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ABSTRACT 

The U.S. Nuclear Regulatory Commission (NRC) staff developed the Integrated Human Event 
Analysis System-General Methodology (IDHEAS-G) to address the staff requirements 
memorandum (SRM) M061020 on proposing human reliability analysis (HRA) models and 
guidance for the NRC to use. Human performance data is an essential element of IDHEAS-G. 
This report documents human performance and error data identified through an extensive 
literature review and the process used to generalize the data for IDHEAS-G. The report also 
supports SRM-090204B on the development and use of an HRA database.  
 
The data documented in this report include operational and simulator data in the nuclear 
domain, operational data of human performance from non-nuclear domains, experimental data 
in the literature, expert judgment on human error probabilities (HEPs) in the nuclear domain, 
and others (e.g., statistical data, ranking, frequencies of errors or causal factors). The data are 
classified according to the NRC’s IDHEAS-G methodology.  Most of the data documented in this 
report have been generalized to develop the NRC’s IDHEAS-ECA HRA method.  IDHEAS-ECA, 
in conjunction with the data in IDHEAS-DATA, completes the scientific basis for the NRC’s risk-
informed decisionmaking processes when dealing with human reliability.  The report will be 
expanded as new data become available. The data provide a basis for continuous 
improvements of HRA methods.   
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EXECUTIVE SUMMARY 

The U.S. Nuclear Regulatory Commission (NRC) staff developed the Integrated Human Event 
Analysis System-General Methodology (IDHEAS-G) to address the staff requirements 
memorandum (SRM) M061020 on proposing human reliability analysis (HRA) models and 
guidance for the NRC to use.  Human reliability data is an essential element of IDHEAS-G.  This 
report documents human performance and error data identified through an extensive literature 
review and the process used to generalize the data for IDHEAS-G. The report also supports 
SRM-090204B on the development and use of an HRA database.  

DHEAS-DATA is one of the three tasks the Human Factors and Reliability Branch, Division of 
Risk Analysis, Office of Nuclear Regulatory Research (RES/DRA/HFRB) performed to 
modernize the NRC’s human reliability analysis (HRA) techniques with a solid scientific, 
technology inclusive foundation and a strong data basis. The three tasks included the 
development of IDHEAS-G (IDHEAS-general methodology) to provide the scientific foundation, 
IDHEAS-DATA for the data-basis, and IDHEAS-ECA (IDHEAS for Event and Condition 
Assessment) and IDHEAS-At Power (An Integrated Human Event Analysis System for Nuclear 
Power Plant Internal Events At-Power Application) HRA methods for applying HRA. The three 
tasks together support the reliability element of the NRC’s Principles of Good Regulation and 
create a science-based framework for continuously improving human reliability analysis 
methods that support risk-informed decisionmaking at the NRC. 

Human reliability is a significant contributor to overall plant risk, and HRA results directly affect 
the NRC’s risk-informed decisions. Many conventional HRA methods were not developed with a 
strong data basis; therefore, their results can be associated with large uncertainties.  From time 
to time, the uncertainties are large enough to affect the reliability of regulatory decisions. 
Further, many conventional HRA methods lack the data basis to support HRA applications for 
emerging technologies, such as for Diverse and Flexible Coping Strategies (FLEX) and digital 
instrumentation and control. The IDHEAS-series products address these issues by being 
human-centered (thus being expandable to novel situations) and data-based. 
 
This report documents the human reliability and performance data collected through a large-
scale literature review. The data were classified based on the scientific foundations described in 
IDHEAS-G and generalized to support the development of the IDHEAS-ECA method. The data 
were from various sources, including operational experience and studies of human reliability 
and performance in nuclear and non-nuclear domains. The large data diversity and quantity 
establish a strong data basis. The data generalization process and scientific foundation provide 
a sound process to include new HRA data.  This report will be updated when more HRA data  
becomes available. 
 
The data are generalized into 27 tables, referred to as IDHEAS-DATA TABLEs (IDTABLEs). 
IDTABLE-1 through IDTABLE-20 document the data related to the effects of the performance 
influencing factors (PIFs) documented in IDHEAS-G. IDTABLE-21 includes data associated with 
optimal human reliabilities. IDTABLE-22 concerns the combined effects of more than one PIF.  
IDTABLE-23 and IDTABLE-24 are data for assessing the uncertainty distribution of the time 
required to perform a task. The information documented in IDTABLE-23 and IDTABLE-24 are a 
small portion of the collected data. The NRC has begun work to analyze a much larger portion 
of the literature to support guidance development on specifying the uncertainty distributions of 
task completion times. IDTABLE-25 and IDTABLE-26 are information on task dependency and 
error recovery, respectively. Finally, IDTABLE-27 documents the situations where a high 



 

vi 

 

percentage of human failures occurred.  IDTABLE-27 helps HRA analysts understand the main 
drivers to human error to help them quickly perceive similar conditions in their analyses. 
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1 INTRODUCTION TO IDHEAS-DATA 

1.1. Background 
Probabilistic risk assessment (PRA) results and insights support risk-informed regulatory 
decision making. The U.S. Nuclear Regulatory Commission (NRC) continues to improve the 
robustness of PRA, including human reliability analysis (HRA) through many activities. To 
date, there have been about fifty HRA methods developed worldwide to estimate human error 
probabilities (HEPs) to support PRA. Yet, the use of empirical data for HEP estimation has 
been limited due to the lack of data and discrepancies in the formats of available data and the 
relevance to nuclear power plant operation. The lack of a strong data basis in HRA methods 
challenges the validity of HEP estimation. 

The NRC staff developed the General Methodology of an Integrated Human Event Analysis 
System (IDHEAS-G)[1]. IDHEAS-G integrates the strengths in existing HRA methods, enhances 
the cognitive basis for HRA, and builds the capability of using human error data to improve HEP 
estimation. IDHEAS-G provides a hierarchical structure to analyze and assess the reliability of 
human actions. IDHEAS-G models human performance with five macrocognitive functions: 
Detection, Understanding, Decisionmaking, Action execution, and Interteam coordination. 
IDHEAS-G defines a set of cognitive failure modes (CFMs) for each macrocognitive function to 
describe the various ways of failing the macrocognitive function. IDHEAS-G also has a 
performance-influencing factor (PIF) structure that consists of a set of PIFs and their attributes 
to represent the context of a human event. IDHEAS-G analyzes an event in progressively more 
detailed levels: event scenario, human actions, critical tasks of the actions, macrocognitive 
functions and CFMs of the tasks, and PIFs and the associated attributes. This structure 
provides an intrinsic interface to generalize various sources of human error data for HEP 
estimation. 

Along with the development of IDHEAS-G, the NRC staff developed IDHEAS-DATA, a data 
structure that generalizes and documents human error data from various sources into the 
IDHEAS-G CFMs and PIF attributes. The staff analyzed the source information of human error 
data reported in operational databases and literature, identified the CFMs and PIF attributes 
associated with the data, and documented the data according to the CFMs and PIF attributes.  
Developing IDHEAS-DATA has been a continuous effort as more human error data are 
identified from the literature and new data becomes available. The data, once sufficiently 
populated, can provide a basis for estimating HEPs. 

In 2019, the NRC staff developed the IDHEAS for Event and Condition Assessment (IDHEAS-
ECA) method based on IDHEAS-G. The first version of the IDHEAS-ECA method is 
documented in an NRC Research Information Letter (RIL), RIL-2020-02[2]. The method is to be 
used for HRA in the NRC’s Events and Conditions Assessment (ECA) of nuclear power plants 
(NPPs). IDHEAS-ECA models human errors in a task with five CFMs, that is, the failure of the 
five macrocognitive functions in IDHEAS-G and has all the IDHEAS-G PIFs, but with fewer PIF 
attributes from IDHEAS-G for practical applications.  IDHEAS-ECA uses a set of base HEPs 
and PIF weights to calculate HEPs of the CFMs of a human action for the given context. In 
developing IDHEAS-ECA, the NRC staff integrated the human error data populated in  
IDHEAS-DATA to estimate the base HEPs and PIF weights. 
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1.2. Purposes of this Report 
This report describes the process used for generalizing human error data from various sources, 
summarizes the generalized data, and presents the generalized data in IDHEAS-DATA as of 
2019.  The purposes of this report are to: 

(1) present the IDHEAS-DATA framework and the process of generalizing data into  
IDHEAS-DATA, 

(2) share IDHEAS-DATA with the HRA community, and 

(3) document the foundation of the base HEPs and PIF weights in IDHEAS-ECA. 

1.3. Intended Use 
The intended users of IDHEAS-DATA are NRC staff involved in PRA applications and 
researchers and HRA practitioners in the HRA community. This report provides the data 
foundation for IDHEAS-ECA for those who use IDHEAS-ECA and query the data basis. Also, 
IDHEAS-DATA can serve as the “hub” for HRA data exchanging and synthesis, which may be 
of interest to those who want to use human error data for HRA. 

1.4. Related NRC Documents 
Readers may acquire additional information in understanding IDHEAS-DATA and its use by 
obtaining and reading the following NRC documents: 

• IDHEAS-G (NUREG-2198) [1] 
• IDHEAS-ECA (RIL-2020-02) [2] 
• Expert elicitation for FLEX HRA [3]  

1.5. Organization of this Report 
This report is organized as follows: 

• Chapter 1 is a high-level introduction to IDHEAS-DATA. 

• Chapter 2 describes the IDHEAS-DATA framework and the process of generalizing 
human error data to IDHEAS-DATA. 

• Chapter 3 provides a summary of the data generalized in IDHEAS-DATA as of 2019. 

• Chapter 4 discusses the limitations and uncertainties in IDHEAS-DATA as well as the 
pathways to improve data use in HRA. 

• Chapter 5 has the references for the source articles of the data in IDHEAS-DATA. 

• Appendix A1 through Appendix A20 present the generalized data in IDHEAS-DATA as 
of 2019, one for each PIF; Appendix A21 presents the human error data to inform the 
lowest HEPs; and Appendix A22 presents the data about the combined effects of 
multiple PIFs. Tables A23 and A24 concern assessing uncertainty of time needed. 
Tables A25, A26, and A27 cover dependency, recovery, and main drivers of 
performance. 

1.6. Status of the report 
The report is expected to be periodically updated as more human error data are generalized 
and new data become available. This DRAFT version of Appendix A presents human error data 
generalized in the 27 IDHEAS-DATA IDTABLEs.  Note that the datapoints in the IDTABLEs 
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have not been independently verified for their accuracy and appropriateness. They are being 
made available to the public in this Research Information Letter only for the purpose of 
communicating information and demonstrating the data basis of IDHEAS-ECA.  It is not 
recommended that these DRAFT IDTABLEs be used by HRA practitioners without first verifying 
the data validity.  
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2 THE STRUCTURE AND DEVELOPMENT OF IDHEAS-DATA 

The lack of sufficient human reliability data has limited the empirical basis for HEP estimation in 
HRA methods. For a given context, the HEP of a human task can be calculated as the number 
of times the task fails divided by the total number of times the task is performed. Most HRA 
methods use a quantification model to estimate HEPs; the quantification models typically 
consist of base HEPs for a set of human failure modes or typical human tasks and PIF 
multipliers to adjust the base HEPs. In addition, many sources of human error data have not 
been used for HRA due to discrepancies in the formats of available data and relevance to the 
domain of the human performance that the HRA methods intended to model. Human error data 
are available from task performance in various domains, in different formats, and at a range of 
levels of details. Most of the human error data either cannot be directly used for HRA or they are 
formatted to support only one application-specific HRA method. 

In the NRC’s IDHEAS project, the NRC staff developed IDHEAS-G [1] as a general HRA 
methodology for developing application-specific HRA methods. The IDHEAS-G framework and 
its taxonomy of CFMs and PIFs are generic and flexible, so they were chosen to generalize 
human error data from various sources to IDHEAS-DATA. The NRC staff integrated the 
generalized data in IDHEAS-DATA to develop the IDHEAS-ECA HRA method [2] in 2019. This 
chapter will describe the process of generalizing human error data to IDHEAS-DATA. 

IDHEAS-G incorporates advances made in cognitive and behavioral science in the past 
decades. IDHEAS-G has a macrocognition model with a basic set of CFMs, a PIF structure, and 
a quantification model to quantify the effect of PIFs on the HEP of a CFM. IDHEAS-G 
represents human failures with a basic set of CFMs and represents human event context with a 
set of PIFs. The IDHEAS-G quantification model calculates the HEP of a human action based 
on the CFMs and PIFs relevant to the action. The basic set of CFMs represents human failures 
at three levels of detail (i.e., failures of macrocognitive functions, failures of the processors in 
each macrocognitive function, and behaviorally-observable failure modes of the processors). 
The PIF structure represents the event context at two levels of detail:  PIFs and their attributes. 
The underlying cognitive mechanisms can link CFMs and PIFs at any level of detail. Thus, 
IDHEAS-G is inherently capable of generalizing human error data of different task types and 
different levels of detail to inform HEP quantification. The CFMs and PIF structure together form 
a framework for generalizing human error data from various sources and integrating them to 
support the IDHEAS-G quantification model. The structured data can inform expert judgment, 
Bayesian estimates, or direct calculation of HEPs. 

2.1. IDHEAS-G Framework  
IDHEAS-G [1] implements its cognition model to the full span of the general HRA process. The 
HRA process of IDHEAS-G consists of four stages: 

(1) Stage 1—Scenario analysis.  The purpose of this stage is to understand the event and 
collect information about human actions from broad perspectives.  This includes 
developing an operational narrative, analyzing the scenario context, and identifying 
important human actions (i.e., the ones considered in a PRA).  IDHEAS-G provides a 
structured process to query and document the qualitative information used as the 
foundation of HEP quantification. 

(2) Stage 2—Modeling of important human actions.  The purpose of this stage is to model 
important human actions for structured analysis and HEP quantification.  This includes 
identifying and characterizing critical tasks in an important human action, representing 
potential task failure with CFMs, and representing the context of the important human 
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action with PIFs.  IDHEAS-G provides guidelines for task analysis, as well as a basic set 
of CFMs and a comprehensive taxonomy of PIFs from its cognition model. 

(3) Stage 3—HEP quantification.  The purpose of this stage is to estimate the HEP for 
important human actions.  IDHEAS-G provides several approaches to HEP estimation, 
along with the human error data generalized in the IDHEAS-G framework.  

(4) Stage 4—Integrative analysis.  While Stages 2 and 3 analyze individual important 
human actions, Stage 4 analyzes all the important human actions as a whole.  This 
includes addressing the dependencies between important human actions and 
documenting uncertainties in the event and its analysis.  IDHEAS-G provides 
supplementary guidance for uncertainty analysis by consolidating existing guidelines. 

The Macrocognition Model 

The macrocognition model describes the cognitive and behavioral process of success or failure 
of a task.  The model explains the cognitive process of human performance in applied work 
domains where human tasks are complex and often involve multiple individuals or teams.  The 
model is described as follows: 

• Macrocognition consists of five functions: Detection, Understanding, Decisionmaking, 
Action Execution, and Interteam coordination.  The first four functions may be performed 
by an individual, a group or a team, and the Interteam coordination function is performed 
by multiple groups or teams. 

• Any human task is achieved through these functions; complex tasks typically involve all 
five macrocognitive functions. 

• Each macrocognitive function is processed through a series of basic cognitive elements 
(processors); failure of a cognitive element leads to the failure of the macrocognitive 
function. 

• Each element is reliably achieved through one or more cognitive mechanisms; errors 
may occur in a cognitive element if the cognitive mechanisms are challenged. 

• PIFs affect cognitive mechanisms. 

Table 2-1 shows the basic cognitive elements (i.e., processors) for the macrocognitive 
functions.  The detailed description of the elements can be found in Chapter 2 of the IDHEAS-G 
report [1]. 

Table 2-1 Macrocognitive Functions and Their Basic Elements 

Detection Understanding Decisionmaking Action 
Execution 

Interteam 
Coordination 

D1. Initiate detection 
– Establish the 
mental model for 
information to be 
detected 
D2. Select, identify, 
and attend to 
sources of 
information 
D3. Perceive, 
recognize and 
classify information 

U1. Assess/select 
data 
U2. Select/adapt 
/develop the mental 
model 
U3. Integrate data 
with the mental 
model to generate 
the outcome of 
understanding 
(situational 
awareness, 
diagnosis, resolving 
conflicts) 

DM1. Adapt the 
infrastructure of 
decisionmaking 
DM2. Manage the 
goals and decision 
criteria 
DM3. Acquire and 
select data for 
decisionmaking 
DM4. Make decision 
(judgment, 
strategies, plans) 

E1. Assess action 
plan and criteria 
E2. Develop or 
modify action 
scripts 
E3. Prepare or 
adapt 
infrastructure for 
action 
implementation 
E4. Implement 
action scripts 

T1. Establish or adapt 
interteam 
coordination 
infrastructure 
T2. Manage 
information 
T3. Maintain shared 
situational awareness 
T4. Manage 
resources 
T5. Plan interteam 
collaborative activities 
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D4. Verify and modify 
the outcomes of 
detection 
D5. Retain, 
document/record, or 
communicate the 
outcomes 

U4. Verify and 
revise the outcome 
through iteration of 
U1, U2, and U3 
U5. Export the 
outcome 

DM5. Simulate or 
evaluate the 
decision or plan 
DM6. Communicate 
and authorize the 
decision 

E5. Verify and 
adjust execution 
outcomes 

T6. Implement 
decisions and 
commands 
T7. Verify, modify, 
and control the 
implementation 

The Performance-Influencing Factor Structure 

The PIF structure describes how various factors in the event context affect the success or 
failure of human tasks.  PIFs affect cognitive mechanisms and increase the likelihood of 
macrocognitive function failure.  The PIF structure is independent of HRA applications and 
systematically organizes PIFs to minimize inter-dependency or overlapping of the factors.  The 
PIF structure is described as follows: 

1. PIF category: PIFs are classified into four categories, corresponding to characteristics of 
environment and situation, systems, tasks, and personnel. 

2. PIFs: Each category has high-level PIFs describing specific aspects of the environment 
and situation, systems, tasks, or personnel.  

3. PIF attributes: These are the specific traits of a performance influencing factor.  A PIF 
attribute represents a poor PIF state that challenges cognitive mechanisms and 
increases the likelihood of errors in cognitive processes. 

Table 2-2 shows the PIFs within the four categories. 

Table 2-2 Performance-Influencing Factors in IDHEAS-G 
Environment and 

situation 
System Personnel Task 

• Work Location 
Accessibility and 
Habitability 

• Workplace Visibility 
• Noise in Workplace 

and 
Communication 
Pathways 

• Cold/Heat/Humidity 
• Resistance to 

Physical Movement 

• System and 
Instrumentation 
and Control 
(I&C) 
Transparency to 
Personnel 

• Human-System 
Interface (HSI) 

• Equipment and 
Tools 

• Staffing 
• Procedures, 

Guidelines, and 
Instructions  

• Training 
• Team and 

Organization 
Factors  

• Work Processes 

• Information Availability 
and Reliability 

• Scenario Familiarity 
• Multi-Tasking, 

Interruptions and 
Distractions 

• Task Complexity 
• Mental Fatigue  
• Time Pressure and Stress 
• Physical Demands 

The Human Error Probability Quantification Model 

IDHEAS-G provides guidance on several ways to estimate HEPs, one of which is its HEP model 
to estimate the HEP of a human action.  The estimation has two parts:  estimating the error 
probabilities attributed to the CFMs (𝑃𝑃𝑐𝑐) and estimating the error probability attributed to the 
uncertainties and variability in the time available and time needed to perform the HFE (𝑃𝑃𝑡𝑡).  The 
estimation of the HEP is the probabilistic sum of 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑡𝑡: 

 𝑃𝑃 = 1 − (1 − 𝑃𝑃𝑐𝑐)(1 − 𝑃𝑃𝑡𝑡) (2.1) 

In Equation (2.1), 𝑃𝑃 is the probability of the HFE being analyzed (i.e., the HEP), and 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑡𝑡 
have already been defined.  Note the following: 
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• 𝑃𝑃𝑡𝑡 can also be viewed as the probability that the time needed to perform an action 
exceeds the time available for that action, as determined by the success criteria.  Pt 
assumes that actions are performed at a normal pace without complications and does 
not account for the increased likelihood of a human error due to time pressure.  Time 
pressure is treated as a PIF and contributes to 𝑃𝑃𝑐𝑐. 

• 𝑃𝑃𝑐𝑐 assumes that the time to perform the HFE is sufficient.  Sufficient time means that the 
HFE can be successfully performed within the time window that the system allows.  If 
operators’ responses are as trained, then the time available to complete the action is 
sufficient.  𝑃𝑃𝑐𝑐 captures the probability that the human action does not meet the success 
criteria due to human errors made in the problem-solving process. 

Estimation of Pc 

𝑃𝑃𝑐𝑐 is the probabilistic sum of the HEPs of all the CFMs of the critical tasks in a human action. 
The probability of a CFM applicable to the critical task is a function of the PIF attributes 
associated with the critical task.  The calculation of the probability of a CFM for any given set of 
PIF attributes, provided that all the PIF impact weights and base HEPs are obtained, is 
estimated as: 

The terms in Equation (2.2) are defined as follows: 

• 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the base HEP of a CFM for the given attributes of the following three PIFs:  
information availability and reliability, scenario familiarity, and task complexity.  𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
is also calculated as the probabilistic sum of the base HEPs for the three PIFs: 

where 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼, 𝑃𝑃𝑆𝑆𝑆𝑆, and 𝑃𝑃𝑇𝑇𝑇𝑇 are the base HEPs for information availability and reliability, 
scenario familiarity, and task complexity, respectively.   

• 𝑤𝑤𝑖𝑖 is the PIF impact weight for the given attributes of the remaining 17 PIFs and is 
calculated as: 

where 𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 is the human error rate at the given PIF attribute and 𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the 
human error rate when the PIF attribute has no impact.  The human error rates used in 
Equation (2.4) are obtained from empirical studies in the literature or operational 
databases that measured the human error rates while varying the PIF attributes of one 
or more PIFs.  𝐶𝐶 is a factor that accounts for the interaction between PIFs, and it is set to 
1 for the linear combination of PIFs impacts unless there are data suggesting otherwise. 

 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ �1 + �(𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 1)� ∙ 𝐶𝐶 ∙
1
𝑅𝑅𝑅𝑅

 

                         =
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ �1 + (𝑤𝑤1 − 1) + (𝑤𝑤2 − 1) + ⋯+ (𝑤𝑤𝑛𝑛 − 1)� ∙ 𝐶𝐶

𝑅𝑅𝑅𝑅
 

(2.2) 

 𝑃𝑃𝐶𝐶𝐶𝐶𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − [(1 − 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼)(1 − 𝑃𝑃𝑆𝑆𝑆𝑆)(1 − 𝑃𝑃𝑇𝑇𝑇𝑇)] (2.3) 

 𝑤𝑤𝑖𝑖 =
𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃

𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 (2.4) 
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• 𝑅𝑅𝑅𝑅 is a factor that accounts for the potential recovery from failure of a critical task, and it 
is set to 1 by default.   

2.2. Construct of IDHEAS-DATA 
Various sources of human error data provide instances of human errors, error rates (i.e., 
percent of errors), or task-related performance measures of human actions, tasks, or failure 
modes.  The human error data are generally measured at a specific context.  To use different 
sources of data together to inform HEPs, the NRC staff developed IDHEAS-DATA to generalize 
human error data into a common format.  The construct of IDHEAS-DATA is based on IDHEAS-
G. 

IDHEAS-G is inherently capable of generalizing human error data of various sources because 
(1) IDHEAS-G can model any human task with its basic set of CFMs, (2) the CFMs are 
structured in different levels of details, and (3) the PIF structure models the context of a human 
action with high-level PIFs and detailed PIF attributes.  Thus, the NRC staff used IDHEAS-G to 
develop the construct of IDHEAS-DATA to generalize various sources of human error data.  For 
example, two data sources have human error data for different kinds of tasks and in different 
contexts, but the failure of the tasks can be represented with the applicable IDHEAS-G CFMs, 
and the context can be represented with the relevant PIF attributes.  Thus, both data sources 
provide human error information with respect to the common sets of CFMs and PIF attributes.  
Generalization of human error data refers to the process of mapping the data source into the 
corresponding CFMs and PIFs.  Figure 2-1 illustrates this approach. 

 

Figure 2-1 Illustration of IDHEAS-G Data Generalization and Integration 

In addition to calculate 𝑃𝑃𝑐𝑐 based on CFMs and PIFs, the IDHEAS-G HEP quantification model 
calculates 𝑃𝑃𝑡𝑡 based on the time available and time needed for a human action.  The HEP 
quantification model also addresses crediting recovery of human failures in an event.  Moreover, 
IDHEAS-G has a dependency model to evaluate the effect of dependency between human 
actions on HEPs.  IDHEAS-DATA is intended to document data sources in these areas as well.  

Data source 1

Tasks

Integrate data for the failure modes and PIFs

Context

Failure 
modes

PIFs

Data source 2

Tasks Context

Failure 
modes

PIFs

𝐻𝐸𝐸𝑃𝑃 =  𝑓(𝑠𝑡𝑎𝑡𝑅𝑅𝑠 𝑜𝑓 𝑃𝑃𝐼𝐶𝐶𝑠)

Human error 
rates of the 

failure modes

Human error 
rates at the 
PIF states

Generalization

Integration

Sources of 
human error 
data 

Human error 
rates at the 
PIF states

Human error 
rates of the 

failure modes
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Overall, IDHEAS-DATA includes 27 tables, referred to as IDHEAS-DATA TABLEs (IDTABLEs), 
each documenting the data in one element of IDHEAS-G.  The IDTABLEs are listed as follows: 

IDTABLE-1 – Base HEPs for Scenario Familiarity 

IDTABLE-2 – Base HEPs for Information Availability and Reliability 

IDTABLE-3 – Base HEPs for Task Complexity 

IDTABLE-4 – PIF attribute weights for Workplace Accessibility and Habitability 

IDTABLE-5 – PIF attribute weights for Workplace Visibility 

IDTABLE-6 – PIF attribute weights for Noise in workplace and Communication Pathways 

IDTABLE-7 – PIF attribute weights for Cold, Heat, and Humidity 

IDTABLE-8 – PIF attribute weights for Resistance to Physical Movement 

IDTABLE-9 – PIF attribute weights for System and I&C Transparency to Personnel 

IDTABLE-10 – PIF attribute weights for Human-System Interfaces 

IDTABLE-11 – PIF attribute weights for Equipment, Tools, and Parts 

IDTABLE-12 – PIF attribute weights for Staffing  

IDTABLE-13 – PIF attribute weights for Procedures, Guidelines, and Instructions  

IDTABLE-14 – PIF attribute weights for Training 

IDTABLE-15 – PIF attribute weights for Team and Organization Factors 

IDTABLE-16 – PIF attribute weights for Work Processes 

IDTABLE-17 – PIF attribute weights for Multi-tasking, Interruptions, and Distractions 

IDTABLE-18 – PIF attribute weights for Mental Fatigue  

IDTABLE-19 – PIF attribute weights for Time Pressure and Stress 

IDTABLE-20 – PIF attribute weights for Physical Demands 

IDTABLE-21 – Lowest HEPs of the CFMs  

IDTABLE-22 – PIF Interaction 

IDTABLE-23 – Distribution of Task Completion Time 

IDTABLE-24 – Modification of Task Completion Time 

IDTABLE-25 – Instances and Data on Dependency of Human Actions  

IDTABLE-26 – Instances and Data on Recovery of Human Actions 

IDTABLE-27 – Main Drivers to Human Failure Events 

IDTABLE-1 to IDTABLE-IDTABLE-3 are Base HEP Tables.  They document human error rates 
for base HEPs.  The data of human error rates from various sources are analyzed for the 
applicable CFMs and relevant attributes of the three base PIFs. 
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IDTABLE-4 to IDTABLE-IDTABLE-20 are PIF Impact Tables.  They document human error 
rates for the CFMs at different PIF attributes of the rest 17 PIFs.  The data sources contain 
human error rates or task performance measures varying with specific PIF attributes.  The 
attribute weight can be inferred from the data in which human error rates were measured as a 
PIF attribute was varied from a no or low impact status to a high impact status. 

IDTABLE-21 is for Lowest HEPs of the CFMs.  It documents human error rates when the tasks 
were performed under the condition that none of the known PIF attributes was present so that 
all the PIFs presumably had no impact on human errors.  The data inform the lowest HEPs for 
the CFMs. 

IDTABLE-22 is for PIF Interaction.  It documents human error data on PIF interaction. The data 
are from the studies in which human error rates were measured as two or more PIF attributes 
varied independently as well as jointly.  The data informs the PIF interaction factor 𝐶𝐶 in the HEP 
quantification model (Equation (2.2)). 

IDTABLE-23 is for Distribution of Task Completion Time, i.e., time needed to perform a human 
action.  IDHEAS-G has a time uncertainty model that calculates 𝑃𝑃𝑡𝑡 as the convolution of the 
distributions of time needed and time available.  The data can be used to validate the IDHEAS-
G time uncertainty model and inform the estimation of the time needed distribution. 

IDTABLE-24 is for Modification to Task Completion Time.  It documents empirical data on how 
various factors modify the time needed to complete a task.  The IDHEAS-G time uncertainty 
model requires analysts to estimate the distribution of time needed for a human action.  Many 
factors such as whether or environmental conditions can modify the center, range, and/or shape 
of the time distribution.  IDTABLE-IDTABLE-24 provides the empirical basis for analysts to 
estimate the time needed distribution under different contexts. 

IDTABLE-25 is for Dependency of Human Actions.  It documents instances and empirical data 
on dependency between human actions.  IDTABLE-IDTABLE-25 provides the technical basis 
and reference information for HRA analysts to evaluate dependency between human actions. 

IDTABLE-26 is for Recovery of Human Actions.  It documents instances of recovery actions.  
Currently, the IDHEAS-G HEP quantification model uses the factor 𝑅𝑅𝑅𝑅 to represent crediting 
recovery.  The information can help HRA analysts to identify and assess and credit recovery 
actions. 

IDTABLE-27 is for Main Drivers to Human Failure Events.  It documents empirical evidence on 
main drivers to human failures in nuclear power plant events.  The information should guide 
HRA analysts to capture the main drivers and to not overlook important drivers in human 
events. 

The details of the IDTABLEs are described in later sections of this report. 

2.3. Identification and Review of Data Sources 
Since the 1950s, much human error data has been available in various work domains such as 
aerospace, aviation, manufacturing, and health care.  Many cognitive behavioral studies 
produced human error data in controlled experimental contexts.  Moreover, human performance 
data in nuclear power plant operations have become available in the last two decades.  Several 
human performance databases have been developed to systematically collect operator 
performance data in NPPs for HRA.  Such efforts include the SACADA database [3] developed 
by the NRC and the Human Reliability Data Extraction (HuREX) database [4] developed by the 
Korea Atomic Energy Research Institute.  In addition, many HRA expert elicitation studies 
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produced expert judgment of HEPs for specific applications.  While individual sources of human 
error data may not be enough to yield HEPs for all kinds of human tasks under a large breath of 
contexts, consolidating the available data and using the data together would yield more robust 
and valid HEPs. 

Ideally, the data to inform HEPs would have the following features: 

• The known numerator and denominator of human error rates are collected within the 
same context. 

• Human error rates are measured repetitively to minimize uncertainties in the data. 

• Human error rates are collected for a variety of personnel so that the data can represent 
average personnel or operators. 

• Human error data are collected for a range of task types or failure modes and 
combinations of PIFs. 

Such ideal data do not exist.  However, these features can be used as criteria to evaluate real 
data for their applicability to HRA.  Along with the development of IDHEAS-G, the NRC staff 
documented human error data in the literature and human performance databases.  The data 
sources include the following categories: 

A. Nuclear simulator data (e.g., SACADA) and operational data (e.g., German Maintenance 
human error data) 

B. Operation performance data from other domains (e.g., air traffic control operational 
errors) 

C. Experimental data reported in the literature 

D. Expert judgment data 

E. Inference data (statistical data, ranking, categorization, etc.) 

The NRC staff examined the data for their ability to inform HEPs.  The following are several 
types of human error data with examples to demonstrate if and how the data can be used to 
inform HEP estimation. 

Human error rates with known PIFs 

This type of data provides the numerator and denominator of human error rates for types of 
tasks performed in the same context or in a known range of contexts.  Such data can inform the 
base HEPs for the CFMs (i.e., 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) relevant to the tasks.  The following are two examples: 

(1) Quantification of unsatisfactory task performance in NPP operator simulator training, as 
collected in the SACADA database by the NRC staff.  The SACADA database was built 
with the same macrocognitive model as that in IDHEAS-G and collects operator task 
performance for different types of failures in various contexts.  The different types of 
failures can be mapped to the detailed level CFMs in IDHEAS-G, and the various 
contexts can be mapped to the IDHEAS-G PIF attributes.  Thus, the SACADA database 
can inform the base HEPs of IDHEAS-G CFMs and the quantitative effects of some PIF 
attributes. 
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(2) The analysis of human errors in maintenance operations of German NPPs.  Preischl and 
Hellmich [4, 5] studied human error rates for various basic tasks in maintenance 
operations.  The following are some example human error rates they reported: 

• 1/490 for operating a circuit breaker in a switchgear cabinet under normal conditions 

• 1/33 for connecting a cable between an external test facility and a control cabinet 

• 1/36 for reassembly of component elements 

• 1/7 for transporting fuel assemblies 

This type of data from operational databases inherits uncertainties in the data collection 
process.  For example, the definitions of human failure vary from one database to another, so 
caution is needed when aggregating human error rates from different sources. 

Human error rates with unknown or mixed context 

This type of data reports statistically calculated human error rates for specific tasks across a 
mixture of contexts.  Such data cannot inform HEPs of the failure modes because neither the 
failure modes nor the context was specified.  The data could represent the best or worst 
possible scenarios or the average scenario.  This type of data can be used to validate the 
distribution of HEPs obtained by other means. 

HEPs estimated through expert judgment 

This type of data is not true human error data.  They are generated through a formal expert 
elicitation process, representing the beliefs of the representative technical community on the 
likelihood of human failure for a given HRA application.  Nevertheless, expert judgment has 
been widely used in risk-informed applications.  The resulting estimates of HEPs bear validity 
and regulatory assurance if the judgment was obtained through a formal, scientifically founded 
expert elicitation process.  This type of data can be used to inform the central tendency and 
range of HEPs for the context in which the expert judgment was made. 

An example of an expert elicitation process used to estimate HEPs is the judgment of HEPs of 
the crew failure modes in the IDHEAS At-Power Application [6].  The method has 14 crew 
failure modes, which are a subset of IDHEAS-G behaviorally observable failure modes.  A very 
limited set of PIF attributes is considered for each crew failure mode.  An expert panel estimated 
the HEP distributions of the crew failure modes for the combinations of the PIF attributes. 

This type of data has a limitation in that the full context in which the HEPs were estimated is 
often not well documented.  Because expert judgment is typically elicited for a very specific 
domain of application and the expert panel consists of experienced domain experts, the expert 
panel makes its own assumptions about the context.  For example, in the expert elicitation of 
HEPs for the IDHEAS At-Power Application [6], the expert panel assumed that NPP operators 
perform control room tasks by following procedures, and they would make a correct diagnosis 
with procedures as long as they have the right information.  This assumption may not be true for 
tasks performed outside control rooms.  Thus, caution is needed when generalizing expert 
judgment HEPs to other applications. 

Quantification of PIF effects 

Many sources present the changes in human error rates when varying the states of one or more 
PIFs.  Such data can inform the quantification of PIF effects in the IDHEAS-G quantification 
model.  The following are several examples: 



 

2-10 

• NUREG/CR-5572, “An Evaluation of the Effects of Local Control Station Design 
Configurations on Human Performance and Nuclear Power Plant Risk,” issued 
September 1990 [7], estimated the effects of local control station design configurations 
on human performance and NPPs.  It estimated that HEP = 2 x 10-2 for ideal conditions 
and HEP = 0.57 for challenging conditions with poor HSIs and distributed work locations. 

• Prinzo et al. [8, 9] analyzed aircraft pilot communication errors and found that the error 
rate increased nonlinearly with the complexity of the message communicated.  The error 
rate was around 4 percent for an information complexity index of 4 (i.e., the number of 
messages transmitted per communication), 30 percent for an index of 12, and greater 
than 50 percent for indices greater than 20. 

• Patten et al. [10] studied the effect of task complexity and experience on driver 
performance.  The PIF states of the tasks manipulated in the experiment were low 
experience versus high experience, and low complexity versus high complexity.  The 
mean error rates were 0.12, 0.21, 0.25, and 0.32 respectively for the four combinations 
of PIF states:  low complexity and high experience, low complexity and low experience, 
high complexity and high experience, high complexity and low experience. 

When documenting this type of data, the objective description of PIF states needs to be 
carefully considered.  For example, the PIF state of “high complexity” in one data source can be 
referred to as “low complexity” in another data source.  The NRC staff found that PIF attributes 
more accurately represent the actual context than the subjective assessment of “high” or “low” 
PIF states.  In fact, using PIF attributes can make the definition for PIF states more objective. 

PIF interaction 

Most HRA methods treat the combined effects of PIFs on HEPs as the multiplication of the 
effects of the individual PIFs.  Xing et al. [11] reviewed a limited set of cognitive literature in 
which human error rates were measured, as two or more PIFs varied independently and jointly.  
They observed that the combined effect of PIFs fits better to the addition than the multiplication 
of the individual PIF effects.  In fact, the broad cognitive literature indicates that the combined 
effect is not simply the addition or multiplication of individual PIF effects.  Instead, the interaction 
between PIFs may not fit to a single rule and can vary greatly for different combinations of PIFs.  
The interaction effect can be inferred from human error rates that are collected in a single study 
or database and with more than one PIF varying independently and jointly. 

The significance or ranking of error types and causal factors 

Studies in human error analysis and root causal analysis typically classify and rank the 
frequencies of various causal factors in reported human events.  Some studies correlate PIFs 
with various types of human errors.  Those studies only analyze the relative human error data 
without reporting how many times personnel performed the kind of tasks.  The data from such 
studies cannot directly inform HEPs, but they can inform which PIFs or attributes are more 
relevant to the CFMs of the reported human errors.  The following are several examples: 

• Virovac et al. [12] analyzed human errors in airplane maintenance and found that the 
prevalent factors with frequent occurrence in human errors are communication 
(16 percent), equipment and tools (12 percent), work environment (12 percent), and 
complexity (6.5 percent). 

• Kyriakidis et al. [13] analyzed U.K. railway accidents caused by human errors and 
calculated proportions of PIFs in the accidents.  They reported that the most frequent 
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PIFs in the accidents were safety culture (19 percent), familiarity (15 percent), and 
distraction (13 percent). 

The above examples are just a few of a large body of human error data we have documented 
so far. We also observed the consistency between the results obtained in controlled cognitive 
experiments and those from complex nuclear scenario simulation. Given the limited amount of 
nuclear operation data, the NRC staff generalized human error data in all the source categories 
and integrated them for estimating HEPs in complex nuclear scenarios. 

2.4. Generalization of Human Error Data in IDHEAS-DATA 
This section introduces the process of generalizing human error data.  All the numeric values in 
this section are for demonstrating the process and their practical use in HRA applications is not 
recommended. 

Human error data generalization is mapping the context and task from the data source onto the 
IDHEAS-G elements (e.g., CFMs and PIFs) and documenting them in the IDHEAS-DATA 
Tables.  The process of data generalization is essentially the same as that of performing a 
qualitative HRA using IDHEAS-G.  The following process, as illustrated in Figure 2-2, is adapted 
from IDHEAS-G for generalizing human error data: 

• Analyzing the data source.  This includes identifying the tasks of which human error 
information is reported, analyzing the context, characterizing the tasks and assessing 
the time uncertainties of the tasks. 

• Mapping the data onto the IDHEAS-DATA structure.  This includes representing the 
reported human errors of the tasks with applicable CFMs and representing the context of 
the tasks with PIF attributes. 

• Analyzing recovery of human failures and dependency between human actions for 
events.  Such information is often available in operational and simulation data. 

• Documenting uncertainties in the data source and the mapping process. 

The IDHEAS-G report (NUREG-2198) [1] has detailed guidance on the process above.  
Different elements of the process are tailored from IDHEAS-G for mapping human error data 
into different IDHEAS-DATA Tables. 

 

Figure 2-2 The Process of Generalize Human Error Data to IDEHAS-DATA 
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2.4.1. Generalizing Human Error Data to IDHEAS-DATA Base HEP Tables 
 IDTABLE-IDTABLE-1 to IDTABLE-IDTABLE-3 document human error rates for base HEPs.  A 
base HEP is the error probability of a CFM under an attribute of the three base PIFs: Scenario 
familiarity, Information availability and reliability, and Task complexity.  If one of these PIFs is 
present in the context of the tasks in a data source, the human error data reported in the data 
source are generalized and documented in the corresponding IDTABLE.  

The following process is tailored to generalize human error data for the base HEPs: 

(1) Analyze the data source.  This includes identifying the tasks of which human error 
information is reported, analyzing the context, characterizing the tasks to identify 
cognitive activities involved in the tasks and time constraints when the tasks were 
performed. 

(2) Map the human errors of the tasks to corresponding CFMs.  The task characterization 
identifies cognitive activities involved in the tasks.  The cognitive activities are then 
mapped to applicable IDHEAS-G CFMs.  The mapping could be made to a single or 
multiple levels of CFMs: failure of macrocognitive functions, failure of processors, or 
detailed failure modes.  

(3) Map the context to the relevant IDHEAS-G PIF attributes. 

(4) Document the reported human error rates for the corresponding CFMs and PIF 
attributes in IDHEAS-DATA Base HEP Tables along with other items of context 
information. 

(5) Evaluate and document uncertainties in the data source and mapping process.  

Structure of the Base HEP TABLEs 

A Base HEP IDTABLE documents human error data in the associated CFMs and PIF attributes.  
Each row of the TDTABLE is referenced as one datapoint, which may consist of one or several 
reported human error rates at different status of the PIF attribute.  Each datapoint comes from 
one data source such as a technical report or a research paper, while one data source may 
contain multiple datapoints for the same or different IDTABLEs because the reported study may 
have examined human error rates for different tasks or different PIF attributes. The columns of 
the table document the following dimensions of information for every datapoint: 

• Column 1:  the base PIF attribute for the reported human error rates – The IDHEAS-
DATA Tables use labels for PIF attributes.  Appendix A1 provides the indices of the 
labels to the corresponding PIF attributes.0F

1 

• Column 2:  the applicable CFMs of the reported human error data – The CFMs are 
labeled as D, U, DM, E, and T for failure of Detection, Understanding, Decisionmaking, 
Action execution, and Interteam Coordination.  If the task for which the human error 
rates were reported contain more than one CFM, then the labels of all the applicable 
CFMs are presented in Column 2. 

 
1  Note that the labels are in two levels.  The high-level labels are similar to those used in Appendix B of the 

IDHEAS-ECA report and in the IDHEAS-ECA Software.  This is because the IDHEAS-G PIF attributes were 
consolidated into a concise set of the attributes in IDHEAS-ECA.  The attributes in IDHEAS-DATA are 
essentially the same as those in IDHEAS-G. 
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• Column 3:  human error rates – The human error rates reported in the data source.  The 
error rates are percent of errors unless specified otherwise. 

• Column 4:  the tasks for which the human error rates were reported in the data source, 
along with the definition of the human errors measured for the tasks. 

• Column 5:  PIF attribute measure – The task-specific factor or variable used in the data 
source under which the tasks were performed and human error rates were measured. 

• Column 6:  Other PIFs that are also present in the tasks and uncertainties – In addition 
to the PIF attribute that were under the study, the context of the tasks in a data source 
may have other PIF attributes present during task performance; therefore, they would 
contribute to the reported error rates.  Column 6 documents other PIF attributes that 
were present.  In particular, Column 6 documents whether the tasks were performed 
under time constraints.  Information about the time availability is important to infer the 
base HEPs from the reported human error data.  If the time available is inadequate, then 
a reported human error rate corresponds the probabilistic sum of the base HEPs and the 
error probability due to inadequate time (𝑃𝑃𝑡𝑡).  Column 6 also documents the uncertainties 
in the data source and in the mapping to the CFMs and PIF attributes.  The uncertainties 
would affect how the reported error rates are to be integrated to inform base HEPs. 

• Column 7:  The date source reference. 

Next is an example to demonstrate the process of generalizing human error data to the Base 
HEP Tables.  The data source is a report, “The Outcome of [Air Traffic Control] Message 
Complexity on Pilot Readback Performance,” by Prinzo et al. [8, 9].  The study analyzed aircraft 
pilot communication errors and reported that the error rate increased nonlinearly with the 
complexity of the message communicated.  The following is the process of generalizing the data 
to IDHEAS-DATA Base HEP IDTABLE-IDTABLE-3 for Task complexity. 

Analyze the data source: Prinzo et al. [8, 9] — The task is that pilots listen to and read back 
messages from air traffic controllers.  The pilots hold the information in their memory and read 
back at the end of the transmission.  The cognitive activities involved are perceiving 
information and communicating it.  The pilots perform the task individually without peer-
checking, and the tasks are performed without time constraints. 

Readback errors are defined as misreading or missing key messages.  Message complexity 
is defined as the number of key messages in one transmission.  The study calculates percent 
of readback errors at different levels of message complexity from thousands of transmissions. 

Identified human error data for generalization: The readback error rates at different message 
complexity levels are identified as the data for this entry. 

Applicable CFMs:  The CFM for readback errors is failure of Understanding.  While the task is 
“listen to and readback messages,” the cognitive activities required are identifying, 
comprehending, and relating all the key messages in one transmission.  Those are the 
elements in the macrocognitive function Understanding. 

Relevant PIF attributes:  The primary PIF is Task complexity.  The attribute is C11, “the 
number of key messages to be kept.”  Another PIF present is the Work Process attribute, 
“Lack of verification or peer-checking.” 

Other PIF attributes present:  Some transmissions may be performed with the presence of 
other PIF attributes such as distraction, stress, or mental fatigue.  Those PIFs were not 



 

2-14 

prevalent in the transmissions analyzed but could increase the overall error rates.  Pilots’ 
flying experience was not correlated with the error rates. 

Uncertainties in the data and mapping:  The source audio transmissions are mixture of 
normal and emergent operation. 

The analysis results are documented in IDTABLE-3 as one datapoint.  Table 2-3 shows the 
information documented for this datapoint.  All the information items are in one row. The top two 
row has column numbers for referencing. 

Table 2-3 Sample of IDTABLE-3 – Base HEPs for Task Complexity 
1 2 3 4 5 6 7 

PIF CFM Error rates Task (and error 
measure) PIF measure 

Other PIFs 
(and 

Uncertainty) 
REF 

C11 U Number of 
messages 

Error 
rate 

Pilots listen to and 
read back key 
messages 

Message complexity 
- # of key messages 
in one transmission 

(Mixture of 
normal and 
emergent 
operation so 
other PIF 
attributes may 
exist) 

[8, 9] 

5 0.036 
8 0.05 

11 0.11 
15 0.23 
17 0.32 

>20 >0.5 

2.4.2. IDHEAS-DATA PIF Weight IDTABLE-4 through IDTABLE-20 
IDTABLE-4 through IDTABLE-IDTABLE-20 document human error rates for the 17 PIFs other 
than the three base PIFs.  A data source generalized to these IDTABLEs should have human 
error rates or task performance indicators measured at different status of one or more PIF 
attributes.  The IDTABLEs contain datapoints at which the human error rates of a task were 
measured for one or more status of a PIF attribute (e.g., not-present vs. present, low vs. high).  
Such error rates can be used to infer the weight of the PIF attribute. 

The process of generalizing human error data to a PIF Weight IDTABLE is the same as that for 
the Base HEP Tables.  The structure of the PIF Weight IDTABLE is the same as that for the 
Base HEP Tables.  A datapoint typically has more than one human error rate reported for 
different status of the PIF attribute, thus the third column “Human error data” for each row is 
typically split into multiple rows and columns for different PIF attribute status.  

Each row of a PIF Weight IDTABLE documents one datapoint, containing the human error rate 
of a task for one PIF attribute and the related information in different columns.  The column for 
error rates is typically split into several sub-rows and columns to record multiple error rates and 
the levels of the PIF attribute at which the errors were measured.  If a data source has human 
error rates for more than one task, then the data for each task is documented either in a 
separate row or in different sub-columns of the error rate column.  If a data source has error 
rates measured for more than one PIF attribute, then the data for every attribute is documented 
as a separate datapoint. 

The next example demonstrates how to generalize human error data to a PIF Weight Table.  
The data source is the research paper, “Effects of Interruption Length on Procedural Errors,” by 
Altmann et al. [14].  The study investigated effects of task interruption on procedural 
performance, focusing on the effect of interruption length on the rates of different categories of 
error at the point of task resumption.  The following is the process of generalizing the data to 
IDTABLE-17 for Multitasking, Interruption, and Distraction. 
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Analyze the data source:  The task  [14] was that individual participants performed procedural 
sequences of computerized execution steps.  The task required individuals memorizing the 
sequences.  The study examined effects of interruption length on procedural performance 
parametrically across a range of practically relevant interruption durations—from about 3 
seconds to about 30 seconds.  The cognitive activities involved were executing sequential 
steps.  The participants are well trained for the task.  They performed the task individually 
without peer-checking and without time constraint.  Performance errors are defined as loss of 
place in the procedure (sequence errors) and errors involving incorrect execution of a correct 
step after interruption (non-sequence errors)  

Identify human error data for generalization:  Both sequence and non-sequence error rates at 
different lengths of interruption are identified as the data for this entry. 

Applicable CFMs:  The CFM is failure of action execution. 

PIF attributes:  The PIF being examined is Multitasking, Interruption, and Distraction. The 
attribute is “Interruption.”  The PIF Work Process attribute “Lack of verification or peer-
checking” was present for all the human error data measured in the study. 

Evaluate uncertainties in the data and mapping:  This study is a well-controlled experimental 
study and there is no prevalent uncertainty involved. 

The analysis results are documented in IDTABLE-17 as one datapoint.  The sequence-error 
rates at different lengths of interruption are identified as the human error data for this datapoint.  
The post-interruption non-sequence errors, although not affected by interruption, is also 
documented for reference.  The reported human error rates for the corresponding CFMs and 
PIF attributes are then documented along with other items of context information.  Table 2-4 
shows the information documented for this datapoint.  All the information items are in one row. 
The top row has column numbers for referencing. 

Table 2-4 Sample of IDTABLE-17 – Error Rates for PIF Multitasking, Interruptions, 
and Distractions 

1 2 3 4 5 6 7 

PIF CFM Error rates (%) Task (and error 
measure) 

PIF 
measures 

Other PIFs 
(and 

Uncertainty) 
REF 

MT2 E Interruption 
Length (s) 

Sequence 
error 

Non-
sequence 

error 

Individuals executed 
procedural steps of a 
computerized task. 
Performance errors are 
loss of place in the 
procedure (sequence 
errors) and errors 
involving incorrect 
execution of a correct 
step after interruption 
(nonsequence errors). 

 

Interruption - 
Different 
interruption 
length 
(seconds). 
Baseline is 
no 
interruption. 

 [14] 

Baseline 2 2 
3 4 2 

13 10 2 
22 14 2 

   

2.4.3. IDTABLE-21 for the Lowest HEPs 
In the IDHEAS-G HEP quantification model, the lowest HEPs are used as the values for the 
base HEPs when none of the three base PIF attributes is present.  The Lowest HEP IDTABLE 
documents datapoints of which the human error rate of a task is measured under the conditions 
that (1) none of the known PIF attributes are present or there is no prevalent known PIF 
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attribute present and (2) the number of times that the task was performed is substantially large 
so that the measured error rate is reliable.  The human error rates measured under such 
conditions correspond to the lowest HEP that a CFM of tasks can achieve. 

Ideally, data sources for lowest HEPs should meet the following conditions: 

1) The error rates are measured from a sufficiently large number of times that the task is 
performed; 

2) none of the attributes of the 20 PIFs is present or prevalent; 
3) the task is performed without time constraint; 
4) there is professional self-verification, peer-checking, and/or supervision for task 

performance; 
5) the error rate is for a single CFM of a single task; and 
6) the error rate is measured without recovery actions. 

Hardly any data source can meet all the conditions above.  When analyzing data sources for the 
lowest HEPs, it is important to annotate if any of these conditions is not met, such as whether 
there is lack of peer-checking or whether the task of which the error rates were measured had 
multiple applicable CFMs. 

The structure of IDTABLE-21 is described as the follows: 

 Column 1:  The applicable CFMs of the reported human errors – The CFMs are labeled 
as D, U, DM, E, and T for failure of Detection, Understanding, Decisionmaking, Action 
execution, and Interteam Coordination. Note that the task may have multiple applicable 
CFMs. 

 Column 2:  Human error rates – The human error rates reported in the data source 
should meet most of the conditions for the lowest HEPs. If the range of an error rate was 
calculated or estimated in the data source, it should be documented as well to inform the 
integration of multiple data sources into the lowest HEPs. 

 Column 3:  Task and context - The task of which the human error rates are measured 
and the general context under which the task is performed.  

 Column 4: Criteria assessment – Assessment of the human error data against the 
criteria of lowest HEPs. Five criteria are assessed: Adequate time available for 
performing the task, personnel’s self-verification of task performance, Team verification 
(through peer-checking, independent checking / advising, and close supervision), 
recovery of human failure events, and presence of any PIF attribute. Each criterion 
assessed for “Yes,” “No,” Mixed Yes and No,” and “Unknown.”  

 Column 5:  Uncertainties – There are uncertainties in the data source and in the 
mapping to IDHEAS-G CFMs. In particular, if the number of the times the task was 
performed is not sufficiently large, the reported error rate may not represent the lowest 
HEP.  

 Column 6:  Source reference. 

Next is an example to demonstrate how to generalize human error data to the Lowest HEP 
Table.  The source of data is the research papers “Human error probabilities from operational 
experience of German nuclear power plants”, Part I and Part II, by Preischl and Hellmich [4, 5].  
The study collected human reliability data from the operational experience of German nuclear 
power plants to determine the number of times the task was performed in the past, as well as 
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the number of errors that occurred.  The data source was the database of the German licensee 
event report system that collected the reportable events in German nuclear power plant 
installation work.  The study reported error rates of many types of nuclear power plant 
maintenance tasks.  This example only uses the datapoints for which the number of the task 
performed was greater than 1000 and no prevalent PIF attribute were reported.  The following is 
the process of generalizing the data to inform lowest HEPs. 

Analyze the data source:  The tasks that maintenance personnel performed routine nuclear 
power plant maintenance.  The cognitive activities involved were executing sequential steps.  
Participants are well trained for the task.  They may perform the task with or without peer-
checking.  Most tasks should be performed without time constraints.  Performance errors 
were defined as not performing steps of a task or incorrectly performing a task.  The error rate 
is the number of times the error occurred divided by the number of times the same task type 
was performed. The data source provides both numbers for various task types. 

Identify human error data for generalization:  The human error data for this example are the 
rates extracted from the reported events in which no PIFs were identified. 

CFMs:  The CFM is failure of Execution. 

Evaluate uncertainties in the data and mapping:  It is unclear whether the tasks were 
performed with or without peer-checking.  The reported events may or may not involve 
recovery actions.  The definition of the errors was for task steps rather than a whole task; 
thus, the reported error rates could be higher than that for whole tasks if some tasks had 
errors in multiple steps. 

The analysis results are documented in IDTABLE-21 as multiple datapoints.  While the majority 
of datapoints have the CFM of Failure of Execution, two types of tasks were reading meters or 
reading instructions.  The errors were incorrectly reading.  This could be the CFM of failure of 
Detection or the CFM of failure of Execution because reading is a part of the execution.  Table 
2-5 shows the information documented from this data source for the lowest HEPs. 

Table 2-5 Sample of IDTABLE-21 – Lowest HEP 
1 2 3 4 5 6 

CFM Error 
rate          Task and context 

Criteria for lowest HEPs: 
TA - Time adequacy 
SelfV - Self verification 
TeamV – Team verification 
Rec - Recovery 
O - other factors 
(Y-Yes, N – No, M-Mixed  

Un-Unknown) 

Uncertainty REF 

E 8E-4 

(1/1470) 
 

Manually operating a local valve. 
Frequently performed task. Valve 
not operated, step in a sequence 
of different steps not 
remembered.  - No known PIF 
exists 

TA – Y,  SelfV- Y,  
TeamV - Unknown 
Rec - Unknown 

Error rates were 
for steps of a 
task. Most tasks 
performed may 
not have peer-
checking. Some 
errors made 
may have been 
recovered so 
they did not get 
into the 
reporting 
system. 

[4, 
5] 
 

E 8.9E-4 
(7/8058) 

 

Operating a control element on a 
panel, Wrong control element 
selected, 
 - Similar controls within reach 

TA – Y,  SelfV- Y,  
TeamV - Unknown 
Rec - Unknown 

 8.78E-4 
(1/1347)  

59 Operation of a manual control 
at a Main Control Room (MCR) 
control (Task not remembered) 

TA – Y,  SelfV- Y,  
TeamV - Unknown 
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- Frequently performed task, part 
of professional knowledge, 
position of indicator lamps 
ergonomically unfavorably 
designed 

Rec - Unknown 

E 1.04E-3 
(2/2088) 

 

Remembering professional 
knowledge, Remembered 
incorrectly. Part of frequently 
performed procedure 

TA – Y,  SelfV- Y,  
TeamV - Unknown 
Rec - Unknown 

E 1.03E-3 
(3/3067) 

 

Carrying out a sequence of 
tasks. Error were skipped steps. 
Frequently performed. 

TA – Y,  SelfV- Y,  
TeamV - Unknown 
Rec - Unknown 

2.4.4. IDTABLE-22 for PIF Interaction 
The PIF Interaction TABLE documents datapoints of which the human error rates of a task were 
measured as two or more PIF attributes were varied independently and jointly.  Each datapoint 
contains the human error rates under different status of the individual PIF attributes as well as 
the error rates under the combination of both PIF attributes. The weights of individual PIF 
attributes and the joint weight of the PIF attributes can thus be calculated from those error rates. 
The relationship between these weights would inform the quantitative aspect of PIF interaction. 
For example, if the two PIF attributes examined in a study have no interaction in their impacts 
on human error rates, then the combined weight is simply the sum of the individual weights.  On 
the other hand, if there is interaction, the combined weight would not be the linear combination 
of the individual weights. 

The structure of IDTABLE-22 is similar to that of PIF weight TABLEs but it has two PIF 
attributes in Column 2 “PIFs.”  Each row is for one datapoint that represents human error rates 
of a task under individual and joint PIF attributes.  The error rates of a datapoint are 
documented in sub-rows for the status of one PIF attribute and sub-columns for different status 
of another PIF attribute.  A data source may contain multiple datapoints for different tasks or for 
different PIF combinations.  

The following example demonstrates the process of generalizing human error data to the PIF 
Interaction TABLE.  The source of data is the research paper about the effect of sustained 
acceleration (+Gz) and luminance on dial reading errors [15].  The following is the process of 
generalizing the data to IDHEAS-DATA PIF Interaction IDTABLE-22.  

Analyze the data source:  The task was that pilots with corrected normal vision and extensive 
centrifuge experience read aircraft instrument dials as the luminance (c/m2) of dials and 
degree of acceleration varied.  The macrocognitive function required for the task was 
Detection.  Participants performed the task individually without peer-checking.  Performance 
errors were measured as the percent of misreading dials. 

CFMs:  The CFM is failure of Detection. 

PIF attributes:  The two PIF attributes were VIS1 “Target or object luminance” of PIF 
Workplace Visibility and PR1 “Resistance to personnel movement” of PIF Physical 
Resistance.  

Evaluate uncertainties in the data and mapping:  It is unclear whether the task was performed 
under time constraint and what HSI attributes might have been present.  The PIF Work 
Process attribute “Lack of verification or peer-checking” was present in all the error data 
measured.  
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The analysis results are documented in IDTABLE-22 as one datapoint, as shown in Table 2-6. 

 
 
 
Table 2-6 Sample of IDTABLE-22 – PIF Interaction 

1 2 3 4 5 6 7 

CFM PIFs Error rates Task PIF2 measure 
Other 

Factors 
And 

Uncertainty 
REF 

D PIF1- 
VIS,  
 
PIF2 – 
PR 

PIF1 \ 
PIF2 

2G 4G Pilots read aircraft 
instrument dials as the 
luminance (c/m2) of dials 
and degree of 
acceleration (+Gx) vary. 
Errors are percent of 
misreading dials. 

VIS- 
Luminance  
 
PR – 
Acceleration 
 

Maybe time 
constraint 

[15] 

150 7 7 
15 7 15 
1.5 10 20 

0.15 20 45 
0.015 50 63 

2.4.5. IDTABLE-23 for Distribution of Time Needed in completing a human action 
The IDHEAS-G HEP model considers that the HEP of an important human action consist of 𝑃𝑃𝑡𝑡, 
the error probability attributing to time availability and 𝑃𝑃𝑐𝑐 the error probability attributing to 
cognitive failure modes.  𝑃𝑃𝑡𝑡 is calculated as the convolution of the distributions of time available 
for the action and time needed to complete the action.  HRA analysts use available operational 
data and their engineering judgment to estimate the distribution of time needed.  IDTABLE-23 
documents time distributions of professional personnel performing important human actions.  
The information is used to develop guidance and inform HRA analysts about the estimation of 
the distribution of time needed. 

The time distribution reported in data sources can come with various formats, e.g., mean and 
standard deviation, low and upper bounds of the time variation, the actual time spent for 
completing a human action, or histograms of the time spent.  IDTABLE-23 documents time 
distribution in data sources.  A datapoint should capture the information about the distribution in 
a data source, such as mean, standard deviation, range, sample size, etc.  The structure of 
IDTABLE-23 is the following: 

• Column 1:  Scenario, human actions or tasks, and prevalent cognitive activities involved 
– This column documents the human action or task and the scenario under which the 
action was performed.  It should be noted if the action is procedure based.  Personnel 
performing the actions should also be noted unless by default they are nuclear power 
plant operators or well trained, experienced professionals.  This column also documents 
the prevalent cognitive activities contributing to the time needed. 

• Column 2:  Distribution of time needed to perform the action – This column documents 
the actual time information as it is reported in the data source.  It should be annotated if 
the time spent for the action was inadequate for personnel to complete the action. 

• Column 3:  Uncertainties in the data source – This column documents the time 
uncertainties that may cause variation and affect the distribution of time needed. 

• Column 4: Reference to the data source. 
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The following example demonstrates the documentation of time distribution in IDTABLE-23.  
The data source is the U.S. HRA Empirical Study [16].  Four crews from a U.S. plant performed 
three scenarios on simulators.  This example only documents the time data for Scenario 2, 
Component Cooling Water (CCW) and Reactor Coolant Pump (RCP) sealwater.  The data of 
the four crews’ task performance time are documented in IDTABLE-23 as one datapoint, as 
shown in Table 2-7. The time variation like shown in this datapoint can be used to develop the 
guidance on estimating time uncertainty distribution. 

Table 2-7 Sample of IDTABLE-23 – Distribution of Time Needed 
1 2 3 4 

Scenario and Action a 
Time needed 

M – Mean, SD – Standard deviation, Range – [Min, Max], N – 
sample size 

Uncertainty REF 

Scenario – Internal at-power 
event 
Actions - Stop RCPs and 
Start PDP in loss of CCW 
and RCP sealwater 
Personnel -   4 crews of 
NPP operators.  
Cognitive activities –  
D – Detect loss of CCW and 
RCP sealwater 
U – Diagnose the need of 
starting PDP 
E – Execute procedures 

Tasks Time (min) for each crew 

Start of scenario 0 0 0 0 

Reactor trip 3 3 3 3 
Loss of CCW  

  
3 3 3 3 

Start procedure E-0 3 3 3 3 
Start procedure 
 
  

8 8.5 9.6 7 
Detect no CCW 
   

9 9 7 9 
Trip all RCPs 11.5 9.5 7.6 10.5 
Start “RCP-

 
10 13 13 - 

Start PDP - - - - 
The distribution for the time needed from “Reactor trip” to “Trip all 
RCPs” is: M=9.6, SD=1.5, Range=[7.6, 11.5], N=4 

Unfamiliar 
scenario – 
simultaneous loss 
of CCW and RCP 
sealwater is rare 
and was not in 
training.  

[16] 

 

2.4.6. IDTABLE-24 for Modification to Time Needed 
TABLE-24 documents the effects of time uncertainty factors on time needed for completing 
human actions.  Many factors can affect task completion time.  These factors contribute to the 
uncertainty in time distribution.  IDHEAS-G provides a list of prevalent time uncertainty factors, 
as shown in its Table 5-2 [1].  Note that there could be additional factors affecting time needed.  
In fact, most PIF attributes modify task completion time.  IDTABLE-24 is open to any factor that 
can influence time distribution. 

The most useful data for IDTABLE-24 would be operational data from tasks performed by 
licensed professional personnel.  However, while with high fidelity, operational data typically do 
not systematically record action performance time under different factors.  On the other hand, 
extensive experimental literature reports task completion times with varying time uncertainty 
factors or PIF attributes.  A data source for IDTABLE-24 should have task completion times 
under at least two different states of a time uncertainty factors or PIF attributes to inform the 
effect of the factor on task completion time. 

The structure of IDTABLE-24 is as follows. Each row of the IDTABLE is referenced as one 
datapoint, which may consist of one or several reported human error rates at different states of 
the PIF attribute.  Each datapoint comes from one data source such as a technical report or a 
research paper, while one data source may contain multiple datapoints for the same or different  
IDHEAS-DATA Tables because the reported study may have examined human error rates for 
different tasks or different PIF attributes. The columns of the IDTABLE document the following 
dimensions of information for every datapoint: 
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• Column 1:  the applicable CFMs of the task or human action being studied. If the task 
completion time is reported for an event in which applicable CFMs cannot be 
distinguished, then this column is filled with “Unsp” for unspecified CFMs. 

• Column 2:  The PIF or other time uncertainty factor that modifies the task completion 
time.  

• Column 3:  This column documents the task completion time information under the 
variation of the PIF or time uncertainty factor. 

• Column 4:  the tasks of which the completion time was reported in the data source.   

• Column 5:  The factor or variable used in the data source under which the tasks were 
performed, and task completion time was measured. 

• Column 6: Note – this column annotates comments on the data source 

• Column 7:  The date source reference. 

The following example demonstrates the documentation of time needed in IDTABLE-24.  The 
source of data is the research paper by Berg et. al. [17] that examined the effects of Visual 
Distractions on Completion of Security Tasks.  The following is the process of generalizing the 
data to IDTABLE-24. 

Analyze the data source:  169 subjects (mostly technical, navy, male college students) 
performed a security-critical task (Bluetooth Pairing) while static or flicking colored visual 
distractors were present versus absent. The task required the subjects to read, compare, and 
confirm Bluetooth numbers. The subjects practiced the task then performed the task in an 
unattended environment mimicking the real job context. Participants perform the task 
individually without time constraint. 

Time Uncertainty factors:  The factor varied in the study is the presence vs. absence of visual 
distraction as well as different types of visual distraction. 

The results of the analysis are documented in IDTABLE-24 as one datapoint, as showing in 
Table 2-8. 

Table 2-8 Sample of IDTABLE-24 – Modification of Time Needed 

CFM 
 

PIF or 
Time-
Factor 

Task completion 
time (mean and SD) Task PIF or Time Factor 

measure Note REF Factor-
Lo 

Factor-
Hi 

D MT1 35(12)s 88(25)s Security-critical detection 
task requiring reading, 
comparing, and confirming 
Bluetooth numbers. 

