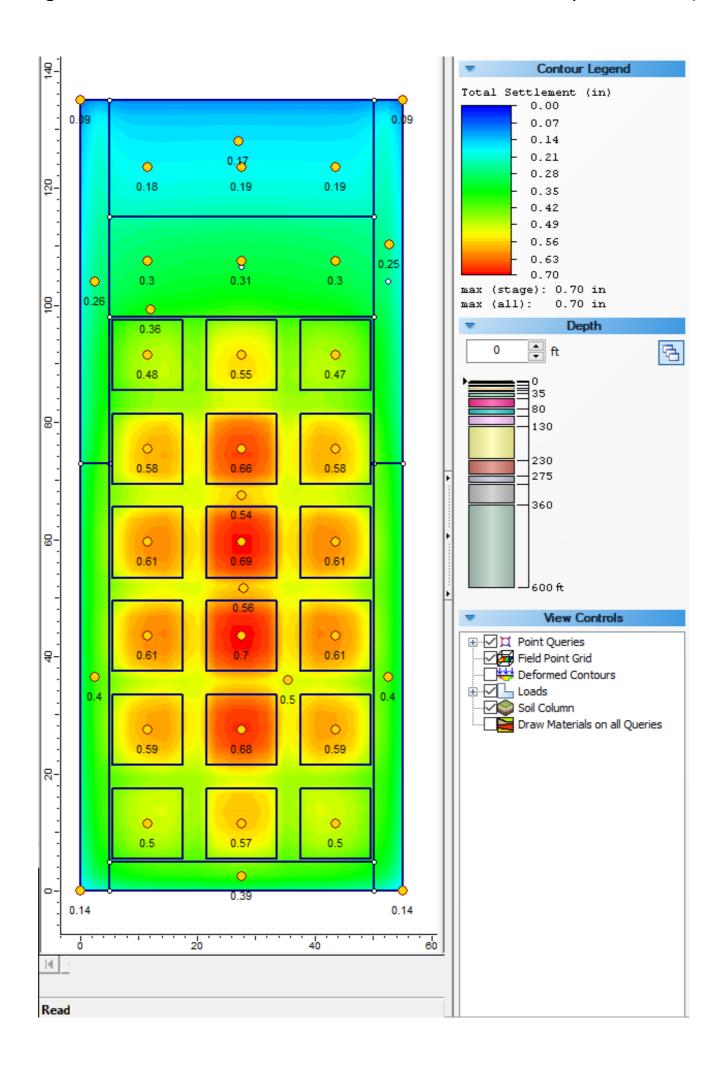
Number of points 1428 Expansion Factor 1

Grid Coordinates

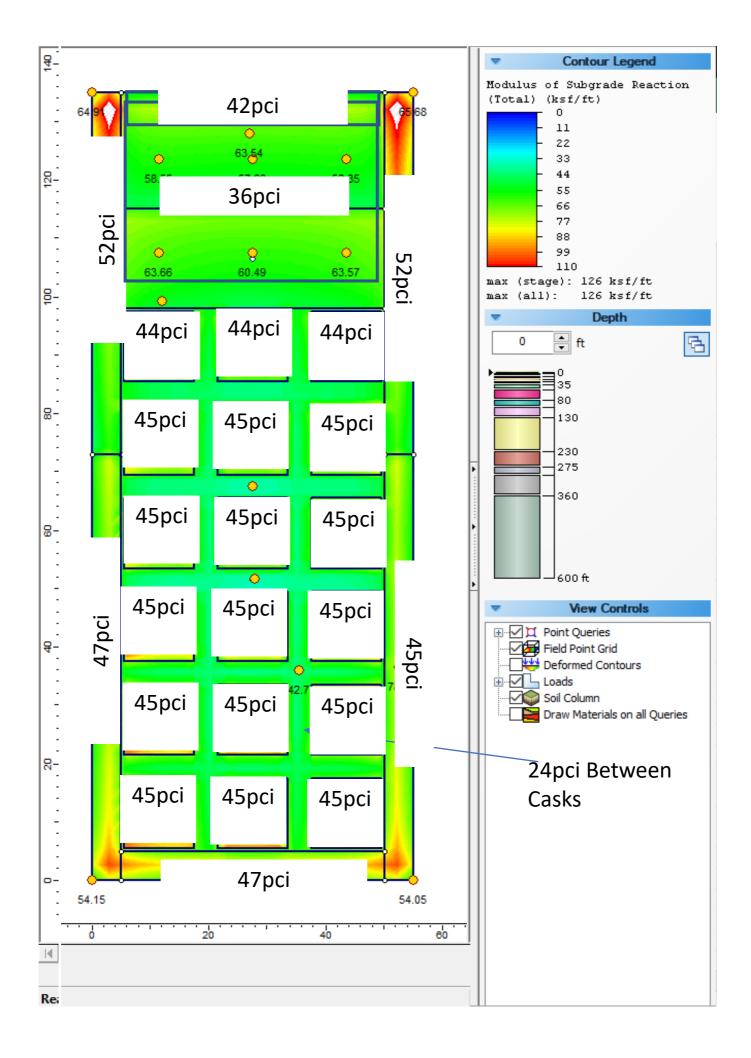
X [ft]	Y [ft]
122.5	202.5
122.5	-67.5
-67.5	-67.5
-67.5	202.5



Configuration 4
Final Bearing Pressure Zones,
Settlement Results,
and Modulus of Subgrade Reaction
Values for Enercon Model


CISF Site Single Pad Analysis Andrews, TX

Configuration 4-Bearing Pressures (INPUT 4 Spreadsheet Loads)


CISF Site Single Pad Analysis Andrews, TX

Configuration 4-Settlement Estimate – Loads from INPUT4Spreadsheets)

CISF Site Andrews, TX Single Pad Analysis Results

Configuration 4 k values – Loads from INPUT 4 Spreadsheets

Configuration 4 Settle3 Inputs

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF Storage Pad Config 4 200215 INPUT 4.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.695643
Loading Stress ZZ [ksf]	0.0283155	4.48

Loads

1. Polygonal Load: "Base Zone"

Label Base Zone
Load Type Flexible
Area of Load 7425 ft²
Load 0.9 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
0	0
55	0
55	135
0	135

2. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.41 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
5.5	5.5
17.5	5.5
17.5	17.5
5.5	17.5

3. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.41 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	5.5
49.5	5.5
49.5	17.5
37.5	17.5

4. Rectangular Load: "Zone 16"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.14 ksfDepth0 ftInstallation StageStage 1

X [ft]	Y [ft]
37.5	53.5
49.5	53.5
49.5	65.5
37.5	65.5

5. Rectangular Load: "Zone 15"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	37.5
49.5	37.5
49.5	49.5
37.5	49.5

6. Rectangular Load: "Zone 14"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.06 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	21.5
49.5	21.5
49.5	33.5
37.5	33.5

7. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.14 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	53.5
17.5	53.5
17.5	65.5
5.5	65.5

8. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	37.5
17.5	37.5
17.5	49.5
5.5	49.5

9. Rectangular Load: "Zone 2"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.06 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
5.5	21.5
17.5	21.5
17.5	33.5
5.5	33.5

10. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.94 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	5.5
33.5	5.5
33.5	17.5
21.5	17.5

11. Rectangular Load: "Zone 8"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.64 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	21.5
33.5	21.5
33.5	33.5
21.5	33.5

12. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.69 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	37.5
33.5	37.5
33.5	49.5
21.5	49.5

13. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.67 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	53.5
33.5	53.5
33.5	65.5
21.5	65.5

14. Polygonal Load: "Zone 24"

Label Zone 24
Load Type Flexible
Area of Load 365 ft²
Load 1.69 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
0	0
5	0
5	73
0	73

15. Polygonal Load: "Zone 22"

Label Zone 22
Load Type Flexible
Area of Load 365 ft²
Load 1.68 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
50	0
55	0
55	73
50	73

16. Polygonal Load: "Zone 23"

Label Zone 23
Load Type Flexible
Area of Load 225 ft²
Load 1.82 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5	0
50	0
50	5
5	5

17. Polygonal Load: "Zone 21"

Label Zone 21
Load Type Flexible
Area of Load 310 ft²
Load 1 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
50	73
55	73
55	135
50	135

18. Polygonal Load: "Zone 25"

Label Zone 25
Load Type Flexible
Area of Load 310 ft²
Load 0.94 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
0	73
5	73
5	135
0	135

19. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.01 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	69.5
17.5	69.5
17.5	81.5
5.5	81.5

20. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.27 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	85.5
17.5	85.5
17.5	97.5
5.5	97.5

21. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.49 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	69.5
33.5	69.5
33.5	81.5
21.5	81.5

22. Rectangular Load: "Zone12"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.7 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	85.5
33.5	85.5
33.5	97.5
21.5	97.5

23. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	69.5
49.5	69.5
49.5	81.5
37.5	81.5

24. Rectangular Load: "Zone 18"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.2 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
37.5	85.5
49.5	85.5
49.5	97.5
37.5	97.5

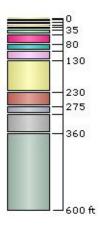
25. Polygonal Load: "Zone 19"

Label Zone 19
Load Type Flexible
Area of Load 765 ft²
Load 0.67 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
50	98
50	115
5	115
5	98

26. Polygonal Load: "Zone 26"


Label Zone 26
Load Type Flexible
Area of Load 4185 ft²
Load 0.89 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
50	5
50	98
5	98
5	5

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	8.0	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft ³]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

Point #	Query Point Name	(X.Y) Location	Number of Divisions
1	Cask Point 1	11.5, 11.5	Auto: 101
2	Cask Point 2	11.5, 27.5	Auto: 101
3	Cask Point 3	11.5, 43.5	Auto: 101
4	Cask Point 4	11.5, 59.5	Auto: 101
5	Cask Point 5	11.5, 75.5	Auto: 101
6	Cask Point 6	11.5, 91.5	Auto: 101
7	Cask Point 7	11.5, 107.5	Auto: 101
8	Cask Point 8	11.5, 123.5	Auto: 101
9	Cask Point 9	27.5, 11.5	Auto: 101
10	Cask Point 10	27.5, 27.5	Auto: 101
11	Cask Point 11	27.5, 43.5	Auto: 101
12	Cask Point 12	27.5, 59.5	Auto: 101
13	Cask Point 13	27.5, 75.5	Auto: 101
14	Cask Point 14	27.5, 91.5	Auto: 101
15	Cask Point 15	27.5, 107.5	Auto: 101
16	Cask Point 16	27.5, 123.5	Auto: 101
17	Cask Point 17	43.5, 11.5	Auto: 101
18	Cask Point 18	43.5, 27.5	Auto: 101
19	Cask Point 19	43.5, 43.5	Auto: 101
20	Cask Point 20	43.5, 59.5	Auto: 101
21	Cask Point 21	43.5, 75.5	Auto: 101
22	Cask Point 22	43.5, 91.5	Auto: 101
23	Cask Point 23	43.5, 107.5	Auto: 101
24	Cask Point 24	43.5, 123.5	Auto: 101
25	Footing Bottom Left	0, 0	Auto: 101
26	Footing Bottom Right	55, 0	Auto: 101
27	Footing Top Left	0, 135	Auto: 101
28	Footing Top Right	55, 135	Auto: 101
29	Footing Center	27.5, 67.5	Auto: 101
30	Query Point 30	11.973, 99.283	Auto: 101
31	Query Point 31		Auto: 101
32	Query Point 32	2.5, 36.5	Auto: 101
33	Query Point 33	52.5, 36.5	Auto: 101
34	Query Point 34	2.5, 104	Auto: 101
35	Query Point 35		Auto: 101
36	Query Point 36	27.808, 51.568	Auto: 101
37	Query Point 37	35.388, 35.978	Auto: 101
38	Query Point 38	27.5, 2.5	Auto: 101

