#### 3.7 Seismic Design

Section 3.7.1 describes the design parameters developed for use for the seismic analysis. Section 3.7.2 describes the seismic analysis of the two site-independent Seismic Category I structures: the Reactor Building (RXB) and Control Building (CRB). Section 3.7.3 provides the seismic analysis of subsystems. The subsystems include seismically mounted distribution systems (piping, cabling and ventilation), the bioshields, and the reactor building crane (RBC). Section 3.7.4 presents the instrumentation system for measuring the effects of an earthquake.

Appendix 3A provides the seismic analysis of the NuScale Power Module (NPM). The NPM includes the reactor vessel, containment vessel, and the associated structures, systems, and components (SSC).

The design complies with General Design Criterion 2 and 10 CFR 50, Appendix S in that SSC are designed to withstand the effects of earthquakes without loss of the capability to perform their safety functions. To ensure the design is acceptable without modification at most sites, the site independent structures are designed using the enveloping site parameters discussed in Chapter 2.0. With respect to earthquake design, two generic earthquake spectra and multiple generic soil profiles are used for the design of the site-independent Seismic Category I RXB and CRB.

The following is a brief discussion of the terms used within Section 3.7 and Section 3.8. These definitions are consistent with definitions provided in 10 CFR 50, Appendix S, Regulatory Guide (RG) 1.60, "Design Response Spectra for Seismic Design of Nuclear Power Plants," Revision 2, Interim Staff Guidance ISG-001 (Reference 3.7.1-1), and other regulatory guidance documents.

**Ground motion response spectra (GMRS)** are site-specific ground motion response spectra characterized by horizontal and vertical response spectra determined as free-field motions on the ground surface or as free-field outcrop motions on the uppermost in-situ competent material using performance based procedures.

**Safe shutdown earthquake (SSE) ground motion** is the site-specific vibratory ground motion for which safety-related SSC are designed to remain functional. The SSE for a site is a smoothed spectra developed to envelop the GMRS. The SSE is characterized at the free ground surface. A combined license (COL) applicant may use the SSE for design of site-specific SSC.

**Operating basis earthquake (OBE) ground motion** is the vibratory ground motion for which those features of the nuclear power plant necessary for continued operation will remain functional. The operating basis earthquake ground motion is only associated with plant shutdown and inspection unless specifically selected by the applicant as a design input.

10 CFR 50, Appendix S provides two options for the value of the OBE. If the OBE is set to one-third or less of the SSE, the requirements associated with the OBE ground motion can be satisfied without performing explicit analysis. The OBE for the NuScale Power Plant is established as one-third of the SSE. Therefore, the OBE is not a design basis ground motion and no specific analysis is required.

Tier 2 3.7-1 Revision 5

**Foundation input response spectra (FIRS)** is the performance based site-specific seismic ground motion at the foundation level in the free field.

The GMRS, SSE, OBE and FIRS are site-specific. They are developed by the COL applicant. For the evaluation of the site-independent RXB and CRB, the certified seismic design response spectra (CSDRS) (described below) is used instead of the FIRS.

**Certified Seismic Design Response Spectra** are site-independent seismic design response spectra that have been developed for design of the Seismic Category I and II Structures. The NuScale CSDRS consists of two sets of spectra, identified as the CSDRS and the CSDRS-High Frequency (CSDRS-HF). The CSDRS are applied as an outcrop motion in the free-field at the foundation level of each building.

**Certified Seismic Design Response Spectra (CSDRS)** is a smooth broadband seismic design spectra developed to envelop the GMRS at most site and soil combinations. Development of the CSDRS is discussed in Section 3.7.1.1.1.1.

**High Frequency Certified Seismic Design Response Spectra (CSDRS-HF)** is a seismic design spectra developed to envelop the GMRS of most hard rock sites. The CSDRS-HF has less low frequency (below ~10 Hz) and more high frequency (above ~10 Hz) content than the CSDRS. Development of the CSDRS-HF is discussed in Section 3.7.1.1.1.2.

#### 3.7.1 Seismic Design Parameters

# 3.7.1.1 Design Ground Motion

#### 3.7.1.1.1 Design Ground Motion Response Spectra

The CSDRS is a broad spectra (similar to RG 1.60) which is intended to encompass the GMRS at most selected sites. The CSDRS is used as a design basis for Seismic Category I SSC to withstand the effects of earthquakes without loss of the capability to perform their safety functions. However, the CSDRS will not bound hard rock sites in the central and eastern United States. To improve the range of acceptable locations, site-independent Seismic Category I structures, RXB, and CRB are also evaluated using a spectra that has more content above 10 Hz than the CSDRS. This spectra is identified as the CSDRS-HF. These spectra are described in more detail below.

# 3.7.1.1.1 Certified Seismic Design Response Spectra

Response spectra were developed to envelope most sites except for the highly seismic west coast sites and the central and eastern United States hard rock sites subject to higher frequency earthquakes. The response spectra are smooth broadband geometric mean spectra that were developed based upon expert panel recommendations and comparison to available industry data providing SSEs at existing and proposed reactor sites. The vertical component was developed independently of the horizontal component, i.e., the vertical component is not a ratio of the horizontal component. The CSDRS bounds the RG 1.60 spectra anchored at 0.1g.

While similar, this spectra is not scaled from the RG 1.60 horizontal and vertical spectra. Instead, additional control points are established below 3.5 Hz and the control points above 3.5 Hz were shifted to higher frequencies. In addition, the vertical control point at 3.5 Hz was shifted to 4.5 Hz. Table 3.7.1-1 provides the horizontal and vertical control points for the CSDRS at 5 percent damping. Figure 3.7.1-1 compares the horizontal CSDRS at 5 percent damping against RG 1.60 spectra scaled to 0.1g. Figure 3.7.1-2 provides the same comparison in the vertical direction. Although not developed as a ratio, the vertical spectrum is  $2/3^{\text{rds}}$  or more of the horizontal spectrum.

There are three components to the CSDRS. The two horizontal components, identified as North-South (NS) and East-West (EW) are equivalent. The three components: NS, EW and vertical (V) are mutually orthogonal. All three components are developed at 5 percent damping. The horizontal components have a peak ground acceleration (PGA) of 0.5g and the vertical component have a PGA of 0.4g.

# 3.7.1.1.1.2 Certified Seismic Design Response Spectra - High Frequency

In order to address the high frequency, hard rock sites, a second response spectra was developed. The CSDRS-HF was developed based on expert panel recommendations and comparison with available hard rock high frequency siting data.

Like the CSDRS, the CSDRS-HF has three mutually orthogonal components (NS, EW, and V), with the horizontal components equivalent. The vertical component was not scaled from the horizontal component. It was also developed independently. Above 2 Hz, the vertical component is  $2/3^{rds}$  or more of the horizontal spectra. Above 50 Hz, the vertical component is larger than the horizontal component. Table 3.7.1-2 provides the horizontal and vertical control points for the CSDRS-HF at 5 percent damping. Figure 3.7.1-3 compares the horizontal CSDRS and CSDRS-HF at 5 percent damping. Figure 3.7.1-4 provides the same comparison for the vertical direction.

### 3.7.1.1.3 Site Applicability

The CSDRS and CSDRS-HF can be compared against the preliminary GMRS data presented in the Nuclear Regulatory Commission (NRC) Memorandum "Support Document for Screening and Prioritization Results Regarding Seismic Hazard Re-Evaluations for Operating Reactors in the Central and Eastern United States" (Reference 3.7.1-2). By inspection, it can be seen that the CSDRS and CSDRS-HF provide a reasonable envelope for site conditions. Therefore, the RXB and CRB are expected to be constructible at most sites with little or no modification.

# 3.7.1.1.2 Design Ground Motion Time History

Six sets of time histories (each set consists of two horizontal and one vertical time history) were developed. Five of the time history sets conform with the CSDRS and

the sixth set conforms with the CSDRS-HF. Each time history set is developed in accordance with ASCE/SEI 43-05, Section 2.4 (a) through (f) (Reference 3.7.1-3). This approach aligns with the guidance provided in NRC Design Specific Review Standard 3.7.1 Subsection II.1B, Option 1, Approach 2. The CSDRS time histories are developed based upon the 1992 Landers earthquake, the 1989 Loma Prieta earthquake, the 1999 Chi-Chi earthquake, the 1999 Kocaeli earthquake, and the 1940 Imperial Valley earthquake. The CSDRS-HF time histories are based upon the 1992 Landers earthquake.

#### 3.7.1.1.2.1 Seed Time Histories

Each seed time history is selected from actual acceleration time histories available from the Pacific Earthquake Engineering Research Center (PEER) ground motion database (Reference 3.7.1-4). The selection is based upon the intensity, duration, frequency content of the earthquake recording, and the epicenter distance from the recording station.

The acceleration recordings selected as seeds are described briefly below.

#### Yermo

This set of time histories was recorded at the Yermo Fire Station during the 1992 Landers Earthquake, which occurred on June 28, 1992 at 04:57 am (11:57 coordinated universal time [UTC]), with an epicenter near the town of Landers, California. It was a magnitude 7.3 moment magnitude scale (MMS) earthquake. The time step is 0.02 seconds and the duration is 43.98 seconds and the maximum PGA recorded is 0.245g.

Figure 3.7.1-5a provides the unmodified Yermo acceleration, velocity, and displacement time histories and the response spectra scaled to the CSDRS in the east-west direction. Figure 3.7.1-5c and Figure 3.7.1-5e provide the same information in the north-south and vertical directions.

### Capitola

Recorded at station 47125 Capitola during the 1989 Loma Prieta Earthquake striking the San Francisco Bay Area of California on October 17, 1989 at 5:04 pm (October 18, 1989 at 00:04 UTC). It was a magnitude 6.9 MMS earthquake. The time step size of the recording is 0.005 seconds and the duration is 39.95 seconds. The maximum PGA recorded is 0.541g.

Figure 3.7.1-6a provides the unmodified Capitola acceleration, velocity, and displacement time histories and the response spectra scaled to the CSDRS in the east-west direction. Figure 3.7.1-6c and Figure 3.7.1-6e provide the same information in the north-south and vertical directions.

#### Chi-Chi

Recorded at station TCU076 during the 1999 Chi-Chi Earthquake striking central Taiwan on September 21, 1999 at 1:47 am (September 20, 1999 at 17:47 UTC). This earthquake is also known as the 921 Earthquake since it occurred on September 21. It was a

magnitude 7.6 MMS earthquake. The time step size of the recording is 0.005 seconds and the duration is 89.995 seconds. The maximum PGA recorded is 0.416g.

Figure 3.7.1-7a provides the unmodified Chi-Chi acceleration, velocity, and displacement time histories and the response spectra scaled to the CSDRS in the east-west direction. Figure 3.7.1-7c and Figure 3.7.1-7e provides the same information in the north-south and vertical directions.

#### **Izmit**

This set of time histories was recorded at Station Izmit during the 1999 Kocaeli Earthquake which occurred on August 17, 1999 at 3:02 am (00:02 UTC) in northwestern Turkey. It was a magnitude of 7.4 MMS. The time step size of this recording is 0.005 seconds and the duration is recorded as 29.995 seconds. The maximum PGA recorded is 0.22q.

Figure 3.7.1-8a provides the unmodified Izmit acceleration, velocity, and displacement time histories and the response spectra scaled to the CSDRS in the east-west direction. Figure 3.7.1-8c and Figure 3.7.1-8e provides the same information in the north-south and vertical directions.

#### El Centro

This set of time histories was recorded at station 117 El Centro Array #9 during the 1940 Imperial Valley Earthquake. This earthquake occurred on May 18, 1940 at 8:37 pm (May 19, 1940 at 05:35 UTC) in the Imperial Valley in southeastern Southern California. It was a magnitude 6.9 MMS earthquake. The time step size is 0.01 seconds and duration of 39.99 seconds. The maximum PGA recorded is 0.313g.

Figure 3.7.1-9a provides the unmodified El Centro acceleration, velocity, and displacement time histories and the response spectra scaled to the CSDRS in the east-west direction. Figure 3.7.1-9c and Figure 3.7.1-9e provides the same information in the north-south and vertical directions.

# Lucerne

These time histories were recorded at the Lucerne station during the 1992 Landers Earthquake which occurred on June 28, 1992 at 04:57 am (11:57 UTC), with an epicenter near the town of Landers, California. The 1992 Landers earthquake was a magnitude 7.3 MMS earthquake. The duration of this recording is 48.12 seconds and the time-step size is 0.005 seconds. The maximum PGA recorded is 0.818g. Although this is the same earthquake as Yermo, a different recording station was selected to better match the CSDRS-HF.

Figure 3.7.1-10a provides the unmodified Lucerne acceleration, velocity, and displacement time histories and the response spectra scaled to the CSDRS-HF in the east-west direction. Figure 3.7.1-10c

and Figure 3.7.1-10e provides the same information in the north-south and vertical directions.

# 3.7.1.1.2.2 Generation of CSDRS and CSDRS-HF Compatible Time Histories

The numerical methodology devised by Lilhanand and Tseng (Reference 3.7.1-5) and later improved by N.A. Abrahamson (Reference 3.7.1-6) is used to generate CSDRS and CSDRS-HF compatible time histories. The methodology modifies an existing time history in the time domain so that its response spectrum closely matches a target response spectrum. The methodology, which is described in detail in the above-mentioned references, has been implemented in computer program RspMatch2009 (Reference 3.7.1-7). Validation of RSPMatch2009 is discussed in Section 3.7.5. Further improvement was incorporated in RspMatch2009 for calculation efficiency and convergence stability by using a new adjustment function, which allows the use of analytical integration and readily integrates to zero velocity and displacement without additional baseline correction. Spectrum compatible time histories were generated from the seed time histories using an iterative process with RspMatch2009. The main steps in this process are:

- 1) The time history is re-digitized to have 0.005 second time steps so that Nyquist frequency is 100 Hz (if necessary).
- 2) The time history is scaled to get the response spectrum close to the target CSDRS.
- 3) The scaled time history is entered into RspMatch2009 as a seed accelerogram, and the CSDRS (or CSDRS-HF) is entered as a target spectrum.
- 4) RspMatch2009 is used to add wavelets to the acceleration time history so that the acceleration response spectra of the modified time history matches the target spectrum. The phasing of Fourier components of the original time histories is inherently maintained.
- 5) The modified acceleration time history is loaded into SAP2000 to calculate acceleration response spectra using 100 frequencies per frequency decade to check for regulatory compliance.
- 6) The resulting response spectrum is compared to the acceptance criteria (described in Section 3.7.1.1.2.3 below).

If necessary, additional refining passes (steps 4, 5 and 6) are run.

Comparisons of the modified Yermo time histories to the CSDRS are provided in Figure 3.7.1-5b for the east-west direction, Figure 3.7.1-5d for the north-south direction, and Figure 3.7.1-5f for the vertical direction. The equivalent information is provided in Figure 3.7.1-6b, Figure 3.7.1-6d, and Figure 3.7.1-6f through Figure 3.7.1-10f for the other time histories.

#### 3.7.1.1.2.3 Confirmation and Checking of the Modified Time Histories

#### **Cross Correlation Coefficients of Time Histories**

The cross correlation between two components of each set of modified time histories was calculated using the method described in ASCE/SEI 43-05. The cross correlation coefficients are summarized in Table 3.7.1-3. As shown in the table, no cross correlation coefficient is greater than 0.16. Thus, the time histories are statistically independent.

#### **Time increment and Duration**

The six seed time histories all have durations that exceed 20 seconds. The Nyquist frequency used for development of CSDRS and CSDRS-HF compatible time histories is 100 Hz. This results in a time increment of 0.005 seconds. The Yermo recording was in time steps of 0.02 seconds and El Centro was in time steps of 0.01 seconds. These were converted to 0.005 second time steps by linear interpolation.

# **Strong Motion Duration**

The strong motion duration is defined as the time between 5 percent and 75 percent Arias Intensity. Arias Intensity plots for the modified Yermo time histories are provided in Figure 3.7.1-5b for the east-west direction, Figure 3.7.1-5d for the north-south direction and Figure 3.7.1-5f for the vertical direction. The equivalent information is provided in Figure 3.7.1-6b, Figure 3.7.1-6d, and Figure 3.7.1-6f through Figure 3.7.1-10a for the other time histories.

The strong motion durations are summarized in Table 3.7.1-4. All strong motion durations are greater than six seconds with exception of the NS component of the modified Izmit recording, which is 5.265 seconds.

As shown in Figure 3.7.1-11, the normalized Arias intensity time history for the NS component of the Izmit time history shows significant shaking for several seconds after 75 percent intensity is reached. The vertical black dashed lines show the time of the 5 percent (at 1.36 seconds) and 75 percent (at 6.625 seconds) Arias intensities. The vertical green dashed line indicates the 6 second duration is achieved at about 80 percent Arias intensity. Strong shaking starts before the 5 percent time and continues after the 75 percent time. Thus, the strong motion duration of this component of the Izmit time history is acceptable.

#### **Comparison to Target Response Spectra**

The response spectra of the five CSDRS compatible time history sets were generated by SAP2000 (Reference 3.7.1-8) at 600 frequencies, i.e. 200 frequencies per decade evenly distributed in the logarithmic frequency scale and the seven frequency control points used to define the CSDRS. The total number of frequencies used is 607. The response spectra of the five CSDRS

Tier 2 3.7-7 Revision 5

compatible time histories are compared with the CSDRS to examine the degree of compatibility.

No frequency point in any of the CSDRS compatible time histories is greater than 30 percent above the CSDRS and no point is more than 10 percent below the target. In addition, there are no instances where more than 10 percent of the frequency points fall below the target response spectrum. The comparison data is tabulated in Table 3.7.1-5. Figure 3.7.1-12a, Figure 3.7.1-12b, and Figure 3.7.1-12c provide a visual comparison of the average of the five CSDRS compatible time histories to the CSDRS. As can be seen in these figures, the average is equal to, or slightly above, the CSDRS target in all three directions.

For the comparison of the Lucerne time histories to the CSDRS-HF, the quantity of frequencies generated varied by direction and decade. With the exception of the decade from 0.1 to 1 Hz, which had 85 frequency points in the vertical direction, all decades had more than 100 frequencies generated. For the CSDRS-HF, the frequency range of interest is 10 - 100 Hz. In this decade 362 frequencies were generated in the vertical direction.

No frequency point in the Lucerne time histories is more than 30 percent above the CSDRS-HF, and no point is more than 10 percent below the target. In addition, there are no instances where more than 10 percent of the frequency points fall below the CSDRS-HF spectrum. The comparison data is tabulated in Table 3.7.1-5.

# **Power Spectra Density**

To ensure there are no gaps in the spectra, power spectra density (PSD) curves were created. PSD is a measure of the distribution of power in an accelerogram as a function of frequency. The one-sided PSD computed from an accelerogram is defined in terms of Fourier amplitudes of the time history,  $F(\omega)$ , by the relation:

$$PSD(\omega) = \frac{2|F(\omega)|^2}{2\pi T_{sm}}$$
 Eq. 3.7-1

where  $T_{sm}$  is the strong motion duration.

As can be seen in Figure 3.7.1-13a and Figure 3.7.1-13b, there are no gaps in the PSDs for any time histories.

#### 3.7.1.1.2.4 Results

Based upon the above discussion, the modified time histories are valid representations of earthquakes that match the CSDRS and CSDRS-HF.

The five CSDRS compatible time histories sets and the CSDRS-HF compatible time histories set are used for the design of the buildings, the bioshield, the fuel storage rack, and the reactor building crane.

### 3.7.1.1.3 Site-Specific Design Ground Motion

Site-specific seismic analysis is performed by the COL applicant to confirm that the site-independent Seismic Category I structures may be constructed without modification, or to identify where modifications are necessary. To perform that analysis a site-specific earthquake and time histories must be created.

- COL Item 3.7-1: A COL applicant that references the NuScale Power Plant design certification will describe the site-specific structures, systems, and components.
- COL Item 3.7-2: A COL applicant that references the NuScale Power Plant design certification will provide site-specific time histories. In addition to the above criteria for cross correlation coefficients, time step and earthquake duration, strong motion durations, comparison to response spectra and power spectra density, the applicant will also confirm that site-specific ratios V/A and AD/V<sup>2</sup> (A, V, D, are peak ground acceleration, ground velocity, and ground displacement, respectively) are consistent with characteristic values for the magnitude and distance of the appropriate controlling events defining the site-specific uniform hazard response spectra.

Additional site-specific seismic analysis is performed by the COL applicant to confirm the adequacy of the seismic input motion and deterministic soil columns used in the soil structure interaction (SSI) analysis. The FIRS is the starting point for conducting an SSI analysis and for making a one-to-one comparison of the seismic design capacity of the standard design and the site-specific seismic demand for a site. The FIRS for the vertical direction is obtained with the vertical to horizontal (V/H) ratios appropriate for the site. For deeply embedded structures, the variation of V/H spectral ratios on ground motion over the depth of the facility will be considered.

In addition to the FIRS, the COL applicant will develop one or more performance-based response spectra at intermediate depths between the foundation and ground surface consistent with the Interim Staff Guidance ISG-017 (Reference 3.7.1-13). The performance-based response spectra for the vertical direction can be obtained with the appropriate V/H ratios used to develop the FIRS. The site-specific FIRS response spectra satisfy the same performance criteria as the GMRS. The GMRS are those derived from the global understanding of the site soil layers above the rock condition as determined from the site exploration activities and, therefore, are unique to a particular site.

COL Item 3.7-9: A COL applicant that references the NuScale Power Plant design certification will include an analysis of the performance-based response spectra established at the surface and intermediate depth(s) that take into account the complexities of the subsurface layer profiles of the site and provide a technical justification for the adequacy of vertical to horizontal (V/H) spectral ratios used in establishing the

Tier 2 3.7-9 Revision 5

site-specific foundation input response spectra and the performance-based response spectra for the vertical direction.

The COL applicant may use site-specific ground motion for the design of site-specific safety-related SSC.

# 3.7.1.2 Percentage of Critical Damping Values

#### 3.7.1.2.1 System and Component Damping

For analyses of Seismic Category I and Seismic Category II SSC, the damping values of RG 1.61, Revision 1, "Damping Values for Seismic Design of Nuclear Power Plants" are used. These values are presented in Table 3.7.1-6. For a discussion of damping used for the NPM subsystem, refer to Appendix 3A.

# 3.7.1.2.2 Structural Damping

The reinforced concrete may experience some cracking during a seismic event. Two levels of stiffness are included in the models to account for any cracking the concrete may experience. To represent cracked conditions, the stiffness of walls and diaphragms are reduced by 50 percent for flexure and shear. These effective stiffness values are provided in Table 3.7.1-7.

For static analysis using SAP2000, the in-plane (normal forces and in-plane shear) and out-of-plane plate stiffness (bending and out-of-plane shear) are changed independently by changing the stiffness modifier factors. For dynamic analysis using SASSI2010 (Reference 3.7.1-12) the plate stiffnesses are controlled by Young's modulus and the plate thickness. It is not possible to reduce the bending stiffness by 50 percent for cracked concrete while preserving the axial stiffness to 100 percent for in-plane forces by modifying Young's modulus. A compromise approach is used by reducing the thickness by a factor equal to cubic root of 0.5, or 0.7937 to reduce the bending stiffness by 50 percent for the cracked concrete condition. In this approach, the uncracked axial stiffness is reduced by a factor of 0.7937. This is summarized in Table 3.7.1-7a.

It is possible that for the SSI analyses with cracked concrete condition, all structural members might not have reached their cracked shear and moment values. Therefore, envelope forces and moments from the SSI analyses with uncracked and cracked reinforced concrete are used for the design of the structures. Both uncracked and cracked conditions are evaluated with 7 percent damping. This is SSE damping for reinforced concrete as specified in RG 1.61.

For generation of in-structure response spectra, both uncracked and cracked reinforced concrete conditions are evaluated with 4 percent damping and the results are enveloped. This is OBE damping for reinforced concrete as specified in RG 1.61.

#### 3.7.1.2.3 Soil Damping

The dynamic properties of the soil and rock materials (i.e., the shear modulus and damping ratio) are dependent on shear strain levels induced during the shaking of an earthquake motion. The soil shear modulus decreases with the increase of soil shear strain, while the soil damping increases with the increase of soil shear strain. Soil degradation and damping functions were developed from 1993 Electric Power Research Institute data (Reference 3.7.1-9). These functions are shown in Figure 3.7.1-14 and Figure 3.7.1-15. For the half-space soil or rock, the shear wave velocities are assumed independent of the shear strain and the low-strain stiffness and strain-compatible damping of the soil layer above the half-space is used.

The numerical values of the shear modulus degradation and damping ratio curves as functions of the shear strains are tabulated in Table 3.7.1-8, Table 3.7.1-9 and Table 3.7.1-10. Because this site response analysis is not for a site-specific design, it is assumed that the soil site has a cohesionless soil and the extent of soil degradation varies with depth as shown in Table 3.7.1-8 and Table 3.7.1-9. However, for a rock site with an shear-wave velocity of 3500 fps or greater, the rock degradation shown in Table 3.7.1-10 is used regardless of depth. The maximum soil damping is limited to 15 percent.

Damping values for soils are discussed further in Section 3.7.1.3 as part of the creation of strain compatible properties for the generic soil profiles.

### 3.7.1.3 Supporting Media for Seismic Category I Structures

The footprints of both the RXB and the CRB are rectangular. The RXB is approximately 350 feet long and 150 feet wide and embedded 86 feet. The CRB is approximately 120 feet long, 80 feet wide, and embedded 55 feet. Additional discussion about the RXB and CRB is provided in Section 1.2.

The design of the site independent Seismic Category I structures is based upon four generic soil profiles. These soil profiles are not intended to represent the different soil profiles that may be encountered at actual sites. Rather, they were selected to represent the range of conditions (soft soil, firm soil/soft rock, rock, and hard rock) that could likely be encountered at a site.

The analysis considers five soil/earthquake combinations. The two softer profiles (soft soil and firm soil/soft rock) are evaluated in combination with the CSDRS. The rock profile is evaluated in combination with both the CSDRS and the CSDRS-HF. The hard rock profile is evaluated in combination with the CSDRS-HF.

Designing the foundation, walls, and slabs for these five combinations provides a design that should be acceptable at most sites. Each applicant will confirm that the site-independent Seismic Category I structures may be constructed without modification by performing a site-specific analysis and comparing the results as discussed in Section 3.8.4.8.

Tier 2 3.7-11 Revision 5

#### 3.7.1.3.1 Generic Soil Profiles

The soil profiles used for the seismic analysis were selected from a larger pool of profiles. These profiles were initially identified as soil Type 1 through soil Type 12. This nomenclature remains, even though several of the original profiles were discarded because they produced results that were similar to, or bounded by, other profiles. The rock profiles tend to control the results. However a soft soil profile has been retained to ensure that those soil configurations are acceptable. Similarly, all profiles are evaluated with high groundwater. The design envelope created by evaluating a broad range of soil conditions is sufficient to account for sites with lower water levels. For stability analysis, assuming high groundwater is a more conservative approach.

# **Soft Soil Profile [Type 11]**

The soil profile that represents a soft soil site has a shear wave velocity of 793.3 fps at the surface, increasing to 1200 fps at 240 foot depth where it increases to 8000 fps to represent bedrock. Soil density is 120 lb/ft<sup>3</sup> at the surface, increasing to 130 lb/ft<sup>3</sup> at the 160 foot depth and to 150 lb/ft<sup>3</sup> at 240 feet for the bedrock.

Initial soil properties versus depth (shear wave velocity, soil unit weight, and Poisson's ratio) are provided in Table 3.7.1-11. This soil profile is shown in Figure 3.7.1-16.

#### Firm Soil/Soft Rock Profile [Type 8]

The soil profile that represents a firm soil/soft rock site has a shear wave velocity of 3500 fps and a unit weight of 150 lb/ft<sup>3</sup>. The soil column below 300 feet maintains the same parameters.

Soil properties versus depth (shear wave velocity, soil unit weight, and Poisson's ratio) are provided in Table 3.7.1-12. This soil profile is shown in Figure 3.7.1-16.

### **Rock Profile [Type 7]**

The soil profile that represents a rock site has a shear wave velocity of 5000 fps and a density is 120 lb/ft<sup>3</sup> at the surface. Shear wave velocity remains a constant 5000 fps. Soil density increases to 135 lb/ft<sup>3</sup> at 300 feet below the surface. The soil below 300 feet is modeled with a shear wave velocity of 5000 fps and a unit weight of 135 lb/ft<sup>3</sup>.

Soil properties versus depth (shear wave velocity, soil unit weight, and Poisson's ratio) are provided in Table 3.7.1-13. This soil profile is shown in Figure 3.7.1-16.

# **Hard Rock Profile [Type 9]**

The soil profile that represents a hard rock site has a shear wave velocity of 8000 fps and a soil density of 150 lb/ft<sup>3</sup>. Groundwater is not present. The soil column at 300 feet below the surface has the same parameters.

Soil properties versus depth (shear wave velocity, soil unit weight, and Poisson's ratio) are provided in Table 3.7.1-14. This soil profile is shown in Figure 3.7.1-16.

#### **Engineered Fill**

All soil profiles include 25 feet of backfill around the structures. The backfill has the same properties as the Soft Soil Profile [Type 11].

# 3.7.1.3.2 Strain Compatible Soil Properties

The time histories are applied as the outcrop motion at the base of the RXB foundation. The soil outcrop is shown on the right side of the layered soil sketch in Figure 3.7.1-17. The strain compatible soil properties are obtained by applying the outcrop motion at the bottom elevation of the RXB foundation. The in-layer motions for the RXB SSI analysis are also calculated by applying the outcrop motion at the bottom elevation of the RXB foundation. For the calculation of the in-layer soil response motions for the CRB soil-structure interaction analysis, the outcrop motion is applied at the bottom elevation of the CRB foundation. The strain-compatible soil properties remain the same as those obtained by applying the outcrop motion at the bottom elevation of the RXB foundation.

The thickness and shear wave velocity of a soil layer determines the maximum frequency of a seismic wave that can pass through that soil layer. The relationship between these three parameters is given by Eq. 3.7-2.

$$h \le \frac{1}{5} \frac{V_s}{f_{pass}}$$
 Eq. 3.7-2

where,

f<sub>pass</sub> is the maximum frequency that can pass through the soil layer,

 $V_S$  is the shear wave velocity, and

h is the layer thickness.

To ensure that high frequency motion is adequately transferred to the structure, layers of 6.25 feet thickness were used between the surface and the base of the RXB and five feet thick layers were used to the 300 foot depth.

By using these thicknesses and interpolating the original data presented in Table 3.7.1-11, Table 3.7.1-12, Table 3.7.1-13, and Table 3.7.1-14, and incorporating

the soil damping and shear modulus information presented in Table 3.7.1-8, Table 3.7.1-9 and Table 3.7.1-10, initial detailed soil properties for the site response analysis were developed. The low-strain shear wave velocities for the soil types are shown in Figure 3.7.1-16. The densities are shown in Figure 3.7.1-18.

For analysis, the water table is assumed to be at the grade level. For saturated soil, a P-wave velocity,  $V_P$ , of 5000 fps is used. The exception is when it must be adjusted to limit the Poisson's ratio to 0.48. The maximum soil damping is limited to 15 percent.

The in-layer soil response acceleration time histories at a depth of 86 feet for the bottom of the RXB foundation and at 56.25 feet for the bottom of the CRB foundation are calculated using the computer program SHAKE2000, Version 9.98.0, "A Computer Program for the 1-D Analysis of Geotechnical Earthquake Engineering Problems," (Reference 3.7.1-10). Validation of Shake2000 is discussed in Section 3.7.5. The nonlinear soil behavior is approximated by the equivalent linear technique described in "SHAKE, A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," (Reference 3.7.1-11). The SHAKE2000 program performs a one-dimensional analysis of a layered soil profile subjected to a seismic wave propagating in the vertical direction. Only one acceleration component can be applied as the excitation input in each analysis. For the soil analyses, the seismic input is applied as an outcrop motion at the bottom elevation of the RXB foundation.

The nonlinear soil properties are defined by soil shear strain dependent shear moduli and damping ratios for each layer. Using the strain dependent shear modulus degradation curves and strain-dependent damping curves, the iterative procedure implemented in SHAKE2000 calculates the strain-compatible soil properties in terms of shear moduli (or shear wave velocities) and damping ratios for all layers.

To obtain a single set of the strain-compatible soil properties of a soil profile for all three excitation components, the following steps are used:

- **Step 1.** Perform initial SHAKE2000 analysis for the first S-wave excitation, designated as SV, using the east-west (EW) acceleration time history as the input motion. Soil property iteration is required. This step calculates the strain-compatible soil properties due to the first horizontal excitation.
- Step 2. Perform initial SHAKE2000 analysis for the second S-wave excitation, designated as SH, using the north-south (NS) acceleration time history as the input motion. Soil property iteration is required. This step calculates the strain-compatible soil properties due to the second horizontal excitation.
- Step 3. Average the strain-compatible properties obtained in Steps 1 and 2. This step calculates final strain-compatible soil properties applicable to the horizontal excitation components (i.e. EW and NS).

Tier 2 3.7-14 Revision 5

- Perform the final SHAKE2000 analyses for the SV and SH excitations using the averaged strain compatible soil properties obtained in Step 3. No iteration of soil properties is required. This step calculates the in-layer horizontal acceleration response time histories that are used as the horizontal input excitations (EW and NS) in the SSI analysis.
- Perform the final SHAKE2000 analysis for the vertical excitation, designated as PV. The soil properties in terms of the P-wave velocities, V<sub>P</sub>, of all layers are required for the vertical excitation analysis. The P-wave velocities are calculated as described below. The same strain-compatible soil damping ratios for all layers obtained in Step 3 are used. No iteration of soil properties is required. This step produces the in-layer vertical site response time histories used in the SSI analysis.

For the calculation of site responses from the vertical excitation, the confined moduli, (or P-wave velocities) are used in Step 5 instead of using the strain-compatible shear moduli, (or S-wave velocities). The calculation of  $V_P$  is described below.

Calculate the shear wave velocity, for each layer based on its strain-compatible shear modulus G and soil density  $\rho$  as:

$$V_s = \sqrt{\frac{G}{\rho}}$$
 Eq. 3.7-3

where G is the shear modulus calculated in Step 3, and  $\rho$  is the soil density calculated as the unit weight,  $\gamma$ , divided by gravity constant, g.

Calculate the P-wave velocities, for each layer using the following formula:

$$V_p = V_s \sqrt{\frac{2(1-v)}{(1-2v)}}$$
 Eq. 3.7-4

where v is the Poisson's ratio of the soil layer. The Poisson's ratio can be calculated for a pair of known  $V_S$  and  $V_P$  as follows:

$$v = \frac{2\left(\frac{V_s}{V_p}\right)^2 - 1}{2\left(\frac{V_s}{V_p}\right)^2 - 2}$$
 Eq. 3.7-5

A minimum P-wave velocity of 5000 fps is used because the soil layer is below the water table. In using the  $V_P$  of 5000 fps for a saturated soil, the Poisson's ratio should be recalculated for  $V_P$  of 5000 fps using

Eq. 3.7-5. If the Poisson's ratio exceeds 0.48, the saturated  $V_P$  is recalculated using 0.48 for the Poisson's ratio in Eq. 3.7-4. The limit of 0.48 for the Poisson's ratio is a limitation of the SSI analysis.

**Step 6.** Perform final SHAKE2000 analyses, as described in Steps 4 and 5, using final strain compatible properties to get in-layer motion at the bottom of the CRB basemat for inputs to the CRB SSI analysis.

For each soil type, the strain-compatible properties associated with each of the five CSDRS compatible time histories are averaged so that a single set of soil properties may be used per soil type. These average strain-compatible soil properties are presented in Table 3.7.1-15, Table 3.7.1-16, and Table 3.7.1-17. There is only one set of CSDRS-HF compatible time histories, so no averaging is performed. The strain-compatible properties for the rock profiles are presented in Table 3.7.1-18 for Soil Type 7 and Table 3.7.1-19 for Soil Type 9.

Average  $V_S$  profiles are combined into a single plot, shown in Figure 3.7.1-19, for the CSDRS compatible profiles. The CSDRS-HF compatible  $V_S$  profiles are provided in Figure 3.7.1-20.

Figure 3.7.1-21, Figure 3.7.1-22 and Figure 3.7.1-23 illustrates the strain compatible damping for the soil types used with the five CSDRS compatible time histories. Figure 3.7.1-24 combines the average damping ratios for all soil types on a single plot. Figure 3.7.1-25 shows the strain compatible damping for the CSDRS-HF for Soil Type 7 and Soil Type 9.

Wave passing frequencies calculated using Eq. 3.7-2, the averaged  $V_S$  and layer thicknesses presented in Table 3.7.1-16 through Table 3.7.1-19, are tabulated in Table 3.7.1-20.

The fundamental frequency of the soil medium between a certain soil layer and the ground surface can be calculated using the relationship that the soil depth, h, equal to a quarter of the fundamental shear wave length,  $\lambda$ , as follows:

$$h = \lambda/4$$
 Eq. 3.7-6

Thus, the soil frequency, f, can be calculated using the S-wave velocity, as follows:

$$f = \frac{V_s}{\lambda} = \frac{V_s}{4h}$$
 Eq. 3.7-7

 $V_S$  is the average value over all layers within the depth h.

The average strain-compatible soil properties of the CSDRS compatible inputs have previously been shown in Figure 3.7.1-19 for shear wave velocities and Figure 3.7.1-24 for damping ratios.

The shear wave velocities of the layers above the RXB foundation bottom elevation are averaged and used to calculate the fundamental frequencies of the soil between foundation bottom and grade by using Eq. 3.7-7.

The calculated horizontal soil frequencies are shown in Table 3.7.1-21 in a low-to-high frequency sequence. Each frequency in the table correlates with the first peak in the horizontal transfer function depicting foundation input to surface output amplification.

# 3.7.1.3.3 Site-Specific Soil Profile

- COL Item 3.7-3: A COL applicant that references the NuScale Power Plant design certification will
  - develop a site-specific strain compatible soil profile.
  - confirm that the criterion for the minimum required response spectrum has been satisfied.
  - determine whether the seismic site characteristics fall within the seismic design parameters such as soil layering assumptions used in the certified design, range of soil parameters, shear wave velocity values, and minimum soil bearing capacity.

#### 3.7.1.4 References

- 3.7.1-1 U.S. Nuclear Regulatory Commission, "Interim Staff Guidance on Seismic Issues Associated with High Frequency Ground Motion in Design Certification and Combined License Applications," ISG-001, May 2008.
- 3.7.1-2 U.S. Nuclear Regulatory Commission, "Support Document for Screening and Prioritization Results Regarding Seismic Hazard Re-Evaluations for Operating Reactors in the Central and Eastern United States,"

  Memorandum, Agencywide Documents Access and Management System (ADAMS) Accession No. ML14136A126, May 21, 2014.
- 3.7.1-3 American Society of Civil Engineers/Structural Engineering Institute, "Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities," ASCE/SEI 43-05, Reston, VA.
- 3.7.1-4 Pacific Earthquake Engineering Research Center, PEER NGA Strong Motion Database, http://peer.berkeley.edu/nga/, University of California, Berkeley, CA, 2013.
- 3.7.1-5 Lilhanand, K. and W.S.Tseng (F.H. Wittmann, ed.), "Generation of Synthetic Time Histories Compatible with Multiple-Damping Response Spectra," Biennial international conference on structural mechanics in reactor technology (SMiRT-9), Lausanne, Switzerland, 1987.
- 3.7.1-6 Abrahamson, N.A., "Non-Stationary Spectral Matching," Seismological Research Letters, (1992): 63:1:30.

3.7.1-13

3.7.1-7 RspMatch2009 [Computer Program]. (2011). Lacey, WA: GeoMotions, LLC. 3.7.1-8 SAP2000 Advanced (Version 17.1.1) [Computer Program]. (2014). Berkeley, CA: Computers and Structures, Inc. 3.7.1-9 Electric Power Research Institute, "Guidelines for Determining Design Basis Ground Motions," EPRI #102293, Palo Alto, CA, 1993. 3.7.1-10 Ordonez, G. A., SHAKE2000, Version 9.98.0, "A Computer Program for the 1-D Analysis of Geotechnical Earthquake Engineering Problems," User's Manual, April 2013. 3.7.1-11 Schnabel, P.B., J. Lysmer, and H.B. Seed, "SHAKE, A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," EERC Report No. 72-12, University of California, Berkeley, 1972. SASSI2010 (Version 1.0) [Computer Program]. (2012). Berkeley, CA. 3.7.1-12

Interaction Analyses," ISG-017, March 2010.

U.S. Nuclear Regulatory Commission, "Interim Staff Guidance on Ensuring Hazard-Consistent Seismic Input for Site Response and Soil Structure

Tier 2 3.7-18 Revision 5

Table 3.7.1-1: Certified Seismic Design Response Spectra Control Points at 5 Percent Damping

| Horizontal     | Horizontal (NS and EW) |                | cal (V)          |
|----------------|------------------------|----------------|------------------|
| Frequency (Hz) | Acceleration (g)       | Frequency (Hz) | Acceleration (g) |
| 0.1            | 0.024                  | 0.1            | 0.016            |
| 0.25           | 0.15                   | 0.25           | 0.1              |
| 1              | 0.60                   | 1              | 0.40             |
| 3.5            | 1.15                   | 4.5            | 1.06             |
| 12             | 1.15                   | 16             | 1.06             |
| 50             | 0.50                   | 50             | 0.40             |
| 100            | 0.50                   | 100            | 0.40             |

Note:

Log-log interpolation is used between the frequencies listed in the table.

Table 3.7.1-2: Certified Seismic Design Response Spectra - High Frequency Control Points at 5 Percent Damping

| Horizontal     | (NS and EW)      | Verti          | cal (V)          |
|----------------|------------------|----------------|------------------|
| Frequency (Hz) | Acceleration (g) | Frequency (Hz) | Acceleration (g) |
| 0.1            | 0.01             | 0.1            | 0.01             |
| 0.2            | 0.05             | 0.3            | 0.04             |
| 0.3            | 0.08             | 0.5            | 0.09             |
| 0.5            | 0.12             | 1              | 0.1              |
| 1              | 0.16             | 2              | 0.18             |
| 1.8            | 0.25             | 3.8            | 0.24             |
| 3.7            | 0.35             | 4.6            | 0.29             |
| 5              | 0.43             | 11             | 0.76             |
| 8              | 0.9              | 20             | 1.0              |
| 20             | 1.5              | 30             | 1.2              |
| 25             | 1.6              | 50             | 1.3              |
| 30             | 1.5              | 100            | 0.52             |
| 50             | 1.0              | -              | -                |
| 100            | 0.52             | -              | -                |

Note:

 $Log\text{-}log\ interpolation\ is\ used\ between\ the\ frequencies\ listed\ in\ the\ table.$ 

**Table 3.7.1-3: Cross-Correlation Coefficients** 

| Original Recording<br>(target) | Modified Acceleration Component 1 | Modified Acceleration<br>Component 2 | Cross- correlation<br>Coefficient |
|--------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|
| Yermo                          | NS                                | EW                                   | 0.0103                            |
| (CSDRS)                        | EW                                | Vertical                             | 0.0159                            |
|                                | NS                                | Vertical                             | 0.0258                            |
| Capitola                       | NS                                | EW                                   | 0.0277                            |
| (CSDRS)                        | EW                                | Vertical                             | 0.0219                            |
|                                | NS                                | Vertical                             | 0.0862                            |
| Chi-Chi                        | NS                                | EW                                   | 0.0951                            |
| (CSDRS)                        | EW                                | Vertical                             | 0.0231                            |
|                                | NS                                | Vertical                             | 0.0811                            |
| lzmit                          | NS                                | EW                                   | 0.0888                            |
| (CSDRS)                        | EW                                | Vertical                             | 0.0473                            |
|                                | NS                                | Vertical                             | 0.0798                            |
| El Centro                      | NS                                | EW                                   | 0.0071                            |
| (CSDRS)                        | EW                                | Vertical                             | 0.0561                            |
|                                | NS                                | Vertical                             | 0.0490                            |
| Lucerne                        | NS                                | EW                                   | 0.0259                            |
| (CSDRS-HF)                     | EW                                | Vertical                             | 0.1162                            |
|                                | NS                                | Vertical                             | 0.0141                            |

**Table 3.7.1-4: Duration of Time Histories** 

| Original<br>Recording<br>(Target) | Component | No. of Data<br>Points | Time Step Size<br>(sec) | Duration<br>(sec) | T <sub>05</sub><br>(sec) | T <sub>75</sub><br>(sec) | Strong Motion<br>Duration<br>(T <sub>75</sub> - T <sub>05</sub> ) |
|-----------------------------------|-----------|-----------------------|-------------------------|-------------------|--------------------------|--------------------------|-------------------------------------------------------------------|
| _                                 |           |                       |                         |                   |                          |                          | (sec)                                                             |
| Yermo                             | EW        | 8802                  | 0.005                   | 44.005            | 13.075                   | 22.245                   | 9.170                                                             |
| (CSDRS)                           | NS        | 8802                  | 0.005                   | 44.005            | 12.945                   | 21.140                   | 8.195                                                             |
|                                   | Vertical  | 8802                  | 0.005                   | 44.005            | 7.320                    | 18.470                   | 11.150                                                            |
| Capitola                          | EW        | 7992                  | 0.005                   | 39.955            | 4.135                    | 10.910                   | 6.775                                                             |
| (CSDRS)                           | NS        | 7992                  | 0.005                   | 39.955            | 3.975                    | 10.875                   | 6.900                                                             |
|                                   | Vertical  | 7992                  | 0.005                   | 39.955            | 3.415                    | 10.885                   | 7.470                                                             |
| Chi-Chi                           | EW        | 13854                 | 0.005                   | 69.265            | 5.965                    | 19.540                   | 13.575                                                            |
| (CSDRS)                           | NS        | 13854                 | 0.005                   | 69.265            | 4.515                    | 22.680                   | 18.165                                                            |
|                                   | Vertical  | 13854                 | 0.005                   | 69.265            | 3.295                    | 18.995                   | 15.700                                                            |
| Izmit                             | EW        | 6000                  | 0.005                   | 29.995            | 2.930                    | 11.340                   | 8.410                                                             |
| (CSDRS)                           | NS        | 6000                  | 0.005                   | 29.995            | 1.360                    | 6.625                    | 5.265*                                                            |
|                                   | Vertical  | 6000                  | 0.005                   | 29.995            | 1.985                    | 9.960                    | 7.975                                                             |
| El Centro                         | EW        | 8004                  | 0.005                   | 40.015            | 2.095                    | 16.545                   | 14.450                                                            |
| (CSDRS)                           | NS        | 8004                  | 0.005                   | 40.015            | 1.575                    | 10.895                   | 9.320                                                             |
|                                   | Vertical  | 8004                  | 0.005                   | 40.015            | 1.885                    | 8.000                    | 6.115                                                             |
| Lucerne                           | NS        | 9625                  | 0.005                   | 48.12             | 7.510                    | 16.240                   | 8.730                                                             |
| (CSDRS-HF)                        | EW        | 9625                  | 0.005                   | 48.12             | 7.665                    | 16.185                   | 8.520                                                             |
|                                   | Vertical  | 9625                  | 0.005                   | 48.12             | 6.270                    | 16.555                   | 10.285                                                            |

Note:

<sup>\*</sup> This is acceptable as explained in Section 3.7.1.1.2.3

Table 3.7.1-5: Comparison of Response Spectra to CSDRS and CSDRS-HF

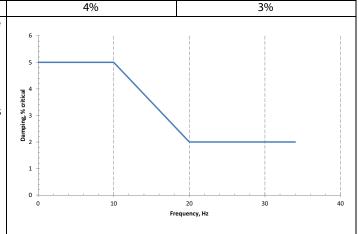
| Original<br>Recordings | Component  | Frequency<br>Decade | Number of Freq. in<br>Response Spectrum<br>Calculation | Max.<br>Difference<br>below Target<br>(%) | Max.<br>Difference<br>above<br>Target <sup>(a)</sup><br>(%) | Max. Number<br>of Consecutive<br>Points below<br>Target |
|------------------------|------------|---------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Yermo                  | NS         | three decades from  | 607                                                    | -3.6                                      | +23.8                                                       | 1                                                       |
| (CSDRS)                | EW         | 0.1 to 100 Hz       |                                                        | -5.3                                      | +26.3                                                       | 4                                                       |
|                        | Vertical   |                     |                                                        | -4.9                                      | +22.4                                                       | 7                                                       |
| Capitola               | NS         | three decades from  | 607                                                    | -8.6                                      | +23.8                                                       | 10 <sup>(c)</sup>                                       |
| (CSDRS)                | EW         | 0.1 to 100 Hz       |                                                        | -4.3                                      | +23.7                                                       | 5                                                       |
|                        | Vertical   |                     |                                                        | -7.0                                      | +24.1                                                       | 2                                                       |
| Chi-Chi                | NS         | three decades from  | 607                                                    | -7.4                                      | +16.1                                                       | 3                                                       |
| (CSDRS)                | EW         | 0.1 to 100 Hz       |                                                        | -4.6                                      | +30.0 <sup>(b)</sup>                                        | 4                                                       |
|                        | Vertical   |                     |                                                        | -4.6                                      | +27.0                                                       | 2                                                       |
| Izmit                  | NS         | three decades from  | 607                                                    | -7.1                                      | +21.0                                                       | 3                                                       |
| (CSDRS)                | (CSDRS) EW | 0.1 to 100 Hz       |                                                        | -5.2                                      | +17.5                                                       | 11 <sup>(d)</sup>                                       |
|                        | Vertical   |                     |                                                        | -9.3                                      | +17.8                                                       | 5                                                       |
| El Centro              | NS         | three decades from  | 607                                                    | -6.6                                      | +16.3                                                       | 7                                                       |
| (CSDRS)                | EW         | 0.1 to 100 Hz       |                                                        | -5.8                                      | +27.9                                                       | 14 <sup>(e)</sup>                                       |
|                        | Vertical   |                     |                                                        | -7.2                                      | +17.2                                                       | 3                                                       |
| Lucerne                | NS         | 0.1 - 1 Hz          | 110                                                    | -6.51                                     | +13.11                                                      | 6                                                       |
| (CSDRS-HF)             |            | 1 - 10 Hz           | 215                                                    |                                           |                                                             |                                                         |
|                        |            | 10 - 100 Hz         | 271                                                    |                                           |                                                             |                                                         |
|                        | EW         | 0.1 - 1 Hz          | 132                                                    | -6.63                                     | +13.07                                                      | 19 <sup>(f)</sup>                                       |
|                        |            | 1 - 10 Hz           | 148                                                    |                                           |                                                             |                                                         |
|                        |            | 10 - 100 Hz         | 221                                                    |                                           |                                                             |                                                         |
|                        | Vertical   | 0.1 - 1 Hz          | 85 <sup>(g)</sup>                                      | -2.26                                     | +13.65                                                      | 6                                                       |
|                        |            | 1 - 10 Hz           | 229                                                    | ]                                         |                                                             |                                                         |
|                        |            | 10 - 100 Hz         | 362                                                    | ]                                         |                                                             |                                                         |

#### Notes:

- (a) The high values are obtained in low frequency range of lower than  $0.2\ Hz$
- (b) Actually 29.96 at 0.164 Hz
- (c) Found at 0.145 Hz, the maximum below target is 5.2%; beyond frequency 0.162 Hz, the maximum number of below target value is 1
- (d) Found at 0.12 Hz, the maximum below target is 5.2%; beyond frequency 0.135 Hz, the maximum number of below target value is 4
- (e) Found at 0.22 Hz, the maximum below target is 3.9%; beyond frequency 0.254 Hz, the maximum number of below target value is 1
- (f) Found at 0.123 Hz, maximum below target is 6.8%; also found at 0.21 Hz with maximum below target 6.7%; beyond 0.23 Hz the maximum number below target is five
- (g) There are less than 100 points in the 0.1 Hz to 1 Hz decade. However, for the CSDRS-HF, the frequency range of interest is 10 Hz to 100 Hz. There are 362 analyzed frequencies in that decade

**Table 3.7.1-6: Generic Damping Values for Dynamic Analysis** 

| Material                                               | SSE Damping<br>(% of Critical Damping) | OBE Damping<br>(% of Critical Damping) |
|--------------------------------------------------------|----------------------------------------|----------------------------------------|
| Damping Values for Structu                             | al Material                            |                                        |
| Reinforced Concrete                                    | 7%                                     | 4%                                     |
| Reinforced Masonry                                     | 7%                                     | 4%                                     |
| Prestressed Concrete                                   | 5%                                     | 3%                                     |
| Welded Steel or Bolted Steel with Friction Connections | 4%                                     | 3%                                     |
| Bolted Steel with Bearing Connections                  | 7%                                     | 5%                                     |


**Note:** For steel structures with a combination of different connection types, use the lowest specified damping value, or as an alternative, use a "weighted average" damping value based on the number of each type present in the structure.

**Damping Values for Piping Systems** 

For a discussion of damping used for the NPM subsystem, refer to the technical report TR-0916-51502, "NuScale Power Module Seismic Analysis."

# Piping Systems Notes: As an alternative for response spectrum analyses using an envelope of the SSE or OBE response spectra at all support points (uniform support motion), frequency-dependent damping values shown in the Figure to the right may be used, subject to the following restrictions:

- Frequency-dependent damping should be used completely and consistently, if at all. (Damping
  values specified in Regulatory Guide 1.61 are to be used for equipment other than piping.)
- Use of the specified damping values is limited only to response spectral analyses. Acceptance of the use of the specified damping values with other types of dynamic analyses (e.g., time-history analyses or independent support motion method) requires further justification.
- When used for reconciliation or support optimization of existing designs, the effects of increased motion on existing clearances and online mounted equipment should be checked.
- Frequency-dependent damping is not appropriate for analyzing the dynamic response of piping systems using supports designed to dissipate energy by yielding.
- Frequency-dependent damping is not applicable to piping in which stress corrosion cracking has
  occurred, unless a case-specific evaluation is provided and reviewed and found acceptable by the
  NRC staff.



| Damping Values for Electrical Distribut                        | ion Systems |    |  |  |  |
|----------------------------------------------------------------|-------------|----|--|--|--|
| Cable Tray Systems                                             |             |    |  |  |  |
| Maximum Cable Loading                                          | 10%         | 7% |  |  |  |
| Empty                                                          | 7%          | 5% |  |  |  |
| Sprayed-on Fire Retardant or other cable-restraining mechanism | 7%          | 5% |  |  |  |
| Conduit Systems                                                |             |    |  |  |  |
| Maximum Cable fill                                             | 7%          | 5% |  |  |  |
| Empty                                                          | 5%          | 3% |  |  |  |

**Table 3.7.1-6: Generic Damping Values for Dynamic Analysis (Continued)** 

| Material | SSE Damping             | OBE Damping             |
|----------|-------------------------|-------------------------|
|          | (% of Critical Damping) | (% of Critical Damping) |

#### Notes:

Tier 2

- 1. Maximum cable loadings, in accordance with the plant design specification, are to be utilized in conjunction with these damping values.
- 2. Spare cable tray and conduit, initially empty, may be analyzed with zero cable load and these damping values. (Note: Re-analysis is expected when put into service.) 3. Restraint of the free relative movement of the cables inside a tray reduces the system damping.
- 4. When cable loadings of less than maximum are specified for design calculations, the applicant or licensee is expected to justify the selected damping values and obtain NRC review for acceptance on a case-by-case basis.

| Damping Values for HVAC Duct Sy                                                                | rstems         | ·    |
|------------------------------------------------------------------------------------------------|----------------|------|
| Pocket Lock                                                                                    | 10%            | 7%   |
| Companion Angle                                                                                | 7%             | 5%   |
| Welded                                                                                         | 4%             | 3%   |
| Damping Values for Mechanical and Electric                                                     | cal Components | •    |
| Motor, Fan, and Compressor Housings (protection, structural support)                           | 3%             | 2%   |
| Pressure Vessels, Heat Exchangers, and Pump and Valve Bodies (pressure boundary)               | 3%             | 2%   |
| Welded Instrument Racks (structural support)                                                   | 3%             | 2%   |
| Electrical Cabinets, Panels, and Motor Control Centers (MCCs) (protection, structural support) | 3%             | 2%   |
| Metal Atmospheric Storage Tanks (containment, protection)                                      |                |      |
| - Impulsive Mode                                                                               | 3%             | 2%   |
| - Sloshing Mode                                                                                | 0.5%           | 0.5% |

**Table 3.7.1-7: Effective Stiffness of Reinforced Concrete Members** 

| Member                           | Flexural Rigidity                                               | Shear Rigidity                     | Axial Rigidity                |
|----------------------------------|-----------------------------------------------------------------|------------------------------------|-------------------------------|
| Beams-nonprestressed             | 0.5 E <sub>c</sub> l <sub>g</sub>                               | $G_cA_w$                           | -                             |
| Beams-prestressed                | E <sub>c</sub> l <sub>g</sub>                                   | $G_cA_w$                           | -                             |
| Columns in compression           | 0.7 E <sub>c</sub> l <sub>g</sub>                               | $G_cA_w$                           | E <sub>c</sub> A <sub>g</sub> |
| Columns in tension               | 0.5 E <sub>c</sub> l <sub>g</sub>                               | $G_cA_w$                           | $E_sA_s$                      |
| Walls and diaphragms - uncracked | $ \begin{array}{c} E_{cI_{g}} \\ (f_{b} < f_{cr}) \end{array} $ | $G_c A_w$<br>(V < V <sub>c</sub> ) | E <sub>c</sub> A <sub>g</sub> |
| Walls and diaphragms - cracked   | $0.5 E_c I_g$ $(f_b > f_{cr})$                                  | $0.5 G_c A_w$ $(V > V_c)$          | E <sub>c</sub> A <sub>g</sub> |

#### Where,

 $A_q$  = Gross area of the concrete section

 $A_s$  = Gross area of the reinforcing steel

 $A_w = Web$  area

 $E_c$  = Concrete compressive modulus, from ACI-349 = 57,000(f'c)<sup>1/2</sup>

 $E_s$  = Steel modulus

 $f_b$  = Bending stress

 $f_{cr}$  = Cracking stress

 $G_c$  = Concrete shear modulus =  $0.4E_c$ 

 $I_g = Gross moment of inertia$ 

V = Wall shear

 $V_c$  = Nominal concrete shear capacity

# Table 3.7.1-7a: Effective Stiffness Changes of Cracked Reinforced Concrete Finite Element Model Members

| Flexural Rigidity                 | dity Shear Rigidity Axial Rigidity  |                                     |
|-----------------------------------|-------------------------------------|-------------------------------------|
| 0.5 E <sub>c</sub> l <sub>g</sub> | 0.7937G <sub>c</sub> A <sub>w</sub> | 0.7937E <sub>c</sub> A <sub>g</sub> |

Table 3.7.1-8: Soil Shear Modulus Degradation and Strain-Dependent Soil Damping (0-120 ft)

| 1      | 1. Depth 0-20 ft   |                | 2      | Depth 20-50        | ft             | 3. Depth 50-120 ft |                    |                |
|--------|--------------------|----------------|--------|--------------------|----------------|--------------------|--------------------|----------------|
| Strain | G/G <sub>max</sub> | Damping<br>(%) | Strain | G/G <sub>max</sub> | Damping<br>(%) | Strain             | G/G <sub>max</sub> | Damping<br>(%) |
| 0.0001 | 1                  | 1.5            | 0.0001 | 1                  | 1.2            | 0.0001             | 1                  | 1              |
| 0.0003 | 1                  | 1.6            | 0.0003 | 1                  | 1.2            | 0.0003             | 1                  | 1              |
| 0.001  | 0.985              | 1.9            | 0.001  | 0.995              | 1.3            | 0.001              | 1                  | 1.1            |
| 0.003  | 0.915              | 2.8            | 0.003  | 0.95               | 2              | 0.003              | 0.97               | 1.7            |
| 0.01   | 0.75               | 5.1            | 0.01   | 0.825              | 3.6            | 0.01               | 0.875              | 2.8            |
| 0.03   | 0.52               | 9              | 0.03   | 0.62               | 6.8            | 0.03               | 0.695              | 5.3            |
| 0.1    | 0.275              | 15.4           | 0.1    | 0.36               | 12.6           | 0.1                | 0.43               | 10.3           |
| 0.3    | 0.125              | 21.5           | 0.3    | 0.175              | 18.7           | 0.3                | 0.23               | 16.3           |
| 1      | 0.045              | 28             | 1      | 0.067              | 25             | 1                  | 0.09               | 22.8           |

Table 3.7.1-9: Soil Shear Modulus Degradation and Strain-Dependent Soil Damping (120 ft-1000 ft)

| 4.1    | Depth 120-25       | 0 ft           | 5.     | Depth 250-50       | 00 ft          | 6. Depth 500-1000 ft |                    |                |
|--------|--------------------|----------------|--------|--------------------|----------------|----------------------|--------------------|----------------|
| Strain | G/G <sub>max</sub> | Damping<br>(%) | Strain | G/G <sub>max</sub> | Damping<br>(%) | Strain               | G/G <sub>max</sub> | Damping<br>(%) |
| 0.0001 | 1                  | 0.8            | 0.0001 | 1                  | 0.8            | 0.0001               | 1                  | 0.6            |
| 0.0003 | 1                  | 0.8            | 0.0003 | 1                  | 0.8            | 0.0003               | 1                  | 0.6            |
| 0.001  | 1                  | 0.9            | 0.001  | 1                  | 0.8            | 0.001                | 1                  | 0.6            |
| 0.003  | 0.975              | 1.3            | 0.003  | 0.985              | 1              | 0.003                | 0.99               | 0.8            |
| 0.01   | 0.905              | 2.2            | 0.01   | 0.93               | 1.8            | 0.01                 | 0.95               | 1.3            |
| 0.03   | 0.755              | 4.3            | 0.03   | 0.805              | 3.4            | 0.03                 | 0.86               | 2.4            |
| 0.1    | 0.495              | 8.8            | 0.1    | 0.56               | 7.3            | 0.1                  | 0.65               | 5.5            |
| 0.3    | 0.28               | 14.3           | 0.3    | 0.335              | 12.5           | 0.3                  | 0.41               | 10.2           |
| 1      | 0.115              | 21             | 1      | 0.15               | 19.2           | 1                    | 0.2                | 16.7           |

Table 3.7.1-10: Strain-Dependent Soil Shear Moduli and Soil Damping Ratios for Gravel and Rock

| •      | 7. Gravel (130+    | ft)         |        | 8. Rock            | Average |                |
|--------|--------------------|-------------|--------|--------------------|---------|----------------|
| Strain | G/G <sub>max</sub> | Damping (%) | Strain | G/G <sub>max</sub> | Strain  | Damping<br>(%) |
| 0.0001 | 1                  | 3           | 0.0001 | 1                  | 0.0001  | 0.4            |
| 0.0003 | 1                  | 3           | 0.0003 | 1                  | 0.001   | 0.8            |
| 0.001  | 1                  | 3.3         | 0.001  | 0.9875             | 0.01    | 1.5            |
| 0.003  | 0.985              | 4           | 0.003  | 0.9525             | 0.1     | 3              |
| 0.01   | 0.82               | 6.5         | 0.01   | 0.9                | 1       | 4.6            |
| 0.03   | 0.57               | 10.1        | 0.03   | 0.81               | -       | -              |
| 0.1    | 0.32               | 16          | 0.1    | 0.725              | -       | -              |
| 0.3    | 0.14               | 22.5        | 1      | 0.55               | -       | -              |
| 1      | 0.05               | 27.5        | -      | -                  | -       | -              |