Lo – No distraction 
Hi – static red visual 
stimuli for distraction 

169 
college 
students 

[17] 

D MT1 35(12)s 90(16)s Security-critical detection 
task 

Lo – No distraction 
Hi - flicking red visual 
stimuli for distraction 

169 
college 
students 

[17] 

2.4.7. IDTABLE-25 for Dependency of Human Actions 
IDHEAS-G proposes a dependency model to evaluate the dependency between two important 
human actions. The dependency model identifies the types of dependency, evaluates how the 
dependency changes the context of the subsequent action, and re-estimates the HEP of the 
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action based on the changes of the context. This model is different from the traditional HRA 
methods that evaluate dependency based on context similarity of the two actions.  
IDTABLE-25 documents empirical evidence of dependency in operational or simulated NPP 
events to establish the technical basis for dependency evaluation. The structure of IDTABLE-25 
is as follows: 

• Column 1: Dependency type – IDHEAS-G dependency model defines three types of 
dependency: consequential dependency (SD), resource-sharing dependency (RSD), 
and cognitive dependency (CD). 

• Column 2: Brief narrative of the scenario, human actions, and consequence of the 
dependency. Also, documented in this column is brief explanation on why the narrative 
is categorized as the dependency type in column 1. 

• Column 3: Reference of the information source. Note that the primary sources of 
information are the event reports, accident sequence precursor (ASP) and significance 
determination process (SDP) analysis reports, operational experience review, and 
reports on operator performance simulation. 

The IDHEAS-G dependency model calculates the effect of dependency on HEPs based on the 
changes in the context of the action due to dependency. IDHEAS-G models the changes of the 
context in terms of human action feasibility, time availability (time needed and time available), 
new or different critical tasks, new or different CFMs, and changes in applicable PIF attributes. 
IDTABLE-25 should document the changes in the context of the subsequent human action due 
to its dependency on the failure of the previous action. However, making proper context 
judgment requires event details. Analyzing the changes of context may not be viable due to the 
lack of context information details in data sources. At present, IDTABLE-25 provides empirical 
information to verify IDHEAS-G dependency model and to inform HRA in identifying types of 
dependency. 

Presented next is an example demonstrating the generalization of empirical information of 
dependency in NPP events to IDTABLE-25. The example is from the report “Review of Human 
Error Contribution to Operational Events — Summary Report” [18]. In this study, precursor data 
from the Accident Sequence Precursor (ASP) Program during the Fiscal Year 2000–2004 
period was reviewed to identify the kinds of human errors that are associated with precursor 
events. The report analyzed many risk precursor events and identified the types of human 
errors. This example used one of the events documented in the report. The following is the 
process generalizing the source information to IDTABLE-25. 

Analyze the data source/Narrative of the scenario and event: (NRC Integrated Inspection 
Report 05000528/2004003, 05000529/2004003 [19]) Simultaneous testing of the atmospheric 
dump valve and boron injection systems resulted in a loss of letdown event on high 
regenerative heat exchanger temperature. The letdown event occurred because operations 
personnel were using a single charging pump for the boron injection test and using excess 
letdown to accommodate a plant heat-up following atmospheric dump valve testing. The 
combination of activities resulted in pressurizer level exceeding the TS limit of 56 percent. 
This issue involves human performance crosscutting aspects associated with poor decision 
making, questioning attitude, awareness of plant conditions, and communications between 
personnel performing concurrent evolutions. 

Dependency analysis: operators elected to perform a combination of surveillance tests that 
caused a loss of letdown and pressurizer level transient. This is the resource-sharing 
dependency (RSD). Simultaneous tests of the atmospheric dump valve and the boron 
injection system demanded the charging flow exceeded the charging pump capacity. 
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The results of the analysis are documented in IDTABLE-25 as one datapoint, as shown in Table 
2-9. 

Table 2-9 Sample of IDTABLE-25 – Dependency of Human Actions  
1 2 3 

Type Scenario and event narrative Ref 
Resource-
sharing 
dependency 

A pressurizer level transient above Technical Specification limits 
Simultaneous testing of the atmospheric dump valve and boron injection systems resulted 
in a loss of letdown event on high regenerative heat exchanger temperature. The letdown 
event occurred because operations personnel were using a single charging pump for the 
boron injection test and using excess letdown to accommodate a plant heat-up following 
atmospheric dump valve testing. The combination of activities resulted in pressurizer level 
exceeding the Technical Specification limit of 56 percent. 
 
Explanation.   Simultaneous tests of the atmospheric dump valve and the boron injection 
system demanded the charging flow to exceed the charging pump capacity. 

[19] 

2.4.8. IDTABLE-26 for Recovery of Human Actions 
IDTABLE-26 collects empirical information from NPP human events on recovery actions. The 
documented events can establish a technical basis for modeling and crediting recovery actions. 
IDTABLE-26 has the following structure: 

• Column 1: Narrative of the recovery action – This column documents a brief narrative of 
the scenario, the action to be recovered, the recovery action, whether the recovery 
action was a success or failure, and prevalent context of the recovery action, such as if 
the recovery action is skill-of-the-craft. 

• Column 2:  Notes – This column documents the information about the factors that make 
the recovery action feasible, factors affecting the success of the recovery, and 
dependency with the human action to be recovered. Any reported likelihood or chances 
of the recovery action should also be documented in this column. 

• Column 3: Reference of the information source – Note that the primary sources of 
information are the event reports, ASP/SDP analysis reports, operational experience 
reviews, and reports on operator performance in simulators.  

In principle, the reliability of a recovery action is determined by its CFMs and associated PIF 
attributes, and it is subject to the dependency with the human action to be recovered. IDTABLE-
26, as it is now, does not explicitly collect information on reliability of recovery actions. Making 
proper contextual judgment of applicable CFMs, PIF attributes, and dependency requires event 
details that may not be available in the data sources. Also, because IDHEAS-G, as of now, does 
not have a matured model to assess and credit recovery actions, IDTABLE-26 only documents 
narrative information without characterizing recovery actions. 

The following example, from Reference [20], demonstrates the generalization of empirical 
information of a recovery action in an NPP human event to IDTABLE-26. 

Narrative of the scenario and event: In the course of the startup of the plant, it was discovered 
that the isolation valves in each of the three high pressure safety injection lines to the cold 
legs of the primary circuit were in the closed position. Their power supplies were 
disconnected. One day before startup, a leak-tight test of the check (isolation) valves in the 
high-pressure injection system was performed. The test requires that the isolation valves 
should be closed but not disconnected from the electrical power supply. The test procedure 
did not provide specific instructions to restore or to verify the proper line-up of the safety after 
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the test. The day following the completion of the test, the operators verified the line-up of the 
safety injection system as instructed in operating procedures. 
Failure of the important human action to be recovered and recovery actions: The failed 
important human actions are the omission to re-establish the required line up of the system 
after the leak-tightness test and the disconnection of the valves’ electric power supply without 
instruction. The recovery action is the operator’s verification of the safety injection system 
line-up in accordance with operating procedures when changing technical specification 
modes during startup. 
Feasibility of the recovery action: The recovery action is feasible because the system line-up 
verification was directed by procedures. 
Potential dependency between the action being analyzed and its recovery action: In this case, 
there is no dependency between the action being analyzed and its recovery action because 
the recovery action was performed a day later and it is likely that the safety system line-up 
verification was performed by different operators than the one that performed the test using 
different procedures. 

The results of the analysis are documented in IDTABLE-26 as one datapoint, as showing in 
Table 2-10. 

Table 2-10 Sample of IDTABLE-26 – Recovery of Human Actions  
1 2 3 

Narrative of the recovery action Notes Ref 
In the course of the startup of the plant, it was 
discovered that the isolation valves in each of 
the three high pressure safety injection lines to 
the cold legs of the primary circuit were in the 
closed position. Their power supplies were 
disconnected. One day before startup, a leak-
tight test of the check (isolation) valves in the 
high-pressure injection system was performed. 
The test requires that the isolation valves 
should be closed but not disconnected from the 
electrical power supply. The test procedure did 
not provide specific instructions to restore or to 
verify the proper line-up of the safety after the 
test. The day following the completion of the 
test, the operators verified the line-up of the 
safety injection system as instructed in 
operating procedures. 

The recovery action of the operator’s verification of 
the safety injection system line-up is feasible because 
it was directed by procedures. No dependency 
between the failed action and its recovery action 
because the recovery action was performed a day 
later, and it is likely that the safety system line-up 
verification was performed by different operators than 
the one that performed the test using different 
procedures. 
Also, Reference [20] analyzed 17 human failure 
events. Eleven events occurred in the outage phase, 
and 5 of these during start up. Another might be 
during power operation. Scheduled periodical tests 
detected most (9) of the events. In 5 events, the 
deficiencies occurred on demand and 3 deficiencies 
were detected by chance. This reference provides a 
data point of error recovery in maintenance 
surveillance tests as 0.7 (= 12/17). 

[20] 

2.4.9. IDTABLE-27 for Main drivers to Human Failure Events 
IDHEAS-G models context of a human action with a comprehensive set of PIF attributes. The 
main drivers to human failure events are the specifics of situations or context that more likely 
leads to failure or leads to high HEPs.  In the IDHEAS-G framework, the main drivers are the 
contexts that results in the PIF attributes of high base HEPs or large PIF weights. IDTABLE-27 
shows empirical evidence on specifics of situations or context that are the main drivers to 
human failure in operational or simulated events. It also represents the main drivers in PIF 
attributes. The information in IDTABLE-27 can assist HRA analysts to capture main drivers in 
human events and represent them with proper PIF attributes. 

The data sources in IDTABLE-27 are primarily from the nuclear domain.  The main data sources 
for IDTABLE-27 can be from analysis of LERs, human event analysis reports, human 
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performance data of real operation, simulator training, simulation studies, as well as literature on 
human error analysis and root cause analysis.  A datapoint in IDTABLE-27 documents operator 
performance of a human event or a certain type of human actions. The datapoints in IDTABLE-
27 will demonstrate the operational expression of the PIF attributes with high base HEPs or PIF 
weights. The datapoints serve as the linkage between context and PIF attributes. Such linkage 
can assist HRA analysts to avoid overlooking main drivers and to support the evaluation of PIF 
attributes.  The following is the structure of IDTABLE-27. 

• Column 1: The CFMs that occurred in the event. If the event involved a complex 
scenario, it might have multiple CFMs or the CFMs could not be specified from the 
information available. 

• Column 2: PIFs or PIF attributes representing the main drivers of the human failure in 
the event. Sometimes detailed information for analyzing specific attributes may not be 
available in the data source, thus that the main drivers can only be represented at the 
PIF level. 

• Column 3: Human error rates: This column documents the human error rate of the event 
or the type of the events if the error data is available. Many data sources such as case 
studies or analysis of individual events do not have any numeric data on human error 
rates relevant to the main drivers. 

• Column 4: Narrative of the human event and main drivers: This includes a brief 
description of the human event and main drivers of the human failure as well as the 
event context and considerations of representing the main drivers in CFMs and PIFs.   

• Column 5: The data source reference. 

The below example demonstrates the generalization of empirical information in IDTABLE-27. 
The example is from the International HRA Benchmarking Study. 

In the study, 7 out of 10 crews failed HFE1B, i.e., initiate bleed and feed cooling before steam 
generator (SG) dry-out in the complex Loss of Feed Water (LOFW) scenario. One of the main 
drivers to the HFE was that the SG water level indicators had misleading information, caused by 
the fact that the scenario had a steam generator tube rupture and a water leak. The information 
about water leading was masked by the indications of the tube rupture. In the study, 14 HRA 
analyst teams were given the material package including the scenario description and 
procedures. They identified the main drivers to the human failure events in the scenario and 
performed HRA using various HRA methods. Most HRA analyst teams did not identify 
information masking as a main driver to the human failure events and subsequently they 
predicted much lower HEPs of the HFE compared to the 7 out 10 crews failing the event. The 
result of the analysis was documented in IDTABLE-27, as showing in Table 2-11. 

Table 2-11 Sample of IDTABLE-27 – Main Drivers to Human Failure Events  
1 2 3 4 5 

CFM PIFs Error 
rates 

Narrative of the event and main drivers to human failures Ref 

U SF3, 
INF6 

0.7 
(7/10) 

Main Drivers: Inadequate knowledge, key information was cognitively 
masked. 
This is HFE1B, initiate bleed and feed before steam generator (SG) dryout in 
the complex Loss of Feed Water (LOFW) scenario, in the International HRA 
Benchmarking Study. The following are from section 2.3.2 of volume 3 of The 
International Benchmark Study report series: 
• The complex scenario contained multiple issues, including degraded 

condensate pump and failures of two SGs’ wide range (WR) level 
indications). The first issue was that one condensate pump was 
successfully running at the beginning, leading the crew to depressurize 

[16, 21-
23] 
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the SGs to establish condensate flow. However, the running condensate 
pump was degraded and gave a pressure so low that the SGs became 
empty before the pressure could be reduced enough to successfully 
inject water.  

• The procedure step to depressurize is complicated, and this action both 
kept the crew busy and gave them a concrete chance to re-establish 
feedwater to the SGs. The crews were directed by procedure FR-H.1 to 
depressurize the SGs to inject condensate flow. 

• Two of the three SGs had WR level indicators malfunction that would 
incorrectly show a steady (flat) value somewhat above 12% when the 
actual level would be 0% due to the water leaking. The two failing SG 
levels both indicated a level above the 12% criterion to start Bleed & 
Feed. To follow the criterion, the crews had to identify and diagnose the 
indicator failures, since the criterion, interpreted literally, would never be 
met. 

  

2.5. Integration of human error data to inform human error probabilities 
Integration of the generalized data in IDHEAS-DATA to inform HEP estimation depends on the 
specific HRA method or application. IDHEAS-G describes several ways of using human error 
data for HEP quantification: Using the data as the basis for expert judgment of HEPs, using the 
data to derive basic parameters needed for calculating HEPs in a HEP model, or calculating 
HEPs from the data using statistic regression. This section describes the process of integrating 
the data in IDHEAS-DATA to provide the base HEPs and PIF weights needed for calculating 
HEPs in IDHEAS-ECA method.  Chapter 3 of this report presents several examples of 
integrating the data for HEP quantification in IDEHAS-ECA. 

2.5.1. Overview of an Application-specific IDHEAS method 
IDHEAS-G provides the basic framework for qualitative analysis and HEP quantification. It has a 
basic set of CFMs, a comprehensive set of PIF attributes, several ways of estimating HEPs 
including a HEP quantification model, but it does not offer HEP calculation. An application-
specific IDHEAS method is derived from IDHEAS-G. It uses a limited subset of IDHEAS-G 
CFMs and PIF attributes specific for the given HRA application and it can generate HEP 
estimates.  Two application-specific IDHEAS-methods have been developed: IDHEAS-AtPower 
Application for internal at-power NPP events and IDHEAS-ECA for Event and Conditions 
Assessment.  

An Application-specific IDHEAS method should have the following three elements derived from 
IDHEAS-G: 

1) A set of application-specific CFMs and PIF attributes 

IDHEAS-G offers three levels of CFMs, 20 PIFs, and the attributes of every PIF.  An application-
specific method may choose to use a subset of the CFMs and PIFs.  IDHEAS-ECA uses the 5 
high-level CFMs, i.e., failure of the five macrocognitive functions, and uses all 20 PIFs but 
condenses the attributes to a smaller set.  

2) Quantitative measures of PIF attributes 

Most PIF attributes are continuous variables.  Figure 2-3 illustrates that the HEP of a task varies 
as a continuously nonlinear function of the measure of a PIF attribute.  
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Figure 2-3 Illustration of HEP varying as a function of the measure of a PIF attribute 
However, many PIF attributes may not be modeled as continuous variables because there may 
not be enough data to support a continuous relationship between a PIF attribute and its impact 
on HEPs. In addition, it can be challenging for HRA analysts to quantify a PIF attribute on a 
continuous scale. For example, workplace luminance varies continuously so does its impact on 
HEPs, and the luminance does not affect HEPs within a certain range. However, HRA analysts 
may only have the information of “good visibility” or “poor visibility” regarding workplace 
luminance.  Thus, an application-specific IDHEAS-method would need to specify how to 
quantitatively represent PIF attributes. IDHEAS-ECA uses the following combination of ways: 

• Multiple discrete scales from 1-10 with anchoring for the scales of 1, 5, and 10. 
• Several subjective levels such as low, medium, high, extremely high with explanation for 

each level. 
• Binary states, the presence versus absence of the attribute. 

The selection of a quantification format for a PIF attribute is informed by the data available and 
the extent that the PIF attribute changes HEPs. The datapoints in IDTABLE-1 through 
IDTABLE-20 were used to define PIF attribute measures and relate these measures to base 
HEPs or PIF weights. For example, the datapoints in IDTABLE-6 on PIF Cold, Heat, and 
Humidity in Workplace show that the effect of cold on HEPs continuously vary with work 
environment temperature. However, coldness within habitable temperature ranges increases 
the HEP 1.1-2 times, while the effect can be up to 3-5 times in the extreme cold environment. 
Therefore, the attribute can be represented with two states: cold and extremely cold. 

3) HEP quantification 
An application-specific IDHEAS method may choose to quantify HEPs through expert judgment, 
modeling, or statistic regression of available human error data. IDHEAS-ECA uses an HEP 
quantification model as follows (details described in Section 2.1) 
• The HEP of an important human action is the probabilistic sum of Pt and Pc. 
• 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶  is the probability of a CFM.  The calculation of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶for any given set of PIF attributes 

is estimated as: 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the base HEP of a CFM, 𝑤𝑤𝑖𝑖 is the PIF impact weight for a PIF attribute, 𝑅𝑅𝑅𝑅 is a factor 
that accounts for the potential recovery from failure of a critical task, and it is set to 1 by default.   
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The following are needed to use this model for calculation of HEPs for a given set of PIF 
attributes: 

• Five lowest HEPs for the five CFMs; 
• The base HEPs of the five CFMs at the various states of every attribute of the base 

PIFs; 
• The PIF weights for every CFM and every attribute of the remaining 17 PIFs as the PIF 

attributes vary from the no-impact state to a poor state.  

The above parameters needed for IDHEAS-ECA were derived from IDHEAS-DATA.  The next 
section describes the process of integrating the generalized data in IDHEAS-DATA to infer 
those parameters.  

2.5.2. The process of integrating human error data 
The generalized human error datapoints in IDTABLE-1 thorough IDTABLE-21 can be referred to 
as the following: 

• Single-component datapoints – A datapoint has the error rate for a single CFM with the 
presence of a single PIF attribute; 

• Multi-component datapoints – A datapoint has the error rate for more than one CFMs, or 
with the presence of more than one PIF attribute. 

• Bounding datapoints – A datapoint has the error rates calculated or estimated from 
whole events or scenarios.  Such error rates are for the combination of multiple CFMs 
and PIF attributes. Thus, the effect of a PIF attribute on individual CFMs is inseparable 
in the human error data. Such datapoints cannot be directly used for calculating the base 
HEPs and PIF weights, but they can be used to anchor or bound the estimated HEPs or 
PIF weights. 

The process of integrating human error data is described as follows: 

1) Use single-component data to make initial estimation of the base HEPs and PIF weights; 
2) Use the initial estimation to detach multi-component data into single-component ones. For 

example: 
• A datapoint has the error rate of a task that requires Understanding and 

Decisionmaking. The reported error rate is thus divided by two for each CFM unless 
the data source has information suggesting otherwise.  

• A datapoint has the error rate for the presence and absence of a base PIF attribute 
while the task was performed with time constraints. Therefore, the error rate is the 
probabilistic sum of Pt and Pc. Pt can be estimated as the error rate for the absence 
of the PIF attribute subtracted by the lowest HEP for the CFM, then Pc for the 
presence of the PIF attribute is the reported error rate subtracted by the estimated.  
Otherwise, if the data source suggests that the time availability is different for the 
presence vs. absence of the PIF attribute, then Pt needs to be adjusted accordingly.  

• If the multi-component error rates cannot be detached, they can be used for the 
range of the base HEPs or PIF weights. For example, if a datapoint has an error rate 
measured at the presence of two PIF attributes and the data source does not have 
information about the contribution of each individual attribute, then the PIF weight 
calculated from the error rate corresponds to the combined weight of the two 
attributes, thus the weights of the two attributes should be less or at most equal to 
the calculated weight.  

3) Integrate all the data available from the single-component and detached multi-component 
datapoints to estimate the range and mean of a base HEP or PIF weight. 
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4) Use the unspecific datapoints to calibrate the estimated HEPs and PIF weights. 
5) Use the mean values as the new initial estimation to iterate the process 2), 3), and 4) until 

the obtained mean values represent the breath of the available data. 

Theoretically, the above process could be done with multi-variable fitting or statistic regression 
methods. However, given the limited sample size of the available data and the large number of 
variables (base HEPs, different scales or states of PIF attributes), the parameters obtained 
through multi-variable fitting would be unstable and highly dependent of the choice of the initial 
estimation. The NRC staff manually performed the data integration for IDHEAS-ECA in 2019.   

The critical step in the process is detaching multi-component datapoints. It requires a thorough 
understanding of the data sources. Often, it requires reading additional research papers by the 
same authors or the papers on similar topics by other authors to fully understand the task 
performed and the variables involved in the study. 

To detach multi-component data, the lowest HEPs of the CFMs were first estimated from 
IDTABLE-21. Using the lowest HEPs, the multi-component datapoints in IDTABLE-1, IDTABLE-
2, IDTABLE-3 for the three base PIFs were detached and the base HEPs were then estimated. 
With the estimated base HEPs, the multi-component datapoints in IDTABLE-4 through 
IDTABLE-20 were detached using the iterative process described above.  

2.5.3. Approaches of integrating human error data for IDHEAS-ECA 
There are mathematical or statistical approaches for dealing with uncertain, aggregated, and/or 
truncated/censored data. Those approaches can be as simple as calculating the mean of the 
numeric values of a data set or the weighted average by some weighting rules, or as 
sophisticated as multi-variable fitting.  However, the confidentiality in integrating a set of data to 
generate a single representative value or probabilistic distribution depends on the sample size 
and quality of the data set.  For example, if the numeric values of the data are not continuously 
distributed, the mean of the numeric values does not represent the center of distribution of the 
data set.  

As of 2019, the data generalized in IDHEAS-DATA were limited. Even when there were multiple 
datapoints for one HEP or PIF weight, they did not constitute a continuous distribution. 
Moreover, some PIF attributes had no datapoint generalized. Therefore, when the NRC staff 
integrated the data for the IDHEAS-ECA method in 2019, they applied several approaches 
depending on the availability of the generalized data. The NRC staff used aggregation, 
interpolation, reasoning, and engineering judgment on a case by case basis to generate the 
lowest HEPs of the CFMs, base HEPs, and the PIF weights in IDHEAS-ECA.  The following are 
the descriptions of the approaches used in the integration: 

1) Aggregation of multiple datapoints for a base HEP or PIF weight 

The human error data were first evaluated for practicality and uncertainties in the source 
documents. NPP operational data that were systematically collected for HRA had the highest 
practicality. The following categories of data sources have the practicality from high to low:  

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or causal factors) 
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The single-component high-practicality data were first used to anchor a base HEP or PIF weight 
and other datapoints were used to adjust the uncertainties in the high-practicality datapoints. If 
there was no high-practicality NPP operational data, the mean of the datapoints were used as 
the initial estimation. 

2) No single-component data exclusive for a base HEP or PIF weight, but there were multi-
component datapoints on the combined effects of several CFMs and/or PIF attributes 

When there were multiple datapoints with combined effects of two or more CFMs, PIF attributes, 
and/or time constraints, detaching was performed using the initial estimations of a base HEP or 
PIF attribute weight. When there were only a few datapoints or a variety of CFMs and PIFs 
involved in the datapoints, the range of the combined base HEPs or PIF attribute weights was 
calculated and the middle of the range was assigned the base HEP or PIF weight.  

3) No datapoint for a PIF weight 

The available data in the IDHEAS-DATA do not have numeric human error information for many 
attributes in the PIFs such as Work Process or Teamwork and Organizational Factors.  Yet, 
there have been studies demonstrating that those attributes impact human performance in 
measures other than human error rates, such as increasing personnel’ workload or reducing 
situational awareness.  We assigned the PIF weight as 1.1 or 1.2 for those attributes, pending 
for future updates as relevant human error data become available. The rules used are the 
following: 

i) There are data sources showing detrimental effects of a PIF attribute on some task 
performance measures but the relation between the task performance measure and 
human error rates could not be determined, the PIF attribute weight was assigned as 
1.2. 

ii) There are data sources showing quantitative detrimental effect of a PIF attribute on task 
performance (e.g., through subjective rating, observations, or root causal analysis) but 
there was not task performance data available, the PIF attribute weight was assigned as 
1.1. 

4) Consistency checking and adjustment with benchmark values 

After the initial base HEPs and PIF weights are developed, they are checked for internal 
consistency against the literature that ranks the likelihood of certain types of human errors and 
the contribution of various PIFs.  We also used reported rates of human events and estimated 
HEPs from the NRC 2018 FLEX HRA expert elicitation as benchmarks to check and adjust 
some base HEPs and PIF weights within their uncertainty ranges. 

Chapter 3 the RESULTS section will present several examples to demonstrate how these 
approaches were used for obtaining the base HEPs or PIF weights in IDHEAS-ECA.  

As more sources of data are generalized to IDHEAS-DATA, there will be multiple datapoints of 
various sources for a PIF attribute.  Before using the data to inform HEP estimation, the context 
and uncertainties of the data should be evaluated for their reliability and relevance to the HRA 
application of interest.  For example, if the HRA application is for a well-trained crew 
implementing EOPs in an NPP control room, the analyst may choose to use only the data 
collected from NPP operator training simulation and not use the data from cognitive experiments 
in which tasks were performed by college students.  However, if there is no NPP operation data 
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available, then using data from other domains is better than not using any data to inform the 
HEPs of NPP operation. 

In summary, Chapter 2 describes how IDHEAS-G is used as a framework for generalizing 
human error data of various sources. Human error data and empirical information are 
generalized into 27 IDTABLEs. The generalized data can inform base HEPs, PIF weights, and 
other elements in any IDHEAS applications that use the IDHEAS-G quantification model.  For 
every human error data source, the task performance errors are mapped to IDHEAS-G CFMs, 
and the context of task performance is mapped to IDHEAS-G PIF attributes. Specifically, 
IDHEAS-G are in the same framework as the SACADA database; thus, it is relatively 
straightforward to use SACADA data for the HEP estimation in IDHEAS-G.    Engineering 
judgment is still needed to map the data sources to IDTABLEs. Thus, every TABLE specifically 
documents uncertainties in data sources as well as in the generalization process.  Growing 
experience and lessons learned in generalizing human error data should be captured to improve 
process.    
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3 RESULTS 

This chapter describes the data generalized in IDHEAS-DATA as of June 2020 and 
demonstrates the integration of the data into the base HEPs and PIF weights for IDHEAS-ECA. 
The 27 IDHEAS-DATA Tables contain the generalized data and are presented in the 
appendices. Section 3.1 presents an overview of the data sources and the summary and 
observations of the generalized data. Section 3.2 demonstrates the integration of the data in 
IDHEAS-DATA to inform HEPs in HRA and shows the step-by-step process (described in 
Chapter 2) to estimate the base HEPs and PIF weights. 

3.1. Overview of the Data Sources and Summary of the Generalized Data in 
IDHEAS-DATA 

Section 3.1 has 27 subsections, one for each IDHEAS-DATA IDTABLE. Each subsection 
introduces the IDTABLE, presents an overview of the data sources, and summarizes the data 
generalized. Most subsections also discuss the gaps in the data generalized and perspectives 
of expanding the data sources.  

3.1.1. IDTABLE-1 for Scenario Familiarity 
Introduction to PIF Scenario Familiarity 

When a scenario is familiar to personnel, it has predictable event progression and system 
dynamics, and it does not bias personnel’s understanding of what is happening. Unfamiliar 
scenarios can pose challenges to personnel in understanding the situation and making 
decisions. In addition, compared to familiar scenarios, responses to unfamiliar scenarios could 
entail greater uncertainties in detecting information, executing actions, and coordinating 
interteam activities. In unfamiliar scenarios, personnel are more likely to perform situation-
specific actions not specified in the procedures. 

The following are the identifiers and short descriptions of the attributes for Scenario Familiarity. 
The details of the attributes can be found in Table A1-1 of Appendix A1. 

• SF0 - No-impact, frequently performed tasks in well-trained scenarios, routine tasks 
• SF1 - Unpredictable dynamics in known scenarios 
• SF2 - Unfamiliar elements in the scenario 
• SF3 - Scenario is unfamiliar 
• SF4 - Bias, preference for wrong strategies, or mismatched mental models 

Summary of the Data Sources 

The data generalized for this PIF are presented in Table A1-2 of Appendix A1, IDTABLE-1. The 
data sources for Scenario Familiarity are organized into the following categories: 

 A.  Operational data and simulator data in the nuclear domain 

B.  Operational data of human performance from non-nuclear domains  

C.  Experimental data in the literature 

D.  Expert judgment of HEPs in the nuclear domain 

E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or causal 
factors) 
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Category A – Preischl and Hellmich [4, 5] analyzed German NPP maintenance event database 
and identified human errors in the events by types of tasks and PIFs. Several factors 
correspond to Scenario Familiarity attributes, such as tasks being “frequently performed,” “rarely 
performed,” and “extremely rarely performed.” The study presented 67 human error rates for 
different types of tasks under different combinations of PIFs. The error rates were calculated as 
the number of times the errors were made divided by the number of times the tasks were 
performed. Another data source in Category A is the SACADA database [24-26], which collects 
NPP operators’ task performance data in simulator training for requalification examination. 
Using the SACADA data available until April 2019, Chang calculated the rates of unsatisfactory 
performance (“UNSAT”) for training objective tasks when a situational factor is checked versus 
not checked. The UNSAT rates are generalized in IDTABLE-1 for the applicable CFMs of the 
tasks and PIF attributes representing the situation factors. For example, the UNSAT rate for 
diagnosis tasks is 1.2E-1 and the UNSAT rate for decisionmaking is 1.1E-2 where the familiarity 
factor in SACADA was characterized as “Anomaly” among the three available options 
(Standard, Novel, and Anomaly) The generalized data points are shown in the following: 

PIF CFM Error rates Task (and error 
measure) PIF measure 

Other PIFs 
(and 

Uncertainty) 
REF 

SF3.1 U 1.2E-1 (8/69) NPP operators diagnose 
in simulator training 

Anomaly scenario (Other PIFs 
may exist) 

[26] 

SF3.1 DM 1.1E-2 (1/92) NPP operators 
decisionmaking in 
simulator training 

Anomaly scenario (Other PIFs 
may exist) 

[26] 

 

Category B – Human error data from operational performance relevant to Scenario Familiarity 
are available in medicine dispensing, aviation, railroad maintenance, and oil ship control 
industries. Those are operational data measured from professional personnel. For example, the 
study of target monitoring for collision avoidance in simulated oil ship control [27] reported that 
the error rates for detecting collisions is 1.4E-2 for alerting targets in normal responses and 
1.1E-1 for alerting targets in emergency responses. The error rates were measured while the 
ship operators performed dual tasks. The generalized data points are shown as follows: 

PIF CFM Error rates Task (and error 
measure) PIF measure 

Other PIFs 
(and 

Uncertainty) 
REF 

SF1.1  
 

D 1.4E-2 Collision avoidance and 
target monitoring in 
simulated ship control 

Alerting target, 
normal response 

Dual task [27] 

SF1.1  
 

D 1.3E-2 Collision avoidance and 
target monitoring in 
simulated ship control 

Alerting target, 
routine response 

Dual task [27] 

SF1.1 
& 
SF2.1  

D 1.06E-1 Collision avoidance and 
target monitoring in 
simulated ship control 

Alerting target, 
emergency response 

Dual task, 
(Time urgent) 

[27] 

 

Category C – There are limited experimental studies measuring human error rates under 
Scenario Familiarity because it needs professional personnel to be familiar with scenarios. One 
experimental study [28] examined the predictability of scenarios on diagnosing patterns and 
personnel using structured information to guide diagnosis; the reported error rate was the 
inaccuracy of diagnosing patterns. The CFM applicable to diagnosis errors is Failure of 
Understanding. The applicable PIF attribute is SF1.2 “Unpredictable dynamics.” In addition, PIF 



 

3-3 

Task Complexity was also involved in the tasks. The generalized data points are shown in the 
following: 

PIF CFM Error rates Task (and error 
measure) PIF measure 

Other PIFs 
(and 

Uncertainty) 
REF 

SF0  U 4E-2 
 

diagnosing a pattern; 
personnel uses structured 
information to guide 
diagnosis 

Predictive situation Task 
complexity 

[28] 

SF1.2  U 1.2E-1 diagnosing a pattern; 
personnel uses structured 
information to guide 
diagnosis 

Unpredictive 
situation 

Task 
complexity 

[28] 

 

Category D – The expert judgment for IDHEAS At-Power Application [6] estimated the HEPs of 
14 crew failure modes under different combinations of relevant situational factors. Six domain 
experts from US nuclear regulatory and industry followed a formal expert elicitation procedure 
specified in the NRC’s expert elicitation guidance [29] to estimate the HEPs of crew failure 
modes for licensed crew performing EOPs in MCRs. The expert panel estimated the HEPs of a 
crew failure mode given the situation factors affecting the failure mode. For example, the HEP 
estimated for the failure mode “Failure of attending to the source of information” is 4E-3 under 
the condition “Poor familiarity with the Source of information,” and the HEP for “dismiss/discount 
critical data” in situation assessment is 2.5E-1 under the condition that personnel formed biases 
on the situation. These are generalized as two datapoints in IDTABLE-1 as follows: 

PIF CFM Error 
rates Task (and error measure) PIF measure 

Other PIFs 
(and 

Uncertainty) 
REF 

SF2 D 4E-3 Attend to source of information 
(HEP) 

Poor familiarity with 
the Source 

Crew with 
peer-checking 

[6] 

SF4 U 2.5E-1 Situation assessment in EOP 
(HEP of Critical Data 
Dismissed / Discounted) 

Inappropriate Bias   
formed 

Crew with 
peer-checking 

[6] 

 

Category E – No datapoint from this category was generalized. 

Summary of Human Error Data for Scenario Familiarity 

The generalized human error data are summarized according to the CFMs. The ranges of the 
generalized error rates for the CFMs were examined. The numbers are directly from IDTABLE-1 
without detaching the effects of other CFMs and PIFs. The ranges show the general trends of 
the HEPs. 

• Failure of Detection (D) – The error rates for Failure of Detection vary in the range of  
5E-4 to 0.2 as the PIF attributes vary from SF1 “Unpredictable dynamics in known 
scenarios” to SF4 “Bias, preference for wrong strategies, or mismatched mental 
models.” An exception is that the error rate under biases and inadequate time is 0.5, 
based on medicine dispensing data.  

• Failure of Understanding (U) - The error rates vary in the range of 1E-3 to 0.25. 
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• Failure of Decisionmaking (DM) - The error rates vary in the range of 1E-3 to 0.1. An 
exception is that the error rate under biases and inadequate time is 0.5, based on 
medicine dispensing data.  

• Failure of Action Execution (E) – There are many datapoints for this CFM from the 
analysis of German NPP maintenance event report database. The error rates range from 
1E-4 for frequently performed simple tasks to 0.33 for “extremely rarely performed” 
tasks. 

• Failure of Interteam Coordination (T) – There are no generalized data points for this 
CFM. Most studies on the interteam coordination only have qualitative results. 

Observations from the Generalized Data 

The following are some observations from the data in IDHEAS-DATA IDTABLE-1. 

• Several sets of datapoints that have SF3 “Scenario is unfamiliar” varied from “frequently, 
routinely performed” to “rarely or extremely rarely performed.” The error rates in these 
sets of datapoints can vary from 1E-4 to 0.33. That is up to three orders of magnitude. It 
is an evidence that the PIF Scenario Familiarity is a base PIF such that it alone can drive 
the HEPs from the lowest to a very high value. 

• Several datapoints are for SF0. These datapoints provide the basis for the lowest HEP 
when none of the PIF attributes have an impact on the HEP, i.e., none of the PIF 
attributes are present. These datapoints belong to IDHEAS-DATA IDTABLE-21 for the 
lowest HEPs. Yet, having them here serves as the references for the HEP values of the 
attributes. 

• There are eight datapoints from the expert judgment in IDHEAS-AtPower Application 
(NUREG-2199, Vol. 1) [6]. The expert judgment was made for actions performed by 
well-trained, licensed crews using emergency operating procedures (EOPs) in NPP 
control rooms. Thus, the estimated HEPs are implicitly assumed for the tasks performed 
with good peer-checking and supervision. This assumption does not apply to many other 
datapoints in IDTABLE-1. 

The data sources identified from Category A or B are limited for the CFM Failure of 
Decisionmaking. On the other hand, there is a large volume of task performance data involving 
decisionmaking in Category C data sources. Extensive research has shown that Scenario 
Familiarity is essential for correct decisionmaking. Yet, most experimental studies use task 
performance measures instead of error rates. Such data sources were not selected for 
generalization to IDTABLE-1 because it is difficult to derive the quantitative relationship between 
the reported task performance measures and human error rates. 

3.1.2. IDHEAS-DATA IDTABLE-2 for Information Completeness and Reliability 
Introduction to the PIF Information Completeness and Reliability 

Personnel need information to perform tasks.  Information is expected to be complete, reliable, 
and presented to personnel in a timely and easy-to-use manner. Large amounts of information 
in operation are expected to be preprocessed and organized for personnel.  Yet, information in 
event scenarios could be incomplete, unreliable, untimely, or incorrect. Personnel receive 
information via sensors, instrumentation, alarms, oral communication, local observation, or other 
means.  Information that is obtained from sensors and instrumentation are usually presented to 
personnel with the human-system interface (HSI) such as indicators and displays. There are 
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situations that local observations and oral transmittal of information are the only available 
options to obtain information. 

Personnel rely on key information to understand the situation and make decisions. In event 
scenarios, key information may be unavailable, unreliable, or even misleading. For example, 
sensors or indicators may be unreliable or display incorrect values (e.g., damaged or degraded 
while appearing to be working, false alarms in design, out-of-range, or inherently unreliable 
sources). There could also be flaws in system state indications, e.g., an indicator shows the 
demanded position of a component or control function rather than the actual equipment status.  
(An example was the pressurizer pressure operated relief valve indications at Three-Mile Island, 
which showed that the valves were closed, while one of those was not closed.) 

This PIF is defined as the availability and reliability of key information in personnel’s performing 
the macrocognitive functions of Understanding and Decisionmaking, thus the PIF affects the 
CFMs Failure of Understanding and Failure of Decisionmaking. The effect of information quality 
on other CFMs, Failure of Detection, Action Execution, and Interteam Coordination are modeled 
by other PIFs such as Task Complexity or HSI.  

The following are the classes of attributes for Information Completeness and Reliability.  The full 
set of attributes can be found in Appendix A. 

INF0 No impact – Key information is reliable and complete  
INF1 Key information is incomplete 
INF2    Information is unreliable 
 

Summary of the Data Sources  

The data generalized for this PIF are presented in IDHEAS-DATA IDTABLE-2.  The following 
categories are used to overview data sources for Information Completeness and Reliability: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 

Category A – SACADA database collected operators’ performance on diagnosis and 
decisionmaking in simulator training for requalification examinations.  Based on the SACADA 
data available by April 2019, the UNSAT rates of Diagnosis and Decisionmaking are 
generalized as IDHEAS-DATA IDTABLE-2 datapoints for the corresponding PIF attributes. 
Because other PIF attributes (having negative effects on performance) may also exist in the 
datapoints, the calculated UNSAT rates from SACADA data could be higher than the case of no 
presence of other PIF attributes.  Other NPP simulation data sources are the International HRA 
Empirical Study and the US HRA Empirical Study.  

The International Empirical Study [23] had scenarios where the cues of the problem were 
difficult to detect.  That can be represented by the PIF attribute INF1.5 “Information is largely 
incomplete - Key information is masked or key indication is missing.” The complex LOFW 
scenario started with a loss of feedwater.  The condensate pump used for feedwater injection 
was successfully running, leading the crew to depressurize the SGs to establish condensate 
flow. However, the running condensate pump was degraded and gave a pressure so low that 
the SGs became empty before the pressure could be reduced enough to successfully inject 
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water. Therefore, the SGs’ water levels started to decrease.  Another scenario complication was 
two of the three SGs’ wide range (WR) level indications failed.  One failed at 16% and another 
14%.  After failing, their indications remained constant (at 16% and 14%). The operator needed 
to initiate feed-and-bleed cooling when two SGs’ WR indications fell below 12%.  In this study, 7 
out of 10 crews failed to initiate feed-and-bleed when the criteria was reached.     

 

PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

Inf1.5 U 0.7 (7/10) Initiate feed-and-bleed Two SG WR levels 
were indicated 
incorrectly  

Operators 
were busy with 
trying to 
depressurize 
SGs 

[23] 

 

Category B – The data sources identified in non-nuclear domains are from operational reports 
and studies of high-fidelity simulations of human performance, such as pilots flying simulators, 
air traffic controllers controlling traffic, licensed drivers avoiding collision, physicians’ diagnosing, 
and pharmacists dispersing medicines. For example, Sarter et. al. [30] studied pilots’ 
decisionmaking of deicing with different information displays: untimely information with a 
baseline display, timely information with an additional status display, and 30% unreliable 
information on the status display. The failure to prevent stall was 7.9%, 20.6%, and 73.6% for 
each situation. Pilots performed the simulated tasks under time pressure. Note that the aircraft 
stall has two applicable CFMs: Failure of Understanding and Failure of Decisionmaking. The 
data are generalized in DIHEAS-DATA IDTABLE-2 as following: 

PIF 
 

CF
M 

Error 
rates 

Task (and error measure) PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

Inf0 U & 
DM 

7.9E-2 Pilots in flight deicing 
(Percentage of early buffet) 

Accurate information timely 
with status displays 

Inadequate 
time  

[30] 

Inf1.1 U & 
DM 

2.06E-1 Pilots in flight deicing 
(Percentage of early buffet) 

Accurate information not 
timely without status 
displays 

Inadequate 
time  

[30] 

Inf2.6 U & 
DM 

7.36E-1 Pilots in flight deicing 
(Percentage of early buffet) 

(30%) inaccurate information 
on status displays 

Inadequate 
time  

[30] 

 

Category C – There are many experimental studies about information availability or reliability on 
human performance of tasks requiring understanding the situation or making decisions. The 
controlled experimental studies measured human error rates while systematically varying the 
level of information availability or reliability.  Only a few data sources from this category have 
been generalized to IDHEAS-DATA IDTABLE-2 so far.  One example is the study by Albantakis 
and Deco [31] that measured college students 2- and 4-alternative- choice decisionmaking 
errors while systematically varying the percent of information coherence or consistency.  The 
result showed that the error rates varied with the percent of information coherence in a logistic 
function. The result is generalized in IDHEAS-DATA IDTABLE-2 as one datapoint, but it 
consists of continuously varying error rates. 

PIF CF
M 

Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 
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Inf2.4 DM Sigmoid 
function 0-0.4 

Students make 2-
alternative choices 

100% to 10% of 
information 
coherence 

 [31] 

Inf2.4 DM Sigmoid 
function 0-0.6 

Students make 4-
alternative choices 

100% to 10% of 
information 
coherence 

 [31] 

 

Category D – In the expert judgment for IDHEAS At-Power Application (NUREG-2199, Vol. 
1)[6], six domain experts from the NRC and nuclear industry followed a formal expert elicitation 
procedure specified in the NRC’s expert elicitation guidance [29] to estimate the HEPs of crew 
failure modes for licensed crews performing EOPs in MCRs.  For example, the expert panel 
estimated the HEPs for the failure mode “failed to use alternative source of information” in 
situation assessment under the conditions “Primary source of information NOT obviously 
Incorrect” and “Primary source of information obviously Incorrect.” The estimated HEPs are 
0.012 and 0.32, respectively. These are generalized as two datapoints in IDHEAS-DATA 
IDTABLE-2 as following: 

PIF CF
M 

Error 
rates 

Task (and error measure) PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

Inf2.3 U 1.2E-2 MCR critical tasks with EOPs 
(failed to use alternative source 
of information) 

Primary source of 
information obviously 
Incorrect 

Licensed crew 
with peer-
checking 

[6] 

Inf2.6 U 3.2E-1 MCR critical tasks with EOPs 
(failed to use alternative source 
of information) 

Primary source of 
information NOT 
obviously Incorrect 

Licensed crew 
with peer-
checking 

[6] 

 

Category E – The source data in this category are not generalized.  

Summary of Human Error Data for Information completeness and reliability 

The generalized human error data are summarized according to the cognitive failure modes 
(CFMs).  The range and trends of the generalized error rates for the CFMs are roughly 
examined.  The numbers are directly from IDHEAS-DATA IDTABLE-2 without detaching the 
effects of other CFMs and PIFs, thus they cannot be used for inferring the HEPs.  Nevertheless, 
the ranges show the general trends of the HEPs.  

• Failure of Understanding (U) - The error rates vary in the range of 3.3E-3 to 0.9. The 
lowest error rate was from the expert judgment of HEP for the situation “indications not 
reliable” (NUREG-2199), and the highest error rate was NPP crews failing to diagnose 
the ISLOCA due to information being masked (International Study).  
 

• Failure of Decisionmaking (DM) - The error rates vary in the range of 4.5E-2 to 0.89, 
except for an experimental study in which the error rate continuously varied from 0 to 
0.6. The lowest error rate of 4.5E-2 in operational data was for making incorrect task 
plans in the maintenance of a cable production process due to information not being 
organized or missing; the highest error rate of 0.89 is from pilots deicing decisions while 
30% of the key information was unreliable [30].  

 
Observations from the Generalized Data 
Several observations were made from the generalized data in IDHEAS-DATA IDTABLE-2. 

• The human error rates in the datapoints from the same data source varied from the 
range of E-3 to close to 1. This variation is evidence that the PIF, Information 
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Completeness and Reliability, is a base PIF. That PIF alone can drive the HEPs from 
very low to very high values.  

• The experimental study of varying information coherence from 100% to 10% resulted in 
error rates from nearly zero to 0.6. The resulted error rates varied as a logistic function 
of the percent of information coherence. This kind of logistic function between human 
error rates and the measure of a PIF attribute has been reported in many experimental 
studies, as shown in IDTABLE-2.  

• The experimental study of varying information coherence shows that the error rates of 
decisionmaking is nearly zero when the information is reliable (100% coherence) 
regardless of if the decision is a 2-alternative or 4-alternative choice. When the 
information is not reliable, the error rates are higher for the 4-alternative choices than the 
2-alternative choices because more choices add uncertainty to the decisionmaking 
process.  

Extensive data sources, as shown in IDTABLE-2, are available for the PIF Information 
Availability and Reliability.  The generalized data shows that the PIF is essential for situation 
assessment and decisionmaking.  There are a large volumes of human error data on this 
PIF in controlled experimental studies. Only a few examples from that category of data 
sources were generalized given that there are already many data points in Category A and 
B.  Nevertheless, more studies on this PIF with NPP operators are desirable to calibrate the 
effects of individual PIF attributes on the HEPs of Understanding and Decisionmaking.  

3.1.3. IDHEAS-DATA IDTABLE-3 for Task Complexity 
Introduction to the PIF Task Complexity 

Task Complexity, also referred as cognitive complexity, measures task demand for cognitive 
resources (e.g., working memory, attention, executive control).  Nominal complexity refers to the 
level of complexity that is within the capability limits of cognitive resources thus does not 
overwhelm personnel. The cognitive complexity of a task has two parts:  the complexity in 
processing the information to achieve the macrocognitive functions of the task, and the 
complexity in developing and representing the outcomes to meet the task criteria.  For example, 
a task is to monitor a set of parameters, and the outcome is to identify the parameters outside a 
certain range or determine the trends of the parameters.  The latter imposes higher cognitive 
demands on personnel’s working memory; thus, it is more complex.  Complexity is 
characterized by the quantity, variety, and relation of the items to be processed or represented 
in a task [32, 33]. 

There are over 30 attributes for Task Complexity. They are grouped by the macrocognitive 
function they impact.  The following are the identifiers and short descriptions of the attribute 
groups. The full set of attributes can be found in Appendix A. 

• C1   - C7    Detection complexity 
• C10 - C16    Understanding complexity 
• C20 - C28  Decisionmaking complexity 
• C30 - C39  Execution complexity 
• C40 - C44  Coordination complexity  

 
Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A3 IDHEAS-DATA IDTABLE-3.  
The data sources for Task Complexity are organized into the following categories: 
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A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
Category A – The International HRA Empirical Study [22, 23]and the US HRA Empirical Study 
[16]both varied Task Complexity in the tested scenarios.  The error rates were calculated for the 
crews’ performing important human actions. Yet, the error rates were for the failure of the entire 
human actions which typically had more than one applicable CFM and PIF attribute.  The 
SACADA database [26] collects UNSAT data in several complexity attributes:  C1 - Detection 
overload with multiple competing signals, C6 - Cue or mental model for detection is ambiguous 
or weak, C31 - Straightforward procedure execution with many steps, and C32 - Non-
straightforward procedure execution. The Korea Atomic Energy Research Institute (KAERI) 
operator simulator training database [34] also has data for several complexity attributes. A 
shortcoming in these data is that additional PIF attributes may exist in the recorded events, thus 
the reported UNSAT rates or error rates can be higher than the HEPs of those attributes. The 
German maintenance event report database [4, 5] has multiple datapoints for execution 
complexity. The following are several example datapoints from the analysis of the German 
maintenance event report database: 

PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

C31  3.3E-3 (2/651) 
 

NPP maintenance 
(omitting an item of 
instruction) 

Procedure execution 
with many steps 

 [4, 5] 

C32  4.8E-3 (1/211) NPP maintenance tasks Long procedures, 
voluminous 
documents with 
checkoff provision 

 [4, 5] 

C33  2.6E-3 Controlled actions that 
require monitoring action 
outcomes and adjusting 
action accordingly 

Manipulating 
dynamically   

 [4, 5] 

 

Category B – Many studies analyzed pilots and air traffic controller operational errors.  Most of 
the studies did not relate error rates to Task Complexity. Prinzo et. al. [8, 9] analyzed pilots’ 
errors in readback of air traffic controller clearance.  The error rates were analyzed against two 
factors: message length in one transmission corresponding to C12- Relational complexity 
(Number of topics or relations in one task), and message complexity corresponding to C11 - 
need to decipher numerous messages (indications, alarms, spoken messages).  The data are 
generalized in DIHEAS-DATA IDTABLE-2 as follows: 

PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

C12 U Messag
e 
relation 

Error 
rate 

Pilots listen to and 
read back key 
messages 

Message relation (# 
of aviation topics to 
be related in one 
communication) = 1, 
2, 3, and 4. 

(Mixture of 
normal and 
emergent 
operation so 
other PIF 
attributes may 
exist) 

[8, 9] 

1 0.038 
2 0.061 
3 0.085 
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4 0.26 
C11 U # 

messag
es 

Error 
rate 

Pilots listen to and 
read back key 
messages 

Message complexity 
- # of key messages 
in one transmit  

(Mixture of 
normal and 
emergent 
operation so 
other PIF 
attributes may 
exist) 

[8, 9] 

5 0.036 
8 0.05 
11 0.11 
15 0.23 
17 0.32 
>20 >0.5 

 

Category C – There are many experimental studies about the effect of complexity on human 
performance. The data sources generalized from this category are primarily the controlled 
experiments performed with high-fidelity simulators, such as flight simulators, air traffic control 
simulation interfaces, driving simulators, and process control simulation.  One example is the 
study that measured military professionals responding to compelling signals. The result showed 
that the error rates increased with the increasing number of annunciators to be attended.  The 
generalized datapoints from this study are in the following:  

PIF CF
M 

Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty
) 

REF 

C1 D 0.0001 to 0.05 Respond to compelling 
signals 

the number of annunciators 
from 1 to 10. 

 [35, 
36] 

C1 D 0.10 to 0.20 Respond to compelling 
signals 

the number of annunciators 
11 to 40. 

 [35, 
36] 

C1 D 0.25 Respond to compelling 
signals 

Annunciators >40  [35, 
36] 

 

Category D – Two expert judgment studies estimated HEPs relevant to Task Complexity. The 
expert judgment for IDHEAS At-Power Application (NUREG-2199, Vol. 1) [6] estimated the 
HEPs under several attributes of Task Complexity: C22 - Alternative strategies to choose, C23 - 
Decision criteria are ambiguous, C24 - Advantage to the incorrect strategy, C25- Low 
preference for correct strategy, and C32- Execution is not straightforward.  The HRA for nuclear 
waste facility operation [37] estimated the HEPs for C1 – Detection overload with multiple 
competing signals and C31 - Straightforward Procedure execution with many steps. Below are 
two examples of the generalized datapoints: 

PIF CF
M 

Error 
rates 

Task (and error measure) PIF  
Measure 

Other PIFs (and 
Uncertainty) 

REF 

C31  5E-4 Nuclear facility operation - 
Execution procedure or script 

Moderate (typical) lock 
out plan (4-10 lockout)  

(Estimated HEP) [37] 

C31  5E-3 Nuclear facility operation - 
Execution procedure or script 

Complex lock-out plan 
(11-100 lockout) 

(Estimated HEP) [37] 

 

Category E – Data sources in this category were not generalized.  

Summary of Human Error Data for Task Complexity 

The generalized human error data are summarized according to the CFMs.  The range and 
trends of the generalized error rates for the CFMs were examined.  The numbers are directly 
from IDHEAS-DATA IDTABLE-3 without detaching the effects of other CFMs and PIFs.  
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• Failure of Detection (D) – There is at least one datapoint for every attribute of Detection 
complexity.  There are multiple sets of datapoints for C1 “Detection overload with 
multiple competing signals.”  The error rates varied from 2.1E-3 to 5.1E-2 in SACADA 
data. They varied from 1E-4 to 0.25 when the number of compelling signals varied from 
less than 10 to greater than 40.  The operational data and experimental data show 
consistent trends in the error rates varying with the number of compelling signals.    

• Failure of Understanding (U) - The error rates varied from 3E-3 to 1. One NPP 
operational datapoint is that operators failed diagnosis in all the four events in which 
alarms signals might be triggered by maintenance work. No datapoint is generalized for 
two attributes: C14- Potential outcome of situation assessment consists of multiple 
states and contexts (not a simple yes or no) and C16- Conflicting information, cues, or 
symptoms.   

• Failure of Decisonmaking (DM) – The error rates for NPP operators performing EOPs on 
a simulator is 4.5E-3 for transferring to a step in a procedure and 1.23E-2 for transferring 
to a different procedure. Expert judgment HEPs for NPP operators choosing wrong 
strategies in EOPs ranged from 9.3E-3 to 1.7E-1. Operational data are not available for 
three attributes: C26 - Decisionmaking involves developing strategies or action plans, 
C27 - Decisionmaking requires diverse expertise distributed among multiple individuals 
or parties, and C28 - integrating a large variety of types of cues with complex logic. 

• Failure of Execution (E) – The error rates for maintenance tasks reported in the analysis 
of the German NPP event reporting database [4, 5] ranged from 1E-3 for simple 
execution (operating a pushbutton, adjusting values, connecting a cable) to 0.5 for 
unlearning or breaking away from automaticity of trained action scripts. The error rates 
from the analysis of SACADA data were 1E-2 for executing simple and distinct actions 
and 3.4E-2 for executing actions requiring additional mental effort.  

• Failure of Interteam Coordination (T) – The only operational datapoint for this CFM is 
that the error rate for NPP operators notifying/requesting to personnel outside of the 
main control room is 1.54E-3 [38]. The expert estimated HEPs for nuclear facility 
operation communication ranged from 1E-3 for simple information to 5E-1 for extremely 
complex information communicated.  

 
Observations from the Generalized Data 
Several observations were made from the generalized data in IDHEAS-DATA IDTABLE-3. 

• Task Complexity can vary human error rates from close to 0 to 1. Moreover, some 
continuously varying attributes alone can result in error rates from close to 0 to 1.  This 
variation is evidence that the PIF Task Complexity is a base PIF and that it alone can 
drive the HEPs from very low to a very high values.  

• The study on pilots’ readback errors indicates that the error rates increased rapidly as 
the number of items to be memorized in a task was greater than 11. Similar results were 
also reported for detecting compelling signals. Those numbers are consistent with the 9 
~11 items of working memory span reported in many experimental studies [39, 40].  

• The study on pilots’ readback errors also indicates that the error rate increased 
significantly as the number of topics in one communication increased to 3 or 4. This is 
consistent with the large volume of experimental studies showing that human information 
processing can reliably integrate no more than 4 relations at a time [41]. 
 

Extensive data sources are available for PIF Task Complexity. The generalized data show that 
the PIF is a main driver for human errors. There are lots of human error data on this PIF in 
controlled experimental studies with isolated simple tasks. Most of those data sources were not 
generalized given that there were already many datapoints in Category A and B. On the other 
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hand, the operational data and experimental studies about the effects of complexity on 
Decisionmaking and Interteam Coordination mostly reported task performance measures or the 
number of errors made, rather than error rates. Thus, no datapoint was identified for several 
attributes in Decisionmaking complexity and most of the attributes in Interteam Coordination 
complexity. While the error rates for those attributes can probably be inferred from task 
performance measures, operational data for those attributes are desired. 

3.1.4. IDHEAS-DATA IDTABLE-4 for Workplace Accessibility and Habitability 
Introduction to the PIF Workplace Accessibility and Habitability 

Workplace is where personnel perform actions.  It has hardware facilities, physical structures, 
and travel paths to support personnel task performance.  Workplace may be in an open, 
unprotected environment or within a building structure. Those structures should not impede 
personnel from entering the place needed to perform the required human actions nor impede 
the performance of the required tasks.   

Accessibility may be limited because of adverse environmental conditions and security system 
operation.  For example, accidents or hazards may cause workplace conditions to become less 
habitable or accessible for a period of time.  Adverse environmental conditions include steam, 
high water, fire, smoke, toxic gas, radiation, electric shock risk, and roadblocks (e.g., because of 
extreme external hazards). Also, doors and components that are normally locked and require 
keys to unlock could impact accessibility (e.g., a fire or flood may cause electric security 
systems to fail locked).   

The PIF Workplace Accessibility and Habitability has four attributes:  

• WAH1 - Accessibility (travel paths, security barriers, and sustained habituation of 
worksite) is limited, e.g., traffic or weather impeding vehicle movement 

• WAH2 - The surface of systems, structures, or objects cannot be reached or touched  
• WAH3 - Habitability is reduced.  Personnel cannot stay long at the worksite or 

experience degraded conditions for work 
• WAH4 - The worksite is flooded or underwater. 

 
Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A4 IDHEAS-DATA IDTABLE-4.  
The data sources for Task Complexity are organized into the following categories: 

A. Operational data and simulator data in nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
Category A – None of the data sources evaluated has human error data. Strom [42] reviewed 
and summarized the expected health impacts of radiation exposures to people delivered at high 
dose rates. Two major variables affecting the radiation impact on people are the amount of 
radiation dose and its distribution in time, that is, dose rate and fractionation. The severity of the 
effect is an increasing function of dose rate, with a dose threshold below which symptoms do 
not appear. This study does not have information about the effects of radiation exposure on 
cognitive abilities and human errors in task performance.  
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Category B – Cucinotta et al. [43] reviewed radiation risks to human central nervous systems. 
Possible risks include detriments in short-term memory, reduced motor function, and behavioral 
changes, which may affect performance and human health. This report summarized space 
radiobiology studies of central nervous system effects and made a critical assessment of their 
relevance relative to doses and dose-rates to be incurred on a Mars mission. The report does 
not have human error data related to radiation. Strangman et. al. [44] reviewed and 
summarized the cumulative results of existing studies of cognitive performance in 
spaceflight and analogue environments that are featured with isolation, confinement, and 
microgravity. The studies consistently suggest that novel environments (spaceflight or other) 
induce variable alterations in cognitive performance across individuals. However, the 
reported impairments of cognitive abilities were inconsistent across the studies. The 
reported data, taken together, cannot be generalized quantitively due to the 
inconsistency.  

Category C – Barkaszi [45] studied cognitive performance of over-wintering crews in an 
Antarctic station and in a Space Station where the crew experienced long-term isolation, 
confinement, and microgravity. The results show decreased performance in cognitive tasks. The 
reported data were neurophysiological measures that were not directly related to human errors.  

Category D – NUREG/CR-6545 [46, 47] reported expert judgment of health effects of radiation 
exposure. The estimated effects were about radiation damage to human health, not about 
behavioral performance. 

Summary of Human Error Data for Workplace accessibility and habitability 

No human error data on task performance were generalized for this PIF. This is because 1) the 
data sources relevant to the PIF attributes did not measure human error rates in behavioral task 
performance, 2) The reported effects on behavioral task performance were largely inconsistent 
due to the relatively small subject samples in the studies, and 3) the studies about workplace 
accessibility such as going into floods were case-specific; therefore, the results could not be 
generalized to other cases without explicitly knowing the detailed environmental structures. As 
such, the generalized datapoints for this PIF only document the qualitative effects on human 
performance without human error data. These datapoints cannot be used to derive PIF attribute 
weights. Nevertheless, they can be used as reference information for inferencing or experts’ 
judging the PIF weights.  

3.1.5. IDHEAS-DATA IDTABLE-5 for Workplace Visibility 
Introduction to the PIF Workplace Visibility 

Visibility of an object is a measure of easiness, fastness, and precision that the object is visually 
detected and recognized. It is a function of the difficulty experienced to discriminate an object 
visually from the background or surrounding environment.  Visibility of a task in the workplace is 
generally determined by visibility of the most difficult element which must be detected or 
recognized so the task can be performed. 

Personnel need to recognize objects and their surroundings to perform tasks accurately and 
reliably. Visibility at work is related to the illumination of the workplace. It requires a minimum 
level of illumination at which personnel can detect objects and discriminate spaces between 
objects.  luminance is the most important factor for good visibility. Which is needed to reliably 
perform activities such as reading, writing, inspecting objects for errors, and distinguishing cues. 
Poor visibility impairs personnel’s detection of information and execution of physical actions that 
require visual-motor coordination. Moreover, it also affects person’s comfort and effectiveness 
of teamwork. In addition to luminance, visibility is also affected by light distribution such as 
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reflections or shadows in the workplace. Visibility is also impaired by high luminance, referred to 
as glare, which means that the brightness is greater than what human eyes are adapted for.  

Workplace Visibility has three attributes as follows: 

• VIS1 Low ambient light or luminance of the object that must be detected or recognized 
• VIS2 Glare or strong reflection of the object to be detected or recognized 
• VIS3 Low visibility of work environment (e.g., those caused by smoke, rain, fog, etc.) 

 
Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A5 IDHEAS-DATA IDTABLE-5.  
The data sources for Workplace Visibility are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
Category A – No data source was identified in NPP operation for this PIF. This may be due to 
the fact that NPP workplaces are designed using appropriate human factors engineering. Yet, 
poor visibility still may occur during some ex-CR actions, especially under extreme operating 
conditions.  

Category B – Many studies on the effects of visibility have been performed in aerospace, 
aviation, transportation, and military workplaces.  For example, strobing laser glare may present 
a threat to aircrews. In addition to obscuring the visibility of instruments and terrain (as 
continuous exposures can), strobing exposures could potentially impede visual motion 
processing. Beer and Gallaway [48] measured the effects of strobing vs. continuous laser 
exposure on performance in a visual flight task using a flight simulator. Results showed that 
strobing laser glare posed a legitimate threat to visual orientation control.  The measured tasks 
were pitch control and roll control.  Pilots’ performance was measured as the degrees of control 
errors. The following is the datapoint generalized from this study to IDHEAS-DATA IDTABLE-5:  

PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

VIS2 E  Pitch 
control 
error 
(degree) 

Roll 
control 
error 
(degree) 

Visual flight task on 
a simulator (control 
errors) 

No laser (N), 
Strobing (S), 
Continuous 
(C)laser exposure  

 [48] 

No Laser 2 5 
C 4 9 
S 10 20 

 

Category C – There have been numerous experimental studies about the effect of visibility on 
human performance. In particular, the numeric relationship between object luminance or 
luminance contrast and human perception errors has been clearly elucidated. While human 
error rate increases as the luminance or luminance contrast of the visual target decreases, the 
error rate is unchanged for “good visibility,” meaning that the luminance is within the normal 
range for human vision. For example, Braunstein and White [15] measured human errors in 

https://pubmed.ncbi.nlm.nih.gov/?term=BRAUNSTEIN+ML&cauthor_id=13872635
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reading dials as the luminance on the dials was varied from 0.015 to 150 L/m2. The error rate 
decreased with luminance. When the luminance was greater than 15 L/m2, the error rate was 
low and remained the same. Many other studies reported the similar relation between 
luminance and error rates. The following is the datapoint generalized from this study to 
IDHEAS-DATA IDTABLE-5:  

PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

VIS1 D Luminance Reading error dial reading error Luminance 
(L/m2) 

 VIS-
9 0.15 0.16 

1.5 0.1 
>15 0.08 

 

Category D – The expert judgment study on nuclear waste facility operation [37] estimated 
HEPs for crane/hoist striking stationary objects under different visibility conditions and the 
presence or absence of spotters.  The following is the generalized datapoint:  

PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

VIS3 E Spotter present  3E-5 Crane/hoist strikes 
stationary object 
 

Spotter and 
visibility 

(Expert 
judgment) 

[37] 

No spotter, typical 
visibility  

3E-4 

No spotter, low visibility 3E-3 

 

Category E – The source data in this category are not generalized.  

Summary of Human Error Data for Workplace Visibility 

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-5 without detaching the effects of other 
PIFs and uncertainties.  

• Failure of Detection (D) – Most datapoints have error rates vary between 1-5 times from 
poor to good visibility, with a median value around 2 times. The studies that 
systematically varied the object luminance showed that human error rates increased 
about twice when the luminance was decreased two orders of magnitudes from a normal 
luminance value (15L/m2).  

• Failure of Understanding (U) – No data source was identified about the effect of visibility 
on Failure of Understanding.  

• Failure of Decisionmaking (DM) – No data source was identified about the effect of 
visibility on failure of Decisionmaking.  

• Failure of Execution (E) – Most datapoints have the error rates that vary between 2-10 
times from poor to good visibility, with a median around 3 times. Several datapoints have 
task performance errors instead of error rates. The task performance errors increase 
between 1-2 times as the visibility vary from a poor to normal condition.  

• Failure of Interteam Coordination (T) – Some studies reported observations that low 
visibility impaired team coordination. However, no quantitative data sources were 
identified. It is unclear that the observed impairment was due to the effects on 
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individual’s Detection and Action Execution or it is pertinent to team coordination 
mechanisms.    
 

Extensive data sources are available for the PIF Workplace Visibility.  The generalized data 
shows that the PIF attributes moderately modify human error rates. There is a large volume of 
human error data on this PIF in controlled experimental studies with isolated simple tasks. Only 
a few datapoints from such data sources were generalized because the reported results from 
different studies were highly consistent. The data sources primarily studied the effect of visibility 
on Detection and Action Execution. It is reasonable to assume that the attributes are not 
applicable to the Failure of Understanding and Decisionmaking.  The impairment in teamwork 
due to low visibility has been observed but no quantitative data sources were identified.   

3.1.6. IDHEAS-DATA IDTABLE-6 for Workplace Noise 
Introduction to the PIF Workplace Noise 

Noise is unwanted sound disruptive to hearing. Human perceived noise is a function of the 
sound intensity (loudness), duration, variation of intensity, frequency of the sound waves, and 
the meaningfulness of the sound. Noise types include continuous sound, intermittent sound, 
speech, nonspeech, and mixtures of sounds. Continuous noise is constant, with no breaks in 
intensity. Intermittent noise changes in intensity, having gaps of relatively quiet intervals 
between repeated loud sounds. A major type of practical distractive noise is speech. Speech is 
a distracter to which humans are especially attuned.  

Noise impairs human performance by interfering with cognitive processing or exerting 
detrimental effects on mental and physical health. It generally does not influence performance 
speed, but it reduces performance accuracy and short-term/working memory performance. 
Accuracy in cognitive and communication tasks is most vulnerable to noise effects.  