Field Point Grid

Number of points 1556 Expansion Factor 1

Grid Coordinates

X [ft]	Y [ft]
122.5	202.5
122.5	-67.5
-67.5	-67.5
-67.5	202.5

Overall Pad Layout from WCS CISF Safety Analysis Report

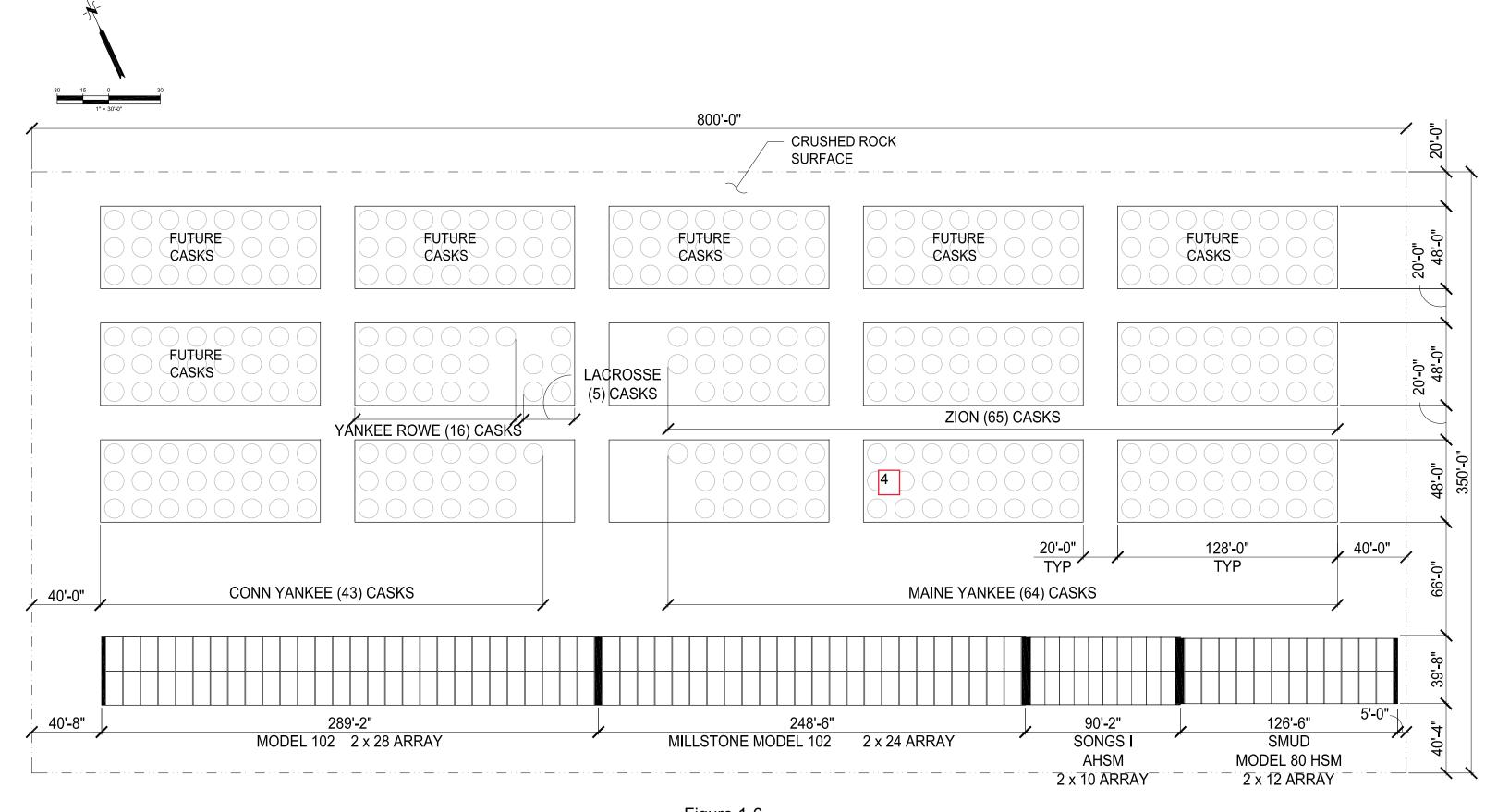


Figure 1-6 WCS CISF Storage Pad Layout

Four Pad Settle3 Inputs and Results

Soil Column Based on Average Shear Wave Velocity Measurements

- Interpreted from all explorations and collaboration between GEOS and DBA.
- Top 100ft contains 7 stratum in 5 materials identified by GEOS
- 100ft-600ft (approx. location of incompressible layers with sharp contrast of velocity) contains 3 average velocity values for 6 layers identified in the soil column provided by GEOS

Top (ft)	Bottom (ft)	Avg. Layer Shear Wave Velocity (ft/s)	Layer Material (From GEOS column)	Model Layer Name
20	25	1530	Caliche - Very Hard	Caliche Hard 1
25	35	1900	Caliche - Very Hard	Caliche Hard 2
35	50	2290	Ogallala - Sand with Gravel	Ogallala 1
50	80	1840	Ogallala - Sand with Gravel	Ogallala 2
80	100	2790	Ogallala - Sand with Gravel	Ogallala 3
100	130	2300	Dockum - Claystone and Siltstone	Dockum Claystone/Siltstone
130	230	2755	Claystone and Siltstone	Claystone and Siltstone
230	275	2755	Dockum - Clay/Claystone	Dockum Clay/Claystone1
275	300	2755	Dockum - Silty Sands	Dockum Silty/Sands
300	360	2755	Dockum - Clay/Claystone	Dockum Clay/Claystone 2
360	600	3115	Dockum - Clay/Claystone	Dockum Clay/Claystone 3

Top (ft)	Bottom (ft)	Avg. Layer Shear Wave Velocity (ft/s)	Unit weight (pcf)	Poisson's Ratio	Gmax (psf)
20	25	1530	125	0.33	9,087,345
25	35	1900	125	0.33	14,013,975
35	50	2290	125	0.33	20,357,531
50	80	1840	130	0.33	13,668,571
80	100	2790	130	0.33	31,426,491
100	130	2300	130	0.33	21,357,143
130	230	2755	130	0.33	30,642,958
230	275	2755	130	0.33	30,642,958
275	300	2755	130	0.33	30,642,958
300	360	2755	130	0.33	30,642,958
360	600	3115	130	0.33	39,174,511

Use Soil Column from Pad Analysis with bearing pressures from Configuration 1 Iterations (INPUT 5 final iteration).

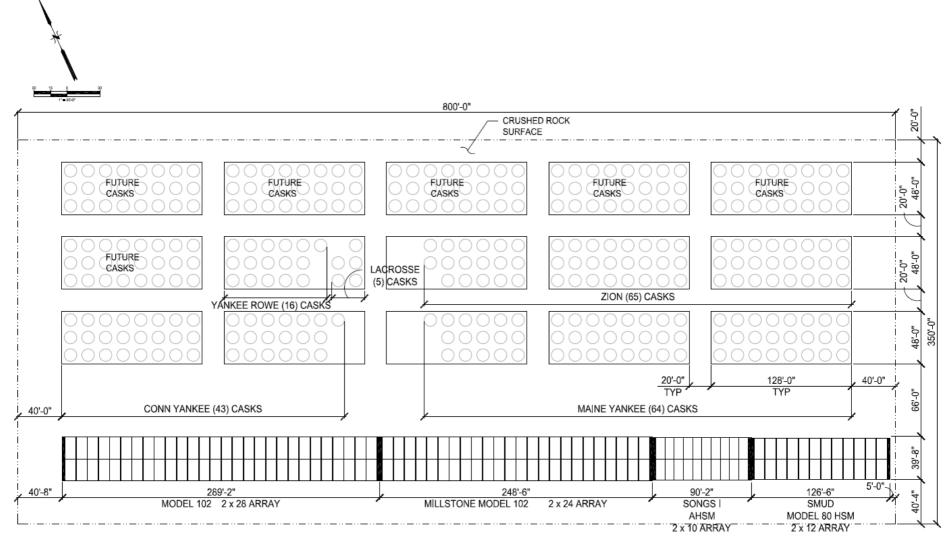
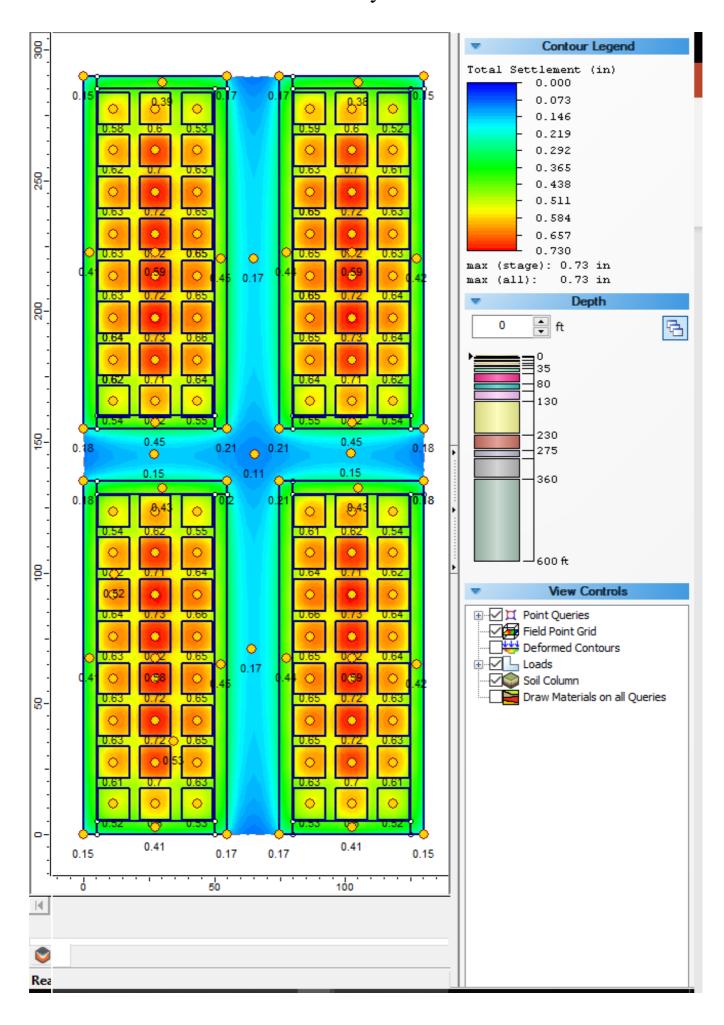
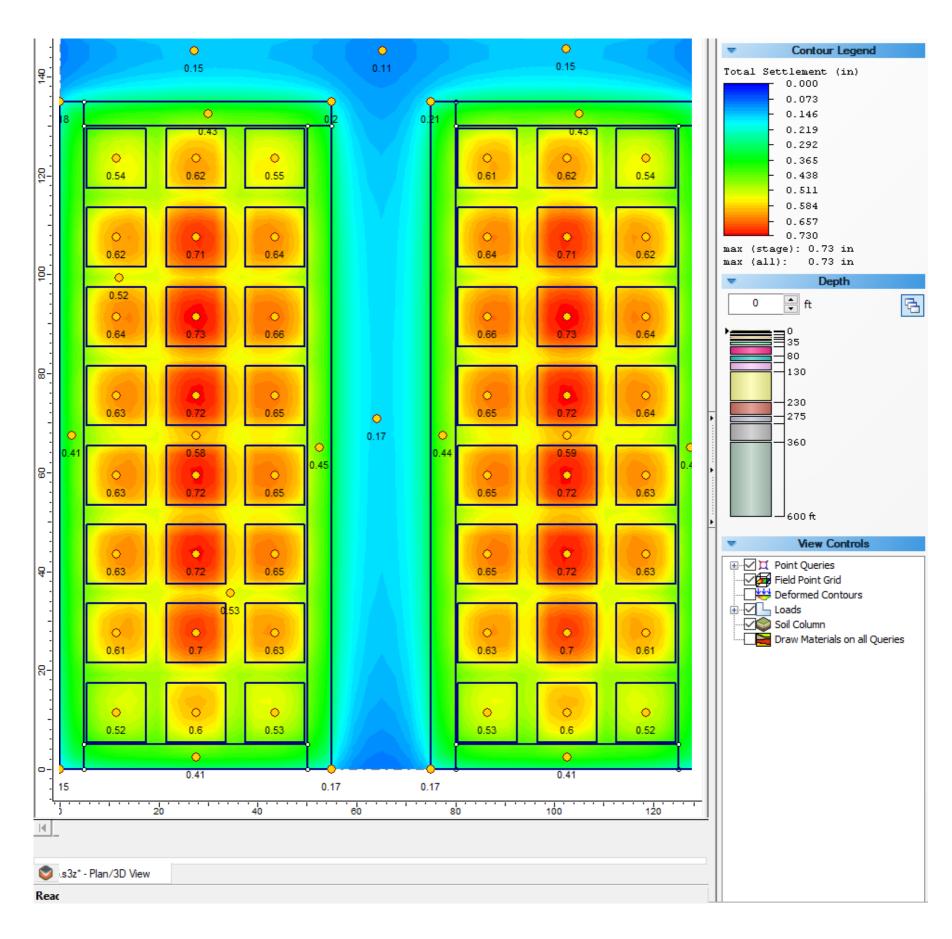



Figure 1-6


WCS Consolidated Interim Storage Facility System Safety Analysis Report, Revision 2, June 8, 2018.

Total settlement check when four pads are fully loaded simultaneously

Stress overlap reduces differential settlement between center and corners of footings.