Table 3.7.1-11: Soft Soil [Type 11] Parameters

| Layer No. | Thickness (ft) | Depth (ft) | Shear Wave<br>Velocity Vs (ft/s) | Unit Weight (pcf) | Poisson's Ratio |
|-----------|----------------|------------|----------------------------------|-------------------|-----------------|
| 1         | 2              | -2         | 703.3                            | 120               | 0.35            |
| 2         | 3              | -5         | 703.3                            | 120               | 0.35            |
| 3         | 15             | -20        | 703.3                            | 120               | 0.35            |
| 4         | 20             | -40        | 981.8                            | 120               | 0.35            |
| 5         | 20             | -60        | 1163.8                           | 120               | 0.35            |
| 6         | 20             | -80        | 1199                             | 120               | 0.35            |
| 7         | 20             | -100       | 1136                             | 120               | 0.35            |
| 8         | 20             | -120       | 1143                             | 120               | 0.35            |
| 9         | 40             | -160       | 1162                             | 130               | 0.35            |
| 10        | 40             | -200       | 1181                             | 130               | 0.35            |
| 11        | 40             | -240       | 1200                             | 130               | 0.35            |
| 12        | 60             | -300       | 8000                             | 150               | 0.25            |
| 13        | Halfspace      | -300       | 8000                             | 150               | 0.25            |

Table 3.7.1-12: Firm Soil/Soft Rock [Type 8] Parameters

| Layer No. | Thickness (ft) | Depth (ft) | Shear Wave<br>Velocity Vs (ft/s) | Unit Weight (pcf) | Poisson's Ratio |
|-----------|----------------|------------|----------------------------------|-------------------|-----------------|
| 1         | 2              | -2         | 3500                             | 150               | 0.25            |
| 2         | 3              | -5         | 3500                             | 150               | 0.25            |
| 3         | 15             | -20        | 3500                             | 150               | 0.25            |
| 4         | 20             | -40        | 3500                             | 150               | 0.25            |
| 5         | 20             | -60        | 3500                             | 150               | 0.25            |
| 6         | 20             | -80        | 3500                             | 150               | 0.25            |
| 7         | 20             | -100       | 3500                             | 150               | 0.25            |
| 8         | 20             | -120       | 3500                             | 150               | 0.25            |
| 9         | 40             | -160       | 3500                             | 150               | 0.25            |
| 10        | 40             | -200       | 3500                             | 150               | 0.25            |
| 11        | 40             | -240       | 3500                             | 150               | 0.25            |
| 12        | 60             | -300       | 3500                             | 150               | 0.25            |
| 13        | Halfspace      | -300       | 3500                             | 150               | 0.25            |

Table 3.7.1-13: Rock [Type 7] Parameters

| Layer No. | Thickness (ft) | Depth (ft) | Shear Wave<br>Velocity Vs (ft/s) | Unit Weight (pcf) | Poisson's Ratio |
|-----------|----------------|------------|----------------------------------|-------------------|-----------------|
| 1         | 2              | -2         | 5000                             | 120               | 0.38            |
| 2         | 3              | -5         | 5000                             | 120               | 0.38            |
| 3         | 15             | -20        | 5000                             | 120               | 0.38            |
| 4         | 20             | -40        | 5000                             | 120               | 0.35            |
| 5         | 20             | -60        | 5000                             | 125               | 0.35            |
| 6         | 20             | -80        | 5000                             | 125               | 0.35            |
| 7         | 20             | -100       | 5000                             | 125               | 0.35            |
| 8         | 20             | -120       | 5000                             | 130               | 0.32            |
| 9         | 40             | -160       | 5000                             | 130               | 0.32            |
| 10        | 40             | -200       | 5000                             | 135               | 0.32            |
| 11        | 40             | -240       | 5000                             | 135               | 0.32            |
| 12        | 60             | -300       | 5000                             | 135               | 0.30            |
| 13        | Halfspace      | -300       | 5000                             | 135               | 0.30            |

Table 3.7.1-14: Hard Rock [Type 9] Parameters

| Layer No. | Thickness (ft) | Depth (ft) | Shear Wave<br>Velocity Vs (ft/s) | Unit Weight (pcf) | Poisson's Ratio |
|-----------|----------------|------------|----------------------------------|-------------------|-----------------|
| 1         | 2              | -2         | 8000                             | 150               | 0.25            |
| 2         | 3              | -5         | 8000                             | 150               | 0.25            |
| 3         | 15             | -20        | 8000                             | 150               | 0.25            |
| 4         | 20             | -40        | 8000                             | 150               | 0.25            |
| 5         | 20             | -60        | 8000                             | 150               | 0.25            |
| 6         | 20             | -80        | 8000                             | 150               | 0.25            |
| 7         | 20             | -100       | 8000                             | 150               | 0.25            |
| 8         | 20             | -120       | 8000                             | 150               | 0.25            |
| 9         | 40             | -160       | 8000                             | 150               | 0.25            |
| 10        | 40             | -200       | 8000                             | 150               | 0.25            |
| 11        | 40             | -240       | 8000                             | 150               | 0.25            |
| 12        | 60             | -300       | 8000                             | 150               | 0.25            |
| 13        | Halfspace      | -300       | 8000                             | 150               | 0.25            |

Table 3.7.1-15: Average Strain-Compatible Properties for CSDRS for Rock [Type 7]

| Layer No. | Depth(ft) | Layer Thickness | Damping | Unit Weight | Vs (fps) | Poisson's | Vp (fps)     |
|-----------|-----------|-----------------|---------|-------------|----------|-----------|--------------|
| *         | • ` ` `   | (ft)            | Ratio   | (pcf)       | .,       | Ratio     |              |
| 1         | 6.25      | 6.25            | 0.004   | 120         | 5000     | 0.38      | 11365        |
| 2         | 12.5      | 6.25            | 0.006   | 120         | 4993     | 0.38      | 11349        |
| 3         | 18.75     | 6.25            | 0.007   | 120         | 4980     | 0.38      | 11319        |
| 4         | 25        | 6.25            | 0.008   | 120         | 4971     | 0.36      | 10513        |
| 5         | 31.25     | 6.25            | 0.009   | 120         | 4956     | 0.35      | 10317        |
| 6         | 37.5      | 6.25            | 0.009   | 120         | 4939     | 0.35      | 10282        |
| 7         | 43.75     | 6.25            | 0.01    | 123         | 4928     | 0.35      | 10258        |
| 8         | 50        | 6.25            | 0.01    | 125         | 4918     | 0.35      | 10237        |
| 9         | 56.25     | 6.25            | 0.01    | 125         | 4907     | 0.35      | 10215        |
| 10        | 62.5      | 6.25            | 0.011   | 125         | 4898     | 0.35      | 10197        |
| 11        | 68.75     | 6.25            | 0.011   | 125         | 4890     | 0.35      | 10180        |
| 12        | 75        | 6.25            | 0.011   | 125         | 4883     | 0.35      | 10165        |
| 13        | 80        | 5               | 0.011   | 125         | 4876     | 0.35      | 10151        |
| 14        | 85        | 5               | 0.012   | 125         | 4870     | 0.35      | 10138        |
| 15        | 90        | 5               | 0.012   | 125         | 4864     | 0.35      | 10125        |
| 16        | 95        | 5               | 0.012   | 125         | 4858     | 0.35      | 10113        |
| 17        | 100       | 5               | 0.012   | 125         | 4853     | 0.35      | 10102        |
| 18        | 105       | 5               | 0.012   | 130         | 4852     | 0.32      | 9431         |
| 19        | 110       | 5               | 0.012   | 130         | 4847     | 0.32      | 9422         |
| 20        | 115       | 5               | 0.012   | 130         | 4843     | 0.32      | 9412         |
| 21        | 120       | 5               | 0.013   | 130         | 4838     | 0.32      | 9403         |
| 22        | 125       | 5               | 0.013   | 130         | 4834     | 0.32      | 9395         |
| 23        | 130       | 5               | 0.013   | 130         | 4829     | 0.32      | 9386         |
| 24        | 135       | 5               | 0.013   | 130         | 4825     | 0.32      | 9379         |
| 25        | 140       | 5               | 0.013   | 130         | 4821     | 0.32      | 9371         |
| 26        | 145       | 5               | 0.013   | 130         | 4818     | 0.32      | 9364         |
| 27        | 150       | 5               | 0.013   | 130         | 4814     | 0.32      | 9357         |
| 28        | 155       | 5               | 0.013   | 130         | 4811     | 0.32      | 9351         |
| 29        | 160       | 5               | 0.013   | 130         | 4808     | 0.32      | 9345         |
| 30        | 165       | 5               | 0.013   | 135         | 4809     | 0.32      | 9347         |
| 31        | 170       | 5               | 0.013   | 135         | 4806     | 0.32      | 9342         |
| 32        | 175       | 5               | 0.013   | 135         | 4803     | 0.32      | 9336         |
| 33        | 180       | 5               | 0.013   | 135         | 4801     | 0.32      | 9331         |
| 34        | 185       | 5               | 0.013   | 135         | 4798     | 0.32      | 9326         |
| 35        | 190       | 5               | 0.013   | 135         | 4796     | 0.32      | 9320         |
| 36        | 195       | 5               | 0.013   | 135         | 4794     | 0.32      | 9317         |
| 37        | 200       | 5               | 0.013   | 135         | 4791     | 0.32      | 9317         |
| 38        | 205       | 5               | 0.013   | 135         | 4791     | 0.32      | 9312         |
| 39        | 210       | 5               | 0.014   | 135         | 4787     | 0.32      | 9304         |
| 40        | 215       | 5               | 0.014   | 135         | 4785     | 0.32      | 9304         |
| 41        | 220       | 5               | 0.014   | 135         | 4783     | 0.32      | 9296         |
| 41        | 225       | 5               | 0.014   | 135         | 4781     | 0.32      | 9290         |
| 43        | 230       | 5               | 0.014   | 135         | 4779     | 0.32      | 9292         |
| 43        | 235       | 5               | 0.014   | 135         | 4779     | 0.32      | 9288         |
| 45        | 240       | 5               | 0.014   | 135         | 4777     | 0.32      | 9283         |
| 45        | 240       | 5               | 0.014   | 135         | 4774     | 0.32      | 8930         |
| 46        | 250       | 5               | 0.014   | 135         | 4774     | 0.30      | 8930         |
| 47        | 250       | 5               | 0.014   | 135         | 4772     |           | 8927<br>8924 |
| 48        |           |                 |         |             |          | 0.30      |              |
| 49        | 260       | 5               | 0.014   | 135         | 4768     | 0.30      | 8920         |

Table 3.7.1-15: Average Strain-Compatible Properties for CSDRS for Rock [Type 7] (Continued)

| Layer No. | Depth(ft) | Layer Thickness<br>(ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|-----------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 50        | 265       | 5                       | 0.014            | 135                  | 4766     | 0.30               | 8917     |
| 51        | 270       | 5                       | 0.014            | 135                  | 4765     | 0.30               | 8914     |
| 52        | 275       | 5                       | 0.014            | 135                  | 4763     | 0.30               | 8911     |
| 53        | 280       | 5                       | 0.014            | 135                  | 4762     | 0.30               | 8908     |
| 54        | 285       | 5                       | 0.014            | 135                  | 4760     | 0.30               | 8905     |
| 55        | 290       | 5                       | 0.014            | 135                  | 4759     | 0.30               | 8903     |
| 56        | 295       | 5                       | 0.014            | 135                  | 4757     | 0.30               | 8900     |
| 57        | 300       | 5                       | 0.014            | 135                  | 4756     | 0.30               | 8897     |
|           |           | Halfspace               | 0.014            | 135                  | 5000     | 0.30               | 9354     |

Table 3.7.1-16: Average Strain-Compatible Properties for CSDRS for Soft Soil [Type 11]

| Layer No. | Depth(ft) | Layer<br>Thickness (ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|-----------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 1         | 6.25      | 6.25                    | 0.045            | 120                  | 625      | 0.48               | 3187     |
| 2         | 12.5      | 6.25                    | 0.101            | 120                  | 487      | 0.48               | 2481     |
| 3         | 18.75     | 6.25                    | 0.149            | 120                  | 371      | 0.48               | 1891     |
| 4         | 25        | 6.25                    | 0.074            | 120                  | 712      | 0.48               | 3632     |
| 5         | 31.25     | 6.25                    | 0.08             | 120                  | 739      | 0.48               | 3770     |
| 6         | 37.5      | 6.25                    | 0.092            | 120                  | 702      | 0.48               | 3581     |
| 7         | 43.75     | 6.25                    | 0.084            | 120                  | 805      | 0.48               | 4106     |
| 8         | 50        | 6.25                    | 0.082            | 120                  | 867      | 0.48               | 4421     |
| 9         | 56.25     | 6.25                    | 0.063            | 120                  | 933      | 0.48               | 4759     |
| 10        | 62.5      | 6.25                    | 0.066            | 120                  | 932      | 0.48               | 4754     |
| 11        | 68.75     | 6.25                    | 0.068            | 120                  | 943      | 0.48               | 4806     |
| 12        | 75        | 6.25                    | 0.071            | 120                  | 929      | 0.48               | 4739     |
| 13        | 80        | 5                       | 0.074            | 120                  | 919      | 0.48               | 4683     |
| 14        | 85        | 5                       | 0.083            | 120                  | 832      | 0.48               | 4240     |
| 15        | 90        | 5                       | 0.085            | 120                  | 824      | 0.48               | 4200     |
| 16        | 95        | 5                       | 0.087            | 120                  | 817      | 0.48               | 4163     |
| 17        | 100       | 5                       | 0.088            | 120                  | 810      | 0.48               | 4129     |
| 18        | 105       | 5                       | 0.089            | 120                  | 812      | 0.48               | 4141     |
| 19        | 110       | 5                       | 0.09             | 120                  | 807      | 0.48               | 4112     |
| 20        | 115       | 5                       | 0.092            | 120                  | 801      | 0.48               | 4082     |
| 21        | 120       | 5                       | 0.093            | 120                  | 795      | 0.48               | 4054     |
| 22        | 125       | 5                       | 0.066            | 130                  | 917      | 0.48               | 4674     |
| 23        | 130       | 5                       | 0.067            | 130                  | 911      | 0.48               | 4645     |
| 24        | 135       | 5                       | 0.068            | 130                  | 906      | 0.48               | 4617     |
| 25        | 140       | 5                       | 0.07             | 130                  | 899      | 0.48               | 4585     |
| 26        | 145       | 5                       | 0.072            | 130                  | 893      | 0.48               | 4552     |
| 27        | 150       | 5                       | 0.073            | 130                  | 886      | 0.48               | 4517     |
| 28        | 155       | 5                       | 0.075            | 130                  | 879      | 0.48               | 4483     |
| 29        | 160       | 5                       | 0.076            | 130                  | 873      | 0.48               | 4451     |
| 30        | 165       | 5                       | 0.075            | 130                  | 890      | 0.48               | 4539     |
| 31        | 170       | 5                       | 0.077            | 130                  | 885      | 0.48               | 4511     |
| 32        | 175       | 5                       | 0.078            | 130                  | 879      | 0.48               | 4484     |
| 33        | 180       | 5                       | 0.079            | 130                  | 875      | 0.48               | 4459     |
| 34        | 185       | 5                       | 0.08             | 130                  | 870      | 0.48               | 4436     |
| 35        | 190       | 5                       | 0.081            | 130                  | 865      | 0.48               | 4413     |
| 36        | 195       | 5                       | 0.082            | 130                  | 861      | 0.48               | 4389     |
| 37        | 200       | 5                       | 0.083            | 130                  | 856      | 0.48               | 4364     |
| 38        | 205       | 5                       | 0.082            | 130                  | 874      | 0.48               | 4458     |
| 39        | 210       | 5                       | 0.083            | 130                  | 870      | 0.48               | 4435     |
| 40        | 215       | 5                       | 0.084            | 130                  | 865      | 0.48               | 4413     |
| 41        | 220       | 5                       | 0.085            | 130                  | 861      | 0.48               | 4391     |
| 42        | 225       | 5                       | 0.086            | 130                  | 857      | 0.48               | 4370     |
| 43        | 230       | 5                       | 0.087            | 130                  | 854      | 0.48               | 4352     |
| 44        | 235       | 5                       | 0.088            | 130                  | 850      | 0.48               | 4333     |
| 45        | 240       | 5                       | 0.089            | 130                  | 846      | 0.48               | 4313     |
| 46        | 245       | 5                       | 0.008            | 150                  | 7945     | 0.25               | 13762    |
| 47        | 250       | 5                       | 0.008            | 150                  | 7936     | 0.25               | 13745    |

Table 3.7.1-16: Average Strain-Compatible Properties for CSDRS for Soft Soil [Type 11] (Continued)

| Layer No. | Depth(ft) | Layer<br>Thickness (ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|-----------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 48        | 255       | 5                       | 0.009            | 150                  | 7925     | 0.25               | 13726    |
| 49        | 260       | 5                       | 0.009            | 150                  | 7910     | 0.25               | 13700    |
| 50        | 265       | 5                       | 0.009            | 150                  | 7894     | 0.25               | 13672    |
| 51        | 270       | 5                       | 0.01             | 150                  | 7880     | 0.25               | 13649    |
| 52        | 275       | 5                       | 0.01             | 150                  | 7869     | 0.25               | 13629    |
| 53        | 280       | 5                       | 0.01             | 150                  | 7859     | 0.25               | 13611    |
| 54        | 285       | 5                       | 0.01             | 150                  | 7850     | 0.25               | 13597    |
| 55        | 290       | 5                       | 0.01             | 150                  | 7844     | 0.25               | 13586    |
| 56        | 295       | 5                       | 0.01             | 150                  | 7839     | 0.25               | 13578    |
| 57        | 300       | 5                       | 0.01             | 150                  | 7837     | 0.25               | 13573    |
|           |           | Halfspace               | 0.01             | 150                  | 8000     | 0.25               | 13856    |

Table 3.7.1-17: Average Strain-Compatible Properties for CSDRS for Firm Soil/Soft Rock [Type 8]

| Layer No. | Depth(ft) | Layer<br>Thickness (ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|-----------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 1         | 6.25      | 6.25                    | 0.006            | 150                  | 3500     | 0.25               | 6062     |
| 2         | 12.5      | 6.25                    | 0.008            | 150                  | 3482     | 0.25               | 6032     |
| 3         | 18.75     | 6.25                    | 0.009            | 150                  | 3462     | 0.25               | 5997     |
| 4         | 25        | 6.25                    | 0.01             | 150                  | 3443     | 0.25               | 5963     |
| 5         | 31.25     | 6.25                    | 0.011            | 150                  | 3429     | 0.25               | 5939     |
| 6         | 37.5      | 6.25                    | 0.011            | 150                  | 3417     | 0.25               | 5919     |
| 7         | 43.75     | 6.25                    | 0.012            | 150                  | 3405     | 0.25               | 5898     |
| 8         | 50        | 6.25                    | 0.012            | 150                  | 3394     | 0.25               | 5879     |
| 9         | 56.25     | 6.25                    | 0.013            | 150                  | 3385     | 0.25               | 5863     |
| 10        | 62.5      | 6.25                    | 0.013            | 150                  | 3377     | 0.25               | 5849     |
| 11        | 68.75     | 6.25                    | 0.013            | 150                  | 3369     | 0.25               | 5836     |
| 12        | 75        | 6.25                    | 0.013            | 150                  | 3363     | 0.25               | 5825     |
| 13        | 80        | 5                       | 0.013            | 150                  | 3358     | 0.25               | 5816     |
| 14        | 85        | 5                       | 0.014            | 150                  | 3353     | 0.25               | 5808     |
| 15        | 90        | 5                       | 0.014            | 150                  | 3349     | 0.25               | 5801     |
| 16        | 95        | 5                       | 0.014            | 150                  | 3345     | 0.25               | 5794     |
| 17        | 100       | 5                       | 0.014            | 150                  | 3342     | 0.25               | 5788     |
| 18        | 105       | 5                       | 0.014            | 150                  | 3338     | 0.25               | 5782     |
| 19        | 110       | 5                       | 0.014            | 150                  | 3335     | 0.25               | 5776     |
| 20        | 115       | 5                       | 0.014            | 150                  | 3332     | 0.25               | 5771     |
| 21        | 120       | 5                       | 0.015            | 150                  | 3329     | 0.25               | 5766     |
| 22        | 125       | 5                       | 0.015            | 150                  | 3327     | 0.25               | 5762     |
| 23        | 130       | 5                       | 0.015            | 150                  | 3324     | 0.25               | 5757     |
| 24        | 135       | 5                       | 0.015            | 150                  | 3321     | 0.25               | 5751     |
| 25        | 140       | 5                       | 0.015            | 150                  | 3317     | 0.25               | 5746     |
| 26        | 145       | 5                       | 0.015            | 150                  | 3314     | 0.25               | 5740     |
| 27        | 150       | 5                       | 0.015            | 150                  | 3311     | 0.25               | 5734     |
| 28        | 155       | 5                       | 0.015            | 150                  | 3307     | 0.25               | 5729     |
| 29        | 160       | 5                       | 0.015            | 150                  | 3304     | 0.25               | 5723     |
| 30        | 165       | 5                       | 0.016            | 150                  | 3301     | 0.25               | 5718     |
| 31        | 170       | 5                       | 0.016            | 150                  | 3298     | 0.25               | 5711     |
| 32        | 175       | 5                       | 0.016            | 150                  | 3294     | 0.25               | 5706     |
| 33        | 180       | 5                       | 0.016            | 150                  | 3291     | 0.25               | 5700     |
| 34        | 185       | 5                       | 0.017            | 150                  | 3288     | 0.25               | 5694     |
| 35        | 190       | 5                       | 0.017            | 150                  | 3285     | 0.25               | 5689     |
| 36        | 195       | 5                       | 0.017            | 150                  | 3282     | 0.25               | 5684     |
| 37        | 200       | 5                       | 0.017            | 150                  | 3279     | 0.25               | 5679     |
| 38        | 205       | 5                       | 0.017            | 150                  | 3276     | 0.25               | 5675     |
| 39        | 210       | 5                       | 0.017            | 150                  | 3274     | 0.25               | 5671     |
| 40        | 215       | 5                       | 0.017            | 150                  | 3272     | 0.25               | 5666     |
| 41        | 220       | 5                       | 0.017            | 150                  | 3269     | 0.25               | 5662     |
| 42        | 225       | 5                       | 0.017            | 150                  | 3267     | 0.25               | 5658     |
| 43        | 230       | 5                       | 0.018            | 150                  | 3265     | 0.25               | 5655     |
| 44        | 235       | 5                       | 0.018            | 150                  | 3263     | 0.25               | 5651     |
| 45        | 240       | 5                       | 0.018            | 150                  | 3261     | 0.25               | 5648     |
| 46        | 245       | 5                       | 0.018            | 150                  | 3259     | 0.25               | 5645     |
| 47        | 250       | 5                       | 0.018            | 150                  | 3257     | 0.25               | 5642     |

Table 3.7.1-17: Average Strain-Compatible Properties for CSDRS for Firm Soil/Soft Rock [Type 8] (Continued)

| Layer No. | Depth(ft) | Layer<br>Thickness (ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|-----------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 48        | 255       | 5                       | 0.018            | 150                  | 3256     | 0.25               | 5639     |
| 49        | 260       | 5                       | 0.018            | 150                  | 3254     | 0.25               | 5636     |
| 50        | 265       | 5                       | 0.018            | 150                  | 3253     | 0.25               | 5634     |
| 51        | 270       | 5                       | 0.018            | 150                  | 3251     | 0.25               | 5631     |
| 52        | 275       | 5                       | 0.018            | 150                  | 3249     | 0.25               | 5628     |
| 53        | 280       | 5                       | 0.018            | 150                  | 3248     | 0.25               | 5626     |
| 54        | 285       | 5                       | 0.018            | 150                  | 3246     | 0.25               | 5623     |
| 55        | 290       | 5                       | 0.018            | 150                  | 3245     | 0.25               | 5620     |
| 56        | 295       | 5                       | 0.018            | 150                  | 3243     | 0.25               | 5617     |
| 57        | 300       | 5                       | 0.018            | 150                  | 3241     | 0.25               | 5614     |
|           |           | Halfspace               | 0.018            | 150                  | 3500     | 0.25               | 6062     |

Table 3.7.1-18: Strain-Compatible Properties for CSDRS-HF for Rock [Type 7]

| 1 2 3 | 6.25  | Thickness (ft) | Ratio | (pcf) |        | Ratio |         |
|-------|-------|----------------|-------|-------|--------|-------|---------|
| 2     |       |                |       |       |        |       |         |
|       |       | 6.25           | 0.005 | 120   | 5000   | 0.380 | 11365.2 |
| 3     | 12.5  | 6.25           | 0.007 | 120   | 4991.6 | 0.380 | 11346   |
|       | 18.75 | 6.25           | 0.007 | 120   | 4978.8 | 0.380 | 11317.1 |
| 4     | 25    | 6.25           | 0.008 | 120   | 4971   | 0.356 | 10512.5 |
| 5     | 31.25 | 6.25           | 0.009 | 120   | 4959.6 | 0.350 | 10324.3 |
| 6     | 37.5  | 6.25           | 0.009 | 120   | 4946.9 | 0.350 | 10297.7 |
| 7     | 43.75 | 6.25           | 0.009 | 125   | 4938.9 | 0.350 | 10281   |
| 8     | 50    | 6.25           | 0.009 | 125   | 4932.9 | 0.350 | 10268.6 |
| 9     | 56.25 | 6.25           | 0.009 | 125   | 4927.4 | 0.350 | 10257.2 |
| 10    | 62.5  | 6.25           | 0.01  | 125   | 4922.1 | 0.350 | 10246.3 |
| 11    | 68.75 | 6.25           | 0.01  | 125   | 4918.5 | 0.350 | 10238.6 |
| 12    | 75    | 6.25           | 0.01  | 125   | 4915.8 | 0.350 | 10233   |
| 13    | 80    | 5              | 0.01  | 125   | 4912.3 | 0.350 | 10225.7 |
| 14    | 85    | 5              | 0.01  | 125   | 4909.1 | 0.350 | 10219.2 |
| 15    | 90    | 5              | 0.01  | 125   | 4906.5 | 0.350 | 10213.7 |
| 16    | 95    | 5              | 0.01  | 125   | 4904.3 | 0.350 | 10209.2 |
| 17    | 100   | 5              | 0.01  | 125   | 4902   | 0.350 | 10204.3 |
| 18    | 105   | 5              | 0.01  | 130   | 4902.8 | 0.320 | 9529.3  |
| 19    | 110   | 5              | 0.01  | 130   | 4900.7 | 0.320 | 9525.2  |
| 20    | 115   | 5              | 0.01  | 130   | 4899   | 0.320 | 9521.9  |
| 21    | 120   | 5              | 0.01  | 130   | 4897.7 | 0.320 | 9519.4  |
| 22    | 125   | 5              | 0.01  | 130   | 4896.8 | 0.320 | 9517.7  |
| 23    | 130   | 5              | 0.01  | 130   | 4896.3 | 0.320 | 9516.7  |
| 24    | 135   | 5              | 0.01  | 130   | 4896.2 | 0.320 | 9516.5  |
| 25    | 140   | 5              | 0.011 | 130   | 4895.2 | 0.320 | 9514.5  |
| 26    | 145   | 5              | 0.011 | 130   | 4894.5 | 0.320 | 9513.2  |
| 27    | 150   | 5              | 0.011 | 130   | 4894.4 | 0.320 | 9513    |
| 28    | 155   | 5              | 0.011 | 130   | 4894.7 | 0.320 | 9513.7  |
| 29    | 160   | 5              | 0.01  | 130   | 4895.5 | 0.320 | 9515.2  |
| 30    | 165   | 5              | 0.01  | 135   | 4898.5 | 0.320 | 9520.9  |
| 31    | 170   | 5              | 0.01  | 135   | 4898.2 | 0.320 | 9520.5  |
| 32    | 175   | 5              | 0.01  | 135   | 4897.7 | 0.320 | 9519.5  |
| 33    | 180   | 5              | 0.011 | 135   | 4896.8 | 0.320 | 9517.7  |
| 34    | 185   | 5              | 0.011 | 135   | 4896   | 0.320 | 9516    |
| 35    | 190   | 5              | 0.011 | 135   | 4894.8 | 0.320 | 9513.8  |
| 36    | 195   | 5              | 0.011 | 135   | 4892.4 | 0.320 | 9509.2  |
| 37    | 200   | 5              | 0.011 | 135   | 4889.4 | 0.320 | 9503.2  |
| 38    | 205   | 5              | 0.011 | 135   | 4886.5 | 0.320 | 9497.7  |
| 39    | 210   | 5              | 0.011 | 135   | 4884   | 0.320 | 9492.8  |
| 40    | 215   | 5              | 0.011 | 135   | 4881.3 | 0.320 | 9487.5  |
| 41    | 220   | 5              | 0.011 | 135   | 4878.9 | 0.320 | 9482.9  |
| 42    | 225   | 5              | 0.011 | 135   | 4876.7 | 0.320 | 9478.7  |
| 43    | 230   | 5              | 0.011 | 135   | 4874.3 | 0.320 | 9473.9  |
| 44    | 235   | 5              | 0.011 | 135   | 4872.1 | 0.320 | 9469.7  |
| 45    | 240   | 5              | 0.011 | 135   | 4870.2 | 0.320 | 9466    |
| 46    | 245   | 5              | 0.011 | 135   | 4868.9 | 0.300 | 9108.8  |
| 47    | 250   | 5              | 0.011 | 135   | 4867.9 | 0.300 | 9107.1  |
| 48    | 255   | 5              | 0.011 | 135   | 4867.4 | 0.300 | 9106.1  |
| 49    | 260   | 5              | 0.011 | 135   | 4867.2 | 0.300 | 9105.6  |

Table 3.7.1-18: Strain-Compatible Properties for CSDRS-HF for Rock [Type 7] (Continued)

| Layer No. | Depth (ft) | Layer<br>Thickness (ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|------------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 50        | 265        | 5                       | 0.011            | 135                  | 4866.4   | 0.300              | 9104.2   |
| 51        | 270        | 5                       | 0.011            | 135                  | 4866     | 0.300              | 9103.5   |
| 52        | 275        | 5                       | 0.011            | 135                  | 4865.9   | 0.300              | 9103.2   |
| 53        | 280        | 5                       | 0.011            | 135                  | 4865.8   | 0.300              | 9103     |
| 54        | 285        | 5                       | 0.011            | 135                  | 4865.3   | 0.300              | 9102.2   |
| 55        | 290        | 5                       | 0.011            | 135                  | 4864.1   | 0.300              | 9099.8   |
| 56        | 295        | 5                       | 0.011            | 135                  | 4863     | 0.300              | 9097.8   |
| 57        | 300        | 5                       | 0.011            | 135                  | 4862.2   | 0.300              | 9096.3   |
|           |            | Halfspace               | 0.011            | 135                  | 5000     | 0.300              | 9354.2   |

Table 3.7.1-19: Strain-Compatible Properties for CSDRS-HF for Hard Rock [Type 9]

| Thickness (ff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vp (fps) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2         12.5         6.25         0.005         150         8000         0.250           3         18.75         6.25         0.006         150         8000         0.250           4         25         6.25         0.006         150         7992.2         0.250           5         31.25         6.25         0.007         150         7982         0.250           6         37.5         6.25         0.007         150         7974.1         0.250           7         43.75         6.25         0.007         150         7967.8         0.250           7         43.75         6.25         0.007         150         7967.8         0.250           8         50         6.25         0.007         150         7967.8         0.250           9         56.25         6.25         0.008         150         7952.5         0.250           10         62.5         6.25         0.008         150         7952.6         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7944.0                |          |
| 3         18.75         6.25         0.006         150         8000         0.250           4         25         6.25         0.006         150         7992.2         0.250           5         31.25         6.25         0.007         150         7982         0.250           6         37.5         6.25         0.007         150         7974.1         0.250           7         43.75         6.25         0.007         150         7962.7         0.250           8         50         6.25         0.007         150         7962.7         0.250           9         56.25         6.25         0.008         150         7958.5         0.250           10         62.5         6.25         0.008         150         7955.2         0.250           11         68.75         6.25         0.008         150         7949         0.250           11         68.75         6.25         0.008         150         7949         0.250           11         68.75         6.25         0.008         150         7949         0.250           11         68.75         6.25         0.008         150         7944                | 13856.4  |
| 4         25         6.25         0.006         150         7992.2         0.250           5         31.25         6.25         0.007         150         7982         0.250           6         37.5         6.25         0.007         150         7974.1         0.250           7         43.75         6.25         0.007         150         7967.8         0.250           8         50         6.25         0.007         150         7962.7         0.250           9         56.25         6.25         0.008         150         7958.5         0.250           10         62.5         6.25         0.008         150         7958.5         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7944         0.250           13         80         5         0.008         150         7949         0.250           14         85         5         0.008         150         794.6         0.250           15         90         5         0.008         150         794.0         0.250 <td>13856.4</td> | 13856.4  |
| 5         31.25         6.25         0.007         150         7982         0.250           6         37.5         6.25         0.007         150         7974.1         0.250           7         43.75         6.25         0.007         150         7967.8         0.250           8         50         6.25         0.007         150         7962.7         0.250           9         56.25         6.25         0.008         150         7958.5         0.250           10         62.5         6.25         0.008         150         7955.2         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7946         0.250           13         80         5         0.008         150         7946         0.250           14         85         5         0.008         150         7944.1         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250 <td>13856.4</td> | 13856.4  |
| 6         37.5         6.25         0.007         150         7974.1         0.250           7         43.75         6.25         0.007         150         7967.8         0.250           8         50         6.25         0.007         150         7962.7         0.250           9         56.25         6.25         0.008         150         7955.2         0.250           10         62.5         6.25         0.008         150         7952.6         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7946         0.250           13         80         5         0.008         150         7946         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           15         90         5         0.009         150         7932.9         0.250           17         100         5         0.009         150         7932.9         0.250                    | 13842.9  |
| 7         43.75         6.25         0.007         150         7967.8         0.250           8         50         6.25         0.007         150         7962.7         0.250           9         56.25         6.25         0.008         150         7958.5         0.250           10         62.5         6.25         0.008         150         7955.2         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7949         0.250           13         80         5         0.008         150         7944.1         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7932.9         0.250           17         100         5         0.009         150         7932.9         0.250           17         100         5         0.009         150         7927.4         0.250                     | 13825.3  |
| 8         50         6.25         0.007         150         7962.7         0.250           9         56.25         6.25         0.008         150         7958.5         0.250           10         62.5         6.25         0.008         150         7955.2         0.250           11         68.75         6.25         0.008         150         7949         0.250           12         75         6.25         0.008         150         7949         0.250           13         80         5         0.008         150         7946         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7944.1         0.250           16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7927.4         0.250           19         110         5         0.009         150         7927.4         0.250 <td>13811.6</td>            | 13811.6  |
| 9         56.25         6.25         0.008         150         7958.5         0.250           10         62.5         6.25         0.008         150         7955.2         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7949         0.250           13         80         5         0.008         150         7946         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7927.4         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7924.1         0.250 <td>13800.6</td>           | 13800.6  |
| 10         62.5         6.25         0.008         150         7955.2         0.250           11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7949         0.250           13         80         5         0.008         150         7944         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7932.4         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7923.1         0.250                                | 13791.7  |
| 11         68.75         6.25         0.008         150         7952.6         0.250           12         75         6.25         0.008         150         7949         0.250           13         80         5         0.008         150         7946.1         0.250           14         85         5         0.008         150         7940.8         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7936.5         0.250           16         95         5         0.009         150         7932.9         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7923.1         0.250           21         120         5         0.009         150         7923.1         0.250                                   | 13784.5  |
| 12         75         6.25         0.008         150         7949         0.250           13         80         5         0.008         150         7946         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7923.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7927.4         0.250           21         120         5         0.009         150         7927.4         0.250           21         120         5         0.009         150         7923.1         0.250           21         120         5         0.009         150         7913.1         0.250                                         | 13778.8  |
| 13         80         5         0.008         150         7946         0.250           14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7932.9         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7929.9         0.250           20         115         5         0.009         150         7927.4         0.250           21         120         5         0.009         150         7925.4         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7914.8         0.250                                         | 13774.2  |
| 14         85         5         0.008         150         7944.1         0.250           15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7927.4         0.250           21         120         5         0.009         150         7923.1         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250 <tr< td=""><td>13768</td></tr<>      | 13768    |
| 15         90         5         0.008         150         7940.8         0.250           16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7925.4         0.250           21         120         5         0.009         150         7923.1         0.250           21         120         5         0.009         150         7920.1         0.250           22         125         5         0.009         150         7917.3         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7916.6         0.250 <t< td=""><td>13762.9</td></t<>     | 13762.9  |
| 16         95         5         0.009         150         7936.5         0.250           17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7923.1         0.250           21         120         5         0.009         150         7923.1         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7923.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           25         1440         5         0.009         150         7908.8         0.250                                   | 13759.5  |
| 17         100         5         0.009         150         7932.9         0.250           18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7925.4         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7916.6         0.250           27         150         5         0.009         150         7908.8         0.250                                   | 13753.8  |
| 18         105         5         0.009         150         7929.9         0.250           19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7925.4         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7903.4         0.250                                   | 13746.5  |
| 19         110         5         0.009         150         7927.4         0.250           20         115         5         0.009         150         7925.4         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7908.8         0.250           29         160         5         0.009         150         7904.         0.250           30         165         5         0.009         150         7891.         0.250 <t< td=""><td>13740.2</td></t<>     | 13740.2  |
| 20         115         5         0.009         150         7925.4         0.250           21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7917.3         0.250           23         130         5         0.009         150         7914.8         0.250           24         135         5         0.009         150         7912.6         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7908.8         0.250           29         160         5         0.009         150         7903.4         0.250           29         160         5         0.009         150         7901.1         0.250           30         165         5         0.009         150         7891.1         0.250                                   | 13734.9  |
| 21         120         5         0.009         150         7923.1         0.250           22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7908.8         0.250           29         160         5         0.009         150         7908.8         0.250           29         160         5         0.009         150         7903.4         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7897.3         0.250                                   | 13730.6  |
| 22         125         5         0.009         150         7920.1         0.250           23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7906.         0.250           29         160         5         0.009         150         7903.4         0.250           29         160         5         0.009         150         7901.1         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7891.1         0.250           32         175         5         0.009         150         7895.8         0.250      <                             | 13727.1  |
| 23         130         5         0.009         150         7917.3         0.250           24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7908.8         0.250           29         160         5         0.009         150         7903.4         0.250           29         160         5         0.009         150         7903.4         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7891.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7894.5         0.250                                   | 13723.2  |
| 24         135         5         0.009         150         7914.8         0.250           25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7906         0.250           29         160         5         0.009         150         7903.4         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         789.1         0.250           31         170         5         0.009         150         7897.3         0.250           32         175         5         0.009         150         7895.8         0.250           33         180         5         0.009         150         7894.5         0.250           34         185         5         0.009         150         7893.4         0.250 <tr< td=""><td>13717.9</td></tr<>    | 13717.9  |
| 25         140         5         0.009         150         7912.6         0.250           26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7906         0.250           29         160         5         0.009         150         7901.1         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7899.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250 <t< td=""><td>13713.2</td></t<>     | 13713.2  |
| 26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7906         0.250           29         160         5         0.009         150         7901.1         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         789.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7891.7         0.250 <tr< td=""><td>13708.9</td></tr<>    | 13708.9  |
| 26         145         5         0.009         150         7910.6         0.250           27         150         5         0.009         150         7908.8         0.250           28         155         5         0.009         150         7906         0.250           29         160         5         0.009         150         7901.1         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         789.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7891.7         0.250 <tr< td=""><td>13705</td></tr<>      | 13705    |
| 28         155         5         0.009         150         7906         0.250           29         160         5         0.009         150         7903.4         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7899.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7891.7         0.250           38         205         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250 <td>13701.6</td>                    | 13701.6  |
| 29         160         5         0.009         150         7903.4         0.250           30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7899.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7892         0.250           38         205         5         0.009         150         7891.6         0.250           39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250 <td>13698.5</td>                    | 13698.5  |
| 30         165         5         0.009         150         7901.1         0.250           31         170         5         0.009         150         7899.1         0.250           32         175         5         0.009         150         7895.8         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7891.7         0.250           38         205         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                       | 13693.6  |
| 31         170         5         0.009         150         7899.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7891.7         0.250           38         205         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                 | 13689.1  |
| 31         170         5         0.009         150         7899.1         0.250           32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7891.7         0.250           38         205         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                 | 13685.1  |
| 32         175         5         0.009         150         7897.3         0.250           33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7892.0         0.250           38         205         5         0.009         150         7891.7         0.250           39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                 | 13681.6  |
| 33         180         5         0.009         150         7895.8         0.250           34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7892         0.250           38         205         5         0.009         150         7891.7         0.250           39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                                                                                                             | 13678.5  |
| 34         185         5         0.009         150         7894.5         0.250           35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7892         0.250           38         205         5         0.009         150         7891.7         0.250           39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13675.9  |
| 35         190         5         0.009         150         7893.4         0.250           36         195         5         0.009         150         7892.6         0.250           37         200         5         0.009         150         7892         0.250           38         205         5         0.009         150         7891.7         0.250           39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13673.6  |
| 36     195     5     0.009     150     7892.6     0.250       37     200     5     0.009     150     7892     0.250       38     205     5     0.009     150     7891.7     0.250       39     210     5     0.009     150     7891.6     0.250       40     215     5     0.009     150     7891.6     0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13671.8  |
| 37         200         5         0.009         150         7892         0.250           38         205         5         0.009         150         7891.7         0.250           39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13670.4  |
| 38     205     5     0.009     150     7891.7     0.250       39     210     5     0.009     150     7891.6     0.250       40     215     5     0.009     150     7891.6     0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13669.4  |
| 39         210         5         0.009         150         7891.6         0.250           40         215         5         0.009         150         7891.6         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13668.8  |
| 40 215 5 0.009 150 7891.6 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13668.6  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13668.7  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13669.1  |
| 42 225 5 0.009 150 7890.9 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13667.4  |
| 43 230 5 0.009 150 7890.1 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13666.1  |
| 44 235 5 0.009 150 7889.6 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13665.3  |
| 45 240 5 0.009 150 7889.5 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13665    |
| 46 245 5 0.009 150 7889.7 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13665.3  |
| 47 250 5 0.009 150 7890.1 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13666    |
| 48 255 5 0.009 150 7890.7 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13667    |
| 49 260 5 0.009 150 7890.6 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13666.9  |

Table 3.7.1-19: Strain-Compatible Properties for CSDRS-HF for Hard Rock [Type 9] (Continued)

| Layer No. | Depth (ft) | Layer<br>Thickness (ft) | Damping<br>Ratio | Unit Weight<br>(pcf) | Vs (fps) | Poisson's<br>Ratio | Vp (fps) |
|-----------|------------|-------------------------|------------------|----------------------|----------|--------------------|----------|
| 50        | 265        | 5                       | 0.009            | 150                  | 7890.3   | 0.250              | 13666.4  |
| 51        | 270        | 5                       | 0.009            | 150                  | 7890.1   | 0.250              | 13666.1  |
| 52        | 275        | 5                       | 0.009            | 150                  | 7890     | 0.250              | 13665.9  |
| 53        | 280        | 5                       | 0.009            | 150                  | 7889.4   | 0.250              | 13664.9  |
| 54        | 285        | 5                       | 0.009            | 150                  | 7888.9   | 0.250              | 13664    |
| 55        | 290        | 5                       | 0.009            | 150                  | 7888.1   | 0.250              | 13662.6  |
| 56        | 295        | 5                       | 0.009            | 150                  | 7887.2   | 0.250              | 13661.1  |
| 57        | 300        | 5                       | 0.009            | 150                  | 7886.5   | 0.250              | 13659.8  |
|           |            | Halfspace               | 0.009            | 150                  | 8000     | 0.250              | 13856.4  |

**Table 3.7.1-20: Wave Passing Frequencies** 

| Soil Type | Soil Type           | CSDRS                  | CSDRS-HF              |
|-----------|---------------------|------------------------|-----------------------|
|           | Description         | Compatible Inputs (Hz) | Compatible Input (Hz) |
| 11        | Soft soil           | 12                     | -                     |
| 8         | Firm soil/soft rock | 108                    | -                     |
| 7         | Rock                | 157                    | 157                   |
| 9         | Hard rock           | -                      | 254                   |

Table 3.7.1-21: Shear Wave Fundamental Frequencies of Soil Columns above RXB Foundation Bottom Elevation

| Soil Type | Soil Type<br>Description | CSDRS Compatible<br>Soil Frequency (Hz) | CSDRS-HF Compatible<br>Soil Frequency (Hz) |
|-----------|--------------------------|-----------------------------------------|--------------------------------------------|
| 11        | Soft soil                | 2.27                                    | -                                          |
| 8         | Firm soil/soft rock      | 10.03                                   | -                                          |
| 7         | Rock                     | 14.50                                   | 14.55                                      |
| 9         | Hard rock                | -                                       | 23.43                                      |

Figure 3.7.1-1: NuScale Horizontal CSDRS at 5 Percent Damping

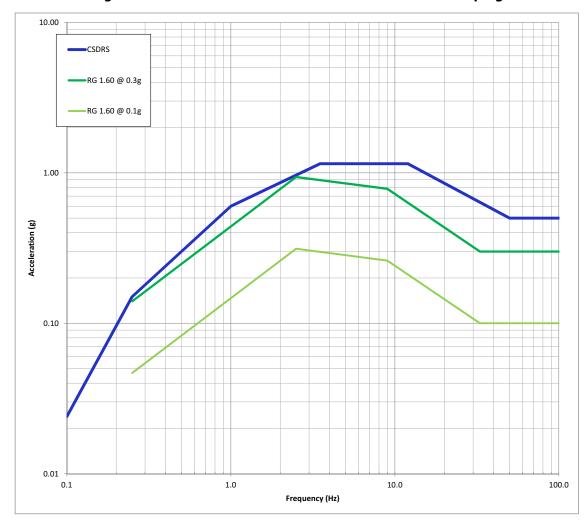



Figure 3.7.1-2: NuScale Vertical CSDRS at 5 Percent Damping

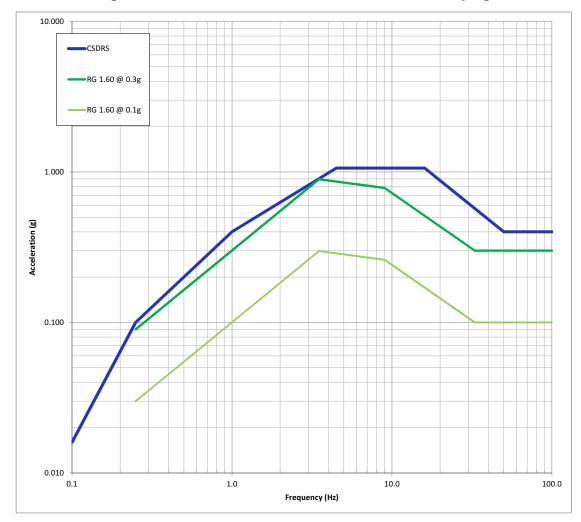
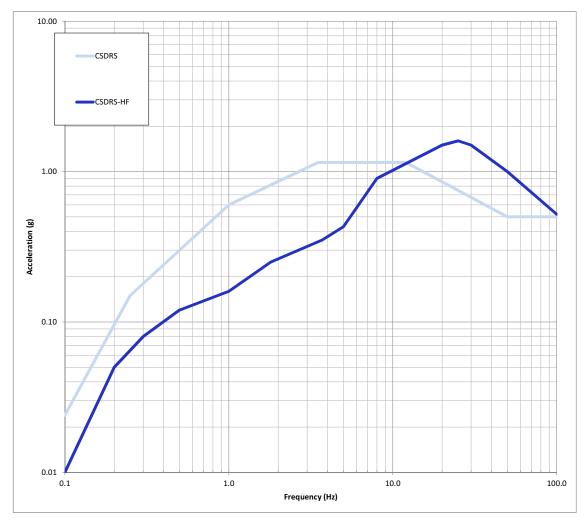
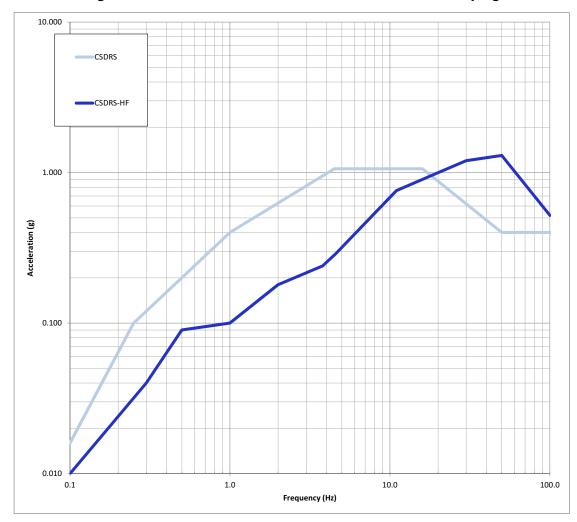





Figure 3.7.1-3: NuScale Horizontal CSDRS-HF at 5 Percent Damping



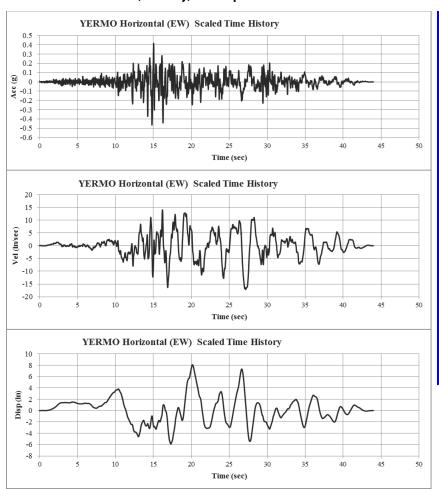

Note: CSDRS-HF is evaluated for the RXB and the CRB only

Figure 3.7.1-4: NuScale Vertical CSDRS-HF at 5 Percent Damping



Note: CSDRS-HF is evaluated for the RXB and the CRB only

Figure 3.7.1-5a: Original Time Histories for Yermo East-West



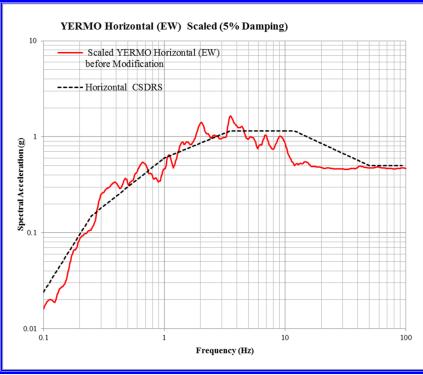
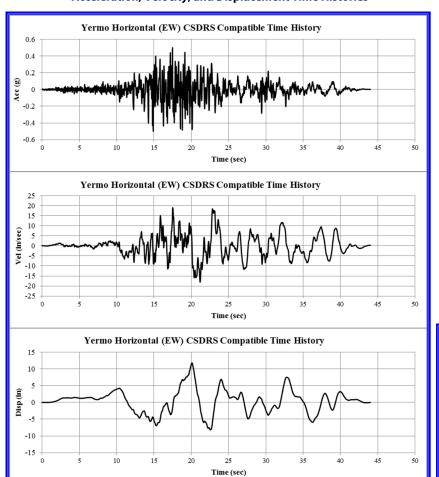
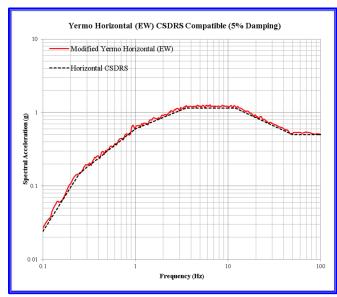





Figure 3.7.1-5b: CSDRS Compatible Time Histories for Yermo East-West



#### **Modified Response Spectrum Compared to CSDRS**



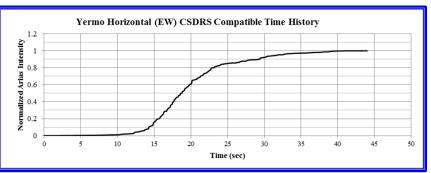
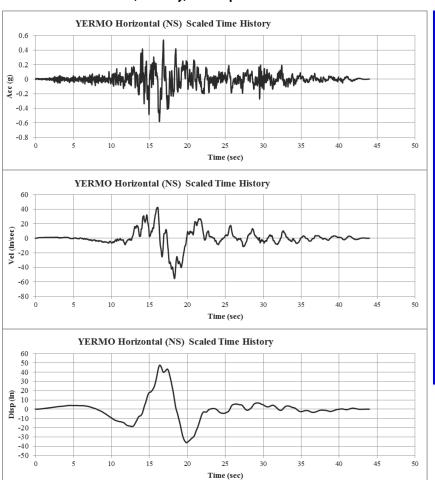




Figure 3.7.1-5c: Original Time Histories for Yermo North-South



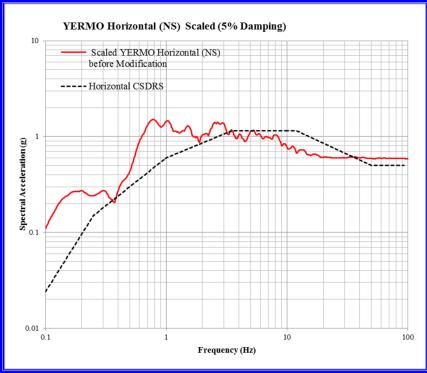
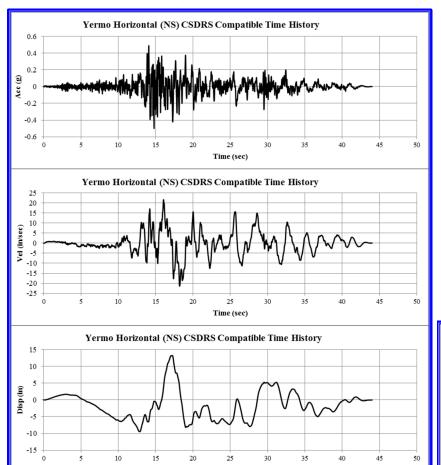
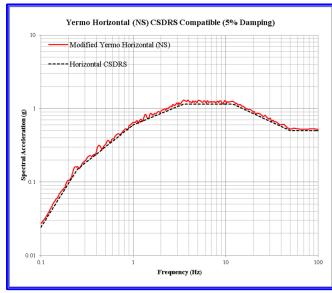





Figure 3.7.1-5d: CSDRS Compatible Time Histories for Yermo North-South



#### **Modified Response Spectrum Compared to CSDRS**



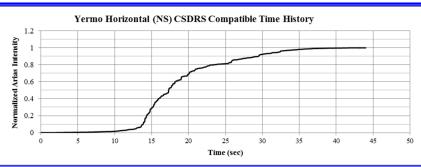




Figure 3.7.1-5e: Original Time Histories for Yermo Vertical



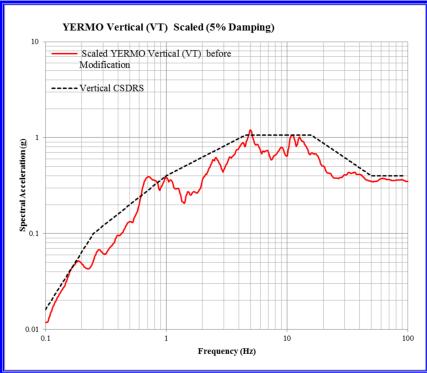
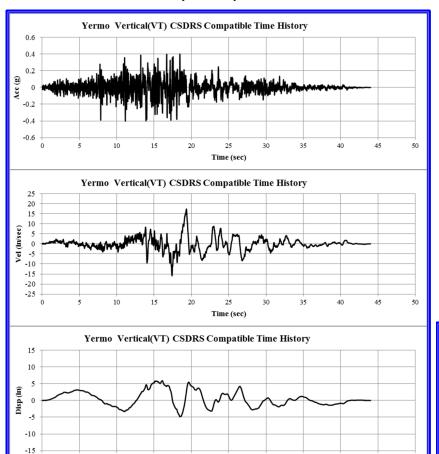
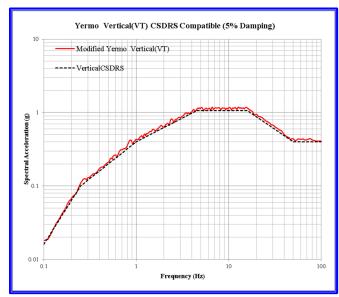




Figure 3.7.1-5f: CSDRS Compatible Time Histories for Yermo Vertical



25

Time (sec)


35

45

50

10

#### **Modified Response Spectrum Compared to CSDRS**



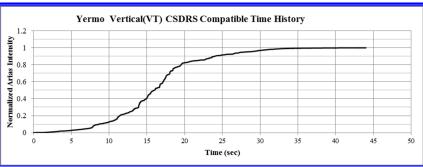
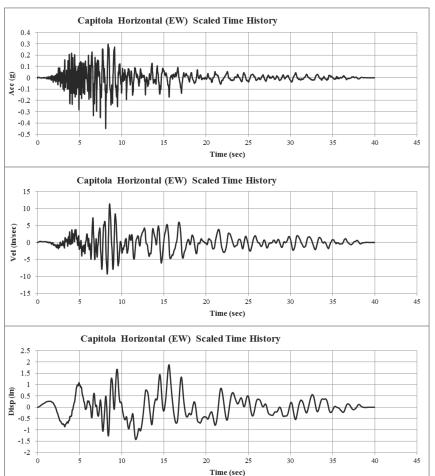




Figure 3.7.1-6a: Original Time Histories for Capitola East-West



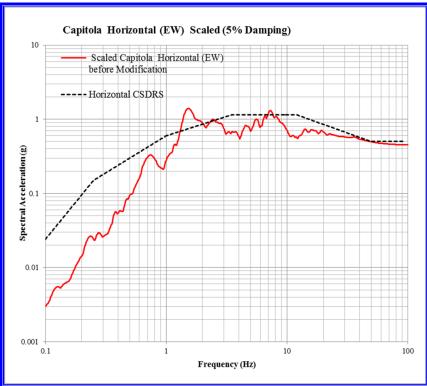
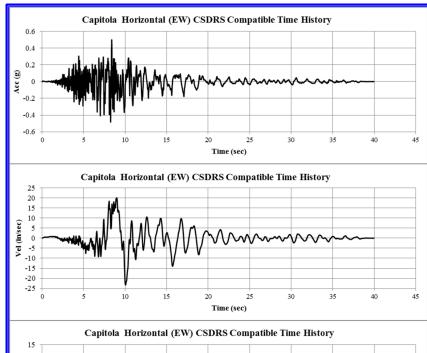
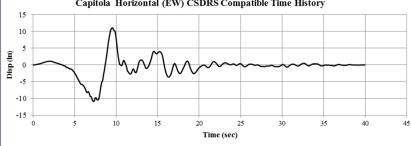
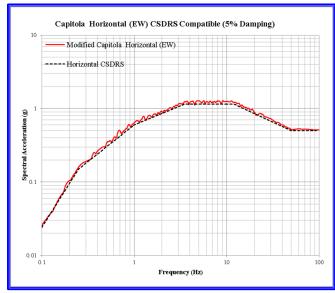






Figure 3.7.1-6b: CSDRS Compatible Time Histories for Capitola East-West





### **Modified Response Spectrum Compared to CSDRS**



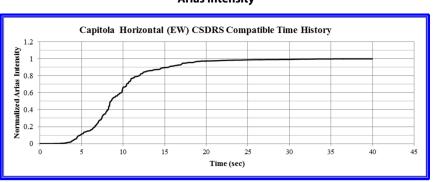
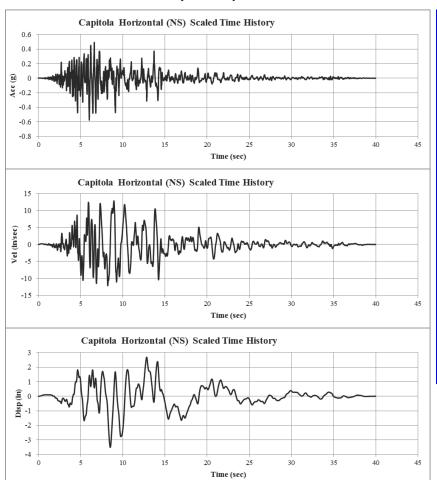
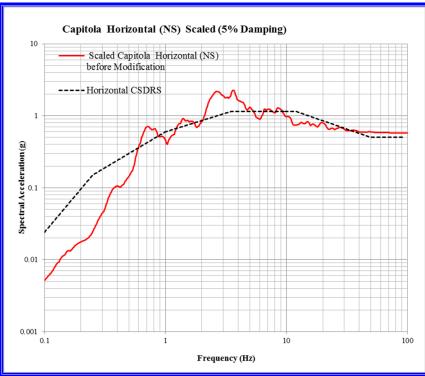
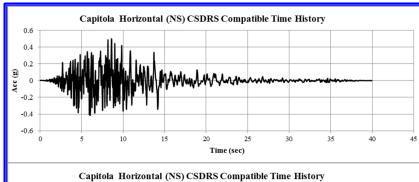
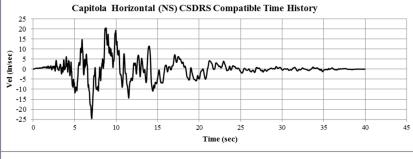
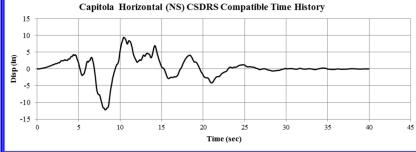
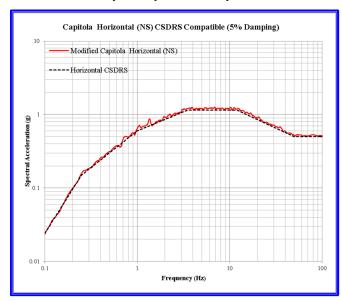




Figure 3.7.1-6c: Original Time Histories for Capitola North-South





Figure 3.7.1-6d: CSDRS Compatible Time Histories for Capitola North-South







#### **Modified Response Spectrum Compared to CSDRS**



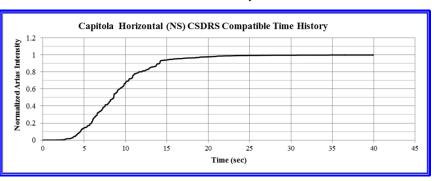
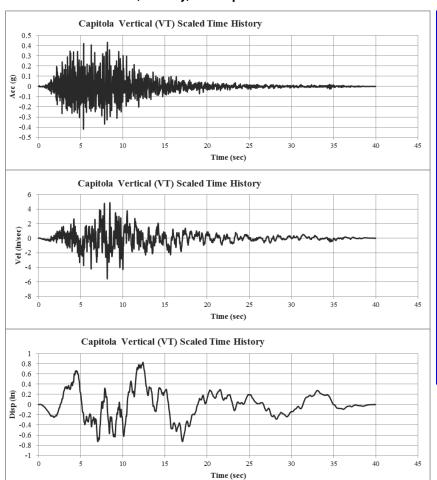
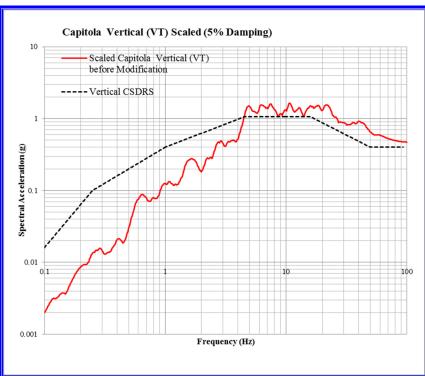
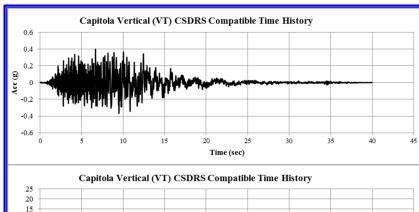
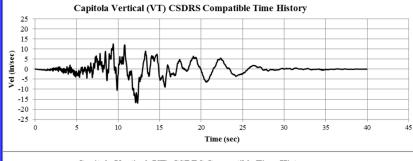
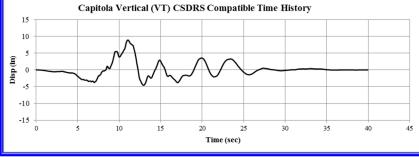
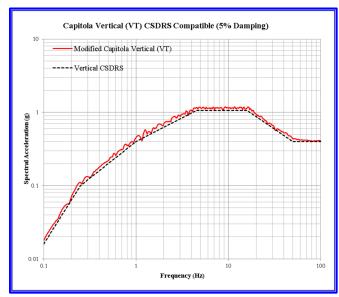