Humans adapt to the environment and develop various compensatory strategies to alleviate 
noise effects.  Humans can develop effective coping strategies for continuous noise of longer 
duration. Therefore, noises are typically unfamiliar disruptive sounds.  Moreover, some low 
frequency continuous sounds such as music can increase personnel’s alertness. Such sounds 
in workplaces are not considered as noise. 

Workplace Noise has four attributes as follows: 

• NOS1 Continuous loud mixture of noisy sounds 
• NOS2 Intermittent non-speech noise 
• NOS3  Speech noise 
• NOS4 Intermittent mixture of speech/noise 
 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A5 IDHEAS-DATA IDTABLE-6.  
The data sources for Workplace Noise are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
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Category A – No data source was identified in NPP operation for this PIF.  

Category B – Abundant studies on the effects of noise were performed in aerospace, aviation, 
and military workplaces in the 1950’s to 1960’s. The original reports of those studies were not 
readily available.  Later studies about Workplace Noise were primarily focused on health effects 
and longitudinal work performance, not human errors. 
Category C – Numerous experimental studies have investigated the effects of various types of 
noises on human task performance. A small sample of available reports were selected from this 
category to represent the PIF attributes and CFMs. Some reports were selected because the 
noises used in the studies mimic the kind of noise in real workplaces. For example, Schlittmeier 
et al. [49] examined the effects of road traffic noise on cognitive performance in adults.  The 
study tested the impact of road traffic noise at different intensity levels (50, 60,70dB) on 
performance in three tasks: The Stroop task, in which performance relied predominantly on 
attentional functions; a non-automated multistage mental arithmetic task calling for both 
attentional and working memory; and verbal serial recall, which placed a burden predominantly 
on working memory.  The noise mimics 2000 cars driving by per hour, producing continuous 
sounds. In addition, the study also tested the noise mimicking 100 cars per hour that produced 
intermittent sounds. Lastly, the study tested the effect of background speech.  The results show 
that speech has the highest detrimental performance effect, and the intermittent noise has a 
higher impact than the continuous noise of the same intensity level. The following are the 
datapoints generalized from the arithmetic task in this study.  

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

NOS1 
 

All Silence 0.27 Mental arithmetic 
performance 

NOS1 – 50 to 
70DB traffic noise 

(The task is 
for all CFMs) 

[49] 
NOS1 0.3 

NOS2 
 

 Silence 0.27 Mental arithmetic 
performance 

NOS2 – 60DB 
intermittent traffic 

The task is 
for all CFMs) 

[49] 

NOS2 0.3 

NOS3  Silence 0.27 Mental arithmetic 
performance 

NOS3 – irrelevant 
speech 

The task is 
for all CFMs) 

[49] 
NOS3 0.4 

 
Category D – No expert judgment data sources were identified for this PIF.  In fact, this PIF is 
physically measurable and adequate data are available to model the effect on human errors. 
There is no need for expert judgment.  

Category E – Given the large amount of literature for this PIF, it is desired to get the reliable 
quantitative information as to how noise effects vary as a function of the characteristics of the 
noise itself and of the task to be performed. Szalma and Hancock [50] provided such 
information by means of a meta-analytic review concerning the influence of noise on human 
perceptual, cognitive, and psychomotor response capacities, as well as tasks requiring 
communication of information. The authors performed meta-analyses of noise effects as a 
function of task type, performance measure, noise type and schedule, and the intensity and 
duration of exposure. The study analyzed the data from 242 studies and calculated the 
standardized effect sizes (defined as the difference between the mean error rates with the 
presence of noise and the mean error rates of control groups divided by the standard deviation 
of all the error rates). The standard sizes varied as a function of each of those moderators. 
Collective findings identified continuous versus intermittent noise, noise type, and type of task 
as the major distinguishing characteristics that moderated response.  The analysis results were 
presented as the standardized effect sizes, not human error rates.  The effect size is 
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proportional to the difference between the measured effects at the testing condition and a 
baseline condition, normalized by the standard deviation of the data.  Although the effect sizes 
cannot be used directly to infer PIF attribute weights, they provide statistically reliable 
information on the relative effects of the PIF attributes. The following are some datapoints 
generalized from this study. The first four rows’ datapoints have the effect sizes of nonspeech 
noise on different CFMs, but they do not differentiate continuous versus intermittent noise. The 
last two rows have the effective sizes respectively for continuous and intermittent noise without 
distinguishing the CFMs.  

PIF 
 

CFM  Effect Size of 
Error Rates 

Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

NOS1  / 
NOS2 

D -0.2 a Perceptual (Effect 
size) 

Nonspeech  [50] 

NOS1  / 
NOS2 

U / DM -0.21 Cognitive (Effect 
size) 

Nonspeech  [50] 

NOS1  / 
NOS2 

E -0.49 Motor (Effect 
size) 

Nonspeech  [50] 

NOS1  / 
NOS2 

T -0.43 Communication 
(Effect size) 

Nonspeech  [50] 

NOS1 All -0.26  (Effect size) Continuous noise  [50] 

NOS2 All -0.39 (Effect size) Intermittent noise  [50] 

a Effect size being negative means that the error rates due to the presence of the PIF attributes are reduced from the 
control condition of no PIF attributes. 

Summary of Human Error Data for Workplace Noise 

The generalized human error data are summarized according to CFMs.  The summary is from 
the generalized data in IDHEAS-DATA IDTABLE-5 without detaching the effects of other PIFs 
and uncertainties.  

• Failure of Detection (D) – The datapoints have the error rates that vary between 1.1 to 
1.5 times from no noise to high noise. Continuous low intensity noise has little effect on 
detection. While the effect of noise on detection errors increases with noise intensity, the 
changes are moderate.   

• Failure of Understanding (U) – The datapoints have the error rates that vary between 1.1 
to 1.4 times from no noise to noise conditions. Speech has the highest detrimental 
performance effect for Understanding.  

• Failure of Decisionmaking (DM) – No generalized datapoint is for this CFM alone.  
Schlittmeier et al. [49] examined the effect of noise on three cognitive tasks that demand 
attention and working memory, which are the cognitive mechanisms of decisionmaking. 
The error rates in those tasks increased 1.1 to 1.4 times from no noise to the noise 
condition.  The datapoints generalized from Szalma and Hancock [50] meta-analysis 
shows that the effect size for Understanding/Decisionmaking is -0.21, comparable to -0.2 
of the effect size for Detection with nonspeech noise. However, the effect size for 
Understanding/Decisionmaking is -0.84 with speech noise. 

• Failure of Execution (E) – The datapoints specific for failure of Execution have the error 
rates ~1.5 times from no noise to noise conditions. Szalma and Hancock [50] meta-
analysis shows that the effect size for Execution is -0.49, about 2.5 times of the effect 
size for Detection. 

• Failure of Interteam Coordination (T) – Szalma and Hancock [50] meta-analysis shows 
that the effect size for Execution is -0.43, about two times of the effect size for Detection. 
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Notice that the study analyzed the noise effect on communication without separating 
within-team or interteam communication.  

 

Extensive data sources are available for the PIF Workplace Noise.  The generalized data show 
that the PIF attributes only moderately modify human error rates. The highest detrimental 
performance effect is speech for Understanding/Decisionmaking.  Overall, the effect of this PIF 
on human error rates is weak. Yet, notice that most studies on noise effects used normal levels 
of noise that would be present in most workplaces. The effect can be much more detrimental 
under some extreme operating conditions.  

3.1.7. IDHEAS-DATA IDTABLE-7 for Workplace Temperature 
Introduction to the PIF Workplace Temperature 

Workplace Temperature includes cold, heat, and humidity. Human bodies maintain a core 
temperature in the vicinity of 98.6°F. Beyond a range of environmental temperature and 
humidity, the human’s ability to regulate body temperature decreases. Cold, heat, and humidity 
refer to the environmental conditions that temperature or humidity have negative effects on 
personnel behavior and task performance. 

Cold, heat, and humidity produce thermal stresses on humans. While physiological limits of 
endurance to temperature and humidity may be seldomly reached, personnel are subjected to 
thermal stresses in many work environments, such as in outdoor work under intemperate 
climatic conditions or loss of ventilation in control rooms.  Studies on the relationship between 
thermal stress and accident occurrence as well as unsafe work behavior have revealed negative 
effects of thermal stress on task performance.  

Wearing protective clothing can impose thermal stress.  The effect of heat on physical work and 
perceptual/motor task performance may become severe in situations where personnel are 
required to wear heavy protective clothing in restricted or confined areas. Protective clothing 
worn in radiation zones may not allow adequate ventilation, which leads to heat and humidity. 

Workplace Temperature has three attributes as follows: 

• TMP1 Cold in workplace 
• TMP2 Heat in workplace 
• TMP3 High humidity in workplace  

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A7 IDHEAS-DATA IDTABLE-7.  
The data sources for Workplace Temperature are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain  
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or causal 

factors) 
Category A – No data source was identified in NPP operation for this PIF.  

Category B – No datapoint was generalized from this category. Abundant studies on the effects 
of environmental temperature were performed in aerospace, aviation, and military workplaces in 



 

3-20 

the 1950’s to 1970’s. The field studies mostly focused on perceived heat or cold, the effect on 
body temperature, and task performance measures other than human error rates.  
Category C – Numerous experimental studies have investigated the effects of heat and cold on 
human task performance.  Many studies used operational personnel such as military solders or 
ship operators as the subjects of the study and/or had the subjects performed simulator tasks 
such as driving simulation. The studies elucidated the effects of head and cold on task 
performance by varying with task types, levels of heat or cold, task duration, exposure time, etc. 
For example, Chase et al. [51] studied the effect of heat on dual-task performance and attention 
allocation. The subjects performed two concurrent visual pattern match tasks for about an hour 
at different temperatures. Mild detrimental performance was onset at 30oC while significant 
detrimental performance was at 35oC.  Moreover, the heat in the workplace narrowed the 
subjects’ attention allocation. While the subjects were instructed to split attention equally at the 
two concurrent tasks, the performance on the task at more peripheral visual fields was 
significantly worse than that of the task closer to the central visual field. The following is the 
datapoint generalized from this study. 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

TMP2 D / E  T1 T2 Split attention equally 
between two concurrent 
visual tasks T1 and T2 

Varying 
temperature 
and splitting 
attention 

 [51] 
25oC 0.3 0.23 
30oC 0.35 0.3 
35oC 0.65 0.4 

 

Category D – One expert judgment data source is that Basra and Kirwan [52] estimated the 
HEPs of offshore oil operation under extreme weather conditions. The estimated effects of 
extreme cold weather were about an order of magnitude higher than those measured in 
experimental conditions with mild cold temperatures. The following is the generalized datapoint.  

PIF 
 

CFM Error rates Task (and 
error 
measure) 

PIF 
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

TMP1 D, 
E,  
U, 
DM,  
T 

Center and range of error factor:  
D (instrumentation):[1.8,  2.1,  2.7] 
U (cognition): [3.8, 10, 18] 
DM and T (management): [3., 8, 18] 
E (physical): [1.6, 5, 8] 
E (precise motor actions (connect 
lines to pump, remove air from lines 
and pumps): [13, 20, 30] 
 

maintenance 
task of offshore 
oil and gas 
facility pumps 
(develop work 
orders, 
reconnect 
pump, open 
valve and 
reinstate pump) 

Extremely 
cold 

(estimation 
of error 
factors 
based on 
operational 
data) 

[52] 

 

Category E - Several studies reviewed and synthesized the large volume of literature on the 
effects of cold and heat. For example, Pilcher et al. [53] performed a comprehensive meta-
analysis of 22 studies about the effects of temperature exposure on performance.  The factors 
analyzed include the severity of temperature exposure, duration of the experimental session, 
duration of temperature exposure prior to task onset, type of task, and task duration. The results 
indicate that heat and cold in workplace negatively impact performance on a wide range of 
cognitive-related tasks. Statistically, Hot temperatures of 90oF (32.22oC) or above resulted in 
14.88% decrement in performance in comparison to neutral temperature conditions and cold 
temperatures of 50oF (10oC) or less resulted in 13.91% decrement in comparison to neutral 
temperature conditions.  Furthermore, the duration of exposure to the experimental 
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temperature, the duration of exposure to the experimental temperature prior to the task onset, 
the type of task and the duration of the task had different effects on performance. The following 
are some datapoints generalized from this study.  

 
PIF 
 

CFM Error rates Task (and error measure) PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

TEP1 D / E %diff -7.8%  Attention/Perceptual tasks 
(percentage difference between 
neutral and experimental 
temperature conditions)   

<65oF (Meta-
analysis) 

[53] 

TEP1 D / E %diff  1.75% Visual tasks and control tasks 
requiring mathematical processing  

<65oF (Meta-
analysis) 

[53] 

TEP1 U  %diff  -28% Reasoning/Learning/Memory tasks <65oF (Meta-
analysis) 

[53] 

TEP1 Unsp %diff  -25% Unspecified <65oF, Short task 
duration 
(<60min) 

(Meta-
analysis) 

[53] 

TEP1 Unsp %diff  -3% Unspecified <65oF, long task 
duration 
(>60min) 

(Meta-
analysis) 

[53] 

TEP2 D %diff - -14% Attention/perceptual tasks  >80oF (Meta-
analysis) 

[53] 

TEP2 U  %diff  1.75% Reasoning/Learning/Memory tasks >80oF (Meta-
analysis) 

[53] 

TEP2 D / E %diff  -14% Visual tasks and control tasks 
requiring mathematical processing 

>80oF (Meta-
analysis) 

[53] 

 
Summary of Human Error Data for Workplace Temperature 

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-5 without detaching the effects of other 
PIFs and uncertainties.  

• Failure of Detection (D) – The datapoints for this CFM have the error rates that vary 
between 1.05 to 2.5 times from neutral to hot workplace temperatures, with the median 
around 1.4 times. The error rates vary between 1.01 and 1.1 times from neutral to cold 
workplace temperatures. The error rates can increase between 1.8 and 2.7 times in 
extremely cold weather for instrument reading. 

• Failure of Understanding (U) – A warm to moderately hot workplace temperatures have little 
effect on Understanding. Meta-analysis shows that performance for reasoning and memory 
increases slightly as the temperature is greater than 80°F. Mildly cold temperatures 
decrease the performance 1.28 times. Extremely cold temperatures may increase HEPs 3 to 
18 times, with the mean value of 10 times.  

• Failure of Decisionmaking (DM) – No datapoint on error rates was generalized for this CFM 
alone.  Hancock et al. [54] meta-analysis shows that the effect size for 
Understanding/Decisionmaking with heat is -0.27, compared to the -0.43 effect size with 
heat for Detection.  Several studies found that completing risky tasks under elevated 
ambient temperatures (> 30°C) leads to a higher risk proclivity than in comfortable 
temperature conditions (<25°C). On the other hand, mildly cold temperatures have little 
effect on Decisionmaking. However, extremely cold weather may significantly increase the 
HEPs of task management, which involves decisionmaking and team coordination. 
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• Failure of Execution (E) – Compared to neutral temperatures, the datapoints for this CFM 
have error rates that vary between 1.05 and 2 times for hot workplace temperatures, with 
the median around 1.4 times. The error rates increase above those for neutral temperatures 
about 1.1 times for mildly cold workplace temperatures. Yet, the expert estimated HEPs for 
extremely cold weather increase 1.6 to 8 times for physically demanding tasks. Moreover, 
the estimated HEPs increase 10 to 30 times for precise motor actions that require fine finger 
movements, such as connecting lines to pump and removing air from lines and pumps. 

• Failure of Interteam Coordination (T) – The estimated HEPs for managing tasks increases 
1.6 to 8 times under extremely cold weather. 

 
Observations from the Generalized Data 

• Heat begins to impair performance when it exceeds 86°F, vigilance and performance of 
complex tasks are affected by heat. 

• Performance on tasks requiring manual dexterity declines when temperature falls below 
60°F. Cold exposure of the hands which is critical for manual performance affects the speed 
and precision of task performance. 

• The range of temperatures beyond which performance is impaired depends on the kinds of 
tasks and exposure time. Tasks involving fine movements of the fingers and hands or 
manipulation of small objects are particularly sensitive to cold effects. Slow cooling is more 
detrimental to manual performance than rapid cooling to equivalent skin temperatures of the 
hands.   

• Comparatively mild levels of cold, heat, and humidity exposure can increase the number of 
errors, speed of incorrect response, and number of false alarms. Complex reaction time 
slows down in heat, and more errors are made in cold. 

• No datapoint is generalized for Attribute TMP3 “High humidity at workplace.” All the studies 
identified for this attribute used physiological measures or performance measures of tasks 
that cannot be related to error rates.  

 
Extensive data sources are available for the PIF Workplace Temperature.  The generalized data 
show that mild cold or heat only moderately increases human error rates.  Overall, the effect of 
this PIF on human error rates is weak within the range of normal room temperature. Yet, notice 
that extreme cold and heat can have very strong impacts on error rates. Only one datapoint is 
generalized from expert judgment of HEPs for extremely cold weather. Also, cold temperature 
has a much stronger impact on task performance time, which would increase the time needed 
for completing the task and may result in higher error rates for time-critical actions. Moreover, 
cold and heat restrict personnel’s workplace habitability time, which can reduce the time 
available for personnel to complete actions and, thus, increase human errors.  

3.1.8. IDHEAS-DATA IDTABLE-8 for Resistance to Personnel Movement 
Introduction to the PIF Resistance to Personnel Movement 

Resistance to Personnel Movement refers to the difficulty in making physical movement due to 
resisting, opposing, or withstanding of external forces such as those imposed by wind, rain, 
flooding, etc. Resistance to movement causes physical stress (also referred to as physical 
fatigue) and imposes additional physical and mental demands to complete a task. Physical 
stress does not lower personnel knowledge of how to get the task done, but it causes lowered 
physical efficiency, reduced attention, and increased susceptibility to loss of balance. Moreover, 
physical stress can result in unconscious lowering of performance standards. These effects can 
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impact task performance in ways such as making errors in timing of movement, overlooking of 
some important elements in the task sequence, losing accuracy and smoothness of control 
movement, under-controlling or over-controlling of movement, or forgetting of side tasks. 

The following are example situations that could induce resistance to physical movement: 

• External forces such as wind, rain, and floods. 

• Postural instability may be induced by carrying heavy materials on a slippery or unstable 
surface while not using fall protection; or it can be induced by experiencing unexpected 
perturbations that cause body acceleration or deceleration. Tasks affected involve standing 
upright, rapid body movement, or lateral reach during lifting.  

• Exposure to whole-body vibration interferes with manual tracking and visual acuity. Whole-
body vibration may come from operating vehicles, walking or lying on oscillating overhead 
catwalks, climbing up ladders located on or over machinery, working in ventilation ducts, 
tending conveyors, and fixing generators, diesels, and turbines. 

• Protective clothes impose a mechanical burden because body movement is limited by the 
clothing. That can impact manual dexterity capabilities and psychomotor performance. 
Wearing heavy gloves hampers performance of delicate manual tasks. 

Resistance to Personnel Movement has four attributes as follows: 

• PR1 Resistance to personnel movement, limited available space, postural 
instability  

• PR2 Whole-body vibration 
• PR3 Wearing heavy protective clothes, gloves, or both 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A8 IDHEAS-DATA IDTABLE-8.  
The data sources for Resistance to Personnel Movement are organized in the following 
categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
Category A – No data source was identified in NPP operation for this PIF.  

Category B –Abundant studies on the effects of resistance to movement have been performed 
in aerospace, aviation, ground transportation, off-shore oil operation, chemical, underwater 
operation, and military workplaces since the 1950’s. Early field studies relevant to the PIF 
attributes mostly focused on physical characteristics and their impacts on human physiological 
reactions. Later studies have explored the effects on behavioral performance.  
Category C – Numerous experimental studies have investigated the effects of various factors 
related to the PIF attributes on human task performance.  Many studies used operational 
personnel such as military solders or ship operators as the subjects of the study and performed 
the studies in operational environments or simulation settings. The studies elucidated the effects 
of the PIF attributes on task performance by varying with task types, levels of intensity, 
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durations of tasks, and other physical characteristics such as the weights of physical loads, the 
depths of floodwater, the frequency of vibration, etc.  Comprehensive review of the studies and 
synthetizations of the findings were also performed by many researchers. The accumulated 
research has provided a solid foundation for many engineering design standards and criteria. 
While most studies used physiological and task performance measures, substantial amounts of 
studies reported task performance accuracy or number of errors. For example, Hancock and 
Milner [55] examined the performance of experienced professional divers on simple mental and 
psychomotor tests over a range of depths in the ocean. The selected depths represented the 
range at which the professional diver might operate for extended periods without the associated 
complications of prolonged decompression. The subjects performed two tasks: the number 
addition task mimicking dive time calculations for safe dive profiles, and the reciprocal tapping 
task representing the basis of simple reaching and aiming movements while submerged. Task 
completion time and error rates were measured at the dryland control condition and 4.6m and 
15.2m underwater diving depths. The results showed that the error rate for mental addition 
increased about twice while that for reciprocal tapping remained about the same at 15.2m 
ocean depth in comparison to those on the dryland and 4.6m ocean depth. The datapoint 
generalized from this study is in the following: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other 
PIFs (and 
Uncertain
ty) 

REF 

PR1 E  Mental 
addition 

Tapping Professional 
divers mentally 
added numbers or 
performed 
reciprocally 
tapping. 

a dryland control 
test followed by 
manipulation at 
4.6m and 15.2m 
depths in the open 
ocean.   

 [55] 

Land 0.08 0.053 
4.6m 0.07 0.057 
15.2m 0.15 0.056 

 

Category D – Two sources of expert judgment data were generalized for this PIF. The expert 
judgment of HRA for nuclear facility operation [37] estimated the HEPs for vehicle accidents 
under different weather and traffic conditions. Basra and Kirwan [52] estimated the HEPs of 
offshore oil operation under extreme weather conditions based on operational data. The 
estimated effect of strong, cold winds on operation is about an order of magnitude higher than 
those measured in experimental conditions. The following is the generalized datapoint:  

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

PR1 E  T1 T2 T3 Offshore lifeboat 
operation 
T1- Incorrectly 
operate brake cable 
T2- Fail to 
disengage boat   
T3- Fail to check air 
support system 

Controlled (C): 
Force 4 wind, 
daylight, unignited 
gas leak 
Severe (S): Force 6 
wind, night, 
explosions/fire on 
platform 

(Several 
other PIFs 
combined) 

[52] 

C 0.02 0.02 0.028 

S 0.04 0.07 0.158 

 
Category E – Many review studies and meta-analysis have well summarized the large volume of 
literature relevant to this PIF.  For example, Conway et al. [56] performed quantitative meta-
analytic examination of whole-body vibration effects on human performance. They synthesized 
the existing research evidence from 224 papers.  Results indicate that vibration acts to degrade 
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goal-related activities, especially those with high demands on visual perception and fine motor 
control.  Some studies based on statistic data also provide task performance measures related 
to the PIF attributes. For example, Pregnolato et al. [57] developed a depth-disruption function 
to emulate the impact of flooding on road transport. The function describes the relationship 
between depth of standing water and achievable vehicle speed. The function was constructed 
by fitting a curve to video analysis supplemented by a range of quantitative data that has be 
extracted from existing studies and road transport databases. The following is the generalized 
datapoint that was sampled from the continuous function.  

PIF 
 

CFM Error rates or Task 
Performance indicators 

Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

PR4 E Depth 
(W) 

Small 4WD Driving – small cars 
and 4WD cars (speed 
m/h) 

Car speed with 
varying depth 
(W) of 
floodwater 
compared to 
85m/h without 
flood 

(from 
multiple 
studies and 
databases 
so other 
PIFs may be 
involved) 

[57] 

100mm 10m/h 50m/h 

150mm 0 40m/h 

300mm 0 10m/h 

 
Summary of Human Error Data for Resistance to Personnel Movement 

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-8 without detaching the effects of other 
PIFs and uncertainties.  

• Failure of Detection (D) – None of the generalized datapoints is exclusively for Failure of 
Detection. Although many studies reported reduced visual perception under the PIF 
attributes, the reduced visual perception seemed to primarily impact visuomotor tasks. 
Conway et al. [56] meta-analysis reported the effect size for visual perception with whole-
body vibration is -1.79, as compared to the effective size of -0.89 for fine motor execution.  
However, the impaired visual perception reported in the meta-analysis was primary for 
visuomotor tasks.  

• None of the generalized datapoints are exclusively for Failure of Understanding. Sherwood 
and Griffin [58] reported a 10% to 15% reduction in learning/memory with whole-body 
vibration. Yet, the study also suggested that the impairment was due to a disruption in the 
information input processes that are related to Detection rather than the recall process that 
is more related to Understanding.  

• No data source was identified about the impact of this PIF on Decisionmaking.   
• Failure of Execution (E) – The generalized datapoints are mostly for this CFM.  Most studies 

relevant to the PIF attributes measured human performance of motor tasks.  The datapoints 
from experimental studies have the error rates that vary between 1.05 to 2 times from 
neutral to poor attribute status.  The estimated HEPs from off-shore oil shop operation vary 
2 to 5 times between the controlled condition and severe weather condition.   

• Failure of Interteam Coordination (T) – No data source was identified about the impact of 
this PIF on Failure of Interteam Coordination.   

 
In summary, extensive data sources are available for the PIF Resistance to Personnel 
Movement.  Overall, the effect of this PIF on human error rates is relatively weak. However, 
notice that most generalized datapoints are from the studies conducted in relatively mild 
conditions where human subjects were allowed for experimentation. Extreme PIF attribute 
status such as strong winds or deep floodwater can lead to devastating impacts on task 
performance. 
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3.1.9. IDHEAS-DATA IDTABLE-9 for System and Instrument & Control Transparency to 
Personnel 

Introduction to the PIF System and Instrument & Control Transparency to Personnel 

Systems and Instrument & Control (I&C) should be designed for personnel to understand their 
behaviors and responses in various operating conditions.  This PIF models the impact of design 
logic and personnel’s use of systems and I&C deviating from the design.  When the operation of 
systems or I&C is not transparent to personnel, or personnel are unclear about system 
interdependency, they can make errors because of not understanding the systems in unusual 
scenarios. Also, some instrumentation, control, electrical, and fluid (water, compressed air, 
ventilation) systems may be aligned in alternative or unusual configurations when the initiating 
event occurs.  For example, these configurations may apply during testing, maintenance, 
specific shutdown plant operating states, etc.  If a system is not aligned in its normal 
configuration or the unusual alignment is not apparent, personnel may not correctly confirm if 
the system is operating properly, easily recognize the effects from equipment damage, or 
quickly determine how the system should be realigned to cope with the evolving scenario. 

The PIF System and Instrument & Control Transparency has five attributes as follows: 

• SIC1  System behaviors is complex to understand or not transparent to personnel    
• SIC2  Inappropriate system functional allocation between human and automation  
• SIC3  System failure modes are not transparent to personnel  
• SIC4  I&C logic is not transparent 
• SIC5  I&C failure modes are not transparent to personnel 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A9 IDHEAS-DATA IDTABLE-9.  
The data sources for System and Instrument & Control Transparency are organized in the 
following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
 

Category A – No data source was identified in NPP operation for this PIF.  Many reports 
document the cases where system or I&C transparency contributed to human failures. No 
quantitative operational data about the effects of the PIF attributes on human performance were 
identified. Some operational databases or studies reported human failures with respect to digital 
I&C. Yet, those studies mainly focus on design aspects of human-system interfaces, not the 
transparency of system or I&C design logic.   

Category B – No operational data about the effects of the PIF attributes on human errors were 
identified.  
Category C – Numerous experimental studies have investigated the effects of automation 
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systems on human task performance.  Many studies used operational personnel such as NPP 
operators, pilots, or air traffic controllers as the subjects of the study in operational environments 
or high-fidelity simulation settings. Yet, most of those studies measured task-specific 
performance indicators or subjective ratings such as workload or trust to automation. There are 
limited studies measuring human error rates relevant to the PIF attributes.  There are barely any 
studies quantifying human error rates that vary with I&C transparency.  Thus, IDHEAS-DATA 
IDTABLE-9 documents some data sources that do not have human error rates.  One example is 
a series of studies performed by the Organisation for Economic Cooperation and Development 
(OECD) Halden Reactor Project (HRP) on automation transparency. The report “Twenty Years 
of HRP Research on Human- Automation Interaction: Insights on Automation Transparency and 
Levels of Automation” [59] summarizes Halden’s automation studies in two decades. The 
studies used NPP crews performing operating procedures on high-fidelity simulators. The 
results showed controversial effects of automation transparency on operation performance 
assessment scores, i.e., automation transparency aided or hindered operator performance in 
different scenarios. However, those studies typically varied multiple experimental factors 
together, so it was difficult to elucidate the effects of transparency.  On the other hand, many 
simulation studies with airplane pilots or air traffic controllers clearly demonstrated that lack of 
transparency with automation systems had detrimental impacts on task performance and 
increased human errors. For example, in the Trapsilawati et al. [60] study “Transparency and 
Conflict resolution Automation Reliability in air traffic control,” the tested air traffic controllers 
resolved airplane conflicts with the automation aid of the Conflict Resolution Advisor (CRA).  A 
Vertical Situation Display (VSD) was to provide transparency of CRA to air traffic controllers. 
The measured error rate in resolving airplane conflicts was about double without having the 
VSD compared to having the VSD for transparency. Also, the air traffic controllers had higher 
situation awareness and spent less time resolving conflicts with the VSD. The datapoint 
generalized from this study is shown in the following: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

SIC1 U/DM  % 
error 

%SA Time Air traffic controller 
resolves conflicts 
with CRA 
(%incorrect) 

Automation is 
80% reliable  
VSD – Visual 
display providing 
transparency 

 [60] 

No 
VSD 

0.11 59% 7.78s 

VSD 0.06 73% 5.38s 

 

Category D – No data source was identified in this category.  

Category E – Many studies reported the frequencies of types or causes of human errors 
associated with automation and digital I&C. Several datapoints from such data sources were 
generalized in IDHEAS-DATA IDTABLE-9 to inform the relative likelihood of CFMs and effects 
of PIF attributes. For example, in the report “Analysis between Aircraft Cockpit Automation and 
Human Error Related Accident Cases,” Kwak et al. [61] analyzed 94 cockpit automation 
accident cases from Flight Deck Automation Issues (FDAI). The study used a human error 
classification scheme to analyze and count the frequencies of error causal factors in the 
accidents. The study found that rule-based errors caused automation accidents most frequently. 
The top two causal factors to the errors are excessive automation dependency and inadequate 
understanding of the automation technology. The datapoint generalized from this study is shown 
in the following: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 
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SIC1 
& 
SIC3 

Unsp Top freq. causes in 34 
accidents 

FDAI Automation 
Human Error Types 
(frequencies of error 
types) 

Accident 
caused by 
automation 
failure 

(analysis did 
not separate 
system vs 
failure mode) 

[61] 

Lack of understanding of 
the system  

5 

Improper performance of 
an automation device in 
an abnormal situation 

4 

 
Summary of Human Error Data for System and Instrument & Control Transparency 

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-9 without detaching the effects of other 
PIFs and uncertainties.  

• Failure of Detection (D) – The generalized datapoints for this CFM show that the error rates 
varied 1.25 to 3 times nominal due to lack of transparency.  

• Failure of Understanding (U) - The limited generalized datapoints for this CFM show that the 
error rates varied 2 to 3 times nominal due to lack of transparency. The datapoints were 
from the studies using automation as a job aid.  In the studies that automation is the primary 
system for personnel to work with, lack of transparency resulted in information unreliable or 
misleading, which lead to high error rates.  

• Failure of Decisionmaking (DM) – Most of the datapoints for this CFM are in combination 
with Failure of Understanding, so it is difficult to examine the effect of the attributes on 
Decisionmaking alone without properly detaching the CFMs in the tasks.  The only datapoint 
exclusively for Decisionmaking is that the pilots participating in the experiment all made the 
wrong decision when the decision aid gave them wrong decision advice. The failure 
represents a combination of several PIFs: Scenario Familiarity, Information Completeness 
and Reliability, and SIC2 Improper functional allocation.  Overall, the generalized data are 
not enough to derive the range and central tendency of the effects of the PIF attributes on 
Failure of Decisionmaking.  

• Failure of Execution (E) – No data source was identified about the impact of this PIF on 
Failure of Action Execution.   

• Failure of Interteam Coordination (T) – No data source was identified about the impact of 
this PIF on Failure of Interteam Coordination.   

 
Observations from the Data Sources Reviewed 

• Studies about the effects of system transparency on human performance almost exclusively 
focus on automation. Most studies investigated human performance regarding trust, 
engagement, cooperation, and subjective opinions on automation. 

• System transparency is not consistently defined in the studies. Many studies assume that 
transparency is presenting system information to personnel. However, personnel may not 
use the presented information either because of the ways the information is presented or the 
personnel are not available to use the information.  

• Many studies on automation systems did not make distinction between job aids versus the 
primary system with which personnel perform their tasks. Some studies leave the system or 
personnel to decide when and how to use the automation. Thus, the measured results could 
be due to transparency, functional allocation, or both.  

Overall, a limited sample of data sources were generalized for this PIF because most data 
sources reviewed did not have human error data. On the other hand, there are many case 
studies and event reports relevant to this PIF. The NRC staff at present has not analyzed those 
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data sources in depth to gain insights on human errors due to lack of system or I&C 
transparency.  Compared to systems and automation, very limited studies have been done 
about the effects of DI&C transparency on human errors. Since many NPPs are upgrading to 
digital I&C control systems, operator performance data with digital I&C should be systematically 
collected.  

3.1.10. IDHEAS-DATA IDTABLE-10 for Human-System Interface 
Introduction to the PIF Human-System Interface 

Human System Interface (HSI) refers to indications (e.g., displays, indicators, labels) for 
personnel to acquire information and controls used by personnel to execute actions on systems. 
HSIs are expected to support human performance.  For example, advanced alarm displays in 
NPP control rooms organize alarms according to their urgency to help operators focus on what 
is most important.  HSI designs of NPP control rooms generally undergo a rigorous human 
factors engineering design and review process; thus, HSIs should comply with human factors 
engineering requirements and do not impede human performance in normal and emergency 
operation.  However, poorly designed HSIs can impede task performance in unusual event 
scenarios.  Even a well-designed HSI may not support human performance in specific scenarios 
that designers or operational personnel do not anticipate.  HSIs may also become unavailable 
or unreliable in hazardous scenarios. 

The PIF Human-System Interface has 14 attributes in the following categories: 

• HSI1 – HSI4:  Ambiguity in sources of indications 
• HSI5 – HSI7:  Ambiguity in the information presentation of indications 
• HSI8 – HSI9:  Ambiguity in control elements 
• HSI10 – HSI14:  Ambiguity in the maneuvers of control elements and interaction with 

personnel   

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A10 IDHEAS-DATA IDTABLE-10.  
The data sources for HSI are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
Category A – Several nuclear human performance databases have human error information 
related to HSI attributes. The analysis of the German NPP maintenance human event database 
[4, 5] shows the effects of several HSI attributes on human error rates.  The analyzed error rates 
were reported for different types of maintenance tasks under specific PIFs.  For example, the 
task “Operating a control element on a panel” had the error rate 1.6E-3 (7/3588) for selecting 
the incorrect control elements, and the contributing PIF was “Wrong control element within 
reach and similar in design.” This is generalized to IDHEAS-DATA IDTABLE-10 for the CFM 
Failure of Action Execution with PIF attribute HSI8 “Similarity in control elements”. The 
uncertainty in this data source is that the errors were counted for a single step “operating a 
control element,” while it is uncertain how many times “operating a control element” occurred in 
a task. Thus, when using the generalized data like this, the error rates should be calibrated with 
data from other sources. The following shows the datapoint generalized from this example: 
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PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

HSI8 D 8.9E-4 (7/8058)     Operating a control 
element on a panel 
(Wrong element 
selected) 

Wrong control 
element within 
reach and similar 
in design. 

(Errors could 
be for a step 
or a task) 

[4] 

 

Category B – No operational data from other domains were generalized given that there were 
already many datapoints from NPP human performance databases.  
Category C – Thousands of experimental studies have investigated the effects of HSIs on 
human task performance.  Many studies used operational personnel such as pilots, ship 
operators, and military personnel as the subjects of the study in their operational environment or 
in high-fidelity simulation settings. The studies elucidated the quantitative effects of the PIF 
attributes on task performance.  Only a limited number of data sources were selected for 
generalization from a large amount of available data sources in this category. For example, In 
the report by Eitrheim et al. [62] “Evaluation of design features in the HAMBO operator 
displays,” NPP operators’ error rates were measured with microtasks of detecting information in 
conventional versus innovated displays of NPP simulators. The innovate displays included 
features that graphically showed parameter trends and ranges.  The average error rates for 
“check the values of multiple parameters” were 0.2 for conventional displays and 0.11 for 
innovate displays. The datapoint generalized from this study is shown in the following: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

HSI4 D Innovate 
displays 

0.11 NPP operators check 
the values of multiple 
parameters (accuracy) 

Innovate display – 
graphic features of 
parameters. 
Conventional display 
- numeric parameter 
values.  

 [62] 

Conventional 
displays  

0.2 

 

Category D – There are several data sources in this category. Given that there are already lots 
of data sources in Categories A and C, only one data source of expert judgment, “An Evaluation  
of the Effects of Local Control Station Design Configurations on Human Performance and 
Nuclear Power Plant Risk” [7], was generalized, because it had estimated HEPs for Attribute 
HSI9 “Poor functional centralization – multiple displays/panels needed together to execute a 
task”. In the study, an expert panel estimated the HEPs of nine NPP ex-control room actions in 
local control stations for low, medium, and high functional centralization and low, medium, and 
high quality of panel design.  The datapoint generalized from this study is shown in the 
following: 

PIF 
 

CFM Error rates Task (and 
error 

measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

HSI9 E  PD* low PD 
Medium 

PD High Execute 
procedures 
in NPP 
local 
stations 

PD – Panel 
ergonomic 
design 
FC – 
Functional 
centralization,  

(expert 
 judgment) 

[7] 

FC* Low 8.62E-1  4.84E-1  2.64E-1  

FC-
medium 

2.84E-1 1.29E-1  8.41E-2 
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FC-high 1.15E-1 6.24E-2 4.04E-2 FC Low - too 
many panels  
FC High – 1-2 
panels 

* FC: functional centralization; PD: Panel ergonomic design 

Category E – No datapoint was generalized from this category of data sources given that there 
are many data sources in other categories.  
 
Summary of Generalized Human Error Data for HSI 

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-10 without detaching the effects of other 
PIFs and uncertainties.  

• Failure of Detection (D) – The datapoints have the error rates for Failure of Detection 
ranging from 1.2 ~ 6 times nominal with the presence of the HSI attributes.  Notice that the 
attributes, such as HSI5 “Poor indication salience”, were examined in the normal range of 
human perception, i.e., the information displayed is above the perceptual thresholds such as 
the minimum font size or luminance contrast of text.  

• Failure of Action Execution - The datapoints have the error rates for Failure of Execution 
ranging from 1.1 ~ 15 times nominal with the presence of the HSI attributes.  The high 
values of error rates due to the HSI attributes are often from the data of which the number of 
times the task was performed was relatively low. Thus, the reported error rates may also be 
associated with PIF Scenario Familiarity even if this was not annotated in the data sources.  

• Failure of Understanding (U) and Failure of Decisionmaking (DM) – No datapoints were 
generalized for these two CFMs. In fact, there are many data sources studying the effect of 
HSI on tasks involving Understanding and Decisionmaking. However, the factors 
investigated in those studies were best represented by other PIFs such as Information 
Availability and Reliability or Task Complexity.   

• Failure of Interteam Coordination - No datapoints were generalized for this CFM. There are 
many studies on how HSIs enhance human performance in teamwork and coordination. No 
data source was identified having error rates of team coordination due to HSI attributes.   

Observations from the data sources reviewed 

• HSI is perhaps the most well studied PIF. Countless studies have investigated the effects of 
various HSI features on human performance. Moreover, the results in many cognitive and 
neuroscience research of information processing are applicable to the effects of HSI 
features. The research has established a solid technical basis for human factors design of 
HSIs. Many human factors design standards or requirements have been in place to ensure 
that HSIs are designed within the normal range of human perception and ergonomics. The 
later research on HSIs has been shifted to investigating the functional aspects of HSIs, 
described in many attributes of IDHEAS-G’s PSFs.  

• The impacts of HSI features on human error rates are generally consistent across different 
studies in different fields. This is because most HSI features impact human performance 
through challenging the capacities of human information perception and information 
processing commonly for personnel with normal perception and cognition abilities.  

In summary, there are abundant data sources for the effects of HSI attributes on Failure of 
Detection and Failure of Execution. Moreover, the human error data from data sources are 
generally consistent with each other in the quantitative effects of the HSI attributes.  On the 
other hand, no data sources were identified for Failure of Understanding and Failure of 
Decisionmaking. This should be inherited from IDHEAS-G definitions of the CFMs. The 
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definition of Failure of Understanding in IDHEAS-G is under the assumption that personnel 
correctly detected the given information, and the definition of Failure of Decisionmaking is under 
the assumption that personnel have a correct understanding of the situation. The HSI attributes 
are pertinent to detecting information and executing actions. The aspects of HSI affecting 
Understanding and Decisionmaking are mostly represented by task specific PIFs such as 
Information Availability and Reliability or Task Complexity.  Lastly, there are qualitative data 
showing the effects of HSI on teamwork and coordination, yet no data source for human error 
rates has been identified to quantify the effect.  

3.1.11. IDHEAS-DATA IDTABLE-11 for Portable Equipment, Tools, and Parts 
Introduction to the PIF Portable Equipment, Tools, and Parts 

Portable Equipment, Tools, and Parts (ETPs) assessed in an event include all those needed to 
support critical human actions. For example, use of a portable diesel pump would include the 
vehicle to tow the pump to its staging location, the water source, pipes, hoses, junctions and 
fittings (e.g., to connect to fire hydrants), and other things; ladders or scaffolding may be needed 
to access equipment that must be operated or local instrumentation that must be checked. 
ETPs should be available and readily usable. In event scenarios, portable equipment or special 
tools may be needed.  Examples are portable radios, portable generators, torque devices to turn 
wheels or open flanges, flashlights, ladders to reach high places, and electrical breaker rack-out 
tools.  Although ETPs should be designed for easy use, personnel may have difficulties using 
them. For example, personnel may not know how to calibrate a measurement tool, or the 
instructions for using the equipment do not indicate what to do if the equipment is operating 
outside of the specified range. 

The ETPs in this PIF refer to portable ones that are, unlike HSIs, usually not designed with 
rigorous human factors engineering review and not maintained under mandatory administrative 
rules. Personnel may not be not trained to use them following nuclear power plants’ Systematic 
Approach to Training (SAT). An exception may be FLEX equipment. Following the accident at 
Fukushima Daiichi, implementation of the Diverse and Flexible Coping Strategies (FLEX) 
resulted in the purchase of portable equipment (including diesel generators and diesel-driven 
pumps) specifically intended to support plant shutdown after extreme external events. Much of 
the equipment can also be used as added defense in depth to mitigate the consequences of 
non-FLEX-designed accident scenarios (involving anticipated internal initiating events) in which 
installed plant equipment fails.  Many nuclear power plants have considered using FLEX 
equipment during non-FLEX-designed accident scenarios and are taking credit for the additional 
equipment and mitigation strategies in their probabilistic risk assessments (PRAs). 
Consequently, many NPPs may begin to include FLEX in the Maintenance Rule and Systematic 
Approach to Training (SAT). Thus, HRA analysts may evaluate FLEX equipment in the same 
way as evaluating HSIs. 

This PIF has four attributes as follows: 

• ETP1  ETP is complex, difficult to use, or has poor suitability for the work 
• ETP2  Rarely used ETP does not work properly or is temporally not available  
• ETP3 ETP labels are ambiguous or do not agree with document nomenclature 
• ETP4  Personnel are unfamiliar or rarely use the ETP 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A11 IDHEAS-DATA IDTABLE-11.  
The data sources for the PIF are organized in the following categories: 
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A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
 

Category A – No NPP operational data on human failures with ETPs were identified. There have 
been operational experience notifications on FLEX equipment that did not work properly due to 
human errors. Yet, statistical data are not available for this report.  

Category B – Several sources of statistical operational data from other domains were 
generalized. The data sources have frequencies of ETPs as the causes of the analyzed 
operational events or accidents. The data sources did not provide quantitative information about 
the impact of the PIF attributes on human error rates. They provide the likelihood of ETPs 
contributing to human failures.  
Category C – Only one data source was identified in this category. Jacob et. al. [63] studied the 
effects of work-related variables on human errors in observing and noting measurements. The 
study isolated and quantified the effects of the variables separately. The study was designed to 
quantify the effects of selected work-related variables of two sets of human subjects 
(experienced and inexperienced technicians). Analysis of the results revealed that the variables 
identified and studied significantly affected measurement errors. One of the work variables 
tested was analog versus digital multimeters for measuring voltage and resistance. Digital tools 
were less complex and more intuitive to use.  The result showed that technicians made 2-3 
times more errors with analog tools than with digital tools. The datapoint generalized from this 
study is shown in the following: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

ETP1 D /E  FN AN Experienced 
technicians used analog 
and digital multimeters 
to measure voltage and 
resistance 
(%measurement errors) 

Tools - Digital vs 
analog, 
Time of work –  
Before noon (FN) 
and afternoon(AN) 

(The errors 
are 
applicable to 
Detection 
and 
Execution) 

[63] 

Digital 4.45 5.74 

Analog 11.07 13.7 

 

Category D – One relevant data source was identified. In 2018, the NRC conducted a formal 
expert elicitation on FLEX HRA [3].  An expert panel estimated HEPs of a set of human actions 
in using portable FLEX equipment.  The HEPs were estimated for a FLEX-designed scenario 
(seismic caused) and non-FLEX designed scenario.  Even in the non-FLEX designed scenario, 
personnel are still challenged with scenario unfamiliarity and rare use of the equipment. The 
estimated HEPs for the tasks of transporting, connecting, and operating the FLEX equipment 
were much higher than those for operating the routine stationary equipment.  Below shows the 
datapoint generalized from this data source:  

PIF 
 

CFM Error rates Task (and 
error 

measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

ETP4 E  Non-
FLEX 

FLEX-
designed 

Use of portable 
generator or 
pump on a 

Personnel 
rarely use the 
equipment and 

Scenario 
unfamiliar, 
rarely 

[3] 

Transport 0.057 0.14 
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Connect 0.088 0.16 sunny day vs. 
severe accident 

training is 
infrequent, 
 

performed 
actions, poor 
training (Expert 
judgment) 

Operate 0.052 0.12 

 

Category E – No data source was identified from this category. 
 
Summary of Generalized Human Error Data for Portable Equipment, Tools, and Parts 

Most datapoints generalized in IDHEAS-DATA IDTABLE-11 do not meet the criterion for 
informing PIF attribute weights because they do not have error rates of two or more PIF attribute 
states. In fact, most datapoints only have the information about the association of ETPs and 
human events or accidents. While human error data for the PIF attributes are sparse, many 
operational experience notifications and accident reports have documented extensive empirical 
evidence that critical ETPs needed for important human actions can detrimentally impact human 
performance and increase human errors.  Systematic data collection and experimental studies 
are needed to elucidate the quantitative impacts. 

3.1.12. IDHEAS-DATA IDTABLE-12 for Staffing 
Introduction to PIF Staffing 

Staffing refers to having adequate, qualified personnel to perform the required tasks.  Staffing 
includes the number of personnel, their skill sets, job qualifications, staffing structure (individual 
and team roles and responsibilities).  Adequate and qualified staff is normally expected.  In 
event scenarios, there may be a shortage of staffing, lack of staff with specific skills, or 
ambiguous staff roles and responsibilities.  Some personnel may not be available for a period 
after an initiating event.  For example, in an NPP external event, the offsite personnel may not 
be available immediately because of site inaccessibility. Staffing consideration should not be 
limited only to the human action being analyzed, but also it should be considered within the 
scope of the entire event.  Staffing can be inadequate when many human actions are 
concurrent. Specifically, HRA analysts need to consider other activities that are not modeled 
explicitly in the PRA but may share the same staff. For example, personnel may be allocated to 
mitigate failures or damage of non-safety systems that are important for overall plant investment 
protection or for perceived improvement of overall plant conditions.   Even in normal operation 
scenarios, staffing can become a concern—for example, key personnel may be temporally 
called away for other duties. 

Fitness for duty is a requirement for staff.  It refers to whether an individual is fit to perform the 
required actions of their job.  Factors that may affect fitness for duty include fatigue, illness, drug 
use (legal or illegal), and personal problems.  Personnel may become unfit for duty as the result 
of excessively long working hours or illness caused by the harsh environment.  

This PIF has four attributes as follows: 

• STA1  Shortage of staffing (e.g., key personnel are missing, unavailable or delayed in 
arrival, staff pulled away to perform other duties) 

• STA2  Ambiguous or incorrect specification of staff roles, responsibilities, and 
configurations,  

• STA3 Lack of certain knowledge, skills, and abilities needed for key personnel in 
unusual events 

• STA4  Lack of administrative control on fitness-for-duty 
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Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A12 IDHEAS-DATA IDTABLE-12.  
The data sources for the PIF are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
 

Category A – Several simulation studies examined the effect of staffing on NPP operator 
performance.  Title 10 of the Code of Federal Regulations (10 CFR) Part 55 [64] requires a 
minimum crew size of three licensed operators in US NPP control rooms. However, NPPs 
typically have more than 3 operators in the control rom. New technologies challenge traditional 
staffing levels by using automation to support crew size reductions.  Over the last two decades, 
OECD Halden Reactor Project has conducted a series of high-fidelity simulations to examine 
various staffing configurations in NPP control rooms. For example, the study, “Staffing 
Strategies in Highly Automated Future Plants - Results from the 2009 HAMMLAB Experiment,” 
Eitrheim et. al. [62] examined two control room staffing configurations: the traditional staffing 
with a crew of three operators responsible for one reactor process versus the untraditional 
staffing configuration in which a crew of three operators simultaneously controlled two nuclear 
processes with the aid of control room automation. This untraditional staffing solution was 
compared with a traditional staffing solution based upon current operational practices. Operator 
performance data were gathered from nine crews of licensed NPP operators in eight scenarios 
per crew. The findings from the experiment favored the traditional staffing solution. However, 
the operators managed to perform a considerable amount of prescribed tasks when they 
worked untraditionally. The results show that the untraditional solution is feasible in easy 
scenarios, but the performance score decreased to an unacceptable level in difficult scenarios.  
The results suggest that reduced staffing levels might be sufficient during normal operation, but 
specialized support teams and roles may be necessary to handle disturbances and upset 
situations. The two staffing solutions in this study involve both staff size and configuration.  The 
study used a set of human performance measures including the task-specific operator 
performance assessment score, situational awareness, and several workload measures. The 
datapoint generalized from this study documents operator performance assessment scores, 
which are related to human error rates. The datapoint is shown in the following: 

PIF 
 

CFM Error rates or task 
performance indicator ( 

Task (and error 
measure) 

PIF measure Other PIFs 
(and 

Uncertainty
) 

REF 

STA1 
/STA
2 

D/U/D
M/E 

 Easy 
scenario 

Difficult 
scenario 

Nine 3-person 
NPP crews 
performed 8 
scenarios (OPAS - 
Operator 
Performance 
Assessment Scale 
in 0-100, the 
higher the better) 

Staffing configuration 
T - Traditional staffing 
– 3 persons for one 
reactor 
UT - Untraditional 
staffing – 3 persons 
for two reactors with 
automation 

(Automation 
use varied) 

[62] 

T 82.5 66.2 

UT 75.5 45.7 

 
Category B – Adequate staffing is essential for safety-critical work domains. Proper staffing size, 
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configuration, and required knowledge, skills, and abilities (KSAs) have been examined in every 
safety-critical work domain such as health care, aviation, and emergency medical services. 
Several studies of staffing examination in safety-critical work domains were generalized in 
IDHEAS-DATA IDTABLE-12. For example, NIST [65-68] conducted a series of field studies to 
understand the effects of staffing size and configurations of emergency medical service crews. 
One of the studies showed that it took about 23 minutes for a 2-person crew and about 16 
minutes for a 4-person crew to complete all the essential tasks needed on low hazard structure 
fires. In addition, key crew members’ average heart rate was about 90% of the maximum 
allowed heart rate with a 2-person crew.  Both measures were related to human failure events of 
fire rescue actions. Such data can be used to infer error rates when direct error rate data are 
sparse.  
Category C – A few data sources were selected in this category. Because the isolated variables 
studied in controlled experiments are often the sub elements that affect more than one Staffing 
attribute, the generalized data are not specific to individual attributes. For example, many 
experimental studies examined the boredom effect of long personnel idle time during a long-
lasting task. Cummings et al. [69] examined the effect of low personnel utilization (i.e., the 
percent of time on tasks) in a 4-hour session of multiple unmanned vehicle supervisory control.  
The study measured where personnel’s attention was directed at any given time and when they 
switched attention. The study used three types of attention: 1) Directed, which is when 
participants were directing their gaze at the interface or interacting with the interface, (2) 
Divided, when participants were looking or glancing at the interface but also engaged in other 
tasks such as talking to other participants, eating while watching the screen, etc., and (3) 
Distracted, which was coded as a participant not in a physical position to see the interface, such 
as turned around in a chair while talking to other participants, at the table getting something to 
eat, working on a personal laptop, etc. The results showed that personnel had 32% directed 
attention time, 22% divided attention time, and 46% distracted attention time. Less directed 
attention means a higher chance of making errors. The datapoint generalized from this study is 
shown as follows: 

PIF 
 

CFM Error rates or 
task 

performance 
indicator (% of 

time in different 
attention state) 

Task (and error measure) PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

STA2 D 
/DM 

% mean attention 
state 

Monitor status and replan tasks in a 
4-hour UAV supervisory control 
session with 2-10% utilization of 
time (% attention state: directed on 
task, divided between task and 
other things, distracted away from 
the task) 

Low task 
utilization 
time (2-10%) 
in long 
working 
sessions 

(student 
subjects may 
differ from 
licensed 
crews)  

[69] 

Directed 32% 

Divided 22% 

Distracted 46% 

 

Category D – No datapoint was generalized from this category.  

Category E – No datapoint was generalized from this category.  
 
Summary of Generalized Human Error Data for Staffing 

Most datapoints generalized in IDHEAS-DATA IDTABLE-12 document task performance 
measures other than human error rates.  Adequate staffing is typically based on workload 
measures, task completion time or other task-specific measures, so most studies do not report 
data about the effect of this PIF on human error rates. The human performance measures are 
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related to human error rates; thus, they can be used to infer PIF attribute weights. Another issue 
with the generalized data is that most of the data sources are from studies of whole events or 
full scenarios, therefore the data are not specific to the CFMs or PIF attributes.  Integrating 
these data to develop PIF attribute weights for individual CFMs will be largely based on 
engineering judgment.  

3.1.13. IDHEAS-DATA IDTABLE-13 for Procedure, Guidance, and Instruction 
Introduction to the PIF Procedure, Guidance, and Instruction 

Procedures, guidance, and instructions (PGIs) refer to availability and usefulness of operating 
procedures, guidance, instructions (including protocols).  PGIs in safety-critical domains such as 
emergency operating procedures (EOPs) in NPPs are developed through a rigorous process 
and validated.  Personnel are well trained on PGIs in various operating scenarios.  Following 
PGIs should lead to the success of important human actions. 

Nuclear power plant operation is procedure-based. PGIs direct operators to perform important 
human actions; operators are expected to comply with their PGIs. Normally, PGIs are available 
and facilitate human performance. However, there are human actions in special situations in 
which no procedure is available or not applicable, then personnel need to perform the actions 
based on their knowledge and skill-of-craft. There may even be situations in which PGIs may 
not apply to the scenario, thus PGIs give inadequate or incorrect guidance for important human 
actions. Other problems with PGIs include ambiguity of steps, lack of adequate detail, or conflict 
with the situation.   

Nuclear power plants have many types of PGIs, including Normal Operating Procedures, Alarm 
Response Procedures, Abnormal Operating Procedures (AOPs), EOPs, Severe Accident 
Management Guidelines (SAMGs), and lately the FLEX Support Guidelines (FSGs).  Some 
procedures can have several hundreds of steps. Various operating crews may execute the 
same procedure differently because a procedure has many branching points that require 
operators’ judgment. Moreover, use of PGIs depends on administrative control and how 
personnel are trained to use them.  

Traditionally, PGIs are written on papers, referred to as paper-based procedures. Over the last 
two decades, computerized procedures, referred to as computer-based procedures, have been 
introduced to nuclear power plant control rooms [70]. Some computer-based procedures are 
simply hard copies of the paper procedures, while other computer-based procedures have 
various levels of automation interfaces built in and can automatically perform procedure 
segments. Evaluation of computer-based procedures for HRA not only involves the PGI 
attribute, but also involves other PIFs such as HSIs and system and I&C transparency.  

This PIF has seven attributes as follows: 

• PGI1  Procedure design is inadequate and difficult to use  
• PGI2  Procedure requires judgment  
• PGI3  Procedure lacks details  
• PGI4  Procedure is ambiguous, confusing 
• PGI5  Mismatch - Procedure is available but does not match the situation  
• PGI6  Procedure is not applicable or not available 
• PGI7  Procedure is misleading 

 

 



 

3-38 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A13 IDHEAS-DATA IDTABLE-13. 
Because of the diversity and complication of NPP operating PGIs, only data sources from 
nuclear operational or simulator data were generalized for this PIF.  Most studies on PGIs were 
about their effectiveness without measuring human errors. Some data sources identified for 
generalization to IDHEAS-DATA having task performance measures or cognitive measures 
such as situational awareness or workload can be used to infer the range of error rates. The 
data sources identified include studies on normal operating procedures, EOPs, low power 
shutdown procedures. The studies show that PGI is a prevalent cause of human errors in NPPs. 
For example, Kim et. al. [71] performed a root cause analysis of 53 low power shutdown events. 
The result showed that procedures are the second most frequent main drivers (in 24 of the 53 
events) while personnel and team are the most frequent (in 29 of the 53 events).  

Several identified data sources studied computerized procedures in comparison to paper-based 
procedures. Overall, operators seemed to make fewer errors with computerized procedures in 
certain tasks. For example, In Converse’s study [72] on evaluating the effectiveness of 
COPMA-II, a computer-based procedure system, eight teams of two reactor operators 
operated a PWR simulator under normal and accident conditions, using both computerized 
and traditional paper-based procedures. The measurement of operator performance 
includes error rates, times to initiate procedures, times to complete procedures, and 
subjective estimates of workload. Interestingly, the results showed that the crews on 
average made three times more errors with paper-based procedures than with 
computerized procedures in the LOCA scenario; however, they made about the same number 
of errors in the SGTR scenario. Yet, the report did not provide detailed analysis on what kind of 
errors the operators made, thus the CFMs applicable to the errors were unknown. It was also 
unclear why there was a big performance difference with the two types of procedures in the 
LOCA scenario but not in the SGTR scenario. The datapoint generalized from this reference is 
shown as follows:  

PIF 
 

CFM Total number of errors 
made in a scenario 

Task (and error 
measure) 

PIF 
measure 

Other 
PIFs (and 
Uncertaint

y) 

RE
F 

PGI1 Unsp.  LOCA SGTR Sixteen licensed operators 
worked in teams of 
SRO/RO perform LOCA 
and SGTR scenarios  

Computeri
zed (CP) 
vs paper 
procedure
s (BP) 

(whole 
scenarios) 

[72] 

Computer 
procedure 

4 12.75 

Paper 
procedure 

18.75 13 

 
Summary of Generalized Human Error Data for Procedure, Guidance, and Instruction 

About half of the datapoints generalized in IDHEAS-DATA IDTABLE-13 have unspecific CFMs, 
the other half have the data about PGI attributes on Failure of Execution. Thus, the data 
generalized so far do not have information specific to Failure of Detection, Understanding, or 
Decisionmaking.  The generalized datapoints have error rates for failure of Execution 2~20 
times nominal, varying with PIF attributes.  Notice that the error rates for PGI5, “Procedure not 
matching the situation” and PGI6, “Procedure not available or not applicable” are extremely high 
from NPP maintenance human performance data. However, those error rates were calculated 
under the conditions that the tasks were extremely rarely performed, so the high error rates 
were primarily due to the base PIF, “Scenario Familiarity”.  
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In summary, the human error data identified for this PIF were limited to NPP operational or 
simulator studies. Such data sources generally studied events or whole scenarios, thus the 
effects of the PIF attributes on individual CFMs were not isolated. Nevertheless, the studies on 
PGIs have demonstrated that the PIF is among the most prevalent main drivers to human failure 
events in NPPs, thus more sophisticated studies on PGIs are highly desirable to provide a solid 
data basis for HRA.  

3.1.14. IDHEAS-DATA IDTABLE-14 for Training and Experience 
Introduction to the PIF Training and Experience 

The PIF, “Training and Experience” refers to the adequacy of the job training that personnel 
receive to perform their tasks and personnel’s work-related experience. 10 CFR 55 [64] 
specifies training requirements for U.S. nuclear power plants. To comply with 10 CFR 55, U.S. 
nuclear power plants have adopted the Systematic Approach to Training (SAT). It is an 
approach that provides a logical progression from the identification of the competencies 
required to perform a job to the development and implementation of training to achieve it. With 
SAT, the competence requirements of jobs in an NPP can be established and met in an 
objective manner.  

Without SAT, there is the risk that important elements of training will be omitted, which would 
adversely affect the safety and reliability of the plant. Also, training frequencies may not be 
adequate, which would adversely affect the safety and reliability of the plant. Yet, not all NPP 
job aspects are under SAT. Some training programs may be too extensive and are only needed 
for extremely rare events such as beyond design basis events.  

Even with SAT, training may not address all possible event scenarios.  For example, NPP 
operator training focuses on use of normal and Emergency Operating Procedures (EOPs); the 
training may not adequately emphasize how operators need to develop novel strategies to 
handle unusual accidents or hazard situations. One lesson learned from the Fukushima 
accident is the need for training on knowledge of system processes.  

This PIF has seven attributes as follows: 

• TE1  Inadequate training frequency/refreshment   - Lack of or poor administrative 
control on training (e.g., not included in the Systematic Approach of Training) 

• TE2 Inadequate amount or quality of training 
• TE3  Deficient training practicality  
• TE4  Poor or lack of training on procedure adaptation 
• TE5  Poor of lack of knowledge-based problem-solving training  
• TE6 Inadequate or ineffective training on teamwork 
• TE7 Personnel are fully trained but inexperienced (compared to expert-level 

experienced professional) 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A14 IDHEAS-DATA IDTABLE-14.  
The data sources for the PIF are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
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E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 
causal factors) 
 

Category A – The assumption in the data sources of Category A is that NPPs have SAT 
for operator training. Several studies from nuclear power plant operations and 
simulations examined the effects of training on operator performance. For example, 
Preischl and Hellmich [4, 5] reported that even though control actions appeared in the 
wrong order in the written procedure for testing the emergency feedwater supply system 
during power operation, operators were able to infer the proper order from professional 
knowledge, thus only one error was made out of 1200 times the task was performed.  
Category B – Only a few studies were selected from this category to cover the breadth of the 
PIF attributes. One example is the study by Goodstein [73]. In the study, chemical process plant 
operators received three types of training for fault diagnosis:  "Theory" and "Rules" groups were 
given a simplified account of how the plant worked.  In addition, the "Rules" group exercised in 
applying diagnostic rules.  The baseline, “No story”, group received no prior instruction of either 
sort. The results showed that the three groups made about the same number of incorrect 
diagnoses for “old” system faults that were included in the training. However, for new faults not 
previously seen by the operators during practice, the “Rules” group made about twice as many 
correct diagnoses than that of the baseline group. The result reveals the impact of training on 
rule-based problem solving.  The datapoint generalized from this study are shown in the 
following: 

PIF 
 

CFM Number of mean correct 
diagnoses 

Task (and error 
measure) 

PIF measure Other 
PIFs 

RE
F 

TE2.
2 

U  # of mean 
correct 
diagnoses 

Training for fault 
diagnosis in the 
chemical 
process plant area. (# of 
correct diagnoses). “ 
- OLD” for the faults 
previously seen by the 
operators during 
practice.  
“NEW” for new faults not 
previously seen by the 
operators during 
practice. 

"Theory" and the 
"rules" groups 
were given a 
simplified account 
of how the plant 
worked, in addition 
the "rules" group 
exercised in 
applying diagnostic 
rules, “no story” 
group received no 
prior instruction of 
either sort. 

 [73] 

 OLD NEW 

No story 
(baseline) 

7.7 2.5 

Theory 7.8 3.5 

Rules 7.6 5.5 

 
Category C –  Data sources from several controlled studies were selected for generalization 
because they explicitly isolated some PIF attributes. For example, in the study by Ha and Seong 
[74], 15 graduate students with five-year nuclear engineering backgrounds were trained on 14 
tasks in three nuclear power plant emergency operation scenarios. They were tested 
immediately before and after training as well as six months later.  The error rates increased 
twice after six months.  The result indicates that the retention of trained skills and knowledge 
dramatically decrease after six months of not using them.  The datapoint generalized from this 
study is shown in the following: 

PIF 
 

CF
M 

Error rates  Task (and error 
measure) 

PIF measure Other 
PIFs 

REF 

TE1 D  1B 1A 2B 2A 15 graduate students 
with nuclear 
engineering 
backgrounds of 5.2 

1B-before 
training 
1A-after training 

N/A [74] 
MMS 32 88 44 97 
LOCA 0.14 0 N/A N/A 
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SGTR 0.45 0.14 0.28 0.04 years performed 14 
tasks in three scenarios 
(LOCA, SGTR, SLB) 
(MMS – mental model 
score, error rates of 
failing detection) 

2B- 6 months 
later before 
training 
2A – 6 months 
later after training 

SLB 0.44 0.1 0.35 0.16 

 

Category D – Two relevant expert judgment studies were included. One was the expert 
judgment of HEPs for IDEHAS-At Power method, in which the HEPs of several crew failure 
modes ware estimated for “good” and “poor” training along with other PIF attributes. Another is 
the expert judgment of the HEPs of human actions in implementing FLEX strategies, conducted 
by the NRC through a formal expert elicitation process in 2018.  At the time, training for FLEX 
strategies was not under SAT. The expert panel assessed that HEPs would decrease by a 
factor of 10 had the FLEX training been included in the SAT programs. 

Category E – No datapoint was generalized for this category. 

Summary of Generalized Human Error Data  

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-14 without detaching the effects of other 
PIFs and uncertainties.  

• Failure of Detection (D) – The error rates for Failure of Detection increased 2 to 10 times 
over nominal with the presence of the Training and Experience attributes.  Interestingly, the 
data from expert judgment had HEPs about 10 times higher for poor training, while 
operational data and experimental studies had human error rates 2 to 4 times higher for 
poor training.   

• Failure of Understanding (U) – The error rates increased by a factor of 1.5 to 3 over nominal 
with the presence of the Training and Experience attributes.  Several studies show that the 
long-term retention of training for knowledge and skills needed in diagnosis tasks seems to 
be better than those needed for Action Execution. 

• Failure of Decisionmaking – The error rates from Category A increased by a factor of 2 to 3 
over nominal with the presence of the Training and Experience attributes. However, the 
expert judgment HEP for misinterpreting procedures in response planning in internal at-
power events has a factor of 20 between “good” and “poor” training.  

• Failure of Action Execution – The error rates increased 2 to10 times over nominal with the 
presence of the Training and Experience attributes.  Again, the data from expert judgment 
had a factor of about 10 for poor training, while operational data and experimental studies 
had the factor around 2 to 5.   

• Failure of Interteam Coordination (T) – No data source was identified for this CFM.  

In summary, the data sources identified for this PIF were limited, and a big portion of the data 
sources had inseparable PIF attributes or the data were collected for full scenarios; therefore, 
the CFMs were unspecific in the study. Overall, there are relatively sparse studies about the 
effect of training on NPP operator errors. This might be because most NPPs have SAT 
programs to ensure that training is adequate.  