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF Storage Pads Four Pad 200215.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.726985
Loading Stress ZZ [ksf]	0	4.49

Loads

1. Polygonal Load: "Zone 29"

Label Zone 29
Load Type Flexible
Area of Load 7425 ft²
Load 1.81 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
0	0
55	0
55	135
0	135

2. Polygonal Load: "Zone 26"

Label Zone 26
Load Type Flexible
Area of Load 675 ft²
Load 0.71 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
0	0
5	0
5	135
0	135

3. Polygonal Load: "Zone 27"

LabelZone 27Load TypeFlexibleArea of Load250 ft²Load0.7 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
55	130
55	135
5	135
5	130

4. Polygonal Load: "Zone 28"

Label Zone 28
Load Type Flexible
Area of Load 650 ft²
Load 0.75 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
50	0
55	0
55	130
50	130

5. Polygonal Load: "Zone 25"

Label Zone 25
Load Type Flexible
Area of Load 225 ft²
Load 0.82 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5	0
50	0
50	5
5	5

6. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	5.5
17.5	5.5
17.5	17.5
5.5	17.5

7. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	5.5
49.5	5.5
49.5	17.5
37.5	17.5

8. Rectangular Load: "Zone 24"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	117.5
49.5	117.5
49.5	129.5
37.5	129.5

9. Rectangular Load: "Zone 8"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
5.5	117.5
17.5	117.5
17.5	129.5
5.5	129.5

10. Rectangular Load: "Zone 23"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
37.5	101.5
49.5	101.5
49.5	113.5
37.5	113.5

11. Rectangular Load: "Zone 22"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	85.5
49.5	85.5
49.5	97.5
37.5	97.5

12. Rectangular Load: "Zone 21"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	69.5
49.5	69.5
49.5	81.5
37.5	81.5

13. Rectangular Load: "Zone 20"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.1 ksfDepth0 ftInstallation StageStage 1

X [ft]	Y [ft]
37.5	53.5
49.5	53.5
49.5	65.5
37.5	65.5

14. Rectangular Load: "Zone 19"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	37.5
49.5	37.5
49.5	49.5
37.5	49.5

15. Rectangular Load: "Zone 18"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	21.5
49.5	21.5
49.5	33.5
37.5	33.5

16. Rectangular Load: "Zone 16"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	117.5
33.5	117.5
33.5	129.5
21.5	129.5

17. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	101.5
17.5	101.5
17.5	113.5
5.5	113.5

18. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	85.5
17.5	85.5
17.5	97.5
5.5	97.5

19. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	69.5
17.5	69.5
17.5	81.5
5.5	81.5

20. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	53.5
17.5	53.5
17.5	65.5
5.5	65.5

21. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
5.5	37.5
17.5	37.5
17.5	49.5
5.5	49.5

22. Rectangular Load: "Zone 2"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	21.5
17.5	21.5
17.5	33.5
5.5	33.5

23. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	5.5
33.5	5.5
33.5	17.5
21.5	17.5

24. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.58 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	21.5
33.5	21.5
33.5	33.5
21.5	33.5

25. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	37.5
33.5	37.5
33.5	49.5
21.5	49.5

26. Rectangular Load: "Zone 12"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	53.5
33.5	53.5
33.5	65.5
21.5	65.5

27. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	69.5
33.5	69.5
33.5	81.5
21.5	81.5

28. Rectangular Load: "Zone 14"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	85.5
33.5	85.5
33.5	97.5
21.5	97.5

29. Rectangular Load: "Zone 15"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.57 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	101.5
33.5	101.5
33.5	113.5
21.5	113.5

30. Polygonal Load: "Zone 26"

Label Zone 26
Load Type Flexible
Area of Load 675 ft²
Load 0.71 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
75	0
80	0
80	135
75	135

31. Polygonal Load: "Zone 27"

Label Zone 27
Load Type Flexible
Area of Load 250 ft²
Load 0.7 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
130	130
130	135
80	135
80	130

32. Polygonal Load: "Zone 28"

Label Zone 28
Load Type Flexible
Area of Load 650 ft²
Load 0.75 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
125	0
130	0
130	130
125	130

33. Polygonal Load: "Zone 25"

Label Zone 25
Load Type Flexible
Area of Load 225 ft²
Load 0.82 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
80	0
125	0
125	5
80	5

34. Polygonal Load: "Zone 29"

Label Zone 29
Load Type Flexible
Area of Load 7425 ft²
Load 1.81 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
75	0
130	0
130	135
75	135

35. Polygonal Load: "Zone 29"

Label Zone 29
Load Type Flexible
Area of Load 7425 ft²
Load 1.81 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
0	155
55	155
55	290
0	290

36. Polygonal Load: "Zone 29"

Label Zone 29
Load Type Flexible
Area of Load 7425 ft²
Load 1.81 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
75	155
130	155
130	290
75	290

37. Polygonal Load: "Zone 26"

Label Zone 26
Load Type Flexible
Area of Load 675 ft²
Load 0.71 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
75	155
80	155
80	290
75	290

38. Polygonal Load: "Zone 26"

Label Zone 26
Load Type Flexible
Area of Load 675 ft²
Load 0.71 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

	X [ft]	Y [ft]
	0	155
	5	155
	5	290
I	0	290

39. Polygonal Load: "Zone 28"

Label Zone 28
Load Type Flexible
Area of Load 650 ft²
Load 0.75 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
125	155
130	155
130	285
125	285

40. Polygonal Load: "Zone 27"

Label Zone 27
Load Type Flexible
Area of Load 250 ft²
Load 0.7 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
130	285
130	290
80	290
80	285

41. Polygonal Load: "Zone 27"

Label Zone 27
Load Type Flexible
Area of Load 250 ft²
Load 0.7 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
55	285
55	290
5	290
5	285

42. Polygonal Load: "Zone 28"

Label Zone 28
Load Type Flexible
Area of Load 650 ft²
Load 0.75 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
50	155
55	155
55	285
50	285

43. Polygonal Load: "Zone 25"

Label Zone 25
Load Type Flexible
Area of Load 225 ft²
Load 0.82 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
80	155
125	155
125	160
80	160

44. Polygonal Load: "Zone 25"

Label Zone 25
Load Type Flexible
Area of Load 225 ft²
Load 0.82 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
5	155
50	155
50	160
5	160

45. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
80.5	5.5
92.5	5.5
92.5	17.5
80.5	17.5

46. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	159.5
92.5	159.5
92.5	171.5
80.5	171.5

47. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	159.5
17.5	159.5
17.5	171.5
5.5	171.5

48. Rectangular Load: "Zone 2"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	21.5
92.5	21.5
92.5	33.5
80.5	33.5

49. Rectangular Load: "Zone 2"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	175.5
92.5	175.5
92.5	187.5
80.5	187.5

50. Rectangular Load: "Zone 2"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.09 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
5.5	175.5
17.5	175.5
17.5	187.5
5.5	187.5

51. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	191.5
17.5	191.5
17.5	203.5
5.5	203.5

52. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	191.5
92.5	191.5
92.5	203.5
80.5	203.5

53. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
80.5	37.5
92.5	37.5
92.5	49.5
80.5	49.5

54. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	207.5
17.5	207.5
17.5	219.5
5.5	219.5

55. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	207.5
92.5	207.5
92.5	219.5
80.5	219.5

56. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
80.5	53.5
92.5	53.5
92.5	65.5
80.5	65.5

57. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	223.5
17.5	223.5
17.5	235.5
5.5	235.5

58. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	223.5
92.5	223.5
92.5	235.5
80.5	235.5

59. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft] Y [ft] 5.5 239.5 17.5 239.5 17.5 251.5 5.5 251.5

60. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	239.5
92.5	239.5
92.5	251.5
80.5	251.5

61. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	255.5
17.5	255.5
17.5	267.5
5.5	267.5

62. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	255.5
92.5	255.5
92.5	267.5
80.5	267.5

63. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	271.5
17.5	271.5
17.5	283.5
5.5	283.5

64. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	271.5
92.5	271.5
92.5	283.5
80.5	283.5

65. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	5.5
108.5	5.5
108.5	17.5
96.5	17.5

66. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	69.5
92.5	69.5
92.5	81.5
80.5	81.5

67. Rectangular Load: "Zone 6"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
80.5	85.5
92.5	85.5
92.5	97.5
80.5	97.5

68. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	101.5
92.5	101.5
92.5	113.5
80.5	113.5

69. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
80.5	117.5
92.5	117.5
92.5	129.5
80.5	129.5

70. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.58 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
96.5	21.5
108.5	21.5
108.5	33.5
96.5	33.5

71. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.58 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	175.5
108.5	175.5
108.5	187.5
96.5	187.5

72. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.58 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	175.5
33.5	175.5
33.5	187.5
21.5	187.5

73. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
21.5	159.5
33.5	159.5
33.5	171.5
21.5	171.5

74. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	159.5
108.5	159.5
108.5	171.5
96.5	171.5

75. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	191.5
33.5	191.5
33.5	203.5
21.5	203.5

76. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	191.5
108.5	191.5
108.5	203.5
96.5	203.5

77. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	37.5
108.5	37.5
108.5	49.5
96.5	49.5

78. Rectangular Load: "Zone 12"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.63 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
96.5	53.5
108.5	53.5
108.5	65.5
96.5	65.5

79. Rectangular Load: "Zone 12"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	207.5
108.5	207.5
108.5	219.5
96.5	219.5

80. Rectangular Load: "Zone 12"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	207.5
33.5	207.5
33.5	219.5
21.5	219.5

81. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
96.5	69.5
108.5	69.5
108.5	81.5
96.5	81.5

82. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	223.5
108.5	223.5
108.5	235.5
96.5	235.5

83. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.63 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	223.5
33.5	223.5
33.5	235.5
21.5	235.5

84. Rectangular Load: "Zone 14"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
96.5	85.5
108.5	85.5
108.5	97.5
96.5	97.5

85. Rectangular Load: "Zone 14"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	239.5
108.5	239.5
108.5	251.5
96.5	251.5

86. Rectangular Load: "Zone 14"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.68 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	239.5
33.5	239.5
33.5	251.5
21.5	251.5

87. Rectangular Load: "Zone 15"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.57 ksf
Depth 0 ft
Installation Stage 1

X [ft] Y [ft] 21.5 255.5 33.5 255.5 33.5 267.5 21.5 267.5

88. Rectangular Load: "Zone 15"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.57 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	255.5
108.5	255.5
108.5	267.5
96.5	267.5

89. Rectangular Load: "Zone 15"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.57 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	101.5
108.5	101.5
108.5	113.5
96.5	113.5

90. Rectangular Load: "Zone 16"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	271.5
33.5	271.5
33.5	283.5
21.5	283.5

91. Rectangular Load: "Zone 16"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
96.5	271.5
108.5	271.5
108.5	283.5
96.5	283.5

92. Rectangular Load: "Zone 24"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load1.51 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
37.5	271.5
49.5	271.5
49.5	283.5
37.5	283.5

93. Rectangular Load: "Zone 24"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
112.5	271.5
124.5	271.5
124.5	283.5
112.5	283.5

94. Rectangular Load: "Zone 24"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	117.5
124.5	117.5
124.5	129.5
112.5	129.5

95. Rectangular Load: "Zone 16"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.04 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
96.5	117.5
108.5	117.5
108.5	129.5
96.5	129.5

96. Rectangular Load: "Zone 23"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	101.5
124.5	101.5
124.5	113.5
112.5	113.5

97. Rectangular Load: "Zone 23"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	255.5
124.5	255.5
124.5	267.5
112.5	267.5

98. Rectangular Load: "Zone 23"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
37.5	255.5
49.5	255.5
49.5	267.5
37.5	267.5

99. Rectangular Load: "Zone 22"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	85.5
124.5	85.5
124.5	97.5
112.5	97.5

100. Rectangular Load: "Zone 22"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	239.5
124.5	239.5
124.5	251.5
112.5	251.5

101. Rectangular Load: "Zone 22"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
37.5	239.5
49.5	239.5
49.5	251.5
37.5	251.5

102. Rectangular Load: "Zone 21"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	69.5
124.5	69.5
124.5	81.5
112.5	81.5

103. Rectangular Load: "Zone 21"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	223.5
124.5	223.5
124.5	235.5
112.5	235.5

104. Rectangular Load: "Zone 21"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	223.5
49.5	223.5
49.5	235.5
37.5	235.5

105. Rectangular Load: "Zone 20"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	53.5
124.5	53.5
124.5	65.5
112.5	65.5

106. Rectangular Load: "Zone 20"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.1 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
112.5	207.5
124.5	207.5
124.5	219.5
112.5	219.5

107. Rectangular Load: "Zone 20"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.1 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	207.5
49.5	207.5
49.5	219.5
37.5	219.5

108. Rectangular Load: "Zone 19"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
112.5	37.5
124.5	37.5
124.5	49.5
112.5	49.5

109. Rectangular Load: "Zone 19"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
112.5	191.5
124.5	191.5
124.5	203.5
112.5	203.5

110. Rectangular Load: "Zone 19"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.16 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	191.5
49.5	191.5
49.5	203.5
37.5	203.5

111. Rectangular Load: "Zone 18"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	175.5
49.5	175.5
49.5	187.5
37.5	187.5

112. Rectangular Load: "Zone 18"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
112.5	175.5
124.5	175.5
124.5	187.5
112.5	187.5

113. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	159.5
49.5	159.5
49.5	171.5
37.5	171.5

114. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

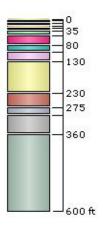
X [ft]	Y [ft]
112.5	159.5
124.5	159.5
124.5	171.5
112.5	171.5

115. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 1.51 ksf
Depth 0 ft
Installation Stage Stage 1

X [ft]	Y [ft]
112.5	5.5
124.5	5.5
124.5	17.5
112.5	17.5

116. Rectangular Load: "Zone 18"


Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.09 ksf
Depth 0 ft
Installation Stage 1

X [ft]	Y [ft]
112.5	21.5
124.5	21.5
124.5	33.5
112.5	33.5

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft3]	0.13	0.13
К0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