Figure 3.7.1-6e: Original Time Histories for Capitola Vertical





Figure 3.7.1-6f: CSDRS Compatible Time Histories for Capitola Vertical







### **Modified Response Spectrum Compared to CSDRS**



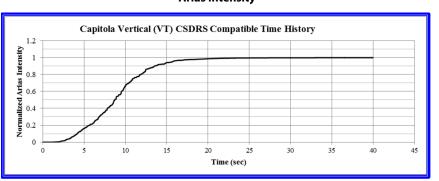
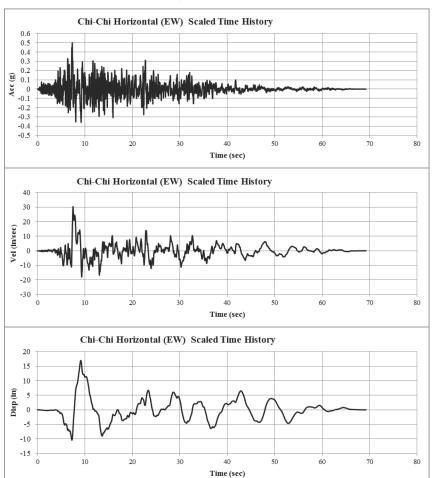




Figure 3.7.1-7a: Original Time Histories for Chi-Chi East-West



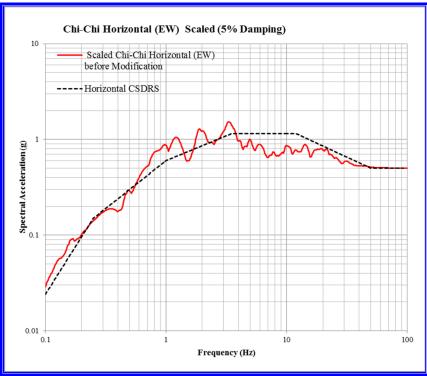
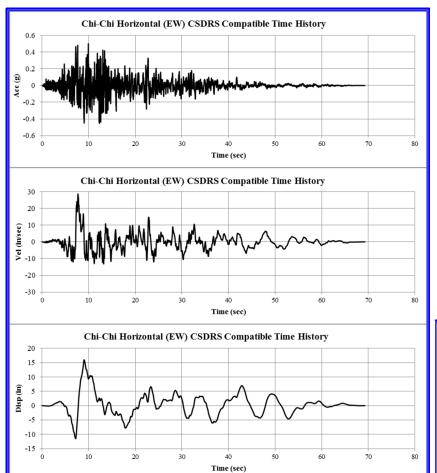
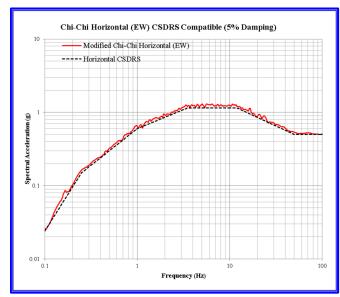





Figure 3.7.1-7b: CSDRS Compatible Time Histories for Chi-Chi East-West



#### **Modified Response Spectrum Compared to CSDRS**



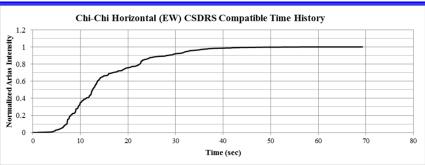
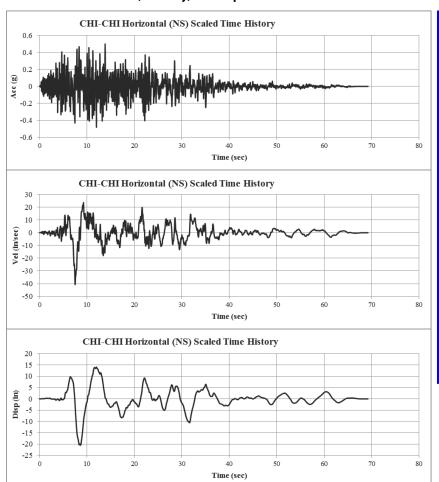




Figure 3.7.1-7c: Original Time Histories for Chi-Chi North-South



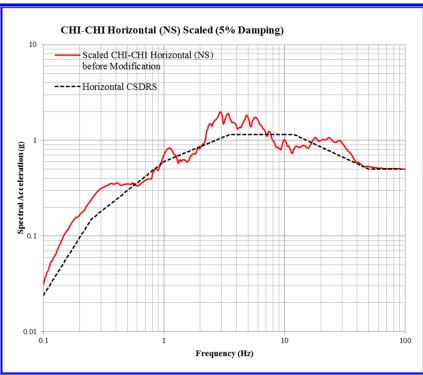
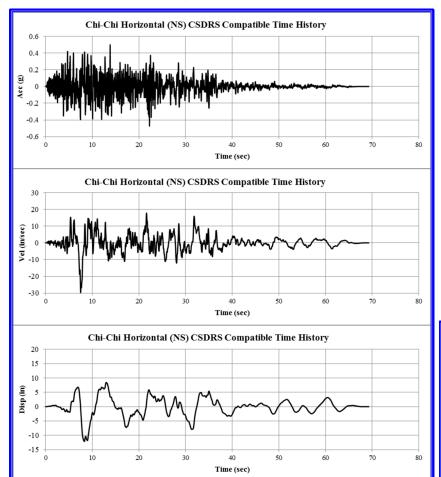
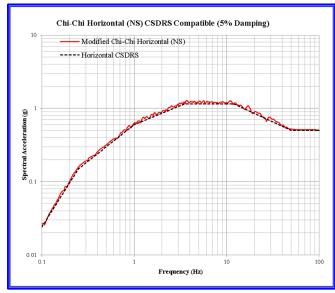





Figure 3.7.1-7d: CSDRS Compatible Time Histories for Chi-Chi North-South



#### **Modified Response Spectrum Compared to CSDRS**



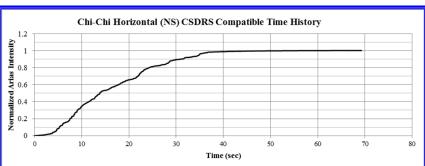
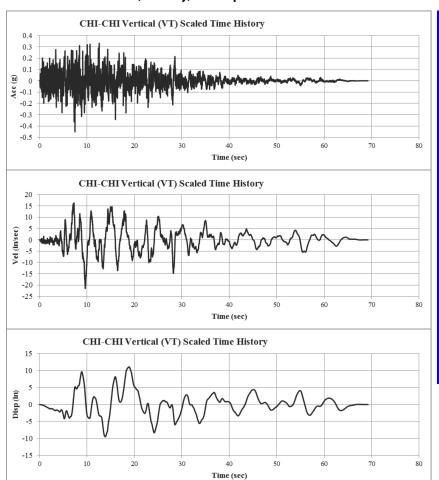




Figure 3.7.1-7e: Original Time Histories for Chi-Chi Vertical



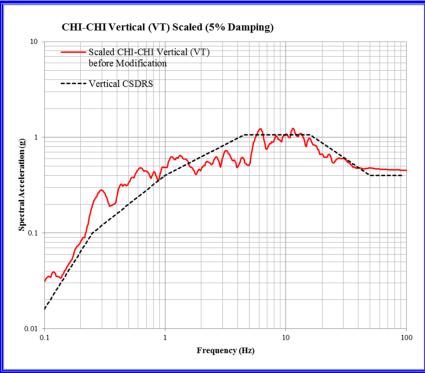
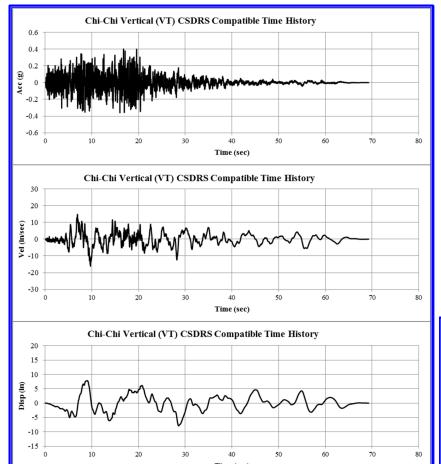
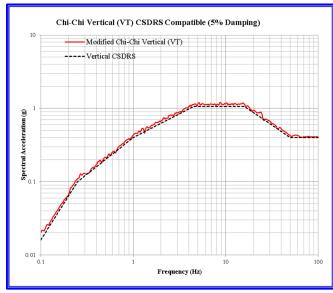





Figure 3.7.1-7f: CSDRS Compatible Time Histories for Chi-Chi Vertical



#### **Modified Response Spectrum Compared to CSDRS**



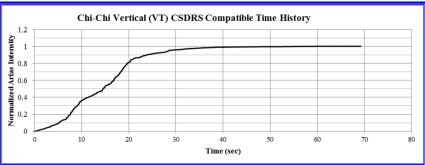
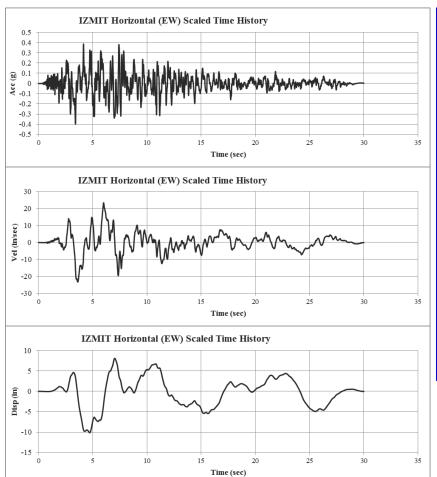




Figure 3.7.1-8a: Original Time Histories for Izmit East-West



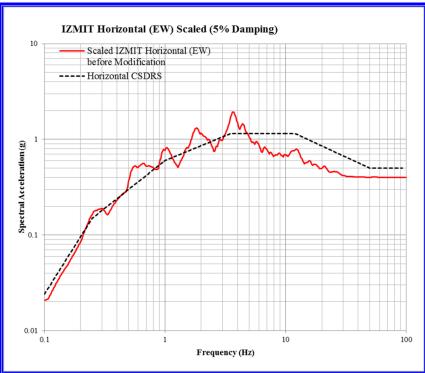
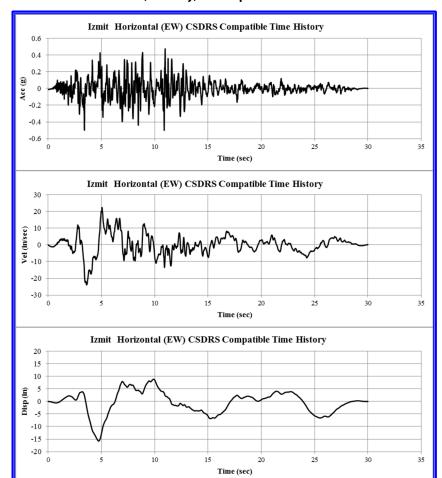
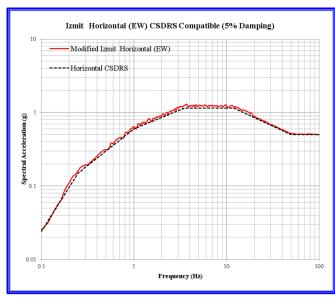





Figure 3.7.1-8b: CSDRS Compatible Time Histories for Izmit East-West



#### **Modified Response Spectrum Compared to CSDRS**



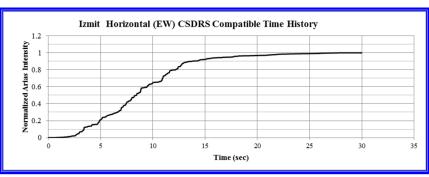
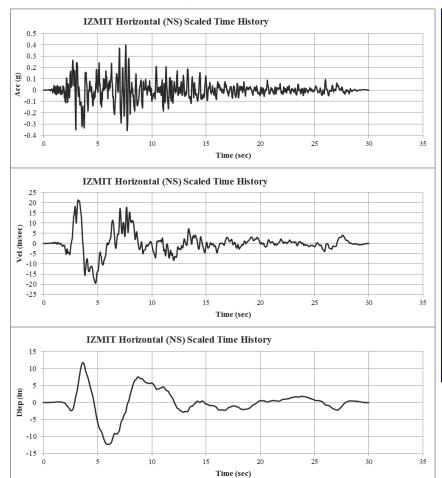




Figure 3.7.1-8c: Original Time Histories for Izmit North-South



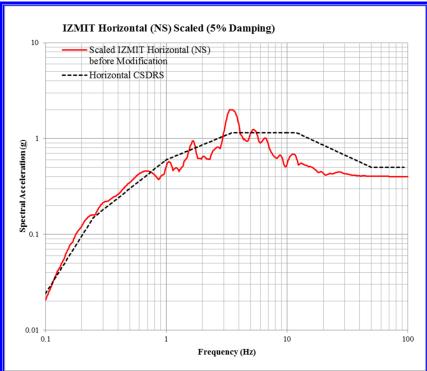
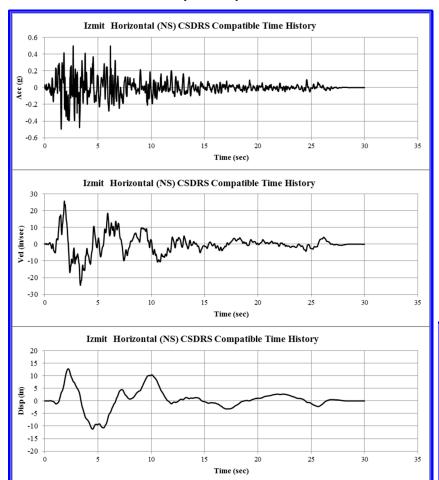
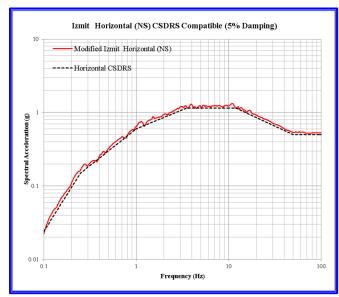





Figure 3.7.1-8d: CSDRS Compatible Time Histories for Izmit North-South





#### **Modified Response Spectrum Compared to CSDRS**



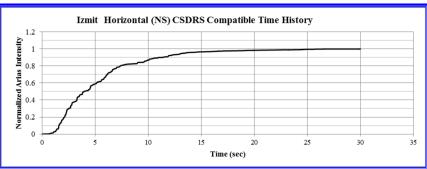
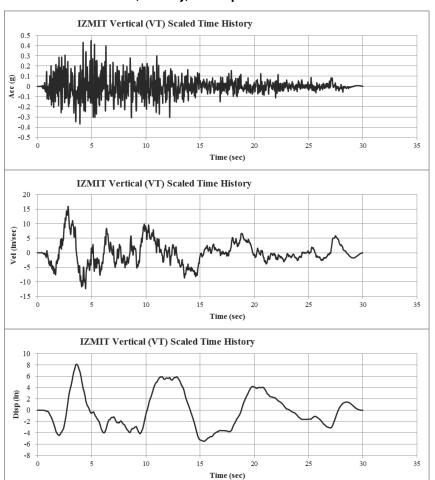




Figure 3.7.1-8e: Original Time Histories for Izmit Vertical



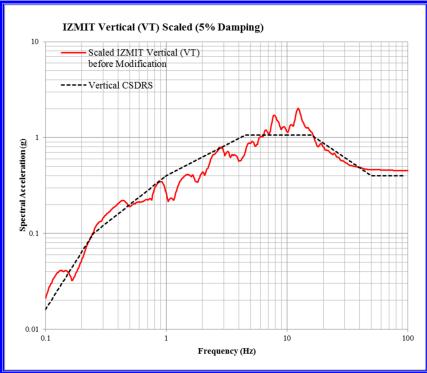
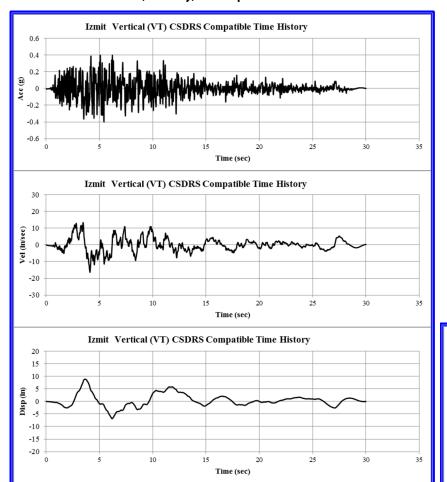
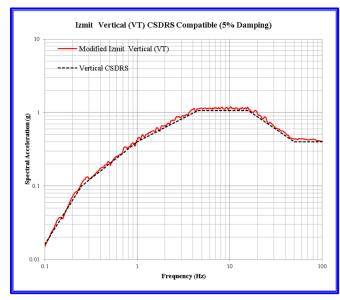





Figure 3.7.1-8f: CSDRS Compatible Time Histories for Izmit Vertical



## **Modified Response Spectrum Compared to CSDRS**



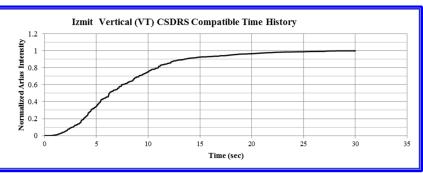
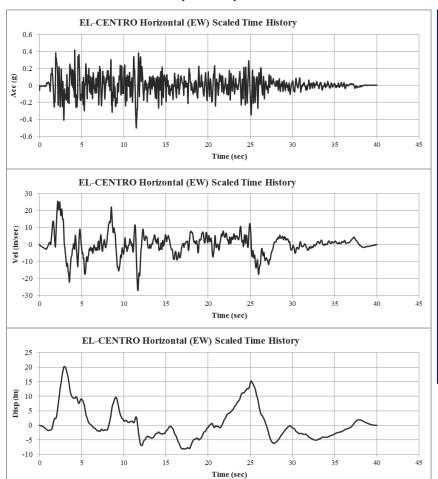




Figure 3.7.1-9a: Original Time Histories for El Centro East-West



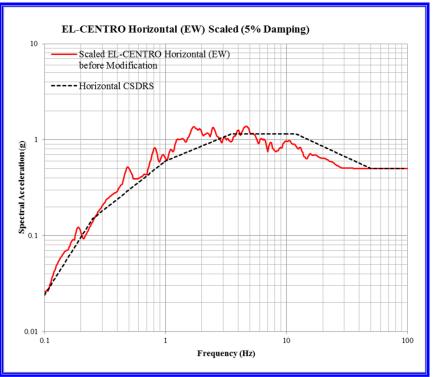
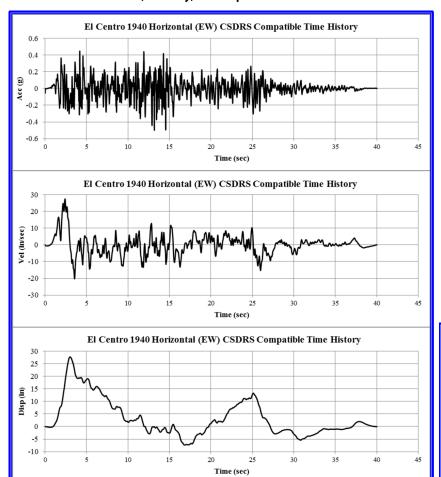
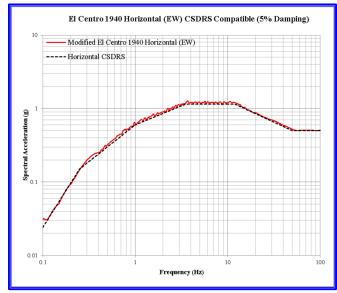





Figure 3.7.1-9b: CSDRS Compatible Time Histories for El Centro East-West



#### **Modified Response Spectrum Compared to CSDRS**



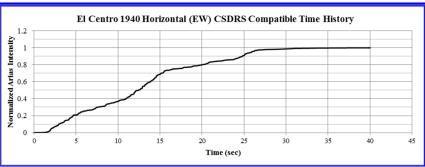
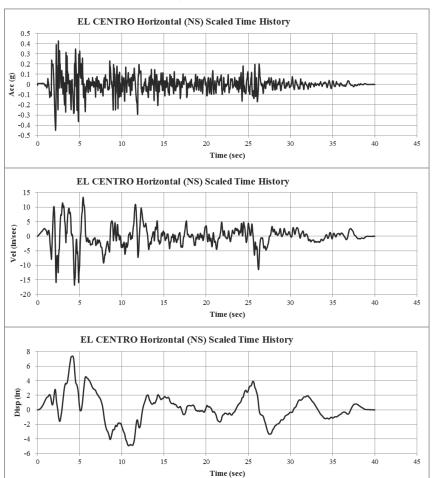




Figure 3.7.1-9c: Original Time Histories for El Centro North South



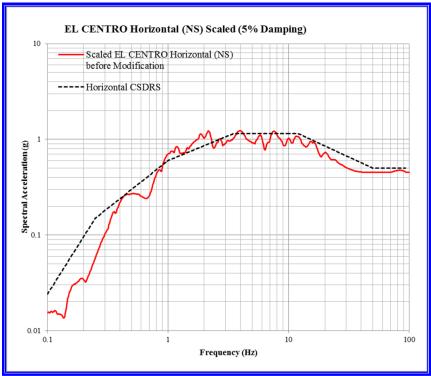
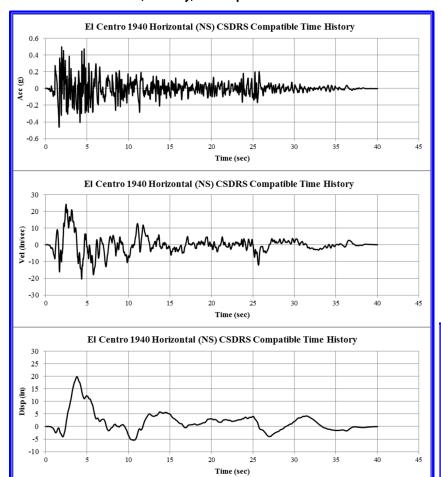
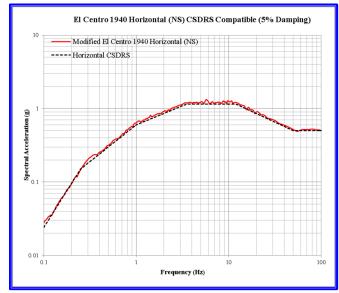





Figure 3.7.1-9d: CSDRS Compatible Time Histories for El Centro North-South



#### **Modified Response Spectrum Compared to CSDRS**



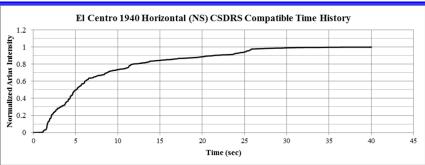
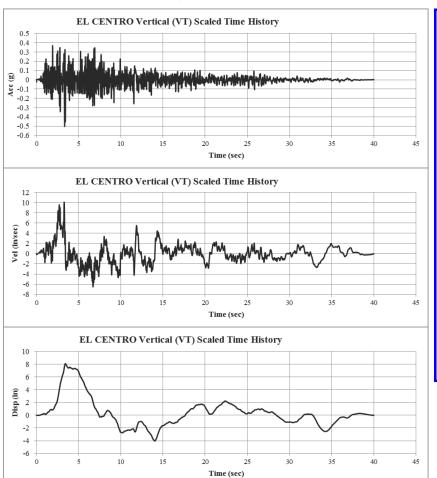




Figure 3.7.1-9e: Original Time Histories for El Centro Vertical



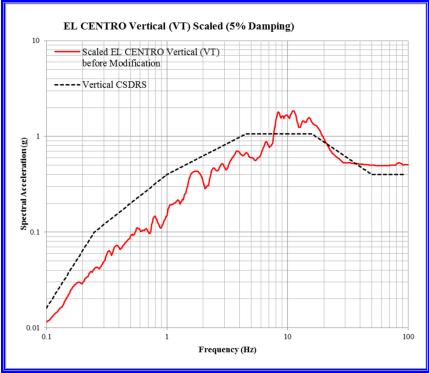
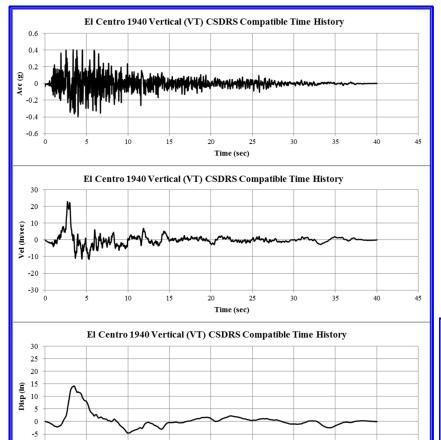
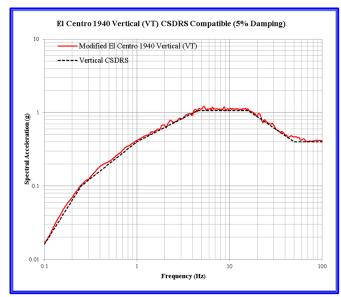
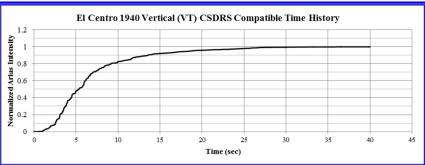




Figure 3.7.1-9f: CSDRS Compatible Time Histories for El Centro Vertical




Time (sec)


35

45

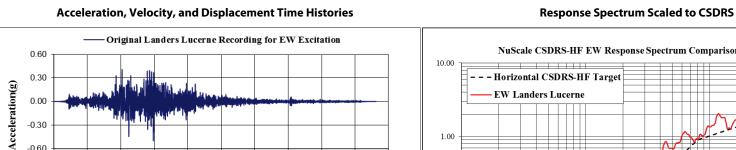
# **Modified Response Spectrum Compared to CSDRS**

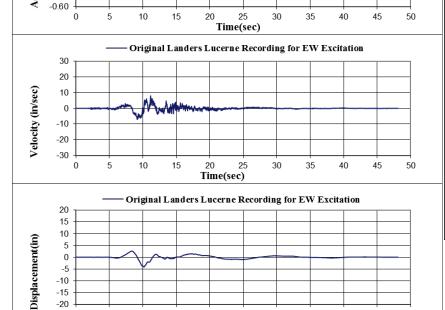


## **Arias Intensity**



-10


0.00 -0.30


> 5 0 -5 -10 -15 -20

5

10

Figure 3.7.1-10a: Original Time Histories for Lucerne East-West

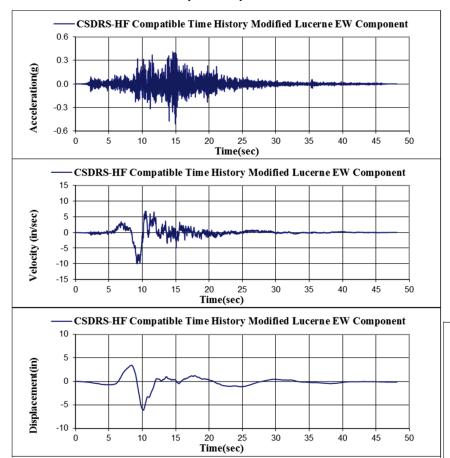





20 25 **Time(sec)** 

35

45


30



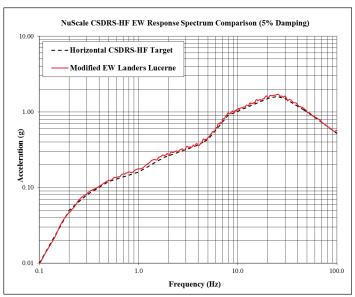
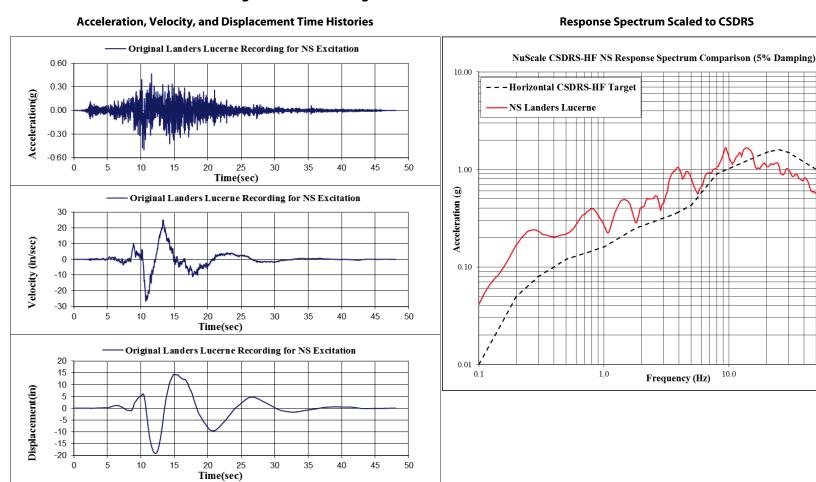

Tier 2

Figure 3.7.1-10b: CSDRS-HF Compatible Time Histories for Lucerne East-West






#### **Modified Response Spectrum Compared to CSDRS**

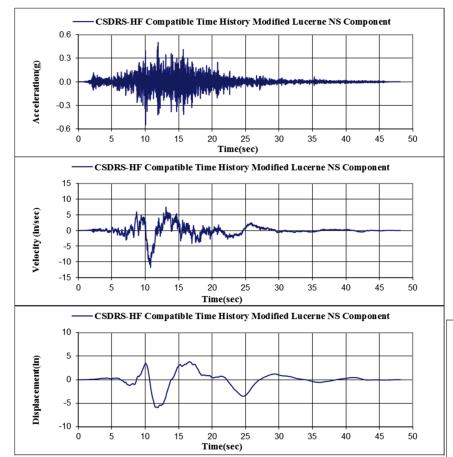




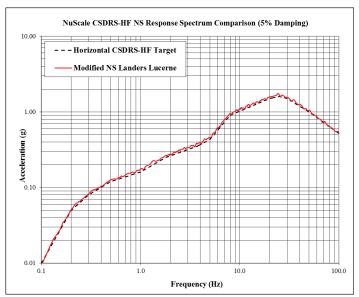
100.0

Figure 3.7.1-10c: Original Time Histories for Lucerne North-South




45

35


30

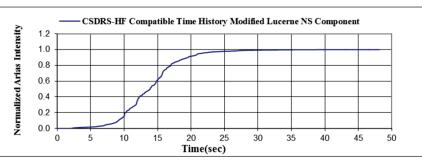
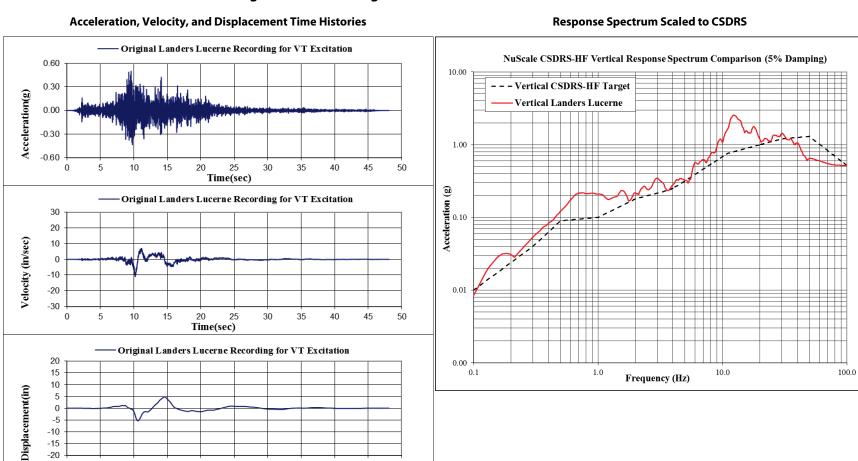

10

Figure 3.7.1-10d: CSDRS-HF Compatible Time Histories for Lucerne North-South




#### **Modified Response Spectrum Compared to CSDRS**





Tier 2

Figure 3.7.1-10e: Original Time Histories for Lucerne Vertical

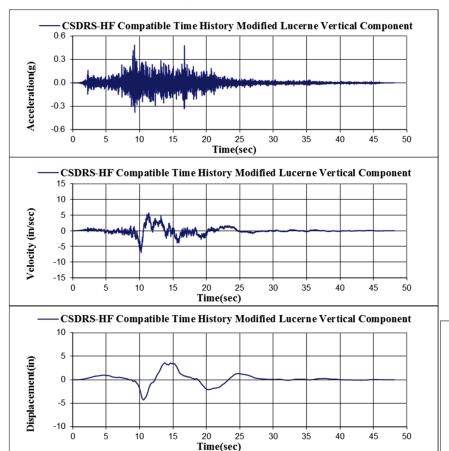


20 25 **Time(sec)** 

5

10

35


45

30

Tier 2

Figure 3.7.1-10f: CSDRS-HF Compatible Time Histories for Lucerne Vertical

## **Acceleration, Velocity, and Displacement Time Histories**



#### **Modified Response Spectrum Compared to CSDRS**

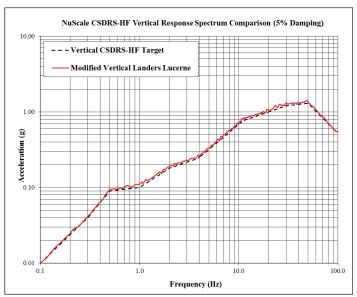





Figure 3.7.1-11: Normalized Arias Intensity Curve of North-South Component of Izmit Time History

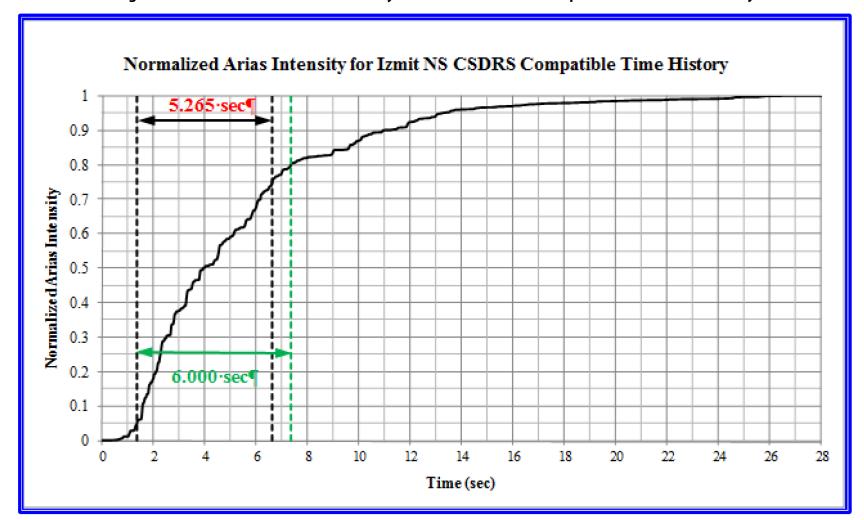



Figure 3.7.1-12a: Average Response Spectra East-West

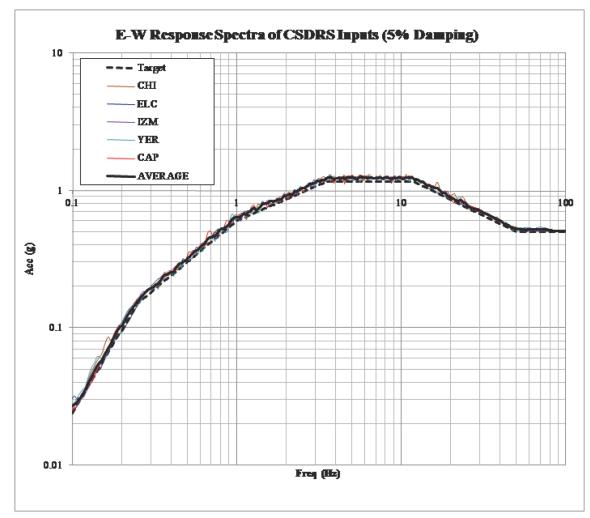



Figure 3.7.1-12b: Average Response Spectra North-South

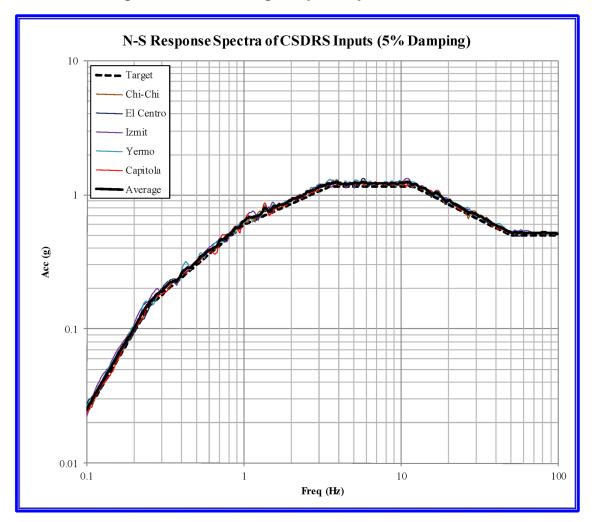



Figure 3.7.1-12c: Average Response Spectra Vertical

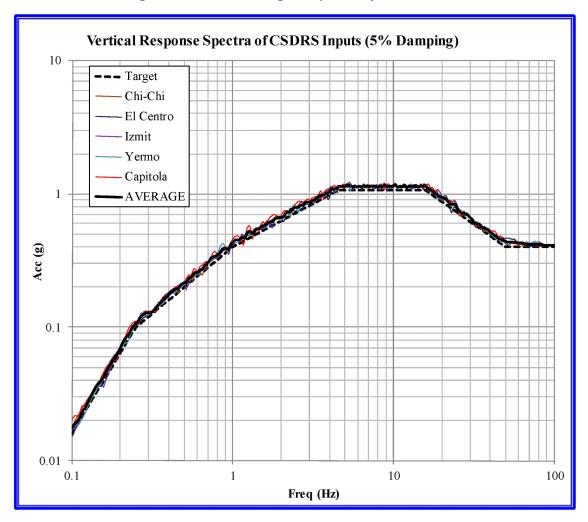
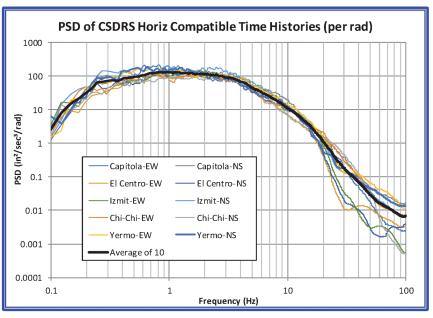




Figure 3.7.1-13a: Power Spectral Density Curves CSDRS Compatible Time Histories



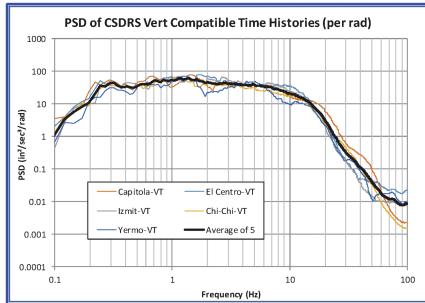
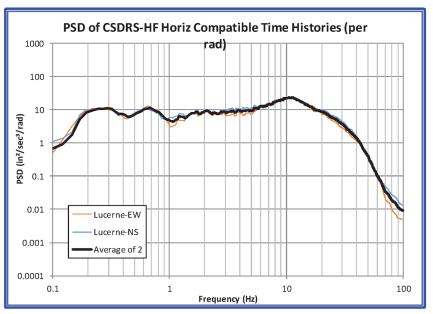




Figure 3.7.1-13b: Power Spectral Density Curves CSDRS-HF Compatible Time Histories



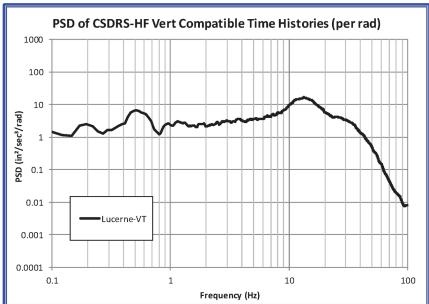
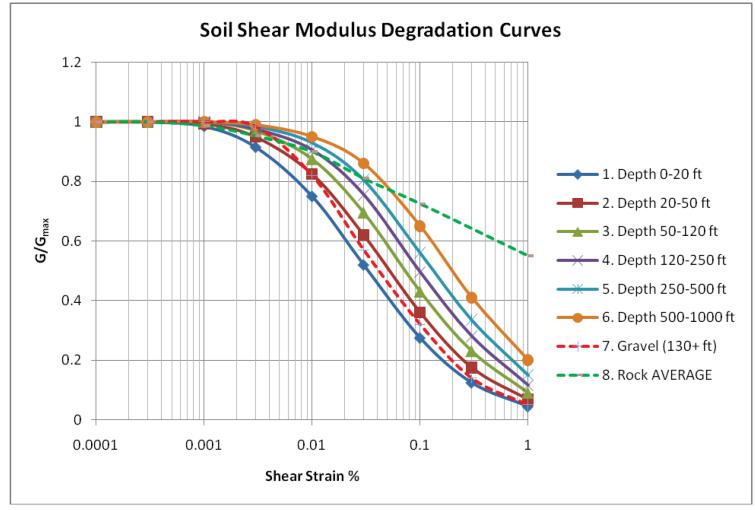
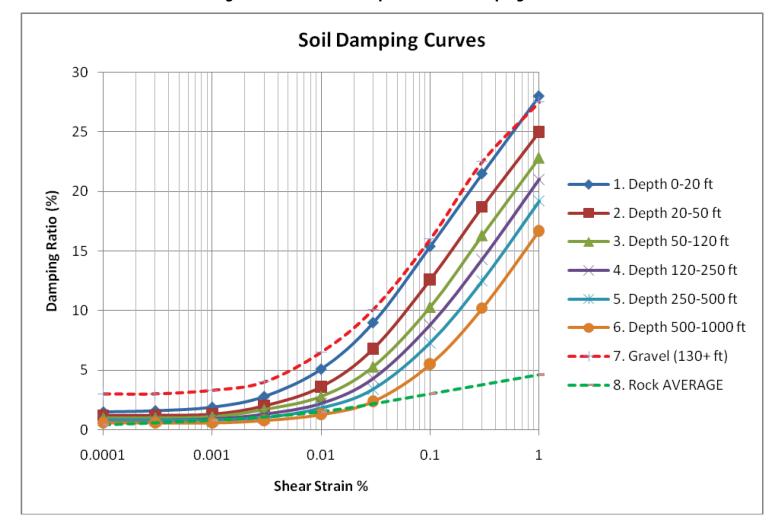





Figure 3.7.1-14: Soil Shear Modulus Degradation Curves



2

**Figure 3.7.1-15: Strain Dependent Soil Damping Curves** 



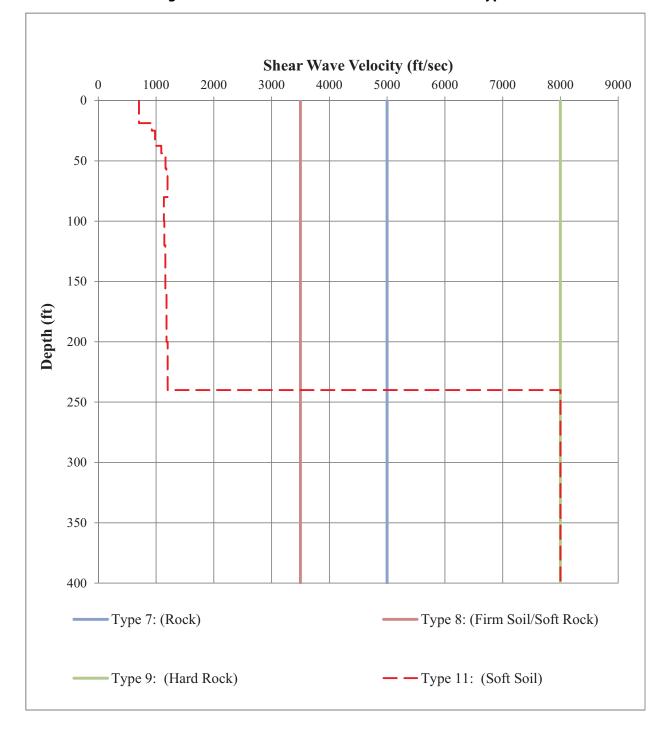



Figure 3.7.1-16: Shear Wave Velocities for All Soil Types

**NuScale Final Safety Analysis Report** 

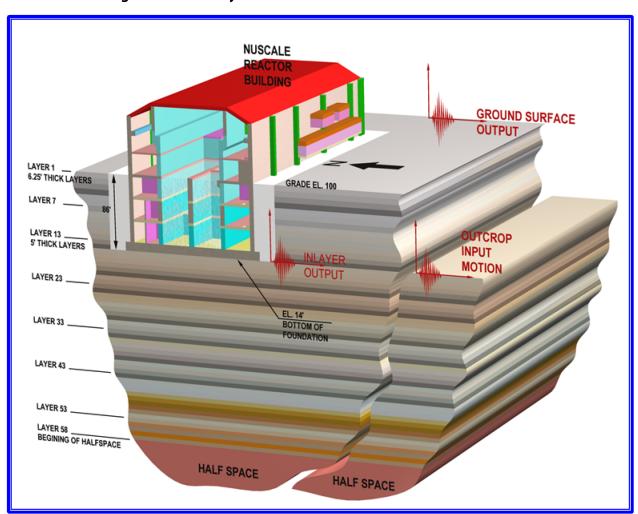



Figure 3.7.1-17: Layered Soil Model Used for NuScale Power Plant

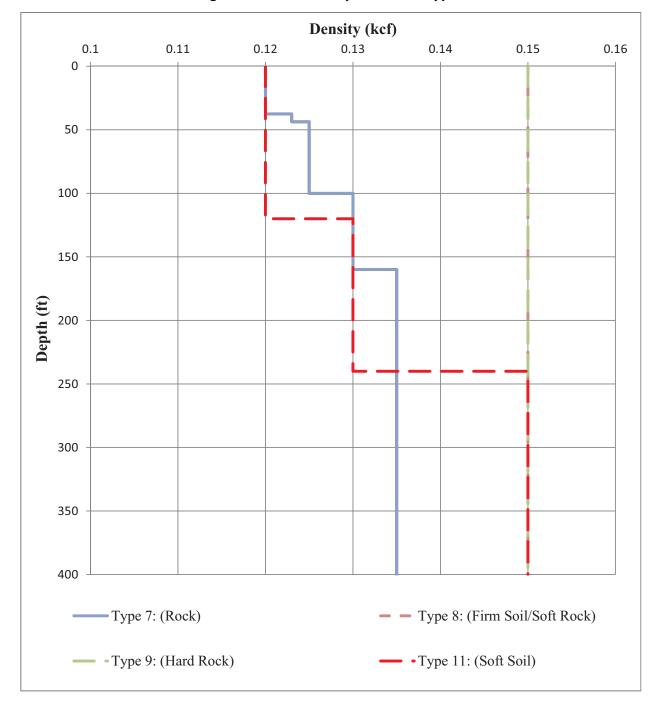
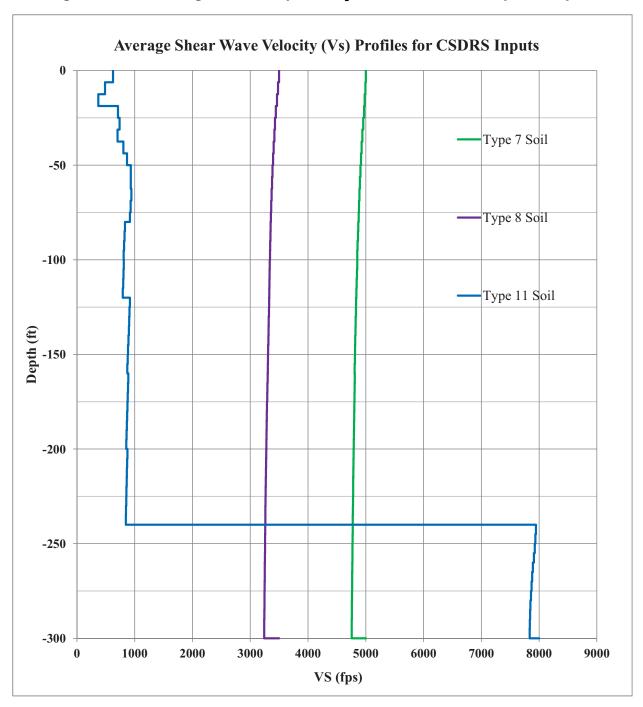




Figure 3.7.1-18: Density for All Soil Types

Figure 3.7.1-19: Average Strain Compatible V<sub>s</sub> Profiles for CSDRS Compatible Inputs



Stain-Compatible  $\mathbf{V}_{\mathbf{S}}$  Profiles due to Lucerne Input 0 Soil Type 7 -50 Soil Type 9 -100 Depth (ft) -150 -200 -250 -300 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 V<sub>S</sub> (fps)

Figure 3.7.1-20: Strain Compatible  $V_{\rm S}$  Profiles for CSDRS-HF Compatible Input

Revision 5

Figure 3.7.1-21: Strain Compatible Damping for Soil Type 7 for CSDRS Compatible Inputs

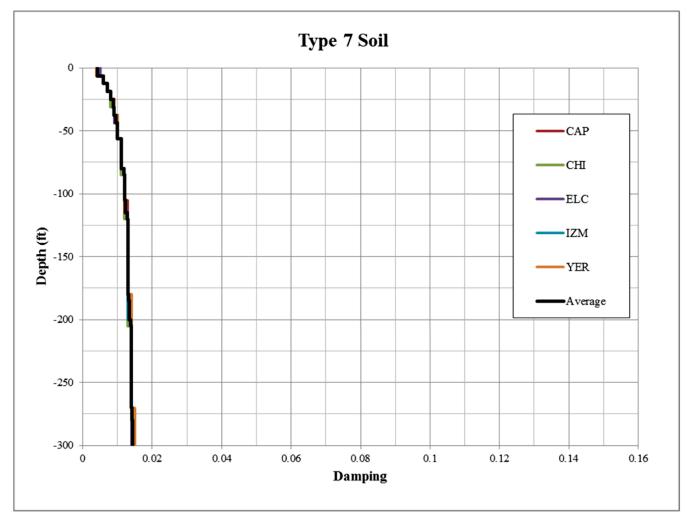
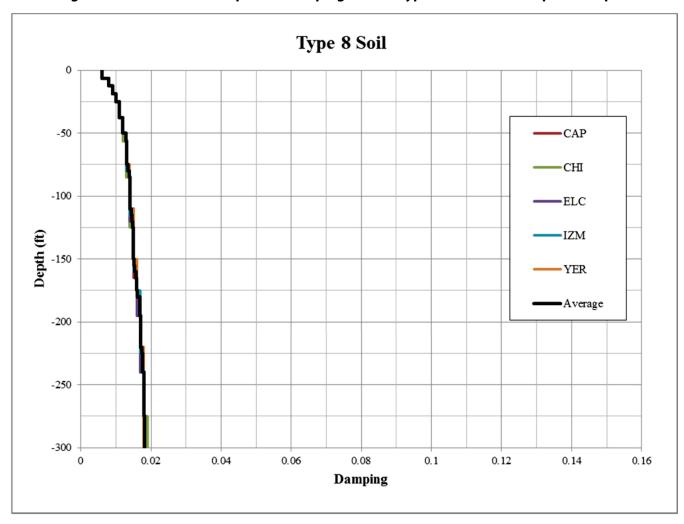




Figure 3.7.1-22: Strain Compatible Damping for Soil Type 8 for CSDRS Compatible Inputs



3.7-102

Type 11 Soil -50 -CAP —сні -100 -ELC Depth (ft) -150 -IZM -YER -200 -Average -250 -300

0.08

**Damping** 

0.1

0.12

0.14

0.16

0.02

0

0.04

0.06

Figure 3.7.1-23: Strain Compatible Damping for Soil Type 11 for CSDRS Compatible Inputs

Figure 3.7.1-24: Comparison of Average Strain Compatible Damping for CSDRS Compatible Inputs

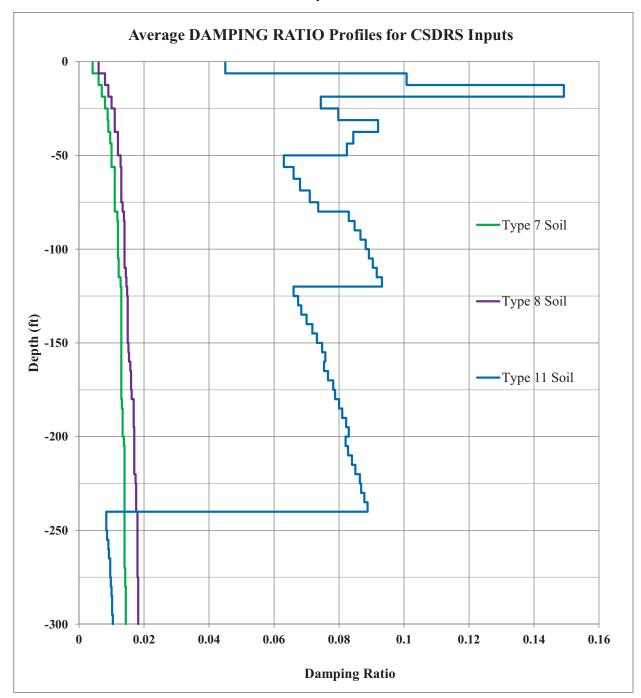
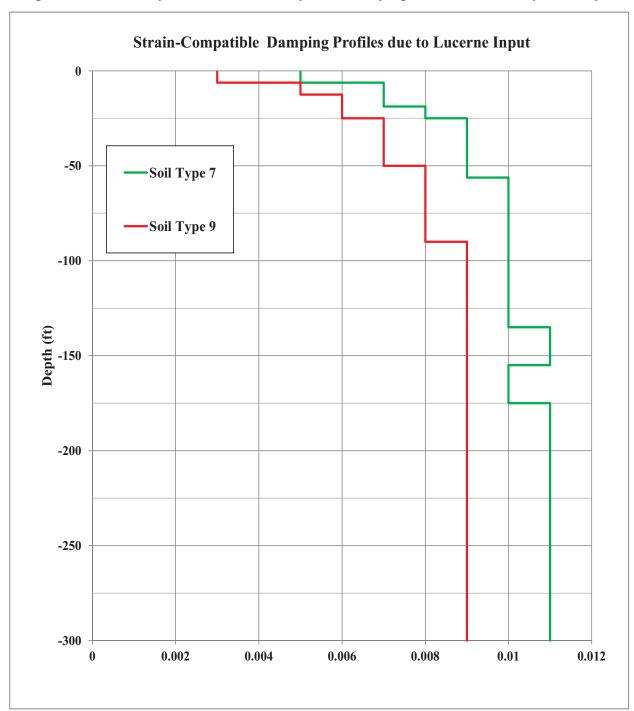




Figure 3.7.1-25: Comparison of Strain Compatible Damping for CSDRS-HF Compatible Input



# 3.7.2 Seismic System Analysis

There are only two site independent Seismic Category I structures, the RXB and the CRB. The RXB is designed for up to twelve installed NPMs. The structural analysis is performed with all twelve modules in place. Section 3.7.2.9.1 provides discussion about the effect on the structure if a seismic event were to occur during operation with less than the full complement of twelve NPMs.

Due to its proximity to the RXB, the Radioactive Waste Building (RWB) is categorized as Seismic Category II. The RWB is also classified as RW-IIa (high hazard) in accordance with Regulatory Guide (RG) 1.143, "Design Guidance For Radioactive Waste Management Systems, Structures, and Components Installed in Light-Water-Cooled Nuclear Power Plants," Rev. 2. The RWB is designed using the same methodology as the Seismic Category I structures. The interaction of the Seismic Category II RWB with the Seismic Category I RXB is discussed in Section 3.7.2.8.

The RXB, CRB, and RWB are shown together in Figure 3.7.2-1 and in a cutaway view in Figure 3.7.2-2. The origin of the global coordinate system of the finite element models is located at the centerline of the bottom of the RXB foundation at the west end of the building. This location is shown in Figure 3.7.2-3 and Figure 3.7.2-4. The X axis is in the east-west direction with east positive. The Y axis is north-south with north positive, and the Z axis is vertical with up positive.

Site specific seismic analysis is discussed in Section 3.7.2.16.

## 3.7.2.1 Seismic Analysis Methods

The seismic analysis of Seismic Category I SSC use linear equivalent static analysis, linear dynamic analysis, complex frequency response methods or nonlinear analysis and are designed to withstand the effects of the SSE and remain functional in accordance with Regulatory Guide 1.29. The two site independent Seismic Category I structures, the RXB and the CRB, are primarily analyzed using the time history method, and supplemented with additional analyses as described in the following sections.

## 3.7.2.1.1 Computer Programs

The RXB and CRB are analyzed using three commercially available computer programs: SAP2000 (Reference 3.7.2-1), SASSI2010 (Reference 3.7.2-2) and ANSYS (Reference 3.7.2-3). Each of these three programs is described briefly below. Validation of software is discussed in Section 3.7.5. A summary of the analysis cases is provided in Table 3.7.2-35.

## 3.7.2.1.1.1 SAP2000

The RXB and CRB finite element models are developed using SAP2000. These models are the master models. The finite element models used with ANSYS and SASSI2010 are created from the SAP2000 models. The structural analyses are performed using SAP2000 as described in Section 3.8.4.

#### 3.7.2.1.1.2 ANSYS

A finite element structural analysis model of the RXB was developed using ANSYS to determine the hydrodynamic pressures on the reactor pool walls and foundation from a Fluid-Structure Interaction analysis. This was necessary since neither the SAP2000 nor SASSI2010 computer programs have an explicit fluid element formulation to accurately calculate the hydrodynamic effects due to all three directional components of earthquake input motions. The ANSYS model of the RXB is based on the SAP2000 model. The use of ANSYS to develop correction factors is described in Section 3.7.2.1.3.4. The addition of the water mass that is modeled with fluid finite elements is meshed accordingly to match the existing meshing of the RXB and NPM finite elements.

## 3.7.2.1.1.3 SASSI2010

For the seismic analyses, the finite element models of the RXB and CRB developed using the SAP2000 computer program are converted to SASSI2010 models with identical input data of the geometry, material properties, element connectivities, and boundary conditions. The SASSI2010 models are used to perform soil structure interaction (SSI) analysis. In addition to individual models for the RXB and CRB, a large-scale finite element model was constructed that includes both buildings and the Seismic Category II RWB. This model is referred to as the triple building model and is used to examine structure-soil-structure interactions (SSSI). SASSI2010 can handle models in excess of 100,000 nodes with approximately 20,000 interaction nodes. SASSI2010 analyzes the finite element models using the Complex Frequency Response Analysis Method. To perform the analysis, the time history of input ground motion is transformed to the frequency domain by fast Fourier transform. The seismic responses calculated in the frequency domain are then transformed back to the time domain by inverse fast Fourier transform.

#### **Model Dimensions**

In the vertical direction, the finite element model of each building extends to the bottom of the foundation. In performing the analyses, soil layers to 300 feet below grade level are included. Below 300 feet, the parameters (shear wave velocity, density and poisson's ratio) of the four generic soil profiles described in Section 3.7.1.3.1 remain constant. Therefore the variable depth method of SASSI2010 is used to add soil layers in order to simulate a semi-infinite halfspace at the bottom of the soil layer base.

In the horizontal direction, the finite element model of each building is extended out 25 feet around the entire perimeter of the building, to model the backfill soil. Beyond the 25 foot backfill soil region, SASSI2010 extends the parameters of the in-situ or free-field soil (i.e., Soil Type 7, 8, 9 or 11) as a semi-infinite elastic half space.

Free-field soil is included in the triple building model. This model has an overall length of 2005.5 feet, a width of 768.5 feet and a depth of 360 feet. For dynamic analysis of the triple building model using SASSI2010, the free field boundaries

extends to elastic halfspace implicitly. This is accomplished by SASSI2010 itself. For static analyses, the SAP2000 models explicitly adds the free field soil beyond the backfill soil boundaries. The triple building model is used to determine the static response of the three buildings including the effects of differential displacements. The vertical depth is deeper than the SSI model. At this depth, the vertical displacement become insignificant due to soil stiffness. The horizontal boundaries are also extended a sufficient distance to have insignificant change in the static response of the buildings.

## **Cut-off Frequency**

For the analysis of Soil Types 7, 8 and 11 with the CSDRS the cut-off frequency was established at 52 Hz. This is higher than the wave passing frequency of the soft soil profile (Soil Type 11) but less than the passing frequency of the other two soils (see Table 3.7.1-20). The low wave passing frequency of the soft soil is not a concern. Although high frequency content is not transmitted into or through the building for Soil Type 11, it is transmitted by the Soil Type 7 and Soil Type 8 profiles and by the Soil Type 7 and Soil Type 9 profiles evaluated with the CSDRS-HF. The buildings and associated SSC are designed to remain operable following any of these earthquake/soil combinations, therefore high frequency content is addressed in the design of the site independent Seismic Category I structures by the use of soil profiles that are stiffer than Soil Type 11.

For the analysis with the rock profiles (Soil Type 7 and 9) and the CSDRS-HF, the cut-off frequency was established at 72 Hz. The CSDRS-HF at a cut-off frequency of 72 Hz is less than the peak ground acceleration frequency, which occurs at 100 Hz. Using a 72 Hz cut off frequency is acceptable because it is above the frequency where maximum acceleration occurs (25 Hz horizontal and 50 Hz vertical).

The building models have element sizes that are similar to the 6.25 feet layers that were used to determine the wave passage frequency of the soil. There are instances where development of the model required individual elements to have a dimension as large as 12 feet in the RXB and as large as 20 feet in the CRB. However, the typical element size is approximately 6 feet. Therefore the wave passage frequencies of both buildings is above the cut-off frequencies used for the analysis.

In the CRB model, the elements with large dimensions or aspect ratios are nonstructural areas or membrane elements used for the purpose of applying wind loads to the steel beams and columns of the steel frame structure above elevation 120 ft. The 20 ft elements are located on the north and south walls whereas the 12 ft elements are located on the east and west walls above elevation 120 ft. Similar surface area loads are applied to the CRB roof to evenly distribute applied loads. The loads are applied as surface pressure on these areas and then transferred to the structural elements through the shared nodes. These coarse elements are not present in the seismic analyses and will not, therefore, affect the seismic demand results. In the RXB model, there are 24 elements with approximate dimensions of 12 ft x 6 ft at the pool floor. These are transition solid elements beginning in the top layer of solid elements used

to model the basemat. The mesh transitions into the uniform soil mesh, matching the soil interaction nodes at the base elevation of the basemat, with an average element size of approximately 6.25 ft. The single layer of coarse basemat transition elements have minimal or no effect on the seismic analysis results.

## **Modeling Approach**

## **Analysis Methods**

There are several modeling approaches that can be used for modeling the excavated soil in the SSI analysis: the direct method (DM), the subtraction method (SM), the modified subtraction method (MSM), and the extended subtraction method (ESM). Each method has different computational demands. A brief discussion of the different methods follows:

The direct method partitions the soil structure system between the building and the excavated soils. It requires only the free-field motions and the free-field soil impedances to compute the seismic excitations on the foundation of structure. The soils to be excavated are retained with the foundation. Therefore, interaction between the structure and the foundation is calculated at all excavated soil nodes. In the analysis, the DM treats all translational degrees of freedoms of the excavated soil as SSI interaction nodes. This corresponds to a theoretically exact SSI model for the excavated soil dynamics. DM analysis is computationally intensive and cannot be used with the large detailed models created for the NuScale buildings.

To reduce computational time, a simplified method, called the subtraction method, was developed. The SM assumes only the nodes at the interface of the excavated soil volume and surrounding free field soils act as interaction nodes. In mathematical implementation, only those specified interaction nodes are described by equations of motion. The seismic load component and free-field soil impedance are neglected for the non-interaction nodes within the excavated soil volume. Therefore, the excavated soil motion can produce spurious vibration modes. This simplification results in anomalies in the transfer functions, usually seen as spurious spikes for soft free-field soils at relatively high frequency ranges. The SM approach for the excavated soil can be visualized as the five planes that represent the sides and bottom of the "box" that models the excavated volume.

The modified subtraction method includes the nodes at the ground surface of the excavated soil as interaction nodes. The MSM approach for the excavated soil can be visualized as the six planes that represent the sides, bottom, and top of the "box" that models the excavated volume. The inclusion of the ground surface nodes as interaction nodes provides significantly improved boundary conditions and improves the excavated soil response accuracy.