3.1.15. IDHEAS-DATA IDTABLE-15 for Team and Organization Factors 
Introduction to the PIF Team and Organization Factors 

Team factors refer to everything affecting team communication, coordination, and cooperation. 
Teamwork activities include planning, communicating, and executing important human actions 
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across individuals, teams, and organizations.  Examples of teamwork problems seen in event 
analysis are critical information not being communicated during shift turnover, loss of command 
and control between the operational center and personnel in the field, and coordination issues 
between multiple parties at different locations.  Distributed locations increase the likelihood of 
breakdowns in communication, increase the work required to maintain shared situational 
awareness (common ground) and possibly diverge the team’s understanding of the situation 
and goals to be achieved, and make it less possible to catch and correct other errors. 

Safety-critical organizations foster safety culture and have mechanisms for identifying, reporting, 
and correcting human errors or factors that may lead to human failure events.  For example, 
organizations should document and treat any evidence obtained during the review of an 
operating event indicating intergroup conflict or indecisiveness or an uncoordinated approach to 
safety.  An organization should also maintain an effective corrective action program to address 
safety issues such as failure to prioritize, failure to implement, failure to respond to industry 
notices, or failure to perform risk analyses.  The attribute of poor safety culture that impedes 
safety can vary greatly among organizations. 

This PIF has five attributes as follows: 

• TOF1  Inadequate team   
• TOF2  Poor command & control with problems in coordination or cooperation  
• TOF3  Poor communication infrastructure   
• TOF4 Poor resource management 
• TOF5 Poor safety culture 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A15 IDHEAS-DATA IDTABLE-15.  
Because team and organization structures vary greatly for different work domains and types of 
organizations, the data sources identified for IDTABLE-15 were primarily from nuclear power 
plant operation or simulation. Those studies investigated operator team performance with whole 
events or scenarios to probe team characteristics. Yet, the human performance data from those 
studies did not differentiate cognitive failure modes. Several non-nuclear studies were selected 
for the data sources because they explored the effects of specific team factors on different 
CFMs. For example, De Dreu and Weingart [75] performed a meta-analysis of 50+ papers 
studying the associations between relationship conflict within a team, task conflict, team 
performance, and team member satisfaction. The results revealed strong and negative 
correlations between relationship conflict and team performance. Specifically, there were 
stronger negative relations with team performance in decisionmaking tasks than in production 
(executing procedures or instructions) tasks.  
 
Summary of Generalized Human Error Data  

The limited data in IDTABLE-15 are not enough to derive the range or trends of human error 
rates for the CFMs. Moreover, most studies only reported task performance measures or 
correlations instead of error rates.  The generalized data in IDTABLE-15 establish the initial 
technical basis that the PIF attributes negatively impact operator task performance and they 
increase human errors in task performance. More studies are needed to establish the 
quantitative relation between the PIF attributes and CFMs.  
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3.1.16. IDHEAS-DATA IDTABLE-16 for Work Process 
Introduction to the PIF Work Process 

Work Process refers to aspects of structuring operation and conduct of operation. Good work 
process in safety-critical work domains sets high standards of performance. According to the 
International Atomic Energy Agency guidance on conduct of operation at NPPs [76], good work 
processes ensure “making safety related decisions in an effective manner; conducting control 
room and field activities in a thorough and professional manner; and maintaining a nuclear 
power plant within established operational limits and conditions… To ensure safety, it is 
necessary that the management of a nuclear power plant recognizes that the personnel 
involved in operating the plant should be cognizant of the demands of safety, should respond 
effectively to these demands, and should continuously seek better ways to maintain and 
improve safety.” Included in NPP work processes are functions and tasks of plant operations, 
shift complement and functions, operating practices, pre-job briefings, and work control and 
authorization.  
 
An important aspect of work processes affecting human reliability is verification of personnel’s 
task performance. Verification may come in forms of professional self-verification, independent 
verification, peer-checking, and/or close supervision. In addition, NPP control rooms also have a 
shift technical advisor performing independent checking and advising.  Verification can capture 
a large portion of errors personnel made in the first place and correct them. Lack of verification 
greatly reduces human reliability. 

This PIF has five attributes as follows: 

• WP0  No impact – Professional licensed personnel with good work practices  
• WP1  Lack of professional self-verification or cross-verification  
• WP2 Poor attainability to task goal, individual’s roles, or responsibilities 
• WP3 Poor infrastructure or practice of overviewing operation information or status of 

event progression 
• WP4 Poor work prioritization, planning, scheduling  

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A16 IDHEAS-DATA IDTABLE-16.  
The data sources identified for the PIF are primarily from nuclear power plant operation or 
simulations. The studies investigated operator performance in normal or EOP scenarios. The 
human performance data from those studies did not differentiate cognitive failure modes. Also, 
most of the studies reported task performance measures or number of errors operators made in 
a scenario, because it was difficult to quantify the number of error opportunities in a scenario. 
Nevertheless, the relation between the task performance measures and error rates can be 
inferred from a large set of simulation studies such as those performed by Halden Reactor 
Project, then the generalized data can be used to estimate the changes of error rates due the 
changes of the PIF attributes. For example, Skraaning [77] analyzed the data in several Halden 
Reactor Project experiments in which NPP crews performed whole scenario simulation with 
fixed or free seating. In fixed seating, operators in a crew except the shift supervisor were 
restrained to their workstation, while free seating allowed operators to move freely in the control 
room. Because, in the experiment, operators had transparent displays which allowed them to 
see reactor process information from every workstation, operators in free seating frequently left 
their own workstations and grouped with other operators. As a result, the operators highly 
engaged in group discussion and became less attained to their own task goals, roles, and 
responsibilities.  The data showed that the Operator Performance Assessment Score (OPAS) 
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was much lower for free seating than for fixed seating.  The datapoint generalized from this 
study is shown in the following: 

PIF 
 

CFM Operator Performance 
Assessment Score (0-

100) 

Task (and error 
measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

RE
F 

WP2 Unsp.  OPAS Comm 
per  
minute 

NPP crews 
performed 2 normal 
and 2 emergency 
scenarios (OPAS- 
Operator 
Performance 
Assessment Score 
and Comm- total 
communications per 
minute) 

Two seatings: 
Free - moved 
freely  
Fixed - remained 
seated at 
workstation, 
restricted 
movement except 
RO  

(HSI 
automation 
was used in 
the 
experiment) 

[77
] 

Free 
seating 
 

57 1.05 

Fixed 
seating 

74 2.75 

 
Currently, only a few NPP studies were generalized in IDTABLE-16.  Many more data sources 
identified for this PIF have not been generalized. Generalizing data for Work Process from the 
literature needs exceptional attention to the various aspects of how the study was performed. 
For example, some studies reported that providing overviews of reactor process information on 
a large screen display did not improve operator task performance compared with the situation of 
no overview display. However, several uncontrolled factors in the study could have contributed 
to the result. The study did not report to what extent that the operators needed the information 
displayed, to what extent they used the overview display, and how they integrated the overview 
information with that from their own workstation.  
 
Several non-nuclear operational studies were included in the data sources because the studies 
were either filling the gaps in data sources for the PIF attributes or they reported data about the 
effect of a PIF attribute on a specific CFM. For example, many studies from other work domains 
such as the Transportation Security Administration and radiological medical diagnosis examined 
the effects of different types of task performance verification. The results showed that 
independent verification of detecting targets by a second person is more effective than one 
person performing the task twice.  
 
Summary of Generalized Human Error Data  

The limited data in IDTABLE-16 are not enough to derive the range or trends of human error 
rates of the PIF attributes on the CFMs. Moreover, most studies only reported task performance 
measures or correlations instead of error rates. The quantitative relationship between the task 
performance measures and error rates needed to be established. The NRC staff plans to work 
with researchers from the Halden Reactor Project to better understand the operators’ work 
processes in many simulation studies then generalize the data to IDTABLE-16.  

3.1.17. IDHEAS-DATA IDTABLE-17 for Multitasking, Interruption, and Distraction 
Introduction to the PIF Multitasking, Interruption, Distraction 

Multitasking refers to performing concurrent and intermingled tasks.  Interruption and distraction 
refer to activities that interfere with personnel’s performance of the primary task. Interruption 
means that personnel must stop the primary task momentarily to perform a different task then 
resume the primary task. Distraction means that a person performs the primary task and 
purposely or subconsciously uses his or her spare cognitive resources to attend to a distractive 
activity.  
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When personnel concurrently perform more than one task, each task demands cognitive 
resources such as attention, working memory, mental computation, executive controls, etc. 
Cognitive resources are capacity limited. Personnel need to either split resources attending to 
multiple tasks at once or quickly switch between the tasks. Both increase the likelihood of 
making errors. An example of multitasking is concurrently implementing multiple procedures; 
personnel may skip procedure steps when switching between procedures.  An example of 
extreme multitasking is a situation in which decisionmakers must handle several operational 
systems (e.g., reactor units) that are in different critical states and the system responses are 
interdependent.  In this example, decisionmaking may mix or transpose related information 
items about different systems.   

Interruption means that personnel must stop the primary task momentarily an attend to the 
interruptive task. Personnel do not need to switch between the primary task and the interruptive 
task because they can resume the primary task after completion of the interruptive task. Thus, 
interruption mainly demands personnel’s working memory, maintaining an ongoing cognitive 
process online and attending to it later. If the primary task does not require continuous thinking 
or following a sequential order, interruption may have little effect on it.  Prolonged interruption 
refers to situations in which personnel are kept from the primary task for a prolonged period or 
are interrupted by cognitively demanding requests. Such interruption can severely impact the 
reliability of resuming the primary task. 

Examples of distractions are phone calls, requests for information, and activities other than the 
primary task.  Experienced professionals are trained to manage the cognitive demands of 
distractive activities. For example, NPP control room operators can manage not being distracted 
by many irrelevant conversations and alarms so that they can focus on the primary tasks, while 
they attend to non-primary tasks in their spare time or after completing a primary task. 
Sometimes, a distraction of low cognitive demand stimuli can enhance a person’s vigilance and, 
therefore, enhance the reliability of performing the primary tasks.  

The PIF has ten attributes in the following categories: 

• MT1    Distraction by other on-going activities that demand attention  
• MT2    Interruption taking away from the main task  
• MT3-10 Concurrent multitasking 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A17 IDHEAS-DATA IDTABLE-17.  
Numerous studies are relevant to this PIF. However, the terminology of multitasking, 
interruption, and distraction has been inconsistently used in the literature. Identifying the data 
sources for this PIF needs to be done carefully.  For example, many research papers studied 
dual-tasking.  Yet, dual-task diagrams in the literature can be concurrently multitasking, 
interruption, or distraction.  Having a cell phone conversation while driving was referred to as 
distraction or multitasking in the literature.  For every data source selected for IDTABLE-17, the 
NRC staff carefully analyzed the experimental method in the description of the original paper 
and verified the method in several other papers by the same authors or research labs. This 
ensures that the context of the study is properly mapped to the corresponding PIF attributes.    

Most data sources selected for IDTABLE-17 are not from operational data or simulation studies 
in nuclear power plants or other domains. Operational data and full scenario simulations usually 
do not distinguish the PIF attributes, and the attributes cannot be controlled throughout an event 
because they vary at different parts of the operation or a simulated scenario. Moreover, licensed 
professionals such as nuclear power plant operators or medical physicians use various 
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strategies managing multitasking, interruption, and distraction, while those strategies are usually 
not documented in the data sources.  

The data sources selected for IDTABLE-17 are mostly from Category C the controlled 
experimental studies. Thousands of research papers relevant to this PIF are available. The 
ones selected mostly employed experimental settings that mimicked the tasks in safety-critical 
jobs such as driving, flying airplanes, attending to medical patients, operating chemical process 
systems, etc. Other selected data sources include several studies investigating the effects of 
distraction, interruption, or concurrent tasking on basic cognitive activities such as mental 
computation, reasoning, or selecting. Although such data are not specific to one of the CFMs, 
they are useful in calibrating the effects of the PIF attributes on the CFMs involving those basic 
activities.  

Summary of Generalized Human Error Data  

The generalized human error data are summarized according to PIF attribute categories.  The 
summary is from the generalized data in IDHEAS-DATA IDTABLE-17 without detaching the 
effects of other PIFs and uncertainties.  

• Distraction – Most datapoints are for Failure of Detection (D) or Failure of Execution (E).  
The error rates vary from 0.8 to 2 times nominal with the presence of the attribute. The 
datapoints with the error rates lower in the presence of distraction are typically for the 
distraction of low salience and low relevance to primary tasks.  No datapoint is exclusively 
for the effect of distraction on failure of Understanding (U) or Decisionmaking (D). It is 
possible that the effects of distraction on these two macrocognitive functions are negligible.  

• Interruption – Most datapoints are for Failure of Detection (D) or Failure of Execution (E).  
The error rates range from 2 to10 times nominal with the presence of interruption, 
depending on interruption duration, frequency, and the complexity of resuming the primary 
task.  If the primary task is non-sequential, interruption has little effect on it. The datapoints 
for Failure of Understanding (U) have error rates between 1.2 and 3 times higher with the 
presence of the attribute. Yet, it is interesting that the datapoints for Failure of 
Decisionmaking (DM) show a positive impact on performance with the presence of the 
attribute. Nicholas and Cohen [78] studied how interruption affects the decisionmaking 
process. They found that people put forth more effort collecting information and considering 
alternative strategies after interruptions.   

• Concurrent multitasking – Performing concurrent tasks has a profound impact on human 
reliability. The datapoints for concurrent multitasking attributes have error rate increased 10 
to 40 times with the presence of the attributes.  The changes to error rates vary dramatically 
depending on the macrocognitive function, the level of task intermingling, and the cognitive 
demands of the tasks. That is why seven distinctive attributes are used to represent the 
variety of concurrent multitasking. For example, a concurrent task can increase the error 
rate 20 times higher for detecting changes in auditory signals and 5 to 10 times for detecting 
changes in visual signals. Concurrently diagnosing multiple problems can increase 
diagnosis errors up to 37 times higher.   

In summary, there are abundant data sources in controlled experimental studies for the effects 
of Multitasking, Interruption, and Distraction. On the other hand, operational data and full 
scenario simulation with professionals usually mix various attributes of this PIF, thus those data 
sources were not included in IDTABLE-17. More importantly, the literature showed that licensed 
professionals have various strategies for managing multitasking, interruption, and distraction to 
mitigate the impact. It is desired to develop guidance for HRA analysts to evaluate the attributes 
with the consideration of licensed operators’ mitigating strategies.     
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3.1.18. IDHEAS-DATA IDTABLE-18 for Mental Fatigue 
Introduction to the PIF Mental Fatigue 

Mental fatigue is a condition triggered by prolonged periods of demanding cognitive activity, 
which temporally hampers overall cognitive functions, brain productivity, and reliability. When 
personnel have mental fatigue, they experience various levels of decrement of vigilance, 
attention span, working memory, and abilities such as reasoning relating information to 
performing complex cognitive tasks. 

Mental fatigue results from psychological, socioeconomic, and environmental factors that affect 
the mind and the body.  It can also result from performing high-demand cognitive tasks for an 
extended period. A typical situation leading to mental fatigue is sleep restriction or total sleep 
deprivation.  Moreover, mental fatigue can result from an extended period of low mental 
productivity. For example, monitoring for rare abnormal signals for long hours appears to be not 
demanding and not productive, but staying vigilant without stimuli for extended periods 
demands sustained attention and leads to mental fatigue.   

The effects of mental fatigue on cognitive activities have been well studied and are generally 
well understood. The degree to which fatigue affects human performance can range from slight 
to catastrophic.  Personnel can manage and quickly recover from mild mental fatigue. Research 
had shown that mental fatigue leads to loss of vigilance, difficulty in maintaining attention, 
reduced working memory capacity, and use of shortcuts in diagnosing problems or making 
decisions. Moreover, mental fatigue also impairs physiological performance because 
physiological activities are controlled by mental activities and the central nervous system.  

The PIF has four attributes in the follows: 

• MF1  Sustained high-demanding cognitive activities requiring sustained focused 
attention 

• MF2 Long working hours with high cognitively demanding tasks  
• MF3  Sleep deprivation  
• MF4 Change of cognitive state 

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A18 IDHEAS-DATA IDTABLE-18.  
Limited data sources from nuclear power plant operation were identified. Nuclear power plants 
have fitness-for-duty rules that specify hours of work shifts to ensure that personnel are fit for 
the job. Also, there are minimum staffing requirements to ensure that operators do not 
experience severe mental fatigue. Most operational data and studies on mental fatigue in NPPs 
are from surveys of subjective ratings of fatigue levels.  Yet, studies are few on NPP operators’ 
mental fatigue in severe accidents where operators work on highly cognitive demanding tasks 
for long hours and experience sleep deprivation.  

Mental fatigue is well studied in many safety-critical domains such as military operation, 
aviation, and healthcare. Operational studies examined the effects of shift work, time on task, 
and sleep deprivation. The effects of mental fatigue on human performance are well understood 
through numerous controlled experimental studies that isolated the PIF attributes. Controlled 
experiments typically use three ways to induce mental fatigue: time on task, high cognitive 
demanding tasks, and sleep deprivation. Sleep deprivation (or hours of wakefulness) is often 
used because it is relatively simple to achieve and straightforward to measure. With the 
numerous studies on sleep deprivation, several meta-analysis studies consolidated the 
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experimental findings and fitted the data with linear regression of human error rates varying with 
hours of continuous wakefulness or number of hours and days of sleep restriction.   

Summary of Generalized Human Error Data  

The PIF Mental fatigue has four attributes. Except for MF1, that sustained attention is needed 
for detection and visual-motor execution, there is no apparent distinction in effects of other 
attributes on different macrocognitive functions. The effects of the attributes on cognitive task 
performance include loss of vigilance, reduced attention span, reduced working memory 
capacity, reduced prospective memory, narrowly focused reasoning and relating information.  
These cognitive abilities are needed for all the macrocognitive functions in complex tasks.  

The effects of the attributes on the CFMs vary continuously with the levels of the attributes, e.g., 
the time on the sustained attention task, number of wakefulness hours, etc. For example, error 
rates of Failure of Detection began to increase after 20 minutes of sustained attention and is 
roughly doubled by 40 minutes. Error rates for long term sleep restriction (e.g., having less than 
5 houses of sleep) could increase error rates by four times over rates with normal sleep. Thus, 
the attributes should be implemented as continuous or multi-scale variables in HRA methods. 

Included in the literature of the data sources are various strategies that personnel manage 
mental fatigue to mitigate the impact. For example, Fysh [79] studied continuously face-
matching tasks for passport control.  The tasks included identifying the matched faces and 
mismatched faces among multiple pictures. Error rates for detecting matched faces began to 
decrease after 15~20mins, while the error rates for detecting mismatched faces remained about 
the same. With the reduced vigilance, participants allocated their attention resources on the 
more likely targets. Also, personnel can adapt to mental fatigue. For example, although most 
studies found that error rates are higher for tasks performed at night compared to the day, 
professionals working on shifts year-round such as NPP operators or nurses are better adapted 
to hours of the day compared to people who occasionally work at night. HRA analysts should 
consider the mitigation strategies and adaptation when evaluating the mental fatigue attributes.  

Although the effects of mental fatigue on human performance is generally well understood, one 
area lacking human error data is the effect of sudden change of cognitive alertness (from a 
period of low activity to high or vice versa) in nuclear power plant operation. This is particularly 
important for modeling operator reliability in and immediately after severe accidents.  

3.1.19. IDHEAS-DATA IDTABLE-19 for Time Pressure and Stress 
Introduction to the PIF Time Pressure and Stress 

Time Pressure refers to the sense of time urgency to complete a task, as perceived by 
personnel.  This sense of time urgency creates psychological pressure affecting performance. 
Time pressure arises when making a tradeoff between thoroughness in performing the task and 
completing the task in time.  Because time pressure is based on perception and understanding 
the situation, it may not reflect the actual situation.  Therefore, although time pressure is most 
likely to occur when marginal or inadequate time is available, it also could occur in scenarios 
with adequate available time, but personnel have an incorrect perception of time.  For example, 
some training protocols emphasize the importance of making assertive, immediate decisions, 
and they reward personnel for rapid correct responses.  This type of training can instill an 
inappropriate sense of urgency, reluctance to question initial impressions, and resistance to 
deliberative team consultation.   

Mental stress, such as anxiety, frustration, threats, or fear, can increase the level of 
physiological stretch and affect task performance. Examples of stress are concern for families in 
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emergency conditions, fear of potential consequences of the event, and worrying about 
personal safety. Such concerns are prevalent during scenarios that involve extreme hazards 
such as seismic events, floods, high winds, etc. Related to mental stress is the reluctance to 
implement some planned actions due to concerns or fear of undesirable consequences.   

The PIF Time Pressure and Stress has 4 attributes: 

• TPS1 Time pressure due to perceived time urgency   
• TPS2 Emotional stress (e.g., anxiety, frustration)  
• TPS3 Cumulative physical stress  
• TPS4 Reluctance to execute an action plan due to potential negative impacts  

Summary of the Data Sources  

The data generalized for this PIF are presented in Appendix A19 IDHEAS-DATA IDTABLE-19.  
The data sources for the PIF are organized in the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or 

causal factors) 
Category A – None of the current nuclear human performance databases such as SACADA or 
HuREX collects data for this PIF.  The databases collect operator simulator training data while 
operator training is generally performed under normal stress, or operators are trained to attain 
their performance under stress. The analysis of the German NPP maintenance human event 
database [5] reported several error rates under moderately high or extreme high stress.  For 
example, the error rate for not memorizing key steps in “Carrying out a sequence of task” was 
1/48 given that the type of the task was rarely performed. The error rate for the same type of 
failure was 2/41 with moderately high levels of stress.  The data source did not provide detailed 
information to discern what kind of stress was involved in the errors made. Thus, the 
corresponding PIF attributes for this datapoint were unspecified. The following shows the 
datapoint generalized from this example: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

Unsp E No 
stress 

2.45E-2 
(1/48) 
 

Carrying out a 
sequence of tasks 
(Memorized task 
step not 
remembered) 

No stress - Rarely 
performed, no other error 
promoting factors                                  
Stress - Rarely performed, 
moderately high level of 
stress 

(unspecified 
stress) 

[5] 

With 
stress 

5.62E-2 
(2/41) 

 

Category B – No operational data from other domains were generalized. Military organizations 
such as the US Coast Guard research lab have performed many studies on understanding what 
caused stress and the impacts on military personnel’s task performance.   
Category C – Numerous experimental studies have investigated the effects of time pressure 
and stress on human task performance.  Many studies used operational personnel such as 
nurses, medical physicians, athletes, and military soldiers to perform realistic tasks in 
operational environments or simulation settings. Controlled experimental studies have also 
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examined the effects of time pressure and stress on basic cognitive activities such as vigilance, 
attention, working memory, and reasoning. The studies elucidated the quantitative effects of the 
PIF attributes on task performance.  For example, in Leon and Revelle’ s study [80], 120 college 
students completed 100 geometric analogies with nine levels of complexity under relaxed and 
time pressure conditions. The relaxed condition had no time limit on performing the tasks. In the 
time pressure condition, the participants were told that they had only a short length of time to 
answer each analogy problem before it disappeared from the screen and the next analogy was 
presented, and if they failed to solve a problem before it disappeared, it would be scored as an 
error, while in fact only 20% of problems disappeared from the monitor screen and those 
problems were given adequate time before disappearing. The participants made more errors 
under time pressure condition. The datapoint generalized from this study is shown in the 
following: 

PIF 
 

CFM Error rates Task (and error 
measure) 

PIF measure Other PIFs 
(and 
Uncertainty) 

REF 

TPS1  U  Low 
complex  

High 
complex  

120 subjects 
completed 100 
geometric analogies 
with nine levels of 
complexity (# of 
Element and # of 
Transforms) 
(%incorrect) 

TPS-1: relaxed 
(non-time-
limited) or 
under time 
pressure (ego-
threat, time-
limited)  
 

(time 
available is 
sufficient) 

[80] 

Relaxed 0.012 0.083 

Time 
pressure 

0.046 0.375 

 

Category D – No data source was generalized from this category. 
 
Category E – Given the largely available data sources in Category C, only one meta-
analysis study of Category E was documented in IDTABLE-19.  Szalma et al. [81] 
reviewed 281 papers about the effects of time pressure on task performance and quantified 
the effect sizes from the data in 125 studies. The results showed that the effect size of 
accuracy is -0.33 for perception (detection) tasks, -0.66 for cognition (understanding and 
decisionmaking) tasks, and 0.01 for execution tasks. The results suggest that time pressure 
impairs Understanding and Decisionmaking accuracy more than it does Detection, while it 
barely affects Execution tasks. The datapoint generalized from this study is shown in the 
following: 

PIF 
 

CFM  Effect size of error rates 
 

Task (and error 
measure) 

PIF measure Other PIFs 
(and 

Uncertainty) 

REF 

TPS1 D & 
U/DM 
& E 

effect-size is a standardized 
mean difference between the 
experimental and control 
conditions.  

Controlled lab 
settings and real-
world settings in 
which temporal 
constraints 
impose stress 
and workload on 
operators. 
 

time stress: (e.g., 
instructions to 
complete tasks 
as quickly as 
possible, 
deadlines, or 
stimulus 
presentation 
rate)  
 

125 of 281 
papers with 
827 data for 
meta-
analysis 

[81] 

 accuracy RT 
Perception(D) -0.33 0.26 
Cognition (U 
& DM) 

-0.66 0.57 

Motor (E) 0.1 -0.6 

 
Summary of Generalized Human Error Data for Time Pressure and Stress 

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-19 without detaching the effects of other 
PIFs and uncertainties.  



 

3-51 

• Failure of Detection (D) – The datapoints have the error rates for Failure of Detection 
ranging 1.2 ~ 2 times nominal with the presence of the attributes.  Among the attributes 
Time Pressure and Mental Stress have relatively mild effects on error rates, and Physical 
Fatigue barely impair Detection accuracy. 

• Failure of Understanding (U) - - The datapoints have the error rates for Failure of 
Understanding ranging 1.5 ~ 7 times nominal with the presence of the attributes. The data 
also reveal speed-accuracy tradeoffs in tasks that require reasoning and relating (both are 
needed for situation understanding).  

• Failure of Decisionmaking (DM) - The datapoints have the error rates for Failure of 
Understanding ranging 1.5 ~ 7 times nominal with the presence of the attributes.  The data 
on decisionmaking performance measures showed that more decisionmaking errors under 
stress were due to premature closure of collecting available information and evaluating 
fewer alternatives.   

• Failure of Action Execution – Many datapoints show that the attributes had no impact on 
execution tasks. Some datapoints show that time pressure even slightly reduces error rates 
of skill-based tasks by 10% to 20%. Physical fatigue increases skill-based task error rates 
1.1 to 1.5 times.  

• Failure of Interteam Coordination – No error rate data were identified for this CFM, but 
several studies showed that coordination and communication were impaired under Time 
Pressure and Stress. Moreover, personnel became less aware of other team member’s 
work, thus further impairing team coordination.  

 
In summary, there are abundant data sources for the effects of Time Pressure and Stress on 
human task performance. Existing qualitative data shows the effects of Time Pressure and 
Stress on teamwork and coordination, yet no data source with error rates was identified to 
quantify the effect.  

3.1.20. IDHEAS-DATA IDTABLE-20 for Physical Demands 
Introduction to the PIF Physical Demands 

Physical Demands indicate that a task requires extraordinary physical efforts, such as handling 
heavy objects, performing fine motor dexterity, or operating special equipment. Physical 
demands challenge motor, physical, and physiological limits.  There are professional standards 
guiding job design to ensure that the physical demands of actions are within human physical 
limits. High physical demands, even within the professional standards, still have the potential to 
impair human reliability in task performance. For example, the study “Independent Oversight 
Study of Hoisting and Rigging Incidents within the Department of Energy” [82] reviewed the 
incidents over a 30-month interval, from 1993 to 1996 and found that most incidents were 
caused by human errors rather than equipment failure. 

The effects of high physical demands on human errors are twofold, people failing to execute the 
action properly and personnel injuries. Personnel safety indicates that there is the likelihood of 
injury when performing certain actions. In practice, personnel safety would most likely apply to 
scenarios with extreme operating conditions, such as those involving plant damage from internal 
hazards (fires, floods, etc.), external events (seismic events, floods, high winds, aircraft crashes, 
etc.), impending or actual core damage, large releases of radiation or toxic chemicals, etc.  It 
accounts for the effects of personnel’s concerns about their own personal safety and possible 
harm or known injuries to their co-workers on task performance. The effects from this PIF may 
be manifested by personal fear, cognitive distractions, enhanced sense of urgency, additional 
time delays for cognitive response and action implementation, supervisory reluctance to send 
personnel into specific plant locations, operator reluctance to perform local actions, etc. 
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The PIF has five attributes in the following categories: 

• PD1  Physically strenuous Action Execution – Approaching or exceeding physical 
limits (e.g., lifting, handling, or carrying heavy objects, opening/closing rusted or stuck 
valves)  

• PD2  High spatial or temporal precision of fine motor movement needed for Action 
Execution 

• PD3  Precise coordination of joint action by multiple persons  
• PD4  Unusual loading or unloading materials (e.g., unevenly balanced loads, reaching 

high parts, dry cask loading)  
• PD5  Handling objects using crane/hoist  

Summary of the Data Sources  

The NRC staff has not systematically collected data sources for this PIF. IDHEAS-DATA 
IDTABLE-20 documents a few data sources to demonstrate the attributes. There have been 
accumulated operational data and studies on this PIF in work domains of high Physical 
Demands, such as military operation, construction, offshore oil operation, etc.  

Regulatory standards and safety work practices minimize the impact of physical demands of 
human actions. The NRC has developed specific regulations for the handling of heavy loads 
within the nuclear industry. IDHEAS-DATA IDTABLE-20 documents several HRA applications 
involving this PIF. In the report “Savannah River Site Human Error Data Base Development for 
Non-reactor Nuclear Facilities (U),” [37] the HEPs of three Physical Demands actions were 
estimated: Dropping of load when using forklift, dropping of load when using crane/hoist, and 
crane/hoist strikes stationary object.  Those actions were included in their PRA of site 
construction and installation. The report “Preliminary, Qualitative Human Reliability Analysis for 
Spent Fuel Handling” [83] examined how human performance of dry cask storage operations 
could plausibly lead to radiological consequences that impact the public and the environment. 
The study investigated typical cask drop scenarios and analyzed human performance 
vulnerabilities that impact fuel-loading activities and cause cask drops. Examples of human 
errors in spent-fuel handling include, “Crane operator translates cask into fuel pool wall; cask 
drops” and “Crane operator raises cask too high; cable breaks & cask drops.”  The report 
“Heavy Load Accidents in Nuclear Installations” [84] reviewed operating experience from 114 
selected events involving the lifting of heavy loads or the operation of lifting devices. The report 
highlighted several types of events, such as, “collisions of fuel assemblies with different 
obstacles during fuel-handling operations;” “inadequate structural design of cranes and other 
hoisting equipment, particularly regarding seismic resistance;” and “misunderstandings among 
operations staff leading to loads being handled in unsafe conditions (weight of the load 
unknown, other operations in progress at the same location, lack of supervision, etc.).” In the 
NRC’s recent work “Effects of environmental conditions on manual actions for flood protection 
and mitigation”[85] ,the analysis showed that environmental factors impair performance of 
manual actions especially those associated with high physical demands.  

Overall, the attributes of PIF Physical demands are generally not present in NPP control room 
actions, but they can be present and have significant impacts on human reliability in events 
outside control rooms. Lots of operational data relevant to this PIF are available in the nuclear 
and other domains. Human error data related to this PIF have already been collected in some 
previous HRA efforts.  The different sources of data should be consolidated and generalized to 
inform HRA of special applications.  
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3.1.21. IDHEAS-DATA IDTABLE-21 for Lowest HEPs of the Cognitive Failure Modes  
Introduction to Lowest HEPs of the CFMs 

In the IDHEAS-G HEP quantification model, the lowest HEPs are used as the values for the 
base HEPs when all the base PIF attributes are absent. The Lowest HEP IDTABLE-21 
documents the datapoints of human error rates that were measured under the following two 
criteria: 

• None of the known PIF attributes were present or there was no prevalent known PIF 
attribute present 

• The error rates were measured from a sufficiently large number of times that the task 
was performed so that the measured error rate was statistically reliable.  

The human error rates measured under these criteria correspond to the lowest HEP that a CFM 
of tasks can achieve.   

Ideally, data sources for lowest HEPs should also meet the following conditions: 

1) The task was performed as the time available was adequate, 
2) there was professional self-verification, peer-checking, and/or supervision for task 

performance 
3) the error rate was for a single CFM of a single task, and  
4) the error rate was measured without recovery actions.   

Hardly any data source can meet the two criteria and all four desired conditions. The NRC staff 
identified data sources for the lowest HEPs if they met the two criteria. When analyzing data 
sources for the lowest HEPs, it is important to annotate if any of the four conditions was not met, 
such as whether there was lack of peer-checking or whether the task of which the error rates 
were measured had multiple applicable CFMs. The data sources for the lowest HEPs were 
identified and generalized to IDHEAS-DATA IDTABLE-21. Each row of IDTABLE-21 is for one 
datapoint. One data source may have multiple datapoints. A datapoint has six dimensions of 
information presented in the columns: the applicable CFM, the error rate, the task of which the 
error rate was measured, the notes about whether the conditions are met, the uncertainties in 
the data, and the reference of the data source. 

Summary of the Data Sources  

The data generalized for the lowest HEPs are presented in IDHEAS-DATA IDTABLE-21.  The 
data sources are organized into the following categories: 

A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or causal factors) 

 
Category A – Several NPP human performance databases and simulator data collection studies 
have data on lowest HEPs, such as SACADA[24, 26], HuREX/OPERA[38, 86], and the UJV 
HRA data collection[87]. The databases collect operator simulator training data. Operator 
training or simulator runs are generally performed by crews with peer-checking, with adequate 
time, and maybe allowing for recovery to some extent. The error rates for the task types or tasks 
sharing the same CFM were calculated. Those error rates met the two criteria for lowest HEPs, 
thus they were generalized to IDHEAS-DATA IDTABLE-21.  In addition, the analysis of German 
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NPP maintenance human event database [4, 5] reported some error rates of which no poor PIF 
was present or prevalent.  Notice that the data sources collected human error data at different 
levels of detail. For example, SACADA collects operator errors made to training objectives, 
which are basic tasks of multiple steps in procedures. However, HuREX collected operator 
errors made at individual procedure steps. The different levels of detail may affect the lowest 
error rates reported.  

Category B – Data sources of the lowest HEPs were identified from air traffic control, NASA 
Command Center operation, off-shore oil drilling operation, and others. The error rates from real 
operational data inherits uncertainties and variations in the context under which the task was 
performed. For example, although most times air traffic controllers perform their tasks with 
adequate time, at times, they must handle situations when the time available for an action was 
shorter than needed. To generalize those data sources, the NRC staff reviewed relevant 
documents about how the jobs were performed in those work domains to understand the nature 
of the data.  

Category C – Error rate data in controlled experiments have the advantage of informing the 
lowest HEPs because the context is controlled and remains the same for the number of times 
that the task is performed. The disadvantage is that the same task usually is not performed for 
many times to get reliable error rates. The data sources identified from this category typically 
used simple tasks such as detecting signals or performing simple manipulations. Another 
disadvantage of the data in this category is that the subjects of the experiments usually were not 
licensed professionals, thus there might be greater individual variability in the same task 
performed by many subjects.  Also, the subjects were not as well trained as licensed 
professionals. Such uncertainties were documented in the datapoints generalized and should be 
considered when the data are integrated. 

Category D – Several data sources of statistical analysis of human events were generalized in 
IDTABLE-21.  For example, Knecht [88] analyzed flight accident rates of general aviation pilots 
and reported that general aviation pilot error rates causing accidents was 0.00385 per flight 
operation (from taking off to landing). Such datapoints do not have specific information about 
the CFMs applicable to the errors. Moreover, the context under which the errors were made 
must have had some poor PIFs, thus such error rates do not meet the criteria that no poor PIF 
should be present or prevalent. The presence of poor PIFs would make the error rates higher 
than the lowest HEPs. However, the data sources inherit great uncertainties in data collection, 
where a significant portion of human errors might not be documented because those errors did 
not lead to reportable consequences. Such uncertainties would make the observed error rates 
lower than the actual ones.  Thus, the data cannot be used to inform the values of the lowest 
HEPs of the CFMs, but they can be used to calibrate the lowest HEPs estimated. 

Summary of Generalized Human Error Data  

The generalized human error data are summarized according to the CFMs.  The summary is 
from the generalized data in IDHEAS-DATA IDTABLE-21 without considering the conditions 
under which the tasks were performed and uncertainties in data collection.  

• Failure of Detection (D) and Failure of Action Execution – Many datapoints were generalized 
for these CFMs from data sources in all the categories.  The datapoints appear to be 
consistent in that the lowest HEPs are in the range of E-3 to E-4, and they vary with the 
conditions of time adequacy, self-verification or peer-checking, and whether recovery was 
allowed.  

• Failure of Understanding (U) – Substantial datapoints were generalized for this CFMs. Most 
datapoints were about diagnosis errors. The error rates were in the range of E-3 to E-2. 
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Notice that diagnosis tasks usually have certain levels of Understanding complexity, 
therefore, the data sources do not fully meet the criterion of absence of poor PIFs. When the 
generalized data are used to inform the lowest HEPs of Failure of Understanding, the effect 
of diagnosis complexity needs to be detached.  

• Failure of Decisionmaking – Only a few datapoints were identified for this CFMs, given that 
controlled experiments usually do not run the same decisionmaking tasks for a sufficiently 
large number of times, while operational data often do not distinguish decisionmaking errors 
from other cognitive errors. An exception is the SACADA database[24, 26].  It collects 
operator errors in decisionmaking. The error rates are around E-2.  

In summary, there are substantial data sources to inform the lowest HEPs of the CFMs.  For 
NPP HRA applications, the most accountable data sources are operator performance data from 
numerous simulator runs. One weakness in IDHEAS-DATA IDTABLE-21 is that there were only 
a few datapoints for Failure of Decisionmaking. It is expected that the SACADA database will 
produce more data to better inform the lowest HEP for Failure of Decisionmaking.  

3.1.22. IDHEAS-DATA IDTABLE-22 for PIF Interaction 
Introduction to PIF Interaction 

The PIF Interaction IDTABLE-22 documents the combined effects of multiple PIFs. A 
longstanding belief in the HRA community is that multiple PIFs interact to affect performance 
such that the combined effect of the PIFs is the multiplication of the effects of individual PIFs on 
HEPs.  To develop the HEP quantification model in IDHEAS-G, the NRC staff identified over 
two hundred research papers in which human errors or task performance indicators were 
measured when more than one PIF varied individually and jointly.  Using the definition of PIF 
attribute weight in IDHEAS-G, the staff examined the individual versus combined PIF weights in 
the reported data and had the following observations: 

• For the majority of the data reviewed, there was little interaction between the PIFs such that 
the combined PIF weight can be predicted with the addition of the individual PIF weights; 
When the individual PIF weights are large, the combined weights tend to be less than the 
addition of the individual weights. 

• The multiplication of individual PIF weights tends to over-estimate the combined effects 
measured in the studies;  

• PIF interaction was observed in a small portion of the data as a “gating” effect: The additive 
effect of joint PIFs is only effective when the weight of one PIF is significantly high.  For 
example, the combined effect of Task Complexity and mental fatigue is additive for complex 
tasks while mental fatigue has little effect when the Task Complexity is low. Such gating 
effects are more associated with the three base PIFs: Scenario familiarity, Information 
completeness and reliability, and Task Complexity. 

• Some individual and combined effects of joint PIFs behave differently if both PIFs demand 
the same capacity-limited cognitive resources and the demand of a single PIF is already 
approach to the capacity limit. The combined effect is more than the addition of individual 
effects and reflect the catastrophic effect of exceeding the capacity limit. For example, in a 
dual-task experiment, if the complexity of the primary task demands working memory 
approaching to the limit, simultaneously performing a secondary task that also demands 
working memory would lead to a very high error rate, greater than the sum of the error rates 
of performing each task alone.  

The NRC staff performed a pilot study with a small sample of the reviewed data (in Appendix D 
of  [1]). The study calculated individual and combined PIF weights of the error rates in the 
sample data and fitted the weights to the addition rule and multiplication rule. The result 
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confirmed the above observations 1) and 2).  Thus, the staff developed the IDHEAS-G [1] 
quantification model based on the observations. The quantification model adds individual PIF 
weights for joint PIFs, yet it allows HRA analysts to model PIF interaction with an interaction 
factor ‘C’ in the HEP quantification model.  

The NRC staff has not yet generalized and documented all the identified data sources of joint 
PIF effects in IDHEAS-DATA IDTABLE-21. At present, IDTABLE-21 mainly documents several 
studies of meta-analyses or literature reviews and analyses of joint PIFs. The main findings of 
those studies are consistent in that the multiplication effect of joint PIFs was not supported by 
the data. The following is a summary of those studies: 

Van Iddekinge et. al. [89] performed a meta-Analysis of the interactive, additive, and relative 
effects of cognitive ability and motivation on performance. They analyzed the human 
performance data from 55 reports to assess the strength and consistency of the multiplicative 
effects of cognitive ability and motivation on performance. The results showed that the 
combined effects of ability and motivation on performance are additive rather than multiplicative. 
For example, the additive effects of ability and motivation accounted for about 91% of the 
explained variance in job performance, whereas the ability-motivation interaction accounted for 
only about 9% of the explained variance. In addition, when there was an interaction, it did not 
consistently reflect the predicted form (i.e., a stronger ability-performance relation when 
motivation is higher).  

Liu & Liu [90] performed regression fitting of human error data on empirical combined effects of 
multiple PIFs from 31 human performance papers. They calculated the multiplicative and 
additive effects. The median of the multiplicative effect was greater than that of the empirical 
combined effect, whereas the median of the additive effect was not significantly different from 
that of the empirical combined effect. Thus, the multiplicative model might yield conservative 
estimates, whereas the additive model might produce accurate estimates. It was concluded that 
the additive form is more appropriate for modeling the joint effect of multiple PIFs on HEP. 

Mount, Barrick, and Strauss [91] studied the joint relationship of conscientiousness and general 
mental ability with performance to test their hypothesis of PIF interaction. This study 
investigated whether conscientiousness and ability interact in the prediction of job performance.  
The study performed moderated hierarchical regression analyses for three independent 
samples of 1000+ participants.  Results in the study provided no support for the interaction of 
general mental ability and conscientiousness. The regression analysis showed that the 
interaction did not account for unique variance in job performance data beyond that accounted 
for by general mental ability and conscientiousness alone. These findings indicate that general 
cognitive ability does not moderate the relationship of conscientiousness to job performance.  

Hancock and Pierce [92] examines the combined effects of heat and noise upon behavioral 
measures of human performance. Specifically, they reviewed the capabilities on a variety of 
neuromuscular and mental tasks with respect to personnel’s vulnerability to joint thermal and 
acoustic action. Most of the evidence indicates that such stressors do not interact significantly 
within the ranges experienced commonly in the industrial setting. Yet, the authors warned that 
various experimental and methodological inadequacies in the meager data base cautioned 
against a simple interpretation of this apparent insensitivity. 

Murray and McCally [93] reviewed human performance and physiological effects of combined 
stress interaction. They grouped the possible effects into four major types. 

I. No effect. Combinations produce no effects greater than those of any of the included 
stressors alone. 
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II. Additive effect.  Combinations produce effects greater than any single stressors, but not 
greater than the addition of effects from single stressors. 

III. Greater than additive effect. Combinations produce effects greater than mere addition of 
single stress effects. This possible result is sometimes referred to as "synergistic." 

IV. Subtractive effect. Combinations produce effects lower than effects produced by single 
stressors. This result may be referred to as "antagonistic." 

These four types of outcomes seem to be likely on a theoretical basis of possible interactions 
among PIFs. Type I seemed most likely when the stressors included in the combination are 
unequal in their effects. Then the more severe stress would dominate the results, and variables 
with less effect would make no detectable addition to the overall result. Type II seemed to be 
the most likely when the stressors are about equal in their effects, and their mechanisms of 
action are independent. Type III and Type IV, synergistic and antagonistic effects were rarely 
observed in reported experiments. 

Grether [94] reviewed the studies about the effect of combined environmental factors on human 
errors. The reviewed environmental factors included noise, temperature, sleep deprivation, and 
others. The results showed that the combined effect was no more than the added single effects 
and could be predicted from single effects. The study suggests that the combined environmental 
stresses do not present a special hazard in flying that could not be anticipated from the results 
of single factor studies. The findings are consistent to those in Broadbent’s study [95] that 
reviewed many experiments applying different stresses to comparable subjects performing 
similar tasks.  The study found that the experiments on the simultaneous application of two 
stresses show that the effects of heat appear to be independent of those of noise and 
sleeplessness, while the latter two conditions partially cancel each other. 

Given that the above listed meta-analysis and review studies are, in general consistent, the 
additive effect of joint PIFs seems to be applicable for the majority of PIF weight ranges, it may 
not add much value to generalize the large amount of identified data sources into IDHEAS-
DATA IDTABLE-22. Rather, in-depth studies are desirable to understand the nature of PIF 
interactions and elucidate the situations that the joint effects become synergistic rather than 
additive, because such situations represent great hazards to safety-critical operation.  

3.1.23. IDHEAS-DATA IDTABLE-23 for Distribution of Time Needed 
Assess the Time Needed 
 
Using empirical data (e.g., training data or actual event data) is the recommended method to 
estimate the time needed (TN). In many cases, plant-specific empirical data may not be 
available. When the data of similar plants are available, the analyst may use the data to support 
the TN assessment. The relevant data may show a significant difference in TN. This section 
discusses the factors that should be considered in assessing TN using data of similar plants or 
similar scenarios. The purpose of this section is to raise awareness about factors that could 
significantly affect TN. The discussion does not intend to provide a comprehensive list of factors 
nor provide guidance on assessing TN.  That requires a study of its own.  
 
Acuteness Disturbance on Symptom 
Table 3-1 shows the operators’ response time in 8 steam generator tube ruptures (SGTRs) [96]. 
It shows that the operator response time can be divided into two groups based on the steam 
generator (SG) rupture flow. The Point Beach 1 and Fort Calhoun, with the ruptured flow rates 
of less than 130 gallons per minute (gpm), had a significantly longer time for the diagnosis and 
isolation of the ruptured SG. The times are counted from the beginning of the SGTR.   
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Table 3-2 shows the means and standard deviations of the two groups.  In both groups, the 
standard deviations of the time to reach a diagnosis are less than 5 minutes. The similar 
standard deviation (3 vs 4.4) and significant difference in mean (29 vs 4.8) is an indication that 
the SGTR rupture flow rate affects operator diagnosis time. The time to isolate the ruptured SG 
(from the beginning of an SGTR) of the two groups show a significant difference in mean 
values.  The difference is an inherent effect of the difference in diagnosis times. The authors of  
had the same observation and concluded that the Point Beach 1 and Fort Calhoun events were 
more complex than the others because of ambiguous conditions [97]. Another explanation could 
be simply that the operators did not have the urgency to quickly respond to the events without 
acute disturbances to the system. Based on the conventional nuclear power plant design, an 
SG rupture flow rate between 130 and 300 gpm minimizes the acuteness of system 
disturbance. 
 
Table 3-1 The operator response times in SGTR events [96].  

Plant Capacity 
(MWe) 

Vendor 
(# of loop) 

Event 
Year 

Tube 
Rupture 

Flow Rate 
(gpm) 

Time to SGTR 
Perception 
(Minute)a 

Time to SG 
Isolation 
(Minute) a 

Plant State 

Point Beach 1 500 WEC(2) 1975 125 24 ~ 28 58 Full Power 
Surry 2 823 WEC(3) 1976 330 < 5 18 Full Power 
Prairie Is. 1 545 WEC(2) 1979 336 5 ~ 18.5 27 Full Power 
Ginna 490 WEC(2) 1982 760 < 1 15 Full Power 
North Anna 1 947 WEC(3) 1987 637 < 5 18 Full Power 
McGuire 1 1100 WEC(3) 1989 500 < 1 11 Full Power 
Mihama 2 470 WEC(2) 1991 700 < 5 22 Full Power 
Fort Calhoun 476 CE(2) 1984 112 < 32 40 Startup 

aThe time after the SGTR started. 
WEC: Westinghouse Electric Company. CE: Combustion Engineering. 
 
Table 3-2 Time needed analysis based on the example Table 3-1 data 

Tube Rupture 
Flow Rate 

Time to Reach an SGTR Diagnosis a 
(Minutes) 

Time to Isolate the ruptured SGs a 
 (Minutes) 

 Mean Standard Deviation Mean Standard Deviation 
< 150 gpm 29 3 49 13 
> 300 gpm 4.8 4.4 18.5 5.5 

aThe time after the SGTR started. 
 
 
Simulated Events vs. Actual Events 
Based on the experience of the authors of this report, most nuclear power plant operator 
instructors believe that operators behave similarly in simulated and actual events. One instructor 
indicated that his plant had an actual event similar to a simulated event, and the operators’ 
responses were the same in the actual and simulated events. Table 3-3 provides supporting 
evidence.  Table 3-3 shows the times to isolate the ruptured SG in actual and simulated events, 
including: 

• Actual US SGTR events shown in Table 3-1 above [96] with SGTR rupture flow rates 
greater than 300 gpm. 

• Korean crews in a Korea standard nuclear power plant (KSNP) simulator [96], which is a 
1000MWe CE type pressurized water reactor (PWR) with conventional control 
interfaces. 

• Korean crews in a KSNP simulator [98], which is a 950MWe Westinghouse 3-loop PWR 
with conventional control interfaces. 
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• US HRA Benchmark Study [16], an SGTR event with a 500 gpm rupture flow rate. 
• International HRA Benchmark Study [22]. The study was conducted in an experimental 

facility.  The main control room was fully digitalized. 
 
Table 3-3 shows that, in SGTR events, the time to the isolate the ruptured SG in actual events 
and simulated events and in Westinghouse and Combustion Engineering pressurized water 
reactors, are very consistent.  The 2 to 3 minutes shorter response time in the International HRA 
Benchmark Study [22] could be because the study was conducted in a fully digitalized main 
control room. In the other studies and actual events, the operators are in conventional main 
control rooms.  Even though the reports [96] and [22] does not document the SG rupture flow 
rates, it is expected the SGTR symptoms in the two studies are comparable to a greater than 
300 gpm SGTR event.  All the simulated SGTR events in Table 3-3 are basically 
(straightforward) SGTR events. 

The KSNP-Westinghouse data shown in Table 3-3 were not documented in [98] but through an 
information exchange with the authors of [98] (see “Verify the Outlier Data” discussion of this 
section. The authors of [98] attributed the short response time of the KSNP-Westinghouse 
crews in Table 3-3 to their early detection of SGTR symptoms before reactor trip and promptly 
responded to the event. 
 
Table 3-3 The time to isolate the ruptured steam generator in actual events and 

simulated events.  

SGTR Studies 
Mean Time to Isolate the 

Ruptured SG (s) 
(Minutes)a 

Standard deviation to Isolate the 
Ruptured SG(s) 

(Minutes) 
Actual events (6 events, > 300 gpm) 18.5 5.5 
KSNP-CE (23 crews) 19.8 3.0 
KSNP-Westinghouse (6 crews) 13.8 3.6 
US HRA Benchmark (3 crews, SGTR) 19.0 3.5 
International HRA Benchmark (14 crews, 
basic SGTR)b 15.9 3.6 

aThe time is from the SGTR occurrence to the ruptured SG isolation. 
bThe study was conducted in an experimental facility with a digitalized main control room. 
 
Basic vs. Complicated Scenarios 
Both the US HRA Benchmark Study [16] and the International HRA Benchmark Study [22] 
performed basic and complicated SGTR events. In the US HRA Benchmark Study, the 
complicated SGTR event started with a loss of feedwater event that required establishing feed-
and-bleed (F&B) to maintain cooling of the reactor coolant system.  
 

After F&B has been established, the crew will be able to establish auxiliary feedwater 
(AFW) flow to one or several SGs by either closing the recirculation valve and/or cross-
connecting the flow from the running AFW pump to the other SGs.  
As soon as the crew has established AFW flow, the trainers will initiate a tube rupture in 
the first SG that is fed. The crew will want to fill an SG to be able to exit FR-H1, and the 
tube rupture may be masked by AFW flow to the SG, as long as it is being fed. The leak 
size of the ruptured tube is about 500 gallons per minute (gpm) at 100% power, but the 
flow will depend on the differential pressure between the reactor coolant system (RCS) 
and the ruptured SG. There is initially no secondary radiation because there is only a 
minimum steam flow. The blowdown (BD) and sampling are secured because of the SI.  
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By the time the crews fill the SG(s) enough to exit FR-H1, they may have problems with 
the RCS integrity status tree and be forced to enter procedure FR-P1, which will delay 
the possibility of transitioning to the SGTR procedure E-30. [22] 

 
The international HRA Benchmark Study [22] studied basic and complicated SGTR events. The 
main scenario differences between the complicated and basic events were: 

a) the event starts off with a major steamline break with a nearly coincident SGTR in SG #1 
that will cause an immediate automatic scram and expectations that the crew will enter 
the EOP-0 procedure; and 

b) auto closure (as expected) of the Main Steam Isolation Valves (MSIVs) in response to 
the steamline break along with the failure of any remaining secondary radiation 
indications (not immediately known nor expected by the crew) as part of the simulation 
design. 

 
Table 3-4 shows the comparison of the response times. It shows that, compared to the basic 
events, in complicated events, the operators take a longer time to isolate the ruptured SG and 
have a larger standard deviation. In the complicated SGTR event of the US HRA Benchmark 
Study, four data points are available: 11.2, 33.0, 24.5, and 94.5 minutes. The last data point 
(94.5 minutes) is considered as an outlier.  It is considered to be caused by cognitive failures 
that should not be included in IDHEAS-ECA’s TN assessment.  The analysis shown in Table 3-4 
has excluded the outlier data point. 
 
Table 3-4 Comparing the response time of simple and complicated SGTR events 

SGTR Scenarios 
Mean Time to Isolate the 

Ruptured SG (s) 
(Minutes)a 

Standard deviation to Isolate 
the Ruptured SG(s) 

(Minutes) 
US HRA Benchmark (3 crews, basic)b   19.0 3.5 
US HRA Benchmark (3 crews, complicated)bd   22.9 11.0 
International HRA Benchmark (14 crews, 
basic)c  15.9 3.6 

International HRA Benchmark (14 crews, 
complicated)c  26.9 6.4 

aThe time is from the SGTR occurrence to the ruptured SG isolation. 
bThe study was conducted in a conventional main control room. 
cThe study was conducted in an experimental facility with a fully digitalized main control room. 
dExcluded a data point (from a total of four data points) that was considered an outlier. 
 
Verify the Outlier Data 
The response times of different studies performed in similar settings could vary significantly. 
The analysts should perform a “sanity check” to identify the outlier data points and, if feasible, to 
verify the data to prevent misinterpretation.  An example is that a journal paper [98] documents 
operator response time to a basic SGTR event as shown in Table 3-5. The test facility is a 
Westinghouse 3-loops PWR (950MWe and conventional interfaces). The Tasks 1 to 8 in Table 
5 cover the procedural step to respond to an SGTR event to the point that the ruptured SG is 
isolated. The sum of the average time spent on the tasks is about 5.5 minutes.  That is 
significantly shorter than the other data (ranging from 16 to 20 minutes as shown in Table 3-1). 
Upon discussion with the authors of the journal paper [98], the task times in Table 3-5 are only 
the time spent on that task (the egress time minus ingress time of the task). The time spent 
between tasks is not counted. The authors of the journal paper [98] checked the original data 
records and provided the mean and standard deviation of 13.8 and 3.6 minutes, respectively. 
Those values are relatively close to the values of the other data points. The data are shown in 
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Table 3-5.  A lesson learned is that when suspecting a data point is an outlier, the analysts 
should verify with the data providers to ensure correct data interpretation.    
 
Table 3-5 The crew performance time in a basic SGTR event of a Westinghouse 3-

loop PWR [98] 
Task ID Task Description Timea SDb 

1 Confirming immediate response after reactor trip 41.9 25.5 
2 Confirming the isolation of essential valves 12.0 2.9 
3 Confirming the operation of essential pumps 17.9 5.6 
4 Verifying containment status 33.9 22.3 
5 Verifying the delivery of SI and AFW flow 55.4 27.8 
6 Verifying the status of RCS heat removal 38.9 16.0 
7 Entering E-3 procedure according to the status of SGs 34.7 10.3 
8 Identifying and isolating faulty SGs 97.0 25.6 

a Averaged task performance time in second 
b Standard deviation in second   
 
3.1.24. IDHEAS-DATA IDTABLE-24 for Modification of Time Needed 
Introduction to Modification to task completion time 

Many factors modify task completion time. These factors contribute to the uncertainty in time 
distribution. The time uncertainty model in IDHEAS-G requires HRA analysts to estimate the 
distribution of time needed for a human action. The center, range, and shape of time distribution 
can be modified by many time uncertainty factors such as weather or environmental conditions. 
IDTABLE-24 documents the modifications of task completion time under various time 
uncertainty factors.  

Summary of the Data Sources  

The NRC staff has not generalized the data sources identified for this PIF. IDHEAS-DATA 
IDTABLE-24 documents a few data sources for demonstration. There have been accumulated 
operational data and experimental studies for modifications of task completion time. In fact, 
most data sources identified for IDHEAS-DATA IDTABLE-1 through IDTABLE-20 also have 
data about the effect of the studied PIFs on task completion time.  

A data source for IDTABLE-24 should have task completion times under at least two different 
states of time uncertainty factors to inform the effect of the factor on task completion time. The 
most useful data for IDTABLE-24 would be operational data from tasks performed by licensed, 
professional personnel.  However, operational data typically do not systematically record action 
performance times under different factors.  On the other hand, controlled experimental studies 
have data on task completion times with varying time uncertainty factors. 

The NRC staff identified data sources from three categories. Category A is nuclear power plant 
operation or simulation.  KAERI has systematically collected operator task performance times in 
control room operation. The data were recorded as operators performed training or 
requalification examinations, thus the factors contributing to task performance time were known. 
Operator simulation studies by many NPP organizations reported operator task performance 
times in different scenarios and conditions. For example, Park et.al. [99] investigated the 
relationship between performance influencing factors and operator performances in the digital 
main control rooms. In the study, crews performed scenarios that varied in complexity and 
urgency. The study involved the participation of licensed NPP operators and the use of an 
APR1400 simulator. Half of the participants had some experience with the APR1400 simulator.  
The other half had not worked with it before.  During the simulation, operator performance such 
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as completion time, errors, and situational awareness were measured and collected. The results 
indicated that task completion time, measured as seconds per procedure instruction, varied with 
the factors tested. The operators’ experience with the APR1400 simulator was most impactful 
on task completion time, with the mean varying from 9 to 16 seconds per instruction.  On the 
other hand, the mean value of task completion time did not change with scenario urgency, but 
the range of task completion time among the crews was more broadly distribute for less urgent 
scenarios than for urgent scenarios. The datapoint generalized from this study is shown in the 
following: 

CFM 
 

PIF Task completion 
time (mean and SD) 

Task PIF 
measure 

Other PIFs 
(and 

Uncertainty) 

REF 

PIF-Lo PIF-Hi 
Unsp TE 9(1.5)s  

per 
instruction 

16(2) 4 NPP crews 
perform EOP 
scenarios 

Lo – Experienced with 
AP1400 
Hi – No experience with 
AP1400 

(4 crews) [99] 

Unsp TPS 13(2.5)  12(4) EOP scenarios Lo- urgent 
Hi- less urgent 

(4 crews) [99] 

Unsp SF / 
INF 

12(5) 14(2) EOP scenarios Lo – Design basis event 
Hi - Design basis event + 
masking 

(4 crews) [99] 

 

The Category B data sources are from operation or simulation of job performance in non-
nuclear domains.  The data sources from nuclear power plants are primarily from control room 
operation and they do not have data about the effects of many factors outside control rooms, 
such as environmental factors on manual actions. The data sources identified from other work 
domains are used to fill the gaps.  For example, Kelly [100] examined the effect of military 
soldiers wearing MOPP IV gear on cognitive task performance. The results showed that 
performance time on simple response tasks increased 10~20% after one hour wearing the gear, 
and the increased performance time was accompanied with decrements in performance 
accuracy. Thus, the modification to task completion time represents the overall performance 
decrement. Taylor and Orlansky [101] studied the effects of wearing protective chemical warfare 
combat clothing on human performance of different types of jobs such as combined arms in 
nuclear and chemical environments, military manual actions, fire rescue operation, etc. For 
example, one of the studies showed that the average time for crews to perform a maintenance 
task "Remove and Replace M60A3 Transmission" was 73.5 minutes in battle uniform dress and 
125.9 minutes wearing MOPP protective clothing.  

The data sources in Category C are from controlled experimental studies, and most data 
sources selected from this category for IDTABLE-24 involved tasks and experimental settings 
that mimicked tasks in real operation domains.  Although the studies were low-fidelity 
simulations, the individual factors were isolated to elucidate the effects of individual factors on 
task completion time. For example, Speier et. al. [102] studied the influence of interruption on 
individual decision making. In the experiment, the number of information items to be integrated 
for decisionmaking was manipulated as simple versus complex tasks. Interruption was 
manipulated at different frequencies of interruption and the content similarity between 
interruption and the decisionmaking tasks. The results showed that interruptions improved 
decisionmaking performance on simple tasks and lowered performance on complex tasks. For 
complex tasks, the frequency of interruptions and the dissimilarity of content between the 
primary and interruption tasks was found to exacerbate this effect.  The decrement in 
performance was represented with increased task completion time and decreased accuracy.  
The datapoint in IDTABLE-24 from this study is shown in the following: 
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CFM 
 

PIF Task completion 
time: mean (SD) in 

second 

Task PIF 
measure 

Other 
PIFs 
(and 

Uncerta-
inty) 

REF 

PIF-Lo PIF-Hi 

DM MT2 110.3 
(27.6) 

90.8 
(30.8) 

Simple 
decisionmaking  

Lo – No interruption 
Hi – With interruption 

 [102] 

DM MT2 608.3 
(284.4) 
 

760.8 
(293.8) 
 

Complex 
decisionmaking  

Lo – No interruption 
Hi – With interruption 

 [102] 

DM MT2 831.3 
(238.7) 
 

1702.5 
(526.8) 
 

Complex 
decisionmaking 

Lo- low interruption freq. 
Hi- High interruption 
freq. 

 [102] 

DM MT2 1317.4 
(613.9) 
 

1842.0 
(741.6) 
 

Complex 
decisionmaking 

Lo- Different content 
Hi- Similar content 

 [102] 

 

Status of IDTABLE-24 

At present, only a few datapoints are documented in IDTABLE-24 for demonstration. 
Documenting all the data sources identified on Modification of Task Completion Time is time-
consuming. Moreover, the identified data sources by the NRC staff are only a very small 
proportion of the data available in public domain. Before generalizing data sources to IDTABLE-
24, a screening study should be performed first to identify the factors that modify time 
significantly. Based on the data generalized in IDTABLE-23, IDTABLE-24, and other 
documents, the NRC staff intends to develop guidance on estimating uncertainty distributions of 
time needed to assist the use of IDHEAS in HRA applications.  

3.1.25. IDHEAS-DATA IDTABLE-25 for Dependency of Human Actions 
IDHEAS-DATA Dependency examples 

This section provides examples of the three types of dependency: consequential dependency, 
resource sharing dependency, and cognitive dependency. Consequential dependency is the 
outcome of one task directly affects the performance of the other tasks. Resource sharing 
dependency occurs when two tasks share the same resources (e.g., containment spray and 
reactor coolant system (RCS) cooling share the same water source, or there is limited 
manpower to perform multiple tasks). Cognitive dependency is the same cognitive mechanism 
that failed a task failed the subsequent tasks. The examples are from operations experience. 
Each example starts with a brief explanation of the dependency then followed with the detailed 
narrative of the operation experience.  

Consequential dependency 

Example 1:  Failure to control RCS inventory, that resulted in a liquid-solid pressurizer, 
consequently affecting the performance of terminating safety injection.  

On April 17, 2005, at 8:29 a.m., Millstone Power Station, Unit 3, a four-loop 
pressurized-water reactor, experienced a reactor trip from 100-percent power [103].  The 
trip was caused by an unexpected “A” train safety injection (SI) actuation signal and 
main steamline isolation caused by a spurious “Steam Line Pressure Low Isolation SI” 
signal.  As a result of the main steam isolation signal, the main steam isolation valves 
and two of the four main steamline atmospheric dump valves automatically closed.  With 
the closure of the main steam isolation valves, the main steamline safety valves opened 
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to relieve secondary plant pressure.  Control room operators entered Emergency 
Operating Procedure (EOP) E-0, “Reactor Trip or Safety Injection,” and manually 
actuated the “B” train of SI and actuated the “B” main steam isolation train in accordance 
with station procedures.  Both motor-driven auxiliary feedwater (AFW) pumps started to 
maintain steam generator (SG) levels.  The turbine-driven AFW pump attempted to start 
but immediately tripped on overspeed.  Operators were dispatched to investigate the 
cause of the turbine-driven AFW pump trip.   

At approximately 8:42 a.m., the shift manager noted that a “B” main steam safety valve 
had remained open for an extended time.  In consultation with the unit supervisor and 
shift technical advisor, the shift manager declared an alert based on a stuck open main 
steam safety valve.  The crew determined that the stuck open main steam safety valve 
represented a non-isolable steamline break outside containment.  The main steam 
safety valves were in fact functioning as designed to relieve post-reactor-trip decay heat 
with a main steamline isolation signal present.  In this event, the main steam safety 
valves closed once the operators took positive control of decay heat removal by 
remotely opening the atmospheric dump bypass valves. 

At 8:45 a.m., because of the addition of the inventory from the SI, the pressurizer 
reached water solid conditions and the pressurizer power-operated relief valves cycled 
many times to relieve RCS pressure and divert the additional RCS inventory to the 
pressurizer relief tank.  No pressurizer safety valve actuations occurred, and the 
pressurizer relief tank rupture diaphragm remained intact.  At approximately 8:59 a.m., 
the operating crew transitioned from EOP E-0 to ES-1.1, “Safety Injection Termination.”  
The SI was reset, the crew terminated SI at 9:12 a.m., and normal RCS letdown was 
reestablished at 9:20 a.m.  

Example 2: Failure to complete the isolation valve leakage test that resulted in the system being 
in a wrong configuration to perform the valve stroke test, caused the failure of the valve stroke 
test.  

On October 4, 1990, at 1:24 a.m., Braidwood Unit 1 experienced a loss of approximately 
600 gallons of water from the reactor coolant system (RCS) while in cold shutdown 
[104]. Braidwood 1 technical staff was conducting two residual heat removal (RHR) 
system surveillances concurrently, an isolation valve leakage test and a valve stroke 
test. After completing a leakage measurement per one surveillance procedure, a 
technical staff engineer (TSE) in the control room directed an equipment attendant to 
close an RHR system vent valve. However, before those instructions could be carried 
out, another TSE in the control room directed that an RHR isolation valve be opened per 
another surveillance procedure. While the equipment attendant was still closing the vent 
valve, RCS coolant at 360 psig and 180 oF exited the vent valve, ruptured a Tygon tube 
line and sprayed two engineers and the equipment attendant in the vicinity of the vent 
valve. This loss of coolant was reported to the control room and the control room 
personnel quickly identified the cause and isolated the leak. 

Resource-sharing dependency 

Example: Performing the atmospheric dump valve (ADV) Partial Stroke Test (that caused 
excessive letdown) and the boron injection flow test (that limited charging flow) simultaneously 
caused a loss of letdown.  