Point #	Query Point Name	(X,Y) Location	Number of Divisions
1	Cask Point 1	11.5, 11.5	Auto: 101
2	Cask Point 2	11.5, 27.5	Auto: 101
3	Cask Point 3	11.5, 43.5	Auto: 101
4	Cask Point 4	11.5, 59.5	Auto: 101
5	Cask Point 5	11.5, 75.5	Auto: 101
6	Cask Point 6	11.5, 91.5	Auto: 101
7	Cask Point 7	11.5, 107.5	Auto: 101
8	Cask Point 8	11.5, 123.5	Auto: 101
9	Cask Point 9	27.5, 11.5	Auto: 101
10	Cask Point 10	27.5, 27.5	Auto: 101
11	Cask Point 11	27.5, 43.5	Auto: 101
12	Cask Point 12	27.5, 59.5	Auto: 101
13	Cask Point 13	27.5, 75.5	Auto: 101
14	Cask Point 14	27.5, 91.5	Auto: 101
15	Cask Point 15	27.5, 107.5	Auto: 101
16	Cask Point 16	27.5, 123.5	Auto: 101
17	Cask Point 17	43.5, 11.5	Auto: 101
18	Cask Point 18	43.5, 27.5	Auto: 101
19	Cask Point 19	43.5, 43.5	Auto: 101
20	Cask Point 20	43.5, 59.5	Auto: 101
21	Cask Point 21	43.5, 75.5	Auto: 101
22	Cask Point 22	43.5, 91.5	Auto: 101
23	Cask Point 23	43.5, 107.5	Auto: 101
24	Cask Point 24	43.5, 123.5	Auto: 101
25	Pad 1 Bottom Left	0, 0	Auto: 101
26	Pad 1 Bottom Right	55, 0	Auto: 101
27	Pad 1 Top Left	0, 135	Auto: 101
28	Pad 1 Top Right	55, 135	Auto: 101
29	Pad 1 Center	27.5, 67.5	Auto: 101
30	Query Point 30	11.973, 99.283	Auto: 101
31	Pad 1 Top Edge	30, 132.5	Auto: 101
32	Pad 1 Right Edge	52.5, 65	Auto: 101
33	Query Point 33	34.543, 35.669	Auto: 101
34	Pad 1 Bottom Edge	27.5, 2.5	Auto: 101
35	Pad 2 Cask 1	11.5, 165.5	Auto: 101
36	Query Point 36	11.5, 181.5	Auto: 101
37	Query Point 37	11.5, 197.5	Auto: 101
38	Pad 2 Cask 4	11.5, 213.5	Auto: 101
39	Pad 2 Cask 5	11.5, 229.5	Auto: 101
40	Pad 2 Cask 6	11.5, 245.5	Auto: 101
41	Pad 2 Cask 7	11.5, 261.5	Auto: 101
42	Pad 2 Cask 8	11.5, 277.5	Auto: 101
43	Pad 2 Cask 9	27.5, 165.5	Auto: 101
44	Pad 2 Cask 10	27.5, 181.5	Auto: 101
45	Pad 2 Cask 11	27.5, 197.5	Auto: 101
46	Pad 2 Cask 12	27.5, 213.5	Auto: 101
47	Pad 2 Cask 13	27.5, 229.5	Auto: 101
48	Pad 2 Cask 14	27.5, 245.5	Auto: 101
49	Pad 2 Cask 15	27.5, 261.5	Auto: 101
50	Pad 2 Cask 16	27.5, 277.5	Auto: 101
51	Pad 2 Cask 17	43.5, 165.5	Auto: 101
52	Pad 2 Cask 18	43.5, 181.5	Auto: 101
53	Pad 2 Cask 19	43.5, 197.5	Auto: 101
54	Pad 2 Cask 20	43.5, 213.5	Auto: 101
55	Query Point 55	43.5, 229.5	Auto: 101
56	Pad 2 Cask 21	43.5, 229.5	Auto: 101
57	Pad 2 Cask 22	43.5, 245.5	Auto: 101
		= =, = : : : •	

	2.01100		
58	Pad 2 Cask 23	43.5, 261.5	Auto: 101
59	Pad 2 Cask 24	43.5, 277.5	Auto: 101
60	Pad 4 Cask 1	86.5, 11.5	Auto: 101
61	Query Point 61	11.5, 181.5	Auto: 101
62	Pad 2 Cask 3	11.5, 197.5	Auto: 101
63	Pad 2 Cask 2	11.5, 181.5	Auto: 101
64	Pad 4 Cask 2	86.5, 27.5	Auto: 101
65	Pad 4 Cask 3	86.5, 43.5	Auto: 101
66	Pad 4 Cask 4	86.5, 59.5	Auto: 101
67	Pad 4 Cask 6	86.5, 91.5	Auto: 101
68	Pad 4 Cask 5	86.5, 75.5	Auto: 101
69	Pad 4 Cask 7	86.5, 107.5	Auto: 101
70	Pad 4 Cask 8	86.5, 123.5	Auto: 101
71	Pad 4 Cask 9	102.5, 11.5	Auto: 101
72	Pad 4 Cask 10	102.5, 27.5	Auto: 101
73	Pad 4 Cask 11	102.5, 43.5	Auto: 101
74	Pad 4 Cask 12	102.5, 59.5	Auto: 101
75	Pad 4 Cask 13	102.5, 75.5	Auto: 101
76	Pad 4 Cask 14	102.5, 91.5	Auto: 101
77	Pad 4 Cask 15	102.5, 107.5	Auto: 101
78	Pad 4 Cask 16	102.5, 123.5	Auto: 101
79	Pad 4 Cask 17	118.5, 11.5	Auto: 101
80	Pad 4 Cask 18	118.5, 27.5	Auto: 101
81	Pad 4 Cask 20	118.5, 59.5	Auto: 101
82	Pad 4 Cask 19	118.5, 43.5	Auto: 101
83	Pad 4 Cask 21	118.5, 75.5	Auto: 101
84	Pad 4 Cask 22	118.5, 91.5	Auto: 101
85	Pad 4 Cask 23	118.5, 107.5	Auto: 101
86	Pad 4 Cask 24	118.5, 123.5	Auto: 101
87	Pad 3 Cask 1	86.5, 165.5	Auto: 101
88	Pad 3 Cask 2	86.5, 181.5	Auto: 101
89	Pad 3 Cask 3	86.5, 197.5	Auto: 101
90	Query Point 90	86.5, 213.5	Auto: 101
91	Pad 3 Cask 4	86.5, 213.5	Auto: 101
92	Query Point 92	86.5, 245.5	Auto: 101
93	Pad 3 Cask 6	86.5, 245.5	Auto: 101
94	Pad 3 Cask 5	86.5, 229.5	Auto: 101
95	Pad 3 Cask 7	86.5, 261.5	Auto: 101
96	Pad 3 Cask 8	86.5, 277.5	Auto: 101
97	Pad 3 Cask 9	102.5, 165.5	Auto: 101
98	Pad 3 Cask 11	102.5, 197.5	Auto: 101
99	Pad 3 Cask 10	102.5, 181.5	Auto: 101
100	Pad 3 Cask 12	102.5, 213.5	Auto: 101
101	Pad 3 Cask 13	102.5, 229.5	Auto: 101
102	Pad 3 Cask 14	102.5, 245.5	Auto: 101
103	Pad 3 Cask 15	102.5, 261.5	Auto: 101
104	Pad 3 Cask 16	102.5, 277.5	Auto: 101
105	Pad 3 Cask 17 Pad 3 Cask 18	118.5, 165.5	Auto: 101
106		118.5, 181.5	Auto: 101
107	Pad 3 Cask 19 Pad 3 Cask 20	118.5, 197.5	Auto: 101
108	Pad 3 Cask 20	118.5, 213.5	Auto: 101 Auto: 101
109		118.5, 229.5	
110 111	Pad 3 Cask 22 Pad 3 Cask 23	118.5, 245.5 118.5, 261.5	Auto: 101 Auto: 101
112	Pad 3 Cask 23 Pad 3 Cask 24		Auto: 101
113	Pad 3 Cask 24 Pad 1 Left edge	118.5, 277.5 2 5, 67.5	Auto: 101
114	Query Point 114	2.5, 67.5 27.5, 157.5	Auto: 101
115	Query Point 114 Query Point 115	2.5, 137.5	Auto: 101
116	Query Point 116	52.5, 222.5 52.5, 220	Auto: 101
117	Query Point 117	30, 287.5	Auto: 101
118	Query Point 118	105, 287.5	Auto: 101
1 110	Query Fornit F10	100, 201.0	Auto. 101

119	Query Point 119	127.5, 220	Auto: 101
120	Query Point 120	77.5, 222.5	Auto: 101
121	Query Point 121	102.5, 157.5	Auto: 101
122	Query Point 122	105, 132.5	Auto: 101
123	Query Point 123	102.5, 2.5	Auto: 101
124	Query Point 124	77.5, 67.5	Auto: 101
125	Query Point 125	127.5, 65	Auto: 101
126	Query Point 126	130, 135	Auto: 101
127	Pad 4 Top Left	75, 135	Auto: 101
128	Pad 3 Bottom Left	75, 155	Auto: 101
129	Pad 3 Bottom Right	130, 155	Auto: 101
130	Pad 3 Top Left	75, 290	Auto: 101
131	Pad 3 Top Right	130, 290	Auto: 101
132	Pad 2 Top Left	0, 290	Auto: 101
133	Pad 2 Top Right	55, 290	Auto: 101
134	Pad 2 Bottom Left	0, 155	Auto: 101
135	Pad 2 Bottom Right	55, 155	Auto: 101
136	Pad 4 Bottom Left	75, 0	Auto: 101
137	Pad 4 Bottom Right	130, 0	Auto: 101
138	Pad 4 Top Right	130, 135	Auto: 101
139	Center of Pads	65.278, 145.171	Auto: 89
140	Between Pad 1 and Pad 2	27.143, 145.171	Auto: 89
141	Between Pad 3 and Pad 4	102.269, 145.552	Auto: 89
142	Between Pad 1 and Pad 4	64.134, 70.808	Auto: 89
143	Between Pad 2 and Pad 3	64.897, 220.297	Auto: 89
144	Pad 2 Center	27.5, 222.5	Auto: 101
145	Pad 3 Center	102.5, 222.5	Auto: 101
146	Pad 4 Center	102.5, 67.5	Auto: 101

Field Point Grid

Number of points 7876 Expansion Factor 1

Grid Coordinates

X [ft]	Y [ft]
197.5	357.5
197.5	-67.5
-67.5	-67.5
-67.5	357.5

Cask Handling Building Settle3 Analysis, Inputs and Results

Cask Handling Building: Two-bay Category B steel struction measuring approximately 175feet by 193 feet in plan dimension with a height of 72 feet.

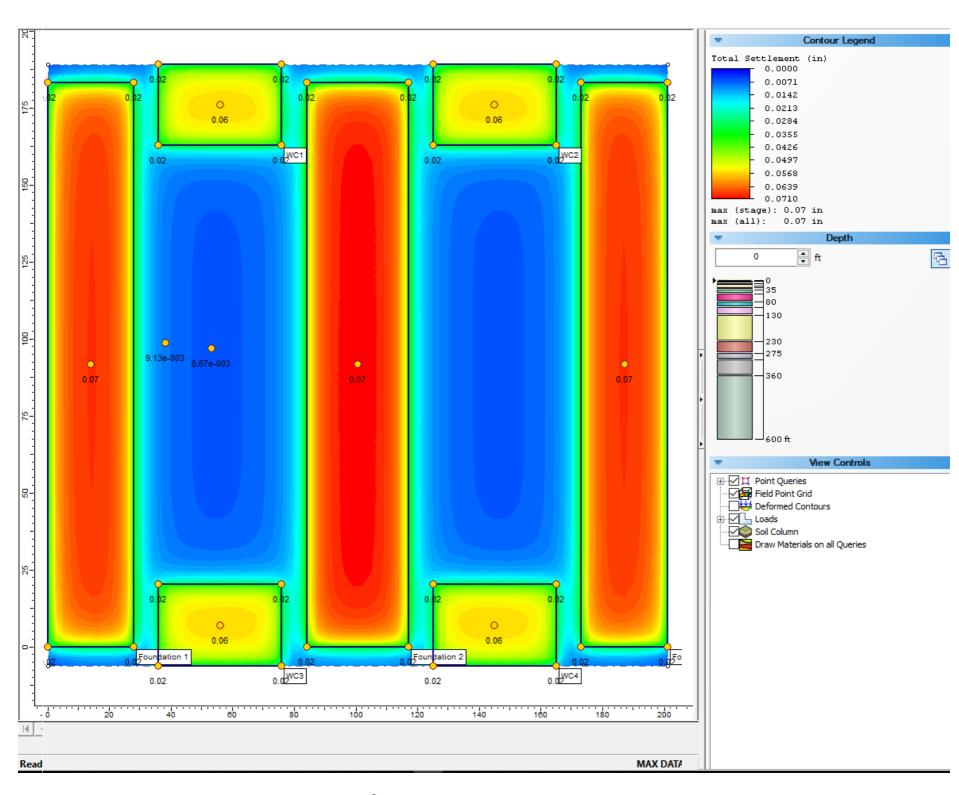
SERVICE LEVEL MAXIMUM BEARING PRESSURES

Load Combination	Foundations for Main Columns		Foundations for Wind Columns	
Load Combination	Gross Bearing Pressure (ksf) Net Bearing Pressure (ksf)		Bearing Pressure (ksf)	Net Bearing Pressure (ksf)
Dead 1.0D	1.79	0.66	1.67	0.55
Operating Wind 1.0D + 0.6W	2.59	1.47	1.85	0.73
Seismic 1.0D + 0.7E	3.34	2.21	1.86	0.74

LIMIT STATE MAXIMUM BEARING PRESSURES

Load Combination	Foundations for Main Columns		Foundations for Wind Columns	
Load Combination	Gross Bearing Pressure (ksf) Net Bearing Pressure (ksf)		Bearing Pressure (ksf)	Net Bearing Pressure (ksf)
Tornado 1.2D + 1.0W _t	4.67	2.51	5.44	4.32
Seismic 1.2D + 1.0E	4.21	3.09	2.23	1.11

Use Soil Column from Pad Analysis with bottom of footing 10ft below GS.