Within SASSI2010, a further enhancement of the MSM is available; this methodology is called the extended subtraction method. In the ESM, intermediate planes may be defined within the excavated volume. The

addition of intermediate planes reduces the amount of interpolation that must be performed within the excavated volume, and further improves the accuracy of the excavated soil response. As additional planes are added, the ESM approaches the DM in both accuracy and computational time. The NuScale buildings are evaluated with an ESM model.

## **Ensuring Accurate Results**

Both the MSM and ESM reduce the potential for the spurious results produced by the subtraction method. The use of intermediate planes in the ESM method make it even less likely than the MSM to produce inaccurate results. When they occur, these errors can be seen in the transfer functions. However, due to the size and complexity of these models, it is not practical to review transfer functions at all the nodes in the models. Therefore, errors are found by questioning unexpected results. Transfer functions at several key locations were investigated. Spurious spikes were found in a few transfer functions, which are due to the built-in interpolation functions in the software. However, the corresponding seismic input at those frequencies were insignificant, therefore, the corresponding in-structure response spectra (ISRS) do not have any spurious peaks. Based on the ISRS examinations and nonexistence of any spurious peaks in the ISRS, it is concluded that the spurious spikes have no effect on the ISRS or the RXB design.

The design process for the site-independent RXB and CRB is to consider multiple soil types, two building stiffnesses (for cracked and uncracked concrete), and multiple time histories. This large data set makes it more likely to notice an anomaly, since it is unlikely to occur in all the different combinations used as input.

For the CSDRS, the results from five time histories were averaged for each soil type to produce a single set of results for that soil type. These results are then combined and the maximums are used (i.e., the results are enveloped). For the determination of forces, moments, and shears, the results from the CSDRS-HF analysis are also included and, thus, bounded by the design. Averaging reduces the potential for a spurious peak to drive an overly conservative design. Bounding the two stiffnesses and various soil combinations ensures that a spurious low point will not result in an inadequate design.

Two other aspects of the design process also ensure the acceptability of the structures.

- Standardized design of walls. The thicknesses and internal steel reinforcement of the primary walls are generally consistent throughout each building. Areas where forces are lower are not optimized for the local load.
- Site-independent design. A site-specific analysis is performed to confirm that the design is adequate for that specific location. A different SSE and soil column will not produce anomalies at the same locations. A spurious low point will not result in a change to the standardized design.

# **Benchmarking**

For the analysis of the Seismic Category I RXB and CRB with the extended subtraction method, a single intermediate plane was used. This approach is designated as 7P, to reflect the four sides of the excavated volume, and the top, bottom, and middle horizontal planes. Benchmarking of the 7P approach was performed by comparing the results to the DM and to a nine plane model.

## 7P vs Direct Method Comparison

Comparisons between the DM and 7P ESM have been performed for the CRB and RXB. ISRS and transfer functions have been generated from both methods and compared.

The ISRS calculated by the CRB 7P model are very close to those calculated by the DM model. There are some increases found in several ISRS. A direct comparison with the DCA ISRS cannot be provided due to differences in the structural damping values used in the CRB ISRS generation model (4 percent structural damping) and the CRB design model (7 percent structural damping).

However, the ISRS generated at 7 percent structural damping for 7P and DM produced results that are within 15 percent of each other. Most corresponding values from each model are the same.

The transfer function shapes calculated by the CRB 7P model are nearly identical to those calculated by DM, with the exception of a few peak values. No spurious peaks are found in the transfer functions.

Additionally, forces, moments, and displacements in the CRB exterior walls from both methods are compared. These results are within 10 percent of each other. See Table 3.7.2-46 and Table 3.7.2-44.

To use the direct method for the SASSI SSI analysis of the full RXB model, the number of required interaction nodes (28,830) exceeds the SASSI2010 program limit of 20,000. Therefore, a half model was used to obtain the results by the DM.

The ISRS calculated by the RXB 7P model are also within 15 percent of those calculated by the DM model. Similar to the CRB, the transfer function shapes show excellent agreement between 7P and DM, except at a few peak values. At some limited locations in the model, large differences are observed at specific frequencies which do not affect the results.

No spurious peaks are introduced in most of the RXB transfer functions. Spurious spikes are seen in some transfer functions for both 7P and DM, but do not affect the RXB ISRS. Oftentimes, adding a frequency point or shifting the frequency close to a spike location eliminates the spurious spike.

Soil pressures, forces, moments, and displacements at key locations in the RXB are also compared between the two methods. These comparisons show that

the 7P and DM differ, at most, 20 percent from each other. The 20 percent difference in response is between the soil pressure in the north RXB wall at the EL 307.5" soil layer. However, the larger response comes from the 7P model, and is, thus, bounding. See Table 3.7.2-48, Table 3.7.2-45, and Table 3.7.2-47.

# 7P vs 9P Comparison

In the 9P model, additional planes are added above and below the center plane, halving the vertical distance used for interpolation of results. This benchmarking was performed to confirm that the results of the 7P and 9P model were similar and further confirms that the ESM approaches the DM in accuracy.

The comparison of 7P to 9P is accomplished by looking at the in-structure response spectra (ISRS) at three locations in the reactor building:

- The northeast corner on top of the basemat as shown in Figure 3.7.2-5.
- The NPM1 East bay wall at the lug support as shown in Figure 3.7.2-6.
- The center of the roof slab as shown in Figure 3.7.2-7.

In addition, bending moments at the center of the roof are compared to investigate if the moment responses calculated by the analysis using the 7P interaction nodes are close to those from the analysis using the 9P interaction nodes. These comparisons are performed with the CSDRS and all five CSDRS-compatible time histories for Soil Type 11 (soft soil) and Soil Type 7 (rock) using cracked concrete and 4 percent damping.

The 7P versus 9P ISRS comparisons for the Capitola time histories are provided in Figure 3.7.2-8, Figure 3.7.2-9, and Figure 3.7.2-10. The corresponding results for the other time histories are similar. As can be seen in these figures, there is very close correlation between the 7P and 9P models, with the larger variation occurring in the soft soil. This level of agreement justifies using a 7P versus a 9P model and, because the results are similar, demonstrates the acceptability of using the extended subtraction method as an alternative to the direct method.

While the results are similar, they are not exact. This difference is not a concern because of the methodology used in developing accelerations and forces in the structures. Each building is evaluated with several soil types and two stiffnesses. In addition, for the CSDRS, five separate time histories are evaluated, and the results are averaged.

COL Item 3.7-15: A COL applicant that references the NuScale Power Plant design certification will determine the appropriate site-specific number of interaction planes for soil structure interaction.

#### **Cracked Model Stiffness**

For SASSI2010 analyses, the plate stiffnesses are only controlled by two input parameters. The two parameters are the Young's modulus and the plate

thickness. It is not possible to reduce the bending stiffness by 50 percent for cracked concrete while preserving the axial stiffness at 100 percent for in-plane forces by modifying Young's modulus. A compromise approach is used by reducing the thickness by a factor equal to cubic root of 0.5, or 0.7937 to reduce the bending stiffness in half for the cracked concrete condition. In this approach, the uncracked axial stiffness is reduced by a factor of 0.7937.

# **Soil Separation**

A study was performed to investigate the effects of a gap forming between the RXB and the backfill soil during an earthquake.

The RXB was analyzed for Soil Type 7 with cracked concrete properties and 7 percent concrete material damping. Soil Type 7 was chosen because that is the case that produced the highest ISRS and forces and moments at the majority of the locations. Cracked concrete properties were chosen to be consistent with the use of 7 percent damping for the concrete material.

To model the soil separation, the Young's modulus of the backfill elements down to a depth of 25' (the top four layers of backfill elements) was decreased by a factor of 100.

Soil separation has minimal effect on the response of the structure. The following responses and transfer functions calculated without soil separation are compared with those calculated with soil separation:

# Forces at RXM Lug Supports

The comparison indicates that the lug support reactions with soil separation are lower than those without soil separation. See Table 3.7.2-39.

#### ISRS and TFs at Selected Locations

The comparison of the spectral acceleration transfer functions (TF) at selected locations indicates a few spurious spikes in the high frequency ranges that have no effect on the corresponding ISRS. See Figure 3.7.2-130 through Figure 3.7.2-135.

#### Soil Pressures on Walls

The comparisons show that there are increases in the average pressures. However, there is no increase in the maximum forces and moments in the walls.

#### Maximum Shears and Moments in Exterior Walls and Two Pilasters

The maximum out of plane (OOP) shear remains about the same. The maximum OOP moment decreases about 10 percent due to soil separation. See Table 3.7.2-40.

The total vertical base reaction remains essentially unchanged. See Table 3.7.2-42.

The ISRS, displacements, and demand forces and moments due to soil separation effects investigated above are within the design capacities. Therefore, the effect of backfill soil separation is covered by the available design margin and has no effect on the overall RXB design.

A soil-separation study was also done for the CRB. To account for the effect of partial soil separation in the analysis model for the study, the Young's moduli of the backfill soil solid elements down to 1/3 of the embedment, which is approximately equal to the total thickness of the top three layers of backfill soil (18.75'), were factored by 1/100. Conclusions similar to those of the RXB were reached, i.e., the spectral acceleration transfer functions and ISRS at critical locations between the two models virtually overlay one another, increases in forces due to soil separation are within design margins of the building components, leaving the building design unaltered. See Figure 3.7.2-136 through Figure 3.7.2-141 and Table 3.7.2-41 and Table 3.7.2-43. The soil separation study did result in minor modifications to two vertical ISRS in the CRB - at elevation 63'-3" and 76'-6". The final floor response spectra is shown in Figure 3.7.2-118a and Figure 3.7.2-119a, respectively.

Based on the results of these studies, it is concluded that modeling the structures as fully embedded is an acceptable design approach. This will be confirmed through a site-specific evaluation as described in COL Item 3.7-11.

COL Item 3.7-11: A COL applicant that references the NuScale Power Plant design certification will perform a site-specific analysis that assesses the effects of soil separation. The COL applicant will confirm that the in-structure response spectra in the soil separation cases are bounded by the in-structure response spectra shown in FSAR Figure 3.7.2-107 through Figure 3.7.2-122.

## **Effect of Non-Vertically Propagating Seismic Waves**

A sensitivity study was performed to determine the effect of non-vertically propagating shear waves. This study, first, establishes a procedure for evaluating a structure that experiences non-vertically propagating seismic waves, and second, analyzes the RXB DCA model with non-vertically propagating seismic waves.

The intent of the SSI analysis study with non-vertically propagating (that is, inclined) waves is to compare the SSI results with those of the design-basis case, which uses conventional, vertically propagating shear (SV and SH) and P-waves for the seismic input. A body wave (either SV- or P-wave) propagating at an inclined angle will include both horizontal and vertical motions in the free field, whereas an inclined SH-wave generates only horizontal motion in the free field.

For the sensitivity study, Soil Type 7 was selected for the free-field soil properties because it is a nearly uniform soil profile with a high shear wave velocity, Vs, of 5,000 ft/sec. Using a uniform and stiff soil for this study will give conservative results because, for non-uniform and soft soil profiles, the angle of

incidence decreases as the wave propagates toward the surface, due to Snell's law and, thus, the effect of non-vertically propagating waves will be much less.

Analyses were performed and results compared for the following angles of incidence,  $\alpha$ , where  $\alpha$  is measured from the vertical axis (see Figure 3.7.2-149):

 $\alpha$  = 0° or apparent wave velocity =  $\infty$ , that is, the vertically propagating wave case

 $\alpha = 17^{\circ}$  or apparent wave velocity  $\approx 5,000 / \sin(17^{\circ}) = 17,100$  ft/sec (5.2 km/sec)

 $\alpha$  = 30° or apparent wave velocity  $\approx$  5,000 / sin(30°) = 10,000 ft/sec (3.0 km/sec).

For the non-vertically propagating wave cases, the control point must be at the surface. If the control point were at the foundation level, there would be a shift in the soil column frequency of inclined waves. But because the in-layer motion at the foundation level is determined for  $\alpha=0^\circ$ , there would be a mismatch in the soil column frequency between the in-layer motion and the non-vertically propagating wave. This would result in incorrect responses being generated. Therefore, the control point is taken at the surface.

# Free Field Acceleration Response Spectra

When combining the horizontal responses due to inclined SV-waves with the horizontal responses due to inclined P-waves, it is implied that the corresponding coupling responses in the free-field at the foundation level are also combined. This combination of the free-field responses at the foundation level due to inclined waves results in response spectra at the foundation level which are much higher than the design-basis, foundation CSDRS and, thus, violate the design basis of the plant.

In the comparison of acceleration response spectra (ARS) in the free field, the  $\alpha = 0^{\circ}$  (vertically propagating) curve represents the CSDRS case. The results from this case show the effect of the coupling terms due to non-vertically propagating waves. These results show that, even though the horizontal input motion at the surface is the same for all angles of incidence of inclined SV waves (Figure 3.7.2-150) the motion at the foundation depth exceeds those of the CSDRS (or FIRS) even without including the coupling terms from inclined waves. For example, see Figure 3.7.2-151. Figure 3.7.2-150 shows the X-response ARS at the surface due to SV-waves for  $\alpha = 0^{\circ}$ , 17°, and 30°. Note that these curves are identical because the control point is at the ground surface. The CSDRS at the rock outcrop (dashed line) is shown for reference only. All three ARS at the surface due to SV-waves for  $\alpha = 0^{\circ}$ , 17°, and 30° are identical. Once coupling terms from inclined waves are considered, the motion at the foundation depth far exceeds those of the CSDRS responses. For example, see Figure 3.7.2-152. Therefore, the coupling terms from inclined waves should not be included in the response calculation in order to properly maintain the as-defined design-basis seismic inputs, the CSDRS and CSDRS-HF. Note that in the legends of the figures, "X/SV" means the X-response due to SV-wave input and "X/P" means the X-response due to P-wave input. Also, when a response is referred to as "CSDRS," it means the "response due to the CSDRS-compatible input time history."

#### ISRS Results

The SSI effects due to the RXB being subjected to non-vertically propagating waves are also studied. Comparisons of ISRS results for all angles of incidence with the broadened design ISRS show that there are exceedances at a few locations at narrow frequency bandwidths. These exceedances are due to the fact that the free-field within (in-layer) motions for inclined waves at depth exceed the corresponding motions from the CSDRS with vertically propagating waves, resulting in an effective SSI input motion that is higher than the CSDRS input motion. For a sample of results, see Figure 3.7.2-153 through Figure 3.7.2-155. In addition, if the complete set of time histories were used, the ISRS would smooth out and flatten.

Finally, it is concluded that combining the coupling responses due to non-vertically propagating waves can lead to overly conservative results. The combination of the free-field responses at the foundation level due to inclined waves results in a design response spectrum which is much higher than the CSDRS.

COL Item 3.7-13: A COL applicant that references the NuScale Power Plant design certification will perform a site-specific analysis that assesses the effects of non-vertically propagating seismic waves on the free-field ground motions and seismic responses of Seismic Category I structures, systems, and components.

## 3.7.2.1.2 Effect of an Empty Dry Dock

A study was performed to determine the effect of an empty dry dock on the response of the RXB. Three separate SASSI models were created for this purpose. The first was the RXB modeled with nominal NPM stiffnesses. The second was an RXB model with NPM stiffnesses multiplied by 1.3, resulting in an approximate +15 percent NPM frequency change in dominant modes. The third model included NPM stiffnesses divided by 1.3, resulting in an approximate -15 percent NPM frequency change in dominant modes. The following parameters were also used in the study:

- One set of CSDRS-compatible seismic inputs: Capitola.
- One soil type: Soil Type 7.
- One concrete condition: cracked.
- Two structural concrete damping ratios: 4 percent for ISRS generation and lug support reaction calculation and 7 percent structural damping for force and moment calculation.

The maximum forces and moments in the four RXB exterior walls and in the four walls around the dry dock, the lug support reactions at the 12 NPMs, and forces and

moments in one pilaster in the north wall at column line RX-4, were calculated for the empty dry dock condition and compared with the corresponding design capacities based on the full dry dock condition. See Table 3.7.2-59 and Table 3.7.2-60 for a sample of results.

Comparisons between floor ISRS and ISRS at the Reactor Building crane wheels were also made. These plots can be found in Figure 3.7.2-172 through Figure 3.7.2-175.

Based on the comparison of the seismic demands and design capacities, the empty dry dock condition is bounded by the RXB design, which is based on the full dry dock condition. In addition, all ISRS from the empty dry dock condition are either bounded by or are within 10 percent of the full dry dock condition.

COL Item 3.7-14:

A COL applicant that references the NuScale Power Plant design certification will demonstrate that the site-specific seismic demand is bounded by the FSAR capacity for an empty dry dock condition.

### 3.7.2.1.3 Finite Element Models

Meshing of the area elements was done automatically using SAP2000 by defining a maximum element size in each direction. The aspect ratios were also kept as low as possible (closer to square shape), and internal sharp angles were avoided.

Meshing for both the RXB and CRB models were refined further, and it is shown that further refinement does not affect the structural response. The mesh refinement was done by dividing each side of the area elements into two, breaking each element to four elements. The structural responses compared include both local and global responses of the structure. The comparison shows that effects of further mesh refinement on the structural response is negligible. In addition to the modal analysis, to compare the natural frequencies and mass participation ratios, static analysis cases due to 1g loading in the x, y or z directions were used to make different comparisons. Soil elements' height were determined based on 1/5th of the wave length.

Minor changes in the natural frequencies and their mass participation ratios indicate that other dynamic characteristics of the building models would not change by mesh refinement. To show that mesh refinement does not have a major impact on ISRS, comparisons were made of the ISRS based on the CSDRS-compatible Capitola ground motion and the CSDRS-HF-compatible Lucerne ground motion at a few key locations. The comparisons were between the same RXB and CRB stand-alone SAP2000 model and refined mesh building models used for the other compared structural responses. Results show that mesh refinement has an insignificant effect on the ISRS. The triple building model has the same mesh as the stand-alone model. Also, as it was mentioned, the SSSI effects are not expected to change with mesh refinement, therefore, no mesh sensitivity analysis was done for the triple building model.

## 3.7.2.1.3.1 Reactor Building

The RXB houses safety-related equipment and facilities pertinent to the operation and support of the NPMs and provides anchorages and support for various SSC. The RXB is a reinforced concrete structure that is deeply embedded in soil, and supported on a 10 foot thick foundation basemat. The RXB has an outside length (excluding pilasters) of 346.0 feet in the East-West direction, a width (excluding pilasters) of 150.5 feet in the North-South direction. The dimensions between the centerlines of the outer walls are 341'0" by 145' 6". There are five pilasters along both the north and south walls and three pilasters on the east and west walls. These pilasters are 5.0 feet wide and extend 5.0 feet out from the wall. In addition, there are four corner pilasters. These pilasters are 12.5 feet wide and extend 2.5 feet out from the wall. The overall height is approximately 167 feet from the top of roof to the bottom of basemat. The embedment of the RXB is 86 feet. The baseline plant top of concrete (TOC) for the RXB is at Elevation (EL.) 100'-0". Although the actual site surface will be approximately 6 inches below the baseline elevation, and sloped away from the safety-related structures, "grade" is also considered to be at EL. 100'-0".

Section 1.2.2.1 contains additional discussion of the RXB and Figure 1.2-10 through Figure 1.2-20 provide elevation and section views of the building.

The predominant feature of the RXB is the ultimate heat sink (UHS) pool. This pool includes the spent fuel pool, refueling area pool, and the reactor pool. The dry dock is also assumed to be full of water and part of the UHS for the seismic analysis. This large pool occupies the center of the building and runs 80 percent of the length of the building. Although the pool and bay walls extend to the bioshields at EL. 126', the nominal top of the pool is at EL. 100'-0." The normal reactor pool water depth is maintained at 69 feet, which results in a water surface at EL. 94'-0". The reactor pool has bays to house up to twelve NPMs.

Both the NPMs and the water in the pool contribute a large amount of weight to the global mass of the RXB and thus impact the dynamic characteristics of the building.

The typical thickness for the main structural interior and exterior concrete walls is 5 feet, the primary floor slabs are 3 feet thick with reinforced concrete T-beams (2 feet by 2 feet). The basemat foundation thickness is 10 feet. The foundation TOC elevation is 24'-0". The foundation for the reactor pool area and spent fuel pool area is raised and has an elevation of 25'-0" at the top of the liner. The refueling area (southwestern pool region only) foundation is lowered and has an elevation of 19'-0" at the top of the liner. Several buttress elements and stiffener walls are located around the exterior or interior perimeter of the structure. The RXB roof has slopes on two sides with a flat segment in the middle; the roof slab thickness is 4 feet and the top of roof elevation is 181'-0".

A 3D view of the RXB is shown in Figure 3.7.2-11. Interior section views are shown in Figure 3.7.2-12, Figure 3.7.2-13, and Figure 3.7.2-14. These figures are

for illustration purposes and do not reflect the actual soil strata. The embedded portion of the RXB is modeled with 25 foot thick backfill soil from grade to the bottom of the foundation.

# **Reactor Building SASSI2010 Model**

Figure 3.7.2-15 shows the 3D view of the embedded SASSI2010 RXB finite element model. This figure includes the RXB itself, the backfill soil, and the excavated soil finite element mesh. The finite elements of the embedded portion of the RXB are masked by those of the excavated soil, which is shown in blue. Some of the beam elements can be seen in red. Figure 3.7.2-16 shows the SASSI2010 model from the same view point without hidden lines. The figure clearly shows the RXB is embedded in soil.

Figure 3.7.2-17 shows the backfill soil modeled by solid elements. For the SASSI2010 analysis, the properties of the backfill soil are assumed those of Soil Type 11. Figure 3.7.2-18 show the SASSI2010 finite element mesh of the RXB model, where the ground surface is indicated by a gray horizontal plane. In this figure, the rigid soil springs connecting the RXB and backfill soil model with the excavated soil model are seen as dots.

Figure 3.7.2-19 shows the excavated soil model without the hidden lines. The length, width, and height dimensions of the excavated soil are identical to those of the backfill soil shown in Figure 3.7.2-17. Figure 3.7.2-20 shows the north half of the SASSI2010 model without the hidden lines. The floors, beam elements modeling the pilasters in walls, and the six NPMs in the north side of the RXB and a portion of the reactor building crane can be seen modeled by beam elements in red. Figure 3.7.2-21 shows all beam elements in the SASSI2010 model.

The free field soil is defined such that the RXB with backfill soil can fit exactly to the 'pit' in the excavated soil halfspace. The connectivity between the RXB with backfill soil and the excavated free field soil is achieved by connecting the skin nodes of the excavated soil model with the nodes on the embedded skin of the RXB with backfill model using rigid soil springs. The skin nodes of the excavated soil model and the skin nodes of the RXB with backfill model have identical coordinates, and they are in one-to-one correspondence matching pairs.

The rigid springs have a zero length and have a stiffness value large enough to simulate rigid connection. The large stiffness used is arbitrarily chosen to be ten billion lbs per inch, or 10<sup>10</sup> lbs/inch, in the three global directions. A sensitivity analysis was performed by increasing the stiffness of the RXB rigid springs by an order of magnitude, to 10<sup>11</sup> lb/in, and comparing results obtained from the base case, rigid spring stiffness of 10<sup>10</sup> lb/in. For this study, the RXB model with cracked concrete properties, 7 percent concrete damping, Soil Type 7, and the Capitola input motion, was used. Comparisons of transfer functions and ISRS show that increasing the rigid spring stiffness has no discernible effect on the transfer functions and ISRS.

The model dimensions, the quantities of elements and masses, and structural damping ratios used for the SASSI2010 model are summarized in Table 3.7.2-1.

The NPMs and the Reactor Building crane (RBC) are included in the RXB model as beam models. These two subsystems are discussed in the following sections.

The reactor building basemat is designed using a combination of different models. First, the structural responses from the building models are extracted. Then they are applied to separate basemat models to determine structural design forces and moments for the basemat. Table 3.7.2-49 and Table 3.7.2-50 show which models are used, what results are extracted, and how these results are used to design the basemat.

#### 3.7.2.1.3.2 NuScale Power Modules

Up to twelve NPMs will be inside the RXB. The modules are partially immersed in the reactor pool. The NPMs are not permanently bolted or welded to the pool floor or walls. Instead they are geometrically supported and constrained at four locations. The geometrical constraints are designed to keep each NPM in its location before, during, and after a seismic event.

The base support is a steel skirt that rests outside a permanently installed ring plate attached at the bottom of the reactor pool. The other three geometrical supports are steel lug restraints located on the walls of each bay at approximately the midpoint of the module (~EL. 75′). The NPM has lugs that align with a slot in the restraint. Each restraint prevents movement in the direction parallel to the wall and allows the NPM to move freely in the upward direction. In other words, the lug and restraint provides only horizontal restraint in the in-plane direction for the supporting wall.

The lug and lug restraint combination is shown in Figure 3.7.2-22. Figure 3.7.2-23 shows the top view of a restrained NPM. The placement of the twelve NPMs in the model of the RXB is shown in Figure 3.7.2-24. An enlarged view of the NPM pool region is shown in Figure 3.7.2-25.

Figure 3.7.2-26 shows a view of the RXB model with twelve NPMs within the support walls. The lug restraints can be seen near the mid-height of the NPMs in the figure. Figure 3.7.2-27 shows a single NPM. In this figure, the lug restraint can be seen at the upper part of the NPM and the support skirt can be seen at the base of the NPM.

# NuScale Power Module Model Included in the Reactor Building SASSI2010 Model

Within the SASSI2010 building model, the NPM is represented by a beam model as shown in Figure 3.7.2-28. The beam model was developed to have similar dynamic characteristics as a 3-D ANSYS model of a single dry NPM. To validate the NPM beam model, a modal analysis was performed in order to tune the simplified beam model to match the simplified 3-D model response. The frequencies for the most significant modes are shown in Table 6-21 of

TR-0916-51502 and demonstrate dynamic compatibility with the 3-D model by matching mode frequencies with significant mass participation, thereby assuring adequate force transfer through the building dynamic response. The simplified beam model captures the overall dynamic behavior of the 3-D NPM model required for the building response analyses used in the SASSI2010 and SAP2000 models. The skirt support at the base of the containment restricts horizontal and vertical movements. Eight rigid beams arranged like the legs of a spider are modeled to connect the NPM model containment skirt to nodes in the building model located at the interface of the skirt and pool floor. Table 3.7.2-36 and Table 3.7.2-37 outline the NPM beam model to RXB model interface boundary conditions for the SASSI2010 and ANSYS models, respectively.

# Detailed NuScale Power Module Model Included in the Reactor Building SASSI2010 Model

The RXB-NPM interface and NPM specific analyses replace the simplified beam model with a more detailed NPM beam model. This more detailed beam model, described in Section 6.4 of TR-0916-51502, is generated by adding mass and spring elements to create a fluid structure interaction response that is equivalent to a 3D model of an NPM and pool bay, and is shown in Figure 6-14 of the technical report. The development and validation of the detailed beam model are described in Section 6.5 of TR-0916-51502. The reactor building model that uses the detailed NPM beam models is structurally similar to the SASSI2010 model previously described. Because fluid mass has been added to the detailed NPM beam model, a more enhanced methodology for modeling hydrodynamic mass in the pool area was used. This is described in Section 3.1.3 of TR-0916-51502. The NPM beam models are replaced with the detailed beam models for selected SSI analyses to evaluate the RXB-NPM interactions. The RXB analysis produces local acceleration time histories that are used as input to the NPM seismic analysis as described in Section 8.0 of TR-0916-51502. The seismic analysis of the NPM is discussed in Appendix 3A.

At the interface between the NPM and the RXB, the design loads for the skirt supports are defined as the envelope of the SASSI2010 building model and the 3-D model discussed in Appendix 3A and Appendix 3B.2.7. The lug supports are designed for a generic capacity in a detailed submodel and checked against the reaction forces from the SASSI2010 building model and 3-D model. This is described in more detail in Appendix 3B.2.7.

The RXB SAP2000 model, SASSI2010 model, and detailed NPM model described in TR-0916-51502 are the design basis analysis models to be used for COL Item validation.

## 3.7.2.1.3.3 Reactor Building Crane

The RBC is a bridge crane used to transport modules between the operating locations and the refueling and disassembly area and the drydock. The RBC travels on rails on the top of the reactor pool walls at EL. 145'-6". When not in use, the RBC is parked over the refueling pool with the trolley at the north end

near the dry dock gate. In this position, the RBC is not above either the SFP or the NPMs. The RBC is described in Section 9.1.5.

# Reactor Building Crane Model Included in the Reactor Building SASSI2010 Model

Figure 3.7.2-29 shows the beam and spring model used to represent the RBC. For the analysis of the RXB, the RBC is unloaded (i.e., no suspended NPM) and located in the middle of the reactor pool area as shown in Figure 3.7.2-24. The RXB analysis produces in-structure response spectra (ISRS) that are used as input to the RBC seismic analysis.

### 3.7.2.1.3.4 Ultimate Heat Sink Pool

The UHS pool contributes a large amount of weight to the global mass of the RXB. This fluid impacts the dynamic characteristics of the building. Figure 3.7.2-30 provides a visualization of the hydrodynamic structural system (building and UHS pools). Figure 3.7.2-31 provides a similar view, but eliminates the structure and shows only the pool water. In the RXB SAP2000 model, the hydrodynamic load generated due to the pool water mass during a seismic event is addressed by assigning lumped masses on the pool walls and foundation nodes that are in contact with the pool water.

These lumped nodal masses are multiplied by the nodal accelerations during the dynamic analyses and introduce equivalent dynamic pressures on the walls and foundation as impulsive pressures. All of the pool water mass is assigned as lumped nodal masses in the two horizontal and vertical directions separately. Neither the SAP2000 nor SASSI2010 computer programs have an explicit fluid element formulation to accurately calculate the hydrodynamic effects due to all three directional components of earthquake input motions. To develop a correction factor, a fluid structure interaction (FSI) model was created in ANSYS and used to develop fluid loads. These results were compared to the SASSI2010 dynamic results and a correction factor established.

### **ANSYS Model**

In the ANSYS model, the foundation was modeled with two layers of 3D SOLID185 finite elements. In the pool region, the foundation is raised by 1 foot to support the twelve NPMs. Therefore, a layer of 1 foot solid elements was added in the pool water region. This foundation modeling using the solid elements provides an accurate geometrical height for the pool water level and the support locations of the NPMs on the bay and pool walls. As in the SAP2000 model, the NPMs are vertically unrestrained and rest on the pool foundation. All the building exterior and interior walls are modeled using SHELL181 elements. The wall horizontal distance is defined at the neutral surface from the global coordinate system origin. All slabs are modeled using SHELL181 elements. The slab height or vertical distance is defined at the neutral surface from the global coordinate system origin. The exterior and interior roofs are modeled using the SHELL181 elements. The roof height or vertical distance is defined at the neutral surface from the global coordinate system origin.

In order to capture the interaction of pool water with the NPMs and analyze hydrodynamic effects, the Containment Vessel (CNV) of each NPM is modeled with SHELL181 elements as a cylindrical shell with the proper outer diameter. The Reactor Pressure Vessel inside the CNV is modeled with BEAM188 elements. This model matches the dynamic characteristics (e.g., natural frequency) of the NPM beam model. The bottom nodes of the CNV and the pool foundation surfaces are modeled by CONTA173 and TARGE170 elements to allow potential uplifting of the NPM. The CONTA173 element is used to represent contact and sliding between 3-D "target" surfaces (TARGE170) and a deformable surface, defined by this element. This element has three degrees of freedom at each node: translations in the nodal x, y, and z directions. This element is located on the surfaces of 3-D solid or shell elements without mid-side nodes (SHELL181) and has the same geometric characteristics as the shell element face with which it is connected.

The concrete T-beams underneath the slabs and concrete pilasters are modeled with BEAM188 elements. All water mass regions are modeled by FLUID80 fluid finite elements. This fluid element is defined by eight nodes having three degrees of freedom at each node: translation in the nodal x, y, and z directions. This element is used to model fluids contained within vessels having no net flow rate and is well suited for calculating hydrostatic pressures and fluid/solid interactions. The bottom nodes of the foundation are represented by COMBIN14 spring elements. The bottom of the foundation basemat of the RXB ANSYS model has three COMBIN14 spring elements attached to each node with stiffness values of 1x10<sup>8</sup> lbf/in, 1x10<sup>8</sup> lbf/in, and 1x10<sup>8</sup> lbf/in in the E-W, N-S, and vertical directions, respectively.

The ANSYS model used for this evaluation is shown in Figure 3.7.2-32, Figure 3.7.2-33, and Figure 3.7.2-34. For the ANSYS model, the "z" ordinate is at the top of the pool water, in order to define the location of the free water surface in the fluid-structure interaction analysis, instead of at the base of the foundation, which is used for the building analyses in SAP2000 and SASSI2010.

The locations of the RXB pool walls are modeled at the neutral planes and the pool walls are 5 foot thick. Therefore, in modeling the fluid as three dimensional fluid elements, the fluid mass will be greater than it actually is due to 2.5 foot less wall thickness because of the locations of the neutral planes. Thus, the fluid mass density is reduced to compensate for the extra water mass created inside the pool area in the ANSYS FSI analysis model. The extra fluid volume is estimated to be  $\sim 24.4$  percent. This is the reduction factor applied to the water mass density in the dynamic analysis. In the SAP2000 model, the location of the RXB pool walls at the neutral planes has no effect when the pool water is modeled as lumped masses, since the lumped masses are calculated separately.

Fixed-base boundary conditions are used by connecting the nodes at the bottom of the base to boundary condition nodes with three orthogonal 0.1 inch-long COMBIN14 spring elements in the X, Y, Z directions. These boundary condition nodes are fixed in translation in the direction of the

attached spring element and are free in the other degrees of freedom. For example, boundary condition nodes i, j, k attached to spring elements along X, Y, Z directions, respectively, are fixed in translation, X,Y, Z, respectively. The input to the ANSYS analysis is the CSDRS-compatible Capitola time history.

#### **ANSYS Results**

The ANSYS model was used to run X, Y, and Z input motion time histories separately and evaluate the results. The results are split based on sections created from the eastern wall (X1 to X3) and northern wall (Y1 to Y5), as shown in Figure 3.7.2-35. The maximum accelerations using the ANSYS model due to the three separate input time history motions and the combined resultant obtained using square root-of-the-sum of the squares (SRSS) methodology accelerations are plotted in Figure 3.7.2-36 and Figure 3.7.2-37.

The average ANSYS hydrodynamic pressure is calculated in the following fashion:

- Calculate the SRSS hydrodynamic pressure due to three separate input motions
- Find the height difference between elevations (element height)
- Create trapezoidal pressure areas from this height by the difference in pressures, i.e.:

$$A = h \times \frac{P_{above} + P_{below}}{2}$$
 Eq. 3.7-8

• The average pressure is the sum of pressures over heights, i.e.:

$$P_{hd} = \frac{\Sigma A}{\Sigma h}$$
 Eq. 3.7-9

The SRSS hydrodynamic pressure results for all wall sections are plotted in Figure 3.7.2-38 and Figure 3.7.2-39, and the average values are provided in Table 3.7.2-2.

#### **SASSI2010 Results**

The RXB SASSI2010 model is an embedded model. For this study it was run with soil types 7, 8 and 11 and separate X, Y, and Z input motion time histories in order to obtain the pool wall segment (X1 to X3 and Y1 to Y5) and foundation acceleration results. The CSDRS-compatible Capitola time history was applied to the model with uncracked concrete conditions.

For each segment, the absolute acceleration results from the three input motion time histories were combined using SRSS and are shown in Figure 3.7.2-40 through Figure 3.7.2-45 for the X and Y segments with soil types 7, 8 and 11.

Equivalent wall pressures are determined from the nodal wall accelerations, the tributary area surrounding the nodes, and the lumped water mass values assigned to the nodes. The average SASSI2010 equivalent hydrostatic pressure was calculated in the following fashion:

- Using SAP2000, extract a list of nodes where water weight is applied to the model, ww.
- Using SASSI2010, extract a list of accelerations at these nodes, a<sub>SASSI</sub>.
- Obtain the force at a single node by:

$$f_n = ma = \frac{w_W}{g} \times a_{SASSI}$$
 Eq. 3.7-10

• Divide each nodal force by tributary area to obtain nodal pressures:

$$P_{n} = \frac{f_{n}}{TribArea}$$
 Eq. 3.7-11

- Calculate the average static pressure of slices made of elevation and wall section by finding the average of the nodal pressures contained in that slice
- Find the height difference between elevations
- Create trapezoidal areas from this height by the difference in pressures, i.e.,

$$A = h \times \frac{{}^{2}\text{Pabove} + {}^{2}\text{below}}{2}$$
 Eq. 3.7-12

• The average pressure is the sum of pressures over heights, i.e.

$$P_{\text{static}} = \frac{\Sigma A}{\Sigma h}$$
 Eq. 3.7-13

Average vertical pressure (Z) on the pool floor was obtained from the nodal pressure values on all pool bottom nodes for the X, Y, and Z direction CSDRS Capitola input motions. The average pressure values on the pool floor in the Z direction due to X, Y, and Z input motions were combined via SRSS to obtain the total vertical (Z) pressure reported in Table 3.7.2-2. Average equivalent static pressure from SASSI2010 for each soil type and each wall segment are presented in Table 3.7.2-3. The table also includes a weighted wall average based on the lengths of the walls.

## **Equivalent Static Pressure Estimation**

The SASSI2010 (corrected) equivalent static pressure due to hydrodynamic effects is calculated as follows:

$$P_{addl} = P_{hd} \times \frac{{}^{a}SASSI}{{}^{a}ANSYS}$$
 Eq. 3.7-14

### Where:

- P<sub>addl</sub> = equivalent static pressure,
- P<sub>hd</sub> = hydrodynamic pressure from ANSYS,
- $a_{SASSI}$  = acceleration from SASSI2010 using either soil type 7, 8, or 11; and
- a<sub>ANSYS</sub> = acceleration from ANSYS.

The FSI analysis uses synthetic ground motions based on Capitola seed time histories. Based on the overall building base shear comparison in Table 3.8.5-3, these runs using soil types 7, 8, and 11, and the CSDRS spectrum are more controlling than the soil type 9, CSDRS-HF spectrum case. Therefore, the factors used to convert ANSYS FSI hydrodynamic pressures to equivalent static pressures for soil types 7, 8, and 11 adequately envelope soil type 9.

Once the factors between SASSI2010 and ANSYS acceleration are obtained, the additional equivalent hydrostatic pressure for SASSI2010 can be computed. Table 3.7.2-4 through Table 3.7.2-6 present the average values for each segment and soil type, and includes a weighted value for each wall.

Table 3.7.2-7 compares this equivalent static pressure with the original static pressures obtained from SASSI2010.

### **Development of Correction Factor**

The maximum static wall pressure differences between the ANSYS and SASSI2010 models are summarized in Table 3.7.2-8. The SASSI2010 analysis with lumped water masses does not represent fluid-structure-interaction behavior, and, therefore, underestimates the hydrodynamic pressures on the RXB walls. In order to account for this, an ANSYS FSI analysis, in which the water elements were explicitly modeled, was performed. Based on these results, it was determined that an additional 4.2 psi needed to be included in the SAP2000 RXB model. This added pressure accounts for the missing 3D effects of fluid-impulsive pressure on the pool walls and foundation.

The pressure at the bottom of the pool due to gravity loading of the water is approximately 30 psi (62.4 lb/ft $^3$  \* 69 ft depth \*1/144 ft $^2$ /in $^2$ ). Consequently, the average pressure on the wall is half this amount, or 15 psi. The pressure of 4.20 psi is 28 percent of the average pressure (4.20 psi/15 psi = 0.28). Therefore, a 1.28g vertical static loading was added to the SAP2000 model to ensure this

additional pressure is accounted for in the design. See Figure 3.7.2-129. Increasing the downward acceleration by a factor of 1.28 corrects for the underestimated fluid pressure, due to mass lumping, in the SSI model. Analyses have been performed that confirm that the 1.28 x gravity load bounds a 4.2 psi pressure profile.

The total hydrodynamic load consists of the lumped-mass hydrodynamic load from the SASSI2010 analysis (which underestimates the hydrodynamic load) and the fluid-structure-interaction correction load from the ANSYS analysis. The effects of the lumped-mass-based hydrodynamic pressures on the pool walls and floor are included in the determination of forces on the walls and floor from the SSI analysis. These hydrodynamic effects from SASSI2010 are included in the  $E_{\rm ss}$  term of the governing load combination (see FSAR Section 3.8.4.3.16 for the definition of  $E_{\rm ss}$ ). The "missing" hydrodynamic load is added to the hydrostatic load to determine the total fluid pressure on the RXB walls and foundation.

COL Item 3.7-12: A COL applicant that references the NuScale Power Plant design certification will perform an analysis that uses site-specific soil and time histories to confirm the adequacy of the fluid-structure interaction correction factor.

# 3.7.2.1.3.5 Control Building

A general discussion of the CRB and the major features and components is provided in Section 1.2.2.2. Architectural drawings, including plan and section views are provided in Figure 1.2-21 through Figure 1.2-27.

The CRB is located approximately 34 feet to the east of the RXB and its primary function is to house the Main Control Room and the Technical Support Center.

The CRB is a reinforced concrete building with an upper steel structure supporting the roof. The reinforced concrete portion of the building is Seismic Category I. The SSC on the top floor have no safety-related or risk-significant functions. The walls and roof above this floor are provided for weather protection/climate control. This part of the structure is not required to be Seismic Category I. However, to ensure it will not fail and affect the Seismic Category I portion of the building, or the Seismic Category I RXB, the steel portion of the building is classified and analyzed as a Seismic Category II structure.

The CRB is 81' 0" wide (excluding pilasters) in the East-West direction and 119' 8" wide (excluding pilasters) in the North-South direction. The dimensions between the centerlines of the outer walls are 78' 0" by 116' 8". There are two pilasters along both the east and west walls and a single pilaster on the north and south walls. These pilasters are 3.0 feet wide and extend 3.0 feet out from the wall. In addition, there are four corner pilasters. These pilasters are 7.5 feet wide and extend 1.5 feet out from the wall. The Control Building is centered on a below grade basemat with dimensions of 91' 0" by 129' 8". The building has a total height of 96'-2" from the top of the steel roof to the bottom of the

basemat foundation. The embedded portion of the CRB is approximately 55 ft below grade, and the CRB extends approximately 41'-2" above grade. The steel super structure exists from EL. 120'-0" to EL. 141'-2" and consists of a vertical and horizontal steel bracing system.

The typical thicknesses for the exterior and interior structural concrete walls are 3 feet and 2 feet, respectively. The primary floor slabs are 3 ft thick and other minor slabs are 2 feet thick. Embedded immediately below the 3 foot thick slabs are reinforced concrete T-beams which are 3 feet wide and 2 feet deep. The basemat foundation thickness is 5 feet and the foundation TOC is at EL. 50' 0". The tunnel connecting the CRB and RXB is located from EL. 100'-0" down to the bottom of foundation near Grid Line D. The tunnel has two levels; the upper tunnel floor is for access to the RXB at approximately EL. 76'-6" and the lower tunnel floor at EL. 50'-0" is a utilities tunnel for the RXB. The tunnel exterior walls and top slab are 3 ft thick.

The CRB 3D model is shown in Figure 3.7.2-46 without soil. Figure 3.7.2-47, Figure 3.7.2-48 and Figure 3.7.2-49 show various section cuts of the CRB 3D model with soil. These figures are for illustration purposes and do not reflect the actual soil strata. The embedded portion of the CRB is surrounded by backfill soil from grade to the bottom level of the foundation.

# **Control Building SASSI2010 Model**

The SAP2000 CRB model is shown in Figure 3.7.2-50 without the backfill soil. The beam elements in the CRB model are shown in Figure 3.7.2-51. The CRB model with the backfill soil, which is modeled using solid elements, is shown in Figure 3.7.2-52 with 25 foot wide backfill soil.

Figure 3.7.2-53 shows the 3D view of the SASSI2010 CRB finite element model converted from the SAP2000 model. This figure includes the CRB and the backfill soil.

Figure 3.7.2-54 shows the excavated soil model for the CRB model without the hidden lines. The length, width, and height dimensions of the excavated soil are identical to the boundaries of the backfill soil model shown in Figure 3.7.2-55. In the SASSI2010 analysis, the properties of the backfill soil are assumed those of Soil Type 11.

Figure 3.7.2-56 shows the SASSI2010 solid elements modeling the concrete basemat. Figure 3.7.2-57 show the shell and beam elements of the CRB SASSI2010 model. Figure 3.7.2-58 shows all beam elements in the SASSI2010 model, which are identical to those shown in Figure 3.7.2-51.

The CRB and backfill soil is modeled surrounded by the free-field soil. The connectivity between the CRB with backfill and the free-field is achieved by connecting the skin nodes of the embedded model of the CRB and backfill soil with the skin nodes of the free-field soil model using soil springs. The skin nodes of the excavated soil model, and the skin nodes of the CRB and backfill model have identical coordinates and are in matching pairs.

The springs have a zero length and have a large stiffness value to simulate rigid connection. The large stiffness used is arbitrarily chosen as 10<sup>10</sup> lbs/inch, in the three global directions. This high stiffness value does not cause numerical instability and keeps the displacements of two connected nodes to be the same.

The model dimensions, the quantities of elements and masses, and structural damping ratios used for the SASSI2010 model are summarized in Table 3.7.2-9.

The control building basemat is designed using a combination of different models. First, the structural responses from the building models are extracted. Then they are applied to a separate basemat model to determine structural design forces and moments for the basemat. Table 3.7.2-51 and Table 3.7.2-52 show which models were used, what results are extracted, and how these results are used to design the basemat.

## 3.7.2.1.3.6 Comparison of SAP2000 and SASSI2010 Models

The SASSI2010 model data were obtained by converting the data of the SAP2000 models. To verify that the SAP2000 model has been converted accurately into the SASSI2010 model, the total weights of the two models and the fixed base modal frequencies of the two models are compared.

The model frequencies and mode shapes of the fixed base SAP2000 model were calculated by a modal frequency analysis. The SASSI2010 analysis does not perform modal analysis. However, the major vibration frequencies of a certain location can be obtained to be those of the major amplitudes in the acceleration response transfer functions of the location.

In the calculation of the structural frequencies for comparison, the structure is assumed to be surface founded in both the SAP2000 and SASSI2010 analyses. In the SASSI2010 analysis, the backfill soil was also assumed to be seated on top of a rigid halfspace with the structure. For both the SAP2000 and SASSI2010 fixed-base analyses, the backfill soil is included as solid elements surrounding the buildings. The backfill soil is free around the perimeter and fixed at the bottom. The backfill soil is measured 25 ft outward from the exterior walls and extends from the bottom of the RWB, the RXB, and the CRB basemats to the ground surface. Properties of the Soil Type 11 are used to model the backfill soil. Soil Type 11 is chosen because it has an average shear wave velocity of 768 ft/sec for the upper 85 ft of soil, which is close to a typical backfill soil shear velocity of 800 ft/sec. Each layer of soil depth is assigned a different set of material properties, which include Young's modulus, Poisson's ratio, and damping coefficient.

Table 3.7.2-10 provides modal frequency comparisons at several locations in the RXB. Table 3.7.2-11 provides similar information for the CRB. These comparisons are made for critical locations where maximum displacements are expected to occur. These critical locations are listed in Table 3.7.2-11. Note that SASSI2010 does not perform modal analysis; therefore, frequencies

corresponding to peaks of transfer functions at the critical locations are compared with the SAP2000 modal analysis. For example, at the center of the roof in the CRB model, SASSI output is compared with the 72nd mode whose modal frequency matches the frequency at the peak of transfer function.

As can be seen from the tables, the SAP2000 modal frequencies are close to the corresponding SASSI2010 frequencies estimated from the transfer function peaks with a maximum difference of about 6 percent. This implies that the mass and stiffness of the structures in the SAP2000 have been closely duplicated in the SASSI2010 model. However, the effect of backfill soil is more accurately captured in the SASSI2010 transfer functions than in the modal analysis of SAP2000, because the SASSI2010 transfer functions include the effects of structural damping while the SAP2000 modal frequencies are independent of the structural damping.

Note that the RXB SAP2000 frequency values in Table 3.7.2-10 differ slightly from those in Table 3.7.2-14 and Table 3.7.2-15. This is because after the models were shown to be structurally equivalent there were minor enhancements made as a part of the analyses. This is true for the CRB SAP2000 frequency values presented in Table 3.7.2-11, Table 3.7.2-16, and Table 3.7.2-17. The values in Table 3.7.2-10 and Table 3.7.2-11 should only be used for SASSI to SAP2000 comparison purposes.

# 3.7.2.1.3.7 Triple Building Model

The standalone SAP2000 RXB and CRB models (discussed above) were combined with a SAP2000 model of the RWB to make a single CRB-RXB-RWB SAP2000 model. The combined, or triple, building model is shown in Figure 3.7.2-59 which includes the three buildings with the backfill. Figure 3.7.2-60, Figure 3.7.2-61 and Figure 3.7.2-62 show isometric views of the three buildings without the backfill soil elements from three viewpoints. The backfill soil, which is modeled using solid elements, is shown in Figure 3.7.2-63. All beam elements in the combined model are shown in Figure 3.7.2-64. The spring or link elements are shown in Figure 3.7.2-65. The elevation view showing separation between the three buildings is shown in Figure 3.7.2-66.

## **SASSI2010 Triple Building Model**

Figure 3.7.2-67 shows an isometric view of the SASSI2010 triple building model. This model includes the three buildings, backfill soil, and the excavated soil.

Figure 3.7.2-68 shows the north half of the triple building model. The interiors of the three buildings and six NPMs, which are modeled using beam elements can be seen in red.

Figure 3.7.2-69 and Figure 3.7.2-70 show two views of the South side of the buildings. The tunnel between the CRB and the RXB can be seen in these views. Figure 3.7.2-71 is a view of the north side of the triple building model.

Figure 3.7.2-72 shows the beam elements of the triple building model. This figure is similar to the beam element plot of the combined SAP2000 model in Figure 3.7.2-64.

Figure 3.7.2-73 shows the excavated soil solid elements and Figure 3.7.2-74 shows the backfill soil solid elements of the triple building model.

Figure 3.7.2-75 shows the rigid soil springs between the embedded skin nodes of the structures and backfill soil and the excavated soils. Note that each dot is actually a spring connecting two coincident nodes, one is on the skin of the excavated soil model and the other is on the skin of the structure and backfill model.

Figure 3.7.2-76 shows the interaction nodes for the soil impedance calculation. These include the following nodes:

- nodes on the exterior surface (four sides, top and bottom) of the excavated soil
- nodes in the horizontal planes located at the middle elevation of the excavated soil of each building
- nodes in the vertical plane between the excavated soils of the RWB and RXB
- nodes in the vertical plane between the excavated soils of the RXB and CRB

The model dimensions, the quantities of elements and masses, and structural damping ratios used for the SASSI2010 triple building model are summarized in Table 3.7.2-12. Key dimensions and weights of the three buildings are provided in Table 3.7.2-13.

# 3.7.2.2 Natural Frequencies and Responses

The Seismic Category I structures are represented by deeply embedded 3D finite element models. Because the SASSI2010 computer program uses a complex frequency response analysis method, the natural frequencies, participation factors, mode shapes, modal masses, and percentage of cumulative mass ratios are not generated by the SASSI2010 analysis. However, this information is available from the SAP2000 models, the natural frequencies and modal mass ratios have been tabulated. The SAP2000 model assumes a fixed base boundary condition.

Table 3.7.2-14 and Table 3.7.2-15 provides frequencies and modal mass ratios for the cracked and uncracked RXB models and Table 3.7.2-16 and Table 3.7.2-17 provide the equivalent information for the CRB. For each excitation direction (two horizontal and one vertical), all modes with frequencies less than the zero period acceleration frequency of the input spectrum are adequately represented in the model. A preliminary modal analysis has been performed to establish that a sufficient number of discrete mass degrees of freedom have been included in the dynamic model to predict a sufficient number of modes.

Figure 3.7.2-77 through Figure 3.7.2-85 show mode shapes for the first significant frequency in each direction in each of the four models (cracked and uncracked RXB and cracked and uncracked CRB). These preliminary modal analyses produce mode shapes that are reasonably smooth.

### 3.7.2.3 Procedures Used for Analytical Modeling

The general approach for the analysis of the structures is:

- 1) create a building model with major equipment in SAP2000
  - a) develop the NPM model
  - b) develop the RBC model
  - c) develop hydrodynamic loads in ANSYS to adjust the SAP2000 RXB model
- 2) convert the SAP2000 model to a SASSI2010 model and validate the SASSI2010 model
- 3) perform multiple "runs" of SASSI2010 using the different combinations of the CSDRS and CSDRS-HF (discussed in Section 3.7.1.1), soil profiles (discussed in Section 3.7.1.2), cracked and uncracked concrete stiffness, and material damping values (discussed in Section 3.7.1.3).
- 4) combine the results to create bounding values for design

#### 3.7.2.4 Soil-Structure Interaction

Soil-Structure Interaction (SSI) analysis is performed with SASSI2010. The CSDRS, CSDRS-HF and associated time histories sets are developed in Section 3.7.1.1. The soil types are developed in Section 3.7.1.3. As discussed in Section 3.7.1.3, these soil profiles represent a range of conditions from soft soil to hard rock and are used to develop building designs that are acceptable at most sites with little or no additional modification.

In addition to the data converted from the SAP2000 model, the SASSI2010 model requires the model of the excavated soil. Thus, the excavated soil properties, the excavated soil finite elements, the interaction nodes, and the rigid springs connecting the RXB model and the excavated free-field soil are added to form the complete SASSI2010 model.

The SASSI2010 modules used in this SSI analysis are:

- 1) HOUSE defines the finite element model of the soil-structure system
- 2) SITE forms and solves the transmitting boundary problem; it also performs the site response analysis
- 3) POINT3 solves for the point loads applied at layer interface

- 4) ANALYS calculates the transfer functions
- 5) COMBIN combines the transfer functions calculated by several ANALYS runs
- 6) MOTION calculates accelerations or relative displacements at selected locations
- 7) STRESS- stresses, forces, and moments in elements modeling structural members

The first five modules calculate the transfer function values at selected frequencies. The STRESS and MOTION modules perform interpolation to obtain the transfer functions at all frequencies. Then they calculate the seismic responses by convolving the input acceleration time history with the interpolated transfer functions.

For computation efficiency, SASSI2010 calculates transfer functions only at selected frequencies, which are specified in the SITE module data, and then the full transfer functions are obtained by interpolation in the MOTION and STRESS modules for response calculation.

The frequencies used for transfer function calculation by the ANALYS module for each soil types are tabulated in Table 3.7.2-18 for the standalone RXB model and Table 3.7.2-19 for the RXB with triple building model. Table 3.7.2-20 and Table 3.7.2-21 provide the frequencies used with the CRB.

The SASSI2010 analysis is performed in the frequency domain using the method of Fast Fourier Transform (FFT). The frequency step size, df, is equal to the reciprocal of the time duration as depicted in the following equation:

$$df = \frac{1}{dt \times N} = \frac{1}{duration}(Hz)$$
 Eq. 3.7-15

where,

dt = time step size in seconds,

N = is the number of time history data points used for the FFT.

This N value has to be any power of 2 and greater than or equal to the actual number of data points of the excitation time history.

In the SASSI2010 analyses, the numbers of the actual input acceleration time history may vary. However, the number of N used in the FFT is

 $N = 2^{14} = 16384$ , which is greater than the numbers of all acceleration data points.

The time step of the time histories is always 0.005 sec. Thus, the frequency step size, df, is:

$$df = \frac{1}{0.005 \times 16384} = \frac{1}{81.92} = 0.012207 \text{ Hz}$$
 Eq. 3.7-16

In Table 3.7.2-18 through Table 3.7.2-21 each frequency is defined by a number of frequency steps. The selection of frequencies using the numbers of frequency steps is specified in the data for the SITE module. The corresponding actual frequencies in Hz are calculated by  $n \times df$ , where n is the number of frequency steps.

The flow of SASSI2010 data files created by the various modules and their flow among the modules is presented in Figure 3.7.2-89, which was abridged from SASSI2010 User's Manual.

## The analysis steps are:

- Analyze the embedded structure for the East-West (X) direction shaking. The
  horizontal in-layer motion is applied in the East-West (X) direction at the
  foundation elevation as a vertically propagating vertical shear (SV) wave.
- Analyze the embedded structure for the north-south (Y) direction shaking. The
  horizontal in-layer motion is applied in the North-South (Y) direction at the
  foundation elevation as a vertically propagating horizontal shear (SH) wave.
- Analyze the structure for the vertical (Z) shaking. The vertical in-layer motion is applied at the foundation elevation as a vertically propagating pressure (P) wave.

In the analysis using the SASSI2010 STRESS and MOTION modules, individual cases must be run for each combination of parameters. A total of 612 STRESS and MOTION cases can be produced based on:

## 540 analysis cases with the CSDRS

- five CSDRS compatible seismic inputs: Yermo, Capitola, Chi-Chi, Izmit, and El Centro
- three directions: EW, NS and vertical
- three soil profile types: Soil Types 7, 8, and 11
- two concrete conditions: cracked and uncracked
- three building models: RXB, CRB and Triple Building
- two damping values: 7 percent and 4 percent

#### 72 cases with the CSDRS-HF

- one CSDRS-HF compatible seismic input: Lucerne
- three directions: EW, NS and vertical
- two soil profile types: Soil Types 7 and 9
- two concrete conditions: cracked and uncracked
- three building models: RXB, CRB and Triple Building
- two damping values: 7 percent and 4 percent

# 3.7.2.4.1 Methodology for Combining Results

The results from the multiple STRESS/MOTION analyses are combined to produce a single set to be used in structural design and evaluation. This process is described in the following steps and shown in Table 3.7.2-22.

# Step1: SRSS Combination of Responses due to Three Components of Each Seismic Input

The three sets of responses for each structural member, due to the three acceleration components (i.e. X-, Y-, and Z-components) of each building/soil/time history/cracking/damping case are combined by the SRSS method.

## **Step 2: Averaging of Responses due to Five CSDRS Time histories**

For each soil type and building, the SRSS results from the five CSDRS compatible time histories obtained in step 1 are averaged to obtain a single set of responses for the four combinations of cracked and uncracked with 4 percent and 7 percent damping. Since there is only one set of the CSDRS-HF compatible input, no averaging is necessary for the CSDRS-HF responses.

## Step 3: Enveloping Average Responses for Soil Types and Concrete Conditions

After the SRSS and averaging processes described in Steps 1 and 2 are performed, there are 10 sets of results for each building (cracked and uncracked for each soil/CSDRS combination) for each damping value. These results are enveloped for each building (RXB, CRB, and Triple).

# Step 4: Enveloping the results from the Standalone and Triple Building Model

Steps 1 through 3 are repeated for each building and the triple building model. The 10 responses from the individual model and the 10 equivalent response from the triple building model are enveloped to obtain the final set for use in the building design.

#### 3.7.2.4.2 Maximum Forces and Moments in Shell Elements

The floors and walls are modeled using the SASSI2010 Thick Shell (SHL17) Element. The concrete walls and floor slabs are modeled at their centerline (neutral plane) locations and the force and moment are calculated at the centerlines of the walls and slabs. The following force and moment components of a shell element are determined:

- Membrane Forces S<sub>xx</sub>, S<sub>yy</sub>
- In-Plane Shear S<sub>xv</sub>
- Out-of Plane Moment  $(M_{xx} + M_{xy})$  and  $(M_{yy} + M_{xy})$
- Out-of Plane Shear V<sub>xz</sub>, V<sub>yz</sub>

The element force and moments are computed with respect to local element coordinates in five locations, four corner nodes (I, J, K and L) and the element center of gravity (CG) shown in Figure 3.7.2-90. This figure shows the location of the infinitesimal element where the positive component of forces and moments are computed.

The positive local z-axis is oriented outward from the page based on the right hand rule. The points where stresses are computed are numbered 1 through 5. Points 1 through 4 are located approximately 80 percent from the element CG to the corner nodes. Point 5 is located at the element CG as shown in Figure 3.7.2-90. The positive definitions for each force and moment component are shown in Figure 3.7.2-91.

These forces and moments are then combined as described in Section 3.7.2.4.1. Steps 2 and 3 of this process are illustrated in Table 3.7.2-23 for an example shell element.

## 3.7.2.4.3 Maximum Forces and Moments in Beam Elements

The structural members, columns, pilasters, and T- beams are modeled using the SASSI2010 beam elements at their centerline (neutral axis) locations and the forces and moments are calculated at both ends of member, Nodes (I, J). The computed forces and moments are referenced to the local beam axes of the beam element as shown in Figure 3.7.2-92. The force and moment components are defined below:

- Force P1 in the local beam axis 1
- Force P2 in the local beam axis 2
- Force P3 in the local beam axis 3
- Moment M1 about the local beam axis 1
- Moment M2 about the local beam axis 2
- Moment M3 about the local beam axis 3

These forces and moments are then combined as described in Section 3.7.2.4.1. Steps 2 and 3 of this process are illustrated in Table 3.7.2-24 for an example beam element.

## 3.7.2.4.4 Maximum Stresses in Solid Elements

The foundation (basemat slab) and backfill soil are modeled by the SASSI2010 solid elements. The stresses in a solid element are computed at the centroid of the solid element and are referred to in the global axes. These stress components are shown in Figure 3.7.2-93 using an infinitesimal cube at the centroid of a solid element:

- Normal stress  $\sigma_{xx}$  in the global X-direction normal to the Y-Z plane
- Normal stress  $\sigma_{vv}$  in the global Y-direction normal to the Z-X plane
- Normal stress  $\sigma_{77}$  in the global Z-direction normal to the X-Y plane

- Shear stress T<sub>xv</sub> in the global Y-direction parallel to the Y-Z plane
- Shear stress T<sub>xz</sub> in the global Z-direction parallel to the Y-Z plane
- Shear stress T<sub>vz</sub> in the global Z-direction parallel to the Z-X plane

These stresses are then combined as described in Section 3.7.2.4.1. Steps 2 and 3 of this process are illustrated in Table 3.7.2-25 for an example solid element.

### 3.7.2.4.5 Relative Displacements at Selected Locations

Multiple locations on both the RXB and CRB have been selected for presentation of relative displacement. The node numbers and their global coordinates of the selected locations are shown in Table 3.7.2-26 for the RXB and Table 3.7.2-27 for the CRB. These locations can be seen in Figure 3.7.2-94 for the RXB and in Figure 3.7.2-95 for the CRB.

The relative displacement results from the different cases are post-processed using the steps described in Section 3.7.2.4.1.

The relative displacements calculated for the selected locations in both the standalone models and the triple building model are presented in Table 3.7.2-28 and Table 3.7.2-29. The displacements are in the global directions.

# 3.7.2.4.6 Design Approach

The initial structural analysis of the RXB was performed with the entire suite of analysis cases as described above. The CRB analysis did not include all the triple building model cases. For the triple building model, Soil Type 7 was evaluated with the CSDRS and Soil Type 9 was evaluated with the CSDRS-HF. These cases are selected because they represent controlling conditions. In general, Soil Type 7 with the CSDRS is controlling for both the RXB and the CRB.

The analysis cases used to determine the seismic demand for Seismic Category I SSC can be labeled using nine identification codes:

- 1) RXB Standalone Structural Response
- 2) RXB Triple Building Structural Response
- 3) RXB Stand-Alone ISRS
- 4) RXB Triple Building ISRS
- 5) NPM ISRS
- 6) CRB Stand-Alone ISRS
- 7) CRB Stand-Alone Structural Response
- 8) CRB Triple Building Structural Response

## 9) CRB Triple Building ISRS

Each code represents a different combination of the 540 CSDRS cases and the 72 CSDRS-HF cases listed in Section 3.7.2.4. Table 3.7.2-33 provides the tabulated seismic parameter combinations for the eight identification codes to identify: seed input time history, soil type, direction, building model, concrete condition, and damping. Table 3.7.2-34 provides a list of the Seismic Category I SSC and the associated identification codes for the analysis used to calculate the seismic demands.

The methodology for combining the results of these seismic analysis cases is described in Section 3.7.2.4.1.