On May 7, 2004, Palo Verde [19] simultaneously testing the atmospheric dump valve 
and boron injection systems resulted in a loss of letdown event on high regenerative 
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heat exchanger temperature.  The procedures of the two surveillances were " 
atmospheric dump valve (ADV) 30% Partial Stroke Test" and "Boron Injection Flow 
Test."  The simultaneous performance of these evolutions caused a loss of letdown due 
to the high regenerative heat exchanger outlet temperature. This condition occurred due 
to a single charging pump operation per "Boron Injection Flow Test" procedure, 
combining excessive letdown flow to accommodate the RCS heat up following ADV 
partial stroke testing.  

Cognitive dependency 

Example: Failure to deisolate two wide range indicators (0-3000 psig) and one low range 
indicator (0-800 psig) because of failure of the same cognitive mechanism. 

On March 20, 1990, at about 09:30, Catawba Station Unit I experienced an 
overpressurization of the Residual Heat Removal System (RHR) and Reactor Coolant 
System (RCS) during the procedure to initially pressurize the RCS to 100 psig following 
a refueling outage [105]. The operators had three indicators for monitoring RCS 
pressure (two wide range indicators, 0-3000 psig, and one low range indicator, 0-800 
psig) which were being closely monitored for a detectable rise in RCS pressure. 
However, unknown to the control room operators on duty, all three RCS pressure 
instrument transmitters were still isolated after the welding of the tubing fittings during 
the refueling outage.  

 

3.1.26. IDHEAS-DATA IDTABLE-26 for Recovery of Human Actions 
The primary sources of information for IDHEAS-DATA IDTABLE-26 are the event reports, 
ASP/SDP analysis reports, operational experience reviews, and reports on operator 
performance in simulators. Several examples were included in IDTABLE-26 to demonstrate 
recovery actions and different kinds of data sources. The examples are summarized as follows: 

• In OECD/NEA report, “Human Factor Related Common Cause Failure - Part 1, Report from 
the Expanded Task Force on Human Factors,” [20], many human failure events in NPPs 
were analyzed for common cause failure and recovery actions. Among 17 maintenance 
human failure events analyzed, eleven events occurred in the outage phase, and 5 of these 
during start up. Another might be during power operation. Scheduled periodical tests 
detected nine of the events. This reference provides a datapoint of error recovery rate in 
maintenance surveillance tests as 0.53 (9/17). 

• In the study, “A HAMMLAB HRA Data Collection with U.S. Operators,” by Massaiu and 
Holmgren [106] of Halden Reactor Project, five US crews performed three challenging 
emergency scenarios: Multiple SGTRs, ISLOCA, and Loss of all feedwater. The crews made 
totally 65 errors and only 13 of them were recovered. Detection and Execution errors had 
much higher recovery rates (2/5 and 5/18) than those of Understanding and Decisionmaking 
errors(1/17 and 4/25). 

• In the report, “An empirical study on the human error recovery failure probability when using 
soft controls in NPP advanced MCRs,” by Jang et al. [107], 48 subjects performed tasks 
from emergency scenarios. The study recorded the error recovery rates for eight types of 
error modes in Failure of Execution as the following:  

Recover rate (operation selection omission) = 0.052 
Recover rate (operation execution omission) =0.71 
Recover rate (wrong screen selection) =0.93 
Recover rate (wrong device selection) =0.5 
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Recover rate (wrong operation) =0.6 
Recover rate (mode confusion) =0.8 
Recover rate (inadequate operation) =0.5 
Recover rate (delayed operation) =0.02 

               The results show that, even for the same CFM, recovery rates can vary greatly.  

These studies show that human error recovery probability, just like HEPs, vary with CFMs and 
the context of recovery actions.  Thus, it is possible that recovery actions can be modeled the 
same way as important human actions in HRA, with specific attention to the dependency 
between the recovery action and the failure of the important human action.  

In summary, modeling recovery actions is still an underdeveloped area in HRA. While the PRA 
standard and some HRA methods have guidance for assessing the feasibility of recovery 
actions, none of the HRA methods have explicitly modeled the quantification of failure 
probabilities of recovery actions. IDTABLE-26 made an initial effort to systematically collect 
qualitative and quantitative datapoints of recovery action. As more datapoints are populated in 
IDTABLE-26, the information will provide the basis for modeling recovery actions in HRA.   

3.1.27. IDHEAS-DATA IDTABLE-27 for Main Drivers to Human Failure Events 
IDHEAS-DATA IDTABLE-27 generalizes situations or contexts that are the main drivers to 
human failure events in operational or simulated events. The data sources in IDTABLE-27 are 
primarily from the nuclear domain.  The NRC staff has investigated data sources but has not 
systematically collected and analyzed them.  This section summarizes viable data sources. 
IDHEAS-DATA IDTABLE-27 presents several examples to demonstrate the generalization of 
data sources For Main Drivers to Human Failure Events.  
 
Event or accident analysis 
 
Analysis of major or significant nuclear events has been performed by the NRC, industries, and 
research organizations. For example, there have been many studies of human error or human 
factors analysis for major NPP events such as the Fukushima accident, Three-Mile Island 
accident, or Robinson fire event.  In-depth analyses document the event context and identify 
human errors in the event along with the main drivers to the errors. This kind of data source 
allows the NRC staff to represent the main drivers in IDHEAS-G CFMs and PIFs. Such data 
sources document information about single events, thus they do not inform HEPs or the 
frequencies of the main drivers. However, as more data sources are documented in IDHEAS-
DATA IDTABLE-27, events or accidents with similar contexts or main drivers can be grouped 
together to provide HRA analysts a holistic understanding of what can happen to human 
performance for similar situations.  
 
Operator performance simulation studies 
 
Simulation studies of NPP operator performance are usually conducted with licensed operators 
on high-fidelity training or research simulators. The studies use hypothetical, yet realistic 
scenarios and real procedures. Such studies observe operators’ behaviors and measure 
operators’ performance such that human failures and the main drivers in such simulated events 
can be elucidated. Simulation studies also have the advantage that the same scenario is 
typically performed by multiple crews, thus the studies have human error data although with 
large uncertainties due to the small numbers of the participants.  
 
Analysis of data in operator performance databases 
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Operator performance databases collect data from many operators or operating crews 
performing the same tasks multiple times.  For example, SACADA [24, 25] collects human 
performance data from operator simulator training, in which operators perform the same training 
objective tasks in the same and different scenarios. SACADA documents operators’ success or 
satisfaction of task performance along with the types of failures made and the situational factors 
under which a task is performed. Analysis of the large amount of data collected in the database 
can reveal the types of failures with high unsatisfactory rates and aggregate the situational 
factors associated with satisfactory performance. The aggregated situational factors are likely 
the main drivers of the unsatisfactory performance. Another example is the analysis of German 
NPP maintenance performance database [4, 5]. The analysis shows that most of the very high 
error rates are associated with rarely performed tasks. Thus, scenario or task familiarity appears 
as one of the main drivers to human errors in NPP maintenance tasks.  Such analysis 
aggregates data of the same task under a variety of situational factors, thus the analysis may 
not reveal all the main drivers and some rarely presented main drivers could be missed. 
 
Human error analysis  
 
Human error analysis, sometimes also referred to as root causal analysis, uses a taxonomy or 
classification scheme to analyze a set of human events. The analysis classifies human errors in 
an event to predefined error types and the associated context to causal factor categories.  The 
studies then calculated the frequencies of the types of errors or causal factors appearing in all 
the events analyzed. The frequency is often represented as the percent of an error type or 
causal factor that occurred in an analyzed sample of human events. Because each event can 
be associated with multiple error types and causal factors, the sum of the percentages of all the 
error types or causal factors are usually greater than 100%.  For example, Gertman et. al.[108] 
studied the contributions of human performance to risk in operating events at commercial 
nuclear power plants. They reviewed 48 events described in licensee event reports (LERs) and 
augmented inspection team reports. Human performance did not play a role in 11 of the events 
so they were excluded from the sample. In the remaining 37 events, 270 human errors were 
identified, and multiple human errors were involved in every event.  The results show 
maintenance practices was highest (54%), followed by design deficiencies (49%), and 
procedures (38%). Errors in communication and errors in configuration management were each 
present in 27% of the events.  The numbers or percentages of error occurrences inform the 
prevalent types of human errors in the event sample analyzed. Yet, they do not necessarily 
relate to main drivers that occurred less frequent but had significant impacts on the likelihood of 
human errors.  
 
In summary, compared to most other IDHEAS-DATA Tables, IDTABLE-27 for Main Drivers to 
Human Failure Events is still in its exploratory stage.  The NRC staff has not yet demonstrated 
how the information documented in this IDTABLE will be integrated and used for HRA. One 
potential approach is to aggregate the datapoints in IDTABLE-27 and then link the aggregated 
information to the corresponding CFMs and PIF attributes in the IDHEAS-ECA tool. 
 

3.2. Integration of the generalized data for IDHEAS-ECA 
This section describes an example of integrating the data in IDHEAS-DATA to provide the basic 
numbers for calculating HEPs in the IDHEAS-ECA method [2]. The integration process was 
described in Section 2.5.  
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The following is the recapture of what was described in Section 2.5 about the general process of 
integrating human error data for lowest HEPs, base HEPs, and PIF attribute weights: 

• Assess and organize the datapoints according to the data source categories and datapoint 
types.  

• Use single-component, Category A, B, and C datapoints to make initial estimates of a base 
HEP or PIF weight;  

• Use the initial estimation to detach multi-component data into single-component data.  
• Integrate all the data available from the single-component and detached multi-component 

datapoints to estimate the range and mean of a base HEP or PIF weight. 
• Use Category D and E and range datapoints to calibrate the estimated HEPs and PIF 

weights and adjust the mean values accordingly to represent the breath of the available 
data. 

• Iterate the process and calibrate the estimated HEP to represent the breath of the available 
data. 

• If there are no single-component or multi-component detachable datapoints available, then 
use multi-component undetachable or range datapoints for HEP estimation.  

The biggest challenge in using the human error data is that most datapoints are not exclusively 
for one PIF attribute and one CFM. The most essential step in integrating the data is detaching 
the effects of other PIFs in the human error rates to make the data exclusively represent the 
effect of the PIF attribute being analyzed. Detaching makes the integration process iterative. 
Initial estimates of some frequently involved base HEPs and PIF weights must be made for the 
use of detaching; the detached error rates are used to make estimates of the base HEPs and 
PIF attribute weights. 

The following section shows an example of integrating the datapoints in IDHEAS-DATA 
IDTABLE-21 to obtain the lowest HEP of the CFM Failure of Detection. The NRC staff followed 
the general process and made engineering judgment as necessary.  The example demonstrates 
the integration process without excluding or rejecting reasonable alternative lowest HEP values 
in other HRA methods.  

3.2.1. Assessing and organizing the datapoints 
The first step is to assess and organize the datapoints for the CFM Failure of Detection in 
IDTABLE-21. Datapoints in IDHEAS-DATA Tables are referred to as the following types: 

Single-component datapoint – A datapoint has the error rates for a single CFM with the 
presence of a single PIF attribute. 

Multi-component detachable datapoint – A datapoint has the error data with the presence of 
multiple PIF attributes. The PIF attributes are clearly defined in the data source and the 
combined effects can be detached into the effects of individual attributes.  

Bounding datapoint – Those datapoints have the range or trend of the human error rate for the 
CFM and PIF attribute being studied. For example, a datapoint has human error rates of certain 
error modes and the error rates were calculated from statistical data that involved different 
scenarios or contexts. Also included in this category are datapoints with error rates of human 
actions or whole events in which multiple CFMs are involved and the data are inseparable. 
These datapoints cannot be directly used for calculating the base HEPs and PIF weights, but 
they can be used for reasonableness checks and calibration of the estimated HEPs or PIF 
weights.  

The data sources in IDHEAS-DATA were in the following categories: 
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A. Operational data and simulator data in the nuclear domain 
B. Operational data of human performance from non-nuclear domains  
C. Experimental data in the literature 
D. Expert judgment of HEPs in the nuclear domain 
E. Unspecific-context data (e.g., statistic data, ranking, frequencies of errors or causal 

factors) 
The datapoints for a given CFM and PIF attribute are assessed and organized according to the 
types and source categories.  Table 3-6 shows the 12 datapoints in IDHEAS-DATA IDTABLE-
21 for Failure of Detection. The first column has the IDs assigned to the datapoints. The rest of 
the columns are the same as those in IDTABLE-21: Error rate, task, criteria for lowest HEPs, 
uncertainties, and source reference. The four criteria for lowest HEPs are: adequate time 
performing the task, having self-verification (trained as licensed operators), having team-
verification (peer-checking and/or close supervision), and not having creditable recovery.  

 

Table 3-6: IDHEAS-DATA IDTABLE-21 Lowest HEPs for Failure of Detection 

CFM Error 
rate 

Task   
 

Criteria for lowest HEPs: 
TA - Time adequacy 
SelfV - Self verification 
TeamV – Team verification 
Rec - Recovery 
O - other factors 
(Y-Yes, N – No, M-Mixed  
Un-Unknown) 

Uncertainty REF 

1 2.1E-3 
(4/1872) 

NPP operators alarm detection in 
simulator training. Alarms are 
self-revealing 

TA-Yes, SelfV-Y,  
TeamV-Y, R-Unknown 
O – Y (unspecified) 

(Other PIFs 
may exist) 

[26] 

2 3.4E-3 
(3/870) 

NPP operators check indicators 
in simulator training, procedure 
directed checking. 

TA-Yes, SelfV-Yes,  
TeamV-yes, Rec – Unknown 
O - Y (unspecified) 

(Other PIFs 
may exist) 

[26] 

3 5E-4 Military operators read meters, 
Alphanumeric reading, Detection 
straight-forward 

TA-Y, SelfV-Y,  
TeamV-No, Rec-No 

(Maybe time 
constraint, 10K+ 
source data 
trials) 

[109] 

4 E-4 Estimated lowest probity of 
human failure events  

TA-Yes, SelfV-Yes,  
TeamV-yes, Rec - Unknown 

(Engineering 
judgment) 

[110] 

5 E-4 Simplest possible tasks 
 

TA-Yes, SelfV-Yes,  
TeamV-Unknown, Rec - 
Unknown 

(Engineering 
judgment) 

[111] 

6 E-3 Routine simple tasks TA-Yes, SelfV-Yes,  
TeamV-Unknown, Rec – 
Unknown 
O – Maybe weak complexity 

(Engineering 
judgment) 

[111] 

7 5E-3 
 

Line-oriented text editor. Error 
rate per word 

TA-Yes, SelfV-Yes,  
TeamV-No, Rec - No 

No apparent 
uncertainty 

[112] 

8 5E-3 
 

Reading a gauge incorrectly. Per 
read 

TA-Yes, SelfV-Yes,  
TeamV-No, Rec – Unknown 
O – HSI 

No apparent 
uncertainty 

[113] 

9 E-3 
 

Interpreting indicator on an 
indicator lamp. Per interpretation 

TA-Yes, SelfV-Yes,  
TeamV-Unknown, Rec – 
Unknown 

(Engineering 
judgment) 

[109] 
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O- complexity in interpreting 
indicator 

10 9E-4 NPP operator simulator runs TA – Y, Selv-V – Y 
TeamV – Y, R – Unknown 
O – Mixed complexity 

No apparent 
uncertainty 

[114, 
115] 

11 5.3E-4 Gather information and evaluate 
parameters 

TA – Y, Selv-V – Y 
TeamV – Y, R – Yes 

No apparent 
uncertainty 

[116] 

12 9E-3 Collision avoidance and target 
monitoring in simulated ship 
control, Fixed situation, routine 
response 

TA – Y, Selv-V – Yes 
TeamV – No, R – Yes 
O – Dual task, and maybe 
mixed complexity, mental 
fatigue, time pressure  

Dual task [27] 

The datapoints are organized according to the types and data source categories, as shown in 
Table 3-7. The rows of Table 3-7 are for data source categories and the columns are for 
datapoint types. The numbers in the IDTABLE are datapoint identifiers in the first column of 
Table 3-6. 

Table 3-7. The organized identifiers of the datapoints for the lowest HEP of Failure of 
Detection  

 Single-
component 

Multiple 
component 
detachable 

Range or 
trend 

A - Nuclear operation  1, 2, 10  
B - Other operation 11 3, 7, 8  
C – Controlled 
experiment 

 5, 6, 12  

D – Expert judgment 4 9  
E – Unspecific    

 

3.2.2. Detaching multi-component human error data 
The critical step in the process is detaching multi-component datapoints.  The following rules 
are derived from initial estimates of base HEPs of task complexity and PIF attribute weights. 
They are used for detaching: 

1) If SelfV=NO or TeamV=NO, the detached error rate is the original error rate divided by a 
factor of 5; If both are NO, the detached error rate is the original error rate divided by a 
factor of 10. 

2) If Recovery = YES, the detached error rate is the original error rate multiplied by a factor 
range of 2 to 10. 

3) If there are other PIFs, the detached error rate is the original error rate divided by 
multiplication of a factor range of (5 to 10 for complexity) and the sum of the weights of 
other PIF attributes. The weights of the PIF attributes are from the initiation estimation of 
the single-component data in IDHEAS-DATA.  

Table 3-8 shows the detached error rates. The first column is the datapoint identifier, the second 
column and third column are the original error rates and lowest HEP criteria, the fourth column 
is the detached error rate, and the last column contains the notes about the basis of detaching.  

Table 3-8: Detached human error rates for the lowest HEP of Failure of Detection 
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CFM Error 
rate 

Criteria for lowest HEPs  Detached error rate Notes 

1 2.1E-3 
(4/1872) 

TA-Yes, SelfV-Y,  
TeamV-Y, R-Unknown 
O – Y (unspecified) 

2.1E-3 / (5 to 10) = 
2.1E-4 to 4E-4 

A factor of 5 to 10 represents the 
combined effect of possible other 
PIFs 

2 3.4E-3 
(3/870) 

TA-Yes, SelfV-Yes,  
TeamV-yes, Rec – Unknown 
O - Y (unspecified) 

3.4E-3 / (5 to 10) = 
3.4E-4 to 7E-4 
 

A factor of 5 to 10 represents the 
combined effect of possible other 
PIFs 

3 5E-4 TA-Y, SelfV-Y,  
TeamV-No, Rec-No 

5E-4 / 5 = 1E-4 Divided by 5 for no team verification 

4 E-4 TA-Yes, SelfV-Yes,  
TeamV-yes, Rec - Unknown 

E-4 No change 

5 E-4 TA-Yes, SelfV-Yes,  
TeamV-Unknown, Rec - 
Unknown 

E-4 No change 

6 E-3 TA-Yes, SelfV-Yes,  
TeamV-Unknown, Rec – 
Unknown 
O – Maybe weak complexity 

E-3 / 5 = 2E-4 Divided by 5 for weak complexity 

7 5E-3 
 

TA-Yes, SelfV-Yes,  
TeamV-No, Rec - No 

5E-3 / 10 = 2E-4 
 

Divided by (5+5) for lack of self and 
team verification 

8 5E-3 
 

TA-Yes, SelfV-Yes,  
TeamV-No, Rec – Unknown 
O – Maybe HSI 

5E-3 / (5+2) = 7E-4 
 

Divided by (5+2) for lack of self 
verification and possible HSI 
attributes 

9 E-3 
 

TA-Yes, SelfV-Yes,  
TeamV-Unknown, Rec – 
Unknown 

E-3 / 5 = 2E-4 
 
 

Divided by 5 for no team verification. 

10 9E-4 TA – Y, Selv-V – Y 
TeamV – Y, R – Unknown 
O – Mixed complexity 

9E-4 / (5 t o10) = 
9E-5 to 4.8E-4 

Divided by (5 to 10) for mixed 
complexity 

11 5.3E-4 TA – Y, Selv-V – Y 
TeamV – Y, R – Yes 
O – Mixed complexity 

5.3E-4 x 2 / (5-10) 
= 1.06E-4 to 2.12E-
4 

Multiplied by 2 for existence of 
recovery 

12 9E-3 TA – Y, Selv-V – Yes 
TeamV – No, R – Yes 
O – Dual task, and maybe 
mixed complexity 

9E-3 / (5 to 10) x 
(5-10) = 9E-5 to 
3.6E-4 

Divided by (5 to 10) for mixed 
complexity and divided by (5 to 10) 
for dual task. 

 

3.2.3. Estimating the lowest HEP 
The error rates are organized according to the types and data source categories as shown in 
Table 3-9.  
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Table 3-9. Single-component and detached multi-component human error rates for the 
lowest HEP of Failure of Detection 

 Single-
component 

Multi- 
component 
detachable 

Bounding 

A - Nuclear operation  2.1E-4 to 4E-4, 
3.4E-4 to 7E-4, 
9E-5 to 4.8E-4 

 

B - Other operation 1.06E-4 to 
2.12E-4 

1E-4, 
2E-4 
7E-4 

 

C – Controlled 
experiment 

 E-4, 
2E-4 
9E-5 to 3.6E-4 

 

D – Expert judgment E-4 2E-4  
E - Unspecific    

 

Figure 3-1 plots these data points. The vertical axis represents error rates.  The datapoints are 
arranged along the horizontal axis in the order of Category A, B, C, D, E from left to right, and 
within each category the datapoints are arranged with single-component, detached multi-
component, and range or trend. A single error rate value is shown as a filled circle, and the 
detached ranges of error rates are shown as vertical line segments. The graph shows that the 
lower end of the data distribution, i.e., the lowest HEP for Failure of Detection, is around 1E-4. 

 
Figure 3-1. The human error rates for the lowest HEP of Failure of Detection 

The mean and range of the error rates are calculated for Category A, B, C datapoints separately 
and for the datapoints in all the three categories. The mean is calculated as the average of the 
midpoints of the error rate ranges and the single error rate values. The lower bound is 
calculated as the average of all the lower ends of the error rate ranges, and the upper bound is 
calculated as the average of all the upper ends of the error rate ranges. The calculated numbers 
are as follows: 

Category A datapoints: [ 1.8, 3.6, 5.3]E-4 for lower bound, mean, and upper bound;  

Category B datapoints: [ 1.06, 2.8, 2.1]E-4  

Category C datapoints: [ 0.9, 1.7, 3.6]E-4 

Category A, B, C datapoints: [1.4, 1.8, 4.4 ]E-4 
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Overall, the differences in the mean and range of the error rates of individual categories are less 
than a factor of 2, thus the error rates from different categories are convergent in the main body 
and range of their distributions. While the mean value is more representative for the overall 
datapoints, the lower bound is more appropriate for estimating the lowest HEPs.  Based on the 
data, the value 1E-4 is taken as the lowest HEP for Failure of Detection. This value is lower than 
the average lower bound 1.4E-4 and slightly larger than the lower bound of 0.9E-5 of two 
datapoints.  

3.2.4. Reasonableness checking and Calibration of the estimated HEP 
Category D and E datapoints and range datapoints are used to verify and calibrate the 
estimated HEP.  The two error rates from expert judgment are 1E-4 and 2E-4, thus the 
estimated lowest HEP of 1E-4 represents those error rates from expert judgment.  

Table 3-6 did not include data from “Unspecific” category. The “Unspecific” datapoints in 
IDHEAS-DATA IDTABLE-21 follow in Table 3-10. There are six unspecific datapoints for lowest 
HEPs. Two of them are pilot error rates in aviation accidents, two are the rates of air traffic 
controller (ATC) operational errors, and two are NPP operator error rates in simulator runs for 
requalification examination. All the reported error rates are from human failure events that may 
consist of multiple CFMs.  

Table 3-10. The “Unspecific” datapoints in IDHEAS-DATA IDTABLE-21 for lowest HEPs of 
the CFMs. 

Uns
p 

2E-5 
(800/4E
7)  

ATC OE per operation SelfV – Y 
TeamV – Y 
Recov - Y 

Recover
y is high [117] 

Uns
p 

2E-4 
(290/1.4
E6) 

ATC OE per shift SelfV – Y 
TeamV – Y 
Recov - Y 

Recover
y is high [118] 

Uns
p 

1.47E-2 NPP Requal simulate data – Perform procedures SelfV – Y 
TeamV – N 
Recov - Unknown 

 [87] 

Uns
p 

7.3E-3 NPP Requal simulate data – Perform procedures SelfV – Y 
TeamV – Y 
Recov - Unknown 

 [87] 

Uns
p 

3.85E-3 Pilot errors causing accidents TA – Mixed 
SelfV – Y 
TeamV – Y 
Recov - Mixed 

 [88] 

Uns
p 

5.5E-6 
(686/(1.
25×E8)) 

Pilot error rate x ATC error rate = NTSB reported 
human error accident rate 
TABLE 1. The Event Classifications of the 686 
Events Reviewed in the NTSB Database from about 
1.25×108 Total Flights.  

TA – Mixed 
SelfV – Y 
TeamV – Y 
Recov - Y 

 [119] 

 

Among these datapoints, the first row has the error rate of 2E-5 for air traffic control operational 
error per operation. This number was obtained including recovery. Using a recovery factor of 5 
to 10, the detached error rate would be 2E-4 to 4E-4, and it is larger than the estimated lowest 
HEP of 1E-4. 

The last row of the unspecified datapoints has an error date of 5.5E-6 for the human error rate 
in aviation accidents from the National Transportation Safety Board (NTSB) Database. Note that 
the reported pilot errors were actually the combined errors of air traffic controllers and pilots. A 
rough estimation is that the NTSB reported human error accident rate equals the pilot error rate 
multiplied by the ATC error rate, without considering the dependency between air traffic 
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controller and pilot actions. There are two ways to estimate pilot errors. The first one is to 
equally split the errors between air traffic control and pilots then the pilot error rate would be 1E-
3. The second way is using the detached air traffic controller operational error rate of 2E-4 to 
4E-4 then the pilot error rate would be 1.3E-2 to 2.7E-2.  In either case the error rate is larger 
than the estimated lowest HEP of 1E-4. Therefore, the estimated lowest HEP of 1E-4 for Failure 
of Detection is reasonable for the datapoints generalized so far.  

The rest of the Unspecific datapoints all have the error rates larger than the estimated lowest 
HEP of 1E-4.  Overall, the reasonableness check verified the estimated lowest HEP of 1E-4 for 
Failure of Detection.  

Using a similar process as described in this section, the lowest HEPs for other CFMs were 
estimated as 1E-3 for Failure of Understanding, 1E-3 for Failure of Decisionmaking, 1E-4 for 
Failure of Execution, and 1E-3 for Failure of Interteam Coordination. These were the lowest 
HEPs used for IDHEAS-ECA [2]. 
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4 DISCUSSION AND CONCLUDING REMARKS 

4.1. Generalization of human error data from various sources 
IDHEAS-DATA uses the IDHEAS-G [1] framework to organize characteristics of human error 
data. IDHEAS-DATA is capable of generalizing human error data of various sources to the 
formats that can be used for HEP quantification. 

4.2. Integration of the generalized data to inform IDHEAS-ECA 
The NRC staff integrated the human error data in IDHEAS-DATA to infer the base HEPs and 
PIF weights for IDHEAS-ECA[2]. This integration advances HRA method development in that 
the calculated HEPs have traceable and updateable data sources. Moreover, the data sources 
provide HRA analysts the technical basis in their quantitative HRA analyses. The limitation in 
the current status is that the data integration required different approaches and engineering 
judgment due to the limited availability of the generalized data and gaps in data sources.  

4.3. Limitations in the current status of IDHEAS-DATA 
1) Every IDHEAS-DATA TABLE has gaps in data sources.  
2) Only a very small sample of data sources was generalized for IDTABLE-23 thorough 

IDTABLE-27.   
3) IDHEAS-DATA is intended to capture available human performance data and empirical 

evidence to support HRA applications. It is not intended to cover everything in HRA. For this 
reason, some under-developed areas in HRA, such as error of commission and dynamic 
HRA, are not included in the current IDHEAS-DATA structure. 

4.4. Perspectives of HRA data sources 
1) Only a small portion of available nuclear operation and simulation data were generalized. As 

of 2019, only the effects of several base PIF attributes were analyzed in the SACADA 
database [26]. The effects of more PIF attributes are being analyzed. Only a few datapoints 
were generalized from HuREX [34]. The NRC staff is working with HuREX developers to 
understand the context in HuREX data and the relation between HuREX [120] and the 
SACADA [25]taxonomy. Moreover, the Halden Reactor Project has conducted NPP 
simulation experiments over the last three decades. Most of the experimental results are not 
generalized to IDHEAS-DATA because the studies reported operator task performance 
indicators other than error rates. However, it is feasible to establish the relation between the 
performance indicators and error rates based on empirical evidence in the experiments. The 
NRC staff expects that these efforts would greatly enrich IDHEAS-DATA. 

2) The structure of IDHEAS-DATA is generic because it is based on the IDHEAS-G CFMs and 
PIFs that model human cognition and behavior. IDHEAS-DATA is also flexible because its 
27 IDTABLEs operate independently and the datapoints in each IDTABLE can be at 
different levels of detail. These two features make IDHEAS-DATA a candidate for serving as 
a hub for HRA data exchange. Different NPP human performance databases can be 
generalized to IDHEAS-DATA, and the generalized data can be used for different HRA 
applications. 

4.5. Concluding Remarks 
1) Data generalization is generic for the IDHEAS CFMs and PIF attributes.  Data integration is 

specific for the HRA method. 
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2) To close the gaps in existing HRA methods, data generalization should be an on-going, 
continuous effort.  As such, the NRC intends to continue to update its data sources, 
generalize the information, and integrate the data into its methods.
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Appendix A.  IDHEAS-DATA Tables  

Introduction to Appendix A 

Appendix A presents human error data generalized in the 27 IDHEAS-DATA IDTABLEs.  Note 
that the datapoints in the IDTABLEs have not been independently verified for their accuracy and 
appropriateness. They are being made available to the public in this Research Information 
Letter only for the purposes of communicating information and demonstrating the data basis of 
IDHEAS-ECA.  It is not recommended that these DRAFT data IDTABLEs be used by HRA 
practitioners without first verifying the data validity.  

Appendix A-1 through Appendix A-3 are for human error data of the three base PIFs. Appendix 
A-4 through Appendix A-20 are for the rest of the 17 PIFs. Each of these appendices has two 
sub-tables; the first one presents the PIF attributes and their identifiers; the second one 
presents the generalized datapoints, with each row usually for one datapoint (except some rows 
combining several datapoints from the same data source) and each column for a dimension of 
information.  Appendix A-21 through Appendix A-27 present the IDHEAS-DATA IDTABLEs for 
Lowest HEPs, PIF interaction, Distribution of task completion time, Time factor effects on task 
completion time, Dependency between human actions, Recovery actions to human failures, and 
Main drivers to human failures.  

The detailed structures of IDHEAS-DATA TABLEs are described in Chapter 2 of this report. 
Below briefly list the symbols for frequently used terminology that describes the datapoints of 
the TABLEs.  

Column “CFM” 

This column is for the cognitive failure modes. The labels D, U, DM, E, and T are for Failure of 
Detection, Failure of Understanding, Failure of Decisionmaking, Failure of Action Execution, and 
Failure of Interteam Coordination. The symbols used in this column are the following: 

“/” – The symbol “/” separating two CFMs means that the reported error data could be for one of 
the CFMs or applicable to both CFMs.   

“&” – The symbol “&” separating two CFMs means that the reported error data is the sum of the 
two CFMs. 

“,” - The symbol “,” separating two CFMs means that the datapoint in a row contains error data 
from the same data source for each CFM in the sub-rows or sub-columns of the “Error rate” 
column.   

“Unsp.” – This means that the CFMs of the reported error data were unspecific in the data 
source. Because much of the error data is event data, it could involve all the CFMs, thus the 
reported data are unspecific to any CFM.  

Column “PIF attribute” 

This column is for the PIF attribute applicable to the error data. The labels in the column are the 
PIF attribute identifiers shown in the Appendix. The symbols used in this column are the 
following: 
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“/” – The symbol “/” separating two identifiers means that the reported error data is applicable to 
both PIF attributes. 

“&” – The symbol “&” separating two identifiers means that the reported error data is due to the 
combined effects of the two PIF attributes. 

“,” - The symbol “,” separating two identified means that the datapoint in a row contains error 
data from the same data source for each PIF attribute in the sub-rows or sub-columns of the 
“Error rate” column.   

“Unsp.” – This means that the PIF attributes applicable to the reported error data were 
unspecific in the data source. For example, a data source may only report the error rates under 
“Good” versus “Poor” human-system-interfaces without providing specific information to infer 
what HSI attributes correspond to “Poor” HSI. 

The column “Error rates and Task Performance Indicators” 

This column presents the human error data in selected data sources. Unless otherwise 
specified, the numbers in the column are human error rates. They could be measured as the 
number of errors made divided by the number of tasks performed, and they could also be from 
engineering estimates or expert judgment.  While most datapoints have error rates in this 
column, some datapoints only have task performance indicators instead of error rates. The task 
performance indicators are annotated briefly in this column.  Below are some frequently used 
task performance indicators: 

• No. of errors made – The indicator is the total or average number of errors made in the 
tasks. The data sources did not report the number of times the same task was performed. 
Some data sources of full scenario simulation only reported the numbers of errors made in 
the simulation without reporting the number of error opportunities in the scenario. 

• Effect size – Effect size is a quantitative measure of the magnitude of a phenomenon in 
meta-analysis. It quantifies the difference between two groups as the following:

 
If the effect size is calculated for human error rate difference between the presence of a PIF 
attribute and the control condition, then the positive value means that the error rates with the 
presence of the PIF attribute is higher than those without the attribute. The higher the effect 
size, the larger the difference is.  

• Correlation coefficient - The coefficient measures the correlation of a PIF attribute and the 
human error rate or the task performance indicator.  

• Frequency (freq.) of occurrence – The frequency of occurrence is typically used in studies of 
human error analysis or root cause analysis. It calculates the percent of different types of 
human failure modes or error factors occurring in the analyzed sample of human events, 
incidents, or accidents.  

Column “Task (and error measure)” 

This column has a brief description of the task performed. The definition of the error measure is 
in the parentheses. The default definition is the error rate of incorrect task performance. 

Column “PIF measure” 

This column has a brief description about the context or experimental manipulation of the 
context under which the task was performed. The context is represented by the PIF attributes. 
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Column “Other PIFs (and uncertainty)” 

This column annotates other PIFs that were present but not manipulated in the context under 
which the task was performed.  For example, a data source studied the effect of heat by 
manipulating the work environment temperature, while the tasks were performed in the 
presence of noise. Thus, the PIF attribute being studied was heat, and noise is annotated as 
“Other PIFs.”  This column also annotates uncertainties in the data source as well as 
uncertainties in representing the data source with the CFM and PIF attributes. The uncertainties 
are presented in the parentheses. Below are several frequently used annotations in this column: 

• “No apparent uncertainty” – This typically applies to well-controlled experiments. There 
could be uncertainties in the error data that were not described in the data source. 

• “Not analyzed” – The data source did not provide detailed information to assess whether 
other PIFs were present and what the uncertainties were in the data.  

• “Meta-analysis” – The datapoints were generalized from meta-analysis of many research 
papers on the topic. 

• “Expert judgment” – The error data were obtained through a formal expert elicitation 
process. 

• “Engineering judgment” – The reported error data were based on experts’ analysis of 
available information and estimates of the HEPs instead of a formal expert elicitation 
process. 
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Appendix A1 PIF Attributes and Base HEPs for Scenario Familiarity 

 

Table A1-1 Attribute Identifiers and Descriptions for PIF Scenario Familiarity 
ID PIF Attribute  

SF0  No-impact  
• frequently performed tasks in well-trained scenarios,  
• routine tasks  

SF1  Unpredictable dynamics in known scenarios  

SF1.1 Shifting objectives  
SF1.2 Unpredictable dynamics  
SF2 Unfamiliar elements in the scenario  

SF2.1 Non-routine, infrequently performed tasks,  
SF2.2 Unlearn a technique and apply one that requires the application of an opposing philosophy   
SF2.3 Personnel are unfamiliar with system failure modes.  
SF2.4 Personnel are unfamiliar with worksites for manual actions.  
SF3 Scenario is unfamiliar 

SF3.1 Scenarios trained on but infrequently performed   
SF3.2 Scenario is unfamiliar, rarely performed, e.g.,  

• Notice adverse indicators that are not part of the task at hand  
• Notice incorrect status that is not a part of the routine tasks  

SF3.3 Scenario is extremely rarely performed, e.g.,  
• Lack of plans, policies and procedures to address the situation  
• No existing mental model for the situation  
• Rare events such as the Fukushima accident  

SF4  Bias, preference for wrong strategies, or mismatched mental models   

SF4.1 Wrong expectation or bias 
SF4.2 Mismatched mental models   
SF4.3 Preference for wrong strategies in decisionmaking 
 

Table A1-2 IDHEAS-DATA IDTABLE-1 – Base HEPs for PIF Scenario Familiarity 
 

1 2 3 4 5 6 7 
PIF 
 

CFM Error 
rates 

Task (and error measure) PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

SF0 D 9E-3 Collision avoidance and target 
monitoring in simulated ship 
control 

Fixed situation, 
routine response 

Dual task [27] 

SF1.1  
 

D 1.4E-2 Collision avoidance and target 
monitoring in simulated ship 
control 

Alerting target, 
normal response 

Dual task [27] 

SF1.1  
 

D 1.3E-2 Collision avoidance and target 
monitoring in simulated ship 
control 

Alerting target, 
routine response 

Dual task [27] 

SF1.1 
& 
SF2.1  
 

D 1.06E-1 Collision avoidance and target 
monitoring in simulated ship 
control 

Alerting target, 
emergency 
response 

Dual task, 
(Time urgent) 

[27] 

SF2.1 D 6.7E-2 Collision avoidance and target 
monitoring in simulated ship 
control 

Fixed situation, 
emergency 
response 

Dual task, 
(Time urgent) 

[27] 
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SF0 D 2E-4 NPP crews attend to source of 
information in EOP (estimated 
HEP) 

Good familiarity with 
the Source 

(Expert 
judgment) 

[6] 

SF2 D 4E-3 NPP crews attend to source of 
information in EOP (estimated 
HEP) 

Poor familiarity with 
the Source 

(Expert 
judgment) 

[6] 

SF0 D & 
U  

1E-4 Air traffic control (Operational 
error) 

100+min on shift (with recovery) [118] 

SF1.2 D & 
U 

4.1E-4 Air traffic control (Operational 
error) 

first 30min on shift, 
unpredictable 
dynamics 

(with recovery) [118] 

SF0 U 7.6E-3 
(13/171
8) 

NPP operators diagnose in 
simulator training 

Standard scenario (Other PIFs 
may exist) 

[26] 

SF2.1 U 8.8E-3 
(7/800) 

NPP operators diagnose in 
simulator training 

Novel scenario (Other PIFs 
may exist) 

[26] 

SF3.1 U 1.2E-1 
(8/69) 

NPP operators diagnose in 
simulator training 

Anomaly scenario (Other PIFs 
may exist) 

[26] 

SF0  E 0.04 
 

Go / No-go based on pattern 
match 

Simple “X” for Go 
and “O” for No-go 

No verification [28] 

SF0  D 0.018 
 

Go / No-go based on object 
recognition  

Female vs male 
faces or one-story 
vs. two-story houses 

No verification [28] 

SF2.2   E 0.177 Diagnosing a pattern; 
personnel use structured 
information to guide diagnosis 

Rare Stop-trails 
need to unlearn Go-
trials 

Task 
complexity 

[28] 

SF0 U & 
DM 

3.8E-3 Pilot flight (error rates) Flight hour > 5000 (Other PIFs 
may exist) 

[88] 

SF2.3 U & 
DM 

6E-2 Pilot flight (error rates) Flight hour < 500  (Other PIFs 
may exist) 

[88] 

SF0 DM 5.1E-3 
(24/469
1) 

NPP operators decisionmaking 
in simulator training 

Standard scenario (Other PIFs 
may exist) 

[26] 

SF3.1 DM 1.1E-2 
(1/92) 

NPP operators decisionmaking 
in simulator training 

Anomaly scenario (Other PIFs 
may exist) 

[26] 

SF0 E 6.8E-4 
(1/1470) 

NPP maintenance Carrying out 
a sequence of tasks from 
memory 

Frequently 
performed 

(Ex-CR 
actions) 

[4] 

SF3.1 E 2.1E-2 
(1/48) 

NPP maintenance Carrying out 
a sequence of tasks from 
memory 

Rarely performed (Ex-CR 
actions) 

[4] 

SF1.1 
& 
SF3.1 

E 2.8E-2 
(2/70) 

NPP maintenance Carrying out 
a sequence of tasks from 
memory 

Rarely performed Dynamic 
environment 
 

[4] 

SF3.2 E 1.43E-1 
(1/7) 

NPP maintenance Carrying out 
a sequence of tasks from 
memory 

Rarely performed Dynamic 
environment 
 

[4] 

SF0 E 7.42E-4 
(1/1347) 

NPP maintenance; Operation 
of a manual control 

Frequently 
performed task, part 
of professional 
knowledge 

No apparent 
uncertainty 

[4] 

SF3.2 E 7.77E-2 
(1/13) 

NPP maintenance; Operation 
of a manual control 

Rarely performed 
test procedure 
consisting of many 
sub-steps 

high task load, 
procedure 
consisting of 
many sub-
steps 

[5] 

SF0 E 9.78E-4 
(3/3067)   

Sequence of tasks Frequently 
performed,  

No apparent 
uncertainty 

[5] 

SF3.2 E 2.1E-2 
(1/48)   

Sequence of tasks Rarely performed No apparent 
uncertainty 

[5] 
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SF3.3 E 3.33E-1 
(1/3)   

Sequence of tasks Extremely rarely 
performed   

No apparent 
uncertainty 

[5] 

SF0 DM 1.13E-3 
(1/888)   

Identifying or defining the task Frequently 
performed 

No apparent 
uncertainty 

[4] 

SF3.1 DM 2.33E-2 
(4/172)   

Identifying or defining the task Rarely performed No apparent 
uncertainty 

[4] 

SF3.1 DM 1.36E-1 
(3/22)   

Identifying or defining the task Rarely performed Other PIFs  [4] 

SF 0 E 9.58E-4 
(2/2088)       

Procedure execution with 
professional knowledge 
(incorrectly remembered 
professional knowledge) 

Part of frequently 
performed 
procedure 

No apparent 
uncertainty 

[5] 

SF3.1 E 1.42E-2 
(6/423)      

Procedure execution with 
professional knowledge 
(incorrectly remembered 
professional knowledge) 

Part of rarely 
performed 
procedure 

No apparent 
uncertainty 

[5] 

SF0 E 9E-4 Maintenance and repair in 
cable production process 

Familiarity with the 
task in-hand   
 

(data and 
engineering 
judgment) 

[121] 

SF3.2 E 7.64E-2 Maintenance and repair in 
cable production process 

Unfamiliar  
 

(data and 
engineering 
judgment) 

[121] 

SF3.2 D 0.1 Notice adverse indicators 
when reaching for wrong 
switch or items 

Not part of the task 
at hand  

(Other PIF 
may exist) 

[111] 

SF3.2 D 0.1 Roving inspection (Fail to 
notice incorrect status) 

Not part of the 
routine tasks  

(Other PIF 
may exist) 

[111] 

SF3.3 DM 0.5 Medicine dispensing  Lack of plans, 
policies and 
procedures to 
address the situation 

Inadequate 
time, Training, 
procedure 

[122] 

SF4 D 0.2 Railroad operators start new 
workshift (fail to check 
hardware unless specified) 

New workshift, task 
not specified so no 
mental model for 
checking  

(Other PIF 
may exist) 

[123] 

SF0 U 1.6E-3 Situation assessment in EOP 
(HEP of Critical Data 
Dismissed/Discounted) 

Inappropriate Bias 
not formed, 
No Confirmatory 
Information 

(Expert 
judgment) 

[6] 

SF4 U 2.5E-1 Situation assessment in EOP 
(HEP of Critical Data 
Dismissed/Discounted) 

Inappropriate Bias 
formed,  
No Confirmatory 
Information 

(Expert 
judgment) 

[6] 

SF0 U 3.5E-4 Critical Data Collection 
(Premature Termination of 
Critical Data Collection) 

Expectations or 
Biases not formed 

(Expert 
judgment) 

[6] 

SF4 D /  
U 

8.2E-3 Critical Data Collection 
(Premature Termination of 
Critical Data Collection) 

Expectations or 
Biases formed 

The failure 
mode could be 
either D or U. 
(Expert 
judgment) 

[6] 

SF0 E 2.3E-3 Execution of EOPs (Critical 
Data Not Checked with 
Appropriate Frequency) 

Good Match with 
Expectations 

(Expert 
judgment) 

[6] 

SF4 E 1.3E-2 Execution of EOPs (Critical 
Data Not Checked with 
Appropriate Frequency) 

Poor 
Match with 
Expectations 

(Expert 
judgment) 

[6] 
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Appendix A2 PIF Attributes and Base HEPs for Information 
Availability and Reliability 

 

Table A2-1 Attribute Identifiers and Descriptions for PIF Information Availability and 
Reliability 

 PIF Attribute 

INF0 No impact – Key information is reliable and complete  

INF1 Key information is incomplete  

INF1.1 Information is temporarily incomplete or not readily available  

• Updates of information are inadequate (e.g., information perceived by one party who fails to inform 
another party). 

• Feedback information is not available in time to correct a wrong decision or adjust the strategy 
implementation.  

INF1.2 Information of different sources is poorly organized and/or is not specific. 

INF1.3 Primary sources of information are not available, while secondary sources of information are not reliable 
or readily perceived. 

INF1.4 Information is moderately incomplete (e.g., a small portion of key information is missing.)  

INF1.5 Information is largely incomplete – 

• Key information is masked,  
• Key indication is missing. 

INF2 Information is unreliable 

INF2.1 Personnel are aware that source of information could be temporally unreliable.  

INF2.2 Overriding information - Pieces of information change over time at different paces; they may not all be 
current by the time personnel use them together. 

INF2.3 Source of information is moderately unreliable, and personnel likely recognize it.  

INF2.4 Ambiguity, uncertainty, incoherence, or conflicts in information.  

INF2.5 Information is unreliable, and personnel are not aware of it. 

INF2.6 Information is misleading or wrong. 

 

Table A2-2 IDHEAS-DATA IDTABLE-2 – Base HEPs for PIF Information Availability and 
Reliability 

 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

INF0 U 9.5E-3 
(24/2524)  

NPP operators diagnose 
in simulator training 

Poor Information 
Timing does NOT 
exist 

Other PIFs 
exists 

[26] 



 

A2-5 

INF1.1 U 4.5E-2 
(4/89)  

NPP operators diagnose 
in simulator training 

Poor Information 
Timing exists 

Other PIFs 
exists, 
infrequent task 

[26] 

INF0 U 4E-2 Student controllers 
performed air traffic 
control (near miss rate) 

Full information 
displayed  

Task 
complexity and 
training 

[124] 

INF1.1 U 8E-2 Student controllers 
performed air traffic 
control (near miss rate) 

Partially information 
displayed, full 
information available 
upon request  

Task 
complexity and 
training 

[124] 

INF0 U & 
DM 

7.9E-2 Pilots in flight deicing 
(Percent of early buffet, 
i.e., about to stall) 

Accurate information 
timely with status 
displays 

Inadequate 
time  

[30] 

INF1.1 U & 
DM 

20.6E-2 Pilots in flight deicing 
(Percent of early buffet) 

Accurate information 
not timely without 
status displays 

Inadequate 
time  

[30] 

INF0 U & 
DM 

1.8E-1 Pilots in flight deicing 
(Percent of stall) 

Accurate information 
timely 

Complexity, 
inadequate 
time 

[30] 

INF1.1 U & 
DM 

3E-1 Pilots in flight deicing 
(Percent of stall) 

Accurate information 
not timely 

Complexity, 
inadequate 
time 

[30] 

INF0 U 7.7E-3 
(10/1293)  

NPP operators diagnose 
in simulator training 

Information 
specificity - specific 

Other PIFs 
exists 

[26] 

INF1.2 U 1.5E-2 
(16/1077)  

NPP operators diagnose 
in simulator training 

Information NOT 
specific 

Other PIFs 
exists 

[26] 

INF1.2 U 5E-2 Medicine dispensing 
(Wrong conclusion 
drawn)  

Competing/unclear 
information 

(Distraction  [122] 

INF0 DM 5E-3 Maintenance in cable 
production process 
(wrong task plan) 

Good quality of 
information 

 [121] 

INF1.2 / 
INF1.4 

DM 4.5E-2 Maintenance in cable 
production process 
(wrong task plan) 

Poor/impoverished 
quality information 

(Information 
not organized 
or missing) 

[121] 

INF0 DM 3E-2 Licensed driver simulator 
(%collision) 

Fast driving, early 
real-end information 

Time 
inadequate 

[125] 

INF1.4  DM 1.1E-1 Licensed driver simulator 
(%collision) 

Fast driving, 
moderate real-end 
information 

Time 
inadequate 

[125] 

INF1.4 / 
INF1.5 

DM 2.2E-1 Licensed driver simulator 
(%collision) 

Slow driving, late 
real-end information 

Time 
inadequate 

[125] 

INF0 U 7.7E-3 
(20/2582) 

NPP operators diagnose 
in simulator training 

No missing 
information 

Other PIFs 
exist 

[26] 

INF1.5 U 2.6E-1 
(8/31) 

NPP operators diagnose 
in simulator training 

Missing information Other PIFs 
exist 

[26] 

INF1.5 U 9/10 NPP crew diagnose SG 
tube leak and tube 
rupture in simulator 

information of a tube 
lake was masked in 
a tube rupture 

Licensed crew 
with peer-
checking 

[106] 

INF1.5 U 4/5 NPP crew diagnose 
LOCA in simulator 

Key information of a 
small LOCA was 
masked in a big 
LOCA 

Licensed crew 
with peer-
checking 

[16] 

INF0 U 0 
(9/9) 

Physician diagnosis High-context with all 
information 

(Experiment 
study) 

[126] 

INF1.5 U 0.46  
(5/9) 

Physician diagnosis Low-context with 
limited information 

(Experiment 
study) 

[126] 

INF1.5 DM 3.9E-1 Licensed driver simulator 
(%collision) 

Fast driving late real-
end information 

Time 
inadequate 

[125] 

INF0 DM 1.3E-2 Licensed driver simulator 
(%collision) 

Fast driving early 
real-end information 

Time 
inadequate 

[125] 
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INF1.5 DM 3.1E-1 Licensed driver simulator 
(%collision) 

Fast driving late real-
end information 

Time 
inadequate 

[125] 

INF1.5 DM 0.01 Students match patterns No masking Time 
inadequate 

[127] 

INF1.5 DM 0.25 Students match patterns Visual masking Time 
inadequate 

[127] 

INF1.5 DM 0.33 Students match patterns Strong visual 
masking 

Time 
inadequate 

[127] 

INF0 U 1.6E-3 MCR critical tasks with 
EOPs (Critical Data 
Dismissed/Discounted) 

Indications Reliable (Expert 
judgment) 

[6] 

INF2.1 U 3.3E-3 MCR critical tasks with 
EOPs (Critical Data 
Dismissed/Discounted) 

Indications NOT 
Reliable and no 
Inappropriate Bias 

(Expert 
judgment) 

[6] 

INF0 DM 9E-5 Maintenance of the disc 
brake assembly (decided 
to omit part of the task) 

No over-riding 
information  
 

(Expert 
judgment) 

[123] 

INF2.2 DM 1.1E-2 Maintenance of the disc 
brake assembly (decided 
to omit part of the task) 

Over-riding 
information  
 

(Expert 
judgment) 

[123] 

INF2.3 U & 
DM 

3.6E-1 Pilots in flight deicing 
(Percent of stall) 

(30%) inaccurate 
information and 
pilots were informed 
the inaccuracy trend 

Complexity, 
inadequate 
time 

[123] 

INF2.3 U 1.2E02 MCR critical tasks with 
EOPs (failed to use 
alternative source of 
information) 

Primary source of 
information obviously 
incorrect 

Licensed crew 
with peer-
checking 

[6] 

INF0 U 9.8E-3 
(25/2552) 

NPP operators diagnose 
in simulator training 

No misleading 
information 

Other PIFs 
exists 

[26] 

INF2.3 / 
INF2.5 / 
INF2.6 

U 4.9E-2 
(3/61) 

NPP operators diagnose 
in simulator training 

Misleading 
information 

Other PIFs 
exists 

[26] 

INF0 U 8.1E-3 
(19/2350)  

NPP operators diagnose 
in simulator training 

Ambiguous 
information does 
NOT exist 

Other PIFs 
exists 

[26] 

INF2.4 U 3.4E-2 
(9/263)  

NPP operators diagnose 
in simulator training 

Ambiguous 
Information exists 

Other PIFs 
exists 

[26] 

INF2.4 DM 0 to 0.4 
(Sigmoid 
function)  

Students make 2-
alternative choices 

100% to 10% of 
information 
coherence 

No apparent 
uncertainty 

[31] 

INF2.4 DM 0-0.6 
(Sigmoid 
function)  

Students make 4-
alternative choices 

100% to 10% of 
information 
coherence 

No apparent 
uncertainty 

[31] 

INF2.4 DM 0.3 Pattern matching 70% coherence of 
information 

(experimental 
study, simple 
decision) 

[128] 

INF2.5 U & 
DM 

6.4E-1 Pilots in flight deicing 
(Percent of stall) 

(30%) inaccurate 
information and 
pilots did not know of 
the inaccuracy 

Complexity, 
inadequate 
time 

[123] 

INF2.5 U 2.5E-1 MCR critical tasks with 
EOPs (Critical Data 
Dismissed/Discounted) 

Indications NOT 
Reliable and 
Inappropriate Bias 
formed  

Bias exists 
(Expert 
judgment) 

[6] 

INF2.6 U & 
DM 

73.6E-2 Pilots in flight deicing 
(Percentage of early 
buffet) 

(30%) inaccurate 
information on status 
displays 

Inadequate 
time  

[30] 

INF2.6 U & 
DM 

8.9E-1 Pilots in flight deicing 
(Percent of stall) 

(30%) inaccurate 
information timely  

Complexity, 
inadequate 
time 

[30] 
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INF2.6 U & 
DM 

6.4E-1 Pilots in flight deicing 
(Percent of stall) 

(30%) inaccurate 
information 

Complexity, 
inadequate 
time 

[123] 

INF2.6 DM 0.37 Physician decisionmaking 
for drugs 

Information is 
inaccurate or 
misleading 

(Maybe other 
PIFs) 

[129] 

INF2.6 U 3.2E-1 MCR critical tasks with 
EOPs (failed to use 
alternative source of 
information) 

Primary source of 
information NOT 
obviously Incorrect 

(Expert 
judgment) 

[6] 
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Appendix A3 PIF Attributes and Base HEPs for Task Complexity 

Table A3-1 Attribute Identifiers and Descriptions for PIF Task Complexity 
 PIF Attribute  

 C0-C7 are for Detection complexity 
C0  No impact on Detection HEP, simple straightforward attending to alarms, monitoring, or checking 

information, directed by procedures, routinely, or well-known knowledge 
C1  Detection overload with multiple competing signals   

• Track the states of multiple systems  
• Monitor many parameters   
• Memorize many pieces of information detected  
• Detect many types or categories of information  

C2  Detection is moderately complex   
• Criteria are not straightforward,  
• Information of interest involves complicated mental computation  
• Comparing for abnormality  

C3 Detection demands for high attention  
• Need split attention  
• Need sustained attention over a period of time  
• Need intermittent attention   
For example, determining a parameter trend during unstable system status or monitoring a 
slow-response-system behavior without a clear time window to conclude that monitoring requires 
attention for a prolonged period. 

C4 Detection criteria are highly complex   
• Multiple criteria to be met in complex logic 
• Information of interest must be determined based on other pieces of information   
• Detection criteria are ambiguous and need subjective judgment  

C5  Cues for detection are not obvious – e.g., detection is not directly cued by alarms or instructions and 
personnel need to actively search for the information  

C6  Weak or no cue or mental model for detection   
C6.1 Cue or mental model for detection is ambiguous or weak 

• Time gap between the cue for initiating detection to the time detection is performed 
• Incoherent, uncertain, or inconsistent cues for initiating the detection 

C6.2 No rules / procedures / alarms to cue the detection; Detection of the critical information is entirely based 
on personnel’s experience and knowledge   

C7 Low signal probability for detection 
 C10-C16 are for Understanding complexity 
C10 No impact – straightforward diagnosis with clear procedures or rules  
C11  Working memory overload   

• Need to decipher numerous messages (indications, alarms, spoken messages)  
• Multiple causes for situation assessment: Multiple independent ‘influences’ affect the system and 

system behavior cannot be explained by a single influence alone  
C12 Relational complexity (Number of unchunkable topics or relations in one understanding task)  

• Relations involved in a human action are very complicated for understanding 
• Need to integrate (use together) multiple relations   

C13  Understanding complexity - Requiring high level of comprehension   
• Multiple causes for situation assessment:  Multiple influences affect the system, and system 

behavior cannot be explained by a single influence 
C14  Potential outcome of situation assessment consists of multiple states and contexts (not a simple yes or 

no)  
C15  Ambiguity associated with assessing the situation  

• Key information for understanding has hidden coupling 
• Pieces of key information are intermingled or with complex logic 
• The source of a problem is difficult to diagnose because of cascading secondary effects that make it 

difficult to connect the observed symptoms to the originating source 
C16  Conflicting cues or symptoms  
 C20-C29 are for Decisionmaking complexity 
C20  No impact – simple, straightforward choice  
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 PIF Attribute  
C21  Transfer step in procedure – integrating a few cues  
C22  Transfer procedure (Multiple alternative strategies to choose) – integrating multiple cues  
C23  Decision criteria are intermingled, ambiguous, or difficult to assess  
C24  Multiple goals difficult to prioritize, e.g., advantage for incorrect strategies  
C25  Conflicting goals (e.g., choosing one goal will block achieving another goal, low preference for correct 

strategy, reluctance & viable alternatives)  
C26  Decision-making involves developing strategies or action plans  
C27  Decisionmaking requires diverse expertise distributed among multiple individuals or parties who may not 

share the same information or have the same understanding of the situation  
C28  Integrating a large variety of types of cues with complex logic  
 C30-39 are for Execution complexity 
C30  No impact - Simple execution with a few steps  
C31  Straightforward procedure execution with many steps   
C32  Non-straightforward procedure execution   

• Out-of-sequence steps  
• Very long procedures, voluminous documents with checkoff provision  
• Multiple procedures needed, action sequences are parallel and intermingled 

C33  Simple continuous control that requires monitoring parameters and adjusting action accordingly 
C34  Continuous control that requires manipulating dynamically and sustained attention  
C35  Long-lasting action, repeated discontinuous manual control (need to monitor parameters from time to 

time)  
C36  No immediacy to initiate execution - Time span between annunciation (decision for execution made) and 

operation  
C37  Complicated or ambiguous execution criteria  

• Multiple, coupled criteria  
• Restrictive, irreversible order of multiple steps  
• Open to misinterpret  

C38  Action execution requires close coordination of multiple personnel at different locations – Transport fuel 
assemblies with fuel machines  

C39  Unlearn or break away from automaticity of trained action scripts  
 C40-C44 are for Interteam Coordination complexity 
C40  No impact – Clear, streamlined, crew-like communication and coordination  
C41  Information to be communicated is complex 
C42  Complex or ambiguous command-and-control   
C43  Complex or ambiguous authorization chain   
C44  Coordinate activities of multiple diverse teams or organizations  

 

Table A3-2 IDHEAS-DATA IDTABLE-3 – Base HEPs for PIF Task Complexity 
 

1 2 3 4 5 6 7 
PIF 
 

CF
M 

Error 
rates 

Task (and error measure) PIF  
Measure 

Other PIFs 
(and 
Uncertainty) 

REF 

C1 D 2.1E-3  
(2/953)  

NPP operators alarm detection in 
simulator training 

Alarm board dark (Other PIFs 
may exist) 

[26] 

C1 D 5.0E-3  
(5/991)  

NPP operators alarm detection in 
simulator training 

Alarm board busy (Other PIFs 
may exist) 

[26] 

C1 D 3.9E-2 
 (6/155)  

NPP operators alarm detection in 
simulator training 

Alarm board 
overloaded 

(Other PIFs 
may exist) 

[26] 

C1 D 2.8E-3 
(2/711)  

Indicator checking No Concurrent 
demands  

Possible 
multitasking 

[26] 

C1 D 7.8E-3 
(10/1289)  

Indicator checking Concurrent demands  Possible 
multitasking 

[26] 

C1 D 2.5E-2 
(5/198) 

 

Indicator checking Multiple concurrent 
demands 

Possible 
multitasking 

[26] 
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C1 D 3E-3 Detecting signals in nuclear 
facility operation  

Few competing 
signals  

(expert 
elicitation) 

[37] 

C1 D 1E-2 
 

Detecting signals in nuclear 
facility operation 

Several competing 
signals  

(expert 
elicitation) 

[37] 

C1 D 1E-1 Detecting signals in nuclear 
facility operation 

Many competing 
signals  

(expert 
elicitation) 

[37] 

C1 D 0.0001 to 
0.05 

Respond to compelling signals The number of 
annunciators from 1 
to 10 

Not analyzed [35, 36] 

C1 D 0.10 to 
0.20 

Respond to compelling signals The number of 
annunciators 11 to 
40. 