Soil Column Based on Average Shear Wave Velocity Measurements

- Interpreted from all explorations and collaboration between GEOS and DBA.
- Top 100ft contains 7 stratum in 5 materials identified by GEOS
- 100ft-600ft (approx. location of incompressible layers with sharp contrast of velocity) contains 3 average velocity values for 6 layers identified in the soil column provided by GEOS

Top (ft)	Bottom (ft)	Avg. Layer Shear Wave Velocity (ft/s)	Layer Material (From GEOS column)	Model Layer Name
20	25	1530	Caliche - Very Hard	Caliche Hard 1
25	35	1900	Caliche - Very Hard	Caliche Hard 2
35	50	2290	Ogallala - Sand with Gravel	Ogallala 1
50	80	1840	Ogallala - Sand with Gravel	Ogallala 2
80	100	2790	Ogallala - Sand with Gravel	Ogallala 3
100	130	2300	Dockum - Claystone and Siltstone	Dockum Claystone/Siltstone
130	230	2755	Claystone and Siltstone	Claystone and Siltstone
230	275	2755	Dockum - Clay/Claystone	Dockum Clay/Claystone1
275	300	2755	Dockum - Silty Sands	Dockum Silty/Sands
300	360	2755	Dockum - Clay/Claystone	Dockum Clay/Claystone 2
360	600	3115	Dockum - Clay/Claystone	Dockum Clay/Claystone 3

Top (ft)	Bottom (ft)	Avg. Layer Shear Wave Velocity (ft/s)	Unit weight (pcf)	Poisson's Ratio	Gmax (psf)
20	25	1530	125	0.33	9,087,345
25	35	1900	125	0.33	14,013,975
35	50	2290	125	0.33	20,357,531
50	80	1840	130	0.33	13,668,571
80	100	2790	130	0.33	31,426,491
100	130	2300	130	0.33	21,357,143
130	230	2755	130	0.33	30,642,958
230	275	2755	130	0.33	30,642,958
275	300	2755	130	0.33	30,642,958
300	360	2755	130	0.33	30,642,958
360	600	3115	130	0.33	39,174,511

Net Bearing for DL Case per AECOM Request (0.660ksf on Foundations 1-3 and 0.550ksf on Wind Column Footings). 0.10" or less reported at foundation centers. Likely outside of the reasonable bounds of the calculation. Recommend considering 0.25" or less

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF CHB 200214 Net DL Only.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 17.0959 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.0706837
Loading Stress ZZ [ksf]	0	0.66002

Loads

1. Polygonal Load: "Foundation 1"

Label Foundation 1
Load Type Flexible
Area of Load 5126.8 ft²
Load 0.66 ksf
Depth 10 ft
Installation Stage Stage 1

X [ft]	Y [ft]
0	0
28	0
28	183.1
0	183.1

2. Polygonal Load: "Foundation 2"

LabelFoundation 2Load TypeFlexibleArea of Load6042.3 ft²Load0.66 ksfDepth10 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
84	0
117	0
117	183.1
84	183.1

3. Polygonal Load: "Foundation 3"

LabelFoundation 3Load TypeFlexibleArea of Load5126.8 ft²Load0.66 ksfDepth10 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
173.1	0
201.1	0
201.1	183.1
173.1	183.1

4. Polygonal Load: "WC3"

Label WC3
Load Type Flexible
Area of Load 1064 ft²
Load 0.55 ksf
Depth 10 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
76	-6.3
76	20.3
36	20.3
36	-6.3

5. Polygonal Load: "WC1"

Label	WC1
Load Type	Flexible
Area of Load	1052 ft ²
Load	0.55 ksf
Depth	10 ft
Installation Stage	Stage 1

Coordinates

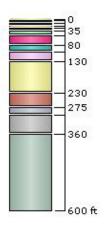
X [ft]	Y [ft]
76	162.8
76	189.1
36	189.1
36	162.8

6. Polygonal Load: "WC4"

Label WC4
Load Type Flexible
Area of Load 1064 ft²
Load 0.55 ksf
Depth 10 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
165	-6.3
165	20.3
125	20.3
125	-6.3


7. Polygonal Load: "WC2"

Label WC2
Load Type Flexible
Area of Load 1052 ft²
Load 0.55 ksf
Depth 10 ft
Installation Stage 1

Y [ft]
162.8
189.1
189.1
162.8

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	8.0

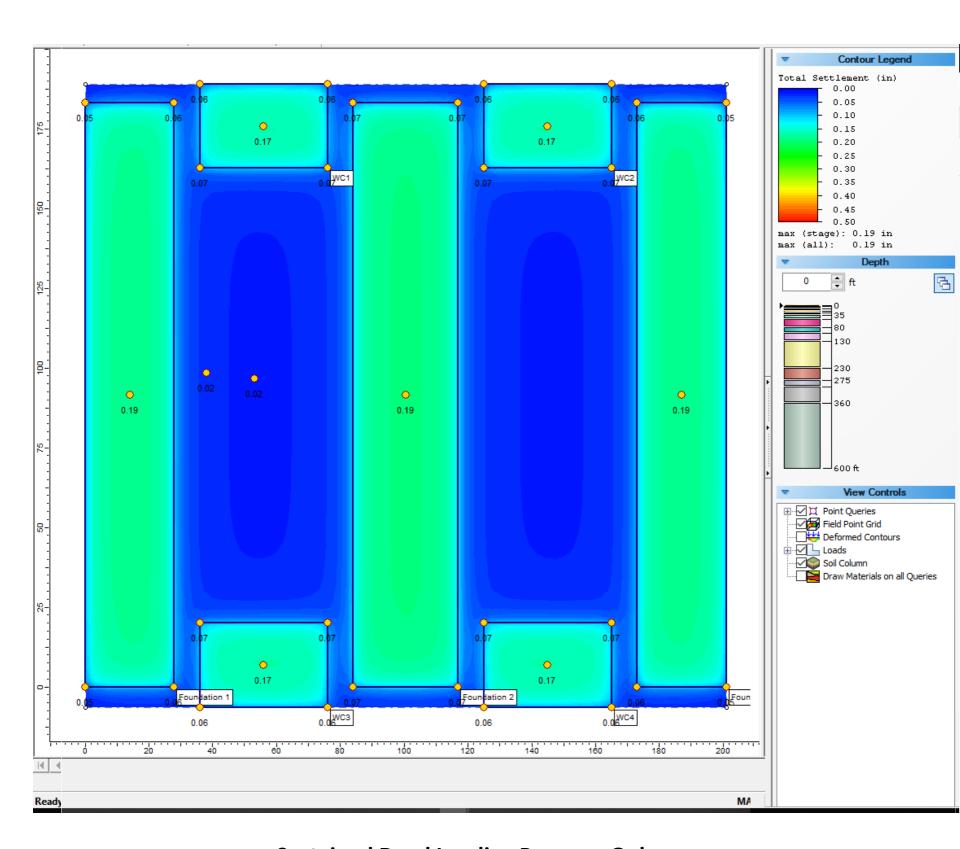
Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft ³]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

Point #	Query Point Name	(X Y) Location	Number of Divisions
1	Query Point 1	0, 0	Auto: 101
2	Query Point 2	0, 183.1	Auto: 101
3	Query Point 3	28, 183.1	Auto: 101
4	Query Point 4	28, 0	Auto: 101
5	Query Point 5	14, 91.55	Auto: 101
6	Query Point 6	36, -6.3	Auto: 101
7	Query Point 7	36, 20.3	Auto: 101
8	Query Point 8	76, 20.3	Auto: 101
9	Query Point 9	76, -6.3	Auto: 101
10	Query Point 10	56, 7	Auto: 101
11	Query Point 11	36, 162.8	Auto: 101
12	Query Point 12	36, 189.1	Auto: 101
13	Query Point 13	76, 189.1	Auto: 101
14	Query Point 14	76, 162.8	Auto: 101
15	Query Point 15	56, 175.95	Auto: 101
16	Query Point 16	84, 0	Auto: 101
17	Query Point 17	84, 183.1	Auto: 101
18	Query Point 18	117, 183.1	Auto: 101
19	Query Point 19	117, 0	Auto: 101
20	Query Point 20	100.5, 91.55	Auto: 101
21	Query Point 21	125, -6.3	Auto: 101
22	Query Point 22	125, 20.3	Auto: 101
23	Query Point 23	165, 20.3	Auto: 101
24	Query Point 24	165, -6.3	Auto: 101
25	Query Point 25	145, 7	Auto: 101
26	Query Point 26	125, 162.8	Auto: 101
27	Query Point 27	125, 189.1	Auto: 101
28	Query Point 28	165, 189.1	Auto: 101
29	Query Point 29	165, 162.8	Auto: 101
30	Query Point 30	145, 175.95	Auto: 101
31	Query Point 31	173.1, 0	Auto: 101
32	Query Point 32	173.1, 183.1	Auto: 101
33	Query Point 33	201.1, 183.1	Auto: 101
34	Query Point 34	201.1, 0	Auto: 101
35	Query Point 35	187.1, 91.55	Auto: 101
36	Query Point 36		Auto: 89
37	Query Point 37	53.261, 96.899	Auto: 89


Field Point Grid

Number of points 5512 Expansion Factor 1

Grid Coordinates

X [ft]	Y [ft]
286.65	274.65
286.65	-91.85
-85.55	-91.85
-85.55	274.65

Sustained Dead Loading Pressure Only (1.79ksf on Foundations 1-3 and 1.67ksf on Wind Column Footings). 0.25" or less at foundation centers

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF CHB 200214 DL Only.s3z

Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.375565
Loading Stress ZZ [ksf]	0	3.51092

Loads

1. Polygonal Load: "Foundation 1"

Label Foundation 1
Load Type Flexible
Area of Load 5126.8 ft²
Load 3.5 ksf
Depth 10 ft
Installation Stage 1

X [ft]	Y [ft]
0	0
28	0
28	183.1
0	183.1

2. Polygonal Load: "Foundation 2"

LabelFoundation 2Load TypeFlexibleArea of Load6042.3 ft²Load3.5 ksfDepth10 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
84	0
117	0
117	183.1
84	183.1

3. Polygonal Load: "Foundation 3"

LabelFoundation 3Load TypeFlexibleArea of Load5126.8 ft²Load3.5 ksfDepth10 ftInstallation StageStage 1

Coordinates

Y [ft]
0
0
183.1
183.1

4. Polygonal Load: "WC3"

Label WC3
Load Type Flexible
Area of Load 1064 ft²
Load 3.5 ksf
Depth 10 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
76	-6.3
76	20.3
36	20.3
36	-6.3

5. Polygonal Load: "WC1"

Label WC1
Load Type Flexible
Area of Load 1052 ft²
Load 3.5 ksf
Depth 10 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
76	162.8
76	189.1
36	189.1
36	162.8

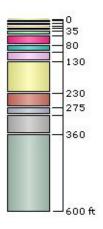
6. Polygonal Load: "WC4"

Label WC4
Load Type Flexible
Area of Load 1064 ft²
Load 3.5 ksf
Depth 10 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
165	-6.3
165	20.3
125	20.3
125	-6.3

7. Polygonal Load: "WC2"


Label WC2
Load Type Flexible
Area of Load 1052 ft²
Load 3.5 ksf
Depth 10 ft
Installation Stage 1

Y [ft]
162.8
189.1
189.1
162.8

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

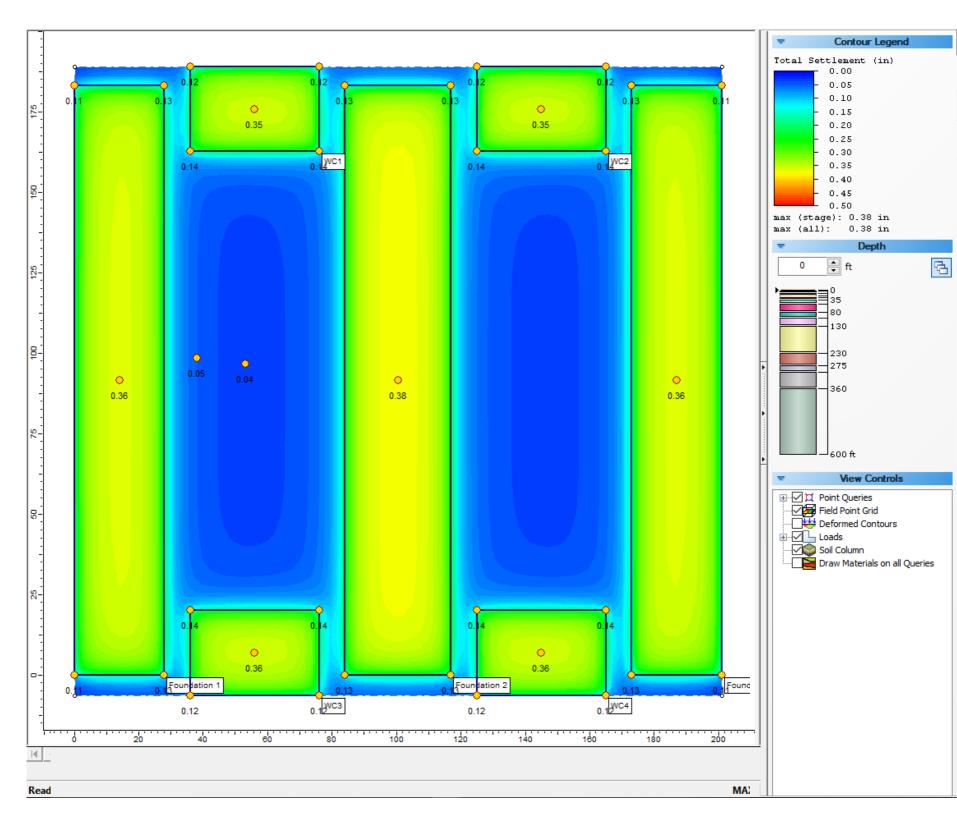
Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	8.0	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft3]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points