## 3.7.2.5 Development of In-Structure Floor Response Spectra

Development of ISRS follows the guidance in RG 1.122, "Development of Floor Design Response Spectra for Seismic Design of Floor-Supported Equipment or Components" Rev. 1. The SASSI2010 MOTION module is used to produce accelerations for ISRS development. A 4 percent structural damping is used for both cracked and uncracked concrete.

# 3.7.2.5.1 Averaging and Combining Analysis Cases

- **Step 1.** At each selected nodal location, the three co-directional ISRS from a single soil, time history, and stiffness are combined using SRSS.
- **Step 2.** Step 1 is repeated for each of the cases that were analyzed.
- **Step 3.** The ISRS from the five CSDRS time histories is averaged for each soil type and stiffness. For the CSDRS-HF no averaging is necessary since there is only one CSDRS-HF compatible input.
- **Step 4.** For each selected area, all of the ISRS (this usually includes more than one node) are combined and the envelope obtained for each of the three directions.
- **Step 5.** Each envelope response spectra is broadened by  $\pm 15$  percent.
- **Step 6.** Steps 1 through 5 are repeated to generate ISRS at damping ratios of 2, 3, 4, 5, 7, and 10 percent.

This process is shown for a single node in Figure 3.7.2-99 through Figure 3.7.2-103. The first three figures show the development of the average ISRS for the three soil cases (7, 8, and 9) and two stiffnesses (cracked and uncracked). Figure 3.7.2-102 shows the combination of averages and the development of the ISRS envelope. The upper three plots show this process for the CSDRS compatible time histories and soil cases and the bottom three plots show the process for the ISRS from the CSDRS-HF compatible time histories and soil cases. Figure 3.7.2-103 shows the development of the broadened spectra at various damping values. The upper three plots show the envelop ISRS for each direction and the different damping ratios. In these plots the broadening of the 2 percent damping results is shown. The bottom three plots provide the broadened results for all damping ratios.

# 3.7.2.5.2 Comparison of In-Structure Response Spectra between Single and Triple Building Models

The structure-soil-structure interaction of the triple model has an effect on the ISRS of the RXB. Other than the ISRS at top of basemat, the ISRS of the standalone model are higher than those of the triple building model. The reduction in the ISRS of the triple building model is attributed to the extra damping effect provided by the close presence of the RWB and the CRB on the sides of the RXB.

This can be seen in Figure 3.7.2-104, Figure 3.7.2-105 and Figure 3.7.2-106.

Because neither the standalone nor triple building model produce bounding results at all locations, ISRS enveloping the two models are used for design of structures, systems, and components in the RXB and CRB.

## 3.7.2.5.3 Reactor Building In-Structure Response Spectra

For convenience in design of components and supports that need to be Seismic Category I or Seismic Category II, ISRS at multiple nodes at each floor are combined to develop a single ISRS for each floor. The ISRS corresponding to each main floor of the RXB identified below are provided in the listed figures. Although ISRS are provided at the NPM base (floor at EL. 25' 0"), time histories were used as input for the evaluation of the NPMs as described in Appendix 3A. The governing ISRS envelop the ISRS taken from node locations on the corners of the buildings to capture the torsional and rocking components. See Table 3.7.2-53 for a list of nodes enveloped at each floor to produce the floor ISRS. Figure 3.7.2-142 through Figure 3.7.2-148 show the locations of the nodes selected for floor ISRS generation.

| Floor   | Figure           |
|---------|------------------|
| 24'-0"  | Figure 3.7.2-107 |
| 25'-0"  | Figure 3.7.2-108 |
| 50'-0"  | Figure 3.7.2-109 |
| 75′-0″  | Figure 3.7.2-110 |
| 100'-0" | Figure 3.7.2-111 |
| 126'-0" | Figure 3.7.2-112 |
| 181'-0" | Figure 3.7.2-113 |

# 3.7.2.5.4 Reactor Building Crane In-Structure Response Spectra

The seismic analysis of the RBC uses ISRS for input. The ISRS are generated at four selected individual crane wheel locations. These locations are on the reactor pool wall at the crane rail slab at El. 145'-6", see Table 3.7.2-56. The enveloping ISRS for these four locations are provided in Figure 3.7.2-114. In addition to these four nodes, a fifth node located on the crane rail slab is used to generate the ISRS in the vertical direction. This node is used because when soil separation effects are considered, the vertical direction is not bounded by the enveloped ISRS of the

other four nodes. The seismic analysis of the RBC is completed per ASME NOG-1 (Reference 3.7.2-4).

### 3.7.2.5.5 Not Used

# 3.7.2.5.6 NuScale Power Module Skirt, Lug Supports, and Reactor Flange Tool Base In-Structure Response Spectra

At the CNV skirts of NPM1 and NPM6, response spectra are generated for the time histories at nodes directly beneath each corresponding NPM. The SASSI coordinates of these ISRS locations are listed in Table 3.7.2-54.

This results in skirt response spectra for each module, based on the six seismic cases provided (Soil Type 7, Capitola time history, cracked and uncracked concrete, and three NPM stiffness cases) each with three components (X,Y, and Z). Six resulting ISRS (two modules x one skirt support x three directions) for the nominal stiffness cases for NPM1 and NPM6 CNV skirts are shown in Figure 3.7.2-156 and Figure 3.7.2-157. These ISRS are an envelope of the cracked and uncracked concrete conditions.

At the CNV lugs of NPM1 and NPM6, response spectra are generated for the time histories at the nodes listed in Table 3.7.2-55. The spectra for the nominal stiffness cases are then enveloped at each of the lugs on NPM1 and NPM6, resulting in 18 total enveloping spectra (two modules x three lugs x three directions). These spectra are shown in Figure 3.7.2-158 through Figure 3.7.2-163. These ISRS are an envelope of the cracked and uncracked concrete conditions.

Response spectra are generated for time histories at four reactor flange tool (RFT) base locations. The coordinates of these ISRS locations are listed in Table 3.7.2-58. For each case, there are 12 (3 directions x 4 locations) ISRS generated. For the two analysis cases (cracked and uncracked concrete), the total number of ISRS is 24 (12 x 2 cases). The plots of the ISRS for the nominal stiffness cases are presented in Figure 3.7.2-164 through Figure 3.7.2-171.

### 3.7.2.5.7 Control Building In-Structure Response Spectra

The ISRS corresponding to each main floor of the CRB identified below are provided in the listed figures. The governing ISRS envelop the ISRS taken from node locations on the corners of the buildings to capture the torsional and rocking components. Coordinates selected for floor ISRS generation in the CRB are listed in Table 3.7.2-57.

| Floor   | Figure                                  |
|---------|-----------------------------------------|
| 50'-0"  | Figure 3.7.2-117a and Figure 3.7.2-117b |
| 63'-3"  | Figure 3.7.2-118a and Figure 3.7.2-118b |
| 76′-6″  | Figure 3.7.2-119a and Figure 3.7.2-119b |
| 100'-0" | Figure 3.7.2-120a and Figure 3.7.2-120b |

| Floor   | Figure                                  |
|---------|-----------------------------------------|
| 120′-0″ | Figure 3.7.2-121a and Figure 3.7.2-121b |
| 140'-0" | Figure 3.7.2-122a and Figure 3.7.2-122b |

# 3.7.2.6 Three Components of Earthquake Motion

The three components of earthquake motion are developed as separate time histories as discussed in Section 3.7.1.1. These time history motions are applied to the building models as input to the SASSI2010 analysis. For the desired output (ISRS, forces and moments, displacements, etc.) the responses for the structure are combined using square root of the sum of the squares in conformance with RG 1.92, "Combining Modal Responses and Spatial Components in Seismic Response Analysis" Rev. 3.

# 3.7.2.7 Combination of Modal Responses

Modal combination is not utilized for the analysis of the RXB or CRB. These structures are evaluated using SASSI2010 finite element models. SASSI2010 utilizes time history analysis in the frequency domain in which the equations of motion are solved for the soil and structural elements.

# 3.7.2.8 Interaction of Non-Seismic Category I Structures with Seismic Category I Structures

A failure of a nearby structure could adversely affect the Seismic Category I RXB and Seismic Category I portions of the CRB. These nearby structures are assessed (or analyzed if necessary) as described below to ensure that there is no credible potential for adverse interactions. Figure 1.2-4 provides a site plan showing the standard plant layout. The non-Seismic Category I structures that are adjacent to the Seismic Category I RXB and CRB are:

- RWB (Seismic Category II), adjacent to RXB
- CRB above elevation 120' (Seismic Category II), above Seismic Category I CRB and adjacent to RXB
- CRB areas below elevation 120' as noted in Section 1.2.2.2
- [[North and South Turbine Generator Buildings (Seismic Category III), adjacent to RXB]]
- [[Central Utilities Building (Seismic Category III), adjacent to CRB]]
- [[Annex Building (Seismic Category III) adjacent to RXB]]

The Seismic Category II portion of the CRB was analyzed along with the Seismic Category I portion of the structure. The codes, standards, specifications, loads and loading combinations, design and analysis procedures, and structural acceptance criteria for the Seismic Category I portion of the CRB also applies to the Seismic Category II portion of the CRB to the extent required to comply with DSRS 3.7.2 - Section II - Acceptance Criteria 8 (a), (b), or (c).

The RWB is approximately 25 feet away from the RXB. The RWB is a robust concrete structure; therefore, this building can affect the Seismic Category I RXB.

The RWB is designed using the provisions of RG 1.143, Rev. 2. Therefore, the seismic input is one-half of the CSDRS (and CSDRS-HF). However, because of the proximity of the RWB to the RXB, there is a potential seismic 2 over 1 interaction of the RWB structure with the RXB. In order to ensure that there are no unacceptable interactions, the exterior and interior walls, the slab at grade (EL. 100'-0") and the foundation basemat of the RWB are designed for the CSDRS and CSDRS-HF rather than the ½ SSE load specified in RG 1.143, Rev. 2. This analysis confirms that the RWB will not collapse from a CSDRS or CSDRS-HF earthquake and adversely affect the Seismic Category I RXB.

The contribution of the RWB to the RXB wall pressure have been included in the analysis of the RXB wall pressure.

COL Item 3.7-4: A COL applicant that references the NuScale Power Plant design certification will confirm that nearby structures exposed to a site-specific safe shutdown earthquake will not collapse and adversely affect the Reactor Building or Seismic Category I portion of the Control Building.

# 3.7.2.9 Effects of Parameter Variations on Floor Response Spectra

Uncertainties in seismic modeling, due to variation in input parameters such soil column and earthquake spectrum and structural properties such as material strength, cracking, mass properties, and specific locations of structures, systems, and components are accounted for in three ways:

# • A Conservative Design Approach

The NuScale design considers ground motions that bound most sites, and performs multiple SASSI2010 analysis using different combinations of soil profiles and cracked and uncracked properties. Bounding results are used in the design.

## ISRS Broadening

The bounding ISRS are broadened as specified in the RG 1.122, Rev. 1. The envelope ISRS is broadened 15 percent on a linear frequency scale.

# • Site-Specific Analysis

A site-specific analysis is performed to show that the design provides sufficient capacity to resist the site-specific demand.

### 3.7.2.9.1 Effects of Operation with less than Twelve NuScale Power Modules

The RXB is designed and constructed to hold twelve NPMs, each in its own bay within the Reactor Pool, but can be operated with fewer than the full complement of twelve. To account for this variation in a significant design parameter, a study was performed to investigate the effect of a reduced number of NPMs within the building, to confirm adequacy of the design under less than full loading conditions. The study evaluated a case with seven NPMs, six on the south side of the pool, and a single NPM in the bay on northeast corner of the reactor pool. This configuration is shown in Figure 3.7.2-98. Figure 3.7.2-25 shows the full complement of NPMs,

Tier 2 3.7-141 Revision 5

and Figure 3.7.2-24 shows the entire ultimate heat sink, which includes the reactor pool, refueling pool, spent fuel pool and dry dock area. These pools are all hydro-dynamically connected. This layout was selected because it allows several important aspects to be investigated simultaneously.

- The pool load is eccentric. The south side of the reactor pool is heavier due to the presence of the NPMs.
- NPM Bay 1 is empty. This bay and in particular, the west wall, will experience
  different hydrodynamic water pressure compared with bay walls with an NPM
  on both sides of the wall since there is no NPM on either side of the wall. The
  west wall of NPM Bay 1 and NPM Bay 12 experience the highest forces of the
  bay walls. This has been attributed to the Refueling Pool water volume, which is
  much greater than the volume in the bays.
- The forces experienced on an internal NPM bay wall when there is only an NPM on one side is investigated by locating a module in NPM Bay 6.

The study used the CSDRS compatible Capitola time histories with Soil Type 7 and the CSDRS-HF compatible Lucerne time histories with Soil Type 9. Global effects on the building are examined by comparing the ISRS at the foundation and the roof. The enveloping ISRS for these two locations are provided in Figure 3.7.2-107 and Figure 3.7.2-113 respectively. Local effects are examined by comparing the forces on the NPM at the lug restraints and the skirt and on the bay walls.

# 3.7.2.9.1.1 Comparison at the Foundation

Figure 3.7.2-123 provides the ISRS for a node at the northwest corner of the RXB at the top of the basemat (EL. 24' 0"). The upper three plots on this figure compare the results of the 12 and 7 NPM cases with the CSDRS in the three directions, and the bottom three plots provide the same comparison for the CSDRS-HF. Figure 3.7.2-124 provides the same comparisons for a node at the midpoint of the north wall and Figure 3.7.2-125 provides the comparison at the northeast corner of the top of basemat. The ISRS are observed to virtually overlay each other, comparable in shape and frequency and peak of response in all cases.

### 3.7.2.9.1.2 Comparison at the Roof

Figure 3.7.2-126 provides the ISRS for a node at the northwest corner of the roof of the RXB at (EL. 181' 0"). The upper three figures compare the results of the 12 and 7 NPM cases with the CSDRS in the three directions, and the bottom three figures provide the same comparison for the CSDRS-HF. Figure 3.7.2-127 provides the same comparisons for a node at the midpoint of the north wall and Figure 3.7.2-128 provides the comparison at the northeast corner of the top of basemat.

The ISRS at the roof vary slightly between the two cases. However, the peaks occur at the same frequency and the difference in magnitude between the two cases is small. This variation in spectra is similar to that seen between cracked and uncracked conditions and between results from the five different CSDRS

compatible time histories. Therefore the results at the roof are considered equivalent.

# 3.7.2.9.1.3 Comparison at the NPM Restraints

Each NPM is supported within its bay by a skirt at the base of the containment, resting in a ring anchored to the basemat, and by three higher lateral supports, one at the pool wall and one each at the side wing walls, which provide resistance to motion in the horizontal plane of the supporting wall. The maximum forces (at any restraint) for each case are provided in Table 3.7.2-30 for the comparison using Soil Type 7 and the CSDRS and in Table 3.7.2-31 for the comparison using Soil Type 9 and the CSDRS. The values in the tables are from the study and do not represent the actual forces used for the design.

As can be seen in the tables, the maximum forces vary slightly (less than 5 percent) at each location, however neither case (12 NPM or 7 NPM) is controlling either for the CSDRS or for the CSDRS-HF. Like the results at the roof, this variation is within the range produced by the different cases that are included in the full analysis.

## 3.7.2.9.1.4 Comparison at the NPM Bay Walls

In addition to the restraints, the wing walls and the pool walls are subjected to forces during the seismic event. Table 3.7.2-32 provides a summary comparison of the forces and moments in the three walls associated with NPM Bay 1, which is empty for the 7 NPM case and Bay 6 which contains an NPM in the 7 NPM case. Only the results for the Soil Type 7 and the CSDRS are presented. Soil Type 9 and the CSDRS-HF produced similar but smaller results. The results are provided for two elevations: the base of the wall and the NPM lug restraint. The tables are laid out with the data for the North pool wall shifted to the right.

The west wing wall, which experiences the highest force with twelve NPM sees the greatest increase due to the removal of the NPM from the Bay. This increase occurs primarily in the bending moment and out of plane shear. There was very little change in in-plane stress. The moments increased by approximately 20 percent.

The Bay 1/2 wing wall, which has empty bays on either side, had increases of similar magnitude to the west wing wall, but since the initial moments were smaller, the percentage change is larger. The Bay 5/6 wing wall (which has a module only on one side in the NPM case) saw increases of about half the magnitude of the Bay 1/2 wing wall. The east wall, which is a pool wall not a wing wall, saw virtually no increase.

The NPM Bay 1 pool experience the largest forces with all twelve modules in place. Again, this is attributed to the large water volume in the refueling pool to the west of the bay. With the removal of the module for the 7 NPM case. The bending moments increased by 30 to 40 percent. This increase is attributed to the larger water volume. The Bay 6 pool wall was essentially unaffected. Bay 6 contains a module in the 7 NPM case.

# 3.7.2.9.1.5 Conclusion of the Study

The 7 NPM case did not produce a tangible change in the reaction of the building as a whole (Section 3.7.2.9.1.1 and Section 3.7.2.9.1.2). The 6 NPM case, which would cause a slightly more asymmetric load, is expected to produce similar results. The mass of the overall structure is relatively unaffected by the mass difference between a NPM and the water. Therefore the quantity of modules installed in the building is expected to have no effect on the building.

Similarly, the absence of modules did not significantly affect the forces that are transmitted to an installed NPM (Section 3.7.2.9.1.3). Therefore removing individual modules for refueling does not impact the installed and operating modules.

The walls of bays without an installed module do see an increase in the forces, principally in bending moment. These increases are on the order of 40 percent. However, the wing walls are all designed the same. As such, they are designed for the highest loaded wall, which is the west wing wall. The increases seen in the west wing wall when an NPM is not present in Bay 1 do not exceed the capacity of the wall. In addition, the increase is less significant because there is no module supported by the wall.

The pool wall in an empty bay also sees an increase of about 40 percent. Again, the highest forces occur at the west end of the pool. The forces at the pool wall in Bay 1 when it is empty are similar to those in the reactor pool area. Since the entire pool wall is a consistent design, these forces are also acceptable.

The difference in results between operation with twelve NPMs and operation with fewer NPMs in place is small and within the capacity of the building design. Site-specific configurations, outside of the scope of the presented 12 NPM and 7 NPM cases, require additional analysis to be performed by the COL applicant.

#### COL Item 3.7-10:

A COL applicant that references the NuScale Power Plant design certification will perform a site-specific configuration analysis that includes the Reactor Building with applicable configuration layout of the desired NuScale Power Modules. The COL applicant will confirm the following are bounded by the corresponding design certified seismic demands:

- 1) The in-structure response spectra of the standard design at the foundation and roof. See FSAR Figure 3.7.2-107 and Figure 3.7.2-108 for foundation in-structure response spectra and Figure 3.7.2-113 for roof in-structure response spectra.
- 2) The maximum forces in the NuScale Power Module lug restraints and skirts. See Table 3B-28.
- 3) The site-specific in-structure response spectra for the NuScale Power Module at the skirt support will be shown to be bounded by the in-structure response spectra in Figure 3.7.2-156 and Figure 3.7.2-157. The site-specific in-structure response spectra for the NuScale Power Module at the lug restraints will be

shown to be bounded by the in-structure response spectra in Figure 3.7.2-158 through Figure 3.7.2-163.

- 4) The maximum forces and moments in the west wing wall and pool wall. See Table 3B-23a and Table 3B-23b.
- 5) Not used.
- 6) The site-specific in-structure response spectra shown immediately below will be shown to be bounded by their corresponding certified in-structure response spectra:
  - Reactor Building north exterior wall at EL 75'-0": bounded by in-structure response spectra in Figure 3.7.2-110
  - Reactor Building west exterior wall at EL 126'-0": bounded by in-structure response spectra in Figure 3.7.2-112
  - Reactor Building crane wheels at EL 145'-6": bounded by in-structure response spectra in Figure 3.7.2-114
  - Control Building east wall at EL 76'-6": bounded by in-structure response spectra in Figure 3.7.2-119a and Figure 3.7.2-119b
  - Control Building south wall at EL 120'-0": bounded by in-structure response spectra in Figure 3.7.2-121a and Figure 3.7.2-121b

If not, the standard design will be shown to have appropriate margin or should be appropriately modified to accommodate the site-specific demands.

#### 3.7.2.9.2 Foundation Uplift

Foundation uplift did not occur in either deeply embedded structure. The evaluation is provided in Section 3.8.5.

#### 3.7.2.10 Use of Constant Vertical Static Factors

Constant vertical static factors are not used in the design of the Seismic Category I and II structures. Vertical seismic loads are generated from the SASSI2010 analysis.

### 3.7.2.11 Method Used to Account for Torsional Effects

Inertial torsional effects are inherently considered in the seismic analysis using a 3D finite element model with backfill soil. The potential for accidental torsion is considered insignificant due to physical geometry of the structures which are deeply embedded with most mass at the foundation. Within the RXB the two largest masses are the pool and the NPMs.

The element demand forces and moments obtained from SASSI2010 due to east-west and north-south CSDRS (and CSDRS-HF) inputs have been increased by 5 percent to account for accidental torsion. The total demand forces and moments are obtained using SRSS, as shown below.

$$\sqrt{\left(\alpha \cdot \mathsf{A}_{\mathsf{NS}}\right)^2 + \left(\alpha \cdot \mathsf{A}_{\mathsf{FW}}\right)^2 + \left(\mathsf{A}_{\mathsf{VT}}\right)^2}$$
 Eq. 3.7-17

where,

A<sub>NS</sub> maximum element forces due to the SSE in the North-South direction

A<sub>FW</sub> maximum element forces due to the SSE in the East-West direction

A<sub>VT</sub> maximum element forces due to the SSE in the vertical direction

α factor to account for accidental torsion effect in NS or EW (1.05)

## 3.7.2.12 Comparison of Responses

The response spectrum method is not used in the evaluation of the site independent Seismic Category I and II structures. The SASSI2010 analysis is a time history analysis method. Therefore, a direct comparison is not applicable.

## 3.7.2.13 Methods for Seismic Analysis of Dams

The design does not include nor require the presence of a dam.

# 3.7.2.14 Determination of Dynamic Stability of Seismic Category I Structures

Section 3.8.5 provides discussion regarding bearing pressure, lateral wall pressure, overturning, sliding, and flotation.

# 3.7.2.15 Analysis Procedure for Damping

Section 3.7.1.2 describes the damping ratios used for seismic analysis of the RXB and CRB. As stated in Section 3.7.1.2.1, for analyses of Seismic Category I SSC, the damping values of RG 1.61, Revision 1 are used. These values are presented in Table 3.7.1-6. For the soil and rock materials, the damping ratio is obtained based on strain-compatible soil properties generated for each soil profile. Soil material damping ratios are shown on Table 3.7.1-15 through Table 3.7.1-19 for each soil type considered. Soil damping ratio is limited to 15 percent.

The implementation of these damping values in the dynamic analyses of the NuScale RXB and CRB does not follow guidance from DSRS Section 3.7.2.II.13. Instead, damping procedures that are more suitable with the type of analysis performed are followed. For transient analysis with ANSYS, Rayleigh material damping is used. For soil-structure interaction analysis with SASSI2010, hysteretic material damping is used. Both Rayleigh and hysteretic damping provide responses equivalent to the composite modal damping approach. Only major components, such as the NPM and the RBC, are included in the dynamic models. For other systems and components, their mass is applied to the model and ISRS are calculated at the corresponding damping level in Table 3.7.1-6.

# 3.7.2.16 Site Specific Seismic Analysis

Site-specific seismic analysis is performed by the COL applicant to confirm that the site-independent Seismic Category I structures may be constructed without modification, or to identify where modifications are necessary. This comparison is performed in Section 3.8.4.8. The site specific analysis is performed using the site specific SSE developed in Section 3.7.1.1.3 (COL Item 3.7-1) and the site specific soil profile developed in Section 3.7.1.3.3 (COL Item 3.7-3). Appendix 3B critical sections include RXB and CRB exterior walls that are subject to earth pressures. Therefore, by comparing seismic demand in these walls per COL Item 3.7-5, site-specific versus lateral certified standard soil pressures are also compared.

- COL Item 3.7-5:

  A COL applicant that references the NuScale Power Plant design certification will perform a soil-structure interaction analysis of the Reactor Building and the Control Building using the NuScale SASSI2010 models for those structures. The COL applicant will confirm that the site-specific seismic demands of the standard design for critical structures, systems, and components in Appendix 3B are bounded by the corresponding design certified seismic demands and, if not, the standard design for critical structures, systems, and components will be shown to have appropriate margin or should be appropriately modified to accommodate the site-specific demands. Seismic demands investigated shall include forces, moments, deformations, in-structure response spectra, and seismic stability of the structures.
- COL Item 3.7-6: A COL applicant that references the NuScale Power Plant design certification will perform a structure-soil-structure interaction analysis that includes the Reactor Building, the Control Building, the Radioactive Waste Building and both Turbine Generator Buildings. The COL applicant will confirm that the site-specific seismic demands of the standard design structures, systems, and components are bounded by the corresponding design certified seismic demands and, if not, the standard design structures, systems, and components will be shown to have appropriate margin or should be appropriately modified to accommodate the site-specific demands.

#### 3.7.2.17 References

- 3.7.2-1 SAP2000 Advanced (Version 17.1.1) [Computer Program]. (2015). Walnut Creek, California: Computers and Structures, Inc.
- 3.7.2-2 SASSI2010 (Version 1.0) [Computer Program]. (2012). Berkeley, CA.
- 3.7.2-3 ANSYS (Release 16.0) [Computer Program]. (2015). Canonsburg, PA: ANSYS Incorporated.
- 3.7.2-4 American Society of Mechanical Engineers, Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder), ASME NOG-1, 2004, New York, NY.

Table 3.7.2-1: Summary of Reactor Building SASSI2010 Model

| Model Portions  | Description                                                                    |        |
|-----------------|--------------------------------------------------------------------------------|--------|
| Overall model   | 391' long (East-West), 195.5' wide (North-South), 165' high, embedded          | (n/a)  |
| dimensions      | 86' deep                                                                       |        |
| General         | Number of lumped masses <sup>†</sup>                                           | 30,568 |
|                 | Concrete structural damping for calculation of acceleration responses for ISRS | 4      |
|                 | generation (percent)                                                           |        |
|                 | Concrete structural damping for calculation of member forces and moments for   | 7      |
|                 | structural design (percent)                                                    |        |
| RXB (including  | Total number of nodes                                                          | 30,762 |
| Backfill Soil)  | Backfill soil solid elements                                                   | 9,236  |
|                 | Foundation mat solid elements                                                  | 2,839  |
|                 | Beam elements                                                                  | 6,453  |
|                 | Plate elements                                                                 | 18,818 |
|                 | Spring elements modeling NPM support stiffness                                 | 1,114  |
|                 | Fraction of quadrilateral and triangular elements (%)                          | 2.45   |
|                 | Typical element size (ft)                                                      | 6      |
|                 | Maximum element size (ft)                                                      | 12     |
|                 | Typical aspect ratio                                                           | 1.29   |
|                 | Maximum aspect ratio*                                                          | 11.9   |
| Connection      | 7P interaction nodes for extended subtraction method                           | 7,950  |
| between RXB and | Rigid springs connecting RXB and excavated free-field soil                     | 4,470  |
| excavated soil  |                                                                                |        |
| Excavated soil  | Excavated soil nodes                                                           | 28,830 |
|                 | Excavated soil solid elements                                                  | 25,620 |

Notes: † All masses are assigned as assembled joint lumped masses at each node.

<sup>\*</sup>The aspect ratio of 11.9 is for a small number of non-structural, surface elements.

**Table 3.7.2-2: Average Hydrodynamic Pressure from ANSYS** 

| Section    | Pressure (psi) |
|------------|----------------|
| X Wall     |                |
| X1         | 11.852         |
| X2         | 10.437         |
| X3         | 11.504         |
| Y Wall     |                |
| Y1         | 12.836         |
| Y2         | 10.376         |
| Y3         | 10.434         |
| Y4         | 10.015         |
| Y5         | 11.085         |
| Foundation |                |
| Z          | 12.884         |

Table 3.7.2-3: Equivalent Average Static Pressure from SASSI2010

| Segment         | Soil Type 7<br>(psi) | Soil Type 8<br>(psi) | Soil Type 11<br>(psi) |
|-----------------|----------------------|----------------------|-----------------------|
| X1              | 2.331                | 1.841                | 0.99                  |
| X2              | 14.511               | 11.178               | 6.774                 |
| Х3              | 2.152                | 1.707                | 0.926                 |
| Weighted X Wall | 7.726                | 5.978                | 3.558                 |
| Y1              | 4.163                | 3.528                | 1.588                 |
| Y2              | 4.294                | 3.782                | 2.041                 |
| Y3              | 8.174                | 7.326                | 3.946                 |
| Y4              | 5.24                 | 4.583                | 2.35                  |
| Y5              | 5.691                | 5.231                | 2.303                 |
| Weighted Y Wall | 5.48                 | 4.844                | 2.492                 |
| Z Foundation    | 8.742                | 8.2                  | 6.85                  |

Note: Weighted wall pressures are based on the weighted average of the lengths of each wall segment. Refer to Figure 3.7.2-35 for wall section length values.

Table 3.7.2-4: Summary of Average Pressures and Equivalent Static Pressure for SASSI2010 Soil Type 7

|                 | ANSYS                           | a <sub>SASSI</sub> /a <sub>ANSYS</sub> | SASSI2010                                                      |
|-----------------|---------------------------------|----------------------------------------|----------------------------------------------------------------|
| Segment         | Average Hydrodynamic            | Average Factors                        | Equivalent Static Pressure,                                    |
|                 | Pressure, P <sub>hd</sub> (psi) | Average Factors                        | P <sub>hd</sub> x a <sub>SASSI</sub> /a <sub>ANSYS</sub> (psi) |
| X1              | 11.852                          | 0.92                                   |                                                                |
| X2              | 10.437                          | 1.04                                   |                                                                |
| Х3              | 11.504                          | 0.92                                   |                                                                |
| Weighted X Wall | 11.124                          | 0.97                                   | 10.816                                                         |
|                 |                                 |                                        |                                                                |
| Y1              | 12.836                          | 0.97                                   |                                                                |
| Y2              | 10.376                          | 0.94                                   |                                                                |
| Y3              | 10.434                          | 0.87                                   |                                                                |
| Y4              | 10.015                          | 0.91                                   |                                                                |
| Y5              | 11.085                          | 0.90                                   |                                                                |
| Weighted Y Wall | 10.492                          | 0.92                                   | 9.608                                                          |
|                 | <u> </u>                        |                                        |                                                                |
| Z Foundation    | 12.884                          | 1.00                                   | 12.945                                                         |

Note: Weighted wall pressures and a<sub>SASSI</sub>/a<sub>ANSYS</sub> factors are based on the weighted average of the lengths of each wall segment. Refer to Figure 3.7.2-35 for wall section length values.

Table 3.7.2-5: Summary of Average Pressures and Equivalent Static Pressure for SASSI2010 Soil Type 8

|                 | ANSYS                           | a <sub>SASSI</sub> /a <sub>ANSYS</sub> | SASSI2010                                 |
|-----------------|---------------------------------|----------------------------------------|-------------------------------------------|
| Segment         | Average Hydrodynamic            | Average Factors                        | Equivalent Static Pressure,               |
|                 | Pressure, P <sub>hd</sub> (psi) | Average Factors                        | $P_{hd} \times a_{SASSI}/a_{ANSYS}$ (psi) |
| X1              | 11.852                          | 0.73                                   |                                           |
| X2              | 10.437                          | 0.79                                   |                                           |
| Х3              | 11.504                          | 0.73                                   |                                           |
| Weighted X Wall | 11.124                          | 0.76                                   | 8.406                                     |
|                 |                                 |                                        |                                           |
| Y1              | 12.836                          | 0.82                                   |                                           |
| Y2              | 10.376                          | 0.83                                   |                                           |
| Y3              | 10.434                          | 0.78                                   |                                           |
| Y4              | 10.015                          | 0.8                                    |                                           |
| Y5              | 11.085                          | 0.82                                   |                                           |
| Weighted Y Wall | 10.492                          | 0.81                                   | 8.481                                     |
|                 |                                 |                                        |                                           |
| Z Foundation    | 12.884                          | 0.94                                   | 12.122                                    |

Note: Weighted wall pressures and a<sub>SASSI</sub>/a<sub>ANSYS</sub> factors are based on the weighted average of the lengths of each wall segment. Refer to Figure 3.7.2-35 for wall section length values.

Table 3.7.2-6: Summary of Average Pressures and Equivalent Static Pressure for SASSI2010 Soil Type 11

|                 | ANSYS                                                   | a <sub>SASSI</sub> /a <sub>ANSYS</sub> | SASSI2010                                                                                     |
|-----------------|---------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|
| Segment         | Average Hydrodynamic<br>Pressure, P <sub>hd</sub> (psi) | Average Factors                        | Equivalent Static Pressure,<br>P <sub>hd</sub> × a <sub>SASSI</sub> /a <sub>ANSYS</sub> (psi) |
| X1              | 11.852                                                  | 0.4                                    |                                                                                               |
| X2              | 10.437                                                  | 0.48                                   |                                                                                               |
| Х3              | 11.504                                                  | 0.4                                    |                                                                                               |
| Weighted X Wall | 11.124                                                  | 0.44                                   | 4.843                                                                                         |
|                 |                                                         |                                        |                                                                                               |
| Y1              | 12.836                                                  | 0.38                                   |                                                                                               |
| Y2              | 10.376                                                  | 0.46                                   |                                                                                               |
| Y3              | 10.434                                                  | 0.43                                   |                                                                                               |
| Y4              | 10.015                                                  | 0.42                                   |                                                                                               |
| Y5              | 11.085                                                  | 0.37                                   |                                                                                               |
| Weighted Y Wall | 10.492                                                  | 0.42                                   | 4.452                                                                                         |
|                 | <u> </u>                                                |                                        |                                                                                               |
| Z Foundation    | 12.884                                                  | 0.79                                   | 10.223                                                                                        |

Note: Weighted wall pressures and a<sub>SASSI</sub>/a<sub>ANSYS</sub> factors are based on the weighted average of the lengths of each wall segment. Refer to Figure 3.7.2-35 for wall section length values.

**Table 3.7.2-7: Comparison of Pressures** 

| Segment         | SASSI2010 Equivalent Static Pressure from ANSYS Hydrodynamic Analysis (psi) (See Tables 3.7.2-4, 3.7.2-5 and 3.7.2-6) | SASSI2010<br>Original Static<br>Pressures from Hydro<br>Lumped Masses (psi)<br>(See Table 3.7.2-3) | Difference (psi) | % Difference |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|--------------|
| Soil Type 7     |                                                                                                                       |                                                                                                    |                  |              |
| Weighted X Wall | 10.816                                                                                                                | 7.726                                                                                              | 3.09             | 29%          |
| Weighted Y Wall | 9.608                                                                                                                 | 5.48                                                                                               | 4.129            | 43%          |
| Z Foundation    | 12.945                                                                                                                | 8.742                                                                                              | 4.203            | 32%          |
| Soil Type 8     |                                                                                                                       |                                                                                                    |                  |              |
| Weighted X Wall | 8.406                                                                                                                 | 5.978                                                                                              | 2.428            | 29%          |
| Weighted Y Wall | 8.481                                                                                                                 | 4.844                                                                                              | 3.637            | 43%          |
| Z Foundation    | 12.122                                                                                                                | 8.2                                                                                                | 3.921            | 32%          |
| Soil Type 11    |                                                                                                                       |                                                                                                    |                  |              |
| Weighted X Wall | 4.843                                                                                                                 | 3.558                                                                                              | 1.286            | 27%          |
| Weighted Y Wall | 4.452                                                                                                                 | 2.492                                                                                              | 1.96             | 44%          |
| Z Foundation    | 10.223                                                                                                                | 6.85                                                                                               | 3.373            | 33%          |

Table 3.7.2-8: Final Surface Pressure Adjustment in SAP2000 Model Due to FSI Effects

| Segment         | Soil Type 7<br>Difference | Soil Type 8<br>Difference | Soil Type 11<br>Difference | Maximum<br>Difference per<br>Section | Envelope Pressure<br>to be Added to<br>SAP2000 Model |
|-----------------|---------------------------|---------------------------|----------------------------|--------------------------------------|------------------------------------------------------|
|                 | (psi)                     | (psi)                     | (psi)                      | (psi)                                | (psi)                                                |
| Weighted X Wall | 3.090                     | 2.428                     | 1.286                      | 3.090                                |                                                      |
| Weighted Y Wall | 4.129                     | 3.637                     | 1.960                      | 4.129                                | 4.20                                                 |
| Z Foundation    | 4.203                     | 3.921                     | 3.373                      | 4.203                                | 1                                                    |

Table 3.7.2-9: Summary of Control Building SASSI2010 Model

| <b>Model Portions</b> | Description                                                                                              | Total Number<br>Used |
|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------|
| Overall dimensions    | 78'-0" long (East-West), 116'-8" wide (North-South), 96' 9" High embedded 56'-3"                         | (n/a)                |
| All                   | Total unconstrained degrees of freedom                                                                   | 76,410               |
|                       | Lumped masses <sup>†</sup>                                                                               | 8,415                |
|                       | Concrete structural damping for calculation of acceleration responses for ISRS generation (percent)      | 4                    |
|                       | Concrete structural damping for calculation of member forces and moments for structural design (percent) | 7                    |
| CRB (including        | CRB and backfill soil nodes                                                                              | 8,415                |
| backfill soil)        | Backfill soil solid elements                                                                             | 3,555                |
|                       | Foundation mat solid elements                                                                            | 411                  |
|                       | Beam elements                                                                                            | 1,393                |
|                       | Plate elements                                                                                           | 4,069                |
|                       | Fraction of quadrilateral and triangular elements (percent)                                              | 1.14                 |
|                       | Typical element size (ft)                                                                                | 6                    |
|                       | Maximum element size (ft)                                                                                | 20                   |
|                       | Typical aspect ratio                                                                                     | 1.24                 |
|                       | Maximum aspect ratio                                                                                     | 6.61                 |
| Connection            | Interaction nodes (7P) for extended subtraction method                                                   | 3,390                |
| oetween CRB and       | Number of impedance degrees-of-freedom                                                                   | 10,170               |
| excavated soil        | Rigid Springs connecting CRB and excavated soil                                                          | 1,869                |
| Excavated soil        | Excavated soil nodes                                                                                     | 8,640                |
|                       | Excavated soil solid elements                                                                            | 7,254                |

Notes: † All masses are assigned as assembled joint lumped masses at each node.

Table 3.7.2-10: Summary of Reactor Building Fixed-Base Modal Frequency Comparison

| Node No. | Location Description                   | Modal     | SA       | SAP2000        |                | Difference (%) |
|----------|----------------------------------------|-----------|----------|----------------|----------------|----------------|
|          |                                        | Direction | Mode No. | Frequency (Hz) | Frequency (Hz) |                |
| 23850    | Top East corner of 5' E-W<br>pool wall | N-S       | 1        | 3.08           | 2.95           | -4.2           |
| 30204    | Center of roof                         | N-S       | 2        | 3.26           | 3.06           | -6.1           |
|          |                                        | Vertical  | 3        | 3.33           | 3.37           | 1.2            |
| 17199    | NPM 1 West support                     | N-S       | 2        | 3.26           | 3.05           | -6.4           |
|          |                                        | N-S       | 17       | 5.61           | 5.31           | -5.3           |
| 20502    | CRDM <sup>†</sup>                      | N-S       | 2        | 3.26           | 3.05           | -6.4           |
|          |                                        | N-S       | 17       | 5.61           | 5.34           | -4.8           |
|          |                                        | N-S       | 138      | 13.5           | 13.1           | -3.0           |
| 30616    | Northeast top corner of roof           | N-S       | 2        | 3.26           | 3.06           | -6.1           |
|          |                                        | E-W       | 16       | 5.50           | 5.33           | -3.1           |

Notes: †Used for frequency comparison between SAP2000 and SASSI2010.

Table 3.7.2-11: Summary of Control Building Fixed-Base Model Frequency Comparison

| Node No. | Location Description            | Modal     | SAP2000     |              | SASSI2010     | Difference |
|----------|---------------------------------|-----------|-------------|--------------|---------------|------------|
|          |                                 | Direction | Mode<br>No. | Freq<br>(Hz) | Freq.<br>(Hz) | (%)        |
| 39757    | Roof center                     | Z (Vert)  | 72          | 6.35         | 6.35          | 0.00       |
| 39866    | East side mid-span at roof      | X (E-W)   | 106         | 11.37        | 11.50         | 1.14       |
| 39783    | North side mid-span at roof     | Y (N-S)   | 114         | 14.81        | 14.38         | -2.90      |
| 39860    | North-East corner at roof level | Z (Vert)  | 122         | 19.90        | 19.81         | -0.45      |
| 39860    | North-East corner at roof level | Z (Vert)  | 128         | 27.90        | 28.83         | 3.33       |
| 38297    | Middle of third floor slab      | Z (Vert)  | 102         | 10.30        | 10.24         | -0.58      |
| 38297    | Middle of third floor slab      | Z (Vert)  | 122         | 19.90        | 20.32         | 2.11       |

Table 3.7.2-12: Summary of Triple Building SASSI2010 Model

| Model Portions           | Description                                                                                                      | Total Number<br>Used |
|--------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|
| Overall model dimensions | 725.5' long (East-West), 218.5' wide (North-South), 167' high, model embedment: RXB = 86', RWB = 34', CRB = 55'. | (n/a)                |
| General                  | Lumped masses <sup>†</sup>                                                                                       | 46,762               |
|                          | Total weight (lbs)                                                                                               | 1,101,956,194        |
|                          | Concrete structural damping for calculation of acceleration responses for ISRS generation (percent)              | 4                    |
|                          | Concrete structural damping for calculation of member forces and moments for structural design (percent)         | 7                    |
| Triple building          | Total number of nodes                                                                                            | 47,034               |
| model (including         | Backfill soil solid elements                                                                                     | 13,716               |
| backfill soil)           | Foundation mat solid elements                                                                                    | 4,339                |
|                          | Beam elements                                                                                                    | 9,352                |
|                          | Plate elements                                                                                                   | 31,455               |
|                          | Spring elements modeling NPM support stiffness                                                                   | 1,114                |
|                          | Interface springs between RWB and RXB                                                                            | 156                  |
|                          | Interface springs between RXB and CRB                                                                            | 279                  |
| Connection               | 7P interaction nodes for extended subtraction method                                                             | 14,456               |
| between model            | Rigid springs connecting three buildings and excavated free-field soil                                           | 6,580                |
| and excavated soil       |                                                                                                                  |                      |
| Excavated soil           | Excavated soil nodes                                                                                             | 44,071               |
|                          | Excavated soil solid elements                                                                                    | 40,336               |

Notes: † All masses are assigned as assembled joint lumped masses at each node.

**Table 3.7.2-13: Dimensions and Weights of the Three Buildings** 

| Building                 | Radioactive Waste Building     | dioactive Waste Building Reactor Building |                                |
|--------------------------|--------------------------------|-------------------------------------------|--------------------------------|
| Structural dimensions    | 184.0′(EW) × 168.5′(NS) ×      | 346.0′(EW) × 150.5′(NS) ×                 | 81.0'(EW) × 119.67'(NS) ×      |
|                          | 83′(Vertical)                  | 167'(Vertical)                            | 95'(Vertical)                  |
| Locations proximity to   | 25' to the West of RXB between | (n/a)                                     | 34' to the East of RXB between |
| RXB                      | centerlines of walls           |                                           | centerlines of walls           |
| Structural weight (kips) | 96,460                         | 515,500†                                  | 45,000                         |
| Embedment depth          | 34'                            | 86′                                       | 55′                            |