Not analyzed [35, 36] 

C1 D 0.25 Respond to compelling signals Annunciators >40 Not analyzed [35, 36] 
C1 D 2E-3  Reading meters One meter Not analyzed [35, 130, 

131] 
C1 D 1.3E-2 Reading meters Multiple meters Not analyzed [35, 130, 

131] 
C1 D 0.24 Students acquires information 

from air traffic control timelines 
3-9 categories of 
information to be 
detected 

High time 
constraint 
and dual task 

[132] 

C1 D 0.2 Students detects abnormal 
signals (omitted signals) 

3-6 categories of 
information to be 
detected 

High time 
constraint 
and dual task 

[132] 

C1 D 0.3 Students detects abnormal 
signals (omitted signals) 

9 categories of 
information to be 
detected 

High time 
constraint 
and dual task 

[132] 

C1 D L 0.14  Highly experienced drivers 
simulate driving (miss rate on 
peripheral detection task) 

Driving environment: 
L-low complexity 
M-medium complexity 
H-high complexity  

Time 
constraint, 
dual-task 

[10] 
M 0.24  
H 0.29 

C1 D 0.01 Drivers recognize names while 
simulating driving 

Few names  Time 
constraint, 
Dual task 

[133] 

C2 D 0.05 Military professionals read 
meters  

Analog meter reading 
with limit marks 

(Maybe time 
constraint) 

[134-137] 

C2 D 8.4E-4 NPP crews perform EOPs on 
simulator (failure of verifying 
information) 

Synthetically verifying 
information 

No apparent 
uncertainty 

[138] 

C2 D 2.2E-3 NPP operators perform EOPs on 
simulator 

Comparing for 
abnormality 

No apparent 
uncertainty 

[138] 

C3 D 3.14E-3 NPP operators perform EOPs on 
simulator  

Detection requires 
sustained attention 

No apparent 
uncertainty 

[138] 

C0 D 5E-4 Military operators read meters Alphanumeric 
reading, Detection 
straightforward 

(Maybe time 
constraint) 

[134-137] 

C4 D 0.1 Military operators read meters  Analog meter reading 
without limit marks 

(Maybe time 
constraint) 

[134-137] 

C4 D 0.2 Military operators check 
information 

Geometric symbols - 
Detection criteria 
need interpretation 

(Maybe time 
constraint) 

[134-137] 

C5 D 6.4E-
3(5/782) 

NPP operators check indicators 
in simulator training 

Not procedure 
directed, awareness/ 
inspection needed  

(Other PIFs 
may exist) 

[26] 

C0 D 2.1E-3 
(4/1872) 

NPP operators alarm detection in 
simulator training 

Alarms self-revealing  (Other PIFs 
may exist) 

[26] 

C6.1 D 5.1E-
2(9/177) 

NPP operators alarm detection in 
simulator training 

Alarms not self-
revealing and need 
operators’ 
awareness/inspection  

(Other PIFs 
may exist) 

[26] 

C7 D 4.2E-2 Students detect signals Signal probability 
=0.1 

No apparent 
uncertainty 

[139] 
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C7 D 3.7E-2 Students detect signals Signal probability 
=0.35 

No apparent 
uncertainty 

[139] 

C11 U M Error 
rate 

Pilot read-back communication 
((error rate of incorrect read-back 
messages) 
5 - 3.6% 
8 - 5% 
11 - 11% 
15 - 23% 
17 - 32% 
20> -50% 

M= Message 
complexity (# of 
messages and 
relations) 

(other PIFs 
may exist) 

[8] 

5 0.03
6 

8 0.05 
1
1 

0.11 

1
5 

0.23 

1
7 

0.32 

> 
2
0 

0.5 

C11 U 0.04  Navy controllers perform ATC 
simulation (near miss separation) 

Low task load Poor training  [124] 

C11 U 0.09 Navy controllers perform ATC 
simulation (near miss separation) 

High task load Poor training [124] 

C11 U 0.05 Students test on relational 
working memory 

4 simultaneously 
presented items 

No apparent 
uncertainty 

[124] 

C12 U R Error 
rate 

Pilot read-back communication 
(error rate of messages 
incorrectly communicated) 
 

R= Message relation 
(# of aviation topics in 
one communication)  

(other PIFs 
may exist) 

[8] 

1 0.03
8 

2 0.06
1 

3 0.08
5 

4 0.26 
C12 U 0.3 Students test on relational 

working memory 
4 sequentially 
presented items 

No apparent 
uncertainty 

[140] 

C13 U 0.028 Understand requirements 
(Misinterpret NPP procedure) 

Procedure complexity No apparent 
uncertainty 

[141] 

C13 U 0.03 Pharmacists dispense medicine  Typical understanding (Other PIFs) [122] 
C13 U 0.15 Pharmacists dispense medicine  Requiring high level 

of comprehension 
(Other PIFs) [122] 

C13 U 0.035 Interpret cues in flight simulator  Domain (location) 
cues require little 
comprehension 

(Other PIFs) [142] 

C13  U 0.136 Interpret cues in flight simulator Importance cues 
require 
comprehending info 

(Other PIFs) [142] 

C13 U 0.169 Interpret cues in flight simulator Importance cues 
require 
comprehending and 
matching info 

(Other PIFs) [142] 

C14 U 1/17 NPP maintenance - Orally give 
work permit (Incorrect plant state 
interpretation)  

Interpretation of plant 
state consists of 
multiple states and 
context (not a simple 
yes or no)  

Rarely 
performed 
tasks 

[4] 

C12 
& 
C15 

U 1.8E-2 ~ 
3E-1 

Diagnosis that needs to decipher 
numerous indications and 
alarms, and the ambiguity 
associated with assessing the 
situation 

Difficulty as the level 
of the ambiguity 
associated with 
assessing the 
situation 

Stress and 
team 
dynamics 

[143] 

C12 
& 
C15 

U 3E-3 ~ 
1.8E-1 

Diagnosis that needs to decipher 
numerous indications and 
alarms, and the ambiguity 

Easy to somewhat 
difficult  
 

Stress and 
team 
dynamics 

[143] 
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associated with assessing the 
situation 

C12 
& 
C15 

U 5E-2 to 
1E-4   

Diagnosis that needs to decipher 
numerous indications and 
alarms, and the ambiguity 
associated with assessing the 
situation 

Very easy stress and 
team 
dynamics 

[143] 

C15 U 0.27 Simulated process control 
(Prospective memory failures) 

System failure was 
accompanied by a 
simultaneous 
disabling of the 
relevant control panel 

Multitasking [144] 

C15 U 9.5E-1.  
(4 /4) 

NPP events Alarms signal may be 
triggered by 
maintenance work 
and difficult to identify 
initiation criteria 

No apparent 
uncertainty 

[4] 

C21 DM 0.08 Go/no-go switching task in flight 
simulator (incorrectly choosing 
no-switching) 

Integrating two cues (Other PIFs) [142] 

C21 DM 0.08 Go/no-go switching task in flight 
simulator (incorrectly choosing 
not to switch) 

Integrating two cues (Other PIFs) [142] 

C21 DM 4.5E-3 
 

NPP operators perform EOPs on 
simulator 

Transfer step in 
procedure 
 

(Other PIFs) [116] 

C22 DM 1.23E-2 NPP operators perform EOPs on 
simulator 

Transfer procedures 
 

(Other PIFs) [116] 

C22 DM 9.3E-3 Choose wrong strategy Alternative strategies 
to choose 

(Expert 
judgment) 

[6] 

C23 DM 3.4E-3 Delayed implementation 
(incorrect Assessment of Margin) 

Decision criteria are 
ambiguous   

(Expert 
judgment) 

[6] 

C24 DM 3.3E-2 Choose wrong strategy Advantage in using 
the incorrect strategy 

(Expert 
judgment) 

[6] 

C25 DM 1.4E-1 Choose wrong strategy Low preference for 
correct strategy 

(Expert 
judgment) 

[6] 

C25 DM 1.7E-1 Choose wrong strategy Competing strategies, 
reluctance & viable 
alternatives exist 

(Expert 
judgment) 

[6] 

C28 DM 0.274 Students perform DM tasks Integration of simple 
spatial cues 

No apparent 
uncertainty 

[145] 

C28 DM 0.451 Students perform DM tasks Integration of 
complex spatial cues 

No apparent 
uncertainty 

[145] 

C30  E-3 NPP maintenance Simple execution 
(operating a 
pushbutton, adjust 
values, connect a 
cable) 

No apparent 
uncertainty 

[4] 

C30 E 1E-4 
 

Nuclear facility operation - 
Execution procedure or script 

Nominal (simple) lock 
out plan (1-4 lock out) 

(Estimated 
HEP) 

[37] 

C31  5E-4 Nuclear facility operation - 
Execution procedure or script 

Moderate (typical) 
lock out plan (4-10 
lockout)  

(Estimated 
HEP) 

[37] 

C31  5E-3 Nuclear facility operation - 
Execution procedure or script 

Complex lock-out 
plan (11-100 lockout) 

(Estimated 
HEP) 

[37] 

C31  3.3E-3 
(2/651) 

NPP maintenance (omitting an 
item of instruction) 

Procedure execution 
with many steps 

(Other PIFs 
may exist) 

[4] 

C31 E 1E-2 NPP operators execute actions 
on simulator 

Simple and distinct 
 

(Other PIFs 
may exist) 

[26] 

C32 E 3.4E-2 NPP operators execute actions 
on simulator 

Additional mental  
effort required 

(Other PIFs 
may exist) 

[26] 
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C32 E 3.8E-3 NPP crew performs EOPs Execution is not 
straightforward 

(expert 
judgment) 

[6] 

C32  4.7E-3 
(1/211) 

NPP maintenance tasks Long procedures, 
voluminous 
documents with 
checkoff provision 

Not analyzed [5] 

C33  3.4E-4 
 

Controlled actions that require 
monitoring action outcomes  

Simple continuous 
control 

Not analyzed [4] 

C33  2.6E-3 Controlled actions that require 
monitoring action outcomes and 
adjusting action accordingly 

Manipulating 
dynamically   

Not analyzed [4] 

C33  0.0015 ~ 
0.0086  

Operating controls while 
monitoring dynamic displays 

Discrete controls Not analyzed [35, 131, 
137, 146, 
147] 

C34  0.0029 ~ 
0.0356 

Operating controls while 
monitoring dynamic displays 

Continuous controls Not analyzed [35, 131, 
137, 146, 
147] 

C35  0.02 
(1/50) 

Maintenance Repeated 
discontinuous manual 
control – demand for 
working memory 

Not analyzed [4] 

C36  0.3E-3  
(2 /608)  

NPP maintenance (operated too 
late) 

Short time span 
between annunciation 
and operation 

Not analyzed [4] 

C36  8.2E-3 NPP crews execute procedures No immediacy to 
initiate execution 

(expert 
judgment) 

[6] 

C37  0.036 
(1/28) 

NPP maintenance Complex execution 
criteria  
- Fast response/ 
correction in case of 
deviation  

With 
moderately 
high level of 
stress   

[4] 

C37  0.028 
(1/36) 
 

NPP maintenance Ambiguous execution 
criteria - High 
similarity between 
right or wrong 
position 

No procedure 
(this may be 
an HSI 
attribute)  

[4] 

C37  0.012 
(1/84) 

NPP maintenance Ambiguous execution 
criteria  

No procedure 
(this may be 
an HSI 
attribute)  

[4] 

C37  0.024 
(1/40) 

NPP maintenance tasks Ambiguous task 
description in 
procedures 

Not analyzed [4] 

C38  0.14 
(1/7)  
 

Transport fuel assemblies with 
fuel machines 

Action execution 
requires close 
coordination of 
multiple personnel at 
different locations 

Time 
pressure, 
visualization 
aid not 
available, 
unfavorable 
ergonomic 
design 

[4] 

C39  0.5 
(2/4)  

NPP maintenance tasks Unlearn or break 
away from 
automaticity of trained 
action scripts 
 – Switch off 
automatic fuses 

(Similar fuses 
within reach, 
unfavorable 
labeling 
design and 
working 
document 
design) 

[4] 
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C31-
C39 

D / 
U/E 

3E-3 ~ 
1.8E-1 

NPP crews perform SGTR 
events: HFE-2A, cool down the 
reactor coolant system  

Base case (Estimated 
HEP bounds) 

[22] 

C31-
C39 

D / 
U/E 

9E-5 
~5E-2 

NPP crews perform SGTR 
events: HFE-2B, cool down the 
reactor coolant system  

Complex case (Estimated 
HEP bounds) 

[22] 

C31-
C39 

D / 
U/E 

3E-3 ~ 
1.8E-1 

NPP crews perform SGTR 
events: HFE-3A, depressurize 
the reactor coolant system  

Base case (Estimated 
HEP bounds) 

[22] 

C31-
C39 

D / 
U/E 

1.8E-2 ~ 
3E-1 

NPP crews perform SGTR 
events: HFE-3B, depressurize 
the reactor coolant system  

Complex case (Estimated 
HEP bounds) 

[22] 

C31-
C39 

E 9E-5 ~ 
5E-2 

NPP crews perform SGTR 
events: HFE-4A, terminate safety 
injection  

Base case (Estimated 
HEP bounds) 

[22] 

C41 T 1E-3 Nuclear facility operation 
Communication 

Simple information  (Estimated 
HEP) 

[37] 

C41 T 5E-2 Nuclear facility operation 
Communication 

Moderate complex   (Estimated 
HEP) 

[37] 

C41 T 5E-1 Nuclear facility operation 
Communication 

Extremely high 
complex   

(Estimated 
HEP) 

[37] 

C41 T 1.54E-3 Notifying/requesting to ex-MCR Ex-CR 
communication 

 [116] 
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Appendix A4 PIF Attributes and Weights for Workplace 
Accessibility and Habitability 

Table A4-1 Attribute Identifiers and Descriptions for PIF Workplace Accessibility and 
Habitability 

ID Attribute 
WAH1 Accessibility (travel paths, security barriers, and sustained habituation of worksite) is limited because of 

physical threats to life in the environment (e.g., Traffic or weather impeding vehicle movement) 
WAH2 Habitability is reduced; Personnel cannot stay long at the worksite or they experience degraded conditions 

for work, 
• challenges to living conditions (e.g., isolation, confinement, microgravity) 
• environmental hazards like radiation or earthquake aftershocks 

WAH3 The worksite is flooded or underwater 
WAH4 The surface of systems, structures, or objects to be worked on cannot be reached or touched 

(e.g., because the surface is too hot to touch or the object is too high to reach). 
 

Table A4-2 IDHEAS-DATA IDTABLE-4 – PIF Weights for Workplace Accessibility and 
Habitability 

 

1 2 3 4 5 6 7 
PIF 
 

CF
M 

Error rates or task 
performance indicators 

Task (and error 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncer-
tainty) 

REF 

WAH
1 

E Accidents increase 75% in 
adverse weather 

Drive All weather included (Statistic
al data) 

[148] 

WAH
1 

E Heavy rain 4-6% 
increase in 
travel time 

Macroscopic 
travel times in UK 
the Greater London 
area (% increase in 
travel time) 

Light, moderate, 
heavy rain and snow 
on travel time 

(Statistic
al data) 

[149] 

Heavy snow 7.4 – 11% 
increase in 
travel time 

WAH
1 

E Light rain 9% (4-10%) 
increase in 
travel time 

Drive in rain 
 (% increase in 
travel time) 

Rain intensity: 
Light rain – 0.25-
6.4mm/h 
Heavy rain > 
6.4mm/h 

(From 
multiple 
studies) 

[57] 

Heavy rain 20% (8-
30%) 
increase in 
travel time 

WAH
1 

E Depth of 
floodwater 

Small 
car 

4WD 
vehicle 

Driving – small cars 
and 4WD cars 
(speed m/h) 

Car speed with 
varying depths of 
floodwater 
compared to at 
85m/h without flood 

(From 
many 
data 
sources) 

[57] 

100mm 10m/h 50m/h 
150mm 0 40m/h 
300mm 0 10m/h 

WAH
1 

E Precipitation is associated with 
a 75% increase in traffic 
collisions and a 45% increase 
in related injuries, as 
compared to `normal 'seasonal 
conditions 

Travel risk in mid-
sized Canadian 
cities 

Risk levels vary 
depending on the 
characteristics of the 
weather event 

(Statistic 
data) 

[150] 

WAH
1 

E Nominal – No 
congestion no weather 

1E-
7/mi 

Vehicle collision/ 
accident (probability 
of collision or 
accident per mile) 

Highway congestion 
and weather 
 

(Expert 
judgment
) 

[37] 

Moderate - Typical 
highway environment 

1E-
6/mi 
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congestion, many 
objects close to road, 
and bad weather 

1E-
5/mi 

WAH
2 

D Continuously decrease with 
radiation doses 

Perception, attention 
tests 

Varying radiation 
doses  

(Not 
analyzed
) 

[42, 
43, 
46, 
151] 

WAH
2 

U Continuously decrease with 
radiation doses 

Memory and 
reasoning tests 

Varying radiation 
doses 

(Not 
analyzed
) 

[42, 
43, 
46, 
151] 

WAH
2 

D
M 

Continuously decrease with 
radiation doses 

Judgment and 
decisionmaking, 
Space Shuttle 
operation 

Varying radiation 
doses 

(Not 
analyzed
) 

[42, 
43, 
46, 
151] 

WAH
2 

E Continuously decrease with 
radiation doses 

Visual-motor tasks, 
tracking, spatial 
transformation, 
Space Shuttle 
operation 

Varying radiation 
doses 

(Not 
analyzed
) 

[42, 
43, 
46, 
151] 

WAH
2 

D Continuously increase 
perception time, difficulty in 
concentrating or focusing 
attention, and divided attention 

Cognitive tests and 
Space Shuttle 
operation 

Novel environments 
(spaceflight or 
other), confinement, 
CO2 level increases 

(Not 
analyzed
) 

[44] 

WAH
2 

U Deficits only with personally 
relevant stimuli 

Reasoning tests Novel environments 
(spaceflight or 
other), confinement, 
CO2 level increases 

(Not 
analyzed
) 

[44] 

WAH
2 

D
M 

No observed changes Cabin Air 
Management 
System (a simulation 
task); problem- 
solving test, Iowa 
Gambling  

Novel environments 
(spaceflight or 
other), confinement, 
CO2 level increases 

(Not 
analyzed
) 

[44] 

WAH
2 

E Motor slowing, and 
increased motor variability 

Visual-motor tests 
and space shuttle 
operation 

Novel environments 
(spaceflight or 
other), confinement, 
CO2 level increases 

(Not 
analyzed
) 

[44] 

WAH
2 

T Degradations in social 
functioning, e.g., social 
integration, team cohesion 

Process social cues 
or social decision 
making 

Novel environments 
(spaceflight or 
other), confinement, 
CO2 level increases 

(Not 
analyzed
) 

[44] 

WAH
2 

E Statistically significant 
deterioration of intellectual 
efficiency as isolation 
time increased 

Various cognitive 
tests  

Astronauts in space 
station or in 
simulated lab  

(Not 
analyzed
) 

[152] 

WAH
2 

D Lack of detectable impairment 
over time 

Various cognitive 
tests  

Over-wintering crew 
over 6-month winter 
in Antarctic station - 
Hypoxia, isolation, 
confinement 

(Not 
analyzed
) 

[45] 

WAH
2 

D/
U/
E 

Attention function impairments 
and reduced P3a wave 

Attention tests Astronauts in Space 
Station - isolation, 
confinement 

(Not 
analyzed
) 

[45] 

WAH
2 

E Impairments in psychomotor 
function, arithmetical skills, 
working memory, and 
multitasking 

Various cognitive 
tests 

Hypoxia, isolation, 
confinement 

(Not 
analyzed
) 

[45] 

WAH
3 

E 9% flood-death reaching a 
destination 

Go into flood to 
reach a destination 
or rescue (Poor risk 

Flood (Statistic
al data) 

[153] 
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perception, 
underestimated the 
risk) 
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Appendix A5 PIF Attributes and Weights for Workplace Visibility 

Table A5-1 Attribute Identifiers and Descriptions for PIF Workplace Visibility 
ID Attribute 
VIS1 Low ambient light or luminance of the object that must be detected or recognized 

VIS2 Glare or strong reflection of the object to be detected or recognized 
VIS3 Low visibility of work environment (e.g., those caused by smoke, rain, and fog)  

 

Table A5-2 IDHEAS-DATA IDTABLE-5 – PIF Weights for Workplace Visibility 
1 2 3 4 5 6 7 
PIF 
 

CF
M 

Error rates or task 
performance indicators 

Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty
) 

REF 

VIS1 D Luminance Reading error Dial reading error Luminance 
(L/m2) 

Not 
analyzed 

[154] 
0.15 0.16 
1.5 0.1 
>15 0.08 

VIS1 D Contrast Error rate 
 

Visual discrimination Contrast (%) of 
the target to be 
discriminated 

No apparent 
uncertainty 

[155] 

5% 0.1 

6.9% 0.034 

VIS1 D Good 
Visibility 

6E-4 Read meters Visibility  (Uncertainty 
in good vs. 
poor 
visibility) 

[35, 
130, 
131] Poor 

Visibility 
3.5E-3 

VIS1 D Good 
Visibility 

5E-4 Read computer display Visibility (Uncertainty 
in good vs. 
poor 
visibility) 

[134
-
137, 
156] 

Poor 
Visibility 

2.4E-3 

VIS1 E Good 
Visibility 

2.8E-3 Operate continuous 
control while 
monitoring dynamic 
display 

Visibility Dual task 
(Uncertainty 
in good vs. 
poor 
visibility) 

[131, 
137, 
146] Poor 

Visibility 
3.5E-2 

VIS1 E Good 
Visibility 

3.6E-3 Adjust control while 
tracking a dynamic 
target signal  

Visibility Dual task  
(Uncertainty 
in good vs. 
poor 
visibility) 

[131, 
137, 
146] Poor 

Visibility 
3.5E-2 

VIS2 D No glare 5.3% Reading from 
computer LCD 
(reading errors) 

Ambient light to 
LCD 

Subjects 
adjusted 
chair to 
mitigate 
glare 

[157] 

Glare  4.6% 

VIS2 D No glare  
 

0.1 Reading from paper 
strip mimicking 
inspection tasks 
(reading errors) 

Glare source 
angles 

Subjects 
adjusted 
positions to 
mitigate 
glare 

[158] 

Glare 15o 

 
0.09 

Glare 40o 0.126 

VIS2 D Just imperceptible  1.17E-2 Text reading and 
categorizing from 
computer display 

Glare source 
luminance and 
subjective 

(Subjective 
definition of 
glare levels) 

[159] 
Just acceptable  1.69 E-2 
Just 
uncomfortable  

1.82 E-2 
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Just intolerable 4.3 E-2 evaluation of 
glare 

VIS2 E  Pitch 
control 
error 
(degree) 

Roll 
control 
error 
(degree) 

Visual flight task on a 
simulator (control 
errors) 

No laser (N) 
Strobing (S) vs. 
continuous (C) 
laser exposure  

Small 
sample size 

[48] 

No 
Laser 

2 5 

C 4 9 
S 10 20 

VIS3 D & 
E 

Fog 
level 

Distance 
headway 

Velocity 
error 

Simulated driving 
(mean distance 
headway and velocity 
error) 

Fog level 
(luminance 
contrast) 

No apparent 
uncertainty 

[160] 

0.05 19.5 5.5 
0.1 19.6 6 
0.2 17 7 

VIS3 D & 
E 

Fog 
level 

Lane 
deviation 

Velocity 
deviation 

Simulated driving 
(Lane deviation and 
velocity error) 

Fog level  No apparent 
uncertainty 

[161] 

Low 0.5 2.3 

High 0.55 2.6 

VIS3 E Low Visibility 5 errors Using mono and 
stereo TV to position a 
manipulator (# of 
errors) 

Environmental 
visibility (V) in 
undersea 
vehicles  

No apparent 
uncertainty 

[162] 
High 
Visibility 

12 errors 

VIS3 E Spotter present  3E-5 Crane/hoist strikes 
stationary object 
 

Spotter and 
visibility(V) 

(Expert 
judgment) 

[37] 

No spotter, typical 
Visibility  

3E-4 

No spotter, low 
Visibility 

3E-3 
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Appendix A6 PIF Attributes and Weights for Workplace Noise  

Table A6-1 Attribute Identifiers and Descriptions for PIF Workplace Noise  
ID Attribute 
NOS1 Continuous loud mixture of noisy sounds 
NOS2 Intermittent non-speech noise 
NOS3  Speech noise 
NOS4 Intermittent mixture of speech/noise 

 

Table A6-2 IDHEAS-DATA IDTABLE-6 – PIF Weights for Workplace Noise  
 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates or task 
performance 
indicators 

Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

NOS1 Unsp -0.26 (Effect size) Unspecified Continuous 
noise 

(statistic) [50] 

NOS2 Unsp -0.39 (Effect size) Unspecified Intermittent 
noise 

(statistic) [50] 

NOS3 Unsp -0.84 (Effect size) Unspecified Speech (statistic) [50] 
NOS4 Unsp -0.46 (Effect size) Unspecified Mixture of 

speech and 
noise 

 [50] 

NOS3  D -0.06 (Effect size) Visual 
Detection  

Speech (statistic) [50] 

NOS3  D -0.74 (Effect size) Aural 
Detection  

Speech (statistic) [50] 

NOS3 U or 
DM 

-0.84 (Effect size) Cognitive tasks Speech (statistic) [50] 

NOS1  
/ 
NOS2 

D -0.2 (Effect size) Perceptual  Nonspeech (statistic) [50] 

NOS1  
/ 
NOS2 

U/ DM -0.21 (Effect size) Cognitive  Nonspeech (statistic) [50] 

NOS1  
/ 
NOS2 

E -0.49 (Effect size) Motor  Nonspeech (statistic) [50] 

NOS1  
/ 
NOS2 

T -0.43 (Effect size) Communication  Nonspeech (statistic) [50] 

NOS1, 
NOS2, 
NOS3 

D 
 

Quiet 11.03 View word lists 
and recall them 
(# of correct 
recalls) 
Stroop task 
requiring 
attention 

55-dB(A) 
background 
noise or white 
noise amplified 
through wall 
speakers to 95 
dB(A) 
NOS1 – 50-70dB 
traffic noise 
NOS2 – 60dB 
intermittent 
traffic 
NOS3 – 
irrelevant speech 

No apparent 
uncertainty 
(Attention is for 
all CFMs) 

[163] 
Noise 9.41 
  

NOS1, 
NOS2, 

All* 
 

NOS1 0.032 – 
0.048 

NOS1 – 50-70dB 
traffic noise 

(Attention is for 
all CFMs) 

[49] 



 

A6-2 

NOS3 
 

NOS2 0.038 Stroop task 
requiring 
attention 
verbal serial 
recall that 
requires working 
memory 

NOS2 – 60dB 
intermittent 
traffic 
NOS3 – 
irrelevant speech 
 

(Working 
memory is for 
all CFMs) 

NOS3 0.034 

NOS1, 
NOS2, 
NOS3 
 

All 
 

Silence 0.27 Verbal serial 
recall that 
requires working 
memory 
Mental arithmetic 
performance 

NOS1 – 50 to 
70dB continuous 
traffic noise 
NOS2 – 60dB 
intermittent 
traffic 
NOS3 – 
irrelevant speech 

(Working 
memory is for 
all CFMs) 
(The task is for 
all CFMs) 

[49] 
NOS1 0.18-

0.227 
NOS2 0.24 
NOS3 0.314 

NOS1, 
NOS2, 
NOS3 
 

All 
 

Silence 0.27 Mental arithmetic 
performance 
Five-choice 
control task 

NOS1 – 50 to 
70dB traffic 
noise 
NOS2 – 60dB 
intermittent 
traffic 
NOS3 – 
irrelevant speech 
Low frequency 
continuous noise 

(The task is for 
all CFMs) 
(low frequency 
noise improves 
vigilance) 

[49] 
NOS1 0.3 
NOS2 0.3 
NOS3 0.40 

NOS0 
NOS0 

E, 
D 

Control 0.021 Five-choice 
control task 
Detect signals in 
vigilance task 

Low frequency 
continuous noise 
Low frequency 
continuous noise 

(Low 
frequency 
noise improves 
vigilance) 
(low frequency 
noise improves 
vigilance) 

[164] 
Noise 0.014 

NOS0 
NOS2 

D 
D, U, 
DM, 
E, T 

Control 0.43 Detect signals in 
vigilance task 
Arithmetic -
calculate the 
answer 

Low frequency 
continuous noise 
Noise bursts 

(Low 
frequency 
noise improves 
vigilance) 
(Arithmetic 
calculation can 
be in all 
macrocognitive 
functions) 

[164] 
Noise 0.33 

NOS2 
NOS2 

D, U, 
DM, 
E, T 
D 

No noise 0.18 
 

Arithmetic -
calculate the 
answer 
Read a number 

Noise bursts 
Noise bursts 

(Arithmetic 
calculation can 
be in all 
macrocognitive 
functions) 
No apparent 
uncertainty 

[165, 166] 

Noise 0.32 

NOS2 
NOS1 

D 
E 

No noise 0.27 Read a number 
5-choice control 
task (# of errors) 

Noise bursts 
95dB continuous 
noise 

No apparent 
uncertainty 
No apparent 
uncertainty 

[165, 166] 
Noise 0.25 

NOS1 
NOS2 

E 
D 

No noise 7 5-choice control 
task (# of errors) 
Perception  

95dB continuous 
noise 
Noise burst 

No apparent 
uncertainty 
Not analyzed 

[165, 166] 
Noise 10.5 

NOS2 
NOS2 

D 
U 

No noise 0.2 Perception  
N-back working 
memory test 

Noise burst 
Noise burst 

Not analyzed 
Not analyzed 

[167-171] 
Noise 0.34 

NOS2 U No noise 0.36 N-back working 
memory test 

Noise burst Not analyzed [167-171] 
Noise 0.38 

All* - The generic task, such as mental arithmetic performance, can be involved in every macrocognitive function.  
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Appendix A7 PIF Attributes and Weights for Cold/Heat/Humidity 

Table A7-1 Attribute Identifiers and Descriptions for PIF Cold/Heat/Humidity 
ID Attribute 
TEP1 Cold in workplace 
TEP2 Heat in workplace 
TEP3 High humidity in workplace 

 

Table A7-2 IDHEAS-DATA IDTABLE-7 – PIF Weights for Cold/Heat/Humidity 
1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

TEP1 Uns
p 

(Effect size on accuracy) 
0.05 

Unspecified Cold (Meta-
analysis) 

[172] 

TEP1 Uns
p 

(Effect size on reaction 
time) -0.11 

Unspecified Cold (Meta-
analysis) 

[172] 

TEP1 D (Effect size on accuracy) -
1.07 

Unspecified Cold (Meta-
analysis) 

[173] 

TEP1 U / 
DM 

(Effect size on accuracy) 
0.05 

Unspecified Cold (Meta-
analysis) 

[173] 

TEP1 E (Effect size on accuracy) 
0.58 

Unspecified Cold (Meta-
analysis) 

[173] 

TEP1 E (Effect size on reaction 
time) -1.1 

Unspecified Cold (Meta-
analysis) 

[173] 

TEP1 D / 
E 

%difference -7.8% Attention/Perceptual 
tasks 

<65oF (Meta-
analysis) 

[53] 

TEP1 D /E % difference (+) 1.75%  Mathematical 
processing tasks 

<65oF (Meta-
analysis) 

[53] 

TEP1 U  % difference -28% Reasoning/Learning/
Memory tasks 

<65oF (Meta-
analysis) 

[53] 

TEP1 Uns
p 

% difference -25% Unspecified <65oF, Short task 
duration (<60min) 

(Meta-
analysis) 

[53] 

TEP1 Uns
p 

% difference -3% Unspecified <65oF, long task 
duration (>60min) 

(Meta-
analysis) 

[53] 

TMP1 E  Tcar Tstop Simulate driving (Tcar 
time hitting brake 
from car, Tstop time 
hitting brake from 
STOP sign) 

Cold temperature 
for 40mins 

No apparent 
uncertainty 

[174] 
Norma
l 

4s 12s 

Cold 3s 8s 

TMP1 D, 
E, 
U, 
DM, 
T 

Center and range of error 
factor (i.e., PIF weight):  
D (instrumentation): [1.8, 
2.1, 2.7] 
U (cognition): [3.8, 10, 18] 
DM and T (management): 
[3., 8, 18] 
E (physical): [1.6, 5, 8] 
E (precise motor actions 
(connect lines to pump, 
remove air from lines and 
pumps): [13, 20, 30] 
 

Maintenance task of 
offshore oil and gas 
facility pumps 
(develop work orders, 
reconnect pump, 
open valve and 
reinstate pump) 

Extremely cold (Estimation 
of error 
factors 
based on 
operational 
data) 

[175] 

TEP2 Uns
p 

(Effect size on accuracy) -
0.33 

Unspecified Heat (Meta-
analysis) 

[172] 

TEP2 Uns
p 

(Effect size on reaction 
time) -0.11 

Unspecified Heat (Meta-
analysis) 

[172] 
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TEP2 D (Effect size) -0.78 Unspecified Heat (Meta-
analysis) 

[172] 

TEP2 U / 
DM 

(Effect size) -0.23 Unspecified Heat (Meta-
analysis) 

[172] 

TEP2 E (Effect size) -0.31 Unspecified Heat (Meta-
analysis) 

[172] 

TEP2 D (Effect size on accuracy) -
0.41 

Unspecified Heat (Meta-
analysis) 

[173] 

TEP2 U / 
DM 

(Effect size on accuracy) -
0.27 

Unspecified Heat (Meta-
analysis) 

[173] 

TEP2 E (Effect size on accuracy) -
0.59 

Unspecified Heat (Meta-
analysis) 

[173] 

TEP2 E (Effect size on reaction 
time) -1.1 

Unspecified Heat (Meta-
analysis) 

[173] 

TEP2 D %diff - (percentage 
difference between neutral 
and experimental 
temperature 
conditions) -14% 

Attention/Perceptual 
tasks  
 

>80oF (Meta-
analysis) 

[53] 

TEP2 U  %diff 1.75% Reasoning/Learning/
Memory tasks 

>80oF (Meta-
analysis) 

[53] 

TEP2 D / 
E 

%diff -14% Mathematical 
processing tasks 

>80oF (Meta-
analysis) 

[53] 

TEP2 Uns
p 

%diff -17.8% Unspecified >80oF, Short 
experimental 
session 
(<120min) 

(Meta-
analysis) 

[53] 

TEP2 Uns
p 

%diff -5% Unspecified >80oF, long 
experimental 
session 
(>120min) 

(Meta-
analysis) 

[53] 

TEP2 D  20oC 50oC RVP- rapid visual 
processing 
PRM-pattern 
recognition memory 
SSP-spatial span 

Normal: 20oC 
Hot: 50oC 

No apparent 
uncertainty 

[176] 
RVP 0.03 0.04 
PRM  0.04               0.08 
SSP 0.16 0.22 

TMP2 D /E 70oF 22 (# errors) Monitor displays (# of 
errors) 

Vigilance error of 
omission varying 
temperature  

No apparent 
uncertainty 

[177] 
92oF 46 (# errors) 

TMP2 D /E 37oC 0.1 Visual vigilance task 
(% of missed signals) 

Varying 
temperature  

No apparent 
uncertainty 

[177] 

38oC 0.14 

TMP2 D /E 37oC 0.35 Auditory vigilance 
task (% of missed 
signals) 

Varying body 
temperature  

No apparent 
uncertainty 

[177] 

38oC 0.47 

TMP2 D /E 82oF 0.52 Visual vigilance task 
(% of missed signals) 

Varying 
temperature  

No apparent 
uncertainty 

[177] 

92oF 0.56 

TMP2 D /E Min 20 40 60 Visual vigilance task 
(% of missed signals) 

Varying 
temperature and 
duration 

No apparent 
uncertainty 

[177] 
74o

F 
0.02 0.02 0.02 

82o

F 
0.06 0.06 0.06 

90o

F 
0.06 0.10 0.15 

TMP2 D /E 19oC 0.32 [177] 
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33oC 0.49 Vigilance task (% of 
missed signals) 

Varying 
temperature  

Time 
constraint 
and other 
PIFs 

TMP2 D /E 19oC 0.35 Vigilance task (% of 
missed signals) 

Varying 
temperature  

Time 
constraint 
and other 
PIFs 

[177] 
33oC 0.45 

TMP2 D / 
E 

 T1 T2 Split attention 50/50 
percent between two 
concurrent visual 
tasks T1 and T2 

Varying 
temperature and 
splitting attention 

Time 
constraint 
and other 
PIFs 

[51] 
25oC 0.3 0.22 
30oC 0.35 0.3 
35oC 0.65 0.4 

TMP2 DM No significantly difference in 
the switching point in the 
lottery task 

Lottery Game  Neutral 25oC vs 
warm 32oC 

Time 
constraint  

[178] 

TMP2 DM  CDQ 
score 

RSQ 
score 

CDQ (Choice 
Dilemma 
Questionnaire) and 
RSQ (Risk Scenario 
Questionnaire) 

Neutral 25oC vs 
warm 32oC 

Time 
constraint  

[178] 

25oC 5.92 3.68 

30oC 5.01 4.96 

TMP2 DM  #click Sum BART (Balloon 
Analogue Risk Task, 
# of average clicks 
and sum of burst 
balloons) 

Neutral 25oC vs 
warm 32oC 

No apparent 
uncertainty 

[178] 
25oC 6.77 32 
30oC 9.73 40 
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Appendix A8 PIF Attributes and Weights for Resistance to Physical 
Movement 

Table A8-1 Attribute Identifiers and Descriptions for PIF Resistance to Physical 
Movement 

ID Attribute 
PR1 Resistance to personnel movement, limited available space, postural instability  
PR2 Whole-body vibration 
PR3 Wearing heavy protective clothes or gloves or both 

 

Table A8-2 IDHEAS-DATA IDTABLE-8 – PIF Weights for Resistance to Physical 
Movement 

 

1 2 3 4 5 6 7 
PIF 
 

CF
M 

Error rates or task 
performance indicators 

Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncer-
tainty) 

REF 

PR1 E Size for 
access 

Right 
side 

Real 
location 

Removing two nuts 
(task completion time 
in seconds) 
 

Sizing and 
configuration for 
access - aperture 
size (in mm) and 
task location 
(right side and 
real location) 

(No error 
data) 

[179] 

35mm 100s 50s 
30mm 100s 70s 
20mm 200s 380s 

PR1 E 35% increase in task 
completion time with suited 
compared to unsuited. 
 

Mobility moving 
through hatchways, 
tunnels 

Size and 
configuration of 
hatchways, 
tunnels – 
unsuited and 
suited 

Accuracy is 
more 
sensitive, 
but no data 
reported 

[179] 

PR1 E  Mental 
addition 

Tapping Professional divers 
mentally added 
numbers or 
performed 
reciprocally tapping 

A dryland control 
test followed by 
manipulation at 
4.6m and 15.2m 
depths in the 
open ocean  

No 
apparent 
uncertainty 

[55] 

Land 0.08 0.053 
4.6m 0.07 0.057 
15.2m 0.15 0.056 

PR1 E  T1 T2 T3 Offshore lifeboat 
operation 
T1- Incorrectly 
operate brake cable 
T2- Fail to disengage 
boat   
T3- Fail to check air 
support system 

Controlled (C): 
Force 4 wind, 
daylight, 
unignited gas 
leak 
Severe (S): 
Force 6 wind, 
night, 
explorations/fire 
on platform 

(Data-
based 
estimation) 

[52] 

C 0.02 0.02 0.028 

S 0.04 0.07 0.158 

PR1  S-SM 12s Use space mitten 
(SM) and tool mitten 
(TM) to screw bolts 
(task completion time 
in secs) 

Space tool mitten 
cylinder mode - 
static (S) vs (D) 
dynamic 

 [180] 
D-SM 22s 
S-TM 12s 
D-TM 36s 

PR1  Measures % changes Male infantry soldiers 
marched on six 
occasions wearing 

Six occasions 
wearing either: 
no load, 

(No error 
data) 

[181] 

FVC 6-15% 
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Expiratory 17% loads (% changes in 
physiological 
measures) 

15 kg, 30 kg, 40 
kg or 50 kg. Each 
loaded 
configuration 
included body 
armor which was 
worn as battle-fit 
or loose-fit (40 kg 
only). 

Breathing 
frequency  

3 to 26 
breaths per 
min 

72% of participants 
experienced expiratory flow 
limitation whilst 

PR2 E Up to 40% more errors than 
occurring when tracking under 
static conditions  

Completion of 
tracking tasks 

Low frequency 
vertical vibration 
between 0.20g 
and 0.80g 

No 
apparent 
uncertainty 

[58, 
182, 
183] 

PR2 D / 
E 

10% to 15% reduction in error 
rates of information processing 
tasks (the impairment was due 
to a disruption in the 
information input processes) 

Processing of 
information in short-
term memory 

Exposure to 16 
Hz WBV at a 
magnitude of 
2.0m/s2 rms . 

No 
apparent 
uncertainty 

[58, 
182, 
183] 

PR2 D / 
E 

Effect size -1.79 Perception in task 
performance 

Vibration 
duration, 
intensity, 
frequency 

(Meta-
analysis) 

[56] 

PR2 U / 
E 

Effect size -0.52 Cognition in task 
performance 

Vibration 
duration, 
intensity, 
frequency 

(Meta-
analysis) 

[56] 

PR2 E Fine motor continuous: Effect 
size -0.89 
Fine motor discrete: Effect size 
-0.84 

Motor execution in 
task performance 

Vibration 
duration, 
intensity, 
frequency 

(Meta-
analysis) 

[56] 

PR3 E Percent error increased 17%-
23%; map plotting diminished 
by approximately 40% 

Military tasks - 
investigator-paced 
tasks and map 
plotting 

7-h periods on 4 
successive days 
with or without 
protective cloths  

No 
apparent 
uncertainty 

[184] 

PR3 E Normal 3.3CM Turning bolt with 
common screwdriver 
(Maximum space 
needed in centimeter 
(CM)) 

Wearing arctic 
leather jacket 
and gloves 

No 
apparent 
uncertainty 

[179] 

Arctic cloth 
and gloves 

4.0CM 

PR3 E  T1A 
(# of 
errors) 

T1B 
(# of 
errors
) 

T2A 
(# of 
errors
) 

Members of the 
National Guard‘s 
Civil Support Team 
(CST)  performed  
T1A, B - Minnesota 
Dexterity test - 
placing, turning, and 
displacing small 
objects (# of errors) 
T2A- Mirror Tracer 
Test (# of errors) 

Level A suits -
fully 
encapsulating, 
bulky, and heat 
retentive 

No 
apparent 
uncertainty 

[185] 

No 
suit 

2.7 4.6 0.71 

suit 18 25 3.15 
Task completion time increased 
109% 
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Appendix A9 PIF Attributes and Weights for System and I&C 
Transparency to Personnel 

Table A9-1 Attribute Identifiers and Descriptions for PIF System and I&C Transparency 
to Personnel 

ID Attribute 
SIC0  No impact  
SIC1  System behavior is complex to understand or not transparent to personnel    

• Decision bias – Personnel use cues as heuristics for making decision without fully 
understanding the context of the cues 

• Feedback about system state, action, and intention is not provided 
SIC2  Inappropriate system functional allocation between human and automation  

• Over-reliance – System is highly autonomous and personnel are not alerted for actions to take 
SIC3  System failure modes are not transparent to personnel  

• System behavior is not consistent 
• System failures are not obvious to personnel 
• System failures are coupled or interdependent 

SIC4  I&C logic is not transparent, e.g., complex logic for personnel to understand, I&C reset unclear to 
personnel  

SIC5  I&C failure modes are not transparent to personnel  
 

Table A9-2 IDHEAS-DATA IDTABLE-9 – PIF Weights for System and I&C Transparency 
to Personnel 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates or task 
performance indicators 

Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertaint
y) 

REF 

SIC1 
(Inf2.6) 

D / U No 
Automation 
 

0.03 Monitor status 
with or without 
automation aid in 
triple tasks 
(missing targets) 

Unreliable A – 
Automation aid for 
monitoring is 91% 
reliable 
No automation- no 
automation aid 

(The task 
was 
understandi
ng when 
automation 
failed) 

[186
] 

Unreliable 
automation 

0.41 

SIC1 U / 
DM 

Rate of pilots who made errors  20 pilots fly 1-
hour scenario 
with automation 
system failure 
(rate of pilots 
who made 
errors) 

Pilots’ mental 
model and 
knowledge about 
automation 
system 

(Small 
sample 
size) 

[187
] Routing tasks <0.3 

Mode awareness 
and understanding 
automation 

0.7 

Answer 
consequence of 
automation failure 

0.46 

SIC1 U / 
DM 

 A-C A-F ATC resolves 
conflicts with 
automation 
assistance, i.e., 
Conflict 
Resolution 
Advisor  
(incorrect rate)  

Automation is 80% 
reliable  
A-C – Automation 
correct 
A-F – Automation 
failure 
VSD – Visual 
display for 
transparency 

(Other PIFs 
may exist) 

[60] 
NoVSD 0.05 0.3 
VSD 0.02

5 
0.1 

SIC1 U / 
DM 

 % 
erro
r 

%SA Time ATC resolves 
conflicts with 
automation 
assistance,  

Automation is 80% 
reliable  
A-C – Automation 
correct 

(Other PIFs 
may exist) 

[60] 

No 
VSD 

0.1
1 

59% 7.78s 
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VSD 0.0
6 

73% 5.38s SA – Situation 
awareness 

A-F – Automation 
failure 
VSD – Visual 
display for 
transparency 

SIC1 Unsp. Traditional  75.9 (0-100) NPP crew 
performs normal 
procedures 
(operator 
performance 
assessment 
score 0-100) 

Traditional vs. 
transparent 
automation 
interface 

(Many other 
factors 
involved) 

[59] 
Transparen
t 

67.5 (0-100) 

SIC1 Unsp. No difference between 
transparency and non-
transparency 

NPP crews 
performs normal 
procedures  

Traditional vs. 
transparent 
automation 
interface 

(Many other 
factors 
involved) 

[59] 

SIC2 Unsp.  Pap
er 

CP NPP crews 
perform normal 
procedures 

Level of 
automation – 
paper procedures 
vs. computerized 
procedures (CPs) 

 [59] 

Performan
ce score 
and 
response 
time 

No difference 

Situation 
awareness 
score (1-
10) 

4.5 5.5 

Inf2.6 U 0.65  
(0.59 corresponding to the 
belief that automation will lead 
to high accuracy) 

Commission 
error in simulated 
flight  

Conflicting info, 
automation 
misleading 

(Other PIFs 
may exist) 

[186
] 

SIC2 D  Triple 
tasks 

Single 
task 

Monitoring status 
with automation 
aid (% of failing 
to detect 
automation 
failure) 

Automation 
reliability – 
constant vs. 
variable 
Simultaneous 
triple vs. single 
task  

Triple tasks [188
] 

Variable 0.18 0.03 
Constant 0.67 0.03 

SIC2 D Time on monitoring in the 
triple task 

Monitoring status 
with automation 
aid (time on 
monitoring task) 

Automation 
reliability – 
constant vs. 
variable. 
 

Triple tasks [188
] 

Variable 4.0s 

Constant 2.9s 

SIC2 
(Inf2.6) 

U  0.55 25 pilots 
simulated 4 flight 
events (failing to 
detect 
automation 
failure) 

Automation failure 
in the scenarios. 
There was other 
correct information 
available  

(More 
experience 
leads to 
higher error 
rates) 

[189
] 

SIC2 
(Inf2.6) 

DM 1 25 pilots 
simulated 4 flight 
events 
(commission 
rate) 

Decision aid was 
wrong. Pilots 
should use other 
information 

(Level of 
experience 
varied) 

[189
] 

SIC2 D / U Frequency of error 
classification: 
35% failure to monitor  
23% related to task distraction 
5% related to over-reliance on 
automation 

Flight automation 
failure accident 
(frequency of 
error 
classification) 

Automation-
induced 
complacency  

(Error 
classificatio
n) 

[190
] 
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SIC2 D 15s (RMS error)  72 6 pilots simulated 
flight tracking 
task (RMS 
errors) 

Task allocation - 
Duration of 
tracking automatic 
cycle 

(Small 
sample 
size) 

[191
] 30s (RMS error)  85 

60s (RMS error)  90 

SIC1 & 
SIC3 

Unsp. Freq. in 34 accidents Aviation FDAI 
Automation 
Human Error 
Types 

Accident caused 
by automation 
failure 

(Error 
classificatio
n) 

[61] 
Understanding of 
automation may be 
inadequate 

6/34 

Pilots may over-
rely on automation 

5/34 

Automation may 
not work well under 
unusual conditions 

4/34 

SIC1 & 
SIC3 

Unsp Top freq. in 34 accidents FDAI Automation 
Human Error 
Types 
(frequencies of 
error types) 

Accident caused 
by automation 
failure 

(Analysis 
did not 
separate 
system vs 
failure 
mode) 

[61] 
Lack of 
understanding of 
the system  

5/34 

Improper 
performance of an 
automation device 
in an abnormal 
situation 

4/34 

SIC4 DM  NoT T Identify threating 
targets under 
uncertainties  

T (transparent) - 
visual display of 
target uncertainty  
NoT– no 
transparency 
 
 

(Measures 
are not 
error rates) 

[192] 
% caution 
with 
decision 

30% 57% 

# attempts 1.43 1.73 
# identified 
targets 

13.5 19.5 

Accuracy 0.83 0.87 
SIC5 Unsp. HSI 34% Relative percent 

of errors reported 
in LERs 

Digital I&C failures 
in LERs between 
1994-1998 

Not 
analyzed 

[193
] Software 32 % 

Hardware 34% 
Unsp Unsp The results (Figure A9-1) 

indicated that instrumentation 
is more prone to human error 
than the rest of maintenance. 
 
Instrumentation & control 
equipment and software (IC), 
electrical equipment (EL), 
process valves, ventilation 
dampers or channel hatches 
(VAL), mechanical equipment 
(other than valves, MEC), 
block or primary valves in 
instrument lines (IVAL). 

Human errors 
recognizable in 
connection with 
maintenance 
were looked for 
by reviewing 
about 4400 
failure and repair 
reports and 
some special 
reports which 
cover two 
nuclear power 
plant units on the 
same site from 
1992–94 

Equipment types 
involved in single 
human errors 
1992–1994, 
together 206 
cases. 

(Root 
causal 
analysis) 

[194
, 
195] 
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Figure A9-1    Instrumentation is more prone to human error than the rest of maintenance    
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Appendix A10 PIF Attributes and Weights for Human-System 
Interfaces 

Table A10-1 Attribute Identifiers and Descriptions for PIF Human-System Interfaces 
 

ID Attribute 
HSI0  No impact – well designed HSI supporting the task  
HSI1  Indicator is similar to other sources of information nearby  
HSI2  No sign or indication of technical difference from adjacent sources (meters, indicators)  
HSI3  Related information for a task is spatially distributed, not organized, or cannot be accessed at the same 

time  
HSI4  Un-intuitive or un-conventionnel indications   
HSI5  Poor salience, eccentric location, or low text readability of the target (indicators, alarms, alerts) out of 

the crowded background  
HSI6  Inconsistance – Physical représentation of information, mesurément units, symbols, or tables  
HSI7  Inconsistent interpretation of displays   
HSI8  Similarity in control elements - Wrong element selected in operating a control element on a panel within 

reach and similar in design  
HSI9  Poor functional centralization –multiple displays/panels needed together to execute a task   
HSI10  Ergonomic deficits   

• Controls are difficult to maneuver  
• Labels and signs of controls are not salient or low readability 
• Labels are confusing (e.g., using unconventional measurement units)   
• Inadequate indications of states of controls - Small unclear labels, difficult reading scales  
• Maneuvers of controls are un-intuitive or unconventional  

HSI11  Labels of the controls do not agree with document nomenclature, confusing labels  
HSI12  Controls do not have labels or indications   
HSI13  Controls provide inadequate or ambiguous feedback, i.e., lack of or inadequate confirmation of 

the action executed (incorrect, no information provided, measurement inaccuracies, delays)  
HSI14  Confusion in action maneuver states (e.g., automatic resetting without clear indication)  

 

Table A10-2 IDHEAS-DATA IDTABLE-10 – PIF Weights for Human-System Interfaces 
 

1 2 3 4 5 6 7 
PIF 
 

CF
M 

Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty
) 

REF 

HSI1 D Perceived 
contrast 

Cent
ral 

Eccen
. 

Perceive target visual 
contrast (% contrast 
perceived) 

Target location – 
Fovea and 12o 
eccentric 
Surrounding – 
similar visual 
stimuli surround 
the target 

No apparent 
uncertainty 

[196] 

No 
surrounding 

40%  15% 

With 
surrounding 

26% 3% 

HSI1 D Random  0.004 Read numbers from 
screen 

Nearby similar text 
– Ordered from 
small to large 
numbers, 
randomly in line, 
randomly in cloud 

(Small 
subject 
sample) 

[197] 
Ordered 0.004 
Cloud 0.015 

HSI1 D Random  0.0995 Search targets and 
count the total 
number (incorrect 
counting) 

Target numbers 
are arranged 
orderly, randomly 
with similar 

(Ordered 
has the 
maximum 
similarity 

[197] 
Ordered 0.224 
Cloud 0.194 
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distractors in line, 
or embedded 
among similar 
distractors (cloud) 

between 
target and 
distractors) 

HSI2 D 2.1E-2 (1/56)                     Verifying the state of 
indicator lights on the 
front side of a control 
cabinet (Erroneous 
operation of a push 
button) 

No indication of 
technical 
differences 
between two 
adjacent plant 
units provided 

Rarely 
performed 

[4] 

HSI3 U With 
integration 

0.23 96 male students 
diagnosed leak 
location using NPP 
simulator displays 
(Diagnosis accuracy) 

Integration - the 
process 
information was 
integrated into the 
alarm display and 
presented as 
alarm bars 

Time 
constraint 
(students not 
proficient 
with the 
tasks) 

[198] 

Without 
integration 

0.29 

HSI3 D Without 
HUD 

0.27 Pilots detect off-
normal event out-of-
window (missing 
events) 

HUD (head-up-
Display) and 
target in different 
spatial location for 
view 

Multitasking 
(collective 
data from 
many 
studies) 

[199] 

With HUD 0.36 

HSI3 D Without HITS 0.22 Pilots detect off-
normal event out-of-
window (missing 
events) 

HITS(Highway-in-
the-sky) A HITS 
display integrates 
3-D information of 
the flight path into 
a perspective path 
through the air  

Multitasking 
(collective 
data from 
many 
studies) 

[199] 

With 
HITS 

0.45 

HSI4 D Innovate 0.13 NPP operators 
identify parameter 
trends on NPP 
simulators (% 
incorrect 
identification) 

Innovate display – 
graphically show 
trends 
Conventional 
display - show 
numeric 
parameter values  

No context, 
no peer-
checking, 
time 
constraint 
(small 
sample) 

[200] 
Conventional  0.33 

HSI4 D Innovate 0.11 NPP operators check 
the values of multiple 
parameter  
 (% incorrect 
identification) 

Innovative display 
– graphic features 
of parameters. 
Conventional 
display - numeric 
parameter values  

No context, 
no peer-
checking, 
time 
constraint 
(small 
sample) 

[200] 

Conventional  0.2 

HSI5 D Salient 0.008 Detect visual 
notification of a 
pending interrupting 
task while performing 
an arithmetic task 
 

Non-salient: 
Exclamation 
marks appeared 
over a clock icon 
in the controller 
display 
Salient – pop-out 
color or blinking 
visual icon that 
captured attention 

Dual-task in 
non-salient 
display 

[142] 
Non-salient 0.167 

HSI5 D Central  0.04 Students detect 
visual targets 
(missing rate) 

Location of the 
target in the 
central/eccentric 
visual field 

No apparent 
uncertainty 

[201] 
Eccentric 0.11 

HSI5 D Font size = 7.434 * EXP(-
contrast/0.6297) + 5.028 
 

Read text from 
displays (error-free 
font size) 

Error-free angular 
(arc min) font size 
is a function of text 
contrast 

(Error-free: 
error rate < 
0.01) 

[202] 
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Formula is fitted from 
experimental data 

HSI5 D Minimum salience (luminance 
contrast and color contrast) 
for reliable perception 

Four basic tasks: 
Salient target to 
capture attention; 
Use colors to identify 
information 
categories; 
Separate information; 
Read text 
 

Luminance 
context and color 
contrast of target 
or text from the 
background or 
surround 
distractors, 
Apparent 
luminance, 
number of colors  

(Numbers 
from many 
experimental 
papers) 

[203, 
204] 

 Lumin. Color  
Attentio
n >20cd/m

2
 >0.24 

in CIE 
Idnetific
ation <20cd/m

2
 > 0.04 

in CIE  
 

Separat
ion 

>15~20% >0.00
4 

Text 
reading 

>30%  

HSI5 D View distance Error 
rate 

Read green text on 
black background in 
daylight 

View distance 
(meters) from the 
CRT screen, 
viewing time was 
0.5s. 

(0.06 is the 
lowest error 
rate with 
strong 
ambient 
light) 

[202] 

1.21meter 0.06 
2,13m 0.18 
3.05m 0.42 

HSI5 D  Mat
ch 

Mis 
match 

Prospective memory-
based decision-
making with cue/task 
match 

Cue (alert) 
saliency – flicking 
vs. static 
Cue-task match 
vs. mismatch 

No apparent 
uncertainty 

[205] 

Salie
nt 

0.0
3 

0.1 

Non-
salien
t 

0.1
6 

N/A 

HSI6 D  Standard 0.15 IT Professionals 
learned and 
answered questions 
with e-learning 
systems (error rate of 
answering questions) 

Information 
displayed 
inconsistently 
across displays 

Subjects 
were in 
training and 
not proficient 
yet 

[206] 
Physical 0.04 
Conventional 0.29 
Conceptual 0.2 

HSI7 D W=5.7 Information gathering 
tasks 

Inconsistent 
interpretation of 
displays 

(Engineering 
judgment) 

[121] 

HSI8  7.29E-3  
(1/162) 
 

Pulling an isolating 
terminal in a 
control cabinet 
(Wrong terminal 
pulled) 
 

Similar terminals 
nearby, terminals 
arranged in 
regular patterns, 
similar terminal 
identification 
codes 

(Errors could 
be for a step 
or a task) 

[5] 

HSI8  8.9E-4  
(7/8058)   

Operating a control 
element on a panel 
(Wrong element 
selected) 
 

Wrong control 
element within 
reach and similar 
in design 
 

(Errors could 
be for a step 
or a task) 

[5] 

HSI8  1.3E-3 
(1/888)  
 

Reassembly of 
component elements 
(Wrong element)  

Similar design and 
close spatial 
proximity between 
correct and wrong 
element 
 

(Errors could 
be for a step 
or a task) 

[4] 

HSI8  1.2E-3  
(1/948)                      

Operating a 
pushbutton control 
(Wrong button 
selected) 

Similar buttons 
nearby, 
ergonomically 
well-designed 
panel 

(Errors could 
be for a step 
or a task) 

[4] 
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HSI8  9.2E-4 

1/1146 
Operating a push 
button control (Wrong 
button selected)             

Similar buttons 
within reach, text 
labeling only 
 

(Errors could 
be for a step 
or a task) 

[4] 

HSI8  8.9E-4  
(1/1332)                    

Operating a rotary 
control (Wrong switch 
selected)          

Switch within 
reach,  
similar switches 
nearby, text 
labeling only 

(Errors could 
be for a step 
or a task) 

[4] 

HSI8  7.8E-4  
(1/1512)                    

Connecting a cable 
between an 
external test facility 
and an electronic 
module (Connected 
to wrong module) 
 

Module access 
ports within reach, 
similar access 
ports nearby, 
frequently 
performed task, 
color coding of 
ports 

(Errors could 
be for a step 
or a task) 

[4] 

HSI8  1.2E-3  
(3/2630)                     
   

Operating a control 
element on a panel 
(Wrong control 
element selected) 

Plain text labeling, 
similar controls 
within reach                       
 

(Errors could 
be for a step 
or a task) 

[5] 

HSI8  2.1E-3 
(4/1958)                  

Operating a control 
element 
on a panel 
(Wrong control 
element selected) 

Mimic diagrams, 
color coding, 
similar 
controls within 
reach 
 

(Errors could 
be for a step 
or a task) 

[5] 

HSI8  1.6E-3 
 (7/4588)                 

Operating a control 
element on a panel 
(Wrong control 
element selected) 

Wrong control 
element within 
reach and similar 
in design 

(Errors could 
be for a step 
or a task) 

[5] 

HSI9 E  PD 
low 

PD 
M 

PD 
High 

Execute procedures 
in NPP local stations 

PD – Panel 
ergonomic design 
 
FC – Functional 
centralization, low 
for too many 
panels 

(Expert 
judgment) 

[7] 

FC 
Low 

8.6
2E-
1  

4.84
E-1  

2.64E
-1  

FC-
medi
um 

2.8
4E-
1 

1.29
E-1  

8.41E
-2 

FC-
high 

1.1
5E-
1 

6.24
E-2 

4.04E
-2 

HSI1
0 

E 8.78E-4 
(1/1347) 
 

Operation of a 
manual control at an 
MCR control panel 
(Task not 
remembered)                                                       
 

Position of 
indicator lamps 
ergonomically 
unfavorably  
designed 
 

(Errors could 
be for a step 
or a task) 

[5] 

HSI1
2 

E 1.93E-3 
(1/612) 

Operating a 
continuously 
adjustable rotary 
handle (Handle 
rotated too far)  

No markings and 
no end stop 
present  

(Errors could 
be for a step 
or a task) 

[5] 

HSI1
2 

 9.83E-3 
(1/120) 
 

Reinstallation of 
control rod drive 
motors (Drive motor 
mounted to wrong 
control rod, false 

No position labels 
on control rods, 
position inferred 
indirectly from 

(Errors could 
be for a step 
or a task) 

[5] 
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identification of 
position) 

secondary 
information 

HSI1
2 

 7.57E-3 
(1/156)          

Connecting 
transducers to 
pressure sensing 
lines (Connections 
swapped, 
professional  
knowledge 
remembered 
incorrectly) 
       

Frequently 
performed task, no 
labeling                                                             
 

(Errors could 
be for a step 
or a task) 

[5] 

HSI1
3 

E W=5.5 Unspecified 
manipulations 

Controls provide 
inadequate or 
ambiguous 
feedback, i.e., lack 
of adequate 
confirmation of the 
action executed  

(Engineering 
judgment) 

[121] 
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Appendix A11 PIF Attributes and Weights for Equipment and Tools 

Table A11-1 Attribute Identifiers and Descriptions for PIF Equipment and Tools 
ID Attribute 
ETP0  No impact –ETPs are easy to use and well maintained under proper administrative control  
ETP1  ETP is complex, difficult to use, or has poor suitability for the work, e.g., 

• Using ETPs require calculations 
• ETP has ambiguous or unintuitive interfaces 
• ETP is difficult to maneuver 
• Labels on ETPs are not salient 

ETP2  Rarely used ETP does not work properly or is temporally not available (due to lack of proper 
administrative control, lack of accessories, incompatibility, improper calibration, etc.)  

ETP3 ETP labels are ambiguous or do not agree with document nomenclature 
ETP4  Personnel are unfamiliar or rarely use the ETP, e.g., 

• Failure modes or operational conditions of the ETP are not clearly presented to personnel  
• Personnel are not familiar with the ranges, limitations, and requirements of ETP 

 

Table A11-2 IDHEAS-DATA IDTABLE-11 – PIF Weights for Equipment and Tools 
1 2 3 4 5 6 7 
PIF 
 

CFM Error rates or task 
performance indicators 

Task (and 
error measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

Unsp. Unsp
. 

 X2 
correlation 
coefficient 

Human errors in 
225 automotive 
manufacture 
accidents (X2 
correlation 
coefficient) 

Associations 
between types of 
human error and 
contributing factors 
evaluated by 
cross-Pearson’s 
Chi-test 

(CFMs and 
PIFs 
unspecified) 

[207] 

Unsafe 
Conditions 

29.7 

Machinery and 
equipment  

34.1 

Tools 3.9 
Organizational 
factors         

3.9 

Unsp. Unsp
. 

 Cronbach 
's Alpha 
Coefficient 

Cronbach 's 
Alpha 
Coefficient of 
the factors 
studied and 
overall 
equipment 
effectiveness 

Relationship 
between human 
errors in 
maintenance and 
overall equipment 
effectiveness in 
food industries 

(CFMs and 
PIFs 
unspecified) 

[208] 

Human error in 
maintenance  

0.818 
 

Machine 
availability  

0.761 
 

Machine 
performance 

0.823 
 

Product quality 0.776 

ETP1 E  Befor
e 
noon 

Afternoon Experienced 
technicians 
used digital and 
analog 
multimeters to 
measure 
voltage and 
resistance 
(%measuremen
t errors) 

Tools - Digital vs 
analog, 
Time of work – 
before noon (FN) 
and afternoon (AN) 

(The errors 
are applicable 
to Detection 
and 
execution) 

[63] 

Digital 4.45 5.74 

Analo
g 

11.07 13.7 

EAP1, 
EAP2 

E Freq. of EAP as the cause in 
100 accidents 

Construction 
work (freq. of 
EAP as the 

Suitability, 
usability, and 
conditions of 

(Statistical 
data, no error 
rates) 

[209] 

EAP1-
suitability  

44 
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EAP1- usability 19 cause of an 
accident) 

equipment and 
tools EAP2- 

conditions 
12 

EAP1 E # of calculation %error Calculation 
needed in 
construction 
work 

Number of 
calculations in 
construction work 

(Unverified 
original data 
source) 

[210-
212] 2 0.01 

3 0.04 
4 0.05 
5 0.07 
8 0.1 

ETP1 E Code 
interpretation 

0.015 Calculation 
needed in 
construction 
work (error rate 
in calculation) 

Types of 
calculation needed 
in construction 
work  

(Types pf 
calculation 
are applicable 
to use ETPs) 

[210-
212] 

Ranking 0.014 
Table look-Up 0.013 
Loading 
coefficients 

0.133 

Loading 
directions 

0.10 

Reduction 
factors 

0.80 

Loading 
combinations 

0.42 

Unsp E Equipment Freq. Proportion of 
accidents 
caused by 
humans vs 
specific 
equipment/syst
ems in chemical 
process 
industry  

Human error 
contributor freq. in 
364 chemical 
process plant 
accidents, each 
accident has ~2 
contributors on 
average 

(Unspecified 
human error 
contributors) 

[213] 
Piping system 25% 
Storage tank                 14% 
Reactor  14& 
Heat transfer 
Eq. 

10% 

Process vessel 8% 
Separation Eq. 7% 
Machineries 5% 

ETP4 E  Non-
FLEX 

FLEX Use of portable 
generator or 
pump in a Non-
FLEX-designed 
scenario (sunny 
day) vs. a 
FLEX-designed 
scenario 
(severe 
accident) 

Personnel rarely 
use the equipment 
and training is 
infrequent. 
Non-FLEX 
scenario– no 
complication 
FLEX scenario – 
Post seismic and 
rain 

Scenario 
unfamiliar, 
rarely 
performed 
actions, poor 
training 
(Expert 
judgment) 

[3] 

Transport 
0.057 0.14 

Connect 
0.088 0.16 

Operate 
0.052 0.12 
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Appendix A12 PIF Attributes and Weights for Staffing 

Table A12-1 Attribute Identifiers and Descriptions for PIF Staffing 
ID Attribute 
STA0  No impact – adequate staffing  
STA1  Shortage of staffing  

• key personnel are missing 
• unavailable or delayed in arrival 
• staff pulled away to perform other duties 

STA2  Ambiguous or incorrect specification of staff roles, responsibilities, and configurations 
• Inappropriate staff assignment  
• Personnel utilization (percent of time on task) 

STA3 Lack of certain knowledge, skills, or abilities needed for key personnel in unusual events, e.g., 
Key decision maker’s knowledge and ability are inadequate to make the decision (e.g., lack of required 
qualifications or experience)  

STA4  Lack of administrative control on fitness-for-duty  
 

Table A12-2 IDHEAS-DATA IDTABLE-12 – PIF Weights for Staffing 
 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncertai
nty) 

REF 

STA
1 

Uns
p. 

 M-
minimal 
staffing 

N-
normal 
staffing 

Crew performed five 
EOP scenarios: 
T1- Primary tasks 
T2 – Announcement 
and notifications 
T3- Cooldown and 
stabilization 
(Performance rating 
scale 1-10) 

Crew size 
Reduced I- SRO &RO 
Minimum (M)- CRS, 
RO, BOP 
Normal (N)- CRS, RO, 
BOP, control room 
technician  

(Scenario 
differenc
es) 

[214] 

T1 2.9 2.9 

T2 3.1 3.3 

T3 2.65 3.25 

STA
1 

Uns
p 

Operator workload (6-60) Crew performed five 
EOP scenarios 
S- Supervisor 
RO, BOP 
(Operator workload 
level rated from 6 to 
60) 

Crew size 
Reduced  
Minimum (M)- CRS, 
RO, BOP 
Normal (N)- CRS, RO, 
BOP, control room 
technician  

(Scenario 
differenc
es) 

[214] 
 N M 
S 38 49 
RO 39 41 
BOP 38 38 

STA
1 

T M N Crew performed five 
EOP scenarios: 
S- Supervisor 
RO, BOP 
(Team interaction 
score 1-5) 

Minimum (M)- CRS, 
RO, BOP 
Normal (N)- CRS, RO, 
BOP, control room 
technician (CT) 

(Scenario 
differenc
es) 

[214] 

4.3 4.9 

STA
1 

D 4 AVOs 0.25 Monitor and detect 
targets (% of missing) 

Alternate Crew 
Configurations- # of 
Airforce Vehicle 
Operators (AVOs) 

 [215] 
6 AVOs 0.05 
8 AVOs 0 

STA
1 

Uns
p. 

Task completion time 
(min) 

Firefighters complete 
twenty-two essential 
tasks that must be 

Firefighter crew size  [68] 

2-person 22:30 
3-person 20:37 
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4-person 15:46 performed on low 
hazard structure fires 
(task completion time) 

5-person 15:52 

STA
1 

Uns
p. 

% of maximum heart rate Firefighters complete 
twenty-two essential 
tasks that must be 
performed on low 
hazard structure fires 
(% of maximum heart 
rate for the age) 

Firefighter crew size  [65] 
 Driver Officer 
2-
person 

89% 93% 

3-
person 

72% 70% 

4- and 
5-
person 

75%, 
71% 

70%. 
68% 

STA
1 

Uns
p 

 PRT OST EMS (Emergency 
Medical Service) crews 
complete all EMS 
tasks for Trauma 
Patient (PRT- patient 
removal time, OST- 
overall time on the 
scene) 

Crew size and 
configuration 
2E &A 2-person Engine 
+ Ambulance 
3E&A 
4E&A 
2&A- 2-person 
Ambulance only 
 

 [67] 
2E&A 4:23 13:46 
3E&A 3:13 12:06 
4E&A 2:52 10:23 
2&A 6:59  

STA
1 & 
STA
2 

D/U/
DM/
E 

 Easy 
scenario 

Diff. 
scenario 

3-person NPP crews 
performed 8 scenarios 
(OPAS - Operator 
Performance 
Assessment Scale 0 to 
1) 

Staffing configuration 
T - Traditional staffing – 
3 persons for one 
reactor 
U - Untraditional staffing 
– 3 persons for two 
reactors with 
automation 

(Automati
on use 
varied) 

[62] 

T 0.825 0.662 

U 0.755 0.457 

STA
2 

Uns
p. 

 Trau
ma 

Cardia
c 

EMS crews complete 
all EMS tasks for 
Trauma Patient (OST- 
overall time on the 
scene) 

Crew configuration 
A - 1 ALS on Engine & 
1 ALS on Amb 
(Ambulance) 
B - 2 ALS on Amb 
C - 1 ALS on Engine/ 
BLSAmb 
D - BLSEngine/ 1 ALS 
on Amb 

 [67] 

A 10:50 11:00 
B 13:06 12:00 
C 12:38 10:30 
D 11:45 13:00 

STA
2 

D 
/DM 

% mean attention state Monitor status and 
replan tasks in a 4-
hour session with 2-
10% utilization of time 
(% attention state: 
directed on task, 
divided between task 
and other things, 
distracted away from 
the task) 

Low task utilization time 
(2-10%) in long working 
sessions 

(Student 
subjects 
may 
differ 
from 
licensed 
crews)  

[69, 
216] Directed 32% 

Divided 22% 
Distracted 46% 

STA
2 

Uns
p/ 

“Full-crew” in 97.6% 
railroad accidents  

Railroad operation Crew sizes in accidents (Opinion 
article) 

[217] 

STA
2 

D / E  Ins Out Simulated Tactical Air 
Command Pilots 
detect and respond to 
threat targets 

1-man crew - all 
controls and displays 
were located in a single 
cockpit,  
 2-man crew – the 
controls and displays 
were divided between 
two cockpits, 
Ins - Inside-cockpit 
threat targets 

Time 
constrain
ed  

[218] 
2-man 0.04 0.25 
1-man 0.04 0.45 
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Out - Outside-cockpit 
threat targets 

STA
2 

D The crews on airplanes 
flown with three pilots did 
see more aircraft. 
Interestingly, the 2-person 
crews saw significantly 
more aircraft than the two 
pilots on the 3-person 
airplanes 

Simulated flying and 
detecting targets 
outside cockpit 

2- vs. 3-pilot crew 
configuration 

(Original 
data not 
public) 

[219] 

STA
3 

Uns
p. 

Average F-JAS score Normal and incident 
NPP CR operation: 
SS- shift supervisor, 
RO-reactor operator, 
SE-Safety Engineer or 
technician (average F-
JAS scores for each 
category) 

F-JAS 51 items of ability 
evaluation in four 
categories 
C – Cognitive reasoning 
I – Interpersonal 
P – Psychomotor 
S – Sensory perception 

(Subjecti
ve 
assessm
ent) 

[220] 
 RO SS SE 
C 4.49 4.91 4.83 
I 5.1 5.47 5.31 
P 3.05 3.19 2.34 
S 4.28 4.46 3.6 

SAT
2 

Uns
p. 

SMR staffing approach 
requires a comprehensive 
analysis of all the tasks, 
jobs, and workload which 
may be required of an 
operator while on the job 

Monitor and respond to 
SMRs 

Staffing configuration (No error 
data) 

[221] 

SAT
2 

Uns
p. 

Utilization # errors/ 
task 

Dispatching in 
managing networks of 
railroads and flights (# 
errors/task) 

Utilization - % time on 
task 

(Different 
types of 
tasks) 

[222] 

48% 1.5 
51% 2.2 
59% 12 

STA
3 

Uns
p. 