	-		Number of Divisions
1	Query Point 1	0, 0	Auto: 101
2	Query Point 2	0, 183.1	Auto: 101
3	Query Point 3	28, 183.1	Auto: 101
4	Query Point 4	28, 0	Auto: 101
5	Query Point 5	14, 91.55	Auto: 101
6	Query Point 6	36, -6.3	Auto: 101
7	Query Point 7	36, 20.3	Auto: 101
8	Query Point 8	76, 20.3	Auto: 101
9	Query Point 9	76, -6.3	Auto: 101
10	Query Point 10	56, 7	Auto: 101
11	Query Point 11	36, 162.8	Auto: 101
12	Query Point 12	36, 189.1	Auto: 101
13	Query Point 13	76, 189.1	Auto: 101
14	Query Point 14	76, 162.8	Auto: 101
15	Query Point 15	56, 175.95	Auto: 101
16	Query Point 16	84, 0	Auto: 101
17	Query Point 17	84, 183.1	Auto: 101
18	Query Point 18	117, 183.1	Auto: 101
19	Query Point 19	117, 0	Auto: 101
20	Query Point 20	100.5, 91.55	Auto: 101
21	Query Point 21	125, -6.3	Auto: 101
22	Query Point 22	125, 20.3	Auto: 101
23	Query Point 23	165, 20.3	Auto: 101
24	Query Point 24	165, -6.3	Auto: 101
25	Query Point 25	145, 7	Auto: 101
26	Query Point 26	125, 162.8	Auto: 101
27	Query Point 27	125, 189.1	Auto: 101
28	Query Point 28	165, 189.1	Auto: 101
29	Query Point 29	165, 162.8	Auto: 101
30	Query Point 30	145, 175.95	Auto: 101
31	Query Point 31	173.1, 0	Auto: 101
32	Query Point 32	173.1, 183.1	Auto: 101
33	Query Point 33	201.1, 183.1	Auto: 101
34	Query Point 34	201.1, 0	Auto: 101
35	Query Point 35	187.1, 91.55	Auto: 101
36	Query Point 36		Auto: 89
37	Query Point 37	53.261, 96.899	Auto: 89


Field Point Grid

Number of points 5512 Expansion Factor 1

Grid Coordinates

X [ft]	Y [ft]
286.65	274.65
286.65	-91.85
-85.55	-91.85
-85.55	274.65

Max Pressure 3.5 ksf on all footings. 0.5" or less at foundation centers

Settle3 Analysis Information

Project Settings

Document Name 19-017 CISF CHB 200214.s3z Date Created 1/16/2020, 3:00:31 PM

Stress Computation Method Westergaard

Minimum settlement ratio for subgrade modulus 0.9

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.709451
Loading Stress ZZ [ksf]	0.0346785	4.58

Loads

1. Polygonal Load: "Zone 29"

Label Zone 29
Load Type Flexible
Area of Load 7425 ft²
Load 1.64 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
0	0
55	0
55	135
0	135

19-017 CISF CHB 200214.s3z 1/16/2020, 3:00:31 PM

2. Polygonal Load: "Zone 26"

Label Zone 26
Load Type Flexible
Area of Load 675 ft²
Load 0.61 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
0	0
5	0
5	135
0	135

3. Polygonal Load: "Zone 27"

Label Zone 27
Load Type Flexible
Area of Load 250 ft²
Load 0.65 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
55	130
55	135
5	135
5	130

4. Polygonal Load: "Zone 28"

Label Zone 28
Load Type Flexible
Area of Load 650 ft²
Load 0.64 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
50	0
55	0
55	130
50	130

5. Polygonal Load: "Zone 25"

19-017 CISF CHB 200214.s3z 1/16/2020, 3:00:31 PM

Label Zone 25
Load Type Flexible
Area of Load 225 ft²
Load 0.7 ksf
Depth 0 ft
Installation Stage Stage 1

Coordinates

X [ft]	Y [ft]
5	0
50	0
50	5 5
5	5

6. Rectangular Load: "Zone 1"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.01 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	5.5
17.5	5.5
17.5	17.5
5.5	17.5

7. Rectangular Load: "Zone 17"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.01 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	5.5
49.5	5.5
49.5	17.5
37.5	17.5

8. Rectangular Load: "Zone 24"

19-017 CISF CHB 200214.s3z 1/16/2020, 3:00:31 PM

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.01 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	117.5
49.5	117.5
49.5	129.5
37.5	129.5

9. Rectangular Load: "Zone 8"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.01 ksf
Depth 0 ft
Installation Stage 1

Coordinates

ĺ	X [ft]	Y [ft]
	5.5	117.5
	17.5	117.5
	17.5	129.5
	5.5	129.5

10. Rectangular Load: "Zone 23"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	101.5
49.5	101.5
49.5	113.5
37.5	113.5

11. Rectangular Load: "Zone 22"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.6 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	85.5
49.5	85.5
49.5	97.5
37.5	97.5

12. Rectangular Load: "Zone 21"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.55 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	69.5
49.5	69.5
49.5	81.5
37.5	81.5

13. Rectangular Load: "Zone 20"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.6 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
37.5	53.5
49.5	53.5
49.5	65.5
37.5	65.5

14. Rectangular Load: "Zone 19"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.6 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	37.5
49.5	37.5
49.5	49.5
37.5	49.5

15. Rectangular Load: "Zone 18"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
37.5	21.5
49.5	21.5
49.5	33.5
37.5	33.5

16. Rectangular Load: "Zone 16"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.48 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	117.5
33.5	117.5
33.5	129.5
21.5	129.5

17. Rectangular Load: "Zone 7"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	101.5
17.5	101.5
17.5	113.5
5.5	113.5

18. Rectangular Load: "Zone 6"

Length12 ftWidth12 ftRotation angle0 degreesLoad TypeFlexibleArea of Load144 ft²Load2.6 ksfDepth0 ftInstallation StageStage 1

Coordinates

X [ft]	Y [ft]
5.5	85.5
17.5	85.5
17.5	97.5
5.5	97.5

19. Rectangular Load: "Zone 5"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.55 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	69.5
17.5	69.5
17.5	81.5
5.5	81.5

20. Rectangular Load: "Zone 4"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.55 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	53.5
17.5	53.5
17.5	65.5
5.5	65.5

21. Rectangular Load: "Zone 3"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.6 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	37.5
17.5	37.5
17.5	49.5
5.5	49.5

22. Rectangular Load: "Zone 2"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.51 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
5.5	21.5
17.5	21.5
17.5	33.5
5.5	33.5

23. Rectangular Load: "Zone 9"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.48 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	5.5
33.5	5.5
33.5	17.5
21.5	17.5

24. Rectangular Load: "Zone 10"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.83 ksf
Depth 0 ft
Installation Stage 1

Coordinates

Y [ft]
21.5
21.5
33.5
33.5

25. Rectangular Load: "Zone 11"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.94 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	37.5
33.5	37.5
33.5	49.5
21.5	49.5

26. Rectangular Load: "Zone 12"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.91 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	53.5
33.5	53.5
33.5	65.5
21.5	65.5

27. Rectangular Load: "Zone 13"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.91 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	69.5
33.5	69.5
33.5	81.5
21.5	81.5

28. Rectangular Load: "Zone 14"

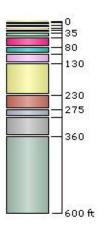
Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.94 ksf
Depth 0 ft
Installation Stage 1

Coordinates

X [ft]	Y [ft]
21.5	85.5
33.5	85.5
33.5	97.5
21.5	97.5

29. Rectangular Load: "Zone 15"

Length 12 ft
Width 12 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 144 ft²
Load 2.83 ksf
Depth 0 ft
Installation Stage 1


Coordinates

Y [ft]
101.5
101.5
113.5
113.5

Soil Layers

Layer #	Туре	Thickness [ft]	Depth [ft]
1	Cover Sands	2	0
2	Caliche/Sand 1	8	2
3	Caliche/Sand 2	10	10
4	Caliche Hard 1	5	20
5	Caliche Hard 2	10	25
6	Ogallala 1	15	35
7	Ogallala 2	30	50
8	Ogallala 3	20	80
9	Dockum Claystone/Siltsone	30	100
10	Claystone and Siltstone	100	130
11	Dockum Clay/Claystone 1	45	230
12	Dockum Silty/Sands	25	275
13	Dockum Clay/Claystone 2	60	300
14	Dockum Clay/Claystone 3	240	360

Soil Properties

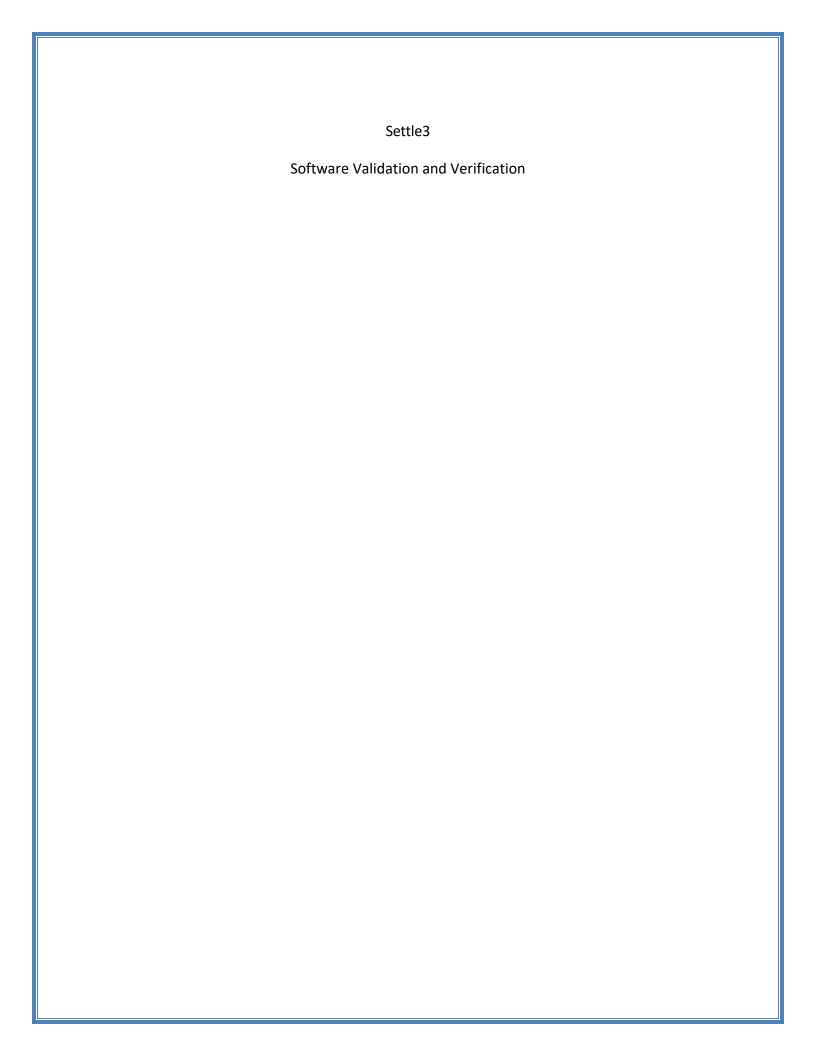
Property	Cover Sands	Caliche/Sand 1	Caliche/Sand 2	Caliche Hard 1
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.12	0.12
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	890	1200	1200	35815
Esur [ksf]	890	1200	1200	35815
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Caliche Hard 2	Ogallala 1	Ogallala 2	Ogallala 3
Color				
Unit Weight [kips/ft ³]	0.12	0.12	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	55232	80233	53870	123857
Esur [ksf]	55232	80233	53870	123857
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	8.0	0.8	0.8	0.8

Property	Dockum Claystone/ Siltsone	Claystone and Siltstone	Dockum Clay/ Claystone 1	Dockum Silty/ Sands
Color				
Unit Weight [kips/ft ³]	0.13	0.13	0.13	0.13
K0	1	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled	Enabled
Es [ksf]	84172	120769	120769	120769
Esur [ksf]	84172	120769	120769	120769
Undrained Su A [kips/ ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8

Property	Dockum Clay/Claystone 2	Dockum Clay/Claystone 3
Color		
Unit Weight [kips/ft ³]	0.13	0.13
K0	1	1
Immediate Settlement	Enabled	Enabled
Es [ksf]	120769	154394
Esur [ksf]	120769	154394
Undrained Su A [kips/ft2]	0	0
Undrained Su S	0.2	0.2
Undrained Su m	0.8	0.8