<sup>†</sup> Pool water weight not included

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 1        | 3.89   | 0.26    | 0.002    | 0.000    | 0.000    |
| 2        | 3.83   | 0.26    | 0.002    | 0.002    | 0.000    |
| 3        | 0.52   | 1.93    | 0.002    | 0.012    | 0.000    |
| 4        | 0.43   | 2.33    | 0.004    | 0.012    | 0.000    |
| 5        | 0.35   | 2.87    | 0.004    | 0.540    | 0.000    |
| 6        | 0.31   | 3.23    | 0.004    | 0.540    | 0.021    |
| 7        | 0.30   | 3.32    | 0.004    | 0.540    | 0.023    |
| 8        | 0.28   | 3.58    | 0.004    | 0.540    | 0.023    |
| 9        | 0.25   | 4.07    | 0.004    | 0.540    | 0.025    |
| 10       | 0.24   | 4.18    | 0.004    | 0.540    | 0.025    |
| 11       | 0.23   | 4.26    | 0.011    | 0.540    | 0.026    |
| 12       | 0.23   | 4.30    | 0.011    | 0.540    | 0.026    |
| 13       | 0.22   | 4.50    | 0.017    | 0.550    | 0.026    |
| 14       | 0.21   | 4.66    | 0.140    | 0.550    | 0.026    |
| 15       | 0.21   | 4.78    | 0.170    | 0.550    | 0.026    |
| 16       | 0.21   | 4.78    | 0.180    | 0.550    | 0.026    |
| 17       | 0.21   | 4.80    | 0.180    | 0.550    | 0.026    |
| 18       | 0.20   | 4.90    | 0.190    | 0.550    | 0.026    |
| 19       | 0.20   | 5.02    | 0.200    | 0.550    | 0.026    |
| 20       | 0.19   | 5.17    | 0.210    | 0.600    | 0.026    |
| 21       | 0.19   | 5.25    | 0.390    | 0.600    | 0.027    |
| 22       | 0.18   | 5.44    | 0.520    | 0.600    | 0.031    |
| 23       | 0.18   | 5.66    | 0.520    | 0.610    | 0.031    |
| 24       | 0.18   | 5.70    | 0.530    | 0.610    | 0.045    |
| 25       | 0.17   | 5.74    | 0.530    | 0.610    | 0.058    |
| 26       | 0.17   | 5.81    | 0.530    | 0.610    | 0.059    |
| 27       | 0.17   | 5.88    | 0.590    | 0.610    | 0.059    |
| 28       | 0.17   | 5.99    | 0.600    | 0.610    | 0.061    |
| 29       | 0.17   | 6.03    | 0.630    | 0.610    | 0.061    |
| 30       | 0.16   | 6.09    | 0.630    | 0.610    | 0.061    |
| 31       | 0.16   | 6.10    | 0.630    | 0.610    | 0.061    |
| 32       | 0.16   | 6.11    | 0.630    | 0.610    | 0.062    |
| 33       | 0.16   | 6.12    | 0.630    | 0.610    | 0.062    |
| 34       | 0.16   | 6.12    | 0.630    | 0.610    | 0.062    |
| 35       | 0.16   | 6.13    | 0.630    | 0.610    | 0.062    |
| 36       | 0.16   | 6.14    | 0.630    | 0.610    | 0.062    |
| 37       | 0.16   | 6.15    | 0.630    | 0.610    | 0.062    |
| 38       | 0.16   | 6.17    | 0.630    | 0.620    | 0.062    |
| 39       | 0.16   | 6.20    | 0.640    | 0.620    | 0.062    |
| 40       | 0.16   | 6.22    | 0.640    | 0.620    | 0.062    |
| 41       | 0.16   | 6.28    | 0.640    | 0.640    | 0.062    |
| 42       | 0.16   | 6.42    | 0.640    | 0.640    | 0.062    |
| 43       | 0.15   | 6.49    | 0.640    | 0.650    | 0.062    |
| 44       | 0.15   | 6.49    | 0.640    | 0.650    | 0.062    |
| 45       | 0.15   | 6.50    | 0.640    | 0.650    | 0.062    |
| 46       | 0.15   | 6.51    | 0.640    | 0.650    | 0.062    |
| 47       | 0.15   | 6.52    | 0.640    | 0.650    | 0.062    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |  |
|----------|--------|---------|----------|----------|----------|--|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |  |
| 48       | 0.15   | 6.53    | 0.640    | 0.650    | 0.062    |  |
| 49       | 0.15   | 6.55    | 0.640    | 0.650    | 0.062    |  |
| 50       | 0.15   | 6.59    | 0.640    | 0.660    | 0.062    |  |
| 51       | 0.15   | 6.60    | 0.640    | 0.680    | 0.063    |  |
| 52       | 0.15   | 6.63    | 0.640    | 0.680    | 0.063    |  |
| 53       | 0.15   | 6.64    | 0.640    | 0.680    | 0.063    |  |
| 54       | 0.15   | 6.70    | 0.650    | 0.680    | 0.063    |  |
| 55       | 0.15   | 6.70    | 0.650    | 0.680    | 0.065    |  |
| 56       | 0.15   | 6.73    | 0.650    | 0.680    | 0.065    |  |
| 57       | 0.15   | 6.81    | 0.650    | 0.680    | 0.066    |  |
| 58       | 0.15   | 6.82    | 0.650    | 0.680    | 0.074    |  |
| 59       | 0.15   | 6.88    | 0.650    | 0.680    | 0.075    |  |
| 60       | 0.14   | 6.92    | 0.650    | 0.680    | 0.083    |  |
| 61       | 0.14   | 6.95    | 0.650    | 0.680    | 0.084    |  |
| 62       | 0.14   | 7.00    | 0.650    | 0.680    | 0.084    |  |
| 63       | 0.14   | 7.04    | 0.650    | 0.680    | 0.120    |  |
| 64       | 0.14   | 7.09    | 0.660    | 0.680    | 0.120    |  |
| 65       | 0.14   | 7.12    | 0.660    | 0.680    | 0.130    |  |
| 66       | 0.14   | 7.13    | 0.660    | 0.680    | 0.140    |  |
| 67       | 0.14   | 7.16    | 0.660    | 0.690    | 0.160    |  |
| 68       | 0.14   | 7.17    | 0.660    | 0.690    | 0.190    |  |
| 69       | 0.14   | 7.20    | 0.660    | 0.690    | 0.190    |  |
| 70       | 0.14   | 7.21    | 0.660    | 0.690    | 0.190    |  |
| 71       | 0.14   | 7.22    | 0.660    | 0.700    | 0.190    |  |
| 72       | 0.14   | 7.28    | 0.660    | 0.700    | 0.190    |  |
| 73       | 0.14   | 7.31    | 0.660    | 0.700    | 0.190    |  |
| 74       | 0.14   | 7.34    | 0.670    | 0.700    | 0.190    |  |
| 75       | 0.14   | 7.37    | 0.670    | 0.700    | 0.190    |  |
| 76       | 0.14   | 7.39    | 0.670    | 0.700    | 0.190    |  |
| 77       | 0.13   | 7.42    | 0.670    | 0.700    | 0.200    |  |
| 78       | 0.13   | 7.43    | 0.670    | 0.710    | 0.200    |  |
| 79       | 0.13   | 7.48    | 0.670    | 0.710    | 0.200    |  |
| 80       | 0.13   | 7.51    | 0.670    | 0.710    | 0.210    |  |
| 81       | 0.13   | 7.53    | 0.680    | 0.710    | 0.210    |  |
| 82       | 0.13   | 7.58    | 0.680    | 0.710    | 0.210    |  |
| 83       | 0.13   | 7.60    | 0.690    | 0.710    | 0.210    |  |
| 84       | 0.13   | 7.63    | 0.690    | 0.710    | 0.210    |  |
| 85       | 0.13   | 7.67    | 0.690    | 0.710    | 0.210    |  |
| 86       | 0.13   | 7.71    | 0.690    | 0.710    | 0.210    |  |
| 87       | 0.13   | 7.77    | 0.690    | 0.710    | 0.210    |  |
| 88       | 0.13   | 7.78    | 0.690    | 0.710    | 0.210    |  |
| 89       | 0.13   | 7.82    | 0.690    | 0.720    | 0.220    |  |
| 90       | 0.13   | 7.85    | 0.690    | 0.720    | 0.220    |  |
| 91       | 0.13   | 7.86    | 0.690    | 0.720    | 0.220    |  |
| 92       | 0.13   | 7.86    | 0.690    | 0.720    | 0.220    |  |
| 93       | 0.13   | 7.92    | 0.690    | 0.720    | 0.220    |  |
| 94       | 0.13   | 7.96    | 0.690    | 0.720    | 0.220    |  |
| 95       | 0.13   | 7.99    | 0.700    | 0.720    | 0.220    |  |
| 96       | 0.12   | 8.03    | 0.700    | 0.720    | 0.220    |  |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 97       | 0.12   | 8.06    | 0.700    | 0.720    | 0.220    |
| 98       | 0.12   | 8.10    | 0.700    | 0.720    | 0.220    |
| 99       | 0.12   | 8.12    | 0.700    | 0.720    | 0.220    |
| 100      | 0.12   | 8.16    | 0.700    | 0.720    | 0.220    |
| 101      | 0.12   | 8.21    | 0.700    | 0.720    | 0.220    |
| 102      | 0.12   | 8.23    | 0.700    | 0.720    | 0.220    |
| 103      | 0.12   | 8.23    | 0.700    | 0.720    | 0.220    |
| 104      | 0.12   | 8.24    | 0.700    | 0.720    | 0.220    |
| 105      | 0.12   | 8.25    | 0.700    | 0.720    | 0.220    |
| 106      | 0.12   | 8.26    | 0.700    | 0.720    | 0.220    |
| 107      | 0.12   | 8.26    | 0.700    | 0.720    | 0.220    |
| 108      | 0.12   | 8.28    | 0.700    | 0.720    | 0.220    |
| 109      | 0.12   | 8.29    | 0.700    | 0.720    | 0.220    |
| 110      | 0.12   | 8.31    | 0.700    | 0.720    | 0.220    |
| 111      | 0.12   | 8.31    | 0.700    | 0.720    | 0.220    |
| 112      | 0.12   | 8.33    | 0.700    | 0.720    | 0.220    |
| 113      | 0.12   | 8.34    | 0.700    | 0.720    | 0.220    |
| 114      | 0.12   | 8.35    | 0.700    | 0.720    | 0.220    |
| 115      | 0.12   | 8.37    | 0.700    | 0.720    | 0.220    |
| 116      | 0.12   | 8.42    | 0.700    | 0.720    | 0.220    |
| 117      | 0.12   | 8.44    | 0.710    | 0.720    | 0.220    |
| 118      | 0.12   | 8.45    | 0.710    | 0.720    | 0.220    |
| 119      | 0.12   | 8.51    | 0.710    | 0.720    | 0.220    |
| 120      | 0.12   | 8.59    | 0.710    | 0.720    | 0.230    |
| 120      | 0.12   | 8.63    | 0.710    | 0.720    | 0.230    |
| 121      | 0.12   | 8.63    | 0.710    | 0.720    | 0.230    |
| 123      | 0.12   | 8.68    | 0.710    | 0.720    | 0.230    |
|          |        | 8.68    | 0.710    | 0.720    | 0.230    |
| 124      | 0.12   |         |          |          |          |
| 125      | 0.12   | 8.69    | 0.710    | 0.730    | 0.230    |
| 126      | 0.11   | 8.72    | 0.710    | 0.730    | 0.230    |
| 127      | 0.11   | 8.72    | 0.710    | 0.730    | 0.230    |
| 128      | 0.11   | 8.79    | 0.710    | 0.730    | 0.230    |
| 129      | 0.11   | 8.83    | 0.710    | 0.730    | 0.230    |
| 130      | 0.11   | 8.86    | 0.710    | 0.730    | 0.230    |
| 131      | 0.11   | 8.88    | 0.710    | 0.730    | 0.230    |
| 132      | 0.11   | 8.92    | 0.710    | 0.730    | 0.230    |
| 133      | 0.11   | 8.93    | 0.710    | 0.730    | 0.230    |
| 134      | 0.11   | 8.93    | 0.710    | 0.730    | 0.230    |
| 135      | 0.11   | 8.97    | 0.720    | 0.730    | 0.240    |
| 136      | 0.11   | 9.04    | 0.720    | 0.730    | 0.240    |
| 137      | 0.11   | 9.06    | 0.720    | 0.730    | 0.240    |
| 138      | 0.11   | 9.07    | 0.720    | 0.730    | 0.240    |
| 139      | 0.11   | 9.07    | 0.720    | 0.730    | 0.240    |
| 140      | 0.11   | 9.08    | 0.720    | 0.730    | 0.240    |
| 141      | 0.11   | 9.09    | 0.720    | 0.730    | 0.240    |
| 142      | 0.11   | 9.12    | 0.720    | 0.730    | 0.240    |
| 143      | 0.11   | 9.15    | 0.720    | 0.730    | 0.240    |
| 144      | 0.11   | 9.18    | 0.720    | 0.730    | 0.240    |
| 145      | 0.11   | 9.18    | 0.720    | 0.730    | 0.240    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq SumUX | SumUY    | SumUZ    |          |
|----------|--------|------------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec    | Unitless | Unitless | Unitless |
| 146      | 0.11   | 9.22       | 0.720    | 0.730    | 0.240    |
| 147      | 0.11   | 9.23       | 0.720    | 0.730    | 0.240    |
| 148      | 0.11   | 9.25       | 0.720    | 0.730    | 0.240    |
| 149      | 0.11   | 9.26       | 0.720    | 0.730    | 0.240    |
| 150      | 0.11   | 9.31       | 0.720    | 0.730    | 0.240    |
| 151      | 0.11   | 9.31       | 0.720    | 0.740    | 0.250    |
| 152      | 0.11   | 9.33       | 0.730    | 0.740    | 0.250    |
| 153      | 0.11   | 9.39       | 0.730    | 0.740    | 0.250    |
| 154      | 0.11   | 9.42       | 0.730    | 0.740    | 0.250    |
| 155      | 0.11   | 9.45       | 0.730    | 0.740    | 0.250    |
| 156      | 0.11   | 9.45       | 0.730    | 0.740    | 0.250    |
| 157      | 0.11   | 9.50       | 0.730    | 0.740    | 0.250    |
| 158      | 0.10   | 9.53       | 0.730    | 0.740    | 0.250    |
| 159      | 0.10   | 9.55       | 0.730    | 0.740    | 0.250    |
| 160      | 0.10   | 9.56       | 0.730    | 0.740    | 0.250    |
| 161      | 0.10   | 9.63       | 0.730    | 0.740    | 0.250    |
| 162      | 0.10   | 9.64       | 0.730    | 0.740    | 0.250    |
| 163      | 0.10   | 9.68       | 0.730    | 0.740    | 0.250    |
| 164      | 0.10   | 9.73       | 0.730    | 0.740    | 0.250    |
| 165      | 0.10   | 9.76       | 0.730    | 0.740    | 0.250    |
| 166      | 0.10   | 9.78       | 0.730    | 0.740    | 0.250    |
| 167      | 0.10   | 9.78       | 0.730    | 0.740    | 0.250    |
| 168      | 0.10   | 9.81       | 0.730    | 0.740    | 0.250    |
| 169      | 0.10   | 9.83       | 0.730    | 0.740    | 0.250    |
| 170      | 0.10   | 9.85       | 0.730    | 0.750    | 0.250    |
| 171      | 0.10   | 9.88       | 0.730    | 0.750    | 0.250    |
| 172      | 0.10   | 9.91       | 0.730    | 0.750    | 0.250    |
| 173      | 0.10   | 9.91       | 0.730    | 0.750    | 0.250    |
| 174      | 0.10   | 9.97       | 0.730    | 0.750    | 0.250    |
| 175      | 0.10   | 9.99       | 0.730    | 0.750    | 0.250    |
| 176      | 0.10   | 10.00      | 0.730    | 0.750    | 0.250    |
| 177      | 0.10   | 10.03      | 0.730    | 0.750    | 0.250    |
| 178      | 0.10   | 10.05      | 0.730    | 0.750    | 0.250    |
| 179      | 0.10   | 10.06      | 0.730    | 0.750    | 0.250    |
| 180      | 0.10   | 10.09      | 0.730    | 0.750    | 0.250    |
| 181      | 0.10   | 10.13      | 0.730    | 0.750    | 0.250    |
| 182      | 0.10   | 10.14      | 0.730    | 0.750    | 0.250    |
| 183      | 0.10   | 10.18      | 0.730    | 0.750    | 0.250    |
| 184      | 0.10   | 10.19      | 0.730    | 0.750    | 0.250    |
| 185      | 0.10   | 10.20      | 0.730    | 0.750    | 0.250    |
| 186      | 0.10   | 10.22      | 0.730    | 0.750    | 0.250    |
| 187      | 0.10   | 10.25      | 0.730    | 0.750    | 0.250    |
| 188      | 0.10   | 10.28      | 0.730    | 0.750    | 0.260    |
| 189      | 0.10   | 10.31      | 0.730    | 0.750    | 0.260    |
| 190      | 0.10   | 10.32      | 0.740    | 0.760    | 0.260    |
| 191      | 0.10   | 10.34      | 0.740    | 0.760    | 0.260    |
| 192      | 0.10   | 10.35      | 0.740    | 0.760    | 0.260    |
| 193      | 0.10   | 10.40      | 0.740    | 0.760    | 0.260    |
| 194      | 0.10   | 10.41      | 0.740    | 0.760    | 0.260    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq           | SumUX          | SumUY          | SumUZ          |
|----------|--------|----------------|----------------|----------------|----------------|
| Unitless | Sec    | Cyc/sec        | Unitless       | Unitless       | Unitless       |
| 195      | 0.10   | 10.43          | 0.740          | 0.760          | 0.260          |
| 196      | 0.10   | 10.44          | 0.740          | 0.760          | 0.270          |
| 197      | 0.10   | 10.46          | 0.740          | 0.760          | 0.300          |
| 198      | 0.10   | 10.51          | 0.740          | 0.760          | 0.300          |
| 199      | 0.09   | 10.55          | 0.740          | 0.760          | 0.300          |
| 200      | 0.09   | 10.63          | 0.740          | 0.760          | 0.300          |
| 201      | 0.09   | 10.65          | 0.740          | 0.760          | 0.300          |
| 202      | 0.09   | 10.67          | 0.740          | 0.760          | 0.310          |
| 203      | 0.09   | 10.69          | 0.740          | 0.760          | 0.310          |
| 204      | 0.09   | 10.72          | 0.740          | 0.760          | 0.310          |
| 205      | 0.09   | 10.72          | 0.740          | 0.760          | 0.310          |
| 206      | 0.09   | 10.75          | 0.740          | 0.760          | 0.310          |
| 207      | 0.09   | 10.77          | 0.740          | 0.760          | 0.310          |
| 208      | 0.09   | 10.78          | 0.740          | 0.760          | 0.310          |
| 209      | 0.09   | 10.81          | 0.740          | 0.760          | 0.320          |
| 210      | 0.09   | 10.81          | 0.750          | 0.760          | 0.320          |
| 211      | 0.09   | 10.85          | 0.750          | 0.760          | 0.320          |
| 212      | 0.09   | 10.86          | 0.750          | 0.760          | 0.320          |
| 213      | 0.09   | 10.87          | 0.750          | 0.760          | 0.320          |
| 214      | 0.09   | 10.87          | 0.750          | 0.760          | 0.330          |
| 215      | 0.09   | 10.89          | 0.750          | 0.760          | 0.330          |
| 216      | 0.09   | 10.92          | 0.750          | 0.760          | 0.330          |
| 217      | 0.09   | 10.95          | 0.750          | 0.770          | 0.330          |
| 218      | 0.09   | 10.96          | 0.750          | 0.770          | 0.330          |
| 219      | 0.09   | 10.97          | 0.750          | 0.770          | 0.340          |
| 220      | 0.09   | 10.99          | 0.750          | 0.770          | 0.340          |
| 221      | 0.09   | 11.00          | 0.750          | 0.770          | 0.340          |
| 222      | 0.09   | 11.04          | 0.750          | 0.770          | 0.340          |
| 223      | 0.09   | 11.04          | 0.750          | 0.770          | 0.350          |
| 224      | 0.09   | 11.06          | 0.750          | 0.770          | 0.350          |
| 225      | 0.09   | 11.09          | 0.750          | 0.770          | 0.350          |
| 226      | 0.09   | 11.10          | 0.750          | 0.770          | 0.350          |
| 227      | 0.09   | 11.14          | 0.750          | 0.770          | 0.350          |
| 228      | 0.09   | 11.16          | 0.750          | 0.770          | 0.350          |
| 229      | 0.09   | 11.18          | 0.750          | 0.770          | 0.350          |
| 230      | 0.09   | 11.19          | 0.750          | 0.770          | 0.350          |
| 231      | 0.09   | 11.22          | 0.750          | 0.770          | 0.350          |
| 232      | 0.09   | 11.24          | 0.750          | 0.770          | 0.350          |
| 233      | 0.09   | 11.27          | 0.750          | 0.770          | 0.360          |
| 234      | 0.09   | 11.28          | 0.750          | 0.770          | 0.360          |
| 235      | 0.09   | 11.33          | 0.750          | 0.770          | 0.370          |
| 236      | 0.09   | 11.34          | 0.750          | 0.770          | 0.370          |
| 237      | 0.09   | 11.37          | 0.750          | 0.780          | 0.370          |
| 237      | 0.09   |                | 0.750          | 0.780          | 0.370          |
| 238      | 0.09   | 11.40<br>11.42 | 0.750          | 0.780          | 0.370          |
|          |        |                |                |                |                |
| 240      | 0.09   | 11.44          | 0.760          | 0.780          | 0.380          |
| 241      | 0.09   | 11.49<br>11.50 | 0.760<br>0.760 | 0.780<br>0.780 | 0.380<br>0.380 |
| 242      |        |                | 11 /60         |                | 1 (1 (2)(1     |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq    | Freq SumUX | SumUY          | SumUZ    |
|----------|--------|---------|------------|----------------|----------|
| Unitless | Sec    | Cyc/sec | Unitless   | Unitless       | Unitless |
| 244      | 0.09   | 11.58   | 0.760      | 0.780          | 0.380    |
| 245      | 0.09   | 11.61   | 0.760      | 0.780          | 0.380    |
| 246      | 0.09   | 11.62   | 0.760      | 0.780          | 0.380    |
| 247      | 0.09   | 11.67   | 0.760      | 0.780          | 0.380    |
| 248      | 0.09   | 11.67   | 0.760      | 0.780          | 0.380    |
| 249      | 0.09   | 11.72   | 0.760      | 0.780          | 0.380    |
| 250      | 0.09   | 11.74   | 0.760      | 0.780          | 0.380    |
| 251      | 0.08   | 11.77   | 0.760      | 0.780          | 0.390    |
| 252      | 0.08   | 11.82   | 0.760      | 0.780          | 0.390    |
| 253      | 0.08   | 11.85   | 0.760      | 0.780          | 0.390    |
| 254      | 0.08   | 11.88   | 0.760      | 0.780          | 0.390    |
| 255      | 0.08   | 11.92   | 0.760      | 0.780          | 0.390    |
| 256      | 0.08   | 11.96   | 0.760      | 0.780          | 0.390    |
| 257      | 0.08   | 11.98   | 0.770      | 0.780          | 0.390    |
| 258      | 0.08   | 12.01   | 0.770      | 0.780          | 0.390    |
| 259      | 0.08   | 12.04   | 0.770      | 0.780          | 0.390    |
| 260      | 0.08   | 12.07   | 0.770      | 0.780          | 0.390    |
| 261      | 0.08   | 12.11   | 0.770      | 0.780          | 0.390    |
| 262      | 0.08   | 12.18   | 0.770      | 0.780          | 0.390    |
| 263      | 0.08   | 12.21   | 0.770      | 0.780          | 0.390    |
| 264      | 0.08   | 12.23   | 0.770      | 0.780          | 0.400    |
| 265      | 0.08   | 12.27   | 0.770      | 0.780          | 0.400    |
| 266      | 0.08   | 12.30   | 0.770      | 0.780          | 0.400    |
| 267      | 0.08   | 12.35   | 0.780      | 0.780          | 0.400    |
| 268      | 0.08   | 12.37   | 0.780      | 0.780          | 0.400    |
| 269      | 0.08   | 12.41   | 0.780      | 0.790          | 0.400    |
| 270      | 0.08   | 12.46   | 0.780      | 0.790          | 0.400    |
| 271      | 0.08   | 12.49   | 0.780      | 0.790          | 0.400    |
| 272      | 0.08   | 12.55   | 0.780      | 0.790          | 0.400    |
| 273      | 0.08   | 12.56   | 0.780      | 0.790          | 0.400    |
| 274      | 0.08   | 12.58   | 0.780      | 0.790          | 0.400    |
| 275      | 0.08   | 12.56   | 0.780      | 0.790          | 0.400    |
| 276      | 0.08   |         | 0.780      | 0.790          |          |
|          |        | 12.69   |            |                | 0.400    |
| 277      | 0.08   | 12.76   | 0.780      | 0.790          | 0.400    |
| 278      | 0.08   | 12.80   | 0.780      | 0.790<br>0.800 | 0.400    |
| 279      | 0.08   | 12.85   | 0.780      |                | 0.410    |
| 280      | 0.08   | 12.89   | 0.780      | 0.800          | 0.410    |
| 281      | 0.08   | 12.93   | 0.780      | 0.800          | 0.420    |
| 282      | 0.08   | 12.99   | 0.780      | 0.800          | 0.430    |
| 283      | 0.08   | 13.00   | 0.790      | 0.800          | 0.440    |
| 284      | 0.08   | 13.04   | 0.790      | 0.800          | 0.440    |
| 285      | 0.08   | 13.07   | 0.800      | 0.800          | 0.440    |
| 286      | 0.08   | 13.14   | 0.800      | 0.800          | 0.450    |
| 287      | 0.08   | 13.15   | 0.800      | 0.800          | 0.460    |
| 288      | 0.08   | 13.20   | 0.800      | 0.800          | 0.460    |
| 289      | 0.08   | 13.30   | 0.800      | 0.800          | 0.460    |
| 290      | 0.07   | 13.34   | 0.800      | 0.800          | 0.470    |
| 291      | 0.07   | 13.42   | 0.800      | 0.800          | 0.480    |
| 292      | 0.07   | 13.45   | 0.800      | 0.800          | 0.510    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum          | Period | Freq SumUX | SumUX    | SumUY    | SumUZ    |
|------------------|--------|------------|----------|----------|----------|
| Unitless         | Sec    | Cyc/sec    | Unitless | Unitless | Unitless |
| 293              | 0.07   | 13.51      | 0.800    | 0.800    | 0.510    |
| 294              | 0.07   | 13.52      | 0.800    | 0.800    | 0.540    |
| 295              | 0.07   | 13.60      | 0.800    | 0.800    | 0.540    |
| 296              | 0.07   | 13.63      | 0.800    | 0.800    | 0.540    |
| 297              | 0.07   | 13.71      | 0.800    | 0.800    | 0.550    |
| 298              | 0.07   | 13.74      | 0.800    | 0.800    | 0.550    |
| 299              | 0.07   | 13.82      | 0.800    | 0.800    | 0.550    |
| 300              | 0.07   | 13.90      | 0.800    | 0.800    | 0.550    |
| 301              | 0.07   | 13.91      | 0.800    | 0.800    | 0.550    |
| 302              | 0.07   | 13.98      | 0.800    | 0.800    | 0.560    |
| 303              | 0.07   | 14.08      | 0.800    | 0.800    | 0.570    |
| 304              | 0.07   | 14.12      | 0.800    | 0.810    | 0.580    |
| 305              | 0.07   | 14.18      | 0.800    | 0.810    | 0.580    |
| 306              | 0.07   | 14.25      | 0.800    | 0.810    | 0.580    |
| 307              | 0.07   | 14.30      | 0.800    | 0.810    | 0.580    |
| 308              | 0.07   | 14.35      | 0.800    | 0.810    | 0.580    |
| 309              | 0.07   | 14.41      | 0.800    | 0.810    | 0.590    |
| 310              | 0.07   | 14.49      | 0.800    | 0.810    | 0.590    |
| 311              | 0.07   | 14.53      | 0.800    | 0.810    | 0.590    |
| 312              | 0.07   | 14.61      | 0.800    | 0.810    | 0.590    |
| 313              | 0.07   | 14.67      | 0.800    | 0.820    | 0.590    |
| 314              | 0.07   | 14.73      | 0.800    | 0.820    | 0.600    |
| 315              | 0.07   | 14.82      | 0.800    | 0.820    | 0.600    |
| 316              | 0.07   | 14.86      | 0.800    | 0.820    | 0.600    |
| 317              | 0.07   | 14.90      | 0.810    | 0.820    | 0.610    |
| 318              | 0.07   | 14.98      | 0.810    | 0.820    | 0.610    |
| 319              | 0.07   | 15.06      | 0.810    | 0.820    | 0.610    |
| 320              | 0.07   | 15.11      | 0.810    | 0.820    | 0.610    |
| 321              | 0.07   | 15.21      | 0.810    | 0.820    | 0.610    |
| 322              | 0.07   | 15.27      | 0.810    | 0.820    | 0.610    |
| 323              | 0.07   | 15.36      | 0.810    | 0.820    | 0.610    |
| 324              | 0.06   | 15.46      | 0.810    | 0.820    | 0.610    |
| 325              | 0.06   | 15.51      | 0.810    | 0.820    | 0.610    |
| 326              | 0.06   | 15.55      | 0.810    | 0.820    | 0.610    |
| 327              | 0.06   | 15.66      | 0.810    | 0.820    | 0.610    |
| 328              | 0.06   | 15.73      | 0.810    | 0.820    | 0.610    |
| 329              | 0.06   | 15.79      | 0.810    | 0.820    | 0.610    |
| 330              | 0.06   | 15.93      | 0.810    | 0.830    | 0.620    |
| 331              | 0.06   | 15.96      | 0.810    | 0.830    | 0.620    |
| 332              | 0.06   | 16.02      | 0.810    | 0.830    | 0.620    |
| 333              | 0.06   | 16.17      | 0.810    | 0.830    | 0.620    |
| 334              | 0.06   | 16.25      | 0.820    | 0.830    | 0.620    |
| 335              | 0.06   | 16.29      | 0.820    | 0.830    | 0.620    |
| 336              | 0.06   | 16.45      | 0.820    | 0.830    | 0.620    |
| 337              | 0.06   | 16.47      | 0.820    | 0.830    | 0.620    |
| 338              | 0.06   | 16.58      | 0.820    | 0.830    | 0.630    |
| 339              | 0.06   | 16.71      | 0.820    | 0.830    | 0.630    |
| 340              | 0.06   | 16.74      | 0.820    | 0.830    | 0.630    |
| J <del>+</del> U | 0.00   | 10.74      | 0.020    | 0.030    | 0.030    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq SumUX | SumUX    | SumUY    | SumUZ    |
|----------|--------|------------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec    | Unitless | Unitless | Unitless |
| 342      | 0.06   | 16.97      | 0.820    | 0.830    | 0.630    |
| 343      | 0.06   | 17.06      | 0.820    | 0.830    | 0.630    |
| 344      | 0.06   | 17.12      | 0.820    | 0.830    | 0.630    |
| 345      | 0.06   | 17.27      | 0.820    | 0.840    | 0.630    |
| 346      | 0.06   | 17.34      | 0.820    | 0.840    | 0.630    |
| 347      | 0.06   | 17.37      | 0.830    | 0.840    | 0.630    |
| 348      | 0.06   | 17.53      | 0.830    | 0.840    | 0.630    |
| 349      | 0.06   | 17.63      | 0.830    | 0.840    | 0.630    |
| 350      | 0.06   | 17.72      | 0.830    | 0.840    | 0.640    |
| 351      | 0.06   | 17.92      | 0.830    | 0.840    | 0.640    |
| 352      | 0.06   | 17.96      | 0.830    | 0.840    | 0.640    |
| 353      | 0.06   | 18.06      | 0.830    | 0.840    | 0.640    |
| 354      | 0.05   | 18.21      | 0.830    | 0.840    | 0.640    |
| 355      | 0.05   | 18.28      | 0.830    | 0.840    | 0.640    |
| 356      | 0.05   | 18.43      | 0.830    | 0.840    | 0.640    |
| 357      | 0.05   | 18.58      | 0.830    | 0.840    | 0.640    |
| 358      | 0.05   | 18.65      | 0.830    | 0.840    | 0.640    |
| 359      | 0.05   | 18.73      | 0.830    | 0.840    | 0.650    |
| 360      | 0.05   | 18.97      | 0.830    | 0.840    | 0.650    |
| 361      | 0.05   | 19.00      | 0.830    | 0.840    | 0.650    |
| 362      | 0.05   | 19.15      | 0.830    | 0.840    | 0.660    |
| 363      | 0.05   | 19.28      | 0.830    | 0.850    | 0.660    |
| 364      | 0.05   | 19.38      | 0.840    | 0.850    | 0.670    |
| 365      | 0.05   | 19.46      | 0.840    | 0.850    | 0.670    |
| 366      | 0.05   | 19.61      | 0.840    | 0.850    | 0.670    |
| 367      | 0.05   | 19.75      | 0.840    | 0.850    | 0.670    |
| 368      | 0.05   | 19.89      | 0.840    | 0.850    | 0.680    |
| 369      | 0.05   | 20.10      | 0.840    | 0.850    | 0.680    |
| 370      | 0.05   | 20.19      | 0.840    | 0.850    | 0.680    |
| 371      | 0.05   | 20.27      | 0.840    | 0.850    | 0.680    |
| 372      | 0.05   | 20.66      | 0.840    | 0.850    | 0.680    |
| 373      | 0.05   | 20.67      | 0.840    | 0.850    | 0.680    |
| 374      | 0.05   | 20.77      | 0.840    | 0.850    | 0.690    |
| 375      | 0.05   | 21.03      | 0.840    | 0.850    | 0.690    |
| 376      | 0.05   | 21.11      | 0.840    | 0.850    | 0.690    |
| 377      | 0.05   | 21.16      | 0.840    | 0.850    | 0.690    |
| 378      | 0.05   | 21.52      | 0.840    | 0.850    | 0.700    |
| 379      | 0.05   | 21.65      | 0.840    | 0.850    | 0.700    |
| 380      | 0.05   | 21.74      | 0.850    | 0.850    | 0.700    |
| 381      | 0.05   | 22.07      | 0.850    | 0.850    | 0.700    |
| 382      | 0.05   | 22.12      | 0.850    | 0.860    | 0.700    |
| 383      | 0.05   | 22.13      | 0.850    | 0.860    | 0.710    |
| 384      | 0.04   | 22.46      | 0.850    | 0.860    | 0.710    |
| 385      | 0.04   | 22.47      | 0.850    | 0.860    | 0.710    |
| 386      | 0.04   | 22.62      | 0.850    | 0.860    | 0.710    |
| 387      | 0.04   | 23.06      | 0.850    | 0.860    | 0.710    |
| 388      | 0.04   | 23.14      | 0.850    | 0.860    | 0.710    |
| 389      | 0.04   | 23.14      | 0.850    | 0.860    | 0.710    |
| ンロブ      | 0.04   | 23.20      | 0.650    | 0.000    | 0.710    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq           | SumUX    | SumUY    | SumUZ    |
|----------|--------|----------------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec        | Unitless | Unitless | Unitless |
| 391      | 0.04   | 23.78          | 0.850    | 0.860    | 0.720    |
| 392      | 0.04   | 23.89          | 0.860    | 0.860    | 0.720    |
| 393      | 0.04   | 24.29          | 0.860    | 0.860    | 0.720    |
| 394      | 0.04   | 24.40          | 0.860    | 0.860    | 0.720    |
| 395      | 0.04   | 24.49          | 0.860    | 0.860    | 0.720    |
| 396      | 0.04   | 25.03          | 0.860    | 0.860    | 0.720    |
| 397      | 0.04   | 25.15          | 0.860    | 0.860    | 0.720    |
| 398      | 0.04   | 25.20          | 0.860    | 0.860    | 0.720    |
| 399      | 0.04   | 25.71          | 0.860    | 0.860    | 0.720    |
| 400      | 0.04   | 25.78          | 0.860    | 0.870    | 0.720    |
| 401      | 0.04   | 25.87          | 0.860    | 0.870    | 0.730    |
| 402      | 0.04   | 26.34          | 0.860    | 0.870    | 0.730    |
| 403      | 0.04   | 26.37          | 0.870    | 0.870    | 0.730    |
| 404      | 0.04   | 26.67          | 0.870    | 0.870    | 0.730    |
| 405      | 0.04   | 27.29          | 0.870    | 0.870    | 0.730    |
| 406      | 0.04   | 27.38          | 0.870    | 0.870    | 0.730    |
| 407      | 0.04   | 27.57          | 0.870    | 0.870    | 0.730    |
| 408      | 0.04   | 28.12          | 0.870    | 0.870    | 0.730    |
| 409      | 0.04   | 28.14          | 0.870    | 0.870    | 0.730    |
| 410      | 0.04   | 28.31          | 0.870    | 0.870    | 0.730    |
| 411      | 0.03   | 29.05          | 0.870    | 0.870    | 0.740    |
| 412      | 0.03   | 29.13          | 0.870    | 0.870    | 0.740    |
| 413      | 0.03   | 29.22          | 0.870    | 0.870    | 0.740    |
| 414      | 0.03   | 30.05          | 0.870    | 0.870    | 0.740    |
| 415      | 0.03   | 30.07          | 0.870    | 0.870    | 0.740    |
| 416      | 0.03   | 30.22          | 0.870    | 0.870    | 0.740    |
| 417      | 0.03   | 31.08          | 0.870    | 0.870    | 0.740    |
| 418      | 0.03   | 31.15          | 0.870    | 0.870    | 0.750    |
| 419      | 0.03   | 31.37          | 0.870    | 0.880    | 0.750    |
| 420      | 0.03   | 32.21          | 0.880    | 0.880    | 0.750    |
| 421      | 0.03   | 32.22          | 0.880    | 0.880    | 0.750    |
| 422      | 0.03   | 32.45          | 0.880    | 0.880    | 0.750    |
| 423      | 0.03   | 33.36          | 0.880    | 0.880    | 0.750    |
| 424      | 0.03   | 33.49          | 0.880    | 0.880    | 0.750    |
| 425      | 0.03   | 33.61          | 0.880    | 0.880    | 0.750    |
| 426      | 0.03   | 34.65          | 0.880    | 0.880    | 0.750    |
| 427      | 0.03   | 34.78          | 0.880    | 0.880    | 0.760    |
| 428      | 0.03   | 34.86          | 0.880    | 0.880    | 0.760    |
| 429      | 0.03   | 36.11          | 0.880    | 0.880    | 0.760    |
| 430      | 0.03   | 36.33          | 0.880    | 0.880    | 0.760    |
| 431      | 0.03   | 36.54          | 0.880    | 0.880    | 0.760    |
| 432      | 0.03   | 37.69          | 0.880    | 0.880    | 0.760    |
| 433      | 0.03   | 37.69          | 0.890    | 0.880    | 0.760    |
| 434      | 0.03   | 38.06          | 0.890    | 0.890    | 0.760    |
| 434      | 0.03   | 38.06          |          | 0.890    | 0.760    |
|          |        | 39.42<br>39.56 | 0.890    |          | 0.760    |
| 436      | 0.03   |                | 0.890    | 0.890    |          |
| 437      | 0.03   | 39.79          | 0.890    | 0.890    | 0.770    |
| 438      | 0.02   | 41.06          | 0.890    | 0.890    | 0.770    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum    | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|------------|--------|---------|----------|----------|----------|
| Unitless   | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 440        | 0.02   | 41.51   | 0.890    | 0.890    | 0.770    |
| 441        | 0.02   | 43.20   | 0.890    | 0.890    | 0.770    |
| 442        | 0.02   | 43.23   | 0.890    | 0.890    | 0.770    |
| 443        | 0.02   | 43.60   | 0.890    | 0.890    | 0.780    |
| 444        | 0.02   | 45.44   | 0.890    | 0.890    | 0.780    |
| 445        | 0.02   | 45.48   | 0.900    | 0.900    | 0.780    |
| 446        | 0.02   | 45.99   | 0.900    | 0.900    | 0.780    |
| 447        | 0.02   | 47.86   | 0.900    | 0.900    | 0.780    |
| 448        | 0.02   | 48.35   | 0.900    | 0.900    | 0.790    |
| 449        | 0.02   | 48.53   | 0.900    | 0.900    | 0.790    |
| 450        | 0.02   | 50.80   | 0.900    | 0.900    | 0.790    |
| 451        | 0.02   | 50.96   | 0.900    | 0.900    | 0.790    |
| 452        | 0.02   | 51.25   | 0.900    | 0.900    | 0.790    |
| 453        | 0.02   | 53.97   | 0.900    | 0.910    | 0.790    |
| 454        | 0.02   | 54.17   | 0.900    | 0.910    | 0.790    |
| 455        | 0.02   | 54.75   | 0.900    | 0.910    | 0.800    |
|            |        |         |          |          |          |
| 456<br>457 | 0.02   | 57.18   | 0.900    | 0.910    | 0.800    |
|            | 0.02   | 57.39   | 0.900    | 0.910    | 0.800    |
| 458        | 0.02   | 58.08   | 0.910    | 0.910    | 0.810    |
| 459        | 0.02   | 61.80   | 0.910    | 0.910    | 0.810    |
| 460        | 0.02   | 61.98   | 0.910    | 0.910    | 0.810    |
| 461        | 0.02   | 62.17   | 0.910    | 0.910    | 0.820    |
| 462        | 0.02   | 66.39   | 0.910    | 0.910    | 0.820    |
| 463        | 0.01   | 66.69   | 0.910    | 0.910    | 0.820    |
| 464        | 0.01   | 66.95   | 0.910    | 0.910    | 0.830    |
| 465        | 0.01   | 72.43   | 0.910    | 0.910    | 0.830    |
| 466        | 0.01   | 72.85   | 0.910    | 0.920    | 0.830    |
| 467        | 0.01   | 73.53   | 0.910    | 0.920    | 0.830    |
| 468        | 0.01   | 78.62   | 0.910    | 0.920    | 0.840    |
| 469        | 0.01   | 79.10   | 0.910    | 0.920    | 0.840    |
| 470        | 0.01   | 80.26   | 0.910    | 0.920    | 0.840    |
| 471        | 0.01   | 87.27   | 0.910    | 0.920    | 0.850    |
| 472        | 0.01   | 87.96   | 0.920    | 0.920    | 0.850    |
| 473        | 0.01   | 88.16   | 0.920    | 0.920    | 0.850    |
| 474        | 0.01   | 96.45   | 0.930    | 0.920    | 0.850    |
| 475        | 0.01   | 96.91   | 0.930    | 0.930    | 0.860    |
| 476        | 0.01   | 97.52   | 0.930    | 0.930    | 0.870    |
| 477        | 0.01   | 107.52  | 0.930    | 0.940    | 0.870    |
| 478        | 0.01   | 108.80  | 0.930    | 0.940    | 0.890    |
| 479        | 0.01   | 109.35  | 0.940    | 0.940    | 0.890    |
| 480        | 0.01   | 123.25  | 0.950    | 0.940    | 0.900    |
| 481        | 0.01   | 123.62  | 0.950    | 0.940    | 0.920    |
| 482        | 0.01   | 125.80  | 0.950    | 0.950    | 0.920    |
| 483        | 0.01   | 139.93  | 0.950    | 0.950    | 0.940    |
| 484        | 0.01   | 144.16  | 0.960    | 0.950    | 0.940    |
| 485        | 0.01   | 144.50  | 0.960    | 0.960    | 0.940    |
| 486        | 0.01   | 165.83  | 0.960    | 0.970    | 0.940    |
| 487        | 0.01   | 167.00  | 0.960    | 0.980    | 0.950    |
| 488        | 0.01   | 170.54  | 0.980    | 0.980    | 0.950    |

Table 3.7.2-14: Frequencies and Modal Mass Ratios for the Reactor Building Cracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 489      | 0.01   | 197.77  | 0.990    | 0.980    | 0.950    |
| 490      | 0.01   | 199.07  | 0.990    | 0.990    | 0.950    |
| 491      | 0.00   | 220.56  | 0.990    | 0.990    | 0.950    |
| 492      | 0.00   | 265.28  | 0.990    | 0.990    | 0.970    |
| 493      | 0.00   | 266.17  | 0.990    | 0.990    | 0.970    |
| 494      | 0.00   | 267.98  | 0.990    | 0.990    | 0.980    |
| 495      | 0.00   | 382.57  | 0.990    | 1.000    | 0.980    |
| 496      | 0.00   | 384.04  | 1.000    | 1.000    | 0.980    |
| 497      | 0.00   | 416.17  | 1.000    | 1.000    | 0.980    |
| 498      | 0.00   | 611.76  | 1.000    | 1.000    | 1.000    |
| 499      | 0.00   | 723.42  | 1.000    | 1.000    | 1.000    |
| 500      | 0.00   | 749.18  | 1.000    | 1.000    | 1.000    |

Notes:

The first significant frequency in each direction is highlighted.

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 1        | 3.89   | 0.26    | 0.002    | 0.000    | 0.000    |
| 2        | 3.83   | 0.26    | 0.002    | 0.002    | 0.000    |
| 3        | 0.43   | 2.34    | 0.004    | 0.002    | 0.000    |
| 4        | 0.39   | 2.55    | 0.004    | 0.019    | 0.000    |
| 5        | 0.34   | 2.97    | 0.004    | 0.540    | 0.000    |
| 6        | 0.30   | 3.29    | 0.004    | 0.540    | 0.005    |
| 7        | 0.23   | 4.29    | 0.007    | 0.540    | 0.005    |
| 8        | 0.23   | 4.37    | 0.009    | 0.540    | 0.020    |
| 9        | 0.22   | 4.53    | 0.017    | 0.560    | 0.020    |
| 10       | 0.22   | 4.59    | 0.029    | 0.560    | 0.026    |
| 11       | 0.21   | 4.69    | 0.130    | 0.560    | 0.027    |
| 12       | 0.21   | 4.80    | 0.160    | 0.560    | 0.027    |
| 13       | 0.20   | 4.93    | 0.160    | 0.560    | 0.027    |
| 14       | 0.20   | 5.05    | 0.160    | 0.560    | 0.027    |
| 15       | 0.19   | 5.25    | 0.370    | 0.560    | 0.028    |
| 16       | 0.19   | 5.39    | 0.370    | 0.590    | 0.028    |
| 17       | 0.18   | 5.46    | 0.510    | 0.600    | 0.032    |
| 18       | 0.18   | 5.64    | 0.510    | 0.600    | 0.038    |
| 19       | 0.18   | 5.68    | 0.510    | 0.600    | 0.038    |
| 20       | 0.17   | 5.72    | 0.510    | 0.610    | 0.053    |
| 21       | 0.17   | 5.76    | 0.510    | 0.610    | 0.061    |
| 22       | 0.17   | 5.82    | 0.510    | 0.610    | 0.061    |
| 23       | 0.17   | 5.91    | 0.600    | 0.610    | 0.062    |
| 24       | 0.17   | 6.03    | 0.610    | 0.610    | 0.063    |
| 25       | 0.16   | 6.06    | 0.620    | 0.610    | 0.063    |
| 26       | 0.16   | 6.14    | 0.620    | 0.610    | 0.064    |
| 27       | 0.16   | 6.25    | 0.620    | 0.610    | 0.064    |
| 28       | 0.16   | 6.30    | 0.620    | 0.620    | 0.064    |
| 29       | 0.16   | 6.34    | 0.620    | 0.620    | 0.064    |
| 30       | 0.16   | 6.38    | 0.620    | 0.630    | 0.064    |
| 31       | 0.16   | 6.42    | 0.630    | 0.630    | 0.064    |
| 32       | 0.16   | 6.45    | 0.630    | 0.630    | 0.064    |
| 33       | 0.15   | 6.46    | 0.630    | 0.630    | 0.064    |
| 34       | 0.15   | 6.47    | 0.630    | 0.630    | 0.064    |
| 35       | 0.15   | 6.48    | 0.630    | 0.630    | 0.064    |
| 36       | 0.15   | 6.50    | 0.630    | 0.630    | 0.064    |
| 37       | 0.15   | 6.50    | 0.630    | 0.630    | 0.064    |
| 38       | 0.15   | 6.52    | 0.630    | 0.630    | 0.064    |
| 39       | 0.15   | 6.52    | 0.630    | 0.630    | 0.064    |
| 40       | 0.15   | 6.52    | 0.630    | 0.630    | 0.064    |
| 41       | 0.15   | 6.54    | 0.630    | 0.630    | 0.064    |
| 42       | 0.15   | 6.55    | 0.630    | 0.630    | 0.064    |
| 43       | 0.15   | 6.58    | 0.630    | 0.630    | 0.064    |
| 44       | 0.15   | 6.59    | 0.630    | 0.640    | 0.064    |
| 45       | 0.15   | 6.68    | 0.630    | 0.640    | 0.064    |
| 46       | 0.15   | 6.71    | 0.630    | 0.660    | 0.064    |
| 47       | 0.15   | 6.72    | 0.630    | 0.680    | 0.065    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 48       | 0.15   | 6.80    | 0.630    | 0.680    | 0.070    |
| 49       | 0.15   | 6.85    | 0.630    | 0.680    | 0.070    |
| 50       | 0.15   | 6.88    | 0.630    | 0.680    | 0.070    |
| 51       | 0.15   | 6.90    | 0.660    | 0.680    | 0.073    |
| 52       | 0.14   | 7.00    | 0.660    | 0.680    | 0.120    |
| 53       | 0.14   | 7.09    | 0.660    | 0.680    | 0.120    |
| 54       | 0.14   | 7.14    | 0.670    | 0.680    | 0.130    |
| 55       | 0.14   | 7.15    | 0.670    | 0.680    | 0.130    |
| 56       | 0.14   | 7.16    | 0.670    | 0.680    | 0.170    |
| 57       | 0.14   | 7.22    | 0.670    | 0.690    | 0.180    |
| 58       | 0.14   | 7.24    | 0.670    | 0.690    | 0.190    |
| 59       | 0.14   | 7.28    | 0.680    | 0.690    | 0.200    |
| 60       | 0.14   | 7.33    | 0.680    | 0.690    | 0.200    |
| 61       | 0.14   | 7.33    | 0.680    | 0.690    | 0.200    |
| 62       | 0.14   | 7.35    | 0.680    | 0.700    | 0.200    |
| 63       | 0.14   | 7.38    | 0.690    | 0.700    | 0.200    |
| 64       | 0.13   | 7.41    | 0.690    | 0.700    | 0.200    |
| 65       | 0.13   | 7.43    | 0.690    | 0.700    | 0.200    |
| 66       | 0.13   | 7.45    | 0.690    | 0.700    | 0.210    |
| 67       | 0.13   | 7.48    | 0.700    | 0.700    | 0.210    |
| 68       | 0.13   | 7.49    | 0.700    | 0.700    | 0.210    |
| 69       | 0.13   | 7.49    | 0.700    | 0.700    | 0.210    |
| 70       | 0.13   | 7.56    | 0.700    | 0.700    | 0.210    |
| 71       | 0.13   | 7.58    | 0.700    | 0.700    | 0.210    |
| 72       | 0.13   | 7.59    | 0.700    | 0.700    | 0.210    |
| 73       | 0.13   | 7.60    | 0.700    | 0.700    | 0.210    |
| 74       | 0.13   | 7.64    | 0.700    | 0.710    | 0.210    |
| 75       | 0.13   | 7.66    | 0.700    | 0.710    | 0.220    |
| 76       | 0.13   | 7.68    | 0.700    | 0.710    | 0.220    |
| 77       | 0.13   | 7.71    | 0.700    | 0.710    | 0.220    |
| 78       | 0.13   | 7.72    | 0.700    | 0.710    | 0.220    |
| 79       | 0.13   | 7.77    | 0.700    | 0.710    | 0.220    |
| 80       | 0.13   | 7.80    | 0.700    | 0.710    | 0.220    |
| 81       | 0.13   | 7.84    | 0.700    | 0.710    | 0.220    |
| 82       | 0.13   | 7.86    | 0.700    | 0.710    | 0.220    |
| 83       | 0.13   | 7.89    | 0.700    | 0.710    | 0.220    |
| 84       | 0.13   | 7.91    | 0.700    | 0.710    | 0.220    |
| 85       | 0.13   | 7.93    | 0.700    | 0.710    | 0.220    |
| 86       | 0.12   | 8.01    | 0.700    | 0.710    | 0.220    |
| 87       | 0.12   | 8.04    | 0.700    | 0.710    | 0.220    |
| 88       | 0.12   | 8.09    | 0.700    | 0.720    | 0.220    |
| 89       | 0.12   | 8.10    | 0.700    | 0.720    | 0.220    |
| 90       | 0.12   | 8.11    | 0.710    | 0.720    | 0.220    |
| 91       | 0.12   | 8.13    | 0.710    | 0.720    | 0.220    |
| 92       | 0.12   | 8.17    | 0.710    | 0.720    | 0.220    |
| 93       | 0.12   | 8.21    | 0.710    | 0.720    | 0.220    |
| 94       | 0.12   | 8.27    | 0.710    | 0.720    | 0.220    |
| 95       | 0.12   | 8.29    | 0.710    | 0.720    | 0.220    |
| 96       | 0.12   | 8.32    | 0.710    | 0.720    | 0.220    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 97       | 0.12   | 8.35    | 0.710    | 0.720    | 0.220    |
| 98       | 0.12   | 8.39    | 0.710    | 0.720    | 0.220    |
| 99       | 0.12   | 8.45    | 0.710    | 0.720    | 0.220    |
| 100      | 0.12   | 8.50    | 0.710    | 0.720    | 0.220    |
| 101      | 0.12   | 8.54    | 0.710    | 0.730    | 0.220    |
| 102      | 0.12   | 8.56    | 0.710    | 0.730    | 0.220    |
| 103      | 0.12   | 8.63    | 0.710    | 0.730    | 0.220    |
| 104      | 0.12   | 8.64    | 0.710    | 0.730    | 0.220    |
| 105      | 0.12   | 8.65    | 0.710    | 0.730    | 0.220    |
| 106      | 0.12   | 8.68    | 0.710    | 0.730    | 0.220    |
| 107      | 0.12   | 8.69    | 0.710    | 0.730    | 0.220    |
| 108      | 0.11   | 8.74    | 0.710    | 0.730    | 0.220    |
| 109      | 0.11   | 8.83    | 0.710    | 0.730    | 0.220    |
| 110      | 0.11   | 8.90    | 0.710    | 0.730    | 0.220    |
| 111      | 0.11   | 8.94    | 0.710    | 0.730    | 0.220    |
| 112      | 0.11   | 9.05    | 0.710    | 0.730    | 0.220    |
| 113      | 0.11   | 9.07    | 0.710    | 0.730    | 0.220    |
| 114      | 0.11   | 9.08    | 0.710    | 0.730    | 0.220    |
| 115      | 0.11   | 9.10    | 0.710    | 0.730    | 0.220    |
| 116      | 0.11   | 9.12    | 0.710    | 0.730    | 0.220    |
| 117      | 0.11   | 9.14    | 0.710    | 0.730    | 0.220    |
| 118      | 0.11   | 9.16    | 0.710    | 0.730    | 0.220    |
| 119      | 0.11   | 9.19    | 0.710    | 0.730    | 0.220    |
| 120      | 0.11   | 9.20    | 0.710    | 0.730    | 0.220    |
| 121      | 0.11   | 9.24    | 0.710    | 0.740    | 0.220    |
| 122      | 0.11   | 9.26    | 0.710    | 0.740    | 0.220    |
| 123      | 0.11   | 9.31    | 0.710    | 0.740    | 0.220    |
| 124      | 0.11   | 9.31    | 0.720    | 0.740    | 0.220    |
| 125      | 0.11   | 9.34    | 0.720    | 0.740    | 0.220    |
| 126      | 0.11   | 9.35    | 0.730    | 0.740    | 0.230    |
| 127      | 0.11   | 9.40    | 0.730    | 0.740    | 0.230    |
| 128      | 0.11   | 9.42    | 0.730    | 0.740    | 0.230    |
| 129      | 0.11   | 9.44    | 0.730    | 0.740    | 0.230    |
| 130      | 0.11   | 9.44    | 0.730    | 0.740    | 0.230    |
| 131      | 0.11   | 9.46    | 0.730    | 0.740    | 0.230    |
| 132      | 0.11   | 9.50    | 0.730    | 0.740    | 0.230    |
| 133      | 0.11   | 9.52    | 0.730    | 0.740    | 0.230    |
| 134      | 0.10   | 9.53    | 0.730    | 0.740    | 0.230    |
| 135      | 0.10   | 9.53    | 0.730    | 0.740    | 0.230    |
| 136      | 0.10   | 9.55    | 0.730    | 0.740    | 0.230    |
| 137      | 0.10   | 9.56    | 0.730    | 0.740    | 0.230    |
| 138      | 0.10   | 9.58    | 0.730    | 0.740    | 0.230    |
| 139      | 0.10   | 9.59    | 0.730    | 0.740    | 0.230    |
| 140      | 0.10   | 9.66    | 0.730    | 0.740    | 0.230    |
| 141      | 0.10   | 9.67    | 0.730    | 0.740    | 0.230    |
| 142      | 0.10   | 9.75    | 0.730    | 0.740    | 0.230    |
| 143      | 0.10   | 9.76    | 0.730    | 0.740    | 0.230    |
| 144      | 0.10   | 9.77    | 0.730    | 0.740    | 0.230    |
| 145      | 0.10   | 9.80    | 0.730    | 0.740    | 0.230    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 146      | 0.10   | 9.81    | 0.730    | 0.740    | 0.230    |
| 147      | 0.10   | 9.84    | 0.730    | 0.740    | 0.230    |
| 148      | 0.10   | 9.86    | 0.730    | 0.740    | 0.230    |
| 149      | 0.10   | 9.87    | 0.730    | 0.740    | 0.230    |
| 150      | 0.10   | 9.90    | 0.730    | 0.740    | 0.230    |
| 151      | 0.10   | 9.92    | 0.730    | 0.740    | 0.230    |
| 152      | 0.10   | 9.98    | 0.730    | 0.740    | 0.230    |
| 153      | 0.10   | 9.99    | 0.730    | 0.740    | 0.230    |
| 154      | 0.10   | 10.01   | 0.730    | 0.740    | 0.230    |
| 155      | 0.10   | 10.05   | 0.730    | 0.740    | 0.230    |
| 156      | 0.10   | 10.07   | 0.730    | 0.740    | 0.230    |
| 157      | 0.10   | 10.09   | 0.730    | 0.740    | 0.230    |
| 158      | 0.10   | 10.12   | 0.730    | 0.740    | 0.240    |
| 159      | 0.10   | 10.14   | 0.730    | 0.740    | 0.240    |
| 160      | 0.10   | 10.17   | 0.730    | 0.750    | 0.240    |
| 161      | 0.10   | 10.19   | 0.730    | 0.750    | 0.240    |
| 162      | 0.10   | 10.21   | 0.730    | 0.750    | 0.240    |
| 163      | 0.10   | 10.22   | 0.730    | 0.750    | 0.240    |
| 164      | 0.10   | 10.24   | 0.730    | 0.750    | 0.240    |
| 165      | 0.10   | 10.29   | 0.730    | 0.750    | 0.240    |
| 166      | 0.10   | 10.29   | 0.730    | 0.750    | 0.240    |
| 167      | 0.10   | 10.31   | 0.730    | 0.750    | 0.240    |
| 168      | 0.10   | 10.33   | 0.730    | 0.750    | 0.240    |
| 169      | 0.10   | 10.37   | 0.730    | 0.750    | 0.240    |
| 170      | 0.10   | 10.42   | 0.730    | 0.750    | 0.240    |
| 171      | 0.10   | 10.43   | 0.730    | 0.750    | 0.240    |
| 172      | 0.10   | 10.46   | 0.730    | 0.750    | 0.240    |
| 173      | 0.10   | 10.47   | 0.730    | 0.750    | 0.250    |
| 174      | 0.10   | 10.50   | 0.730    | 0.750    | 0.260    |
| 175      | 0.09   | 10.53   | 0.730    | 0.750    | 0.260    |
| 176      | 0.09   | 10.59   | 0.730    | 0.750    | 0.260    |
| 177      | 0.09   | 10.63   | 0.730    | 0.760    | 0.260    |
| 178      | 0.09   | 10.68   | 0.730    | 0.760    | 0.260    |
| 179      | 0.09   | 10.71   | 0.730    | 0.760    | 0.260    |
| 180      | 0.09   | 10.73   | 0.730    | 0.760    | 0.260    |
| 181      | 0.09   | 10.73   | 0.730    | 0.760    | 0.260    |
| 182      | 0.09   | 10.78   | 0.730    | 0.760    | 0.290    |
| 183      | 0.09   | 10.79   | 0.730    | 0.760    | 0.290    |
| 184      | 0.09   | 10.80   | 0.730    | 0.760    | 0.290    |
| 185      | 0.09   | 10.81   | 0.730    | 0.760    | 0.300    |
| 186      | 0.09   | 10.81   | 0.730    | 0.760    | 0.310    |
| 187      | 0.09   | 10.84   | 0.730    | 0.760    | 0.310    |
| 188      | 0.09   | 10.85   | 0.740    | 0.760    | 0.310    |
| 189      | 0.09   | 10.88   | 0.740    | 0.760    | 0.310    |
| 190      | 0.09   | 10.90   | 0.740    | 0.760    | 0.310    |
| 191      | 0.09   | 10.91   | 0.740    | 0.760    | 0.310    |
| 192      | 0.09   | 10.92   | 0.740    | 0.760    | 0.320    |
| 193      | 0.09   | 10.94   | 0.740    | 0.760    | 0.320    |
| 194      | 0.09   | 10.98   | 0.740    | 0.760    | 0.320    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 195      | 0.09   | 11.00   | 0.740    | 0.760    | 0.320    |
| 196      | 0.09   | 11.00   | 0.740    | 0.760    | 0.330    |
| 197      | 0.09   | 11.02   | 0.740    | 0.760    | 0.330    |
| 198      | 0.09   | 11.05   | 0.740    | 0.760    | 0.330    |
| 199      | 0.09   | 11.07   | 0.740    | 0.760    | 0.330    |
| 200      | 0.09   | 11.07   | 0.740    | 0.760    | 0.330    |
| 201      | 0.09   | 11.09   | 0.740    | 0.760    | 0.330    |
| 202      | 0.09   | 11.11   | 0.740    | 0.760    | 0.330    |
| 203      | 0.09   | 11.12   | 0.740    | 0.760    | 0.330    |
| 204      | 0.09   | 11.15   | 0.740    | 0.760    | 0.340    |
| 205      | 0.09   | 11.18   | 0.740    | 0.760    | 0.340    |
| 206      | 0.09   | 11.19   | 0.740    | 0.760    | 0.340    |
| 207      | 0.09   | 11.21   | 0.740    | 0.760    | 0.340    |
| 208      | 0.09   | 11.23   | 0.740    | 0.760    | 0.340    |
| 209      | 0.09   | 11.25   | 0.740    | 0.760    | 0.340    |
| 210      | 0.09   | 11.27   | 0.740    | 0.760    | 0.340    |
| 211      | 0.09   | 11.28   | 0.740    | 0.760    | 0.340    |
| 212      | 0.09   | 11.30   | 0.740    | 0.760    | 0.340    |
| 213      | 0.09   | 11.34   | 0.740    | 0.760    | 0.340    |
| 214      | 0.09   | 11.35   | 0.740    | 0.770    | 0.340    |
| 215      | 0.09   | 11.38   | 0.740    | 0.770    | 0.350    |
| 216      | 0.09   | 11.41   | 0.740    | 0.770    | 0.350    |
| 217      | 0.09   | 11.41   | 0.740    | 0.770    | 0.350    |
| 218      | 0.09   | 11.45   | 0.750    | 0.770    | 0.350    |
| 219      | 0.09   | 11.47   | 0.750    | 0.770    | 0.350    |
| 220      | 0.09   | 11.49   | 0.750    | 0.770    | 0.350    |
| 221      | 0.09   | 11.53   | 0.750    | 0.770    | 0.360    |
| 222      | 0.09   | 11.54   | 0.750    | 0.770    | 0.360    |
| 223      | 0.09   | 11.55   | 0.750    | 0.770    | 0.370    |
| 224      | 0.09   | 11.59   | 0.750    | 0.770    | 0.370    |
| 225      | 0.09   | 11.61   | 0.750    | 0.770    | 0.370    |
| 226      | 0.09   | 11.64   | 0.750    | 0.770    | 0.370    |
| 227      | 0.09   | 11.66   | 0.750    | 0.770    | 0.370    |
| 228      | 0.09   | 11.68   | 0.750    | 0.770    | 0.370    |
| 229      | 0.09   | 11.70   | 0.760    | 0.770    | 0.370    |
| 230      | 0.09   | 11.72   | 0.760    | 0.770    | 0.370    |
| 231      | 0.09   | 11.75   | 0.760    | 0.770    | 0.370    |
| 232      | 0.09   | 11.76   | 0.760    | 0.770    | 0.370    |
| 233      | 0.08   | 11.82   | 0.760    | 0.770    | 0.370    |
| 234      | 0.08   | 11.84   | 0.760    | 0.770    | 0.370    |
| 235      | 0.08   | 11.86   | 0.760    | 0.770    | 0.370    |
| 236      | 0.08   | 11.89   | 0.760    | 0.770    | 0.370    |
| 237      | 0.08   | 11.92   | 0.760    | 0.770    | 0.380    |
| 238      | 0.08   | 11.94   | 0.760    | 0.770    | 0.380    |
| 239      | 0.08   | 11.97   | 0.760    | 0.770    | 0.380    |
| 240      | 0.08   | 12.01   | 0.760    | 0.770    | 0.380    |
| 241      | 0.08   | 12.03   | 0.760    | 0.770    | 0.380    |
| 242      | 0.08   | 12.06   | 0.760    | 0.770    | 0.380    |
| 243      | 0.08   | 12.09   | 0.760    | 0.780    | 0.380    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 244      | 0.08   | 12.09   | 0.770    | 0.780    | 0.380    |
| 245      | 0.08   | 12.17   | 0.770    | 0.780    | 0.380    |
| 246      | 0.08   | 12.21   | 0.770    | 0.780    | 0.380    |
| 247      | 0.08   | 12.22   | 0.770    | 0.780    | 0.380    |
| 248      | 0.08   | 12.26   | 0.770    | 0.780    | 0.380    |
| 249      | 0.08   | 12.32   | 0.770    | 0.780    | 0.380    |
| 250      | 0.08   | 12.33   | 0.770    | 0.780    | 0.380    |
| 251      | 0.08   | 12.35   | 0.770    | 0.780    | 0.380    |
| 252      | 0.08   | 12.38   | 0.780    | 0.780    | 0.380    |
| 253      | 0.08   | 12.42   | 0.780    | 0.780    | 0.380    |
| 254      | 0.08   | 12.48   | 0.780    | 0.780    | 0.380    |
| 255      | 0.08   | 12.49   | 0.780    | 0.780    | 0.380    |
| 256      | 0.08   | 12.52   | 0.780    | 0.790    | 0.390    |
| 257      | 0.08   | 12.55   | 0.780    | 0.790    | 0.390    |
| 258      | 0.08   | 12.59   | 0.780    | 0.790    | 0.390    |
| 259      | 0.08   | 12.61   | 0.780    | 0.790    | 0.390    |
| 260      | 0.08   | 12.69   | 0.780    | 0.790    | 0.390    |
| 261      | 0.08   | 12.72   | 0.780    | 0.790    | 0.390    |
| 262      | 0.08   | 12.76   | 0.780    | 0.790    | 0.390    |
| 263      | 0.08   | 12.79   | 0.780    | 0.790    | 0.390    |
| 264      | 0.08   | 12.85   | 0.780    | 0.790    | 0.390    |
| 265      | 0.08   | 12.86   | 0.780    | 0.790    | 0.390    |
| 266      | 0.08   | 12.91   | 0.780    | 0.790    | 0.400    |
| 267      | 0.08   | 12.97   | 0.780    | 0.790    | 0.400    |
| 268      | 0.08   | 13.00   | 0.780    | 0.790    | 0.400    |
| 269      | 0.08   | 13.05   | 0.790    | 0.790    | 0.400    |
| 270      | 0.08   | 13.07   | 0.790    | 0.790    | 0.400    |
| 271      | 0.08   | 13.12   | 0.790    | 0.800    | 0.400    |
| 272      | 0.08   | 13.15   | 0.800    | 0.800    | 0.400    |
| 273      | 0.08   | 13.18   | 0.800    | 0.800    | 0.400    |
| 274      | 0.08   | 13.24   | 0.800    | 0.800    | 0.410    |
| 275      | 0.08   | 13.31   | 0.800    | 0.800    | 0.430    |
| 276      | 0.07   | 13.35   | 0.800    | 0.800    | 0.490    |
| 277      | 0.07   | 13.36   | 0.800    | 0.800    | 0.490    |
| 278      | 0.07   | 13.43   | 0.800    | 0.800    | 0.520    |
| 279      | 0.07   | 13.47   | 0.800    | 0.800    | 0.540    |
| 280      | 0.07   | 13.49   | 0.800    | 0.800    | 0.540    |
| 281      | 0.07   | 13.54   | 0.800    | 0.800    | 0.560    |
| 282      | 0.07   | 13.61   | 0.800    | 0.800    | 0.560    |
| 283      | 0.07   | 13.68   | 0.800    | 0.800    | 0.560    |
| 284      | 0.07   | 13.74   | 0.800    | 0.800    | 0.560    |
| 285      | 0.07   | 13.76   | 0.800    | 0.800    | 0.560    |
| 286      | 0.07   | 13.82   | 0.800    | 0.800    | 0.570    |
| 287      | 0.07   | 13.86   | 0.800    | 0.800    | 0.570    |
| 288      | 0.07   | 13.91   | 0.800    | 0.800    | 0.570    |
| 289      | 0.07   | 13.94   | 0.800    | 0.800    | 0.570    |
| 290      | 0.07   | 14.05   | 0.800    | 0.800    | 0.570    |
| 291      | 0.07   | 14.08   | 0.800    | 0.800    | 0.580    |
| 292      | 0.07   | 14.11   | 0.800    | 0.800    | 0.580    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 293      | 0.07   | 14.16   | 0.800    | 0.800    | 0.590    |
| 294      | 0.07   | 14.26   | 0.800    | 0.800    | 0.590    |
| 295      | 0.07   | 14.29   | 0.800    | 0.800    | 0.590    |
| 296      | 0.07   | 14.36   | 0.800    | 0.800    | 0.590    |
| 297      | 0.07   | 14.42   | 0.800    | 0.800    | 0.600    |
| 298      | 0.07   | 14.44   | 0.800    | 0.800    | 0.600    |
| 299      | 0.07   | 14.51   | 0.800    | 0.810    | 0.600    |
| 300      | 0.07   | 14.57   | 0.800    | 0.810    | 0.600    |
| 301      | 0.07   | 14.60   | 0.800    | 0.810    | 0.600    |
| 302      | 0.07   | 14.67   | 0.800    | 0.810    | 0.600    |
| 303      | 0.07   | 14.75   | 0.800    | 0.810    | 0.600    |
| 304      | 0.07   | 14.84   | 0.800    | 0.810    | 0.600    |
| 305      | 0.07   | 14.90   | 0.800    | 0.810    | 0.610    |
| 306      | 0.07   | 14.98   | 0.800    | 0.810    | 0.610    |
| 307      | 0.07   | 15.01   | 0.800    | 0.810    | 0.610    |
| 308      | 0.07   | 15.06   | 0.800    | 0.810    | 0.610    |
| 309      | 0.07   | 15.15   | 0.800    | 0.810    | 0.610    |
| 310      | 0.07   | 15.22   | 0.810    | 0.810    | 0.610    |
| 311      | 0.07   | 15.28   | 0.810    | 0.820    | 0.610    |
| 312      | 0.07   | 15.34   | 0.810    | 0.820    | 0.610    |
| 313      | 0.06   | 15.43   | 0.810    | 0.820    | 0.610    |
| 314      | 0.06   | 15.46   | 0.810    | 0.820    | 0.620    |
| 315      | 0.06   | 15.55   | 0.810    | 0.820    | 0.620    |
| 316      | 0.06   | 15.61   | 0.810    | 0.820    | 0.620    |
| 317      | 0.06   | 15.66   | 0.810    | 0.820    | 0.620    |
| 317      | 0.06   | 15.78   | 0.810    | 0.820    | 0.620    |
| 319      | 0.06   | 15.80   | 0.810    | 0.820    | 0.620    |
| 320      | 0.06   | 15.91   | 0.810    | 0.820    | 0.620    |
|          | 0.06   |         |          |          | 0.620    |
| 321      |        | 16.01   | 0.810    | 0.820    |          |
| 322      | 0.06   | 16.05   | 0.810    | 0.820    | 0.620    |
| 323      | 0.06   | 16.13   | 0.810    | 0.820    | 0.630    |
| 324      | 0.06   | 16.24   | 0.810    | 0.820    | 0.630    |
| 325      | 0.06   | 16.27   | 0.820    | 0.820    | 0.630    |
| 326      | 0.06   | 16.37   | 0.820    | 0.820    | 0.630    |
| 327      | 0.06   | 16.44   | 0.820    | 0.830    | 0.630    |
| 328      | 0.06   | 16.48   | 0.820    | 0.830    | 0.630    |
| 329      | 0.06   | 16.59   | 0.820    | 0.830    | 0.640    |
| 330      | 0.06   | 16.73   | 0.820    | 0.830    | 0.640    |
| 331      | 0.06   | 16.78   | 0.820    | 0.830    | 0.640    |
| 332      | 0.06   | 16.88   | 0.820    | 0.830    | 0.640    |
| 333      | 0.06   | 17.01   | 0.820    | 0.830    | 0.640    |
| 334      | 0.06   | 17.03   | 0.820    | 0.830    | 0.640    |
| 335      | 0.06   | 17.16   | 0.820    | 0.830    | 0.640    |
| 336      | 0.06   | 17.28   | 0.820    | 0.830    | 0.640    |
| 337      | 0.06   | 17.31   | 0.820    | 0.830    | 0.650    |
| 338      | 0.06   | 17.39   | 0.820    | 0.830    | 0.650    |
| 339      | 0.06   | 17.55   | 0.820    | 0.830    | 0.650    |
| 340      | 0.06   | 17.59   | 0.830    | 0.830    | 0.650    |
| 341      | 0.06   | 17.68   | 0.830    | 0.840    | 0.650    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum    | Period | Freq           | SumUX          | SumUY          | SumUZ          |
|------------|--------|----------------|----------------|----------------|----------------|
| Unitless   | Sec    | Cyc/sec        | Unitless       | Unitless       | Unitless       |
| 342        | 0.06   | 17.82          | 0.830          | 0.840          | 0.650          |
| 343        | 0.06   | 17.94          | 0.830          | 0.840          | 0.650          |
| 344        | 0.06   | 18.05          | 0.830          | 0.840          | 0.650          |
| 345        | 0.06   | 18.15          | 0.830          | 0.840          | 0.650          |
| 346        | 0.05   | 18.19          | 0.830          | 0.840          | 0.650          |
| 347        | 0.05   | 18.27          | 0.830          | 0.840          | 0.650          |
| 348        | 0.05   | 18.49          | 0.830          | 0.840          | 0.660          |
| 349        | 0.05   | 18.52          | 0.830          | 0.840          | 0.660          |
| 350        | 0.05   | 18.69          | 0.830          | 0.840          | 0.660          |
| 351        | 0.05   | 18.79          | 0.830          | 0.840          | 0.660          |
| 352        | 0.05   | 18.88          | 0.830          | 0.840          | 0.660          |
| 353        | 0.05   | 19.05          | 0.830          | 0.840          | 0.660          |
| 354        | 0.05   | 19.18          | 0.830          | 0.840          | 0.670          |
| 355        | 0.05   | 19.22          | 0.830          | 0.840          | 0.670          |
| 356        | 0.05   | 19.26          | 0.840          | 0.840          | 0.670          |
| 357        | 0.05   | 19.51          | 0.840          | 0.840          | 0.670          |
| 358        | 0.05   | 19.54          | 0.840          | 0.840          | 0.670          |
| 359        | 0.05   | 19.69          | 0.840          | 0.840          | 0.680          |
| 360        | 0.05   | 19.85          | 0.840          | 0.850          | 0.680          |
| 361        | 0.05   | 19.89          | 0.840          | 0.850          | 0.680          |
| 362        | 0.05   | 20.10          | 0.840          | 0.850          | 0.680          |
| 363        | 0.05   | 20.28          | 0.840          | 0.850          | 0.680          |
| 364        | 0.05   | 20.43          | 0.840          | 0.850          | 0.680          |
| 365        | 0.05   | 20.50          | 0.840          | 0.850          | 0.690          |
| 366        | 0.05   | 20.77          | 0.840          | 0.850          | 0.690          |
| 367        | 0.05   | 20.83          | 0.840          | 0.850          | 0.690          |
| 368        | 0.05   | 20.92          | 0.840          | 0.850          | 0.690          |
| 369        | 0.05   | 21.20          | 0.840          | 0.850          | 0.690          |
| 370        | 0.05   | 21.25          | 0.840          | 0.850          | 0.690          |
| 371        | 0.05   | 21.35          | 0.840          | 0.850          | 0.690          |
| 372        | 0.05   | 21.66          | 0.840          | 0.850          | 0.690          |
| 373        | 0.05   | 21.73          | 0.850          | 0.850          | 0.690          |
| 374        | 0.05   | 21.78          | 0.850          | 0.850          | 0.690          |
| 375        | 0.05   | 22.16          | 0.850          | 0.850          | 0.690          |
| 376        | 0.04   | 22.25          | 0.850          | 0.850          | 0.700          |
| 377        | 0.04   | 22.29          | 0.850          | 0.850          | 0.700          |
| 378        | 0.04   | 22.58          | 0.850          | 0.850          | 0.700          |
| 379        | 0.04   | 22.59          | 0.850          | 0.860          | 0.700          |
| 380        | 0.04   | 22.84          | 0.850          | 0.860          | 0.700          |
| 381        | 0.04   | 23.07          | 0.850          | 0.860          | 0.700          |
| 382        | 0.04   | 23.21          | 0.850          | 0.860          | 0.700          |
| 383        | 0.04   | 23.30          | 0.850          | 0.860          | 0.700          |
| 384        | 0.04   | 23.69          | 0.850          | 0.860          | 0.710          |
| 385        | 0.04   | 23.81          | 0.850          | 0.860          | 0.710          |
|            | 0.04   | 23.81          | 0.850          |                | 0.710          |
| 386        |        |                |                | 0.860          |                |
| 387        | 0.04   | 24.35          | 0.850          | 0.860          | 0.710          |
| 388        | 0.04   | 24.41          | 0.850          | 0.860          | 0.710          |
| 389<br>390 | 0.04   | 24.50<br>24.88 | 0.850<br>0.850 | 0.860<br>0.860 | 0.720<br>0.720 |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 391      | 0.04   | 25.00   | 0.860    | 0.860    | 0.720    |
| 392      | 0.04   | 25.05   | 0.860    | 0.860    | 0.720    |
| 393      | 0.04   | 25.67   | 0.860    | 0.860    | 0.720    |
| 394      | 0.04   | 25.78   | 0.860    | 0.860    | 0.720    |
| 395      | 0.04   | 25.82   | 0.860    | 0.860    | 0.730    |
| 396      | 0.04   | 26.18   | 0.860    | 0.870    | 0.730    |
| 397      | 0.04   | 26.26   | 0.860    | 0.870    | 0.730    |
| 398      | 0.04   | 26.44   | 0.860    | 0.870    | 0.730    |
| 399      | 0.04   | 27.03   | 0.860    | 0.870    | 0.730    |
| 400      | 0.04   | 27.14   | 0.860    | 0.870    | 0.730    |
| 401      | 0.04   | 27.24   | 0.860    | 0.870    | 0.730    |
| 402      | 0.04   | 27.89   | 0.870    | 0.870    | 0.730    |
| 403      | 0.04   | 27.96   | 0.870    | 0.870    | 0.730    |
| 404      | 0.04   | 28.04   | 0.870    | 0.870    | 0.730    |
| 405      | 0.03   | 28.73   | 0.870    | 0.870    | 0.730    |
| 406      | 0.03   | 28.80   | 0.870    | 0.870    | 0.730    |
| 407      | 0.03   | 28.98   | 0.870    | 0.870    | 0.740    |
| 408      | 0.03   | 29.56   | 0.870    | 0.870    | 0.740    |
| 409      | 0.03   | 29.65   | 0.870    | 0.870    | 0.740    |
| 410      | 0.03   | 29.88   | 0.870    | 0.870    | 0.740    |
| 411      | 0.03   | 30.52   | 0.870    | 0.870    | 0.740    |
| 412      | 0.03   | 30.60   | 0.870    | 0.870    | 0.740    |
| 413      | 0.03   | 30.75   | 0.870    | 0.870    | 0.740    |
| 414      | 0.03   | 31.54   | 0.870    | 0.870    | 0.740    |
| 415      | 0.03   | 31.79   | 0.870    | 0.870    | 0.740    |
| 416      | 0.03   | 31.91   | 0.870    | 0.880    | 0.750    |
| 417      | 0.03   | 32.69   | 0.870    | 0.880    | 0.750    |
| 418      | 0.03   | 32.73   | 0.880    | 0.880    | 0.750    |
| 419      | 0.03   | 32.97   | 0.880    | 0.880    | 0.750    |
| 420      | 0.03   | 33.79   | 0.880    | 0.880    | 0.750    |
| 421      | 0.03   | 34.01   | 0.880    | 0.880    | 0.750    |
| 422      | 0.03   | 34.06   | 0.880    | 0.880    | 0.750    |
| 423      | 0.03   | 35.00   | 0.880    | 0.880    | 0.760    |
| 424      | 0.03   | 35.26   | 0.880    | 0.880    | 0.760    |
| 425      | 0.03   | 35.38   | 0.880    | 0.880    | 0.760    |
| 426      | 0.03   | 36.33   | 0.880    | 0.880    | 0.760    |
| 427      | 0.03   | 36.58   | 0.880    | 0.880    | 0.760    |
| 428      | 0.03   | 36.77   | 0.880    | 0.880    | 0.760    |
| 429      | 0.03   | 38.00   | 0.880    | 0.890    | 0.760    |
| 430      | 0.03   | 38.09   | 0.890    | 0.890    | 0.760    |
| 431      | 0.03   | 38.34   | 0.890    | 0.890    | 0.760    |
| 432      | 0.03   | 39.48   | 0.890    | 0.890    | 0.760    |
| 433      | 0.03   | 39.60   | 0.890    | 0.890    | 0.770    |
| 434      | 0.03   | 39.87   | 0.890    | 0.890    | 0.770    |
| 435      | 0.03   | 41.54   | 0.890    | 0.890    | 0.770    |
| 436      | 0.02   | 41.61   | 0.890    | 0.890    | 0.770    |
| 437      | 0.02   | 41.99   | 0.890    | 0.890    | 0.770    |
| 438      | 0.02   | 43.16   | 0.890    | 0.890    | 0.770    |
| 439      | 0.02   | 43.16   | 0.890    | 0.890    | 0.770    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 440      | 0.02   | 43.77   | 0.890    | 0.890    | 0.780    |
| 441      | 0.02   | 45.27   | 0.900    | 0.890    | 0.780    |
| 442      | 0.02   | 45.69   | 0.900    | 0.890    | 0.780    |
| 443      | 0.02   | 45.95   | 0.900    | 0.890    | 0.780    |
| 444      | 0.02   | 47.97   | 0.900    | 0.890    | 0.780    |
| 445      | 0.02   | 48.14   | 0.900    | 0.890    | 0.790    |
| 446      | 0.02   | 48.43   | 0.900    | 0.900    | 0.790    |
| 447      | 0.02   | 50.31   | 0.900    | 0.900    | 0.790    |
| 448      | 0.02   | 50.51   | 0.900    | 0.900    | 0.790    |
| 449      | 0.02   | 51.10   | 0.900    | 0.900    | 0.790    |
| 450      | 0.02   | 53.26   | 0.900    | 0.910    | 0.790    |
| 451      | 0.02   | 53.64   | 0.900    | 0.910    | 0.790    |
| 452      | 0.02   | 54.16   | 0.900    | 0.910    | 0.800    |
| 453      | 0.02   | 56.71   | 0.900    | 0.910    | 0.800    |
| 454      | 0.02   | 56.85   | 0.900    | 0.910    | 0.800    |
| 455      | 0.02   | 57.56   | 0.900    | 0.910    | 0.810    |
| 456      | 0.02   | 60.07   | 0.900    | 0.910    | 0.810    |
| 457      | 0.02   | 60.96   | 0.910    | 0.910    | 0.810    |
| 458      | 0.02   | 61.36   | 0.910    | 0.910    | 0.820    |
| 459      | 0.02   | 64.46   | 0.910    | 0.910    | 0.820    |
| 460      | 0.02   | 65.14   | 0.910    | 0.910    | 0.820    |
| 461      | 0.02   | 65.32   | 0.910    | 0.910    | 0.820    |
| 462      | 0.01   | 69.93   | 0.910    | 0.910    | 0.830    |
| 463      | 0.01   | 70.14   | 0.910    | 0.910    | 0.830    |
| 464      | 0.01   | 70.69   | 0.910    | 0.910    | 0.830    |
| 465      | 0.01   | 76.15   | 0.910    | 0.910    | 0.840    |
| 466      | 0.01   | 76.63   | 0.910    | 0.910    | 0.840    |
| 467      | 0.01   | 76.80   | 0.910    | 0.920    | 0.840    |
| 468      | 0.01   | 83.24   | 0.910    | 0.920    | 0.850    |
| 469      | 0.01   | 84.12   | 0.920    | 0.920    | 0.850    |
| 470      | 0.01   | 84.52   | 0.920    | 0.920    | 0.850    |
| 471      | 0.01   | 91.57   | 0.920    | 0.920    | 0.860    |
| 472      | 0.01   | 92.09   | 0.930    | 0.920    | 0.860    |
| 473      | 0.01   | 92.40   | 0.930    | 0.930    | 0.860    |
| 474      | 0.01   | 100.35  | 0.930    | 0.930    | 0.860    |
| 475      | 0.01   | 101.02  | 0.930    | 0.940    | 0.860    |
| 476      | 0.01   | 102.74  | 0.930    | 0.940    | 0.870    |
| 477      | 0.01   | 112.94  | 0.940    | 0.940    | 0.880    |
| 478      | 0.01   | 113.22  | 0.950    | 0.940    | 0.880    |
| 479      | 0.01   | 113.55  | 0.950    | 0.940    | 0.900    |
| 480      | 0.01   | 127.67  | 0.950    | 0.940    | 0.930    |
| 481      | 0.01   | 129.77  | 0.950    | 0.940    | 0.930    |
| 482      | 0.01   | 131.58  | 0.950    | 0.950    | 0.930    |
| 483      | 0.01   | 146.75  | 0.950    | 0.950    | 0.940    |
| 484      | 0.01   | 150.13  | 0.950    | 0.970    | 0.940    |
| 485      | 0.01   | 150.93  | 0.970    | 0.970    | 0.940    |
| 486      | 0.01   | 174.14  | 0.970    | 0.990    | 0.940    |
| 487      | 0.01   | 175.71  | 0.990    | 0.990    | 0.940    |
| 488      | 0.01   | 178.38  | 0.990    | 0.990    | 0.950    |

Table 3.7.2-15: Frequencies and Modal Mass Ratios for the Reactor Building Uncracked Model (Continued)

| StepNum  | Period | Freq    | SumUX    | SumUY    | SumUZ    |
|----------|--------|---------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec | Unitless | Unitless | Unitless |
| 489      | 0.00   | 205.64  | 0.990    | 0.990    | 0.950    |
| 490      | 0.00   | 209.21  | 0.990    | 0.990    | 0.950    |
| 491      | 0.00   | 236.43  | 0.990    | 0.990    | 0.960    |
| 492      | 0.00   | 275.59  | 0.990    | 0.990    | 0.980    |
| 493      | 0.00   | 278.74  | 1.000    | 0.990    | 0.980    |
| 494      | 0.00   | 282.50  | 1.000    | 1.000    | 0.980    |
| 495      | 0.00   | 392.69  | 1.000    | 1.000    | 0.980    |
| 496      | 0.00   | 392.99  | 1.000    | 1.000    | 0.980    |
| 497      | 0.00   | 462.51  | 1.000    | 1.000    | 0.990    |
| 498      | 0.00   | 631.34  | 1.000    | 1.000    | 1.000    |
| 499      | 0.00   | 762.20  | 1.000    | 1.000    | 1.000    |
| 500      | 0.00   | 788.20  | 1.000    | 1.000    | 1.000    |

Notes:

The first significant frequency in each direction is highlighted.