Ability requirements in 
two work conditions for 
reactor operators (Figure 
12-1). 
 
The F-JAS scales ranged 
from 1 to 7 with larger 
numbers reflecting higher 
ability requirements 
 * p < .05, ** p < .01. 

F-JAS ability 
requirements for NPP 
CR crew members:  
SS- shift supervisor, 
RO-reactor operator, 
SE-Safety Engineer or 
technician (average F-
JAS scores for each 
category) 

Normal and incident 
NPP CR operation 
N= 87 reactor 
operators, 60 shift 
supervisors, and 40 
safety engineers 

(Subjecti
ve 
assessm
ent) 

[220] 

 

 
Figure 12-1  Ability requirements in two work conditions for reactor operators
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Appendix A13 PIF Attributes and Weights for Procedures, 
Guidelines and Instructions 

Table A13-1 Attribute Identifiers and Descriptions for PIF Procedures, Guidelines, and 
Instructions 

ID Attribute 
PG0  No impact – well validated procedures like most EOPs  
PG1  Procedure design is inadequate and difficult to use  

• Difficult layout, lack of placeholders 
• Graphics or symbols not intuitive  
• Fold-out page not salient 
• Complicated logic and mental calculation required (e.g., unit conversion)  
• Poor standardization in use of terminology 
• Multiple versions not clearly labeled 
• Inconsistency between procedures and displays  

PG2  Procedure requires judgment  
• Assessment of trends 
• Foldout use 
• Mental representation of the given situation 

PG3  Procedure lacks details, e.g.,   
• Lack of verification in procedure for verifying key parameters for detection or execution  
• Lack of guidance to seek confirmatory data when data may mislead for diagnosis or 

decisionmaking  
• Lack of detailed steps for non-skill-of-craft actions 

PG4  Procedure is ambiguous, confusing, e.g, 
• Wrong or incomplete descriptions in certain key steps 
• Conflict between step’s literal meaning and step intention 

PG5  Mismatch - Procedure is available but does not match the situation (e.g., needs deviation or 
adaptation)  

PG6  Procedure is not applicable or not available 
PG7  Procedure is misleading 

 

Table A13-2 IDHEAS-DATA IDTABLE-13 – PIF Weights for Procedures, Guidelines, and 
Instructions 

 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

RE
F 

Unsp Unsp Freq. (%) of causes  Identification and 
classification of root 
causes in 53 NPP 
LPSD human or 
human-related events 
(Freq. of procedure 
as the cause) 

Pre-defined 
categories of root 
causes 

(Root causal 
analysis) 

[71] 
Personnel (team) 29% 
Procedure 24% 
Planning 11% 
Training 10% 
Communication 9% 

Unsp E No PIF 0.03
3 

Elevator installation 
(All kinds of human 
errors made in 
installation) 

“Inadequate” 
procedure is for 
unspecified PIF 
attributes 

(Statistical 
data and 
model fitting) 

[22
3] 

Inadequate 
procedure 

0.5 

Unsp E  Good 
workloa
d 

Poor 
Workl
oad 

NPP operators 
manipulating simple 
(discrete) control in 
Low Power Shutdown 
(error rate in 

Good vs. Poor 
procedure (P) 
(Unspecific 
definition of good 
or poor procedure) 

With 
recovery   

[13
8] 

Good P 
 

4.53E-5 1.56E
-5 
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Poor P 3.53E-3 1.58E
-5 

executing procedure 
steps) 

Unsp E Good  
 

3.20.E-3 Verifying state of 
indicator 

Nominal vs. poor 
procedure + poor 
training 

Scenario 
familiarity 
may be in 
the high 
HEP 

[13
8] 

Poor 
proce
dure + 
poor 
trainin
g 

1.63.E-1 

PGI1 D # of ROs failed 3 RO use CPS 
 (# of ROs failed) 
T1-Detecting failures 
of the automatic 
evaluation function. 
T1-R (red x) 
T1-G (Green x) 
T2- Detecting failures 
of the place-keeping 
function 
T3- Total loss of CPS 
and transition to 
paper 

CP indicators: red 
and green x for 
automation failure, 
Place-keeper, 
transition to paper 
procedure 

(3 subjects 
tested) 

[22
4] T1-R 0  

T1-G 3 
T2-ES1.3 3 
T2-E0 1 
T3 
 

1 

PGI1 Unsp Total # of errors made Sixteen licensed 
operators worked in 
teams of SRO/RO 
perform LOCA and 
SGTR scenarios 

Computerized 
(CP) vs paper 
procedures (BP) 

(Errors in 
whole 
scenarios) 

[72] 
 LOCA SGTR 
CP 4 12.75 
BP 18.75 13 

PGI1 D/E # of operation errors 45 OPERATORS 
executed decision 
and action tasks to 
deal with alarm 
signals, while 
detecting occasional 
system errors in the 
interface (# of 
operation errors) 

CP vs BP, 
Team size (1,2,3-
person) 

(Whole 
scenarios) 

[22
5] CP 0.53 

BP 1.08 

PG1 D/E See Figure A13-1 45 OPERATORS 
executed decision 
and action tasks to 
deal with alarm 
signals, while 
detecting occasional 
system errors in the 
interface (Subjective 
scores) 

CP vs BP, 
Team size (1,2,3-
person) 

(Whole 
scenarios) 

[22
5] 

PG1 E 3.3E-3  
(2/651) 

NPP maintenance 
tasks using a 
procedure (Omitting 
an item of instruction)                

Long list, checkoff 
provisions                                                                                    

Not analyzed [4] 

PG1 E 3.38E-3 (1/350) 
(In comparison, 0/2010 for 
reading instructions in a 
written procedure, long 
procedure, checkoff 
provisions, task also part of 
professional knowledge) 

Performing a manual 
control action at an 
MCR panel (Task 
omitted)  

Long procedure, 
no checkoff 
provisions 

Not analyzed [5] 

PGI2 Unsp Y=difficulty, x=% of the 
level descriptions 
(Figure A13-2) 

Experts rated 
difficulty score for 
procedures 

Percent of 
intermedium 
procedure 
description 

(Subjective 
rating) 

[22
6] 
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(requiring 
judgment) 

PGI3 Unsp Y=difficulity, x=% of the 
level descriptions 
(Figure A13-3) 

Experts rated 
difficulty score for 
procedures 

Percent of 
detailed procedure 
description 

(Subjective 
rating) 

[22
6] 

PGI3 E 0.5 (1/2)  Testing electronic 
modules in the 
reactor protection 
system. 
(Signal plugs 
erroneously removed 
in all redundancies) 
 

Lack of detailed 
instructions in 
procedures, rarely 
performed task, 
unfavorable 
ergonomic design 
of alarm indication 

Rarely 
performed 
task, poor 
HSI 

[5] 

PGI4 Unsp Y= difficulty, x=% of the 
level descriptions 
(Figure A13-4) 

Experts rated 
difficulty score for 
procedures 

Percent of 
problematic 
(confusing, 
ambiguous) 
procedure 
descriptions 

(Subjective 
rating) 

[22
6] 

PGI2 
/ 
PGI4 

Unsp VPP values for EOPs 
(VPP value is 
proportional to time 
needed) 

Measuring variability of EOP 
progression (VPP) 

VPP features: 
Task complexity, 
same task 
covered by 
contiguous 
alternative steps,  
conflict between 
steps, literal 
meaning and step 
intention,  
foldout use, 
assessment of 
trends, 
mental 
representation of 
the given 
situation, 
control modes of 
EOPs 
 

(No error 
rate) 

[22
7] 

LOCA 47 
SBO 26 

SGTR 26 

Loop 17 

Genera
l task 

1.77 

PGI4 E 2.9E-2 (1/40)            
(For comparison: 
2.7E-3 for step in a 
procedure not read, 
task omitted in 
securing a valve in 
open position, long 
procedure with 
checkoff provisions) 

Activation of both mid loop 
level measurement devices 
(One channel not activated, 
task description in procedure 
misinterpreted) 

Ambiguous task 
description in 
procedure 

Moderately 
high level of 
stress, 
infrequently 
performed 
(1/40) 

[4] 

PGI4 E 2.41E-3 (1/490) 
 

Manually opening a locally 
operated valve (Opened too 
early, false interpretation of 
oral instruction) 

Ambiguous oral 
instruction  
 

Not 
analyzed 

[5] 

PGI5 E 1.05E-3 (1/112) 
 

Plugging connectors to jacks 
in control cabinets 
(Connected to wrong jack, 
incorrect task generation) 

Very error prone 
written 
instructions, recall 
of rarely used 
professional 
knowledge 
necessary 

Infrequently 
performed 
(1/112) 

[5] 

PGI5 E 7.97E-3 (1/148) Returning a power switch to 
operational condition at a 
local switchgear cabinet 

Imprecise written 
procedure, rarely 
performed, 

Infrequently 
performed 

[5] 
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Performing an inadmissible 
switching operation (false 
interpretation of written 
procedure 

professional 
knowledge 
necessary for 
proper 
interpretation 

PGI6 E No 
proced
ure 

3.3E-2 
(1/36) 

Reassembly of component 
elements (Element position 
remembered incorrectly) 

No written 
procedures 
available, 
similarity between 
correct and wrong 
position 

(Infrequently 
performed 
(1/36)) 

[4] 

With 
proced
ure 

1.3E-3 
(1/888) 

PGI6 E  
1/1  

Closing pegging steam 
control valves after SCRAM 
(Not fully closed, error in task 
generation)  

Special operating 
mode, no written 
procedure 
available, complex 
thermo-hydraulic 
context 

Rarely 
performed, 
system not 
transparent 

[5] 

PGI6 E 1/1 Testing the 24 V DC power 
supply (Failed to check the 
presence of essential test 
system prerequisites) 

No indication in 
written procedure, 
rarely used 
professional 
knowledge  

Rarely 
performed, 
no mental 
model 

[5] 

PGI6 E 1/1 Start-up of reactor (Further 
increase of thermal power 
despite a lacking prerequisite) 

Special operating 
mode, no written 
procedures 
available 

Rarely 
performed 

[5] 

 

 

 

 
Figure A13-1   Operator performance statistics 
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Figure A13-2  Operator  performance statistics 

 

 
Figure A13-3  Operator  performance statistics 

 

 

Figure A13-4  Operator  performance statistics
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Appendix A14 PIF Attributes and Weights for Training 

Table A14-1 Attribute Identifiers and Descriptions for PIF Training 
ID Attribute 
TE0  No impact - professional staff have adequate training required   
TE1  Inadequate training frequency/refreshment     

• Lack of or poor administrate control on training (e.g., not included in the Systematic Approach to 
Training Program) 

• Training frequency is longer than needed for retention of proficient knowledge/skills  
TE2 Inadequate amount or quality of training 
TE2.1 Inadequate training on skills and basic knowledge, deficient mental model of the systems 
TE2.2 Inadequate training specification/requirement, deficient knowledge on rules and action control 
TE2.3 Inadequate training in system processes for knowledge-based human actions 
TE3  Deficient training practicality  

• No hands-on training   
• Not drilled together  
• Training on parts, not whole scenario together   

TE4  Poor or lack of training on procedure adaptation: Training focuses on procedure-following without 
adequately training personnel to seek alternative interpretations, evaluate the pros and cons of 
alternatives, and adapt the procedure for the situation  

TE5  Poor of lack of knowledge-based problem-solving training, e.g.,  
• Inadequate training or experience with sources of information (such as applicability and limitations of 

data or the failure modes of the information sources)  
• Inadequate specificity on urgency and the criticality of key information such as key alarms 
• Not trained to seek confirmatory information when dismissing critical data  
• Premature termination of critical data collection in diagnosis due to inadequate training on system 

failure modes   
• Poor training on assessing action margin in deciding implementation delay  
• Poor training on interpreting procedure in the context of the scenario for decisionmaking  
• Poor training on the importance of data in frequently checking data for execution  

TE6 Inadequate or ineffective training on teamwork 
TE7 Personnel are fully trained but inexperienced (compared to expert-level experienced professionals) 

 

Table A14-2 IDHEAS-DATA IDTABLE-14 – PIF Weights for Training 
 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates or task 
performance 
indicators 

Task (and performance 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncertai
nty) 

RE
F 

TE1 E  Use FLEX 
generator  

Use of FLEX generator: 
-Transport and stage 
-Connect and start 
-Operate 
(Estimated HEPs)  

FLEX-designed 
scenarios, 
training is under SAT 
vs. not under SAT 

(Expert 
judgment
) 

FL
EX-
EE With 

SAT 
0.036 

NO 
SAT 

0.36 

TE2 D # of missed detection 16 non-operators - check 
numbers on an information 
heavy display screen and 
make sure that the numbers 
were inside specified safety 
ranges, otherwise the 
numbers need to be marked 

 HD - “highlight and 
disappear” increased 
the efficiency of task 
completion. 
HM- “highlight missed” 
increased the 
participants’ 

(May not 
be a 
training 
PIF) 

[22
8] 

 One 
type 
at a 
time 

One 
numb
er at 
a 
time 

Basel
ine 

1.4 0.8 
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HD 1.6 0.8 confidence during the 
task  
“Heat map” is a 
training feedback tool 
by highlighting areas 
that need more 
attention. 

HM 1.2 0.6 

Heat 
map 

0.9 0.35 

TE2.3 D Perceived 
urgency 
high 

9.6E-4 Key Alarm Not Attended To Training on 
knowledge-based 
response – Perceived 
urgency of alarms high 
vs. low 

HSI poor 
(expert 
judgment
) 

[6] 

Perceived 
urgency low 

7.3E-3 

TE2 D Training 
good 

1.3E-5 Critical Data Misperceived Training good vs. poor (Expert 
judgment
) 

[6] 

Training 
poor 

1.3E-4 

TE2.3 DM Training 
good 

3.2E-3 Misinterpret procedure in 
response planning 

Training good vs. less 
than adequate 

(Expert 
judgment
) 

[6] 

Less than 
adequate 
training 

7.3E-2 

TE2.1 E Good 1.3E-2 Critical data not checked 
with appropriate frequency 
for initiating execution 

Training - Importance 
of data understood 
good vs. poor when 
monitoring is not 
optimized 

(Expert 
judgment
) 

[6] 

Poor 3.2E-2 

TE2 E Good 3.8E-
03 

Failure to correctly execute 
response (Complex task) 

Training good vs. poor (Expert 
judgment
) 

[6] 

Poor 5.1E-2 

TE2.1 E 1.13E-4 (0/2010)     
 

Adjusting a process 
parameter by push-button 
controls 
(Operated too long)  
 

Training has no 
negative impact - 
frequently performed 
task, part of 
professional 
knowledge 

(Error 
rate for a 
single 
step) 

[5] 

TE2.3 E 9.86 E-4 (1/1200)       
 

Testing the emergency 
feedwater supply system 
during power operation 
(Wrong order of steps)  
 

Control actions appear 
in wrong order in 
written procedure, 
proper ordering was to 
be inferred from 
professional 
knowledge, frequently 
performed task 

(Error 
rate for a 
single 
step) 

[5] 

TE2 / 
TE6 

DM / 
E 

# of errors Crews performed two 
scenarios. The difficult 
LCOA transient was “partial 
breakdown of plate fixing 
bolts of the primary manifold 
of the steam generator” (# of 
errors all the crews made in 
each scenario) 

Deficiencies in 
knowledge and action 
control, problems 
related to procedures, 
collective operational 
strategy  

Whole 
event 
scenario) 

[22
9] Leak in the 

live steam 
manifold 

57 
errors 
(by 8 
crews) 

Difficult 
LOCA-
transient 

155 
(by 12 
crews) 

TE2.1 D Without KR 0.2 Students detect rare targets With CKB – with 
feedback of composite 
knowledge of results 
Without KR – without 
knowledge of results 

(Student 
subjects) 

[23
0] With CKR 0.1 

TE2.1 D Day1 start 0.58 Beginning and end of 
day1 and day2 training 

(Inadequ
ate 

[23
1] Day1 end 0.41 
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Day2 start 0.48 Nurses intensively trained 
on discriminating sounds of 
alarms  

amount 
of 
training) 

Day2 end 0.32 

TE1 
& 
TE2.1  

D  1B 1A 2B 2A 15 graduate 
students with 
nuclear 
engineering 
backgrounds 
of 5.2 years 
performed 14 
tasks in three 
scenarios 
(MMS – 
mental model 
score, error 
rates of failing 
detection) 

1B-before training 
1A-after training 
2B- 6 months later 
before training 
2A – 6 months later 
after training 

(Not 
licensed 
operators
) 

[74] 
MMS 32 88 44 97 
LOCA 0.

14 
0 NA NA 

SGTR 0.
45 

0.14 0.28 0.0
4 

SLB 0.
44 

0.1 0.35 0.1
6 

TE1 
& 
TE2 
& 
TE3 

E See Figure A14-1 
 
 

Engineering students trained 
to perform process system 
control (% control failures) 

T0 – Test immediately 
after training 
T2w – Test 2 weeks 
after training 
T6w– Test 6 weeks 
after training 
Three training 
methods: 
EST – emphasize 
knowledge 
EST/SA – EST + 
situational awareness 
P&D – Practice and 
drills 

(Not 
licensed 
operators
) 

[23
2] 

TE1 
& 
TE2 
& 
TE3 

U See figure A14-2 
 
 

Engineering students trained 
to diagnose system faults 
(%Diagnostic errors) 

T0 – Test immediately 
after training 
T2w – Test 2 weeks 
after training 
T6w– Test 6 weeks 
after training 
Three training 
methods: 
EST – Emphasize 
knowledge 
EST/SA – EST + 
situational awareness 
P&D – Practice and 
drills 

(Not 
licensed 
operators
) 

[23
2] 

TE5 
/TE6 

DM / 
T 

 VP PM This study used SPAR-H to 
evaluate HEPs of action and 
diagnosis in the Fukushima 
Daiichi accident 
management model (HEP 
evaluated with SPAR-H) 
VP- Vice president 
PM-plant manager 

Training level  
Low: inadequate 
practice in tasks with 
abnormal conditions. 
Normal: more than 6 
months of relevant 
training in tasks with 
abnormal conditions.  
High: Training with 
extensive knowledge 
and practice in a wide 
range of potential 
scenarios.   

(SPAR-H 
based 
assessm
ent) 

[23
3] Low 0.26 0.23 

Nomi
nal 

0.15 0.13 

High 0.12 0.1 
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TE5 D / E Trainin
g 

# of errors  
 
 

144 students performed 4 
simulator flight tasks of 
tracking and monitoring (# of 
errors out of 6 omission and 
6 commission opportunities) 

Training types: 
N - Normal training  
V – Trained on 
verifying automation 
S – Specific explicitly 
trained about 
automation bias 

Multitaski
ng 

 

N 3.31  
V 2.84  
S 2.59 

TE5 U Solo 
pilots 

0.52 20 2-person pilot crews and 
8 solo pilots performed flight 
simulation in which 6 
automation failures would 
result in omission errors if 
pilots did not verify 
automation function 

Training types: 
N - Normal training  
V – Trained on 
verifying automation 
S – Specifically trained 
on automation bias 

Multitaski
ng 

[23
4] 

Crews 0.43 
• Training types 

had no significant 
effect on error 
rates 

• Crew only 
reduced 
automation bias 
slightly compared 
to solo pilots 

TE5 Unsp. Unexperien
ced 

0.002 
(errors/
trails) 

Licensed operators use 
APR1400 simulator to 
perform 6 scenarios varying 
as DBA, DBA+masking, and 
BDBA (Errors/trials, not error 
rate in percent.)) 

Experienced 
operators: APR1400 
and other types of 
PWRs  
Unexperienced - No 
APR1400, but other 
types of PWRs  

(Whole 
scenario) 

[99] 

Experienced 0.008 
(errors/
trails) 

TE7 Unsp. Years of 
experience 

Subjec
tive 
error 
rate 

Operation error in electric 
utilities 

Years of experience (Survey 
results) 

[23
5] 

0-2 0.8 
2-6 0.37 
6-20 0.2 
>20 0.07 

TE7 D GNP proportion Astronaut experts and 
novelty perform flight 
simulator Space Shuttle 
(GNP proportion is the 
proportion of eye fixation 
time on navigation display vs 
on systems) 

Expert vs novelty (Small 
sample) 

[15
9]  Expe

rt 
Nov
elty 

Norma
l 

0.48 0.52 

One  
malfun
ction 

0.32 0.18 

Multipl
e 
malfun
ctions 

0.14 0.05 

TE2.3 U # of correct diagnosis Training for fault diagnosis in 
the chemical 
process plant area (# of 
correct diagnosis) 
 “NEW” for new faults not 
previously seen by the 
operators during practice 

"Theory" and the 
"rules" groups were 
given a simplified 
account of how the 
plant worked in 
addition, the "rules" 
group exercised in 
applying diagnostic 
rules, “No story” group 
received no prior 
instruction of either 
sort 

(Other 
PIFs may 
exist) 

[73] 
 OLD NEW 
No 
story 

7.7 2.5 

Theo
ry 

7.8 3.5 

Rules 7.6 5.5 

TE1 U Diagnosis test score 
(0-100) after training 

Operator trainees performed 
static diagnostic tests 
(Diagnosis test score 0-100) 

Four tests immediately 
after training and one 5 
months later 

(Not 
dynamic 

[73] 

1st test 89% 
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2nd test 99% scenarios
) 3rd test 99% 

4th test 99% 
After 5 
months 

73% 

 

 

 

 
Figure A14-1 System failures as a function of training and fault type. 

 

 
Figure 14 -2  Diagnosis performance as a function of training and fault type 
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Appendix A15 PIF Attributes and Weights for Team and 
Organization Factors 

Table A15-1 Attribute Identifiers and Descriptions for PIF Team and Organization 
Factors 

ID Attribute 
TF0  No impact – adequate, crew-like teams  
TOF1  Inadequate team  

• Deficient teamwork structure, e.g., knowledge gaps in the team, deficient reconciling viewpoints, 
deficient team monitoring, lack of adaptability 

• Distributed or dynamic teams  
• Poor team cohesion (e.g., newly formed teams, lack of drills/experience together)  

TOF2  Poor command & control with problems in coordination or cooperation  
• Ambiguous specifications of function, responsibilities, and authorization for personnel in the 

command & control 
• Inadequate coordination between site personnel and decision-makers (e.g., adapt or modify 

planned actions based on site situation)  
• Inadequate verifying the plan with decision-makers  
• Inadequate overseeing action execution and questioning current mission  

TOF3  Poor communication infrastructure   
TOF4 Poor resource management, e.g., managing competing resources among multiple entities involved in 

an event 
TOF5 Poor safety culture 
TOF5.1 Deficient practice (e.g., pre-job briefing) for personnel to be aware of potential pitfalls in performing the 

tasks  
TOF5.2 Deficient practice for safety issue monitoring and identification, e.g., no regular inspection  
TOF5.3 Deficient practice for safety reporting  
TOF5.4 Hostile work environment  

 

Table A15-2 IDHEAS-DATA IDTABLE-15 – PIF Weights for Team and Organization 
Factors 
 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncertai
nty) 

REF 

TOF
1 

Unsp
. 

Agreea
blenes
s  
(1-10) 

Team performance 16 NPP crews 
performed the 
same scenario 
“Failure of one 
turbine unit” 
(Teamwork 
measures) 

Agreeableness – 
reconciling 
different 
viewpoints 

(No error 
data) 

[236] 

4 Poor 
7 Average 
9 Excellent 

TOF-
1 

Unsp
. 

Team 
performance 

Freq. of OIQ 16 NPP crews 
performed the 
same scenario 
“Failure of one 
turbine unit” 

Open Information 
Question (OIQ) – 
having less 
information, 
knowledge about 
the cues in the 
scenario 

(No error 
data) 

[236] 

Poor 22 
Average 14 
Unbalance 9 
Excellent 6 

TOF-
1 

Unsp
. 

Team 
performance 

% Coherent 
communication 

16 NPP crews 
performed the 
same scenario 

Coherent 
communication 
means that the 

(No error 
data) 

[236] 

Poor 65% 



 

A15-2 

Excellent 90% “Failure of one 
turbine unit”.  
 

team members 
are aware of the 
information 
distributed by 
others, and react 
to the received 
information, 
creating a 
semantic 
connection in the 
information 
sharing activity 

TOF
1 

Unsp Team 
(S/F) 

O
P
A
S 

LSC CI 9 crews 
performed LOCA 
scenario (OPAS- 
Operator 
Performance 
Assessment 
Score and 
success/failure 
(S/F) of the 
scenario) 

LSC - each 
member's SA 
weighted by 
numbers of team 
members who 
share 
confidence,  
Consensus Index 
(CI) – degree of 
consensus in 
team 
decisionmaking 
 

(No error 
data) 

[237] 

#1 (F) 20 0 n/a 
#2 (F) 46 0.26 0.43 
#3 (F) 42 0.19 0.37 
#4 (F) 47 0.26 0.32 
#5 (F) 51 0.30 0.37 
#6 (F) 40 0.13 0.18 
#7 (S) 45 0.32 0.36 
#8 (S) 55 0.28 0.50 
#9 (S) 63 0.43 0.48 

TOF
1 

Unsp
. 

See Figure A15-1 
OPAS score= 37.044x (team 
cohesion) +14.221 
OPAS score= 47.826x(amount of 
communication) +30.553 

9 crews 
performed 
ISLOCA 
scenario (OPAS- 
Operator 
performance 
assessment 
score) 

Team cohesion 
and amount of 
communication 
within the team 

(Not 
analyzed) 

[238] 

TOF
1 

Unsp Correlation of TC or RC with 
performance 

50+ studies: 
production tasks 
-overt task 
execution while 
striving to meet 
standards, 
decisionmaking 
tasks - require 
reaching 
consensus on 
issues with no 
right answer, 
project tasks 
include a variety 
of group tasks 
(The most 
uncertain, most 
complex, or least 
routine.) 

Team 
relationship 
conflict (RC) 
Task conflict 
(TC) 

(Meta-
analysis 
of 50+ 
papers) 

[75] 

 TC RC 

Decision-
making 

-.16 
 

-.33 
 

Project -.22 
 

-.15 
 

Productio
n 

.03 
 

-.07 
 

Multiple 
types 

-.35 
 

-.31 
 

TOF-
2 

D Correlation with detection errors NPP operator 
expert evaluation 
of effect on 
operator 
performance in 
outage and 
normal operation  

Coordination 
problems with 
planners 
Cooperation 
problems with 
work permit 
managers  

(Subjecti
ve 
evaluatio
n) 

[239] 
Coordination 
problems 

0.17 

Cooperation 
problems 

0.49 
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TOF-
2 

U Correlation with misinterpretation 
errors 

Operator expert 
evaluation of 
effect on 
operator 
performance in 
outage and 
normal operation  

Coordination 
problems with 
planners 
Cooperation 
problems with 
work permit 
managers  

(Subjecti
ve 
evaluatio
n) 

[239] 

Coordination 
problems 

0.48 

Cooperation 
problems 

0.56 

TOF
2 

Unsp # of 
errors 
made 

De
te
cti
on 

Diag
nosi
s 

DM Exec
ution 

Experiment 1: 
NPP crews 
performed LOCA 
and SGTR 
scenarios (# of 
errors made) 

A-insufficient 
concentration 
B-insufficient 
communication 
C-unclear 
division of tasks 
 

(Not error 
rates) 

[73] 

A    1 

B  3 2 1 

C   3  

TOF
2 

Unsp # of 
errors 
made 

De
te
cti
on 

Diag
nosi
s 

DM Exec
ution 

Experiment 2: 
NPP crews 
performed LOCA 
and SGTR 
scenarios in 
training. 
Experiment 1 
transient is more 
straightforward 
and physically 
transparent than 
experiment 2 
transient. (# of 
errors made) 

A-insufficient 
concentration 
B-insufficient 
communication 
C-unclear 
division of tasks 
D-lack of 
operational 
strategy 
 

(Not error 
rates) 

[73] 

A   1  

B   7 4 

C     

D   11  

TOF
2 

U & 
DM 

Error distribution (%) regard to 
causes 

NPP crews 
performed LOCA 
and SGTR 
scenarios in 
training. 
Experiment 1 
transient is more 
straightforward 
and physically 
transparent than 
Experiment 2 
transient.  (Error 
distribution 
regard to 
causes) 

HSI - Control 
room layout 
PGI - Procedure 
TOF - 
Cooperation 
TRI - Knowledge 
and action 
control 

(Operator
s in 
training) 

[73] 

 Exp1 Exp2 
HSI 5.5% 3.2% 
PGI 31% 17% 
TOF 13.7% 16% 
TRI 34.5% 55% 
Simulator 
effect 

11% 7.7% 

TOF
5 

Unsp
. 

See Figure 15-2 
 

Correlation of 4 
NPP crews 
simulator 
performance 
(five 
abnormalities in 
the scenario) 
and State of 
team safety 
culture index 

Safety culture 
elements: 
IA - Operation 
Information 
Acquisition                                            
PA - Personal 
Accountability                                                             
RC - Respectful 
Cooperation                                                             
NU- Recognition 
of Nuclear as 
Unique 
Technology                        

(Subjecti
ve 
assessm
ent of 
safety 
culture) 

[240] 
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CD - 
Conservative 
Decision Making                                                 
QA - Questioning 
Attitude                                                                 
RI - Regular 
Inspection                                                                     
CL - Continuous 
Learning                                                                 

TOF-
5 

Unsp
. 

 Intercept 
of Poisson 
Regressio
n with # of 
errors 

Correlation 
with # of 
errors 

Safety culture 
assessment and 
treatment errors 
of 123 residents 
from 25 medical 
wards 

1.Year of 
residency  
2.Level of fatigue 
3. Active learning 
climate  
4. Priority of 
safety  
5. Managerial 
safety practices 
 

(Subjecti
ve 
assessm
ent of PIF 
attribute) 

[241] 

1 0.10  0.10 

2 0.49 0.07 

3 -0.90  0.17 

4 1.32 -0.06 

5 2.10 0.14 

 

 

Figure A15-1 Two kinds of communication characteristics and the associated crew performance scores collected 
under ISLOCA 1 scenario 
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Figure 15-2 Probability of being successful



 

A16-1 

Appendix A16 PIF Attributes and Weights for Work Processes 

Table A16-1 Attribute Identifiers and Descriptions for PIF Work Processes 
ID Attribute 
WP0  No impact – Professional licensed personnel with good work practices  

WP1  Lack of professional self-verification or cross-verification (e.g., 3-way communication), peer-checking, 
independent checking or advising, or close supervision   

WP2 Poor attending to task goals, individual’s roles, or responsibilities, e.g., 
• Poor practice of attending to the task goals (so personnel disengages from the goal too early) 
• Poor practice of keeping personnel in assigned roles and responsibilities 
• Excessive disturbance to planned work and assigned responsibilities 
• Bad shift handovers 

WP3 Poor infrastructure or practice of overviewing operation information or status of event progression 
WP4 Poor work prioritization, planning, scheduling, e.g.,   

• Poor planning of work permits  
• Many extra instructions regarding task prioritization and scheduling   
• The purpose and object of the work permit was not specified  
• Work permits were not handed in on time and, therefore, delayed other activities  
• Indistinct information concerning the prioritization of different work activities  
• Insufficient information in operational order concerning performance of tasks 

 

Table A16-2 IDHEAS-DATA IDTABLE-16 – PIF Weights for Work Processes 
1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other 
PIFs (and 
Uncertain
ty) 

REF 

WP-
1 

D Diagnostic error in radiology  
reported to be as high as 
20% 
Double reading increases 
sensitivity around 10% (10–
14%, 9%, 15% and 8.1%, 
9%, 9.5% in different 
literature) 

Diagnosis in 
radiology images 
(diagnosis error rate) 

Independent 
double reporting, 
where personnel 
have no knowledge 
of each 
other’s report 

Meta-
analysis 

[242] 

Single 
reporting 

0.3 

Double 
reporting 

0.17 

WP
1 

D  LSO
D 

WSD NPP operators 
performed microtask 
detecting information 
from GPWR 
simulator 

Individual vs team 
– team has 
independent 
checking 
LSOD – Large 
overview display 
WSD – Workstation 
display 
 

(Microtask
s were 
mixtures of 
complexity
, speed-
accuracy 
biased 
toward 
speed, no 
recovery) 

[243, 
244] 

Individual 0.15 0.07 
Team 0.06 0.04 

WP
1 & 
WP
4 

D, E PIF weights calculated  NPP operator 
performance data in 
low power and shut 
down (LPSD) 
Synthetical - 
Synthetically 
verifying 
information  

PIF weights 
calculated:  
WP1 - Supervision  
WP4 - Task 
planning  

(PIF 
definition 
and weight 
calculation 
may not 
be the 
same as 
those in 

[138] 
E - 
Training 
and 
supervisi
on  

14.21 (Dynamic) 

D/E - 
Supervisi

6.78 (Value) 
32.44 
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on and 
task 
planning  

(Synthetical) Value – 
Reading simple 
value  
Dynamic - 
Manipulating 
dynamically 
 

IDHEAS-
DATA) 

E - Task 
planning  
 

4.57 (Dynamic) 
12.00 
(Synthetical) 

D/E - 
Supervisi
on  
 

5.53 (Dynamic) 
2.70 (Synthetical) 

WP
2 

E 5.04E-3 (1/324)         
 

Refilling nitrogen to 
SCRAM 
accumulator 
(Inadmissible control 
action performed)  
 

Time consuming 
procedure, 
operator intended 
to save time by 
departing from 
procedure 

Not 
analyzed 

[5] 

WP
2 

DM Advantage to the 
correct strategy - 
Yes 

9.3E-03 Choose 
inappropriate 
strategy in 
procedure-based 
decisionmaking 
 

Advantage to the 
correct strategy – 
operators more 
likely attend to 
rules 

(Expert 
judgment) 

[6] 

Advantage to the 
correct strategy – 
No 

3.3E-02 

WP
1 

E Monitorin
g 
Optimize
d 

2.3E-3 Critical data not 
checked with 
appropriate 
frequency in action 
execution 

Monitoring 
optimized 
(verification or 
peer-checking) vs. 
not optimized  

(Expert 
judgment) 

[6] 

Monitorin
g NOT 
Optimize
d 

1.3E02 

WP
1 / 
WP
2 

E Good 
work 
practice 

8.0E-05 Failure to correctly 
execute response 
(Complex task) 

 

Good vs poor work 
practice 

(Expert 
judgment) 

[6] 

Poor 
work 
practice 

8.0E-04 

WP
2 

Unsp
. 

Vertical axis shows the times 
the personnel was seated vs 
unseated in the scenario 
(Figure A16-1) 

Behavior 
observation of 5 
NPP crews running 
startup and 
shutdown scenarios 

Operation positions 
seated vs unseated 
(Away from his 
working panel) 
 

(No error 
data) 

[245] 

WP
2 

Unsp
. 

 OPA
S 

Comm / 
minute 

NPP crews 
performed 2 normal 
and 2 emergency 
scenarios (OPAS- 
Operator 
Performance 
Assessment Score 
and Comm- total 
communication per 
minute) 

Two seatings: 
Free - moved freely  
Fixed - remained 
seated at 
workstation, 
restricted 
movement except 
RO  

(HSI 
automatio
n was 
used in 
experimen
t) 

[77] 

Free 
seating 
 

57 1.05 

Fixed 
seating 

74 2.75 

WP
3 

Unsp
. 

 With
out 
IPad 

With 
 IPad 

NPP crews 
performed 2 normal 
scenarios (effort and 
readiness, process 
understanding score 
(PUS 1-10)) 

SS (Shift 
supervisor) and FO 
(Field operator) 
with vs without 
IPad for overview 
of process 
information  

(HSI 
automatio
n was 
used in 
experimen
t) 

[77] 

SS effort 0.75 -0.75 

SS 
readiness 

0.5 -0.5 

SS-PUS 5.8 6.25 

FO-PUS 2.6 5.5 



 

A16-3 

WP
2 & 
WP 
3 

Unsp
. 

Average # of errors per 
scenario 
(For each scenario: 
SGTR=3.3, ISLOCA=3.6, 
LOFW=5.9) 

9 NPP crews run 
SGTR, LOCA, and 
LOFW scenarios 
(Average # of errors  
on required safety-
important actions) 

WP2: With or 
without STA, 
WP3: With or 
without decision-
support tools 
(Displaying 
important plant 
information) 

(Interactio
n between 
STA 
independe
nce and 
use of 
tools) 

[246] 

 No 
Tool 

Tool 

No STA 3.2 5.6 

STA 4.9 4.2 

WP
2 & 
WP 
3 

Unsp
. 

 No 
Tool 

Tool NPP crews run EOP 
scenarios (average 
# of errors) 

WP2: With or 
without STA, 
WP3: With or 
without decision-
support tools  

(Interactio
n between 
STA 
independe
nce and 
use of 
tools) 

[246] 

No STA 2.8 4.3 
STA 4.7 3.8 

WP
2 & 
WP
3 

Unsp  # 
erro
rs 

TES
A-Op 
scor
e 

ScPe
rf 
scor
e 

NPP crews 
performed EOP 
scenarios 
(# of errors, 
TESA-Op -
Emergency 
Operation Handling 
Score, 
ScPerf -  
# of important 
actions completed)  

WP2: With or 
without STA, 
WP3: With or 
without decision-
support tools  

(Interactio
n between 
STA 
independe
nce and 
use of 
tools) 

[247] 

No-S 
No-T 

2.8 5.3 7.8 

No-S 
Yes-T 

4.3 4.9 6.5 

Yes-S 
No-T 

4.7 4.9 6.5 

Yes-S 
Yes-T 

3.8 5.3 7.3 

WP
2 & 
WP
3 

Unsp
. 

65 unsafe acts observed in 5 
crews running 3 emergency 
scenarios for about 2-3 hours 
after the initiating event.  
13 unsafe acts were 
recovered, but in 7 cases the 
recovery did not avoid 
negative consequences to the 
plant or operational problems 
(e.g., delay). This means an 
average of about 4 
unrecovered unsafe acts per 
scenario  

5 crews performed 
four EOP scenarios 
representing the 
emergency 
response phase in 
which the control 
room team is 
expected to manage 
the accident without 
external technical 
support 

Observation study, 
no independent 
variables, error 
narratives 
described with poor 
work process (WP2 
and WP3) 

(Errors 
reported 
individually
) 

[106] 

WP
2 

D  Type1 Type4 Proof reading 
(Missing targets) 
Type 1 – easy 
targets 
Type 4 -difficult 
targets 

Promotion frame -  
 
Regulatory 
prevention frame -  

Time 
constraine
d 
(time-
accuracy 
trade-off) 

[248] 
Promotio
n 

0.124 0.67 

Preventio
n 

0.27 0.35 

WP
2 

D # of 
errors 

Beginn
ing 

Towar
d end 
of work 

Proof reading (# of 
errors found) at the 
beginning and 
toward the end of 
the work 

Promotion frame-  
 
Regulatory 
prevention frame 

 [248] 

Promotio
n frame 

7 8.5 

NO frame 5.8 5 
Regulator
y 
preventio
n frame 

4 1 

WP
2 

D  Correlation with detection 
errors 

NPP crews 
performed full 
scenario simulations 

Item 12: Handover 
some of own work 

(Subjectiv
e rating) 

[239] 

 Outage Normal 
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Item 12 0.24 0.02 in outage (O) and 
normal (N) operation 
 

to colleagues on 
shift 
Item 13: Decreased 
aspiration level 
Item 14: Leave 
work tasks to the 
next shift 

Item 13 0.5 0.34 
Item 14 0.15 0.10 

WP
2 

U Correlation with detection 
errors 

NPP crews 
performed full 
scenario simulations 
in outage (O) and 
normal (N) operation 
 

Item 12: Hand over 
some of own tasks 
to colleagues on 
shift 
Item 13: Decreased 
aspiration level 
Item 14: Leave 
work tasks to the 
next shift 

(Subjectiv
e rating) 

[239] 

 Outage Normal 
Item 12 0.52 0.30 
Item 13 0.47 0.44 
Item 14 0.45 0.39 

WP
4 

D Correlation with detection 
errors 

NPP crews 
performed full 
scenario simulations 
in outage (O) and 
normal (N) operation 
 

Item 3: Planning 
problems 
Item 4: Work 
distributions 

(Subjectiv
e rating) 

[239] 

 Outage Normal 
Item 3 0.35 NA 
Item 4 0.34 0.22 

WP
4 

U Correlation with detection 
errors 

NPP crews 
performed full 
scenario simulations 
in outage (O) and 
normal (N) operation 
 

Item 3: Planning 
problems 
Item 4: Work 
distributions 

(Subjectiv
e rating by 
observing 
simulation
s, N=90) 

[239] 

 Outage Normal 
Item 3 0.44 NA 
Item 4 0.40 0.46 

 

 

Figure A16-1 Variation in the operator positions during a change of the plant state 
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Appendix A17 PIF Attributes and Weights for Multitasking, 
Interruptions, and Distractions 

Table A17-1 Attribute Identifiers and Descriptions for PIF Multitasking, Interruptions, 
and Distractions 

ID Attribute 
MT0  No impact   
MT1  Distraction by other on-going activities that demand attention  
MT2  Interruption taking away from the main task  
MT3  Concurrent visual detection and other tasks  
MT4  Concurrent auditory detection and other tasks  
MT5  Concurrent diagnosis and other tasks  
MT6  Concurrently making two or more simple decisions/plans 
MT7  Concurrently making intermingled complex decisions/plans  
MT8  Concurrently executing action sequence and performing another attention/working memory task  
MT9  Concurrently executing intermingled or inter-dependent action plans  
MT10  Concurrently communicating or coordinating multiple distributed individuals or teams  

 

Table A17-2 IDHEAS-DATA IDTABLE-17 – PIF Weights for Multitasking, Interruptions, 
and Distractions 

 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other PIFs 
(and 
Uncertainty) 

REF 

MT1 D No distraction 0.025 Target detection in 
driving with 
cellphone 
conversation 
(Missing 
dangerous targets)  

Distraction by other 
on-going activities 
(e.g., cell phone 
conversation) 

No apparent 
uncertainty 

[249] 

With distraction 0.07 

MT1 D No distraction 0.07 Young adults 
performed 
detection of low 
meaningfulness 
stimuli  

With or without 
distraction 

No apparent 
uncertainty 

[142] 

With distraction 0.14 

MT1 E  Cell 
phone 

Radio 
control  

Pursuit tracking 
task in which 
participants used a 
joystick to 
maneuver the 
cursor on a 
computer display 
to keep it 
aligned as closely 
as possible to a 
moving target and 
press the “brake” 
button when an 
alert appeared 

Without or with cell 
phone conversation 
through a 
microphone, 
without and with 
radio control while 
listening to the radio 

No apparent 
uncertainty 

[249] 

Without 0.028 0.035 
With 0.07 0.04 

MT1 D/E No distraction 0.025 Driving and target 
detection 

Distraction - 
auditory detection  

No apparent 
uncertainty 

[250] 
Distraction 0.05 

MT1 D/E Accuracy ratio with distraction 
= 0.8 ~ 1 (distraction reduces 
error rates) 

Driving, navigating, 
cognitive tasks - 
low complexity 

Auditory - tactile  (Meta-
analysis) 

[251] 
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and/or low urgency 
tasks 

MT1 D/E Accuracy ratio with distraction 
= 1~1.5  

Driving, navigating, 
cognitive tasks - 
high complexity 
and/or high 
urgency tasks 

Auditory - tactile  (Meta-
analysis) 

[251] 

MT1 D/E Accuracy ratio with distraction 
= 0.8 ~ 1.2 

Driving, navigating, 
cognitive tasks  

Auditory - visual  (Meta-
analysis) 

[251] 

MT1 D/E Accuracy ratio with distraction 
= 2~3 

Driving, navigating, 
cognitive tasks  

Auditory and visual 
redundant high 
complexity and/or 
high urgency 
distraction 

(Meta-
analysis) 

[251] 

MT1 D/U Without 
datalink 

0.33 Flying simulator (% 
missing voice 
clearance) 

Datalink is a 
distraction to pilots 

(Average 
from four 
studies) 

[199] 

With datalink 0.69 
MT1 / 
MT2 

DM Decision accuracy - Z-score 
deviation from the optimal 
decision, lower score means 
higher accuracy) 

Production 
management, 
simple task - 
scheduling 
workloads on 
multiple machines,  
complex task - 
involved 
interrelated 
outcomes where 
the processing of 
one part of the 
task influences 
processing 
of another part of 
the task (Decision 
deviation) 

Interruption – 
answering a 
question by 
acquiring 
information 

(Short 
interruption 
to complex 
task may be 
distraction) 

[252] 

 Simple 
task 

Compl
ex 
task 

No 
interruptio
n 

0.18 0.13 

Interruptio
n 

0.29 0.08 

MT2 DM Z-score of decision accuracy Production 
management 
complex task 

Interruption 
frequency and 
content similarity 
with the primary 
task 

(Short 
interruption 
to complex 
task may be 
distraction) 

[252] 
No interruption 0.13 
Lo. frequency 0.22 
Hi. frequency 0.05 
Similar content 0.12 
Diff content 0.05 

MT2 D/U/
E 

 With 
notes  

No 
notes 

Professionals 
watched an 
interview video 
then tested on 25 
questions of the 
interview 
(%incorrect) 

Without or with 
interruption during 
watch, interview is 
interrupted from 
3 min 50 sec to 4 
min 30 sec by a 
secretary giving the 
interviewer a letter 
to sign and then 
leaving the room 

(Brief 
irrelevant 
interruption 
on non-
sequential 
task) 

[253] 

No 
interrup 

0.21 0.26 

interrup 0.26 0.28 

MT2 D/U/
E 

 Add Count Primary tasks are 
adding numbers or 
counting (% errors 
made) 

Without and with 
interruption of 
reading 
comprehension or 
reasoning in the 
middle of the 
primary task 

(Maybe 
distraction) 

[254] 
No 
interrup. 

0.15 0.1 

Interrup 0.35 0.19 

MT2 U No interrup. 0.04 Primary tasks are 
reading 

Without and with 
interruption of 

(Maybe 
distraction) 

[254] 
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Interrup 0.12 comprehension 
(%errors made) 

reading 
comprehension or 
reasoning 

MT2 E No interrup. 0.08 Primary tasks are 
selecting items 
from a list (%errors 
made) 

Without and with 
interruption of 
reading 
comprehension or 
reasoning 

(Maybe 
distraction) 

[254] 

Interrup 0.16 

MT2 E No interruption 0.05 Physicians 
continuous 
performance of 
critical tasks 

Excessively 
frequent or long 
interruption  

(Other PIFs 
may exist) 

[122] 

Interruption 0.2 

MT2 E No Interrup. 0.15 Performing 
sequence of action 
steps  
 

Interruption duration 
– no, 2.8s, 4.4s 
 

No apparent 
uncertainty 

[255] 
2.8s 0.3 
4.4s 0.45 

MT2 E  Seq. 
error 

Non-
seq. 
error 

Performing 
sequence of action 
steps, 
Sequence errors 
defined as the 
proportion of trials 
on which the 
performed step 
was not the 
immediate 
successor to the 
step performed on 
the previous trial, 
Nonsequence 
errors defined as 
the proportion of 
trials on which the 
correct step was 
selected but the 
incorrect choice 
was made given 
the stimulus 

Position after 
interruption:1, 2, or 
3 sequence steps 
after interruption. 
 
 

No apparent 
uncertainty 

[255] 

Interrup. 0.06 0.03 

1 Step 
after 

0.02 0.03 

2 steps 
after 

0.02 0.03 

3 steps 
after 

0.02 0.03 

MT2 E Without interrp. 0.04 Military actions 
involving computer 
file operation and 
other procedural 
tasks 

With vs without 
interruption 

 [256] 

With interruption 0.08 

MT2 DM  Simple Comp Simple vs complex 
decisionmaking 

Without and with 
interruption on 
simple and complex 
decisionmaking 
tasks  
 

(Other PIFs 
may 
constantly 
exist) 

[102] 

Without 
Interrup. 

0.08 0.18 

With 
Interrup. 

0.13 0.29 

MT2 D  No 
interrup. 

With 
Interru
p. 

Recognizing 
simple and 
complex visual 
patterns  

Weak (very short)  
interruption   

(Maybe 
distraction) 

[145] 

Simple 
Symbolic  

0.26 
 

0.23 

Simple 
Spatial 

0.27 0.2 

Complex 
Symbolic  

0.24 0.3 

Complex 
Spatial 

0.45 0.56 

MT2 E No interrup. 0.02 Disruption duration  [14] 
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2.8s 0.04 Procedure 
execution 
sequentially with 
very short steps 

No apparent 
uncertainty 13s 0.10 

22s 0.15 
32s 0.17 

MT0 E No interrup 0.02 Procedure 
execution non-
sequentially with 
very short steps 

Disruption type – 
inserting a 
disruption task to 
non-sequential 
steps is not a 
disruption 

No apparent 
uncertainty 

[14] 

interrup 0.02 

MT2 E  PCE SEQ INI Execute long 
procedures in 
which no 
association 
between subtasks 
PCE-post 
completion error 
SEQ- sub-task 
sequence error - 
wrong subtask 
selected 
INI- subtask 
initialization error – 
skip a procedure 
step 

Interruption: Long 
duration (75s), 
cognitive 
demanding, and 
similar content 
interruption  

No apparent 
uncertainty 

[257] 
No-I 0.086 0.06 0.0

4 
Yes-I 0.30 0.23 0.0

32 

MT2 DM  #cells 
 

#strat
egies 

Out-
come 

Risk-taking gamble 
games 
# cells – items 
viewed for 
information 
collection after 
interruption 
# strategies – 
alternatives 
considered 
outcomes – total 
wins/loss 

Interruption: 8 
second mental 
computation 
 
Pre- before 
interruption 
Post-NoI: after an 
interruption warning 
without interruption 
task 
Post-YesI: after 
interruption 

(Very brief 
interruption 
leads to 
more 
information 
collection) 

[78] 

Pre 8 3.2 1 

Post
NoI 

11 2.8 1 

Post
YesI 

15 3.5 1 

MT-2 E No 
interruption 

0.196 17 participants 
perform medicine 
administration 
tasks while 
interrupted by 
alarms (% of active 
errors) 

Alarms came in the 
middle of the 
primary task 
performance 

No apparent 
uncertainty 

[258] 

With 
interruption 

0.276 

MT-2 D / 
U, E 

Wrong Answer Rate Ratio College students 
performed primary 
tasks with brief 
interruption, 
resumed to 
previous screen 
after interruption 

Interrupted one time 
or three times in 
10min-blocks, 
Primary task/ 
interruptive task: 
Cognitive/Cognitive 
Task Set 
Physical/Physical 
Task Set 

(Very brief 
interruption) 

[259] 
 One-

time 
Three-
time 

Cog/Cog 1.32 1.43 
Cog/Phy 1.27 1.43 
Phy/Cog 1.48 1.74 
Phy/Phy 1.63 1.95 

MT-3 E Single 0.008 Arithmetic task 
while monitoring 
(Arithmetic 
errors%) 

Added salient cues 
to monitoring 
notification - 
Irrelevant but 
attention-
demanding parallel 
task 

No apparent 
uncertainty 

[142] 
Dual 0.062 

MT-3 E Single 0.008 [142] 
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Dual 0.031 Arithmetic task 
while monitoring 
(arithmetic 
errors%) 

Irrelevant parallel 
task 

No apparent 
uncertainty 

MT-3 D Single-task with 
salient 
notification 

0.008 Detect visual 
notification of a 
pending 
interrupting task 
while performing 
an arithmetic task 
 

Dual-task with Non-
salient notification: 
of an exclamation 
marks t appeared 
over a clock icon in 
the controller 
display, 
single task with 
salient notification– 
pop-out color or 
blinking visual icon 
that captures 
attention 

No apparent 
uncertainty 

[142] 

Dual-task with 
non-salient 
notification 

0.176 

MT3 D  Missing 
changes 

Missin
g cues 

Airplane pilots 
performing de-
icing cue detection 
and responding to 
air traffic control 
information, 
concurrently 
detecting 
(monitoring or 
searching) multiple 
sets of parameters  

Parameters in 
different sets may 
be related (missing 
changes or missing 
cues) 

Time 
pressure and 
task 
complexity 

[260] 

Single 
task 

0.028 0.05 

Dual-task 0.21 0.2 

MT3 D Single  0.15 Concurrently 
detection of 
dynamic system 
failure 

Single vs concurrent 
tasks 

Not analyzed [261-
263] 

Concurrent 0.35 

MT3 D Single  0.05 Concurrent visual 
detection 

Single vs concurrent 
tasks 

Not analyzed [261-
263] 

Concurrent 0.3 

MT4 D Single  0.05 Concurrent 
auditory detection 

Single vs concurrent 
detection 

Not analyzed [261-
263] Concurrent 0.5 

MT4 D Auditory alone 0.012 Auditory detection 
of change and 
algebra task 

Task performed 
alone vs concurrent 

No apparent 
uncertainty 

[264] 
Auditory concurrent 0.23 
Algebra alone 0.4 
Algebra concurrent 0.52 
Single diagnosis 0.01 

MT5 u Concurrent 
diagnosis 

0.37 Pilots concurrently 
diagnosed more 
than one complex 
event that required 
continuously 
seeking additional 
data to understand 
the events 

Participants were 
asked 
to report the 
location and 
severity of ice 
accretion, and they 
had to indicate 
whether the most 
recent icing cues 
represented a 
change from the 
previous condition. 
Another secondary 
task involved 
monitoring for the 

Time urgent [260] 

Single  0.04 
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occurrence of an 
out-of-range 
value on one of two 
oil pressure gauges 

 
MT5 

U / E Baseline 0.04 Concurrently Text 
composition 
(Composition 
errors) and spatial 
visual detection 
task 

Secondary task is 
visual detection, 
spatial location, and 
aural detection 

 [265] 

Concurrent 
visual 

0.12 

Concurrent 
spatial 

0.07 

Concurrent 
aural 

0.13 

 
 
MT6 

DM Single 0.07 Concurrently 
making go vs no-
go decisions 

Single- or Dual-task,  
With or without 
specific training on 
dual-task 

  

Concurrent  0.3 

MT8 E Simulator fly lateral errors Executing 
sequence and 
mental 
computation (% 
error in execution) 

Concurrently 
executing action 
sequence and 
performing an 
attention/working 
memory task 

  

Accuracy ratio = 10 

MT10 Unsp See Figure A17-1. Simulator flying 
(Lateral errors) 

Communicating to 
comprehend air 
traffic control 
instructions 

 [266] 

 

 

 
 

Figure A17-1  Proportion of read-back communication errors as a function of display and 
message length
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Appendix A18 PIF Attributes and Weights for Mental Fatigue 

Table A18-1 Attribute Identifiers and Descriptions for PIF Mental Fatigue 
ID Attribute 
MF0  No impact  
MF1  Sustained (> ~20mins) high-demand cognitive activities requiring continuously focused attention 
MF2 Long working hours with high cognitively demanding tasks or hours of intensive work (e.g., taking a 

comprehensive examination, solving an emergency event) 
• Time on work, afternoon or evening working hours 
• Day vs night shifts, long work shift 

MF3  Sleep deprivation  
MF3.1 Sleep restriction (fewer sleep hours for days) 
MF3.2 Total sleep deprivation (long hours of continuous wakefulness) 

MF4 
Change of cognitive state –  
• sudden increase in workload from a long period of low to high 
• sudden decrease in workload from high to low  

 

Table A18-2 IDHEAS-DATA IDTABLE-18 – PIF Weights for Mental Fatigue 
 

1 2 3 4 5 6 7 
PIF 
 

CFM Error rates or task 
performance indicators 

Task (and error 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncertai
nty) 

REF 

MF-
1 

D Effective size Meta-analysis of 42 
studies and 138 
experimental conditions, 
signal detection and 
discrimination that needs 
vigilance and sustained 
attention, tasks last 30-
60mins, (Effect size of 
Detection sensitivity), 
effect size was computed 
as the difference 
between perceptual 
sensitivity scores during 
the first and last periods 
of a vigil, divided by the 
square root of the mean 
square error term for the 
time effect 

Low/High – 
Low/High event 
rates in visual 
detection tasks, 
Sensory/Cognitive – 
visual detection 
requires perception 
only or perception 
and recognition,  
Sim/Succ – visual 
targets were 
presented 
simultaneously (Sim) 
or successively 
(Succ) in visual 
discrimination tasks  
 

(Meta-
analysis) 

[267
]  Sim. Succ

. 
Low / 
Sensory 

0.91 0.39 

Low 
cognitive 

0.00 0.78 

High / 
Sensory 

0.74 0.72 

High / 
cognitive 

0.47 0.76 

Total 0.71 
 Non-

degrad
ed 

Degra
ded 

1st 9min 0.007 0.07 
18-27min 0.022 0.14 

MF1 D  Traditi
onal 

Modifi
ed 

Traditional - button-press 
responses to signify 
detection of rarely 
occurring critical signals 
Modified - button-press 
responses acknowledged 
frequently occurring 
neutral stimulus events 
and response 
withholding signified 
critical signal detection 

Five blocks of 
10mins, traditional 
task requires 
constant attention, 
modified task 
promotes 
mindlessness via 
routinization 

No 
apparent 
uncertai
nty 

[268
] 

First 
10min 

0.2 0.22 

40-50min 0.42 0.26 

MF1 D  First 
10min 

20-
30min 

Discrimination of 
differences in line lengths 
(%incorrect) 

Three 10min blocks 
Task difficulty: 

No 
apparent 

[269
] 

High-Sim 0.12 0.13 
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High-Suc 0.13 0.31 High vs low 
discriminability 
simultaneous- vs 
successive-
discrimination 

uncertai
nty Low-Sim 0.21 0.47 

Low-Suc 0.32 0.54 

MF1 D Probability of detecting a 
signal decreased 
dramatically over time-on-
watch. This  
decrement was greatest 
when: 
•    The signal duration was 
short 
•    The probability of a 
signal was low 
•    The signal intensity was 
low 
•    The signal was simple 
rather than complex 

Radar operators detect 
signals 

Time-on-watch No 
apparent 
uncertai
nty 

[270
] 

MF1 D  Match mism
atch 

Passport control face-
matching task: identify 
184 matched pairs and 
16 mismatched pairs 

Four blocks of 50 
pairs of face 
pictures, each pair 
has average 5-6sec, 
so one block is 
about 5min 

No 
apparent 
uncertai
nty 

[79] 

1st block 0.32 0.34 
2nd block 0.30 0.4 
3rd block 0.27 0.41 
4th block 0.25 0.46 

MF1 
& 
MF2 

  Mornin
g 

Aftern
oon 

Subjects listened to a 
stream of digits and were 
required to detect three 
successive odd digits 
that were all different; for 
example, 3-5-9 or 1-7-5 
(& missed) 

Performance at 
beginning vs 45min 

No 
apparent 
uncertai
nty 

[271
] 

Beginnin
g 

0.03 0.08 

45min 0.16 0.20 

MF2 DM Subjects with a considerable 
fatigue induced by a lengthy 
college examination 
demonstrated greater 
primacy effects in their 
impressions than did the 
less fatigued ones 

Read summary 
information about a job 
candidate, evaluated the 
candidate's qualifications 
and justified their 
impressions 

3 levels of 
manipulated mental 
fatigue conditions: 
Before and after a 
regular class period 
and after a 2-hr final 
examination 

(No error 
data) 

[272
] 

MF2 U Correlation coefficient Correlation of NPP 
operators’ diagnosis 
errors with work shift 

Shifts of operator 
working schedule 

(Other 
factors 
may 
exist) 

[239
] Shift Outag

e 
Aftern
oon 

Morning 0.04                  
 

0.11 

Afternoon .004                  0.32 
 

Night 0.24                    0.17 
MF2 D Correlation coefficient Correlation of NPP 

operators’ detection 
errors (minor errors) with 
work shift 

Shifts of operator 
working schedule 

Other 
factors 
may 
exist) 

[239
] Shift Outag

e 
Aftern
oon 

Morning -0.004                  
 

0.19 

Afternoon .06                    0.33 
 

Night 0.25                    0.35 
MF2  Day Nigh

t 
Participants performed 
simulated spacecraft life-

Multitask
ing 

[144
] 
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U & 
DM 
& E 

System 
control 
errors (%) 
PracF 
NovF 
CtrlPanF 

 

4.17     
 2.18     
 3.75     
 6.58     
_ 

support tasks: Monitor 
automatic subsystems, 
take manual control of 
the systems, engage in a 
process of fault diagnosis 
to identify and rectify the 
fault, acknowledge 
alarms, and remember to 
carry out an action at a 
specified time in the 
future (perspective 
memory) 

Day vs night – 
Occasional night 
work 
Time on work – 
three periods 
F-free - fault-free 
condition, the 
automatic controller 
functioned perfectly 
well, requiring no 
operator 
intervention, 
In the practiced 
faults 
PracF - participants 
had to manage 
faults they were 
familiar with through 
extensive practice 
during the training 
sessions,  
(NovF) - novel 
faults were of the 
same general type 
as PracF but had not 
been experienced 
before, 
(CtrlPanF) - or 
pcontrol 
panel failures in 
which a system 
failure was 
accompanied by a 
simultaneous 
disabling of the 
relevant control 
panel 

Diagnostic 
accuracy 
(# of 
errors) 
PracF 
NovF 

.44       

.22       

.65       

0.52 
0.28 
0.76 

Prospectiv
e memory 
failures 
(%) 
F-free 
PracF 
NovF 
CtrlPanF 

  

MF2 
& 
MF1 

U/ 
DM 

 Information sampling Participants performed 
simulated spacecraft life-
support tasks 
(Information sampling, 
number per minute) 

Day vs night – 
Occasional night 
work 
Time on work – 
three periods 
System fault type - 
Routine vs. 
emergency 

Multitask
ing 

[144
] D 

A 
y 

Perio
d 

Routine Eme
rgen
cy 

1 1.4 1.1 
2 1.4 0.8 
3 1.2 0.8 

N
i
g
h
t 

1 1.5 0.95 
2 1.15 0.7 
3 1.0 0.8 

MF2 D  Low 
freq 

High 
freq 

Subjects listened to a 
stream of digits and were 
required to detect three 
successive odd digits 
that were all different; for 
example, 3-5-9 or 1-7-5. 
(& missed) 

Task performed in 
morning vs late 
afternoon, 
Low vs High 
stimulus freq 

No 
apparent 
uncertai
nty 

[271
] 

Morning 0.09 0.12 

afternoo
n 

0.12 0.20 

MF2 Uns
p. 

 Analog Digit
al 

Experienced technicians 
used equipment to make 
measurement 
(%measurement errors) 

Analog vs digital 
equipment (less 
mentally demanding) 
FN- Forenoon 
AN - Afternoon 

No 
apparent 
uncertai
nty 

[63] 

FN 0.09 0.05 
AN 0.35 0.11 

4.01 
2.18 
3.70 
6.16 

15.81 
6.72 

10.32 
18.91 
27.30 

14.05 
7.53 

12.03 
18.51 
18.12 
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MF3
.1 

Uns
p. 

Performance ratio (PR), 
e.g., PR = −0.05 translates 
to a 5% decrement in 
performance relative to 
control performance for 
each hour of continuous 
wakefulness 
Circadian day Accuracy  
PR = -0.004 x Hours +1  
Circadian night Accuracy  
PR = -0.009 x Hours +1  

Complex cognitive tasks 
including diagnosis, 
decisionmaking, 
teamwork 

Total sleep 
deprivation – hours 
of continuous 
wakefulness 

(247 
papers) 

[273
] 

MF3
.2 

Uns
p. 

Performance ratio (PR), 
e.g., PR = −0.05 translates 
to a 5% decrement in 
performance relative to 
control performance for 
each consecutive day: 
Mild SR Accuracy  
PR = -0.008 x Hours +1  
Severe SR Accuracy  
PR = -0.067 x Hours +1  

Complex cognitive tasks 
similar to real-world tasks 
including diagnosis, 
decisionmaking, 
teamwork 

Sleep restriction 
(SR) in consecutive 
days: 
Mild – 4-6 hours of 
sleep per 20 hours 
Severe: < 4 hours  

(247 
papers) 

[273
] 

MF3
.2 

 Y is performnce ratio and X 
is # of average horus of 
sleep (Figure A18-1) 

Psych-motor tasks 
similar to astronauts 
performing in long flight 
Space Shuttle 

Short to long term 
sleep deprivation 

(Meta-
analysis) 

[274
] 

MF3
.2 & 
MF3
.1 

 PIF weight derived from 
meta-data 

Psych-motor tasks 
similar to astronauts 
performing in long flight 
Space Shuttle 

Short to long term 
sleep deprivation 

(Meta-
analysis) 

[274
] 

 Well rested                                             0.6 
Adequate rest                       1 
Short-term high 
sleep deprivation        

1.7 

Long-term moderate 
sleep deprivation    

4.0 

Long-term high 
sleep deprivation        

8.7 

MF3
.1 

U/E Blood alcohol content 
(BAC%) of various tasks for 
the hours awake (Figure 
A18-2). 

Tasks in the data 
sources: 
Simulated driving task 
Tracking task 
Simple reaction time 
Mackworth clock 
Simulated driving task 
Tracking task Simulated 
driving task 
Grammatical 
reasoning—latency 
Vigilance—latency 
Vigilance—accuracy 
Tracking task 
(Compared % blood 
alcohol level, BAC) 

Sleep deprivation – 
hours of 
wakefulness 

(No error 
data) 

[275
] 

MF3
.1 

E PIF weight is between 1.2 to 
2.5 for 20-80 hours of 
wakefulness (Figure A18-3) 
 

34 studies, most visual-
motor tasks 

Sleep deprivation – 
hours of 
wakefulness 

(Other 
PIFs 
may 
exist) 

[276
] 

MF3
.1 

DM The critical reasoning task 
was unaffected by sleep 
loss, whereas performance 
at the game significantly 
deteriorated after 32-36 h of 
sleep loss, when sleep 

Performed dynamic and 
realistic marketing 
decision making "game" 
requiring flexible thinking 
and the updating of plans 

Total sleep 
deprivation 

(No error 
data) 

[277
] 
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deprivation led to more rigid 
thinking, increased 
perseverative errors, and 
marked difficulty in 
appreciating an updated 
situation 

in the light of new 
information 

MF3
.1 

DM Impairment on DM is as 
much as on other cognitive 
functions 

Review of 
decisionmaking 
impairment due to total 
sleep deprivation 

Total sleep 
deprivation 

(No error 
data) 

[278
] 

MF-
4 

E Alarm 
onset 
time 

Sterile Non-
sterile 

Trained students 
monitored NPP CR alarm 
onset and performed 
alarm response 
procedure in 30mins 
(%uncompleted by 
30mins) 

Alarm onset time: 
sterile condition - not 
allowed access to 
any activity that was 
not directly related to 
the task  
Non-sterile: 
Allowed to access 
the Internet and read 
or use their own 
electronic devices  

Scenario 
(small 
subject 
sample) 

[279
] 

1:30 0.08 0.08 
2:30 0.17 0.5 
3:30 0.67 0.83 

MF4  Figure A18-4 Annual number of OEs 
distributed by the amount 
of time on position that 
had lapsed before the 
OE occurred, most OEs 
occurred in the first 
30minutes on-shift 

Minutes on position Scenario 
familiarit
y 
(Statistic
al) 

[118
] 

 

 

Figure A18-1 Performance decrement (y) corresponding to the number of hours of sleep 
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Figure A18-2 Equivalent of the blood alcohol content (BAC%) corresponding to sleep deprivation (hours awake) in various studies. 