Query Points


Point #	Query Point Name	(X,Y) Location	Number of Divisions
1	Cask Point 1	11.5, 11.5	Auto: 101
2	Cask Point 2	11.5, 27.5	Auto: 101
3	Cask Point 3	11.5, 43.5	Auto: 101
4	Cask Point 4	11.5, 59.5	Auto: 101
5	Cask Point 5	11.5, 75.5	Auto: 101
6	Cask Point 6	11.5, 91.5	Auto: 101
7	Cask Point 7	11.5, 107.5	Auto: 101
8	Cask Point 8	11.5, 123.5	Auto: 101
9	Cask Point 9	27.5, 11.5	Auto: 101
10	Cask Point 10	27.5, 27.5	Auto: 101
11	Cask Point 11	27.5, 43.5	Auto: 101
12	Cask Point 12	27.5, 59.5	Auto: 101
13	Cask Point 13	27.5, 75.5	Auto: 101
14	Cask Point 14	27.5, 91.5	Auto: 101
15	Cask Point 15	27.5, 107.5	Auto: 101
16	Cask Point 16	27.5, 123.5	Auto: 101
17	Cask Point 17	43.5, 11.5	Auto: 101
18	Cask Point 18	43.5, 27.5	Auto: 101
19	Cask Point 19	43.5, 43.5	Auto: 101
20	Cask Point 20	43.5, 59.5	Auto: 101
21	Cask Point 21	43.5, 75.5	Auto: 101
22	Cask Point 22	43.5, 91.5	Auto: 101
23	Cask Point 23	43.5, 107.5	Auto: 101
24	Cask Point 24	43.5, 123.5	Auto: 101
25	Footing Bottom Left	0, 0	Auto: 101
26	Footing Bottom Right	55, 0	Auto: 101
27	Footing Top Left	0, 135	Auto: 101
28	Footing Top Right	55, 135	Auto: 101
29	Footing Center		Auto: 101
30		11.973, 99.283	Auto: 101
31	Query Point 31		Auto: 101
32	Query Point 32	2.5, 67.5	Auto: 101
33		34.543, 35.669	Auto: 101
34	Query Point 34	27.5, 2.5	Auto: 101

Field Point Grid

Number of points 1672 Expansion Factor 1

Grid Coordinates

X [ft]	Y [ft]
122.5	202.5
122.5	-67.5
-67.5	-67.5
-67.5	202.5

TECHNICAL MEMORANDUM

Software Verification: Settle3 v5.001 CISF Site Andrews, TX DBA Project No. 19-017

To: Derek Kilday, P.E./GEOServices

From: Timothy C. Siegel, P.E, G.E., D.GE

Tayler J. Day, P.E.

Date: 17 February 2020

TIMOTHY C. SIEGEL 117477 C. CENSEO.

1. Introduction

Dan Brown and Associates, P.C. (DBA) was contracted to perform settlement analyses for the subject project. As part of our scope, DBA was to perform and provide verification of the efficacy of the Settle3 v5.001 software used for the analyses. This TM explains the basis of the verification and DBA's conclusion that the software is valid and appropriate for the provided analyses.

2. Selection of Software

DBA routinely performs settlement analyses as a function of our role as industry leaders in foundation and ground improvement design. It is our experience that Settle3 software by Rocscience (currently version 5.001) is an effective tool that uses sound geotechnical and mechanics principles to produce settlement results that can be interpreted by technical and non-technical personnel. Additionally, Settle3 v5.001 (and other Rocscience geotechnical softwares) are routinely used in standard geotechnical engineering practice.

3. Critical Characteristics of Software

Settle3 v5.001 calculates settlement by interpreting the way applied stress is distributed with depth in a soil column using the Westergaard solution. The resulting stress distribution and the user input soil parameters are used to calculate strain/displacement.

The analyses required for the CISF site in Andrews, TX are ultimately concerned with the settlement of a single footing and a group of footings which requires calculations that effectively satisfy the following critical characteristics:

- Calculate stress with depth below the corner of a single rectangular loaded area
- Calculates vertical stress beneath a point within a rectangularly loaded area using the principle of superposition of stresses

• Considers multiple bearing pressure areas and calculates the vertical stress beneath a point outside of a rectangularly loaded area (i.e. between footings) using the principle of superposition.

4. Verification Procedure and Acceptance

DBA established the attached calculations to verify the critical characteristics identified in the previous section using hand calculations based on the methods used by Settle3 v5.001. The acceptance criteria established by DBA for each critical characteristic stress calculation was an error of 1% or less to account for any differences in rounding of trigonometric function results.

The hand calculations utilize a closed form solution of the Westergaard Stress Computation Formula found in Taylor (1948)¹. The final result of the evaluation of the critical characteristics are summarized in Table 1.

Critical Characteristic	Method of Comparison	Acceptable Error Criteria	Measured Error
Vertical stress beneath corner of rectangularly loaded area	Slide3 v5.001 software vs Hand Calculation (attached)	+/-1%	0%
Vertical stress beneath a point within rectangularly loaded area	Slide3 v5.001 software vs Hand Calculation (attached)	+/-1%	0%
Vertical stress beneath a between multiple rectangular areas	Slide3 v5.001 software vs Hand Calculation (attached)	+/-1%	0%

5. Concluding Remarks

Calculations were performed to verify the efficacy of Settle3 v5.001 for the types of analyses required for the CISF storage pads in Andrews, TX. DBA concludes the software is appropriate and accurate for use on the subject project. Please contact the following if you would like to discuss this document or this project.

Timothy C. Siegel, P.E., G.E., D.GE CEO/Senior Principal Engineer Dan Brown and Associates PC 6424 Baum Dr. Knoxville, TN 37919 Mobile: 865-809-4883

Dan Brown and Associates PC 6424 Baum Dr. Knoxville, TN 37919 Mobile: 217-371-2185 tday@dba.world

Tayler J. Day, P.E.

Project Engineer

¹ Taylor, D.W. (1948). Fundamentals of Soil Mechanics. John Wiley, New York. Pg 259.

tim@dba.world

17 February 2020 TECHNICAL MEMORANDUM Settle3 Verification

Attachments

Settle3 v5.001 Verification Analysis

Project WCS Storage Facility

Project No. 19-017

Sheet <u>1</u> of <u>9</u> Date 01 / 14 / 2020

Engineer WPS Checked by TJD

Settle3 by Rocscience Stress Calculation Verification

This calculation set is for the verification of the Westergaard stress computation method in Settle3 Version 5.001 by Rocscience. The Westergaard stress computation method is a common stress computation method for layered strata. The raw form of the Westergaard stress computation method is developed to calculate the vertical stress beneath a point load. This raw form of Westergaard's stress computation method is analytically integrated to calculate the vertical stress beneath the corner of a rectangularly loaded area, and using the principle of superposition, the vertical stress beneath any point within or beyond the loaded area can be calculated. So, the critical characterisitics to be checked are as follows: 1) Settle3 correctly calculates the vertical stress beneath the corner of a rectangularly loaded area, 2) Settle3 correctly calculates the vertical stress beneath a point within a rectangularly loaded area using the principle of superposition, and 3) Settle3 correctly considers multiple bearing pressures and calculates the vertical stress beneath a point outside of a rectangularly loaded area using the principle of superposition.

Westergaard Stress Computation Formula:

 $\sigma_{z_{Q}} := \left(\frac{Q}{z}\right) \cdot \frac{\left(\frac{1}{2\pi}\right) \cdot \sqrt{\frac{1 - 2 \cdot v}{2 - 2v}}}{\frac{3}{2}}$ $\left[\left(\frac{1 - 2v}{2 - 2v}\right) + \left(\frac{r}{z}\right)^{2}\right]^{2}$

Where:

 σ_{7} = Vertical Stress

Q = Point Load

z = Depth

v = Poisson's Ratio

r = Horizontal Distance from Point Load

The Westergaard Stress Computation Formula shown above is listed for a point load, however, it is more common to calculate stress for a bearing pressure. The vertical stress beneath the corner of a given rectangular bearing pressure or footing can be obtained by integrating the above equation and the resulting equation is shown below.

Westergaard Stress Computation Formula:

 $\sigma_{z} := \left(\frac{q}{2 \cdot \pi}\right) \cdot acot \left[\sqrt{\left(\frac{1-2\nu}{2-2\upsilon}\right) \cdot \left(\frac{1}{m^2} + \frac{1}{n^2}\right) + \left(\frac{1-2\cdot\nu}{2-2\cdot\nu}\right)^2 \cdot \left(\frac{1}{m^2 \cdot n^2}\right)}\right]$

Where:

 σ_{z} = Vertical Stress

q = Bearing Pressure

υ = Poisson's Ratio

m = L/z

n = W/z

z = Depth

L = Length of Footing or Bearing Pressure Considered

W = Width of Footing or Bearing Pressure Considered

Source: Taylor, D. W. (1948). Fundamentals of Soil Mechanics. (pg. 259). John Wiley. New York.

The above equation is formulated to calculate the vertical stress beneath the corner of a rectangular bearing pressure or footing. So to calculate the stress at the center of a rectangular bearing pressure or footing, the rectangular area can be segmented into four equal areas and using the principle of superposition, the stress can be calculated at the center. The following two pages show calculations for stress beneath the corner and the center of a square footing.

Project WCS Storage Facility
Project No. 19-017
Sheet 2 of 9
Date 01 / 14 / 2020
Engineer WPS
Checked by TJD

Calculation of the Vertical Stress Beneath the Corner of a Square Footing:

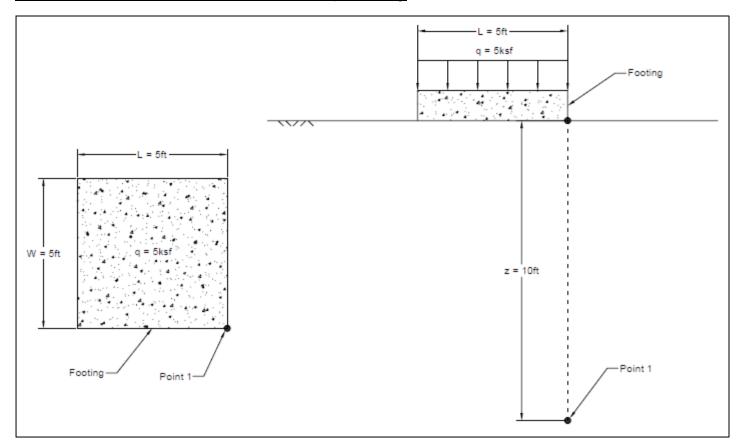


Figure 1 - Stress Beneath Corner of Square Footing Diagram (Left - Plan View, Right - Cross Section)

 $\begin{array}{lll} \mbox{Footing Length:} & L_1 \coloneqq 5 \mbox{ft} \\ \mbox{Footing Width:} & W_1 \coloneqq 5 \mbox{ft} \\ \mbox{Bearing Pressure:} & q_1 \coloneqq 5 \mbox{ksf} \\ \mbox{Poisson's Ratio:} & \upsilon \coloneqq 0.33 \\ \mbox{Depth of Interest:} & z_1 \coloneqq 10 \mbox{ft} \\ \mbox{Length-to-Depth Ratio:} & m_1 \coloneqq \frac{L_1}{z_1} = 0.5 \\ \mbox{Width-to-Depth Ratio:} & n_1 \coloneqq \frac{W_1}{z_1} = 0.5 \\ \mbox{} \end{array}$

$$\sigma_{z1} := \left(\frac{q_1}{2 \cdot \pi}\right) \cdot \operatorname{acot} \left[\sqrt{\left(\frac{1 - 2 \cdot \upsilon}{2 - 2\upsilon}\right) \cdot \left(\frac{1}{m_1^2} + \frac{1}{n_1^2}\right) + \left(\frac{1 - 2 \cdot \upsilon}{2 - 2 \cdot \upsilon}\right)^2 \cdot \left(\frac{1}{m_1^2 \cdot n_1^2}\right)} \right] = 413 \cdot \operatorname{psf}$$

Project WCS Storage Facility
Project No. 19-017
Sheet 3 of 9
Date 01 / 14 / 2020

Engineer WPS Checked by TJD

Calculation of the Vertical Stress Beneath the Center of a Square Footing:

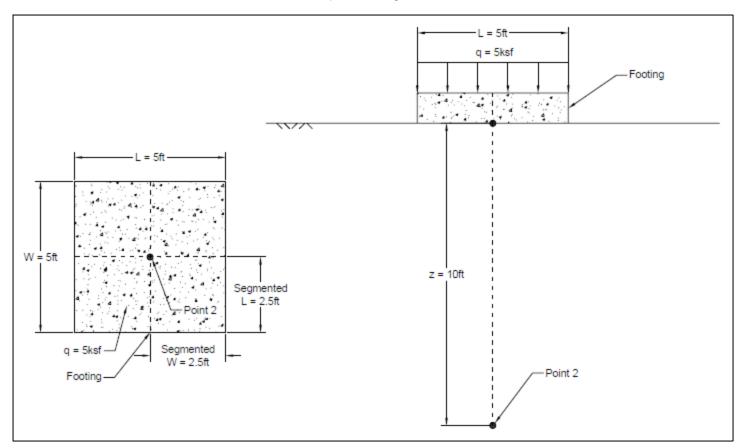


Figure 2 - Stress Beneath Center of Square Footing Diagram (Left - Plan View, Right - Cross Section)

 $\begin{array}{lll} \text{Segmented Footing Length:} & L_2 \coloneqq 2.5 \text{ft} \\ \text{Segmented Footing Width:} & W_2 \coloneqq 2.5 \text{ft} \\ \text{Bearing Pressure:} & q_2 \coloneqq 5 \text{ksf} \\ \text{Poisson's Ratio:} & \underline{w} \coloneqq 0.33 \\ \text{Depth of Interest:} & z_2 \coloneqq 10 \text{ft} \\ \text{Length-to-Depth Ratio:} & m_2 \coloneqq \frac{L_2}{z_2} = 0.25 \\ \text{Width-to-Depth Ratio:} & n_2 \coloneqq \frac{W_2}{z_2} = 0.25 \end{array}$

$$\sigma_{z2} := 4 \left(\frac{q_2}{2 \cdot \pi}\right) \cdot \operatorname{acot} \left[\sqrt{\left(\frac{1 - 2 \cdot \upsilon}{2 - 2\upsilon}\right) \cdot \left(\frac{1}{m_2^2} + \frac{1}{n_2^2}\right) + \left(\frac{1 - 2 \cdot \upsilon}{2 - 2 \cdot \upsilon}\right)^2 \cdot \left(\frac{1}{m_2^2 \cdot n_2^2}\right)} \right] = 633 \cdot \operatorname{psf}$$

Note: Using the principle of superposition, the equation for the stress beneath the corner of a rectangularly loaded area is multiplied by 4 in this case account for all 4, 2.5ft x 2.5ft loaded areas.