Table 3.7.2-16: Frequencies and Modal Mass Ratios for the Control Building Cracked Model

| Step Num | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 1        | 0.49   | 2.02      | 0.001    | 0.000    | 0.000    |
| 2        | 0.45   | 2.20      | 0.002    | 0.000    | 0.000    |
| 3        | 0.41   | 2.41      | 0.002    | 0.000    | 0.000    |
| 4        | 0.41   | 2.43      | 0.002    | 0.000    | 0.000    |
| 5        | 0.41   | 2.43      | 0.002    | 0.000    | 0.000    |
| 6        | 0.40   | 2.49      | 0.002    | 0.000    | 0.000    |
| 7        | 0.40   | 2.51      | 0.002    | 0.000    | 0.000    |
| 8        | 0.40   | 2.52      | 0.002    | 0.000    | 0.000    |
| 9        | 0.39   | 2.56      | 0.002    | 0.000    | 0.000    |
| 10       | 0.36   | 2.76      | 0.002    | 0.000    | 0.000    |
| 11       | 0.36   | 2.79      | 0.002    | 0.000    | 0.000    |
| 12       | 0.35   | 2.82      | 0.002    | 0.000    | 0.000    |
| 13       | 0.35   | 2.85      | 0.003    | 0.000    | 0.000    |
| 14       | 0.32   | 3.16      | 0.003    | 0.000    | 0.000    |
| 15       | 0.31   | 3.24      | 0.003    | 0.000    | 0.000    |
| 16       | 0.30   | 3.29      | 0.003    | 0.000    | 0.000    |
| 17       | 0.30   | 3.29      | 0.003    | 0.000    | 0.000    |
| 18       | 0.30   | 3.31      | 0.003    | 0.000    | 0.000    |
| 19       | 0.30   | 3.32      | 0.003    | 0.000    | 0.000    |
| 20       | 0.30   | 3.32      | 0.003    | 0.000    | 0.000    |
| 21       | 0.27   | 3.70      | 0.003    | 0.000    | 0.000    |
| 22       | 0.26   | 3.79      | 0.003    | 0.000    | 0.000    |
| 23       | 0.25   | 3.93      | 0.003    | 0.001    | 0.000    |
| 24       | 0.25   | 3.93      | 0.003    | 0.001    | 0.000    |
| 25       | 0.25   | 3.96      | 0.003    | 0.002    | 0.000    |
| 26       | 0.25   | 3.99      | 0.003    | 0.003    | 0.000    |
| 27       | 0.25   | 4.00      | 0.003    | 0.003    | 0.000    |
| 28       | 0.25   | 4.03      | 0.003    | 0.003    | 0.000    |
| 29       | 0.25   | 4.05      | 0.003    | 0.003    | 0.000    |
| 30       | 0.24   | 4.22      | 0.003    | 0.003    | 0.000    |
| 31       | 0.23   | 4.40      | 0.003    | 0.003    | 0.000    |
| 32       | 0.23   | 4.43      | 0.003    | 0.003    | 0.000    |
| 33       | 0.22   | 4.47      | 0.003    | 0.003    | 0.000    |
| 34       | 0.22   | 4.49      | 0.003    | 0.003    | 0.000    |
| 35       | 0.22   | 4.55      | 0.003    | 0.004    | 0.000    |
| 36       | 0.22   | 4.60      | 0.017    | 0.009    | 0.000    |
| 37       | 0.21   | 4.72      | 0.017    | 0.009    | 0.000    |
| 38       | 0.21   | 4.74      | 0.017    | 0.009    | 0.001    |
| 39       | 0.21   | 4.76      | 0.017    | 0.009    | 0.001    |
| 40       | 0.21   | 4.77      | 0.220    | 0.022    | 0.001    |
| 41       | 0.21   | 4.77      | 0.220    | 0.022    | 0.001    |
| 42       | 0.21   | 4.80      | 0.220    | 0.022    | 0.001    |
| 43       | 0.21   | 4.82      | 0.220    | 0.022    | 0.002    |
| 44       | 0.21   | 4.86      | 0.220    | 0.022    | 0.002    |
| 45       | 0.20   | 4.95      | 0.220    | 0.022    | 0.002    |
| 46       | 0.20   | 4.96      | 0.220    | 0.022    | 0.002    |
| 47       | 0.20   | 4.97      | 0.220    | 0.022    | 0.002    |

Table 3.7.2-16: Frequencies and Modal Mass Ratios for the Control Building Cracked Model (Continued)

| Step Num | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 48       | 0.20   | 4.98      | 0.220    | 0.022    | 0.002    |
| 49       | 0.20   | 5.01      | 0.220    | 0.230    | 0.002    |
| 50       | 0.20   | 5.05      | 0.220    | 0.230    | 0.002    |
| 51       | 0.20   | 5.06      | 0.220    | 0.230    | 0.002    |
| 52       | 0.20   | 5.07      | 0.220    | 0.230    | 0.002    |
| 53       | 0.20   | 5.08      | 0.220    | 0.230    | 0.002    |
| 54       | 0.20   | 5.10      | 0.220    | 0.230    | 0.002    |
| 55       | 0.20   | 5.10      | 0.220    | 0.230    | 0.002    |
| 56       | 0.20   | 5.11      | 0.220    | 0.230    | 0.002    |
| 57       | 0.20   | 5.12      | 0.220    | 0.230    | 0.002    |
| 58       | 0.19   | 5.16      | 0.220    | 0.230    | 0.002    |
| 59       | 0.19   | 5.17      | 0.220    | 0.230    | 0.002    |
| 60       | 0.19   | 5.17      | 0.220    | 0.230    | 0.002    |
| 61       | 0.19   | 5.19      | 0.220    | 0.230    | 0.002    |
| 62       | 0.19   | 5.19      | 0.220    | 0.230    | 0.002    |
| 63       | 0.19   | 5.25      | 0.230    | 0.250    | 0.002    |
| 64       | 0.19   | 5.27      | 0.230    | 0.250    | 0.002    |
| 65       | 0.19   | 5.32      | 0.230    | 0.250    | 0.002    |
| 66       | 0.19   | 5.38      | 0.230    | 0.250    | 0.002    |
| 67       | 0.18   | 5.43      | 0.230    | 0.250    | 0.002    |
| 68       | 0.18   | 5.45      | 0.230    | 0.250    | 0.002    |
| 69       | 0.18   | 5.46      | 0.230    | 0.250    | 0.002    |
| 70       | 0.18   | 5.57      | 0.230    | 0.250    | 0.002    |
| 71       | 0.18   | 5.58      | 0.230    | 0.250    | 0.002    |
| 72       | 0.18   | 5.60      | 0.230    | 0.250    | 0.002    |
| 73       | 0.18   | 5.63      | 0.230    | 0.250    | 0.002    |
| 74       | 0.18   | 5.69      | 0.230    | 0.250    | 0.002    |
| 75       | 0.17   | 5.72      | 0.230    | 0.250    | 0.002    |
| 76       | 0.17   | 5.77      | 0.230    | 0.250    | 0.002    |
| 77       | 0.17   | 5.78      | 0.230    | 0.250    | 0.002    |
| 78       | 0.17   | 5.80      | 0.230    | 0.250    | 0.002    |
| 79       | 0.17   | 5.83      | 0.230    | 0.250    | 0.002    |
| 80       | 0.17   | 5.90      | 0.230    | 0.250    | 0.002    |
| 81       | 0.17   | 5.94      | 0.350    | 0.250    | 0.003    |
| 82       | 0.17   | 6.00      | 0.350    | 0.250    | 0.003    |
| 83       | 0.17   | 6.03      | 0.350    | 0.320    | 0.003    |
| 84       | 0.16   | 6.17      | 0.360    | 0.360    | 0.012    |
| 85       | 0.16   | 6.19      | 0.360    | 0.360    | 0.014    |
| 86       | 0.16   | 6.23      | 0.360    | 0.360    | 0.014    |
| 87       | 0.16   | 6.30      | 0.360    | 0.360    | 0.014    |
| 88       | 0.16   | 6.30      | 0.360    | 0.360    | 0.015    |
| 89       | 0.16   | 6.32      | 0.360    | 0.360    | 0.015    |
| 90       | 0.16   | 6.35      | 0.360    | 0.360    | 0.092    |
| 91       | 0.16   | 6.36      | 0.360    | 0.360    | 0.092    |
| 92       | 0.15   | 6.48      | 0.360    | 0.360    | 0.092    |
| 93       | 0.15   | 6.50      | 0.360    | 0.360    | 0.092    |
| 94       | 0.15   | 6.53      | 0.360    | 0.360    | 0.092    |
| 95       | 0.15   | 6.61      | 0.360    | 0.360    | 0.092    |
| 96       | 0.15   | 6.68      | 0.360    | 0.360    | 0.092    |

Table 3.7.2-16: Frequencies and Modal Mass Ratios for the Control Building Cracked Model (Continued)

| Step Num | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 97       | 0.15   | 6.70      | 0.360    | 0.360    | 0.092    |
| 98       | 0.15   | 6.73      | 0.360    | 0.360    | 0.092    |
| 99       | 0.15   | 6.77      | 0.360    | 0.360    | 0.092    |
| 100      | 0.15   | 6.79      | 0.360    | 0.360    | 0.093    |
| 101      | 0.15   | 6.88      | 0.440    | 0.360    | 0.095    |
| 102      | 0.14   | 6.90      | 0.440    | 0.360    | 0.095    |
| 103      | 0.14   | 6.95      | 0.450    | 0.400    | 0.096    |
| 104      | 0.14   | 7.05      | 0.450    | 0.400    | 0.097    |
| 105      | 0.14   | 7.06      | 0.450    | 0.400    | 0.097    |
| 106      | 0.14   | 7.09      | 0.450    | 0.400    | 0.099    |
| 107      | 0.14   | 7.16      | 0.450    | 0.420    | 0.099    |
| 108      | 0.14   | 7.25      | 0.470    | 0.440    | 0.110    |
| 109      | 0.14   | 7.35      | 0.470    | 0.440    | 0.110    |
| 110      | 0.14   | 7.39      | 0.530    | 0.440    | 0.110    |
| 111      | 0.13   | 7.48      | 0.530    | 0.520    | 0.120    |
| 112      | 0.13   | 7.57      | 0.540    | 0.530    | 0.130    |
| 113      | 0.13   | 7.58      | 0.540    | 0.530    | 0.130    |
| 114      | 0.13   | 7.68      | 0.540    | 0.540    | 0.210    |
| 115      | 0.13   | 7.77      | 0.550    | 0.540    | 0.220    |
| 116      | 0.13   | 7.79      | 0.550    | 0.540    | 0.230    |
| 117      | 0.13   | 7.85      | 0.550    | 0.540    | 0.230    |
| 118      | 0.13   | 7.99      | 0.560    | 0.540    | 0.240    |
| 119      | 0.12   | 8.05      | 0.560    | 0.560    | 0.240    |
| 120      | 0.12   | 8.10      | 0.580    | 0.560    | 0.240    |
| 121      | 0.12   | 8.27      | 0.590    | 0.560    | 0.250    |
| 122      | 0.12   | 8.30      | 0.600    | 0.570    | 0.260    |
| 123      | 0.12   | 8.38      | 0.600    | 0.590    | 0.260    |
| 124      | 0.12   | 8.40      | 0.640    | 0.600    | 0.280    |
| 125      | 0.12   | 8.56      | 0.640    | 0.600    | 0.280    |
| 126      | 0.12   | 8.64      | 0.640    | 0.610    | 0.280    |
| 127      | 0.12   | 8.69      | 0.640    | 0.650    | 0.280    |
| 128      | 0.11   | 8.82      | 0.650    | 0.650    | 0.280    |
| 129      | 0.11   | 8.91      | 0.650    | 0.650    | 0.280    |
| 130      | 0.11   | 9.09      | 0.660    | 0.650    | 0.290    |
| 131      | 0.11   | 9.13      | 0.660    | 0.650    | 0.290    |
| 132      | 0.11   | 9.29      | 0.660    | 0.650    | 0.290    |
| 133      | 0.11   | 9.41      | 0.660    | 0.650    | 0.300    |
| 134      | 0.10   | 9.58      | 0.660    | 0.670    | 0.300    |
| 135      | 0.10   | 9.70      | 0.660    | 0.670    | 0.300    |
| 136      | 0.10   | 9.83      | 0.660    | 0.670    | 0.300    |
| 137      | 0.10   | 9.86      | 0.660    | 0.670    | 0.310    |
| 138      | 0.10   | 10.06     | 0.660    | 0.700    | 0.310    |
| 139      | 0.10   | 10.18     | 0.670    | 0.700    | 0.310    |
| 140      | 0.10   | 10.51     | 0.670    | 0.710    | 0.310    |
| 141      | 0.09   | 10.56     | 0.670    | 0.710    | 0.320    |
| 142      | 0.09   | 10.62     | 0.680    | 0.720    | 0.320    |
| 143      | 0.09   | 10.95     | 0.680    | 0.730    | 0.330    |
| 144      | 0.09   | 11.11     | 0.680    | 0.730    | 0.330    |
| 145      | 0.09   | 11.29     | 0.680    | 0.730    | 0.330    |

Table 3.7.2-16: Frequencies and Modal Mass Ratios for the Control Building Cracked Model (Continued)

| Step Num | Period | Frequency | SumUX    | SumUY                                                                                                                                                                                                                                                                                                                                                           | SumUZ    |
|----------|--------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless  0.730  0.740  0.740  0.740  0.750  0.750  0.750  0.750  0.750  0.750  0.750  0.760  0.760  0.760  0.780  0.780  0.790  0.800  0.800  0.810  0.820  0.820  0.820  0.820  0.820  0.830  0.830  0.830  0.830  0.830  0.830  0.830  0.830  0.850  0.850  0.850  0.860  0.860  0.880  0.880  0.880  0.880  0.880  0.880  0.890  0.890  0.890  0.900  0.900 | Unitless |
| 146      | 0.09   | 11.38     | 0.680    | 0.730                                                                                                                                                                                                                                                                                                                                                           | 0.360    |
| 147      | 0.09   | 11.58     | 0.680    | 0.740                                                                                                                                                                                                                                                                                                                                                           | 0.360    |
| 148      | 0.09   | 11.75     | 0.700    | 0.740                                                                                                                                                                                                                                                                                                                                                           | 0.360    |
| 149      | 0.08   | 11.91     | 0.700    | 0.740                                                                                                                                                                                                                                                                                                                                                           | 0.380    |
| 150      | 0.08   | 12.11     | 0.700    | 0.750                                                                                                                                                                                                                                                                                                                                                           | 0.380    |
| 151      | 0.08   | 12.27     | 0.710    | 0.750                                                                                                                                                                                                                                                                                                                                                           | 0.380    |
| 152      | 0.08   | 12.49     | 0.720    | 0.750                                                                                                                                                                                                                                                                                                                                                           | 0.390    |
| 153      | 0.08   | 12.89     | 0.730    | 0.750                                                                                                                                                                                                                                                                                                                                                           | 0.390    |
| 154      | 0.08   | 13.10     | 0.730    | 0.750                                                                                                                                                                                                                                                                                                                                                           | 0.390    |
| 155      | 0.08   | 13.20     | 0.730    | 0.750                                                                                                                                                                                                                                                                                                                                                           | 0.400    |
| 156      | 0.07   | 13.71     | 0.740    | 0.760                                                                                                                                                                                                                                                                                                                                                           | 0.400    |
| 157      | 0.07   | 13.86     | 0.740    | 0.760                                                                                                                                                                                                                                                                                                                                                           | 0.400    |
| 158      | 0.07   | 14.16     | 0.740    | 0.760                                                                                                                                                                                                                                                                                                                                                           | 0.400    |
| 159      | 0.07   | 14.76     | 0.740    | 0.780                                                                                                                                                                                                                                                                                                                                                           | 0.400    |
| 160      | 0.07   | 14.89     | 0.760    | 0.780                                                                                                                                                                                                                                                                                                                                                           | 0.400    |
| 161      | 0.07   | 15.13     | 0.760    | 0.780                                                                                                                                                                                                                                                                                                                                                           | 0.430    |
| 162      | 0.06   | 15.68     | 0.760    | 0.790                                                                                                                                                                                                                                                                                                                                                           | 0.430    |
| 163      | 0.06   | 15.85     | 0.770    | 0.790                                                                                                                                                                                                                                                                                                                                                           | 0.430    |
| 164      | 0.06   | 16.13     | 0.770    | 0.790                                                                                                                                                                                                                                                                                                                                                           | 0.470    |
| 165      | 0.06   | 17.08     | 0.780    | 0.800                                                                                                                                                                                                                                                                                                                                                           | 0.470    |
| 166      | 0.06   | 17.19     | 0.790    | 0.800                                                                                                                                                                                                                                                                                                                                                           | 0.470    |
| 167      | 0.06   | 17.62     | 0.790    | 0.810                                                                                                                                                                                                                                                                                                                                                           | 0.480    |
| 168      | 0.05   | 18.45     | 0.790    |                                                                                                                                                                                                                                                                                                                                                                 | 0.480    |
| 169      | 0.05   | 18.60     | 0.800    |                                                                                                                                                                                                                                                                                                                                                                 | 0.480    |
| 170      | 0.05   | 19.27     | 0.800    |                                                                                                                                                                                                                                                                                                                                                                 | 0.540    |
| 171      | 0.05   | 20.12     | 0.820    | 0.830                                                                                                                                                                                                                                                                                                                                                           | 0.540    |
| 172      | 0.05   | 20.31     | 0.820    | 0.830                                                                                                                                                                                                                                                                                                                                                           | 0.540    |
| 173      | 0.05   | 20.91     | 0.820    | 0.830                                                                                                                                                                                                                                                                                                                                                           | 0.580    |
| 174      | 0.04   | 22.66     | 0.840    | 0.830                                                                                                                                                                                                                                                                                                                                                           | 0.580    |
| 175      | 0.04   | 22.86     | 0.840    | 0.850                                                                                                                                                                                                                                                                                                                                                           | 0.580    |
| 176      | 0.04   | 23.21     | 0.840    | 0.850                                                                                                                                                                                                                                                                                                                                                           | 0.600    |
| 177      | 0.04   | 25.28     | 0.860    | 0.850                                                                                                                                                                                                                                                                                                                                                           | 0.600    |
| 178      | 0.04   | 25.43     | 0.860    | 0.860                                                                                                                                                                                                                                                                                                                                                           | 0.600    |
| 179      | 0.04   | 26.66     | 0.860    | 0.860                                                                                                                                                                                                                                                                                                                                                           | 0.640    |
| 180      | 0.04   | 28.48     | 0.860    |                                                                                                                                                                                                                                                                                                                                                                 | 0.640    |
| 181      | 0.03   | 28.66     | 0.880    | 0.880                                                                                                                                                                                                                                                                                                                                                           | 0.640    |
| 182      | 0.03   | 29.40     | 0.880    | 0.880                                                                                                                                                                                                                                                                                                                                                           | 0.720    |
| 183      | 0.03   | 33.01     | 0.880    | 0.890                                                                                                                                                                                                                                                                                                                                                           | 0.720    |
| 184      | 0.03   | 33.20     | 0.890    | 0.890                                                                                                                                                                                                                                                                                                                                                           | 0.720    |
| 185      | 0.03   | 34.20     | 0.890    | 0.890                                                                                                                                                                                                                                                                                                                                                           | 0.760    |
| 186      | 0.03   | 40.00     | 0.890    | 0.900                                                                                                                                                                                                                                                                                                                                                           | 0.760    |
| 187      | 0.02   | 40.36     | 0.900    | 0.900                                                                                                                                                                                                                                                                                                                                                           | 0.760    |
| 188      | 0.02   | 41.18     | 0.900    | 0.900                                                                                                                                                                                                                                                                                                                                                           | 0.780    |
| 189      | 0.02   | 49.72     | 0.910    | 0.900                                                                                                                                                                                                                                                                                                                                                           | 0.780    |
| 190      | 0.02   | 49.88     | 0.910    | 0.910                                                                                                                                                                                                                                                                                                                                                           | 0.780    |
| 191      | 0.02   | 53.00     | 0.910    | 0.910                                                                                                                                                                                                                                                                                                                                                           | 0.810    |
| 192      | 0.01   | 66.95     | 0.920    | 0.910                                                                                                                                                                                                                                                                                                                                                           | 0.810    |
| 193      | 0.01   | 67.52     | 0.920    | 0.920                                                                                                                                                                                                                                                                                                                                                           | 0.810    |
| 194      | 0.01   | 70.93     | 0.920    | 0.920                                                                                                                                                                                                                                                                                                                                                           | 0.860    |

Table 3.7.2-16: Frequencies and Modal Mass Ratios for the Control Building Cracked Model (Continued)

| Step Num | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 195      | 0.01   | 101.00    | 0.920    | 0.920    | 0.860    |
| 196      | 0.01   | 101.85    | 0.930    | 0.930    | 0.860    |
| 197      | 0.01   | 104.54    | 0.930    | 0.930    | 0.910    |
| 198      | 0.00   | 222.23    | 0.930    | 0.930    | 0.950    |
| 199      | 0.00   | 240.06    | 0.960    | 0.930    | 0.950    |
| 200      | 0.00   | 242.83    | 0.960    | 0.960    | 0.950    |

Notes:

The first significant frequency in each direction is highlighted.

Table 3.7.2-17: Frequencies and Modal Mass Ratios for the Control Building Uncracked Model

| StepNum  | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 1        | 0.49   | 2.02      | 0.001    | 0.000    | 0.000    |
| 2        | 0.45   | 2.20      | 0.002    | 0.000    | 0.000    |
| 3        | 0.41   | 2.41      | 0.002    | 0.000    | 0.000    |
| 4        | 0.41   | 2.43      | 0.002    | 0.000    | 0.000    |
| 5        | 0.41   | 2.43      | 0.002    | 0.000    | 0.000    |
| 6        | 0.40   | 2.49      | 0.002    | 0.000    | 0.000    |
| 7        | 0.40   | 2.51      | 0.002    | 0.000    | 0.000    |
| 8        | 0.40   | 2.52      | 0.002    | 0.000    | 0.000    |
| 9        | 0.39   | 2.56      | 0.002    | 0.000    | 0.000    |
| 10       | 0.36   | 2.76      | 0.002    | 0.000    | 0.000    |
| 11       | 0.36   | 2.79      | 0.002    | 0.000    | 0.000    |
| 12       | 0.35   | 2.82      | 0.002    | 0.000    | 0.000    |
| 13       | 0.35   | 2.85      | 0.003    | 0.000    | 0.000    |
| 14       | 0.32   | 3.16      | 0.003    | 0.000    | 0.000    |
| 15       | 0.31   | 3.24      | 0.003    | 0.000    | 0.000    |
| 16       | 0.30   | 3.29      | 0.003    | 0.000    | 0.000    |
| 17       | 0.30   | 3.29      | 0.003    | 0.000    | 0.000    |
| 18       | 0.30   | 3.31      | 0.003    | 0.000    | 0.000    |
| 19       | 0.30   | 3.32      | 0.003    | 0.000    | 0.000    |
| 20       | 0.30   | 3.32      | 0.003    | 0.000    | 0.000    |
| 21       | 0.27   | 3.70      | 0.003    | 0.000    | 0.000    |
| 22       | 0.26   | 3.79      | 0.003    | 0.000    | 0.000    |
| 23       | 0.25   | 3.93      | 0.003    | 0.001    | 0.000    |
| 24       | 0.25   | 3.93      | 0.003    | 0.001    | 0.000    |
| 25       | 0.25   | 3.96      | 0.003    | 0.002    | 0.000    |
| 26       | 0.25   | 3.99      | 0.003    | 0.003    | 0.000    |
| 27       | 0.25   | 4.00      | 0.003    | 0.003    | 0.000    |
| 28       | 0.25   | 4.03      | 0.003    | 0.003    | 0.000    |
| 29       | 0.25   | 4.05      | 0.003    | 0.003    | 0.000    |
| 30       | 0.24   | 4.22      | 0.003    | 0.003    | 0.000    |
| 31       | 0.23   | 4.40      | 0.003    | 0.003    | 0.000    |
| 32       | 0.23   | 4.43      | 0.003    | 0.003    | 0.000    |
| 33       | 0.22   | 4.47      | 0.003    | 0.003    | 0.000    |
| 34       | 0.22   | 4.49      | 0.003    | 0.003    | 0.000    |
| 35       | 0.22   | 4.55      | 0.003    | 0.004    | 0.000    |
| 36       | 0.22   | 4.61      | 0.018    | 0.009    | 0.000    |
| 37       | 0.21   | 4.72      | 0.018    | 0.009    | 0.000    |
| 38       | 0.21   | 4.74      | 0.018    | 0.009    | 0.001    |
| 39       | 0.21   | 4.76      | 0.018    | 0.009    | 0.001    |
| 40       | 0.21   | 4.77      | 0.018    | 0.009    | 0.001    |
| 41       | 0.21   | 4.78      | 0.210    | 0.023    | 0.001    |
| 42       | 0.21   | 4.80      | 0.210    | 0.024    | 0.001    |
| 43       | 0.21   | 4.82      | 0.210    | 0.024    | 0.002    |
| 44       | 0.21   | 4.86      | 0.210    | 0.024    | 0.002    |
| 45       | 0.20   | 4.95      | 0.210    | 0.024    | 0.002    |
| 46       | 0.20   | 4.96      | 0.210    | 0.024    | 0.002    |
| 47       | 0.20   | 4.97      | 0.210    | 0.024    | 0.002    |

Table 3.7.2-17: Frequencies and Modal Mass Ratios for the Control Building Uncracked Model (Continued)

| StepNum  | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 48       | 0.20   | 4.98      | 0.210    | 0.024    | 0.002    |
| 49       | 0.20   | 5.02      | 0.220    | 0.220    | 0.002    |
| 50       | 0.20   | 5.05      | 0.220    | 0.220    | 0.002    |
| 51       | 0.20   | 5.06      | 0.220    | 0.220    | 0.002    |
| 52       | 0.20   | 5.07      | 0.220    | 0.220    | 0.002    |
| 53       | 0.20   | 5.08      | 0.220    | 0.220    | 0.002    |
| 54       | 0.20   | 5.10      | 0.220    | 0.220    | 0.002    |
| 55       | 0.20   | 5.10      | 0.220    | 0.220    | 0.002    |
| 56       | 0.20   | 5.11      | 0.220    | 0.220    | 0.002    |
| 57       | 0.20   | 5.12      | 0.220    | 0.220    | 0.002    |
| 58       | 0.19   | 5.16      | 0.220    | 0.220    | 0.002    |
| 59       | 0.19   | 5.17      | 0.220    | 0.220    | 0.002    |
| 60       | 0.19   | 5.17      | 0.220    | 0.220    | 0.002    |
| 61       | 0.19   | 5.19      | 0.220    | 0.220    | 0.002    |
| 62       | 0.19   | 5.26      | 0.220    | 0.220    | 0.002    |
| 63       | 0.19   | 5.27      | 0.230    | 0.240    | 0.002    |
| 64       | 0.19   | 5.27      | 0.230    | 0.240    | 0.002    |
| 65       | 0.19   | 5.32      | 0.230    | 0.240    | 0.002    |
| 66       | 0.19   | 5.38      | 0.230    | 0.240    | 0.002    |
| 67       | 0.18   | 5.43      | 0.230    | 0.240    | 0.002    |
| 68       | 0.18   | 5.45      | 0.230    | 0.240    | 0.002    |
| 69       | 0.18   | 5.46      | 0.230    | 0.240    | 0.002    |
| 70       | 0.18   | 5.57      | 0.230    | 0.240    | 0.002    |
| 71       | 0.18   | 5.58      | 0.230    | 0.240    | 0.002    |
| 72       | 0.18   | 5.60      | 0.230    | 0.240    | 0.002    |
| 73       | 0.18   | 5.63      | 0.230    | 0.240    | 0.002    |
| 74       | 0.18   | 5.69      | 0.230    | 0.240    | 0.002    |
| 75       | 0.17   | 5.72      | 0.230    | 0.240    | 0.002    |
| 76       | 0.17   | 5.77      | 0.230    | 0.240    | 0.002    |
| 77       | 0.17   | 5.78      | 0.230    | 0.240    | 0.002    |
| 78       | 0.17   | 5.80      | 0.230    | 0.240    | 0.002    |
| 79       | 0.17   | 5.83      | 0.230    | 0.240    | 0.002    |
| 80       | 0.17   | 5.90      | 0.230    | 0.240    | 0.002    |
| 81       | 0.17   | 5.96      | 0.340    | 0.240    | 0.003    |
| 82       | 0.17   | 6.00      | 0.340    | 0.240    | 0.003    |
| 83       | 0.17   | 6.06      | 0.340    | 0.310    | 0.003    |
| 84       | 0.16   | 6.19      | 0.350    | 0.340    | 0.013    |
| 85       | 0.16   | 6.20      | 0.350    | 0.340    | 0.015    |
| 86       | 0.16   | 6.23      | 0.350    | 0.340    | 0.015    |
| 87       | 0.16   | 6.30      | 0.350    | 0.340    | 0.015    |
| 88       | 0.16   | 6.30      | 0.350    | 0.340    | 0.015    |
| 89       | 0.16   | 6.32      | 0.350    | 0.340    | 0.015    |
| 90       | 0.16   | 6.36      | 0.350    | 0.340    | 0.015    |
| 91       | 0.16   | 6.37      | 0.350    | 0.350    | 0.092    |
| 92       | 0.15   | 6.46      | 0.350    | 0.350    | 0.092    |
| 93       | 0.15   | 6.50      | 0.350    | 0.350    | 0.092    |
| 94       | 0.15   | 6.53      | 0.350    | 0.350    | 0.092    |
| 95       | 0.15   | 6.61      | 0.350    | 0.350    | 0.092    |

Table 3.7.2-17: Frequencies and Modal Mass Ratios for the Control Building Uncracked Model (Continued)

| StepNum  | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 96       | 0.15   | 6.68      | 0.350    | 0.350    | 0.092    |
| 97       | 0.15   | 6.70      | 0.350    | 0.350    | 0.092    |
| 98       | 0.15   | 6.73      | 0.350    | 0.350    | 0.092    |
| 99       | 0.15   | 6.77      | 0.350    | 0.350    | 0.092    |
| 100      | 0.15   | 6.79      | 0.350    | 0.350    | 0.092    |
| 101      | 0.15   | 6.85      | 0.350    | 0.350    | 0.092    |
| 102      | 0.14   | 6.93      | 0.430    | 0.350    | 0.095    |
| 103      | 0.14   | 6.96      | 0.440    | 0.350    | 0.095    |
| 104      | 0.14   | 7.00      | 0.440    | 0.390    | 0.095    |
| 105      | 0.14   | 7.09      | 0.440    | 0.390    | 0.096    |
| 106      | 0.14   | 7.13      | 0.440    | 0.390    | 0.097    |
| 107      | 0.14   | 7.18      | 0.440    | 0.410    | 0.098    |
| 108      | 0.14   | 7.27      | 0.450    | 0.420    | 0.110    |
| 109      | 0.14   | 7.31      | 0.450    | 0.420    | 0.110    |
| 110      | 0.13   | 7.41      | 0.530    | 0.420    | 0.110    |
| 111      | 0.13   | 7.48      | 0.530    | 0.420    | 0.110    |
| 112      | 0.13   | 7.51      | 0.530    | 0.500    | 0.120    |
| 113      | 0.13   | 7.60      | 0.530    | 0.520    | 0.120    |
| 114      | 0.13   | 7.70      | 0.540    | 0.520    | 0.210    |
| 115      | 0.13   | 7.80      | 0.540    | 0.520    | 0.230    |
| 116      | 0.13   | 7.81      | 0.540    | 0.520    | 0.240    |
| 117      | 0.13   | 7.86      | 0.540    | 0.520    | 0.240    |
| 118      | 0.13   | 8.00      | 0.550    | 0.520    | 0.240    |
| 119      | 0.12   | 8.06      | 0.550    | 0.530    | 0.240    |
| 120      | 0.12   | 8.08      | 0.560    | 0.550    | 0.250    |
| 121      | 0.12   | 8.20      | 0.570    | 0.550    | 0.250    |
| 122      | 0.12   | 8.31      | 0.580    | 0.550    | 0.260    |
| 123      | 0.12   | 8.42      | 0.590    | 0.580    | 0.270    |
| 124      | 0.12   | 8.45      | 0.630    | 0.580    | 0.280    |
| 125      | 0.12   | 8.54      | 0.630    | 0.590    | 0.280    |
| 126      | 0.12   | 8.65      | 0.630    | 0.590    | 0.280    |
| 127      | 0.11   | 8.72      | 0.630    | 0.640    | 0.280    |
| 128      | 0.11   | 8.82      | 0.640    | 0.640    | 0.280    |
| 129      | 0.11   | 8.89      | 0.650    | 0.640    | 0.280    |
| 130      | 0.11   | 9.09      | 0.650    | 0.640    | 0.280    |
| 131      | 0.11   | 9.23      | 0.660    | 0.640    | 0.280    |
| 132      | 0.11   | 9.30      | 0.660    | 0.640    | 0.290    |
| 133      | 0.10   | 9.57      | 0.660    | 0.650    | 0.290    |
| 134      | 0.10   | 9.59      | 0.660    | 0.650    | 0.290    |
| 135      | 0.10   | 9.73      | 0.660    | 0.670    | 0.290    |
| 136      | 0.10   | 9.76      | 0.660    | 0.670    | 0.290    |
| 137      | 0.10   | 9.89      | 0.660    | 0.670    | 0.290    |
| 138      | 0.10   | 10.09     | 0.660    | 0.700    | 0.290    |
| 139      | 0.10   | 10.30     | 0.670    | 0.700    | 0.290    |
| 140      | 0.10   | 10.40     | 0.670    | 0.700    | 0.290    |
| 141      | 0.09   | 10.56     | 0.670    | 0.710    | 0.290    |
| 142      | 0.09   | 10.62     | 0.680    | 0.710    | 0.290    |
| 174      | 0.09   | 10.02     | 0.000    | 0.710    | 0.230    |

Table 3.7.2-17: Frequencies and Modal Mass Ratios for the Control Building Uncracked Model (Continued)

| StepNum  | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 144      | 0.09   | 11.06     | 0.680    | 0.720    | 0.310    |
| 145      | 0.09   | 11.21     | 0.680    | 0.730    | 0.310    |
| 146      | 0.09   | 11.36     | 0.680    | 0.730    | 0.340    |
| 147      | 0.09   | 11.60     | 0.680    | 0.740    | 0.340    |
| 148      | 0.08   | 11.77     | 0.690    | 0.740    | 0.340    |
| 149      | 0.08   | 11.94     | 0.690    | 0.740    | 0.370    |
| 150      | 0.08   | 12.11     | 0.690    | 0.740    | 0.380    |
| 151      | 0.08   | 12.23     | 0.710    | 0.750    | 0.380    |
| 152      | 0.08   | 12.39     | 0.710    | 0.750    | 0.390    |
| 153      | 0.08   | 12.87     | 0.730    | 0.750    | 0.390    |
| 154      | 0.08   | 13.10     | 0.730    | 0.750    | 0.400    |
| 155      | 0.08   | 13.16     | 0.730    | 0.750    | 0.400    |
| 156      | 0.07   | 13.68     | 0.730    | 0.750    | 0.400    |
| 157      | 0.07   | 13.88     | 0.740    | 0.760    | 0.400    |
| 158      | 0.07   | 14.12     | 0.740    | 0.760    | 0.410    |
| 159      | 0.07   | 14.68     | 0.740    | 0.770    | 0.410    |
| 160      | 0.07   | 14.95     | 0.750    | 0.770    | 0.410    |
| 161      | 0.07   | 15.20     | 0.750    | 0.770    | 0.420    |
| 162      | 0.06   | 15.68     | 0.750    | 0.790    | 0.420    |
| 163      | 0.06   | 15.89     | 0.770    | 0.790    | 0.420    |
| 164      | 0.06   | 16.16     | 0.770    | 0.790    | 0.460    |
| 165      | 0.06   | 16.81     | 0.770    | 0.800    | 0.460    |
| 166      | 0.06   | 17.15     | 0.780    | 0.800    | 0.460    |
| 167      | 0.06   | 17.71     | 0.780    | 0.800    | 0.480    |
| 168      | 0.05   | 18.44     | 0.790    | 0.810    | 0.480    |
| 169      | 0.05   | 18.60     | 0.800    | 0.820    | 0.480    |
| 170      | 0.05   | 19.41     | 0.800    | 0.820    | 0.490    |
| 171      | 0.05   | 20.09     | 0.820    | 0.820    | 0.490    |
| 172      | 0.05   | 20.38     | 0.820    | 0.830    | 0.490    |
| 173      | 0.05   | 21.26     | 0.820    | 0.830    | 0.550    |
| 174      | 0.04   | 22.75     | 0.840    | 0.830    | 0.550    |
| 175      | 0.04   | 22.82     | 0.840    | 0.850    | 0.560    |
| 176      | 0.04   | 23.06     | 0.840    | 0.850    | 0.610    |
| 177      | 0.04   | 25.07     | 0.850    | 0.860    | 0.610    |
| 178      | 0.04   | 25.29     | 0.860    | 0.860    | 0.610    |
| 179      | 0.04   | 26.13     | 0.860    | 0.860    | 0.660    |
| 180      | 0.03   | 28.76     | 0.870    | 0.870    | 0.660    |
| 181      | 0.03   | 28.99     | 0.870    | 0.880    | 0.660    |
| 182      | 0.03   | 29.52     | 0.870    | 0.880    | 0.710    |
| 183      | 0.03   | 32.69     | 0.880    | 0.890    | 0.710    |
| 184      | 0.03   | 33.33     | 0.890    | 0.890    | 0.720    |
| 185      | 0.03   | 34.00     | 0.890    | 0.890    | 0.760    |
| 186      | 0.03   | 39.88     | 0.890    | 0.890    | 0.760    |
| 187      | 0.02   | 40.20     | 0.900    | 0.900    | 0.760    |
| 188      | 0.02   | 40.63     | 0.900    | 0.900    | 0.780    |
| 189      | 0.02   | 49.56     | 0.910    | 0.900    | 0.780    |
| 190      | 0.02   | 50.60     | 0.910    | 0.910    | 0.780    |
| 191      | 0.02   | 53.01     | 0.910    | 0.910    | 0.810    |

Table 3.7.2-17: Frequencies and Modal Mass Ratios for the Control Building Uncracked Model (Continued)

| StepNum  | Period | Frequency | SumUX    | SumUY    | SumUZ    |
|----------|--------|-----------|----------|----------|----------|
| Unitless | Sec    | Cyc/sec   | Unitless | Unitless | Unitless |
| 192      | 0.01   | 67.15     | 0.910    | 0.910    | 0.810    |
| 193      | 0.01   | 68.09     | 0.920    | 0.920    | 0.810    |
| 194      | 0.01   | 70.11     | 0.920    | 0.920    | 0.860    |
| 195      | 0.01   | 101.04    | 0.920    | 0.920    | 0.860    |
| 196      | 0.01   | 102.30    | 0.930    | 0.930    | 0.870    |
| 197      | 0.01   | 104.37    | 0.930    | 0.930    | 0.910    |
| 198      | 0.00   | 220.95    | 0.930    | 0.930    | 0.950    |
| 199      | 0.00   | 243.88    | 0.960    | 0.930    | 0.950    |
| 200      | 0.00   | 246.64    | 0.960    | 0.960    | 0.950    |

Notes:

The first significant frequency in each direction is highlighted.

Table 3.7.2-18: Frequencies Used in Transfer Function Calculation for Standalone Reactor Building Model

| No. |                        |                   | For CSDF               | RS Inputs         |                        |                   |                        | For CSDRS         | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | /pe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 1   | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           |
| 2   | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            |
| 3   | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             |
| 4   | 123                    | 1.501             | 123                    | 1.501             | 123                    | 1.501             | 123                    | 1.501             | 125                    | 1.526             |
| 5   | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             |
| 6   | 186                    | 2.271             | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             |
| 7   | 205                    | 2.502             | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             |
| 8   | 246                    | 3.003             | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             |
| 9   | 258                    | 3.149             | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              |
| 10  | 281                    | 3.43              | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             |
| 11  | 287                    | 3.503             | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             |
| 12  | 328                    | 4.004             | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             |
| 13  | 369                    | 4.504             | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             |
| 14  | 410                    | 5.005             | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             |
| 15  | 451                    | 5.505             | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             |
| 16  | 493                    | 6.018             | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             |
| 17  | 533                    | 6.506             | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             |
| 18  | 574                    | 7.007             | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             |
| 19  | 615                    | 7.507             | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             |
| 20  | 656                    | 8.008             | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             |
| 21  | 697                    | 8.508             | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             |
| 22  | 738                    | 9.009             | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             |
| 23  | 779                    | 9.509             | 800                    | 9.766             | 820                    | 10.01             | 820                    | 10.01             | 820                    | 10.01             |
| 24  | 820                    | 10.01             | 810                    | 9.888             | 861                    | 10.51             | 861                    | 10.51             | 861                    | 10.51             |
| 25  | 861                    | 10.51             | 820                    | 10.01             | 902                    | 11.01             | 902                    | 11.01             | 902                    | 11.01             |
| 26  | 902                    | 11.01             | 830                    | 10.13             | 943                    | 11.51             | 943                    | 11.51             | 943                    | 11.51             |
| 27  | 943                    | 11.51             | 840                    | 10.25             | 984                    | 12.01             | 984                    | 12.01             | 984                    | 12.01             |
| 28  | 984                    | 12.01             | 861                    | 10.51             | 1024                   | 12.5              | 1024                   | 12.5              | 1024                   | 12.5              |

Table 3.7.2-18: Frequencies Used in Transfer Function Calculation for Standalone Reactor Building Model (Continued)

| No. |                        |                   | For CSDF               | RS Inputs         |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | rpe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 29  | 1024                   | 12.5              | 902                    | 11.01             | 1065                   | 13                | 1065                   | 13                | 1065                   | 13                |
| 30  | 1065                   | 13                | 943                    | 11.51             | 1106                   | 13.5              | 1106                   | 13.5              | 1106                   | 13.5              |
| 31  | 1106                   | 13.5              | 984                    | 12.01             | 1147                   | 14                | 1147                   | 14                | 1147                   | 14                |
| 32  | 1147                   | 14                | 1024                   | 12.5              | 1188                   | 14.5              | 1188                   | 14.5              | 1188                   | 14.5              |
| 33  | 1188                   | 14.5              | 1065                   | 13                | 1229                   | 15                | 1229                   | 15                | 1229                   | 15                |
| 34  | 1229                   | 15                | 1106                   | 13.5              | 1270                   | 15.5              | 1270                   | 15.5              | 1270                   | 15.5              |
| 35  | 1270                   | 15.5              | 1147                   | 14                | 1311                   | 16                | 1311                   | 16                | 1311                   | 16                |
| 36  | 1311                   | 16                | 1188                   | 14.5              | 1393                   | 17                | 1393                   | 17                | 1393                   | 17                |
| 37  | 1393                   | 17                | 1229                   | 15                | 1475                   | 18.01             | 1475                   | 18.01             | 1475                   | 18.01             |
| 38  | 1475                   | 18.01             | 1270                   | 15.5              | 1557                   | 19.01             | 1557                   | 19.01             | 1557                   | 19.01             |
| 39  | 1557                   | 19.01             | 1311                   | 16                | 1639                   | 20.01             | 1639                   | 20.01             | 1639                   | 20.01             |
| 40  | 1639                   | 20.01             | 1353                   | 16.52             | 1721                   | 21.01             | 1721                   | 21.01             | 1721                   | 21.01             |
| 41  | 1721                   | 21.01             | 1373                   | 16.76             | 1803                   | 22.01             | 1803                   | 22.01             | 1803                   | 22.01             |
| 42  | 1803                   | 22.01             | 1393                   | 17                | 1885                   | 23.01             | 1885                   | 23.01             | 1885                   | 23.01             |
| 43  | 1885                   | 23.01             | 1413                   | 17.25             | 1917                   | 23.4              | 1917                   | 23.4              | 1917                   | 23.4              |
| 44  | 1917                   | 23.4              | 1433                   | 17.49             | 1967                   | 24.01             | 1967                   | 24.01             | 1967                   | 24.01             |
| 45  | 1967                   | 24.01             | 1475                   | 18.01             | 2048                   | 25                | 2048                   | 25                | 2048                   | 25                |
| 46  | 2048                   | 25                | 1557                   | 19.01             | 2130                   | 26                | 2130                   | 26                | 2130                   | 26                |
| 47  | 2130                   | 26                | 1639                   | 20.01             | 2212                   | 27                | 2212                   | 27                | 2212                   | 27                |
| 48  | 2171                   | 26.5              | 1721                   | 21.01             | 2294                   | 28                | 2294                   | 28                | 2294                   | 28                |
| 49  | 2212                   | 27                | 1803                   | 22.01             | 2376                   | 29                | 2376                   | 29                | 2376                   | 29                |
| 50  | 2294                   | 28                | 1885                   | 23.01             | 2458                   | 30                | 2458                   | 30                | 2458                   | 30                |
| 51  | 2349                   | 28.67             | 1917                   | 23.4              | 2540                   | 31.01             | 2540                   | 31.01             | 2540                   | 31.01             |
| 52  | 2403                   | 29.33             | 1967                   | 24.01             | 2622                   | 32.01             | 2622                   | 32.01             | 2622                   | 32.01             |
| 53  | 2458                   | 30                | 2048                   | 25                | 2704                   | 33.01             | 2704                   | 33.01             | 2704                   | 33.01             |
| 54  | 2513                   | 30.68             | 2130                   | 26                | 2786                   | 34.01             | 2786                   | 34.01             | 2786                   | 34.01             |
| 55  | 2567                   | 31.34             | 2212                   | 27                | 2950                   | 36.01             | 2950                   | 36.01             | 2950                   | 36.01             |
| 56  | 2622                   | 32.01             | 2294                   | 28                | 3113                   | 38                | 3113                   | 38                | 3113                   | 38                |
| 57  | 2704                   | 33.01             | 2376                   | 29                | 3277                   | 40                | 3277                   | 40                | 3277                   | 40                |
| 58  | 2786                   | 34.01             | 2458                   | 30                | 3326                   | 40.6              | 3326                   | 40.6              | 3326                   | 40.6              |

Table 3.7.2-18: Frequencies Used in Transfer Function Calculation for Standalone Reactor Building Model (Continued)

| No. |                        |                   | For CSDR               | S Inputs          |                        |                   |                        | For CSDRS         | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | pe 11             | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 59  | 2867                   | 35                | 2540                   | 31.01             | 3441                   | 42                | 3441                   | 42                | 3441                   | 42                |
| 60  | 2950                   | 36.01             | 2622                   | 32.01             | 3605                   | 44.01             | 3605                   | 44.01             | 3605                   | 44.01             |
| 61  | 3031                   | 37                | 2704                   | 33.01             | 3769                   | 46.01             | 3769                   | 46.01             | 3769                   | 46.01             |
| 62  | 3113                   | 38                | 2786                   | 34.01             | 3933                   | 48.01             | 3933                   | 48.01             | 3933                   | 48.01             |
| 63  | 3196                   | 39.01             | 2950                   | 36.01             | 4096                   | 50                | 4096                   | 50                | 4096                   | 50                |
| 64  | 3277                   | 40                | 3113                   | 38                | 4260                   | 52                | 4260                   | 52                | 4260                   | 52                |
| 65  | 3332                   | 40.67             | 3277                   | 40                | -                      | -                 | 4424                   | 54                | 4424                   | 54                |
| 66  | 3386                   | 41.33             | 3326                   | 40.6              | -                      | -                 | 4588                   | 56.01             | 4588                   | 56.01             |
| 67  | 3441                   | 42                | 3441                   | 42                | -                      | -                 | 4752                   | 58.01             | 4752                   | 58.01             |
| 68  | 3523                   | 43.01             | 3605                   | 44.01             | -                      | -                 | 4916                   | 60.01             | 4916                   | 60.01             |
| 69  | 3605                   | 44.01             | 3769                   | 46.01             | -                      | -                 | 5080                   | 62.01             | 5080                   | 62.01             |
| 70  | 3687                   | 45.01             | 3933                   | 48.01             | -                      | -                 | 5243                   | 64                | 5243                   | 64                |
| 71  | 3769                   | 46.01             | 4096                   | 50                | -                      | -                 | 5407                   | 66                | 5407                   | 66                |
| 72  | 3851                   | 47.01             | 4260                   | 52                | -                      | -                 | 5571                   | 68.01             | 5571                   | 68.01             |
| 73  | 3933                   | 48.01             | -                      | -                 | -                      | -                 | 5735                   | 70.01             | 5735                   | 70.01             |
| 74  | 4014                   | 49                | -                      | -                 | -                      | -                 | 5899                   | 72.01             | 5899                   | 72.01             |
| 75  | 4055                   | 49.5              | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 76  | 4096                   | 50                | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 77  | 4137                   | 50.5              | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 78  | 4178                   | 51                | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 79  | 4260                   | 52                | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |

Table 3.7.2-19: Frequencies Used in Transfer Function Calculation for RXB from Triple Building Model

| No. |                        |                   | For CSDR               | S Inputs          |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | pe 11             | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 1   | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           |
| 2   | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            |
| 3   | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             |
| 4   | 123                    | 1.501             | 123                    | 1.501             | 123                    | 1.501             | 123                    | 1.501             | 125                    | 1.526             |
| 5   | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             |
| 6   | 186                    | 2.271             | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             |
| 7   | 205                    | 2.502             | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             |
| 8   | 246                    | 3.003             | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             |
| 9   | 258                    | 3.149             | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              |
| 10  | 281                    | 3.43              | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             |
| 11  | 287                    | 3.503             | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             |
| 12  | 328                    | 4.004             | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             |
| 13  | 369                    | 4.504             | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             |
| 14  | 410                    | 5.005             | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             |
| 15  | 451                    | 5.505             | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             |
| 16  | 493                    | 6.018             | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             |
| 17  | 533                    | 6.506             | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             |
| 18  | 574                    | 7.007             | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             |
| 19  | 615                    | 7.507             | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             |
| 20  | 656                    | 8.008             | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             |
| 21  | 697                    | 8.508             | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             |
| 22  | 738                    | 9.009             | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             |
| 23  | 779                    | 9.509             | 820                    | 10.01             | 820                    | 10.01             | 820                    | 10.01             | 820                    | 10.01             |
| 24  | 820                    | 10.01             | 861                    | 10.51             | 861                    | 10.51             | 861                    | 10.51             | 861                    | 10.51             |
| 25  | 861                    | 10.51             | 902                    | 11.01             | 902                    | 11.01             | 902                    | 11.01             | 902                    | 11.01             |
| 26  | 902                    | 11.01             | 943                    | 11.51             | 943                    | 11.51             | 943                    | 11.51             | 943                    | 11.51             |
| 27  | 943                    | 11.51             | 984                    | 12.01             | 984                    | 12.01             | 984                    | 12.01             | 984                    | 12.01             |
| 28  | 984                    | 12.01             | 1024                   | 12.5              | 1024                   | 12.5              | 1024                   | 12.5              | 1024                   | 12.5              |
| 29  | 1024                   | 12.5              | 1065                   | 13                | 1065                   | 13                | 1065                   | 13                | 1065                   | 13                |

Table 3.7.2-19: Frequencies Used in Transfer Function Calculation for RXB from Triple Building Model (Continued)

| No. |                        |                   | For CSDR               | S Inputs          |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | rpe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 30  | 1065                   | 13                | 1106                   | 13.5              | 1106                   | 13.5              | 1106                   | 13.5              | 1106                   | 13.5              |
| 31  | 1106                   | 13.5              | 1147                   | 14                | 1147                   | 14                | 1147                   | 14                | 1147                   | 14                |
| 32  | 1147                   | 14                | 1188                   | 14.5              | 1188                   | 14.5              | 1188                   | 14.5              | 1188                   | 14.5              |
| 33  | 1188                   | 14.5              | 1229                   | 15                | 1229                   | 15                | 1229                   | 15                | 1229                   | 15                |
| 34  | 1229                   | 15                | 1270                   | 15.5              | 1270                   | 15.5              | 1270                   | 15.5              | 1270                   | 15.5              |
| 35  | 1270                   | 15.5              | 1311                   | 16                | 1311                   | 16                | 1311                   | 16                | 1311                   | 16                |
| 36  | 1311                   | 16                | 1393                   | 17                | 1393                   | 17                | 1393                   | 17                | 1393                   | 17                |
| 37  | 1393                   | 17                | 1475                   | 18.01             | 1475                   | 18.01             | 1475                   | 18.01             | 1475                   | 18.01             |
| 38  | 1475                   | 18.01             | 1557                   | 19.01             | 1557                   | 19.01             | 1557                   | 19.01             | 1557                   | 19.01             |
| 39  | 1557                   | 19.01             | 1639                   | 20.01             | 1639                   | 20.01             | 1639                   | 20.01             | 1639                   | 20.01             |
| 40  | 1639                   | 20.01             | 1721                   | 21.01             | 1721                   | 21.01             | 1721                   | 21.01             | 1721                   | 21.01             |
| 41  | 1721                   | 21.01             | 1803                   | 22.01             | 1803                   | 22.01             | 1803                   | 22.01             | 1803                   | 22.01             |
| 42  | 1803                   | 22.01             | 1885                   | 23.01             | 1885                   | 23.01             | 1885                   | 23.01             | 1885                   | 23.01             |
| 43  | 1885                   | 23.01             | 1917                   | 23.4              | 1917                   | 23.4              | 1917                   | 23.4              | 1917                   | 23.4              |
| 44  | 1917                   | 23.4              | 1967                   | 24.01             | 1967                   | 24.01             | 1967                   | 24.01             | 1967                   | 24.01             |
| 45  | 1967                   | 24.01             | 2048                   | 25                | 2048                   | 25                | 2048                   | 25                | 2048                   | 25                |
| 46  | 2048                   | 25                | 2130                   | 26                | 2130                   | 26                | 2130                   | 26                | 2130                   | 26                |
| 47  | 2130                   | 26                | 2212                   | 27                | 2212                   | 27                | 2212                   | 27                | 2212                   | 27                |
| 48  | 2212                   | 27                | 2294                   | 28                | 2294                   | 28                | 2294                   | 28                | 2294                   | 28                |
| 49  | 2294                   | 28                | 2376                   | 29                | 2376                   | 29                | 2376                   | 29                | 2376                   | 29                |
| 50  | 2376                   | 29                | 2458                   | 30                | 2458                   | 30                | 2458                   | 30                | 2458                   | 30                |
| 51  | 2458                   | 30                | 2540                   | 31.01             | 2540                   | 31.01             | 2540                   | 31.01             | 2540                   | 31.01             |
| 52  | 2540                   | 31.01             | 2622                   | 32.01             | 2622                   | 32.01             | 2622                   | 32.01             | 2622                   | 32.01             |
| 53  | 2622                   | 32.01             | 2704                   | 33.01             | 2704                   | 33.01             | 2704                   | 33.01             | 2704                   | 33.01             |
| 54  | 2704                   | 33.01             | 2786                   | 34.01             | 2786                   | 34.01             | 2786                   | 34.01             | 2786                   | 34.01             |
| 55  | 2786                   | 34.01             | 2950                   | 36.01             | 2950                   | 36.01             | 2950                   | 36.01             | 2950                   | 36.01             |
| 56  | 2950                   | 36.01             | 3113                   | 38                | 3113                   | 38                | 3113                   | 38                | 3113                   | 38                |
| 57  | 3113                   | 38                | 3277                   | 40                | 3277                   | 40                | 3277                   | 40                | 3277                   | 40                |
| 58  | 3277                   | 40                | 3326                   | 40.6              | 3326                   | 40.6              | 3326                   | 40.6              | 3326                   | 40.6              |
| 59  | 3326                   | 40.6              | 3441                   | 42                | 3441                   | 42                | 3441                   | 42                | 3441                   | 42                |

Table 3.7.2-19: Frequencies Used in Transfer Function Calculation for RXB from Triple Building Model (Continued)

| No. |                        |                   | For CSDR               | S Inputs          |                        |                   |                        | For CSDRS         | -HF Inputs             |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | pe 11             | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 60  | 3441                   | 42                | 3605                   | 44.01             | 3605                   | 44.01             | 3605                   | 44.01             | 3605                   | 44.01             |
| 61  | 3605                   | 44.01             | 3769                   | 46.01             | 3769                   | 46.01             | 3769                   | 46.01             | 3769                   | 46.01             |
| 62  | 3769                   | 46.01             | 3933                   | 48.01             | 3933                   | 48.01             | 3933                   | 48.01             | 3933                   | 48.01             |
| 63  | 3851                   | 47.01             | 4096                   | 50                | 4096                   | 50                | 4096                   | 50                | 4096                   | 50                |
| 64  | 3933                   | 48.01             | 4260                   | 52                | 4260                   | 52                | 4260                   | 52                | 4260                   | 52                |
| 65  | 4014                   | 49                | -                      | -                 | 4424                   | 54                | 4424                   | 54                | 4424                   | 54                |
| 66  | 4096                   | 50                | -                      | -                 | 4588                   | 56.01             | 4588                   | 56.01             | 4588                   | 56.01             |
| 67  | 4178                   | 51                | -                      | -                 | 4752                   | 58.01             | 4752                   | 58.01             | 4752                   | 58.01             |
| 68  | 4260                   | 52                | -                      | -                 | 4916                   | 60.01             | 4916                   | 60.01             | 4916                   | 60.01             |
| 69  | -                      | -                 | -                      | -                 | 5080                   | 62.01             | 5080                   | 62.01             | 5080                   | 62.01             |
| 70  | -                      | -                 | -                      | -                 | 5243                   | 64                | 5243                   | 64                | 5243                   | 64                |
| 71  | -                      | -                 | -                      | -                 | 5407                   | 66                | 5407                   | 66                | 5407                   | 66                |
| 72  | -                      | -                 | -                      | -                 | 5571                   | 68.01             | 5571                   | 68.01             | 5571                   | 68.01             |
| 73  | -                      | -                 | -                      | -                 | 5735                   | 70.01             | 5735                   | 70.01             | 5735                   | 70.01             |
| 74  | -                      | -                 | -                      | -                 | 5899                   | 72.01             | 5899                   | 72.01             | 5899                   | 72.01             |

Note: The cutoff frequency for Soil Type 7 with the CSDRS is established at 52 Hz. For the RXB from the Triple Building Model, additional frequencies were added to ensure all of the seismic input motion was captured and to ensure there were no peaks in the transfer functions.