 

Figure A18-3 Probability ratios for number of lapses means 
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Figure A18-4   Annual number of OEs distributed by the amount of time  on the position that had 
lapsed before the OE occurred.
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Appendix A19 PIF Attributes and Weights for Time Pressure and 
Stress 

Table A19-1 Attribute Identifiers and Descriptions for PIF Time Pressure and Stress 
ID Attribute 
MF0  No impact  
TPS1 Time pressure due to perceived time urgency   

• Receiving instructions to complete tasks as quickly as possible, deadlines, or stimulus 
presentation rate  

• Skipping self-verification due to rush the task completion (speed-accuracy trade-off)  
TPS2 Emotional stress (e.g., anxiety, frustration)  
TPS3 Cumulative physical stress (e.g., long hours exposure to ambient noise, disturbed dark and light 

rhythms, air pollution, disruption of normal work-sleep cycles, illness)  
TPS4 Reluctance to execute an action plan due to potential negative impacts (e.g., adverse economic impact, 

or personal injury)  
 

Table A19-2 IDHEAS-DATA IDTABLE-19 – PIF Weights for Time Pressure and Stress 
1 2 3 4 5 6 7 
PIF 
 

CFM Error rates Task (and error 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncertai
nty) 

REF 

TP
S1 

D, 
U&D
M, E 

Effect-size is a standardized 
mean difference between the 
experimental and control 
conditions.  

Controlled lab setting 
and real-world settings 
in which temporal 
constraints impose 
stress and workload on 
operators, as anyone 
who is pressed to meet 
proposal deadlines can 
attest. 

time stress: (e.g., 
instructions to 
complete tasks as 
quickly as 
possible, 
deadlines, or 
stimulus 
presentation rate)  
 
 
 

125 of 
281 
papers 
with 827 
data for 
meta-
analysis 

[81] 

 acc
ura
cy 

Resp
onse 
time 

Perception (D) -
0.3
3 

0.26 

Cognition (U & 
DM) 

-
0.6
6 

0.57 

Motor 
 (E) 

0.1 -0.6 

TP
S1 

U & 
T 

Members lose awareness of 
each other as time pressure 
increases, but far less so in 
terms of task-relevant than 
task-irrelevant information.  
Time-pressure has a direct 
effect on awareness of group 
members in addition to the 
indirect effect that would be 
expected with the reduced 
social interaction observed by 
Karau and Kelly (1992). This 
effect could be especially 
problematic for group 
coordination if group members 
do not consider coordination 
related information to be 
important. 

3-person groups 
performed anagram-
solving task 
independently but 
simultaneously with and 
in the presence of their 
group members 

Excess time – 
75% of work 
assignment 
Moderate time 
Time pressure – 
100% assignment 
High time 
pressure – 150% 
work assignment 
 

(Anagra
m-solving 
task is 
relating 
and 
reasonin
g) 

[280] 



 

A19-2 

TP
S1 

Uns
p. 

See Figures A19-1 and A19-2 
 
 

Aircraft maintenance 
tasks: 
Skill-based errors, 
decisionmaking error, 
and procedure routine 
violation 

678 human errors 
in 992 ASRS 
maintenance 
reports. 
Time pressure is a 
pressure to hastily 
complete a task 
as indicated by an 
approaching 
deadline. 
 

(Statistic
al 
analysis) 

[281] 

TP
S1 

U, 
DM, 
E 

See Figure A19-3. Aircraft maintenance 
tasks: Skill-based 
errors, decisionmaking 
error, and procedure 
routine violation 

678 human errors 
in 992 ASRS 
maintenance 
reports. 
Time pressure is 
the pressure to 
hastily complete a 
task as indicated 
by an approaching 
deadline. 
 

(Statistic
al 
analysis) 

[281] 

TP
S1 

DM  
See Figures A19-4, A19-5, and 
A19-6. 
 

Dynamic 
decisionmaking - 
monitor the fitness of an 
athlete wi-3 is running a 
race and avoid athlete 
to collapse (i.e. to reach 
a fitness level of zero). 
To attain this goal the 
subject can request 
information and apply 
treatment. 

Three time- 
pressure 
conditions 
expressed by the 
slopes of the 
functions Y =aX+ 
b: low time 
pressure (a=-0.5), 
moderate time 
pressure (a=-1}, 
and high time 
pressure (a=-2).  
 

 [282] 

TP
S1 

E See Figure A19-7. Three tasks with 
increasing levels of 
execution complexity in 
the simple response 
task, participants 
responded with their left 
hand in half of each 
block and with their right 
hand in the other half. In 
the choice-by- location 
task, participants had to 
respond at the side 
where the letter was 
displayed. In the Simon 
task, participants had to 
press the left button 
when an “A” was 
presented, and the right 
button when a “B” was 
presented.  

Participants were 
told that filling time 
varied randomly 
during the 
session. In the 
condition without 
time pressure 
filling time was 
held constant at 
600ms. The 
starting value of 
the filling time for 
the condition with 
time pressure was 
450ms.  
 

 [283] 
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TP
S1 

U Without 
time 
pressure 
 

0.49 Senior internal medicine 
residents diagnosed 
eight written clinical 
cases presented on 
computers (diagnosis 
accuracy) 

In the time-
pressure 
condition, after 
completing each 
case, participants 
received 
information that 
they were behind 
schedule. 

 [284] 

With 
time 
pressure 

0.67 

TP
S1 

U See Figure A19-8. Solve syllogism through 
reasoning. Simple 
problems require a few 
steps to determine the 
logical validity. Complex 
problems require a 
larger number of steps 
and more difficult logical 
operations (e.g., 
reduction at absurdum) 
in their proofs. 
(Accuracy of reasoning) 

Time limited vs. 
unlimited. 
Reasoning 
complexity - 
Syllogism 
complexity was 
manipulated by 
presenting people 
with simple or 
complex 
syllogisms.  

 [285] 

TP
S1 

E Error rate of response (M +/- 
SD): difference not significant 

Visual-motor response 
requiring motor 
precision 

Time allowed to 
make response: 
1s, 1.5s and 2s 

 [286] 

1s 0.8 ± 1.0 
1.5s 0.9 ± 1.2 
2s 1.4 ± 2.6 

TP
S1 

D  Match Mismatch Experiment 3: Students 
performed passport-
control face picture 
match (%error in match 
and mismatch) 

Time pressure - 
number of tasks 
assigned within 
fixed timeframe 

 [79] 
10s 0.22 0.3 
8s 0.22 0.45 
6s 0.22 0.42 
4s 0.23 0.45 
2s 0.24 0.42 

TP
S1 

U & 
E 

 Trigger 
event  

Skill-based Students enrolled in 
aviation maintenance 
technician program 
recognized 3 trigger 
events and performed 
aircraft maintenance 
tasks (Trigger event 
errors and skill-based 
errors) 

Time pressure 
(TP). 
Shift turnover 
strategy: Written 
(W) vs. Face-
toface (FF) 

 [287] 

W-TP 1.7 1 
W-
NoTP 

1.1 1.2 

FF-
TP 

0.8 0.3 

FF-
NpTP 

0.6 0.8 

TP
S1 

DM See Figures A19-9 and A19-10. 
 

210 male 
undergraduates) were 
presented five pieces of 
information to assimilate 
in 
evaluating cars as 
purchase options. (# of 
factors had 
been systematically 
used by the processor 
to 
make the final 
judgment) 

High time 
pressure condition 
-  “proceed as 
rapidly as possible 
without sacrificing 
accuracy.” 
Subjects were 
asked to record 
the elapsed time 
on their booklet 
when they 
finished.  
low time pressure 
– “accurately 
judge the cars.” 
Each was told he 
would have 40 
seconds to 
consider the 
information 

 [288] 



 

A19-4 

available and 
should use the 
entire period. The 
length of a 40-
second interval 
offered plenty of 
processing time.  
Undefined time - 
no mandatory 
deliberation period 
was imposed.  

TP
S1 

DM (# of factors used to make the 
final judgment) 

210 male 
undergraduates were 
presented five pieces of 
information to assimilate 
in 
evaluating cars as 
purchase options (# of 
factors  
used to 
make the final 
judgment) 

High, low, 
undefined 
(unconstrainted) 
time pressure 

 [288] 

Undefined 2.08 

Low time 
pressure 

2.33 

High time 
pressure 

1.5 

TP
S1  

U  Low 
comple
x 
(1E0T) 

High 
complex 
(3E2T) 

120 subjects completed 
100 geometric 
analogies with nine 
levels of complexity (# 
of Elements and # of 
Transforms) 
(%incorrect) 

TPS-1: relaxed 
(reassurance, 
non-time-limited) 
or stressed (ego-
threat, time-
limited)  
 

(Time 
available 
is 
sufficient) 

[80] 

Relax
ed 

0.012 0.083 

Stres
sed 

0.046 0.375 

TP
S1 
& 
TP
S2 

U  Low 
comple
x 
(1E0T) 

High 
complex 
(3E2T) 

120 subjects completed 
100 geometric 
analogies with nine 
levels of complexity 
defined as # of 
Elements and # of 
Transforms) 
(%incorrect) 

TPS-1: relaxed 
(reassurance, 
non-time-limited) 
or stressed (ego-
threat, time-
limited)  
TPS2- Individual 
differences in trait 
and state anxiety: 
Less state anxious 
(Less A) and more 
state anxious 
(More A) 

(Time 
available 
is 
sufficient) 

[80] 

Relax
ed & 
less 
A 

0.007 0.061 

Relax
ed & 
more 
A 

0.023 0.133 

Stres
sed & 
less 
A 

0.047 0.352 

Stres
sed& 
more 
A 

0.046 0.386 

TP
S2 

D  HS-ST LS-
ST 

LSDT The threat-of-shock 
Detect target in normal 
condition and 
anticipatory anxiety: 
Participants 
were informed that 
during these blocks, 
they could randomly 

HS-ST - High 
Salience,Single 
Target  
LS-ST - Low 
Salience, Single 
Target   
LSDT - low 
Salience, Dual 
Target  
 

 [289] 

Nor
mal 

5.24 
(4.75) 

48.04 
(21.3) 

45.00 
(17.7) 

Thr
eat 

6.19 
(5.15) 

41.48 
(19.7) 

53.10 
(24.2) 
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receive a wrist shock 
that was not related to 
performance. (% miss) 

TP
S2 

D  Prepict
ure 

8min with 
picture 

51 participants 
(15 men and 36 
women) performed 
target detection 
vigilance tasks while 
viewing a task-irrelevant 
picture (% miss) 

Three vigilance 
conditions:  
negative-arousing 
pictures,  
neutral pictures, or 
a no-picture visual 
vigil control.  
 

 [290] 

Nega
tive 

0.11 0.20 

Neutr
al 

0.9 0.8 

Contr
ol 

0.8 0.12 

TP
S2 

E  Heart 
rate 

Dart score Psycho-motor 
performance (average 
heart rate and dart 
score per dart) 

Low and high 
anxiety  

 [291, 
292] 

Low 
anxie
ty 

162 5.2 

High 
anxie
ty 

167 4.6 

TP
S2 

DM Stress showed a significantly 
stronger tendency to offer 
solutions before all available 
alternatives had been 
considered (Figure A19-11) 

They were requested to 
solve decision 
problems, while 
being exposed to 
controllable stress, 
uncontrollable stress, or 
no stress at all.  

No time constraint 
for the 
performance of 
the task. 
Uncontrollable 
stress - the 
computer had 
been programmed 
with the number 
and timing of the 
shocks in such a 
way that the 
subject had no 
control over them 
whatsoever. 
Controllable stress 
- Receiving 
shocks was 
presented to the 
subject as 
contingent 
on his or her 
performance. 

 [293] 

TP
S2 

Uns
p 

Both threat of shock and 
anxiety disorders promote 
mechanisms associated with 
harm avoidance across multiple 
levels of cognition (from 
perception to attention to 
learning and executive function. 
This mechanism comes at a 
cost to other functions such as 
working memory, but leaves 
some functions, such as 
planning, unperturbed. We also 
highlight a number of cognitive 
effects that differ across anxiety 
disorders and threat of shock. 
These discrepant effects are 
largely seen in “cold” cognitive 
functions involving control 
mechanisms  

Review threat of shock 
on cognition 

 (No error 
data) 

[294] 
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TP
S2,  
TP
S3 

E  Lo-A High-A Military solder shooting 
accuracy task (%miss) 

TSP-2 - LoA and 
Hi-A: Low and 
high anxiety 
TSP-3 - LF an HF 
– low and high 
physical fatigue 

 [295] 

LF 67.4 
(24.9)  

32.6 (26.2) 
 

HF 66.7 
(22.7)  
 

37.1 (23.7) 

 
TP
S2,  
TP
S3 

U / 
E 

 Lo-A High-A Military solders math 
task (%incorrect) 

TSP-2 - LoA and 
Hi-A: Low and 
high anxiety 
TSP-3 - LF an HF 
– low and high 
physical fatigue 

 [295] 
LF 88 82 
HF 86 76 

TP
S2 
, 
TP
S3 

U / 
E 

 Lo-A High-A Military solders memory 
task (%incorrect) 

TSP-2 - LoA and 
Hi-A: Low and 
high anxiety 
TSP-3 - LF an HF 
– low and high 
physical fatigue 

 [295] 

LF 52 61 

HF 60 49 

TP
S2 
, 
TP
S3 

D  Lo-A High-A Military solders 
vigilance task -  
detecting target (0-5) 

TSP-2 - LoA and 
Hi-A: Low and 
high anxiety 
TSP-3 - LF an HF 
– low and high 
physical fatigue 

 [295] 

LF 0.6 0.5 

HF 0.7 0.7 

TP
S2 
, 
TP
S3 

DM   Lo-A High-A Military task – decide to 
or not to shoot 
(incorrect-decisions-to-
shoot ratio  
 )  

TSP-2 - LoA and 
Hi-A: Low and 
high anxiety 
TSP-3 - LF an HF 
– low and high 
physical fatigue 

 [292] 

LF 0.03 0.04 

HF 0.03 0.06 

TP
S2 
, 
TP
S3 

E  Lo-A High-A Military task - shoot 
accuracy (%miss) 

TSP-2 - LoA and 
Hi-A: Low and 
high anxiety 
TSP-3 - LF an HF 
– low and high 
physical fatigue 

 [292] 

LF 0.52 0.69 

HF 0.60 0.58 

Un
sp 

E 5.8E-2 (1/20)             
 

34 Opening a valve by 
MCR 
panel controls 
Failed to open, 
memorized task 
step is not remembered 

Rarely performed 
task sequence, 
moderately high 
level of stress 
 

(Infreque
ntly 
performe
d tasks) 

[4] 

Un
sp 

E No 
stress 

2.45E-2 (1/48)  Carrying out a 
sequence 
of tasks 
Memorized task step 
not remembered 

No stress - Rarely 
performed, no 
error promoting 
factors                                  
Stress - Rarely 
performed, 
moderately high 
level of stress 

(Infreque
ntly 
performe
d tasks, 
unspecifi
ed 
stress) 

[5] 

Stress 5.62E-2 (2/41)   

TP
S4 

E Exist  1.1E-2 Delay implementation of 
a decision/plan 

Exist vs absence 
of reluctance & 
viable alternative. 
Incorrect 
assessment of 
margin and with 
additional cues 

(Expert 
judgment
) 

[6] 
Absence 2.2E-4 
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Figure A19-1 Identified contributing factors. 

 

 

Figure A19-2 Frequency of unsafe acts. 
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Figure A19-3 Association between unsafe acts and contributing factors by Multinominal Logistic 
Regression Analysis 

 

 

Figure A19-4  Time pressure effects 

 
Figure A19-5  Time pressure effects 
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Figure A19-6  Time pressure effects 

 

 
Figure A19-7 Response time and proportion of responses. 
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Figure A19-8 Endorsement rates 

 

 

 
Figure A19-9  Frequency of best-firs for data usage model in  time pressure. 
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Figure A19-10  Mean multiple correlations for time pressure 

 

 

 
Figure A19-11  Scanning and quality of performance scores in  the experiments.



 

A20-1 

Appendix A20 PIF Attributes and Weights for Physical Demands 

Table A20-1 Attribute Identifiers and Descriptions for PIF Physical Demands 
ID Attribute 
PD0  No impact  
PD1  Physically strenuous action execution – Approaching or exceeding physical limits, e.g., lifting, handling, 

or carrying heavy objects, opening/closing rusted or stuck valves  
(Note: Heavy loads is defined in NUREG-0612: “Any load, carried in a given area after a plant becomes 
operational, that weighs more than the combined weight of a single spent fuel assembly and its 
associated handling tool for the specific plant in question.” 

PD2  High spatial or temporal precision of fine motor movement needed for action execution 
PD3  Precise coordination of joint action by multiple persons  
PD4  Unusual loading or unloading materials (e.g., unevenly balanced loads, reaching high parts, dry cask 

loading)  
PD5  Handling objects using crane/hoist  

 

Table A20-2 IDHEAS-DATA IDTABLE-20 – PIF Weights for Physical Demands 
1 2 3 4 5 6 7 
PIF 
 

CFM Error rates or task performance 
indicators 

Task (and error 
measure) 

PIF  
measure 

Other 
PIFs 
(and 
Uncert
ainty) 

REF 

PD1 E Figure A20-1 
 

Scope of load lifting & 
carrying task demands 
for 
US soldiers. 

Weights of 
lifting or 
carrying 
loads 

(No 
error 
data) 

[296
] 

PD1 E Several published regression equations 
can be used to predict team performance  
of manual materials handling. Dependent 
variables included measures of muscle 
strength, anthropometric characteristics, 
and gender of team members. These 
equations were able to account for 
between 35% – 98% of the variance in 
team performance, but most reported a 
relatively large standard error of the 
estimate, making them of limited practical 
use. 
 

Team performance  of 
manual materials 
handling 

Personnel 
factors 
affecting 
team 
performan
ce 

(Literat
ure 
review) 

[296
] 

PD1 E U.S. Military Standard 1472 F provides 
recommendations to team lifting. For two-
person teams lifting from floor level to 91 
cm, the standard recommends doubling 
the one-person load (79 kg for two men, 
40 kg for two women), and a maximum of 
75% of the one-person value can be 
added for each additional lifter beyond 
two. 

Team lifting load or 
carrying tasks 

Task 
demandin
g – 
weight, 
height of 
lifting, 
distance 
of carrying 

(No 
error 
rate) 

[296
] 

PD-
1 

E  
Performanc
e Demands 

Operate 
a 

transpor
t vehicle  

(% 
Contribution
) 

Manually 
lift and 
move 

designat
ed heavy 
materials 

(% 
Contribution
) 

(Table 6.5) Notional 
performance demand 
profiles of 
hypothetical 
generalized actions in 
flood hazard 

Contributi
on of 
generic 
tasks to 
the 
performan
ce 
demands 
of a 

(Engine
ering 
judgme
nt 
based 
on task 
analysi
s) 

[85] 
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Detecting 
and noticing 

40% 20% manual 
action 

Action – 
fine motor 

30% 20% 

Action – 
gross motor 

30% 60% 

PD2 E  Same hand 
correction 

Hand-switch 
correction 

Repetition - repeat the 
same task 
Switch – randomly 
switch several tasks 

Correction 
of 
execution 
errors 

(Simple 
psych-
motor 
tasks) 

[297
] 

Repetition 0.15 0.13 

Switch 0.23 0.19 

PD3 E See Figure A20-2 An overview of the 
major cognitive, 
sensorimotor, 
affective, and cultural 
processes supporting 
joint action – the 
variety of coordination 
mechanisms 
underlying joint action 

No error data 
provided but many 
references of the 
paper have error 
data 

[298
] 

PD4 E HFE group 1: Before & during fuel loading Scenarios: 
1.  Failure in fuel-movement planning results in misload of 
≤ 13 spent fuel assemblies with wrong fuel 
2.  Failures of multiple personnel in fuel movement results in 
misload of ≤ 4 spent fuel assemblies 
3.  Failures of one person during fuel movement results in misload 
of ≤ 4 spent fuel assemblies 
4.  Omission of in-pool staging results in misload of ≤ 4 spent fuel 
assemblies 
5.  Failures during fuel movement lead to misload with wrong fuel 
6.  Fuel-handling failures damage fuel during placement 

No error data, 8 
types of nuclear 
waste handling 
scenarios were 
described 

[83] 

PD4 E Distribution of events by type of load 
(% of events) 

114 NPP heavy load 
handling events were 
analyzed 

Types of 
load 

(Causal 
analysi
s) 

[84] 

Nuclear fuel 30% 
No load 19% 
Control rods or parts 5% 
Container with 
radiological waste 

19% 

Test load 3% 
RPV head or internals 5% 
Other loads 19% 

PD4 
/ 
PD5 

 Distribution of events by failure mode 
(%) 

114 NPP heavy load 
handling events were 
analyzed, eight 
different main failure 
modes have been 
identified, covering 
more than 90% of the 
events 

Failure 
modes 

Causal 
analysi
s) 

[84] 

Lifting interface failure 21% 
Crane or lifting device failure 17% 
Collision during handling 14% 
Unauthorized crane operation 13% 
Slings/wire/rope/chain 
breakdown 

10% 

Crane controls/device failure 8% 
Hoist emergency breaks failure 6% 
Other 9% 

PD4  Low E-4/operation 25. Dropping of load 
when using forklift 
 

NA (Expert 
judgme
nt) 

[37] 
Nominal E-3 
High E-2 

PD5  Low E-5/operation 27. Dropping of load 
when using crane/hoist 

NA (Expert 
judgme
nt) 

[37] 
Nominal E-4 
High E-3 

PD5  Low E-5/operation 28. Crane/hoist strikes 
stationary object 

NA [37] 
Nominal E-4 
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High E-3  (Expert 
judgme
nt) 

PD5  See Figure A20-3 “Independent 
Oversight Special 
Study of Hoisting and 
Rigging Incidents 
within the Department 
of Energy” covers a 
30-month interval, from 
October 1, 1993 to 
March 31, 1996 

Root 
causes as 
shown in 
the data 
table. 

Causal 
analysi
s) 

[82] 

PD5 E The number of incidents associated with 
operator failure is an astonishing 90 
to 95% (Figure A20-4) 

Navy crane incidents: 
Failure of the Trudock 
crane system at the 
waste isolation pilot 
plant (WIPP) 

Incidents 
due to 
equipment 
failure vs 
due to 
operator 
failure 

Causal 
analysi
s 

[299
] 

 

 

 

 
 

Figure A20-1  A frequency diagram of the loads lifted and carried by US and UK Army 
Soldiers. 
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Figure A20-2  Overview of different coordination mechanisms supporting joint action, along with 
a set of examples. 
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Figure A20-3 Root Cause of Hoisting and Rigging Incidents by Equipment Type 
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Figure A20-4 Frequencies of Navy crane incidents.  
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Appendix A21 Lowest HEPs 

Table A21-1 IDHEAS-DATA IDTABLE-21 – Lowest HEP 
 

1 2 3 4 5 6 
CF
M 

Error rate Task and context 
 

Criteria for lowest HEPs: 
TA - Time adequacy 
SelfV - Self verification 
TeamV – Team verification 
Rec - Recovery 
O - other factors 
(Y-Yes, N – No, M-Mixed  
Un-Unknown) 

Uncertainty REF 

D 2.1E-3 
(4/1872) 

NPP operators alarm detection in 
simulator training 
- Alarms are self-revealing 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 

(Other PIFs 
may exist) 

[26] 

D 3.4E-3 
(3/870) 

NPP operators check indicators 
in simulator training 
- procedure directed 

checking. 

TA-Yes, SelfV-Yes,  
TeamV-yes,  
Rec – Unknown 
O - Y (unspecified) 

(Other PIFs 
may exist) 

[26] 

D 5E-4 Military operators read meters, 
Alphanumerics reading,  
- Detection straightforward 

TA-Y, SelfV-Y,  
TeamV-No, Rec-No 

(Maybe time 
constraint, 
10K+ source 
data trials) 

[109] 

D E-4 Estimated lowest probability of 
human failure events  

TA-Yes, SelfV-Yes,  
TeamV-yes,  
Rec - Unknown 

(Engineering 
judgment) 

[110] 

D E-4 Simplest possible tasks 
 

TA-Yes, SelfV-Yes,  
TeamV-Unknown,  
Rec - Unknown 

(Engineering 
judgment) 

[111] 

D E-3 Routine simple tasks TA-Yes, SelfV-Yes,  
TeamV-Unknown, 
 Rec – Unknown 
O – Maybe weak complexity 

(Engineering 
judgment) 

[111] 

D 5E-3 
 

Line-oriented text editor (Error 
rate per word) 

TA-Yes, SelfV-Yes,  
TeamV-No, Rec - No 

Not 
analyzed 

[112] 

D 5E-3 
 

Reading a gauge incorrectly 
(Error rate per read) 

TA-Yes, SelfV-Yes,  
TeamV-No,  
Rec – Unknown 
O – HSI 

Not 
analyzed 

[113] 

D E-3 
 

Interpreting indicator on an 
indicator lamp (Error rate per 
interpretation) 

TA-Yes, SelfV-Yes,  
TeamV-Unknown,  
Rec – Unknown 
O- complexity in interpreting 
indicator 

(Engineering 
judgment) 

[109] 

D 9E-4 NPP operator simulator runs TA – Y, Selv-V – Y 
TeamV – Y,  
Rec – Unknown 
O – Mixed complexity 

No apparent 
uncertainty 

[114] 

D 5.3E-4 Gather information and evaluate 
parameters 

TA – Y, Selv-V – Y 
TeamV – Y, R – Yes 

No apparent 
uncertainty 

[300] 
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D 9E-3 Collision avoidance and target 
monitoring in simulated ship 
control 
- Fixed situation, routine 
response 

TA – Y, Selv-V – Yes 
TeamV – No, R – Yes 
O – Dual task, and maybe mixed 
complexity, mental fatigue, time 
pressure  

Dual task [27] 

U 8.1E-3 
(19/2350)  

NPP operators diagnose in 
simulator training 
 - Ambiguous Information NOT 
existing  

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 

Other PIFs 
exists 

[26] 

U 7.7E-3 
(10/1293)  

NPP operators diagnose in 
simulator training 
 - Information specificity: specific 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 

Other PIFs 
exists 

[26] 

U 7.7E-3 
(20/2582) 

NPP operators diagnose in 
simulator training 
 - No missing information 

TA-Yes, SelfV-Y,  
TeamV-Y,  
Rec -Unknown 
O – Y (unspecified) 

Other PIFs 
exists 

[26] 

U 9.8E-3 
(25/2552) 

NPP operators diagnose in 
simulator training 
 - No misleading information 

TA-Yes, SelfV-Y,  
TeamV-Y,  
Rec -Unknown 
O – Y (unspecified) 

Other PIFs 
exists 

[26] 

U 0.0143 
(9/360) 

NPP crew simulation with soft 
control in CR (Diagnosis error).  
See Figure A21-1. 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 
 

No apparent 
uncertainty 

[301] 

U 4E-2 Student controllers performed air 
traffic control (near miss rate) 

TA-Yes, SelfV- Unknown,  
TeamV- No, Rec -Unknown 
O – Y (Task complexity and poor 
training) 

Task 
complexity 
and poor 
training 

[124] 

U 3.9E-3 NPP operator simulator runs TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 
 

No apparent 
uncertainty 

[114] 

U 1.9E-3 Identify procedure 
 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 

No apparent 
uncertainty 

[300] 

U 1E-4 Plan and decide command 
strictly following procedures 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 

No apparent 
uncertainty 

[300] 

DM 4.6E-3 
 

NPP operator simulator runs   
- Follow procedure 
 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 

No apparent 
uncertainty 

[114] 

U 0.04 
 

Diagnosing a pattern; personnel 
uses structured information to 
guide diagnosis 
 - Predictive situation 

TA-Yes, SelfV-Y,  
TeamV-Y, Rec -Unknown 
O – Y (unspecified) 
 

Task 
complexity 

[28] 

U  1E-4 Air traffic control (Operational 
error)  
- 100+min on shift,   

TA-Yes, SelfV-Y,  
TeamV-Y,  
Rec - Unknown 
O – Unknown 

With 
teamwork, 
recovery, 
and pilot 
redundancy 

[118] 

U 0(9/9) Physician diagnosis  
- High-context with all information 

 (Experiment 
study) 

[126] 
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U 
&D
M 

3.8E-3 Pilots’ flight (error rates)  
- Flight hour > 5000 

  [88] 

DM 9E-5 Maintenance of the disc brake 
assembly (decided to omit part of 
the task) 
 - No over-riding information  

  [123] 

DM 5E-3 Maintenance in cable production 
process (wrong task plan) - Good 
quality of information 

 (Estimation) [121] 

DM 6.2E-2 
 

NPP operator simulator runs 
  - Plan for manipulation 
 

TA – Y 
Selv-V – Y 
TeamV – Y 
Rec - Unknown 

(Error 
definition 
may be 
different) 

[114] 

DM 1.3E-2 Licensed driver simulator 
(%collision) - fast driving early 
real-end information 

TA-No, SelfV-No, TeamV – No 
Rec - No 
O – Y (unspecified) 

Time 
inadequate 

[125] 

U & 
DM 

7.9E-2 Pilots in-flight deicing 
(Percentage of early buffet, i.e., a 
low stool or hassoc) 
 - Accurate information timely 
with status displays 

TA-No, SelfV-Y, TeamV – No 
Rec - Mixed 
O –Multitasking 

Inadequate 
time  

[30] 

E 4E-3 
(5/1281) 

NPP crew simulation with soft 
control in CR – Operation 
omission (Figure A21-1) 

TA-Yes, SelfV-Y,  
TeamV-Y,  
Rec - Y 
O – Y (unspecified)  

(Error 
definition 
may be 
different) 

[301] 

E 7.9E-3 NPP operator simulator runs - 
execute procedures 

TA – Y 
Selv-V – Y 
TeamV – Y 
Rec - Unknown 

(Error 
definition 
may be 
different) 

[114] 

E 9E-4 Maintenance in processing plant 
soldering 
 

TA – Y 
Selv-V – Y 
TeamV – Unknown 
Rec - Unknown 

Data-based 
estimation 

[302] 

E 4.8E-3 Component selection TA – Y 
Selv-V – Y 
TeamV – Unknown 
Rec - Unknown 

Data-based 
estimation 

[302] 

E 5E-3 Not available TA – Yes 
V – SelfV and teamV 
Rec – Yes 

Not 
analyzed 

[303] 

E 3E-4 
 

Bank machine operators, errors 
per check 

TA- Y 
V – SelfV 
Rec – Un 

Not 
analyzed 

[304] 

E E-4 Simplest possible tasks 
 

Not available Not 
analyzed 

[111] 

E E-3 Routine simple Not available Not 
analyzed 

[111] 
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E 8 E-4 

(1/1470)  
Manually operating a local valve, 
frequently performed task, valve 
not operated, step in a sequence 
of different steps not 
remembered  - No known PIF 
exists 

TA – Y,  SelfV- Y,  
TeamV - Unknown 
Rec - Unknown 

Error rates 
were for 
steps of a 
task, most 
tasks 
performed 
may not 
have peer-
checking, 
some errors 
made may 
have been 
recovered so 
they did not 
get into the 
reporting 
system. 

[4, 5] 

E 8.9E-4 
(7/8058)  

Operating a control element on a 
panel, wrong control element 
selected 
 - Similar controls within reach 

 8.78E-4 
(1/1347)  

59 Operation of a manual control 
at MCR control (Task not 
remembered) 
- Frequently performed task, part 
of professional knowledge, 
position of indicator lamps 
ergonomically unfavorably 
designed 

E 7.78E-5 
(1/15,200
)  

Pulling and replugging a 
simulation pin on an electronic 
module front cover in a control 
cabinet; Errors were replugging 
omitted, highly trained task, not 
part of a written procedure but 
part of professional knowledge, 
favorable ergonomic design 
- No known PIF exists 

E 1.13E-4 
(0/2010)  

Reading instructions in a written 
procedure; Errors were Omitting 
to read one instruction 

E 1.13E-4 
(0/2010)  

Adjusting a process parameter 
by push- button controls, 
Frequently performed task, part 
of professional knowledge 
- Long procedure, checkoff 

provisions 
E 1.04E-3 

(2/2088)  
Remembering professional 
knowledge, remembered 
incorrectly, part of frequently 
performed procedure 

E 1.03E-3 
(3/3067)  

Carrying out a sequence of 
tasks, errors were skipped steps, 
frequently performed 

E 1.2E-3 
(1/948)                      
 

Operating a pushbutton control 
Wrong button  
- selected button within 

reach, similar buttons 
nearby, ergonomically well 
designed panel 

E 1.3 E-3 
 (1/ 913)        
 

Adjusting actuation value of a 
pressure limiting valve (Deviation 
out of tolerance) 
- High accuracy necessary                            

E 8.9E-4 
(1/1332)                    
 

5 Operating a rotary control 
Wrong switch  
- selected switch within 

reach, similar switches 
nearby, text labeling only 

 
 



 

A21-5 

E 7.8E-4 
(1/1512)                  

7 Connecting a cable between 
an external test facility and an 
electronic module. Connected to 
wrong module panel, mimic 
layout 
- Module access ports within 

reach, similar access ports 
nearby, frequently 
performed task, color 
coding of ports 

E 1E-3 
(1/1146)                    

9 Operating a push button 
control (Wrong button selected)  
-  Similar buttons within 

reach, text labeling only 
E 1.2E-3 

(3/2630)                   
Plain text labeling, similar 
controls within reach                       

E 2.1E-3 
(4/1958)                 

Operating a control element on a 
panel (Wrong control element 
selected) 
Mimic diagrams, color coding, 
similar controls within reach 

E 1.6E-3 
(7/4588)         

Operating a control element on a 
panel (Wrong control element 
selected)  
- Wrong control element 

within reach and similar in 
design 

E E-4 Lowest HEP of an event or task 
(performing off-shore oil 
operation) 

 TA – Y, Selv-V – Y 
TeamV – Y, Rec – Y 
O - No 

(Engineering 
judgment) [110] 

E E-5 Lowest HEP of an event or task 
(performing off-shore oil 
operation) 

 TA – Y, Selv-V – Y 
TeamV – Y, Rec – Y 
O - No 

(Engineering 
judgment) [110] 

E 2.7E-3 Nuclear hard-copy data - During 
a shift the transport department 
brought a chemical load to the 
compound after permission had 
been arranged between two 
supervisors, but the correct 
paperwork did not arrive with the 
chemicals. Consequently this led 
to two cans of highly enriched 
chemical solution being 
processed instead of six cans of 
low enriched chemical 

TA – Y, Selv-V – Y 
TeamV – Y, Rec – Unknown 
O – Y (unspecified) 

(Engineering 
judgment) [305] 

E 3.9E-4 Manufacturing (Confidential) real 
data - 
A component has a different 
profile machined on each end.  
The operator inadvertently 
machines the aft end profile on 
the forward end. 

TA – Y, Selv-V – Y 
TeamV – Y, Rec – Unknown 
O – Y (unspecified) (Engineering 

judgment) [305] 

E 48 students majoring in nuclear engineering - 
NPP simulator procedure execution (Figure 
A21-2) 
 

TA – Y 
SelfV – Y 
TeamV – Y 
Recov - No 

 [107] 

E Failure of recovery - 48 students majoring in 
nuclear engineering - NPP simulator 
procedure execution (Figure A21-3) 

TA – Y 
SelfV – Y 
TeamV – Y 

 [107] 

E 9E-4 Maintenance and repair in cable 
production process 

  [121] 



 

A21-6 

- familiarity with the task in-
hand   

D / 
E 

0.007 Omission errors - Operator crew 
simulator re-training 

TA-Y 
SelfV-Y 
TeamV-Y 
Recov-Y 

 [306] 

D 
/E 

0.01 Unrecovered omission errors - 
Operator crew simulator re-
training 

TA-Y 
SelfV-Y 
TeamV-Y 
Recov- Y 

 [306] 

D 
/E 

4E-3 Commission errors - Operator 
crew simulator re-training 

TA-Y 
SelfV-Y 
TeamV-Y 
Recov- Y 

 [306] 

D 
/E 

2E-3 Unrecovered commission errors - 
Operator crew simulator re-
training 

TA-Y 
SelfV-Y 
TeamV-Y 
Recov- Y 

 [306] 

T 2E-3 Speech sample (speech errors) 
per word 

TA-Y 
SelfV-Y 
TeamV-No 
Recov- No 

 

[307] 

T 2E-3 Aviation communication errors TA-Y 
SelfV-Y 
TeamV-No 
Recov- No 

 [305] 

Un
sp 

2E-5 
(800/4E7
)  

ATC OE per operation SelfV – Y 
TeamV – Y 
Recov - Y 

Recovery is 
high [117] 

Un
sp 

2E-4 
(290/1.4
E6) 

ATC OE per shift SelfV – Y 
TeamV – Y 
Recov - Y 

Recovery is 
high [118] 

Un
sp 

1.47E-2 NPP Requal simulation data – 
Perform procedures 

SelfV – Y 
TeamV – N 
Recov - Unknown 

 [87] 

Un
sp 

7.3E-3 NPP Requal simulation data – 
Perform procedures 

SelfV – Y 
TeamV – Y 
Recov - Unknown 

 [87] 

Un
sp 

3.85E-3 Pilot errors causing accidents TA – Mixed 
SelfV – Y 
TeamV – Mixed 
Recov - Mixed 

 [88] 

Un
sp 

5.5E-6 
(686/(1.2
5×E8)) 

Pilot error rate x ATC error rate = 
NTSB reported human error 
accident rate 
TABLE A21-2. The event 
classifications of the 686 Events 
Reviewed in the NTSB database 
from about 1.25×108 Total 
Flights. 

TA – Mixed 
SelfV – Y 
TeamV – Y 
Recov - Y  [119] 
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Figure A21-1 Number of human errors and probabilities of human errors according to error 
modes. 

 
Figure A21-2 Human error probabilities with 5–95% confidence interval.  

 

 

 
Figure A21-3    Recovery failure probabilities according to human error modes obtained from the 
experiments. 

 

Table A21-2 Pilot error event classification 

Classification # of events 

HFEs attributed to pilots, ATC and GTC 179 

HFEs attributes to ground service (e.g., snowplowing and deicing) 71 

Human-in-operation successfully avoided an undesired consequence 270 

The situation is beyond the control of the human-in-operation 3 

Insufficient information to determine 27 

Passenger or flight attendant injury not attributed to pilots’ fault  136 

Total 686 
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Appendix A22 PIF Interaction 

Table A22-1 IDHEAS-DATA IDTABLE-22 – PIF Interaction 
CFM Task and error 

measure 
PIF measures PIF1 – Lo PIF1 -High Other 

PIFs (and 
uncertain
ty) 

Ref 
PIF2-
Lo 

PIF2-
High 

PIF2-
Lo 

PIF2-
High 

D Pilots read aircraft 
instrument dials as 
the luminance (c/m2) 
of dials and degree of 
acceleration (+Gx) 
vary, errors are 
percent of misreading 
dials 

PIF1 – VIS: Luminance  
Lo=15 c/m2, Hi=0.15 
c/m2 
PIF2 – PR: 
Acceleration 
Lo = 2G, Hi=4G 
 

0.07 0.15 0.2 0.45 Maybe 
time 
constraint 

[14] 

D Pilots read aircraft 
instrument dials as 
the luminance (c/m2) 
of dials and degree of 
acceleration (+Gx) 
vary, errors are 
percent of misreading 
dials 

PIF1 – VIS: Luminance  
0.015, 0.15, 1.5, 15, 
150 c/m2,  
PIF2 – PR: 
Acceleration 
Lo = 2G, Hi=4G 
 

PIF1 \ 
PIF2 

2G 4G Maybe 
time 
constraint 

[14] 

150 c/m2 0.07 0.07 
15 0.07 0.15 
1.5 0.10 0.20 
0.15 0.20 0.45 
0.015 0.50 0.63 

Unsp Meta-analysis of 55 
reports to assess the 
strength and 
consistency of the 
multiplicative effects 
of cognitive ability 
and motivation on 
performance 

PIF1 – Cognitive 
abilities 
PIF2 - Motivation 

The effects of ability and motivation 
on performance are additive rather than 
multiplicative. For example, the additive effects 
of ability and motivation accounted for about 
91% of the explained variance in job 
performance, whereas the ability-motivation 
interaction accounted for only about 9% of the 
explained variance. In addition, when there was 
an interaction, it did not consistently reflect the 
predicted form (i.e., a stronger ability-
performance relation when motivation is 
higher).  

[89] 

Unsp Regression fitting of 
human error data on 
empirical combined 
effects of multiple 
PSFs from 31 human 
performance papers 
and calculated their 
multiplicative and 
additive effects 

Unspecified, all kinds 
of PIFs 

The median of the multiplicative effect was 
greater than that of the empirical combined 
effect, whereas the median of the additive effect 
was not significantly different from that of the 
empirical combined effect. Thus, the 
multiplicative model might yield conservative 
estimates, whereas the additive model might 
produce accurate estimates. The additive form 
is more appropriate for modeling the joint effect 
of multiple PSFs on HEP.  

[30
8] 

Unsp This study 
investigated whether 
conscientiousness 
and ability interact in 
the prediction of job 
performance - 
Moderated 
hierarchical 
regression analyses 
for three independent 
samples of 1000+ 
participants 

PIF1 – general mental 
ability (GMA) 
PIF2 - 
conscientiousness 

Results in the present study provided no 
support for the interaction of GMA and 
conscientiousness. It showed that the 
interaction did not account for unique variance 
in the prediction of supervisory ratings of job 
performance beyond that accounted for by 
GMA and conscientiousness. These findings 
indicate that ability does not moderate the 
relationship of conscientiousness to job 
performance. (See Figure A22-1) 

[91] 

Unsp. Analyzed 23 
datapoints of human 
error rates varying 

Different PIFs, e.g., 
shown in Figure A22-2 
 

1. The multiplicative rule tends to over-
estimate the combined effect of PIF 

[1] 
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with single PIFs and 
two combined PIFs 
and fitted the dataset 
to multiplicative 
versus additive 
models 

indicators on error rates, while the additive 
rule can roughly interpret the results 

2. The individual and combined effects of PIF 
indicators can behave differently if the 
indicators show a demand on cognitive 
resources that exceeds the cognitive limits 

 
Unsp Review of studies 

about the effect of 
combined 
environmental factors 
on human errors  

Environmental factors: 
Noise, temperature, 
sleep deprivation, and 
others 
 
 

Combined effect is no more than the added 
single effects and can be predicted from single 
effects 
 

[94] 

Unsp  Combined 
environmental stress 

Environmental 
stresses: Noise, 
temperature, ambient 
light, vibration, sleep 
deprivation. 

For possible effects of joint stressors, with 
Outcome 1 and 2 are prevalent while number 3 
is rare but is important to hazard: 

1. No effect. Combinations produce no 
effects greater than those of any of the 
included stressors individually 

2. Additive effect.  Combinations produce 
effects greater than any single stressor, 
but not greater than addition of effects from 
single stressors 

3. Great than additive effect 
4. Subtractive effect 

[95] 

Unsp. This paper examines the combined effects of 
heat and noise upon behavioral measures of 
human performance. Specifically, capabilities 
on a variety of neuromuscular and mental tasks 
are reviewed with respect to their vulnerability 
to joint thermal and acoustic action.  

Most of the evidence indicates that heat and 
noise do not interact significantly within the 
ranges experienced commonly in the industrial 
setting. However, various experimental and 
methodological inadequacies in the data 
caution against a simple interpretation of this 
apparent insensitivity. 

[92] 

 

 
Figure A22-1 Results of Hierarchical Regression Analyses of Cognitive Ability, 
Conscientiousness, and their Interaction for District Managers 
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Figure A22-2   Error rates for individual and combined PIF indicators
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Appendix A23 Probability Distribution of Time Available 

Table A23-1 IDHEAS-DATA IDTABLE-23 – Distribution of Time Needed 
 

1 2 3 4 
Task Description Mean 

(min) 
SD 

(min) 
Note Ref. 
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c 
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s 
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e 
tim

e 
op

er
at

or
 s

pe
nt

 o
n 

fro
m

 b
eg

in
ni

ng
 o

f t
he

 
SG
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e 
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G
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at
ed

. 

6 actual SGTR events of U.S. nuclear power plants with the 
rupture flow rate greater than 300 gpm. 18.5 5.5  [96] 

23 Korean crews performed simulator re-training of SGTR events 
in a Korea standard nuclear power plant (KSNP) simulator, a 
1000MWe CE pressurized water reactor (PWR) with conventional 
control interfaces.  

19.8 3.0 

 

[96] 

6 Korean crews performed simulator re-training of SGTR events in 
a KSNP simulator (a 950MWe Westinghouse 3-loop PWR) with 
conventional control interfaces. Most crews identified SGTR 
symptoms before reactor trip and implemented procedures 
quickly. 

13.8 3.6 

 

[98] 

3 US crews performed simulator runs of a basic SGTR events in 
their home simulator, a 4-loop Westinghouse PWR with 
conventional control interfaces.  The tube rupture flow rate is 500 
gpm. Basic SGTR event in the US HRA Benchmark Study. 

19.0 3.5 

 

[309] 

14 Swedish crews performed simulator runs of basic SGTR 
events in the HAMMLAB simulation facility, a 3-loop 
Westinghouse French PWR (CP0 series) with digitalized control 
interfaces. Basic SGTR event in the International HRA Benchmark 
Study. 

15.9 3.6 

 

[310] 
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3 US crews performed simulator runs of a complex SGTR events 
in their home simulator, a 4-loop Westinghouse PWR with 
conventional control interfaces. The time operators spent from the 
beginning of the SGTR to the isolation of the ruptured SG.  The 
SGTR occurred when the restored Auxiliary Feed Water was 
injected into the SG during a feed-and-bleed operation. Complex 
SGTR event in the US HRA Benchmark Study. 

22.9 11.0 

 

[309] 

14 Swedish crews performed simulator runs of complex SGTR 
events in HAMMLAB simulation facility, a 3-loop Westinghouse 
French PWR (CP0 series) with digitalized control interfaces. The 
time operators spent from the beginning of the SGTR to the 
isolation of the ruptured SG. The complication is the SGTR 
occurred immediately following a major main steamline break 
event. Complex SGTR event in the International HRA Benchmark 
Study. 

26.9 6.4 

 

[310] 

5 US crews of different plants performed simulation experiment at 
HAMMLAB on an event with a SG tube leak and SG tube rupture 
event with additional scenario complications. The time-required is 
from the time of the tube rupture to the ruptured SG being 
isolated. 

45.8 6.5 

 

[106] 

Point Beach 1 (Westinghouse, 2-loop, 1800MWt) SGTR (rupture flow rate 125 
gpm), occurred in 1975 58.0 NA  [96] 

Fort Calhoun (CE, 1136 MWt) SGTR (rupture flow 112 gpm), occurred in 1984 40.0 NA  [96] 
Based on 36 training records of an APR-1400 full-scope simulator, it was found 
that the log-normal distribution has the best fit (in comparison with normal, 
Gamma and Weibull distributions) on the time-required from reactor trip to 
complete the diagnosis procedure and transition to the event/function recovery 
procedure (i.e., diagnosis time) with the use of computerized emergency 
operating procedures.  

  

 

[311, 
312] 
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Appendix A24 Probability Distribution of Time Needed 

Table A24-1 IDHEAS-DATA IDTABLE-24 – Modification to Time Needed to Complete a 
Human Action 

 

1 2 3 4 5 6 7 
CFM 
 

Tim
e-
Fact
or 

Task completion time 
(mean and standard 
deviation, s- second, 
m-minute) 

Task  PIF or Time Factor 
measure 

Note REF 

Factor-Lo Factor-Hi 
DM MT2 110.3 

(27.59)s 
90.8  
(30.83)s 

Simple 
decisionmaking  

Lo – No interruption 
Hi – With interruption 

None [102] 

DM MT2 608.3 
(284.39)s 
 

760.8  
(293.76)s 
 

Complex 
decisionmaking  

Lo – No interruption 
Hi – With interruption 

None [102] 

DM MT2 831.3 
(238.70)s 
 

1702.5 
(526.80)s 
 

Complex 
decisionmaking 

Lo- low interruption freq. 
Hi- High interruption 
freq. 

None [102] 

DM MT2 1317.4 
(613.85)s 
 

1842.0 
(741.59)s 
 

Complex 
decisionmaking 

Lo- Different content 
Hi- Similar content 

None [102] 

D TC 38.11(5)s 46.44(4)s Acquire information 
from radar 
visualization 

Lo – 3-dimensition info 
Hi – 7-dimension info 

None [313] 

D TC 30 (3)s 41.06(4)s Acquire visualization 
information from flow 
charts  

Lo – 3-dimensition info 
Hi – 7 dimension info 

None [313] 

D & U 
& E 

TC 7.75 
(4.76)s 

62.33 
(19.46) s Perform procedure 

steps in NPP operator 
emergency training 

Lo – complexity index  = 
1.279 
Hi – complexity index = 
2.58 

None [314] 

D & U 
& E 

TC 10.06 
(5.31)s 

 

74.60 
 (26.83s) 
 

Perform procedure 
steps in NPP operator 
qualifying 
examination 

Lo – complexity index = 
1.279 
Hi – complexity index = 
2.58 

None [314] 

Time=44.76 x  
(complexity index) - 44.6 

D MT1 N/A 88(25)s Security-critical 
detection task 
requiring reading, 
comparing, and 
confirming Bluetooth 
numbers 

Lo – No distraction 
Hi – static red visual 
stimuli for distraction 

169 
college 
students 

[17] 

D MT1 35(12)s 90(16)s Security-critical 
detection task 

Lo – No distraction 
Hi - flickering red visual 
stimuli for distraction 

169 
college 
students 

[17] 

D TMP Effect size = -0.91 on 
response time 

Perception tasks Effect size of heat on 
response time 

(meta-
analysis) 

[54] 

U/ 
DM 

TMP Effect size = 0.02 
on response time 

Cognition 
tasks 

Effect size of heat on 
response time 

(meta-
analysis) 

[54] 

E TMP Effect size = 0.68 
on response time 

Psych-motor 
Tasks 

Effect size of heat on 
response time 

(meta-
analysis) 

[54] 

D TMP Effect size = -0.85 on 
response time 

Perception tasks Effect size of cold on 
response time 

(meta-
analysis) 

[54] 

U/ 
DM 

TMP Effect size = 0.64 
on response time 

Cognition 
Tasks 

Effect size of cold on 
response time 

(meta-
analysis) 

[54] 
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E TMP Effect size = -1.1 
on response time 

Psych-motor 
Tasks 

Effect size of cold on 
response time 

(meta-
analysis) 

[54] 

E PR 392(59)s 
 

438(92)s Soldiers on simple 
reaction time tasks 

Lo – No protective suit 
Hi - Wearing protective 
suit 

None [100] 

E PR 73.5min 125.9min Crews performed 
“Remove and 
Replace M60A3 
Transmission" 

Lo – Battle dress 
uniform 
Hi – Wearing MOPP 4 
suit 

None [101] 

Unsp TE 9(1.5)s 
/per 
instruction 

16(2)s 4 NPP crews perform 
EOP scenarios 

Lo – Experienced with 
AP1400 
Hi – No experience with 
AP1400 

(4 crews) [99] 

Unsp TPS 13(2.5)m  12(4)m EOP scenarios Lo - Urgent 
Hi - Less urgent 

(4 crews) [99] 

Unsp SF/ 
INF 

12(5m) 14(2)m EOP scenarios Lo - Design basis event 
Hi - Design basis event 
and masking 

(4 crews) [99] 
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Appendix A25 Dependency 

Table A25-1 IDHEAS-DATA IDTABLE-25 – Instances and Data on Dependency of Human 
Actions 

 

1 2 3 
Dependency 

Type 
Narrative/Explanation Ref 

Consequential Narrative: On April 17, 2005, at 8:29 a.m., Millstone Power Station, Unit 3, a four-loop 
pressurized-water reactor, experienced a reactor trip from 100-percent power [315].  
The trip was caused by an unexpected “A” train safety injection (SI) actuation signal and 
main steamline isolation caused by a spurious “Steam Line Pressure Low Isolation SI” 
signal.  As a result of the main steam isolation signal, the main steam isolation valves 
and two of the four main steamline atmospheric dump valves automatically closed.  With 
the closure of the main steam isolation valves, the main steamline safety valves opened 
to relieve secondary plant pressure.  Control room operators entered Emergency 
Operating Procedure (EOP) E-0, “Reactor Trip or Safety Injection,” and manually 
actuated the “B” train of SI and actuated the “B” main steam isolation train in accordance 
with station procedures.  Both motor-driven auxiliary feedwater (AFW) pumps started to 
maintain steam generator (SG) levels.  The turbine-driven AFW pump attempted to start 
but immediately tripped on overspeed.  Operators were dispatched to investigate the 
cause of the turbine-driven AFW pump trip. 
 
At approximately 8:42 a.m., the shift manager noted that a “B” main steam safety valve 
had remained open for an extended time.  In consultation with the unit supervisor and 
shift technical advisor, the shift manager declared an alert based on a stuck open main 
steam safety valve.  The crew determined that the stuck open main steam safety valve 
represented a non-isolable steamline break outside containment.  The main steam 
safety valves were in fact functioning as designed to relieve post-reactor-trip decay heat 
with a main steamline isolation signal present.  In this event, the main steam safety 
valves closed once the operators took positive control of decay heat removal by 
remotely opening the atmospheric dump bypass valves. 
 
At 8:45 a.m., because of the addition of the inventory from the SI, the pressurizer 
reached water solid conditions and the pressurizer power-operated relief valves cycled 
many times to relieve RCS pressure and divert the additional RCS inventory to the 
pressurizer relief tank.  No pressurizer safety valve actuations occurred, and the 
pressurizer relief tank rupture diaphragm remained intact.  At approximately 8:59 a.m., 
the operating crew transitioned from EOP E-0 to ES-1.1, “Safety Injection Termination.”  
The SI was reset, the crew terminated SI at 9:12 a.m., and normal RCS letdown was 
reestablished at 9:20 a.m.  [315] 
 
Explanation: Failure to control RCS inventory resulted in a liquid-solid pressurizer that 
complicated the situation. Managing the complexity delayed the operators from entering 
ES-1.1 to terminate safety injection. 

[315] 

Consequential Narrative: On October 4, 1990, at 1:24 a.m., Braidwood Unit 1 experienced a loss of 
approximately 600 gallons of water from the reactor coolant system (RCS) while in cold 
shutdown. Braidwood 1 technical staff was conducting two residual heat removal (RHR) 
system surveillances concurrently, an isolation valve leakage test and valve stroke test. 
After completing a leakage measurement per one surveillance procedure, a technical 
staff engineer (TSE) in the control room directed an equipment attendant to close an 
RHR system vent valve. However, before those instructions could be carried out, 
another TSE in the control room directed that an RHR isolation valve be opened per 
another surveillance procedure. While the equipment attendant was still closing the vent 
valve, RCS coolant at 360 psig and 180 oF exited the vent valve, ruptured a Tygon tube 
line and sprayed two engineers and the equipment attendant in the vicinity of the vent 
valve. This loss of coolant was reported to the control room and the control room 
personnel quickly identified the cause and isolated the leak. 
 

[104] 
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Explanation: The isolation valve leakage test (Test1) affected the boundary condition of 
the valve stroke test (Test 2).  Failure to complete Task 1 (in this case, the RHR vent 
valve was not closed completely) made Task 2 impossible to be complete. 

Resource- 
Sharing 

Narrative: On May 7, 2004, Palo Verde simultaneous tested the atmospheric dump 
valve and boron injection systems resulting in a loss of letdown event on high 
regenerative heat exchanger temperature.  The procedures of the two surveillances 
were "atmospheric dump valve (ADV) 30% Partial Stroke Test" and "Boron Injection 
Flow Test."  The simultaneous performance of these evolutions caused a loss of letdown 
due to the high regenerative heat exchanger outlet temperature. This condition occurred 
due to a single charging pump operation per "Boron Injection Flow Test" procedure and 
the combined excessive letdown flow to accommodate the RCS heat up following ADV 
partial stroke testing.  
 
Explanation: The two tests, one limited the charging flow and the other demanded 
excessive letdown, affecting the regenerative heat exchanger outlet temperature. 
Combination of the two tests resulted in exceeding the threshold of the exit temperature. 

[316] 

Cognitive 
Dependency 

Narrative: On March 20, 1990, at about 09:30, Catawba Station Unit I experienced an 
over-pressurization of the Residual Heat Removal System (RHR) and Reactor Coolant 
System (RCS) during the procedure to initially pressurize the RCS to 100psig following a 
refueling outage. The operators had three indicators for monitoring RCS pressure (two 
wide range indicators, 0-3000psig, and one low range indicator, 0-800psig) which were 
being closely monitored for a detectable rise in RCS pressure. However, unknown to the 
control room operators on duty, all three RCS pressure instrument transmitters were still 
isolated after the welding of tube fittings during the refueling outage. 
 
Explanation: Deisolation of the three indicators (two wide range and one low range) 
requires a common cue.  Failure to deisolate any indicator would result in failing to 
deisolate all three indicators.  

[105] 
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Appendix A26 Recovery 

Table A26-1 IDHEAS-DATA IDTABLE-26 – Instances and Data on Recovery Actions 
 

1 2 3 
Narrative of recovery actions Notes Ref 

In the course of the startup of the plant, it was discovered 
that the isolation valves in each of the three high pressure 
safety injection lines to the cold legs of the primary circuit 
were in the closed position. Their power supplies were 
disconnected. One day before startup, a leak-tight test of 
the check (isolation) valves in the high-pressure injection 
system was performed. The test requires that the isolation 
valves be closed but not disconnected from the electrical 
power supply. The test procedure did not provide specific 
instructions to restore or verify the proper line-up of the 
safety injection system after the test. The day following 
the completion of the test, the operators verified the line-
up of the safety injection system as instructed in operating 
procedures. 

The recovery action of the operator’s 
verification of the safety injection system 
line-up is feasible because it was directed by 
procedures. No dependency between the 
failed action and its recovery action because 
the recovery action was performed a day 
later, and it is likely that the safety system 
line-up verification was performed by 
different operators than the one that 
performed the test using different 
procedures. 

Also, Section 3.1 of Reference [20] analyzed 
17 human failure events. Eleven events 
occurred in the outage phase, and 5 of these 
during start up. Another might be during 
power operation. Scheduled periodical tests 
detected most (9) of the events. In 5 events, 
the deficiencies occurred on demand and 3 
deficiencies were detected by chance. This 
reference provides a data point of error 
recovery in maintenance surveillance tests 
as 0.7 (= 12/17). 

[20] 

This study investigated human error recovery failure 
probabilities by conducting experiments in the operation 
mockup of advanced/digital main control rooms (MCRs) in 
NPPs. 48 subjects majoring in nuclear engineering 
participated in the experiments. In the experiments, using 
the developed accident scenario based on tasks from the 
standard post trip action (SPTA), the steam generator 
tube rupture (SGTR), and predominant soft control tasks 
derived from the LOCA and the excess steam demand 
event (ESDE). All subjects were trained theoretically and 
practically before the experiments regarding EOPs and 
interfaces. Once the experiments were performed, each 
subject executed the task written in the procedure without 
any supervisor’s assistance and there was no time 
pressure when per forming the tasks. The results are 
summarized in Figures A26-1 and A26-2. 
 
 

The experiment was designed such that 
human error recovery was feasible (tasks 
recoverable, adequate time, sufficient 
manpower, having procedures, sufficient 
cues). The results show that recovery failure 
probability regarding wrong screen selection 
was the lowest among human error modes, 
which means that most of the human error 
relating to wrong screen selection can be 
recovered. On the other hand, recovery 
failure probabilities of operation selection 
omission and delayed operation were 1.0. 
These results imply that once the subject 
omitted one task in the procedure, they had 
difficulties finding and recovering their errors 
without the supervisor’s assistance. 
Although there were cues for detecting 
errors and initiating recovery, the student 
subjects might not use the cues as effective 
as licensed operators. Recognizing the cues 
requires understanding of event progression 
and context, while the students might not 
have good understanding of the scenario 
context.  
 

[107] 

The Halden Reactor Project conducted a simulation study 
for collecting HRA data. Five crews of licensed operators 
from three power plants in the U.S. participated in the 
study. The participants worked at Westinghouse PWR 

Only 20% of errors were recovered. 
Scenario 3 had the highest number (30) of 
errors and lowest recovery rate (4/30). 
Detection and Execution errors had much 

[106] 



 

A26-2 

plants/units comparable to the one simulated by the 
Ringhals Plant Simulator (RIPS). The crews varied in 
the number of operators: three, four, and five. Three 
scenarios were used:  
Scenario 1: Multiple Steam Generator Tube Rupture. 
In the simulated scenario the loss of reactor coolant starts 
as a small leak in one steam generator (SG) to slowly 
increase up to a large tube rupture in another SG. In 
addition, the leaks are preceded by disturbances that 
interfere with the unique symptoms for steam generator 
tube ruptures events, i.e. abnormal radiation in the 
secondary system. The crew had to identify the leak in 
SG2 and the rupture in SG3 based on other indications. 
Scenario 2: Loss of coolant outside containment 
This scenario reproduces an Interfacing Systems Loss of 
Coolant Accident (ISLOCA). This event occurs when 
valves in series that isolate the reactor coolant system 
(RCS) from the Residual Heat Removal (RHR) system 
fail. 
Scenario 3: Total loss of feedwater and induced 
steam generator tube rupture 
This scenario is a loss of all feedwater event followed by 
an induced steam generator tube rupture that occurs 
when emergency feedwater flow is eventually restored.   
The five crews totally made 65 errors. The report 
described the details of every task with an error and its 
recovery. The overall recovery rate was 20%, and time 
between the error made to the initiation of recovery 
actions varied from 2mins to 35mins.  

higher recovery rates (2/5 and 5/18) than 
those of Understanding and Decisionmaking 
(1/17 and 4/25). This might be due to less 
salient cues for operators recognizing 
Understanding and Decisionmaking errors.  
The report did not provide information on 
feasibility of error recovery; thus, it is unclear 
how many of the 80% unrecovered errors 
were feasible for recovery. The observed 
high rates of operator errors and low 
recovery frequencies must be understood in 
the context of the simulated scenarios as 
well as the data collection approach: 
• The emergency scenarios were 

characterized by multiple malfunctions. 
• The emergency operating procedures 

were inefficient at various occasions in 
the scenarios. 

• The majority of the unsafe acts reported 
are high-level cognitive identifications, 
decision and actions, rather than 
simple/basic tasks. 

• The crews were operating a different 
plant, albeit similar, to the one they work 
at, and in a new/unfamiliar control room. 

 

 

 
Figure A26-1 Recovery failure probabilities according to human error modes in advanced MCRs 
using soft controls 
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Figure A26-2 Recovery failure probabilities according to human error modes obtained from the 
experiments 



 

A27-1 

Appendix A27 Main Drivers of Human Error 

Table A27-1 IDHEAS-DATA IDTABLE-27 – Empirical Evidence on Main Drivers of Human 
Failure Events 

 
1 2 3 4 5 

CFMs PIFs Error 
rate 

Narrative of the event and Main drivers Ref 

U SF3, 
INF6 

0.7 
(7/10) 

Main Drivers: Inadequate knowledge, key information was cognitively masked. 
This is HFE1B, i.e., initiating Bleed & Feed before steam generator (SG) dry-out 
in the complex Loss of Feed Water (LOFW) scenario, in the International HRA 
Benchmarking Study. The following are from section 2.3.2 of volume 3 of The 
International Benchmark Study report series: 
• The complex loss of feedwater (LOFW) scenario contained multiple issues. 

The first issue was that one condensate pump was successfully running, 
leading the crew to depressurize the SGs to establish condensate flow. 
However, the running condensate pump was degraded and gave a 
pressure so low that the SGs became empty before the pressure could be 
reduced enough to successfully inject water.  

• The procedure step to depressurize is complicated, and this action both 
kept the crew busy and gave them a concrete chance to re-establish 
feedwater to the SGs. The crews were directed by procedure FR-H.1 to 
depressurize the SGs to inject condensate flow. 

• Two of the three SGs had WR level indicators that would incorrectly show 
a steady (flat) value somewhat above 12% when the actual level would be 
0% due to the degraded condensate pump. The two failing SG levels both 
indicated a level above the 12% criterion to start Bleed & Feed. To follow 
the criterion, the crews had to identify and diagnose the indicator failures, 
since the criterion, interpreted literally, would never be met. 

[23] 

D INF, 
SF, 
HSI 

N/A Main drivers: Scenario familiarity and Information reliability - the electric fault 
causes many indications to be momentarily unavailable. 
In the event H.B. Robinson Steam Electric Plant electric fault with a near miss 
of reactor coolant pump (RCP) seal damage, an electrical fault occurred on a 
4kV feeder cable and caused a fire that resulted in reactor trip. In the event, 
one key operator action was to reopen FCV626 to restore seal cooling or trip 
the RCPs to prevent RCP seal damage. The FCV-626 was located in the 
combined CCW return from the three RCP thermal barrier heat exchangers.  In 
its normal open position, it allowed CCW flow to pass through the thermal 
barrier heat exchangers, providing backup cooling to the RCP seals in the 
event of a loss of the primary cooling flow (seal injection) from the charging 
pumps. The FCV-626 closed when power to the 480 V E-2 safety bus was 
transferred to the EDG.  The valve remained closed for approximately 39 
minutes before the operators recognized the condition, reopened FCV-626 at 
19:31, and restored CCW cooling to the RCP thermal barrier heat exchangers. 
The crew failed to detect the RCP abnormal alarms. The key contributing 
factors are the following: 
• Information availability and reliability:  The indications for this cue are 

genuine.  However, the electric fault causes many indications to be 
momentarily unavailable.  Some indications become available after the 
electric transition, and others remain unavailable throughout the event.  
The display reliability from the crew’s perspective is questionable. 

• Scenario familiarity:  The MCR indications do not show a recognizable 
event pattern to the operating crew.  Also, the operators’ expectation on 
information detection is biased, that is, when the crew was trained in the 
simulator for similar scenarios, the FCV-626 does not close.  The crew 
would not expect the FCV-626 closure in this event; therefore, the 
operators do not have the motivation to check for the information. 

• Human-system-interface:  The signal (cue) is weak or masked because 
there are simultaneously hundreds of alarms on the alarm panels.  There 

[317, 
318] 
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are also salience considerations about the information having a similar 
appearance with the surrounding information, that is, the alarm tiles 
relating to the cue are in the alarm panels with other similar alarm tiles. 

E SF3 E-2 to  
E-1 

Main Drivers: Scenario familiarity - Tasks are rarely performed. 
Significant events occurring in German nuclear installations are reported to the 
competent authorities if the notification criteria are fulfilled. After being reported, 
the events are analyzed and documented, and the event documentation is 
stored in the database BEVOR (6000+ events as of 2016, the year the analysis 
was performed). Preischl and Hellmich (2016) used a screening process to 
select a subset of events for analysis. Error rates were calculated for 67 types 
of tasks under different situations. The analysis shows that most of the high 
error rates are associated with rarely performed tasks. The snapshot table 
below, from the report, is a sample of error rates for carrying out a sequence of 
tasks. It shows that the error rates became larger as the number of times (the 
denominator mi in the table) that the tasks were performed got smaller 
regardless of the presence or absence of other PIFs (“relevant PSFs” in Figure 
A27-1). 
 

[5] 

Unsp Uns
p 

N/A Main drivers: Highly frequent error causes in NPP events: maintenance 
practices (54%), design deficiencies (49%), procedures (38%), communication 
and configuration management (27%). 
Gertman et. al. (2002) studied the contributions of human performance to risk in 
operating events at commercial nuclear power plants. They reviewed 48 events 
described in licensee event reports (LERs) and Augmented Inspection Team 
reports. Human performance did not play a role in 11 of the events so they 
were excluded from the sample. In the remaining 37 events, 270 human errors 
were identified, and multiple human errors were involved in every event.  The 
results show maintenance practices was highest (54%), followed by design 
deficiencies (49%), and procedures (38%). Errors in communication and errors 
in configuration management were each present in 27% of events.  The 
numbers or percentages of error occurrences inform the prevalent types of 
human errors in the event sample analyzed.  

[108] 

 

 
Figure A27.1 Omission errors: task not remembered. HEP estimates resulting from sample 58, 
samples 30, 59 and 64, sample 35, samples 27, 34 and 65, samples 31 and 60, sample 28, and 
sample 66. 
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