Project WCS Storage Facility
Project No. 19-017
Sheet 4 of 9
Date 01 / 14 / 2020
Engineer WPS
Checked by TJD

Calculation of the Vertical Stress Beneath a Point Between Two Rectangular Footings:

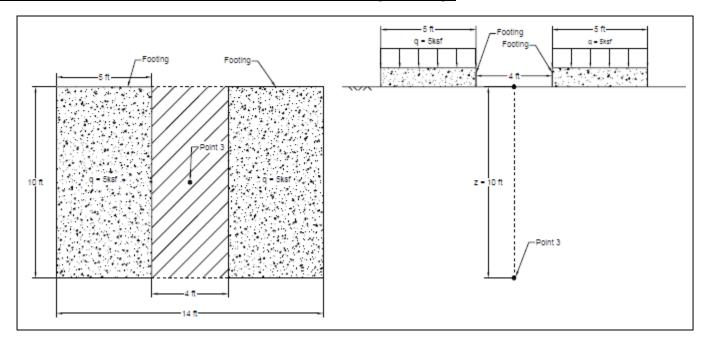


Figure 3 - Vertical Stress Beneath a Point Between Two Rectangular Footings Diagram (Left - Plan View, Right - Cross Section)

In this case, the principle of superposition is used to add the stress from 4 rectangles with a common point at Point 3 and then subtract out the stress from the areas that are not loaded. See Figure 4 and commentary below for details.

Project WCS Storage Facility
Project No. 19-017
Sheet 5 of 9
Date 01 / 14 / 2020
Engineer WPS
Checked by TJD

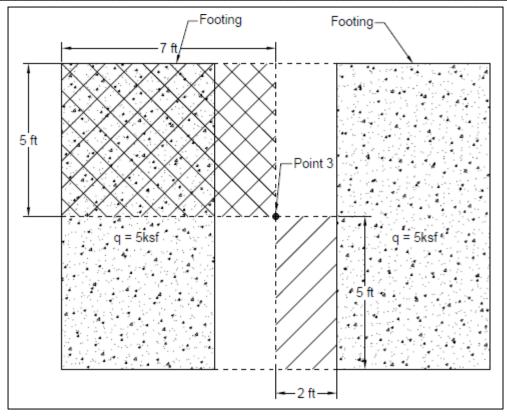


Figure 4 - Vertical Stress Beneath a Point Between Two Rectangular Footings Diagram. The Stress Computation Areas are Hatched and Cross-Hatched (Plan View)

To calculate the stress beneath Point 3, consider the entire cross-hatched area is loaded with a bearing pressure of 5ksf-just like the footings. Four times the vertical stress resulting from Westergaard's equation for the cross-hatched area will be equal to the vertical stress if the whole area, even the area between the two footings, is loaded with a bearing pressure of 5ksf. But the whole area is not loaded; the area between the footings has no load. So using the principle of superposition and Westergaard's equation for the vertical stress beneath the corner of a rectangularly loaded area, four times the vertical stress from the hatched area is subtracted from four times the vertical stress from the cross-hatched area to get the stress at Point 3. Calculations are shown below.

Vertical Stress at Point 3: Cross-Hatched Area

Segmented Footing Length:	$L_{3a} := 7 \text{ft}$
Segmented Footing Width:	$W_{3a} := 5 \text{ ft}$
Bearing Pressure:	$q_3 := 5ksf$
Poisson's Ratio:	v := 0.33
Depth of Interest:	$z_3 := 10ft$
Length-to-Depth Ratio:	$m_{3a} := \frac{L_{3a}}{z_3} = 0.7$
Width-to-Depth Ratio:	$n_{3a} := \frac{W_{3a}}{z_3} = 0.5$
(a_2) $[(a_2)(a_1)(a_2)(a_2)]$	

$$\sigma_{z3a} := 4 \left(\frac{q_3}{2 \cdot \pi} \right) \cdot a \cot \left[\sqrt{\left(\frac{1 - 2 \cdot v}{2 - 2v} \right) \cdot \left(\frac{1}{m_{3a}^2} + \frac{1}{n_{3a}^2} \right) + \left(\frac{1 - 2 \cdot v}{2 - 2 \cdot v} \right)^2 \cdot \left(\frac{1}{m_{3a}^2 \cdot n_{3a}^2} \right)} \right] = 1938 \cdot psf$$

Project WCS Storage Facility
Project No. 19-017
Sheet 6 of 9
Date 01 / 14 / 2020
Engineer WPS
Checked by TJD

Vertical Stress at Point 3: Hatched Area

Segmented Footing Length: $L_{3b} := 2ft$

Segmented Footing Width: $W_{3h} := 5 ft$

Bearing Pressure: ga := 5ksf

Poisson's Ratio: $\underline{y} := 0.33$ Depth of Interest: $\underline{z} = 10 \mathrm{ft}$

Length-to-Depth Ratio: $m_{3b} := \frac{L_{3b}}{z_2} = 0.2$

Width-to-Depth Ratio: $n_{3b} := \frac{W_{3b}}{z_3} = 0.5$

$$\sigma_{z3b} \coloneqq 4 \left(\frac{q_3}{2 \cdot \pi}\right) \cdot \operatorname{acot} \left[\sqrt{\left(\frac{1 - 2 \cdot \upsilon}{2 - 2\upsilon}\right) \cdot \left(\frac{1}{m_{3b}^2} + \frac{1}{n_{3b}^2}\right) + \left(\frac{1 - 2 \cdot \upsilon}{2 - 2 \cdot \upsilon}\right)^2 \cdot \left(\frac{1}{m_{3b}^2 \cdot n_{3b}^2}\right)} \right] = 837 \cdot \operatorname{psf}$$

Vertical Stress at Point 3 - Subtract Hatched Area Vertical Stress from Cross-Hatched Area Vertical Stress:

Vertical Stress at Point 3:

$$\sigma_{z3} := \sigma_{z3a} - \sigma_{z3b} = 1100 \cdot psf$$

Plots of Vertical Stress vs Depth Comparing Hand Calculations to Settle3 Output:

The above calculations using Westergaard's equation for the vertical stress beneath the corner of a 5ft x 5ft footing, the center of a 5ft x 5ft footing, and a point between two 10ft x 5ft footings, where all footings are loaded with a 5ksf bearing pressure, were carried out in Microsoft Excel from 0 to 100ft depth. This data is plotted in Figures 5, 6, and 7 and compared with the output from the same problems modelled in *Settle3 Version 5.001 by Rocscience*. As shown in Figures 5, 6, and 7, the results from the hand calculations and Settle3 are identical, thus, the critical characteristics of Settle3 are confirmed.

Project WCS Storage Facility
Project No. 19-017
Sheet 7 of 9
Date 01 / 14 / 2020
Engineer WPS
Checked by TJD

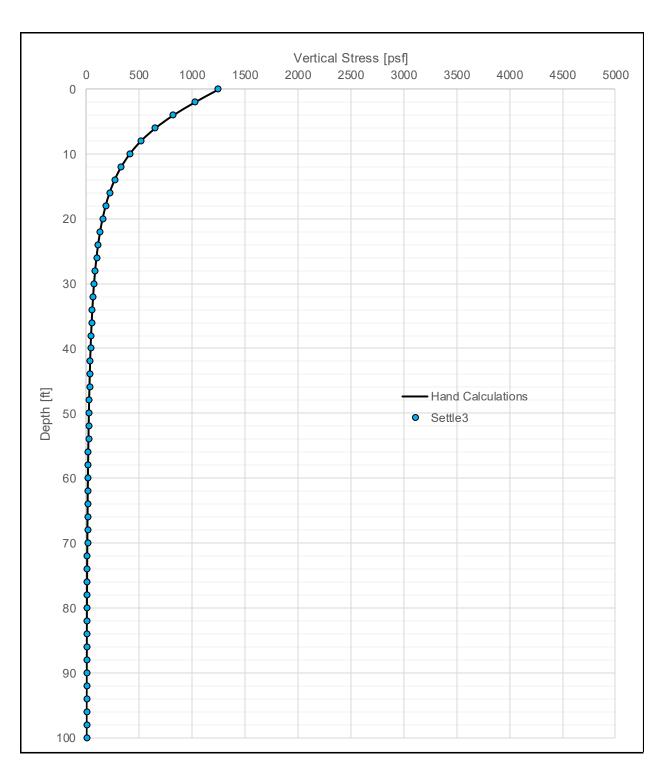


Figure 5 - Vertical Stress Beneath the Corner of a 5ft x 5ft Footing with a Bearing Pressure of 5ksf Note: The results from hand calculations and Settle3 are compared and shown to be the same

Project WCS Storage Facility
Project No. 19-017
Sheet 8 of 9
Date 01 / 14 / 2020
Engineer WPS
Checked by TJD

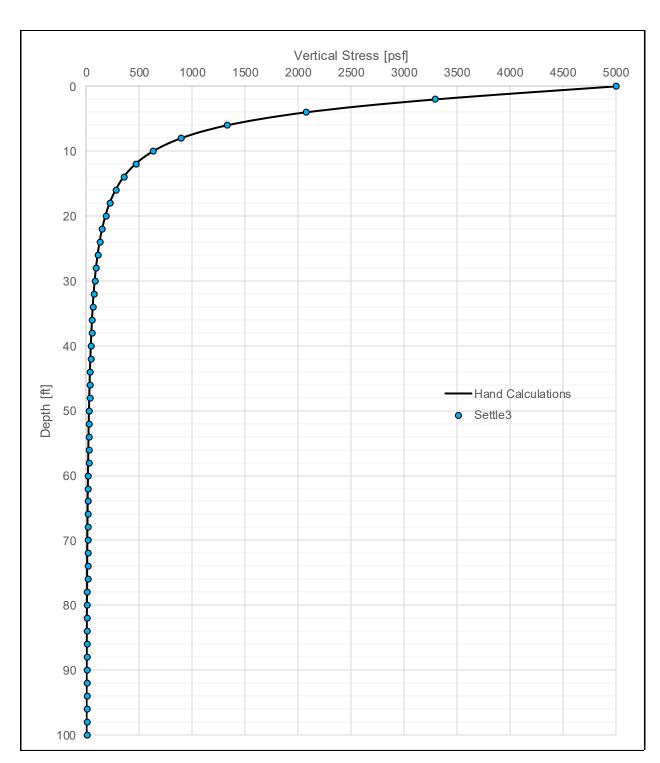


Figure 6 - Vertical Stress Beneath the Center of a 5ft x 5ft Footing with a Bearing Pressure of 5ksf Note: The results from hand calculations and Settle3 are compared and shown to be the same

Project WCS Storage Facility
Project No. 19-017
Sheet 9 of 9
Date 01 / 14 / 2020
Engineer WPS

Checked by TJD

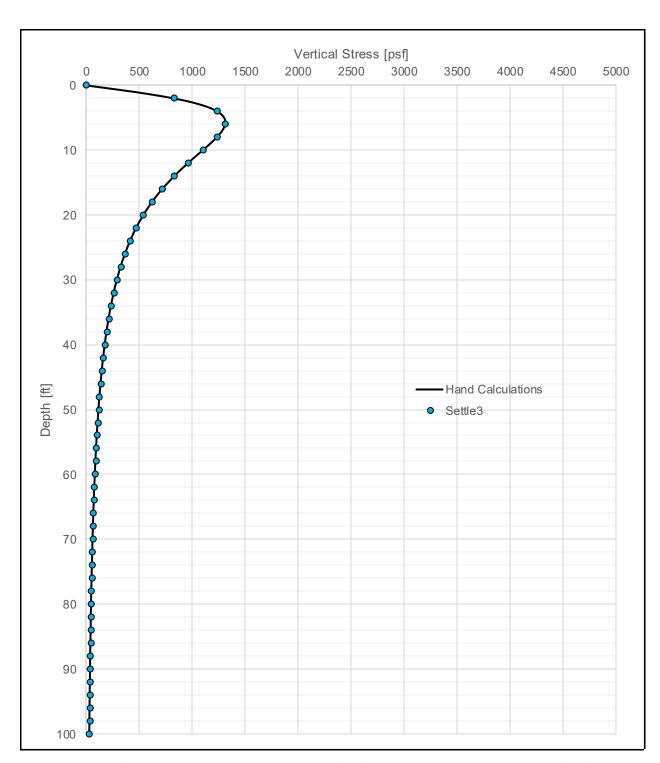


Figure 7 - Vertical Stress Beneath a Point Between Two, 10ft x 5ft Footings with a Bearing Pressure of 5ksf Note: The results from hand calculations and Settle3 are compared and shown to be the same