Table 3.7.2-20: Frequencies Used in Transfer Function Calculation for Standalone CRB Model

| No. |                        |                   | For CSDF               | RS Inputs         |                        |                   |                        | For CSDRS         | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | /pe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 1   | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           | 1                      | 0.01221           |
| 2   | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            | 41                     | 0.5005            |
| 3   | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             | 82                     | 1.001             |
| 4   | 123                    | 1.501             | 123                    | 1.501             | 123                    | 1.501             | 123                    | 1.501             | 125                    | 1.526             |
| 5   | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             | 164                    | 2.002             |
| 6   | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             | 205                    | 2.502             |
| 7   | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             | 246                    | 3.003             |
| 8   | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             | 258                    | 3.149             |
| 9   | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              | 281                    | 3.43              |
| 10  | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             | 287                    | 3.503             |
| 11  | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             | 328                    | 4.004             |
| 12  | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             | 369                    | 4.504             |
| 13  | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             | 410                    | 5.005             |
| 14  | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             | 451                    | 5.505             |
| 15  | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             | 493                    | 6.018             |
| 16  | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             | 533                    | 6.506             |
| 17  | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             | 574                    | 7.007             |
| 18  | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             | 615                    | 7.507             |
| 19  | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             | 656                    | 8.008             |
| 20  | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             | 697                    | 8.508             |
| 21  | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             | 738                    | 9.009             |
| 22  | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             | 779                    | 9.509             |
| 23  | 820                    | 10.01             | 820                    | 10.01             | 820                    | 10.01             | 820                    | 10.01             | 820                    | 10.01             |
| 24  | 861                    | 10.51             | 861                    | 10.51             | 861                    | 10.51             | 861                    | 10.51             | 861                    | 10.51             |
| 25  | 902                    | 11.01             | 902                    | 11.01             | 902                    | 11.01             | 902                    | 11.01             | 902                    | 11.01             |
| 26  | 943                    | 11.51             | 943                    | 11.51             | 943                    | 11.51             | 943                    | 11.51             | 943                    | 11.51             |
| 27  | 984                    | 12.01             | 984                    | 12.01             | 984                    | 12.01             | 984                    | 12.01             | 984                    | 12.01             |
| 28  | 1024                   | 12.5              | 1024                   | 12.5              | 1024                   | 12.5              | 1024                   | 12.5              | 1024                   | 12.5              |

Table 3.7.2-20: Frequencies Used in Transfer Function Calculation for Standalone CRB Model (Continued)

| No. |                        |                   | For CSDR               | S Inputs          |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | /pe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 29  | 1065                   | 13                | 1065                   | 13                | 1065                   | 13                | 1065                   | 13                | 1065                   | 13                |
| 30  | 1106                   | 13.5              | 1106                   | 13.5              | 1106                   | 13.5              | 1106                   | 13.5              | 1106                   | 13.5              |
| 31  | 1115                   | 13.61             | 1115                   | 13.61             | 1115                   | 13.61             | 1115                   | 13.61             | 1115                   | 13.61             |
| 32  | 1147                   | 14                | 1147                   | 14                | 1147                   | 14                | 1147                   | 14                | 1147                   | 14                |
| 33  | 1188                   | 14.5              | 1188                   | 14.5              | 1188                   | 14.5              | 1188                   | 14.5              | 1188                   | 14.5              |
| 34  | 1229                   | 15                | 1229                   | 15                | 1229                   | 15                | 1229                   | 15                | 1229                   | 15                |
| 35  | 1253                   | 15.3              | 1253                   | 15.3              | 1253                   | 15.3              | 1253                   | 15.3              | 1253                   | 15.3              |
| 36  | 1270                   | 15.5              | 1270                   | 15.5              | 1270                   | 15.5              | 1270                   | 15.5              | 1270                   | 15.5              |
| 37  | 1311                   | 16                | 1311                   | 16                | 1311                   | 16                | 1311                   | 16                | 1311                   | 16                |
| 38  | 1352                   | 16.5              | 1393                   | 17                | 1393                   | 17                | 1393                   | 17                | 1393                   | 17                |
| 39  | 1393                   | 17                | 1475                   | 18.01             | 1475                   | 18.01             | 1475                   | 18.01             | 1475                   | 18.01             |
| 40  | 1475                   | 18.01             | 1557                   | 19.01             | 1557                   | 19.01             | 1557                   | 19.01             | 1557                   | 19.01             |
| 41  | 1557                   | 19.01             | 1639                   | 20.01             | 1639                   | 20.01             | 1639                   | 20.01             | 1639                   | 20.01             |
| 42  | 1639                   | 20.01             | 1721                   | 21.01             | 1721                   | 21.01             | 1721                   | 21.01             | 1721                   | 21.01             |
| 43  | 1659                   | 20.25             | 1803                   | 22.01             | 1803                   | 22.01             | 1803                   | 22.01             | 1803                   | 22.01             |
| 44  | 1693                   | 20.67             | 1819                   | 22.2              | 1819                   | 22.2              | 1819                   | 22.2              | 1819                   | 22.2              |
| 45  | 1748                   | 21.34             | 1885                   | 23.01             | 1885                   | 23.01             | 1885                   | 23.01             | 1885                   | 23.01             |
| 46  | 1803                   | 22.01             | 1917                   | 23.4              | 1917                   | 23.4              | 1917                   | 23.4              | 1917                   | 23.4              |
| 47  | 1819                   | 22.2              | 1967                   | 24.01             | 1967                   | 24.01             | 1967                   | 24.01             | 1967                   | 24.01             |
| 48  | 1885                   | 23.01             | 2048                   | 25                | 2048                   | 25                | 2048                   | 25                | 2048                   | 25                |
| 49  | 1917                   | 23.4              | 2130                   | 26                | 2130                   | 26                | 2130                   | 26                | 2130                   | 26                |
| 50  | 1967                   | 24.01             | 2163                   | 26.4              | 2163                   | 26.4              | 2163                   | 26.4              | 2163                   | 26.4              |
| 51  | 2048                   | 25                | 2212                   | 27                | 2212                   | 27                | 2212                   | 27                | 2212                   | 27                |
| 52  | 2089                   | 25.5              | 2294                   | 28                | 2294                   | 28                | 2294                   | 28                | 2294                   | 28                |
| 53  | 2130                   | 26                | 2376                   | 29                | 2376                   | 29                | 2376                   | 29                | 2376                   | 29                |
| 54  | 2163                   | 26.4              | 2458                   | 30                | 2458                   | 30                | 2458                   | 30                | 2458                   | 30                |
| 55  | 2196                   | 26.81             | 2540                   | 31.01             | 2540                   | 31.01             | 2540                   | 31.01             | 2540                   | 31.01             |
| 56  | 2212                   | 27                | 2622                   | 32.01             | 2622                   | 32.01             | 2622                   | 32.01             | 2622                   | 32.01             |
| 57  | 2294                   | 28                | 2704                   | 33.01             | 2704                   | 33.01             | 2704                   | 33.01             | 2704                   | 33.01             |
| 58  | 2376                   | 29                | 2786                   | 34.01             | 2786                   | 34.01             | 2786                   | 34.01             | 2786                   | 34.01             |

Table 3.7.2-20: Frequencies Used in Transfer Function Calculation for Standalone CRB Model (Continued)

| No. |                        |                   | For CSDF               | RS Inputs         |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | /pe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 59  | 2458                   | 30                | 2950                   | 36.01             | 2950                   | 36.01             | 2950                   | 36.01             | 2950                   | 36.01             |
| 60  | 2512                   | 30.66             | 3113                   | 38                | 3113                   | 38                | 3113                   | 38                | 3113                   | 38                |
| 61  | 2567                   | 31.34             | 3277                   | 40                | 3277                   | 40                | 3277                   | 40                | 3277                   | 40                |
| 62  | 2622                   | 32.01             | 3326                   | 40.6              | 3326                   | 40.6              | 3326                   | 40.6              | 3326                   | 40.6              |
| 63  | 2663                   | 32.51             | 3441                   | 42                | 3441                   | 42                | 3441                   | 42                | 3441                   | 42                |
| 64  | 2704                   | 33.01             | 3605                   | 44.01             | 3605                   | 44.01             | 3605                   | 44.01             | 3605                   | 44.01             |
| 65  | 2786                   | 34.01             | 3769                   | 46.01             | 3769                   | 46.01             | 3769                   | 46.01             | 3769                   | 46.01             |
| 66  | 2868                   | 35.01             | 3793                   | 46.3              | 3793                   | 46.3              | 3793                   | 46.3              | 3793                   | 46.3              |
| 67  | 2925                   | 35.71             | 3933                   | 48.01             | 3933                   | 48.01             | 3933                   | 48.01             | 3933                   | 48.01             |
| 68  | 2950                   | 36.01             | 4096                   | 50                | 4096                   | 50                | 4096                   | 50                | 4096                   | 50                |
| 69  | 2990                   | 36.5              | 4260                   | 52                | 4260                   | 52                | 4260                   | 52                | 4260                   | 52                |
| 70  | 3031                   | 37                | -                      | -                 | -                      | -                 | 4424                   | 54                | 4424                   | 54                |
| 71  | 3113                   | 38                | -                      | -                 | -                      | -                 | 4588                   | 56.01             | 4588                   | 56.01             |
| 72  | 3138                   | 38.31             | -                      | -                 | -                      | -                 | 4752                   | 58.01             | 4752                   | 58.01             |
| 73  | 3170                   | 38.7              | -                      | -                 | -                      | -                 | 4916                   | 60.01             | 4916                   | 60.01             |
| 74  | 3195                   | 39                | -                      | -                 | -                      | -                 | 5080                   | 62.01             | 5080                   | 62.01             |
| 75  | 3277                   | 40                | -                      | -                 | -                      | -                 | 5243                   | 64                | 5243                   | 64                |
| 76  | 3326                   | 40.6              | -                      | -                 | -                      | -                 | 5407                   | 66                | 5407                   | 66                |
| 77  | 3338                   | 40.75             | -                      | -                 | -                      | -                 | 5571                   | 68.01             | 5571                   | 68.01             |
| 78  | 3359                   | 41                | -                      | -                 | -                      | -                 | 5735                   | 70.01             | 5735                   | 70.01             |
| 79  | 3441                   | 42                | -                      | -                 | -                      | -                 | 5899                   | 72.01             | 5899                   | 72.01             |
| 80  | 3523                   | 43.01             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 81  | 3541                   | 43.23             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 82  | 3605                   | 44.01             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 83  | 3687                   | 45.01             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 84  | 3769                   | 46.01             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 85  | 3793                   | 46.3              | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 86  | 3851                   | 47.01             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 87  | 3892                   | 47.51             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |
| 88  | 3956                   | 48.29             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |

Table 3.7.2-20: Frequencies Used in Transfer Function Calculation for Standalone CRB Model (Continued)

| No. |                        |                   | For CSDR               | RS Inputs         |                        |                   |                        | For CSDR          | -HF Inputs             |                   |  |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|--|
|     | Soil Ty                | vpe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | Soil Type 9       |  |
|     | No. of Frequency Steps | Frequency<br>(Hz) |  |
| 89  | 4015                   | 49.01             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 90  | 4096                   | 50                | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 91  | 4178                   | 51                | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 92  | 4219                   | 51.5              | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 93  | 4240                   | 51.76             | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |

Table 3.7.2-21: Frequencies Used in Transfer Function Calculation for CRB with Triple Building CRB Model

| No. |                        |                   | For CSDF               | RS Inputs         |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | pe 11             | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 1   | -                      | -                 | -                      | -                 | 1                      | 0.01221           | -                      | -                 | 1                      | 0.01221           |
| 2   | -                      | -                 | -                      | -                 | 41                     | 0.5005            | -                      | -                 | 41                     | 0.5005            |
| 3   | -                      | -                 | -                      | -                 | 82                     | 1.001             | -                      | -                 | 82                     | 1.001             |
| 4   | -                      | -                 | -                      | -                 | 123                    | 1.501             | -                      | -                 | 123                    | 1.501             |
| 5   | -                      | -                 | -                      | -                 | 164                    | 2.002             | -                      | -                 | 164                    | 2.002             |
| 6   | -                      | -                 | -                      | -                 | 205                    | 2.502             | -                      | -                 | 205                    | 2.502             |
| 7   | -                      | -                 | -                      | -                 | 246                    | 3.003             | -                      | -                 | 246                    | 3.003             |
| 8   | -                      | -                 | -                      | -                 | 258                    | 3.149             | -                      | -                 | 258                    | 3.149             |
| 9   | -                      | -                 | -                      | -                 | 281                    | 3.43              | -                      | -                 | 281                    | 3.43              |
| 10  | -                      | -                 | -                      | -                 | 287                    | 3.503             | -                      | -                 | 287                    | 3.503             |
| 11  | -                      | -                 | -                      | -                 | 328                    | 4.004             | -                      | -                 | 328                    | 4.004             |
| 12  | -                      | -                 | -                      | -                 | 369                    | 4.504             | -                      | -                 | 369                    | 4.504             |
| 13  | -                      | -                 | -                      | -                 | 410                    | 5.005             | -                      | -                 | 410                    | 5.005             |
| 14  | -                      | -                 | -                      | -                 | 451                    | 5.505             | -                      | -                 | 451                    | 5.505             |
| 15  | -                      | -                 | -                      | -                 | 493                    | 6.018             | -                      | -                 | 493                    | 6.018             |
| 16  | -                      | -                 | -                      | -                 | 533                    | 6.506             | -                      | -                 | 533                    | 6.506             |
| 17  | -                      | -                 | -                      | -                 | 574                    | 7.007             | -                      | -                 | 574                    | 7.007             |
| 18  | -                      | -                 | -                      | -                 | 615                    | 7.507             | -                      | -                 | 615                    | 7.507             |
| 19  | -                      | -                 | -                      | -                 | 656                    | 8.008             | -                      | -                 | 656                    | 8.008             |
| 20  | -                      | -                 | -                      | -                 | 697                    | 8.508             | -                      | -                 | 697                    | 8.508             |
| 21  | -                      | -                 | -                      | -                 | 738                    | 9.009             | -                      | -                 | 738                    | 9.009             |
| 22  | -                      | -                 | -                      | -                 | 779                    | 9.509             | -                      | -                 | 779                    | 9.509             |
| 23  | -                      | -                 | -                      | -                 | 820                    | 10.01             | -                      | -                 | 820                    | 10.01             |
| 24  | -                      | -                 | -                      | -                 | 861                    | 10.51             | -                      | -                 | 861                    | 10.51             |
| 25  | -                      | -                 | -                      | -                 | 902                    | 11.01             | -                      | -                 | 902                    | 11.01             |
| 26  | -                      | -                 | -                      | -                 | 943                    | 11.51             | -                      | -                 | 943                    | 11.51             |
| 27  | -                      | -                 | -                      | -                 | 984                    | 12.01             | -                      | -                 | 984                    | 12.01             |
| 28  | -                      | -                 | -                      | -                 | 1024                   | 12.5              | -                      | -                 | 1024                   | 12.5              |
| 29  | -                      | -                 | -                      | -                 | 1065                   | 13                | -                      | -                 | 1065                   | 13                |

Table 3.7.2-21: Frequencies Used in Transfer Function Calculation for CRB with Triple Building CRB Model (Continued)

| No. |                        |                   | For CSDF               | RS Inputs         |                        |                   |                        | For CSDR          | S-HF Inputs            |                   |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
|     | Soil Ty                | /pe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | ype 7             | Soil T                 | ype 9             |
|     | No. of Frequency Steps | Frequency<br>(Hz) |
| 30  | -                      | -                 | -                      | -                 | 1106                   | 13.5              | -                      | -                 | 1106                   | 13.5              |
| 31  | -                      | -                 | -                      | -                 | 1147                   | 14                | -                      | -                 | 1147                   | 14                |
| 32  | -                      | -                 | -                      | -                 | 1188                   | 14.5              | -                      | -                 | 1188                   | 14.5              |
| 33  | -                      | -                 | -                      | -                 | 1229                   | 15                | -                      | -                 | 1229                   | 15                |
| 34  | -                      | -                 | -                      | -                 | 1270                   | 15.5              | -                      | -                 | 1270                   | 15.5              |
| 35  | -                      | -                 | -                      | -                 | 1311                   | 16                | -                      | -                 | 1311                   | 16                |
| 36  | -                      | -                 | -                      | -                 | 1393                   | 17                | -                      | -                 | 1393                   | 17                |
| 37  | -                      | -                 | -                      | -                 | 1475                   | 18.01             | -                      | -                 | 1475                   | 18.01             |
| 38  | -                      | -                 | -                      | -                 | 1557                   | 19.01             | -                      | -                 | 1557                   | 19.01             |
| 39  | -                      | -                 | -                      | -                 | 1639                   | 20.01             | -                      | -                 | 1639                   | 20.01             |
| 40  | -                      | -                 | -                      | -                 | 1721                   | 21.01             | -                      | -                 | 1721                   | 21.01             |
| 41  | -                      | -                 | -                      | -                 | 1803                   | 22.01             | -                      | -                 | 1803                   | 22.01             |
| 42  | -                      | -                 | _                      | -                 | 1885                   | 23.01             | -                      | -                 | 1885                   | 23.01             |
| 43  | -                      | -                 | -                      | -                 | 1917                   | 23.4              | -                      | -                 | 1917                   | 23.4              |
| 44  | -                      | -                 | -                      | -                 | 1967                   | 24.01             | -                      | -                 | 1967                   | 24.01             |
| 45  | -                      | -                 | -                      | -                 | 2048                   | 25                | -                      | -                 | 2048                   | 25                |
| 46  | -                      | -                 | -                      | -                 | 2130                   | 26                | -                      | -                 | 2130                   | 26                |
| 47  | -                      | -                 | -                      | -                 | 2212                   | 27                | -                      | -                 | 2212                   | 27                |
| 48  | -                      | -                 | -                      | -                 | 2294                   | 28                | -                      | -                 | 2294                   | 28                |
| 49  | -                      | -                 | -                      | -                 | 2376                   | 29                | -                      | -                 | 2376                   | 29                |
| 50  | -                      | -                 | -                      | -                 | 2458                   | 30                | -                      | -                 | 2458                   | 30                |
| 51  | -                      | -                 | -                      | -                 | 2540                   | 31.01             | -                      | -                 | 2540                   | 31.01             |
| 52  | -                      | -                 | -                      | -                 | 2622                   | 32.01             | -                      | -                 | 2622                   | 32.01             |
| 53  | -                      | -                 | -                      | -                 | 2704                   | 33.01             | -                      | -                 | 2704                   | 33.01             |
| 54  | -                      | -                 | -                      | -                 | 2786                   | 34.01             | -                      | -                 | 2786                   | 34.01             |
| 55  | -                      | -                 | -                      | -                 | 2950                   | 36.01             | -                      | -                 | 2950                   | 36.01             |
| 56  | -                      | -                 | -                      | -                 | 3113                   | 38                | -                      | -                 | 3113                   | 38                |
| 57  | -                      | -                 | -                      | -                 | 3277                   | 40                | -                      | -                 | 3277                   | 40                |
| 58  | -                      | -                 | -                      | -                 | 3326                   | 40.6              | -                      | -                 | 3326                   | 40.6              |
| 59  | -                      | -                 | -                      | -                 | 3441                   | 42                | -                      | -                 | 3441                   | 42                |

Table 3.7.2-21: Frequencies Used in Transfer Function Calculation for CRB with Triple Building CRB Model (Continued)

| No. |                        |                   | For CSDR               | S Inputs          |                        |                   | For CSDRS-HF Inputs    |                   |                        |                   |  |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|--|
|     | Soil Ty                | rpe 11            | Soil T                 | ype 8             | Soil T                 | ype 7             | Soil T                 | /pe 7             | Soil Type 9            |                   |  |
|     | No. of Frequency Steps | Frequency<br>(Hz) |  |
| 60  | -                      | -                 | -                      | -                 | 3605                   | 44.01             | -                      | -                 | 3605                   | 44.01             |  |
| 61  | -                      | -                 | -                      | -                 | 3769                   | 46.01             | -                      | -                 | 3769                   | 46.01             |  |
| 62  | -                      | -                 | -                      | -                 | 3933                   | 48.01             | -                      | -                 | 3933                   | 48.01             |  |
| 63  | -                      | -                 | -                      | -                 | 4096                   | 50                | -                      | -                 | 4096                   | 50                |  |
| 64  | -                      | -                 | -                      | -                 | 4260                   | 52                | -                      | -                 | 4260                   | 52                |  |
| 65  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 66  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 67  | -                      | -                 | -                      | -                 | _                      | -                 | -                      | -                 | -                      | -                 |  |
| 68  | -                      | -                 | -                      | -                 | _                      | -                 | -                      | -                 | -                      | -                 |  |
| 69  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 70  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 71  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 72  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 73  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 74  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 75  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 76  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 77  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 78  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 79  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 80  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 81  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 82  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 83  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 84  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 85  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 86  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 87  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 88  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |
| 89  | _                      | _                 | _                      | _                 | _                      | _                 | _                      | _                 | _                      | _                 |  |

Table 3.7.2-21: Frequencies Used in Transfer Function Calculation for CRB with Triple Building CRB Model (Continued)

| No. |                        | For CSDRS Inputs  |                        |                   |                        |                   |                        |                   | For CSDRS-HF Inputs    |                   |  |  |  |
|-----|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|--|--|--|
|     | Soil Ty                | vpe 11            | Soil Type 8            |                   | Soil Type 7            |                   | Soil Type 7            |                   | Soil Type 9            |                   |  |  |  |
|     | No. of Frequency Steps | Frequency<br>(Hz) |  |  |  |
| 90  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |  |  |
| 91  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |  |  |
| 92  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |  |  |
| 93  | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 | -                      | -                 |  |  |  |

Note: Soil Types 8 and 11 with the CSDRS and Soil Type 7 with the CSDRS-HF are not considered for the design because, in general, the controlling case for the CRB is the Soil Type 7 with CSDRS. The frequencies in this table are used to study the structural response of the CRB where high frequencies are expected to be non-damaging and have been limited to 52 Hz.

Table 3.7.2-22: Methodology for Combining SASSI2010 Results

| Model           | Soil          | Earthquake        | Cracked or<br>Uncracked | 7% or 4%<br>Damping<br>(only 7%<br>shown) | Direction | Step 1 | Step 2   | Step 3                                   | Step 4                                   |
|-----------------|---------------|-------------------|-------------------------|-------------------------------------------|-----------|--------|----------|------------------------------------------|------------------------------------------|
|                 |               | Capitola - CSDRS  | Cracked                 | 7%                                        | Х         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |
|                 |               | Yermo - CSDRS     | Cracked                 | 7%                                        | Х         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Υ         |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |
|                 |               | Chi-Chi - CSDRS   | Cracked                 | 7%                                        | Х         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        | Averaged |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |
|                 |               | Izmit - CSDRS     | Cracked                 | 7%                                        | X         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          |                                          |                                          |
|                 |               |                   |                         | Z                                         |           |        |          |                                          |                                          |
|                 |               | El Centro - CSDRS | Cracked                 | 7%                                        | Х         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          | Enveloped<br>(largest value<br>selected) | Enveloped<br>(largest value<br>selected) |
| Single Building | <b>S</b> 7    |                   |                         |                                           | Z         |        |          |                                          |                                          |
| omigre banamig  | 0.            | Capitola - CSDRS  | RS Uncracked            | 7%                                        | X         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |
|                 |               | Yermo - CSDRS     | Uncracked               | 7%                                        | X         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |
|                 |               | Chi-Chi - CSDRS   | Uncracked               | 7%                                        | X         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        | Averaged |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |
|                 | Izmit - CSDRS | Uncracked         | 7%                      | X                                         | SRSS      |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        | _        |                                          |                                          |
|                 |               | El Centro - CSDRS | Uncracked               | 7%                                        | Х         | SRSS   |          |                                          |                                          |
|                 |               |                   |                         |                                           | Y         |        |          |                                          |                                          |
|                 |               |                   |                         |                                           | Z         |        |          |                                          |                                          |

Table 3.7.2-22: Methodology for Combining SASSI2010 Results (Continued)

| Model           | Soil       | Earthquake           | Cracked or<br>Uncracked | 7% or 4%<br>Damping<br>(only 7%<br>shown) | Direction | Step 1 | Step 2   | Step 3                   | Step 4                                   |
|-----------------|------------|----------------------|-------------------------|-------------------------------------------|-----------|--------|----------|--------------------------|------------------------------------------|
|                 | S8         | All 5 CSDRS combined | Cracked                 | 7%                                        | not shown | SRSS   | Averaged |                          |                                          |
|                 | 30         | All 5 CSDRS combined | Uncracked               | 7%                                        | not shown | SRSS   | Averaged |                          | Enveloped<br>(largest value<br>selected) |
|                 | S11        | All 5 CSDRS combined | Cracked                 | 7%                                        | not shown | SRSS   | Averaged | Enveloped                |                                          |
| Single Building | 311        | All 5 CSDRS combined | Uncracked               | 7%                                        | not shown | SRSS   | Averaged | (largest value           |                                          |
| (cont)          | S7         | Lucerne - CSDRS-HF   | Cracked                 | 7%                                        | not shown | SRSS   | used     | selected)                |                                          |
|                 | 3/         | Lucerne - CSDRS-HF   | Uncracked               | 7%                                        | not shown | SRSS   | used     | (cont)                   |                                          |
|                 | S9         | Lucerne - CSDRS-HF   | Cracked                 | 7%                                        | not shown | SRSS   | used     |                          |                                          |
|                 |            | Lucerne - CSDRS-HF   | Uncracked               | 7%                                        | not shown | SRSS   | used     | ]                        |                                          |
|                 | <b>S</b> 7 | All 5 CSDRS combined | Cracked                 | 7%                                        | not shown | SRSS   | Averaged |                          |                                          |
|                 | 3/         | All 5 CSDRS combined | Uncracked               | 7%                                        | not shown | SRSS   | Averaged | ]                        |                                          |
|                 | S8         | All 5 CSDRS combined | Cracked                 | 7%                                        | not shown | SRSS   | Averaged | ]                        | Jeiecteu,                                |
|                 | 36         | All 5 CSDRS combined | Uncracked               | 7%                                        | not shown | SRSS   | Averaged | 1                        |                                          |
| Triple Duilding | S11        | All 5 CSDRS combined | Cracked                 | 7%                                        | not shown | SRSS   | Averaged | Enveloped                |                                          |
| Triple Building | 311        | All 5 CSDRS combined | Uncracked               | 7%                                        | not shown | SRSS   | Averaged | (largest value selected) |                                          |
|                 | S7         | Lucerne - CSDRS-HF   | Cracked                 | 7%                                        | not shown | SRSS   | used     | Jeicetea)                |                                          |
|                 | 5/         | Lucerne - CSDRS-HF   | Uncracked               | 7%                                        | not shown | SRSS   | used     |                          |                                          |
|                 | S9         | Lucerne - CSDRS-HF   | Cracked                 | 7%                                        | not shown | SRSS   | used     |                          |                                          |
|                 | 39         | Lucerne - CSDRS-HF   | Uncracked               | 7%                                        | not shown | SRSS   | used     | 1                        |                                          |

Table 3.7.2-23: Example Averaging and Bounding Forces and Moments in a Shell Element

| Building<br>and Case | Soil Type      |              |        |         | sses     |        | ling Mom   | Out-of-Plane Shears |      |      |
|----------------------|----------------|--------------|--------|---------|----------|--------|------------|---------------------|------|------|
| and Case             | Soil Type      | Input Motion |        | (lb/in) |          |        | (lb-in/in) |                     | (lb/ | /in) |
|                      |                | -            | Sxx    | Syy     | Sxy      | Mxx    | Муу        | Мху                 | Vxz  | Vyz  |
|                      |                | Capitola     | 25,421 | 24,239  | 20,666   | 24,666 | 17,188     | 3,979               | 881  | 747  |
|                      |                | Chi-Chi      | 23,653 | 22,477  | 19,184   | 24,611 | 17,410     | 3,853               | 790  | 849  |
|                      |                | El Centro    | 24,691 | 23,430  | 20,006   | 22,885 | 15,594     | 3,566               | 811  | 858  |
|                      | <b>S7</b>      | Izmit        | 26,884 | 25,619  | 21,419   | 23,358 | 15,845     | 3,497               | 823  | 821  |
|                      |                | Yermo        | 22,994 | 21,972  | 18,646   | 21,495 | 15,975     | 3,353               | 763  | 843  |
|                      |                | Average      | 24,728 | 23,547  | 19,984   | 23,403 | 16,402     | 3,649               | 814  | 824  |
|                      |                | Capitola     | 24,782 | 23,600  | 20,178   | 26,490 | 16,545     | 3,555               | 901  | 731  |
|                      |                | Chi-Chi      | 22,071 | 20,875  | 17,906   | 24,413 | 13,283     | 3,436               | 818  | 775  |
|                      |                | El Centro    | 23,146 | 22,304  | 18,994   | 23,355 | 12,474     | 3,441               | 856  | 727  |
|                      | <b>S8</b>      | Izmit        | 26,041 | 24,789  | 20,691   | 23,497 | 14,153     | 3,345               | 802  | 772  |
| RXB                  |                | Yermo        | 22,934 | 21,914  | 18,625   | 22,603 | 12,926     | 2,999               | 776  | 734  |
| Cracked              |                | Average      | 23,795 | 22,697  | 19,279   | 24,072 | 13,876     | 3,355               | 831  | 748  |
|                      |                | Capitola     | 8,587  | 8,414   | 6,972    | 12,072 | 5,971      | 1,728               | 388  | 343  |
|                      |                | Chi-Chi      | 8,235  | 8,106   | <u> </u> | 13,719 | 6,216      | 1,955               | 369  | 375  |
|                      |                | El Centro    | 9,489  | 9,238   | 7,738    | 12,812 | 6,086      | 1,835               | 460  | 363  |
|                      | S11            | Izmit        | 6,670  | 6,636   | 5,451    | 12,794 | 6,448      | 1,745               | 368  | 339  |
|                      |                | Yermo        | 7,881  | 7,782   | 6,358    | 13,947 | 5,789      | 1,774               | 380  | 404  |
|                      |                | Average      | 8,172  | 8,035   | 6,630    | 13,069 | 6,102      | 1,807               | 393  | 365  |
|                      | S7<br>CSDRS-HF | Lucerne      | 8,694  | 8,374   | 6,894    | 17,538 | 10,849     | 3,648               | 353  | 894  |
|                      | S9<br>CSDRS-HF | Lucerne      | 8,767  | 8,730   | 6,846    | 23,012 | 17,662     | 4,826               | 395  | 946  |
|                      |                | Capitola     | 27,961 | 25,991  | 20,376   | 40,772 | 28,157     | 7,583               | 930  | 744  |
|                      |                | Chi-Chi      | 25,188 | 23,329  | 18,679   | 38,097 | 29,340     | 7,306               | 830  | 747  |
|                      | 67             | El Centro    | 28,908 | 26,302  | 21,504   | 39,216 | 28,501     | 7,204               | 930  | 741  |
|                      | <b>S7</b>      | lzmit        | 27,180 | 25,254  | 19,888   | 47,202 | 31,774     | 8,570               | 861  | 871  |
|                      |                | Yermo        | 27,303 | 25,502  | 20,046   | 37,651 | 27,259     | 6,979               | 916  | 816  |
|                      |                | Average      | 27,308 | 25,276  | 20,099   | 40,587 | 29,006     | 7,528               | 893  | 784  |
|                      |                | Capitola     | 25,901 | 23,859  | 18,997   | 38,805 | 25,367     | 6,770               | 876  | 604  |
|                      |                | Chi-Chi      | 24,636 | 22,760  | 18,353   | 37,201 | 23,020     | 6,394               | 831  | 641  |
|                      | S8             | El Centro    | 26,958 | 24,649  | 20,101   | 36,271 | 23,788     | 6,465               | 885  | 637  |
|                      | 30             | lzmit        | 25,295 | 23,569  | 18,621   | 43,224 | 27,382     | 7,557               | 859  | 794  |
| RXB                  |                | Yermo        | 25,237 | 23,536  | 18,514   | 36,187 | 22,310     | 5,678               | 874  | 658  |
| Uncracked            |                | Average      | 25,605 | 23,675  | 18,917   | 38,338 | 24,373     | 6,573               | 865  | 667  |
|                      |                | Capitola     | 9,044  | 8,675   | 6,644    | 20,112 | 10,450     | 3,809               | 395  | 331  |
|                      |                | Chi-Chi      | 8,336  | 8,071   | 6,088    | 22,968 | 11,203     | 4,078               | 365  | 360  |
|                      | <b>S</b> 11    | El Centro    | 10,219 | 9,697   | 7,563    | 19,933 | 10,826     | 3,801               | 462  | 321  |
|                      | 311            | lzmit        | 7,364  | 7,155   | 5,410    | 22,307 | 10,848     | 3,817               | 402  | 331  |
|                      |                | Yermo        | 8,367  | 8,104   | 6,124    | 23,039 | 10,891     | 4,036               | 389  | 370  |
|                      |                | Average      | 8,666  | 8,340   | 6,366    | 21,672 | 10,844     | 3,908               | 403  | 342  |
|                      | S7<br>CSDRS-HF | Lucerne      | 8,335  | 8,068   | 6,189    | 34,133 | 18,836     | 6,076               | 350  | 944  |
|                      | S9<br>CSDRS-HF | Lucerne      | 9,466  | 9,442   | 6,944    | 34,549 | 27,556     | 8,661               | 422  | 930  |
|                      | Envelope       | 27,308       | 25,276 | 20,099  | 40,587   | 29,006 | 8,661      | 893                 | 946  |      |

Notes: Light shaded values are the average for the soil type, dark shaded values are the enveloping values

Table 3.7.2-24: Example Averaging and Bounding Forces and Moments in a Beam Element

| Concrete    | Soil Type   | Input     | I-, J- |         | Force (lb) |           | ٨       | loment (lb-ii | n)         |
|-------------|-------------|-----------|--------|---------|------------|-----------|---------|---------------|------------|
| Condition   |             | Motion    | Node   | P1      | P2         | Р3        | M1      | M2            | М3         |
|             |             | Capitola  | I      | 637,407 | 193,697    | 1,181,917 | 412,354 | 53,506,728    | 26,831,360 |
|             |             |           | J      | 637,407 | 193,697    | 1,181,917 | 412,354 | 39,727,921    | 22,090,779 |
|             |             | Chi-Chi   | I      | 605,835 | 203,933    | 1,113,766 | 382,457 | 54,639,195    | 27,127,127 |
|             |             |           | J      | 605,835 | 203,933    | 1,113,766 | 382,457 | 36,331,216    | 21,467,599 |
|             |             | El Centro | I      | 595,258 | 182,415    | 1,158,737 | 431,611 | 58,002,098    | 30,048,007 |
|             | 67          |           | J      | 595,258 | 182,415    | 1,158,737 | 431,611 | 39,075,733    | 21,080,785 |
|             | <b>S7</b>   | Izmit     | I      | 597,170 | 174,524    | 1,257,765 | 417,618 | 53,111,937    | 27,758,354 |
|             |             |           | J      | 597,170 | 174,524    | 1,257,765 | 417,618 | 42,184,573    | 22,792,687 |
|             |             | Yermo     | I      | 631,705 | 186,292    | 1,106,687 | 413,987 | 49,080,244    | 29,286,079 |
|             |             |           | J      | 631,705 | 186,292    | 1,106,687 | 413,987 | 34,417,183    | 22,402,406 |
|             |             | Average   | I      | 613,475 | 188,172    | 1,163,774 | 411,605 | 53,668,040    | 28,210,185 |
|             |             |           | J      | 613,475 | 188,172    | 1,163,774 | 411,605 | 38,347,325    | 21,966,851 |
|             |             | Capitola  | I      | 562,000 | 184,238    | 1,153,557 | 388,632 | 52,020,060    | 22,785,266 |
|             |             |           | J      | 562,000 | 184,238    | 1,153,557 | 388,632 | 38,622,388    | 18,772,060 |
|             |             | Chi-Chi   | I      | 550,112 | 158,114    | 1,043,581 | 342,481 | 50,562,492    | 23,853,645 |
|             |             |           | J      | 550,112 | 158,114    | 1,043,581 | 342,481 | 32,709,311    | 18,696,986 |
|             |             | El Centro | I      | 505,340 | 143,621    | 1,121,451 | 373,514 | 53,758,459    | 27,056,749 |
|             | S8          |           | J      | 505,340 | 143,621    | 1,121,451 | 373,514 | 38,768,764    | 19,742,069 |
|             | 30          | Izmit     | I      | 560,288 | 158,502    | 1,222,493 | 339,117 | 52,485,355    | 24,937,075 |
| RXB Cracked |             |           | J      | 560,288 | 158,502    | 1,222,493 | 339,117 | 41,808,530    | 20,666,742 |
| NAD CIACKEA |             | Yermo     | I      | 582,658 | 158,353    | 1,068,467 | 337,027 | 49,703,132    | 24,338,879 |
|             |             |           | J      | 582,658 | 158,353    | 1,068,467 | 337,027 | 33,650,974    | 19,472,160 |
|             |             | Average   | I      | 552,079 | 160,566    | 1,121,910 | 356,154 | 51,705,900    | 24,594,323 |
|             |             |           | J      | 552,079 | 160,566    | 1,121,910 | 356,154 | 37,111,993    | 19,470,003 |
|             |             | Capitola  | I      | 257,270 | 59,307     | 403,576   | 255,352 | 16,552,991    | 10,615,267 |
|             |             |           | J      | 257,270 | 59,307     | 403,576   | 255,352 | 14,930,671    | 8,535,264  |
|             |             | Chi-Chi   | I      | 293,223 | 65,835     | 396,276   | 258,744 | 15,463,742    | 13,052,968 |
|             |             |           | J      | 293,223 | 65,835     | 396,276   | 258,744 | 14,721,401    | 10,180,712 |
|             |             | El Centro | I      | 292,358 | 60,765     | 431,509   | 246,559 | 19,029,981    | 10,351,437 |
|             | <b>S</b> 11 |           | J      | 292,358 | 60,765     | 431,509   | 246,559 | 17,819,488    | 9,204,187  |
|             | 311         | Izmit     | I      | 278,958 | 57,754     | 309,371   | 241,028 | 15,319,816    | 10,759,694 |
|             |             |           | J      | 278,958 | 57,754     | 309,371   | 241,028 | 14,880,940    | 9,034,444  |
|             |             | Yermo     | I      | 294,250 | 55,669     | 362,607   | 252,580 | 15,388,736    | 10,383,976 |
|             |             |           | J      | 294,250 | 55,669     | 362,607   | 252,580 | 14,356,934    | 9,274,927  |
|             |             | Average   | - 1    | 283,212 | 59,866     | 380,668   | 250,852 | 16,351,053    | 11,032,668 |
|             |             |           | J      | 283,212 | 59,866     | 380,668   | 250,852 | 15,341,887    | 9,245,907  |
|             | <b>S7</b>   | Lucerne   | - 1    | 373,561 | 121,764    | 403,694   | 254,608 | 18,623,356    | 31,318,146 |
|             | CSDRS-HF    |           | J      | 373,561 | 121,764    | 403,694   | 254,608 | 12,734,847    | 25,545,983 |
|             | S9          | Lucerne   | I      | 479,816 | 181,405    | 399,931   | 406,410 | 19,654,656    | 30,147,657 |
|             | CSDRS-HF    |           | J      | 479,816 | 181,405    | 399,931   | 406,410 | 14,669,735    | 27,624,580 |

Table 3.7.2-24: Example Averaging and Bounding Forces and Moments in a Beam Element (Continued)

| Concrete  | Soil Type    | Input     | I-, J- |        | Force (lb) |           | N       | Noment (lb-i | n)         |
|-----------|--------------|-----------|--------|--------|------------|-----------|---------|--------------|------------|
| Condition |              | Motion    | Node   | P1     | P2         | P3        | M1      | M2           | М3         |
|           |              | Capitola  | I      | 503177 | 136714     | 990325    | 240334  | 47728301     | 22957648   |
|           |              |           | J      | 503177 | 136714     | 990325    | 240334  | 26903246     | 17075218   |
|           |              | Chi-Chi   | I      | 477980 | 144613     | 906650    | 223207  | 48052732     | 20748716   |
|           |              |           | J      | 477980 | 144613     | 906650    | 223207  | 23619734     | 16522109   |
|           |              | El Centro | ı      | 482232 | 136389     | 1021567   | 273547  | 57345486     | 23206848   |
|           | 67           |           | J      | 482232 | 136389     | 1021567   | 273547  | 29210868     | 16971605   |
|           | <b>S7</b>    | Izmit     | I      | 488239 | 154495     | 970733    | 254468  | 48779104     | 20410280   |
|           |              |           | J      | 488239 | 154495     | 970733    | 254468  | 24999686     | 16097664   |
|           |              | Yermo     | I      | 521693 | 134568     | 987745    | 262223  | 49063036     | 23885512   |
|           |              |           | J      | 521693 | 134568     | 987745    | 262223  | 25767281     | 17313973   |
|           |              | Average   | I      | 494664 | 141356     | 975404    | 250756  | 50193732     | 22241801   |
|           |              |           | J      | 494664 | 141356     | 975404    | 250756  | 26100163     | 16796114   |
|           |              | Capitola  | I      | 449167 | 119045     | 915208    | 258787  | 46752452     | 19562338   |
|           |              |           | J      | 449167 | 119045     | 915208    | 258787  | 25502740     | 14671997   |
|           |              | Chi-Chi   | I      | 445700 | 113581     | 892656    | 246846  | 47978456     | 17524636   |
|           |              |           | J      | 445700 | 113581     | 892656    | 246846  | 22826407     | 14177852   |
|           |              | El Centro | I      | 421962 | 110157     | 957442    | 294160  | 53817100     | 19393758   |
|           | S8           |           | J      | 421962 | 110157     | 957442    | 294160  | 27211140     | 14659895   |
|           | 36           | Izmit     | I      | 455339 | 137083     | 900209    | 286474  | 46130782     | 19409752   |
| RXB       |              |           | J      | 455339 | 137083     | 900209    | 286474  | 23489015     | 15119757   |
| Uncracked |              | Yermo     | I      | 470027 | 109893     | 912937    | 269061  | 46073035     | 18891382   |
|           |              |           | J      | 470027 | 109893     | 912937    | 269061  | 23830826     | 14820340   |
|           |              | Average   | I      | 448439 | 117952     | 915690    | 271066  | 48150365     | 18956373   |
|           |              |           | J      | 448439 | 117952     | 915690    | 271066  | 24572026     | 14689968   |
|           |              | Capitola  | - 1    | 215592 | 50087      | 318730    | 164136  | 14406850     | 8422293    |
|           |              |           | J      | 215592 | 50087      | 318730    | 164136  | 10106866     | 6773966    |
|           |              | Chi-Chi   | - 1    | 242159 | 50422      | 294886    | 170618  | 13034136     | 9648666    |
|           |              |           | J      | 242159 | 50422      | 294886    | 170618  | 9521196      | 8272594    |
|           |              | El Centro | I      | 227958 | 47277      | 349567    | 159867  | 16996507     | 9398820    |
|           | S11          |           | J      | 227958 | 47277      | 349567    | 159867  | 12087318     | 7778459    |
|           | 3            | Izmit     | I      | 222365 | 45830      | 250395    | 162442  | 13142626     | 7669092    |
|           |              |           | J      | 222365 | 45830      | 250395    | 162442  | 10335833     | 6696791    |
|           |              | Yermo     | I      | 244552 | 48332      | 289408    | 178821  | 12854863     | 8362527    |
|           |              |           | J      | 244552 | 48332      | 289408    | 178821  | 10097128     | 7089083    |
|           |              | Average   | I      | 230525 | 48390      | 300597    | 167177  | 14086997     | 8700280    |
|           |              |           | J      | 230525 | 48390      | 300597    | 167177  | 10429668     | 7322179    |
|           | S7           | Lucerne   | I      | 310218 | 104076     | 301263    | 194939  | 16932305     | 28534100   |
|           | CSDRS-HF     |           | J      | 310218 | 104076     | 301263    | 194939  | 10259199     | 23333607   |
|           | S9 Lucerne I |           |        | 430396 | 132238     | 339826    | 323484  | 19230911     | 31145227   |
|           | CSDRS-HF J   |           |        | 430396 | 132238     | 339826    | 323484  | 12075167     | 25131998   |
|           | Envelope     |           |        |        | 188,172    | 1,163,774 | 411,605 | 1            | 31,318,146 |

Notes: Light shaded values are the average for the soil type, dark shaded values are the enveloping values.

Table 3.7.2-25: Example Averaging and Bounding Forces and Moments in a Solid Element

| Concrete    | S         | oil Type  | Input     |        |        | Stresse | es (psi) |        |             |
|-------------|-----------|-----------|-----------|--------|--------|---------|----------|--------|-------------|
| Condition   |           |           | Motion    | σχχ    | σуу    | σzz     | τχχ      | τχΖ    | τ <b>yz</b> |
|             |           |           | Capitola  | 151.89 | 117.72 | 111.93  | 57.93    | 148.2  | 42.82       |
|             |           |           | Chi-Chi   | 139.7  | 103.53 | 98.61   | 48.48    | 132.82 | 35.69       |
|             |           | 67        | El Centro | 136.36 | 115.11 | 96.95   | 48.25    | 124.59 | 36.59       |
|             |           | <b>S7</b> | Izmit     | 139.27 | 105.45 | 96.91   | 52.86    | 124.92 | 37.26       |
|             |           |           | Yermo     | 127.98 | 92.61  | 91.21   | 46.78    | 123.53 | 32.38       |
|             |           |           | Average   | 139.04 | 106.88 | 99.12   | 50.86    | 130.81 | 36.95       |
|             |           |           | Capitola  | 144.52 | 137.42 | 100.82  | 51.52    | 138.02 | 39.08       |
|             |           |           | Chi-Chi   | 150.01 | 126.88 | 96.78   | 50.42    | 138.2  | 34.5        |
|             |           | 60        | El Centro | 122.91 | 137.04 | 90.02   | 52.17    | 121.06 | 37.91       |
| RXB Cracked |           | <b>S8</b> | Izmit     | 131.94 | 126.31 | 92.25   | 53.17    | 127.45 | 34.96       |
| KAD Cracked |           |           | Yermo     | 127.14 | 113.48 | 88.05   | 46.2     | 122.59 | 33.46       |
|             |           |           | Average   | 135.3  | 128.23 | 93.58   | 50.7     | 129.46 | 35.98       |
|             |           |           | Capitola  | 120.32 | 86.85  | 48.2    | 29.38    | 76.46  | 22.48       |
|             |           |           | Chi-Chi   | 138.15 | 75.82  | 53.68   | 33.79    | 87.89  | 20.99       |
|             |           | C11       | El Centro | 115.82 | 96.59  | 46.43   | 28.89    | 69     | 26.1        |
|             |           | S11       | Izmit     | 124.24 | 94.06  | 48.29   | 28.11    | 71.64  | 25.08       |
|             |           |           | Yermo     | 138.08 | 80.44  | 51.6    | 32.79    | 80.89  | 22.01       |
|             |           |           | Average   | 127.32 | 86.75  | 49.64   | 30.59    | 77.18  | 23.33       |
|             | <b>S7</b> | CSDRS-HF  | Lucerne   | 55.39  | 41.68  | 37.57   | 22.59    | 49.75  | 13.66       |
|             | <b>S9</b> | CSDRS-HF  | Lucerne   | 51.4   | 37.8   | 45.77   | 21.5     | 58.76  | 15.18       |
|             |           | <b>S7</b> | Capitola  | 156.84 | 125.5  | 113.26  | 63.01    | 151.34 | 46.98       |
|             |           | 37        | Chi-Chi   | 144.77 | 97.27  | 98.16   | 56.78    | 133.43 | 37.04       |
|             |           |           | El Centro | 144.54 | 124.65 | 102.88  | 58.84    | 133    | 42.59       |
|             |           |           | Izmit     | 140.04 | 107.16 | 96.99   | 56.94    | 128.34 | 38.28       |
|             |           |           | Yermo     | 132.62 | 105.14 | 94.12   | 56.73    | 126.99 | 35.78       |
|             |           |           | Average   | 143.76 | 111.94 | 101.08  | 58.46    | 134.62 | 40.13       |
|             |           | <b>S8</b> | Capitola  | 152.55 | 150.27 | 103.51  | 56.43    | 141.34 | 45.02       |
|             |           | 30        | Chi-Chi   | 156.08 | 124.2  | 96.03   | 52.77    | 139.33 | 35.31       |
|             |           |           | El Centro | 133.57 | 148.3  | 94.51   | 58.21    | 127.04 | 41.82       |
| RXB         |           |           | Izmit     | 136.46 | 134.01 | 96.63   | 56.46    | 133.54 | 36.67       |
| Uncracked   |           |           | Yermo     | 134.56 | 118.09 | 88.32   | 51.9     | 125.16 | 34.69       |
|             |           |           | Average   | 142.64 | 134.97 | 95.8    | 55.15    | 133.28 | 38.7        |
|             |           | S11       | Capitola  | 120.85 | 88.68  | 48.01   | 29.38    | 75.18  | 24.14       |
|             |           | 311       | Chi-Chi   | 138.67 | 79.98  | 53.4    | 34.41    | 87.46  | 22.83       |
|             |           |           | El Centro | 115.57 | 95.82  | 47.13   | 28.61    | 69.18  | 27.64       |
|             |           |           | Izmit     | 124.48 | 94.2   | 48.55   | 29.44    | 71.85  | 26.79       |
|             |           |           | Yermo     | 139.81 | 85.42  | 50.77   | 34.37    | 80.19  | 23.7        |
|             |           |           | Average   | 127.87 | 88.82  | 49.57   | 31.24    | 76.77  | 25.02       |
|             | <b>S7</b> | CSDRS-HF  | Lucerne   | 54.05  | 49.28  | 39.97   | 25.12    | 49.11  | 17.17       |
|             | S9        | CSDRS-HF  | Lucerne   | 52.39  | 45.17  | 50.3    | 25.07    | 63.72  | 18.5        |
| Envelope    |           |           |           | 143.76 | 134.97 | 101.08  | 58.46    | 134.62 | 40.13       |

Note: Light shaded values are the average for the soil type, dark shaded values are the enveloping values.

**Table 3.7.2-26: Selected Reactor Building Locations for Relative Displacement** 

| Location ID   | X-Coord | Y-Coord | Z-Coord | Location Description                                         |
|---------------|---------|---------|---------|--------------------------------------------------------------|
| (Figure 3.7.2 | (inch)  | (inch)  | (inch)  |                                                              |
| -94)          |         |         |         |                                                              |
| 10952         | 0       | -873    | 420     | El. 50'-0", southwest corner at Gridline 1 & E               |
| 10974         | 0       | 873     | 420     | El. 50'-0", northwest corner at Gridline 1 & A               |
| 11136         | 420     | -453    | 420     | El. 50'-0", southwest corner of Pool Wall at Gridline 2 & D  |
| 11148         | 420     | 453     | 420     | El. 50'-0", northwest corner of Pool Wall at Gridline 2 & B  |
| 12073         | 3672    | -453    | 420     | El. 50'-0", southeast corner of Pool Wall at Gridline 6 & D  |
| 12085         | 3672    | 453     | 420     | El. 50'-0", northeast corner of Pool Wall at Gridline 6 & B  |
| 12220         | 4092    | -873    | 420     | El. 50'-0", southeast corner at Gridline 7 & E               |
| 12242         | 4092    | 873     | 420     | El. 50'-0", northeast corner at Gridline 7 & A               |
| 16925         | 0       | -873    | 720     | El. 75'-0", southwest corner at Gridline 1 & E               |
| 16947         | 0       | 873     | 720     | El. 75'-0", northwest corner at Gridline 1 & A               |
| 17109         | 420     | -453    | 720     | El. 75'-0", southwest corner of Pool Wall at Gridline 2 & D  |
| 17121         | 420     | 453     | 720     | El. 75'-0", northwest corner of Pool Wall at Gridline 2 & B  |
| 18019         | 3672    | -453    | 720     | El. 75'-0", southeast corner of Pool Wall at Gridline 6 & D  |
| 18031         | 3672    | 453     | 720     | El. 75'-0", northeast corner of Pool Wall at Gridline 6 & B  |
| 18165         | 4092    | -873    | 720     | El. 75'-0", southeast corner at Gridline 7 & E               |
| 18187         | 4092    | 873     | 720     | El. 75'-0", northeast corner at Gridline 7 & A               |
| 22810         | 0       | -873    | 1020    | El. 100'-0", southwest corner at Gridline 1 & E              |
| 22832         | 0       | 873     | 1020    | El. 100'-0", northwest corner at Gridline 1 & A              |
| 22994         | 420     | -453    | 1020    | El. 100'-0", southwest corner of Pool Wall at Gridline 2 & D |
| 23006         | 420     | 453     | 1020    | El. 100'-0", northwest corner of Pool Wall at Gridline 2 & B |
| 23907         | 3672    | -453    | 1020    | El. 100'-0", southeast corner of Pool Wall at Gridline 6 & D |
| 23919         | 3672    | 453     | 1020    | El. 100'-0", northeast corner of Pool Wall at Gridline 6 & B |
| 24054         | 4092    | -873    | 1020    | El. 100'-0", southeast corner at Gridline 7 & E              |
| 24076         | 4092    | 873     | 1020    | El. 100'-0", northeast corner at Gridline 7 & A              |
| 25487         | 0       | -873    | 1320    | El. 125'-0", southwest corner at Gridline 1 & E              |
| 25509         | 0       | 873     | 1320    | El. 125'-0", northwest corner at Gridline 1 & A              |
| 25568         | 420     | -453    | 1320    | El. 125'-0", southwest corner of Pool Wall at Gridline 2 & D |
| 25569         | 420     | 453     | 1320    | El. 125'-0", northwest corner of Pool Wall at Gridline 2 & B |
| 26333         | 3672    | -453    | 1320    | El. 125'-0", southeast corner of Pool Wall at Gridline 6 & D |
| 26345         | 3672    | 453     | 1320    | El. 125′-0″, northeast corner of Pool Wall at Gridline 6 & B |
| 26449         | 4092    | -873    | 1320    | El. 125′-0″, southeast corner at Gridline 7 & E              |
| 26471         | 4092    | 873     | 1320    | El. 125'-0", northeast corner at Gridline 7 & A              |
| 27467         | 0       | -873    | 1548    | Southwest corner at Gridline 1 & E at El. 145'-6"            |
| 27489         | 0       | 873     | 1548    | Northwest corner at Gridline 1 & A at El. 145′-6″            |
| 27663         | 2019.5  | -453    | 1548    | Center of north crane slab at El. 145'-6"                    |
| 27664         | 2019.5  | 453     | 1548    | Center of south crane slab at El. 145'-6"                    |
| 27900         | 4092    | -873    | 1548    | Southeast corner at Gridline 7 & E at El. 145′-6″            |
| 27922         | 4092    | 873     | 1548    | Northeast corner at Gridline 7 & A at El. 145′-6″            |
| 29076         | 0       | -873    | 1824    | Southwest corner at Gridline 1 & E at El. 163'-0"            |
| 29098         | 0       | 873     | 1824    | Northwest corner at Gridline 1 & A at El. 163'-0"            |
| 29343         | 4092    | -873    | 1824    | Southeast corner at Gridline 7 & E at El. 163′-0″            |
| 29365         | 4092    | 873     | 1824    | Northeast corner at Gridline 7 & A at El. 163'-0"            |
| 946           | 2019.5  | 0       | 0       | Reference node near the center of basemat bottom             |

Table 3.7.2-27: Selected Control Building Locations for Relative Displacement Calculation

| Location ID           | X-Coord | Y-Coord | Z-Coord | Location Description                                                     |
|-----------------------|---------|---------|---------|--------------------------------------------------------------------------|
| (Figure 3.7.2<br>-95) | (inch)  | (inch)  | (inch)  |                                                                          |
| 32322                 | 4500    | -700    | 405     | At top of basemat on the south-west corner (Gridlines 1 & E)             |
| 32345                 | 4500    | 700     | 405     | At top of basemat on the north-west corner (Gridlines 1 & A)             |
| 32526                 | 4968    | -8      | 405     | At top of basemat on the mid-point of basemat and Gridline 2             |
| 34297                 | 4500    | -700    | 570     | El. 63'-3", on the south-west corner of the Gridlines 1 and E            |
| 34311                 | 4500    | 125     | 570     | El. 63'-3", on the Gridlines of 1 and B.3                                |
| 34408                 | 4751.33 | -270    | 570     | El. 63'-3", on the Gridlines 1.7 and D                                   |
| 35463                 | 4200    | -155    | 720     | El. 76'-6", on the north-west corner of tunnel at Gridline C             |
| 35614                 | 4500    | -700    | 720     | El. 76'-6", south-west corner of CRB                                     |
| 35627                 | 4500    | 58.5    | 720     | El. 76'-6", on the Gridline 1 and south of Gridline B.3                  |
| 35637                 | 4500    | 700     | 720     | El. 76'-6", on the north-west corner (Gridlines 1 & A)                   |
| 35787                 | 4809.67 | 58.5    | 720     | El. 76'-6", mid-point of 3 foot slab                                     |
| 35902                 | 5010    | -700    | 720     | El. 76'-6", on the Gridline E at the south stairwell                     |
| 35925                 | 5010    | 700     | 720     | El. 76'-6", on the Gridline A at the north stairwell                     |
| 36009                 | 5154    | 58.5    | 720     | El. 76'-6", Gridline 3 at the mid-point of the slab                      |
| 36158                 | 5436    | 58.5    | 720     | El. 76'-6", east wall at the mid-point of the slab                       |
| 37970                 | 4200    | -155    | 1020    | Tunnel at El. 100'-00, Gridline C and north-west tunnel corner           |
| 38144                 | 4500    | 700     | 1020    | El. 100'-00", north-west corner ( Gridlines 1 & A)                       |
| 38294                 | 4809.67 | 58.5    | 1020    | El. 100'-00", mid-point of 3 foot slab                                   |
| 38409                 | 5010    | -700    | 1020    | El. 100'-00", on the Gridline E at the south stairwell                   |
| 38432                 | 5010    | 700     | 1020    | El. 100'-00", on the Gridline A at the north stairwell                   |
| 38652                 | 5436    | -700    | 1020    | At top of backfill at El. 100'-00", south-east corner at Gridlines 4 & E |
| 38665                 | 5436    | 58.5    | 1020    | El. 100'-00", east wall at the mid-point of the slab                     |
| 39083                 | 4500    | -631    | 1260    | El. 120'-00", south-west corner at Gridlines 1 and E                     |
| 39105                 | 4500    | 700     | 1260    | El. 120'-00", north-west corner at Gridlines 1 & A                       |
| 39215                 | 4809.67 | 58.5    | 1260    | El. 120'-00", mid-point of 3 foot slab                                   |
| 39254                 | 4918    | -421    | 1260    | El. 120'-00", at point south of Gridline D and west of Gridline 2        |
| 39368                 | 5106    | 700     | 1260    | El. 120'-00", on the Gridline A at the north stairwell                   |
| 39490                 | 5436    | 58.5    | 1260    | El. 120'-00", east wall at the mid-point of the slab                     |
| 39705                 | 4500    | -700    | 1518    | At roof top El. 140'-00", south-west corner                              |
| 39710                 | 4500    | -8      | 1518    | At roof top El. 140'-00", mid-point of roof at Grid 1                    |
| 39715                 | 4500    | 700     | 1518    | At roof top El. 140'-00", north-west corner                              |
| 39778                 | 4936    | -8      | 1518    | At roof top El. 140'-00", mid-point of roof                              |
| 39860                 | 5436    | -700    | 1518    | At roof top El. 140'-00", south-east corner                              |
| 39866                 | 5436    | -8      | 1518    | At roof top El. 140'-00", mid-point of roof at Grid 4                    |
| 39872                 | 5436    | 700     | 1518    | At roof top El. 140'-00", north-east corner                              |
| 31890                 | 4968    | -8      | 345     | Reference node near the bottom center of basemat bottom                  |

Table 3.7.2-28: Relative Displacement at Selected Locations on Reactor Building

| Location ID    |         | RXB Model |         |         | Triple Mode | I       |         | Envelope |         |
|----------------|---------|-----------|---------|---------|-------------|---------|---------|----------|---------|
| (Figure 3.7.2- | Displ-X | Displ-Y   | Displ-Z | Displ-X | Displ-Y     | Displ-Z | Displ-X | Displ-Y  | Displ-Z |
| 94)            | (inch)  | (inch)    | (inch)  | (inch)  | (inch)      | (inch)  | (inch)  | (inch)   | (inch)  |
| 10952          | 0.07    | 0.18      | 0.31    | 0.07    | 0.18        | 0.31    | 0.07    | 0.18     | 0.31    |
| 10974          | 0.07    | 0.18      | 0.32    | 0.06    | 0.18        | 0.31    | 0.07    | 0.18     | 0.32    |
| 11136          | 0.06    | 0.17      | 0.19    | 0.06    | 0.16        | 0.18    | 0.06    | 0.17     | 0.19    |
| 11148          | 0.06    | 0.17      | 0.19    | 0.06    | 0.17        | 0.18    | 0.06    | 0.17     | 0.19    |
| 12073          | 0.07    | 0.19      | 0.2     | 0.07    | 0.18        | 0.19    | 0.07    | 0.19     | 0.2     |
| 12085          | 0.07    | 0.19      | 0.2     | 0.07    | 0.18        | 0.2     | 0.07    | 0.19     | 0.2     |
| 12220          | 0.07    | 0.21      | 0.32    | 0.07    | 0.19        | 0.31    | 0.07    | 0.21     | 0.32    |
| 12242          | 0.07    | 0.21      | 0.32    | 0.06    | 0.2         | 0.32    | 0.07    | 0.21     | 0.32    |
| 16925          | 0.11    | 0.3       | 0.33    | 0.11    | 0.29        | 0.33    | 0.11    | 0.3      | 0.33    |
| 16947          | 0.11    | 0.3       | 0.33    | 0.11    | 0.3         | 0.32    | 0.11    | 0.3      | 0.33    |
| 17109          | 0.11    | 0.29      | 0.19    | 0.11    | 0.29        | 0.19    | 0.11    | 0.29     | 0.19    |
| 17121          | 0.11    | 0.28      | 0.19    | 0.1     | 0.28        | 0.18    | 0.11    | 0.28     | 0.19    |
| 18019          | 0.12    | 0.31      | 0.21    | 0.12    | 0.31        | 0.2     | 0.12    | 0.31     | 0.21    |
| 18031          | 0.12    | 0.31      | 0.21    | 0.12    | 0.31        | 0.2     | 0.12    | 0.31     | 0.21    |
| 18165          | 0.12    | 0.32      | 0.33    | 0.12    | 0.31        | 0.33    | 0.12    | 0.32     | 0.33    |
| 18187          | 0.11    | 0.32      | 0.33    | 0.12    | 0.31        | 0.33    | 0.12    | 0.32     | 0.33    |
| 22810          | 0.16    | 0.44      | 0.34    | 0.15    | 0.43        | 0.34    | 0.16    | 0.44     | 0.34    |
| 22832          | 0.15    | 0.43      | 0.34    | 0.15    | 0.43        | 0.34    | 0.15    | 0.43     | 0.34    |
| 22994          | 0.16    | 0.41      | 0.19    | 0.15    | 0.41        | 0.19    | 0.16    | 0.41     | 0.19    |
| 23006          | 0.15    | 0.4       | 0.19    | 0.15    | 0.41        | 0.18    | 0.15    | 0.41     | 0.19    |
| 23907          | 0.17    | 0.44      | 0.21    | 0.18    | 0.43        | 0.2     | 0.18    | 0.44     | 0.21    |
| 23919          | 0.17    | 0.44      | 0.21    | 0.18    | 0.43        | 0.21    | 0.18    | 0.44     | 0.21    |
| 24054          | 0.17    | 0.44      | 0.34    | 0.17    | 0.43        | 0.34    | 0.17    | 0.44     | 0.34    |
| 24076          | 0.17    | 0.44      | 0.34    | 0.17    | 0.43        | 0.35    | 0.17    | 0.44     | 0.35    |
| 25487          | 0.21    | 0.64      | 0.35    | 0.2     | 0.62        | 0.35    | 0.21    | 0.64     | 0.35    |
| 25509          | 0.21    | 0.65      | 0.35    | 0.2     | 0.63        | 0.35    | 0.21    | 0.65     | 0.35    |
| 25568          | 0.2     | 0.79      | 0.19    | 0.2     | 0.76        | 0.18    | 0.2     | 0.79     | 0.19    |
| 25569          | 0.2     | 0.82      | 0.19    | 0.19    | 0.78        | 0.18    | 0.2     | 0.82     | 0.19    |
| 26333          | 0.22    | 0.57      | 0.21    | 0.23    | 0.57        | 0.2     | 0.23    | 0.57     | 0.21    |
| 26345          | 0.22    | 0.57      | 0.21    | 0.23    | 0.57        | 0.2     | 0.23    | 0.57     | 0.21    |
| 26449          | 0.23    | 0.56      | 0.35    | 0.22    | 0.55        | 0.35    | 0.23    | 0.56     | 0.35    |
| 26471          | 0.23    | 0.56      | 0.35    | 0.22    | 0.55        | 0.36    | 0.23    | 0.56     | 0.36    |
| 27467          | 0.25    | 0.78      | 0.35    | 0.24    | 0.76        | 0.36    | 0.25    | 0.78     | 0.36    |
| 27489          | 0.25    | 0.8       | 0.36    | 0.24    | 0.77        | 0.35    | 0.25    | 0.8      | 0.36    |
| 27663          | 0.22    | 1.43      | 0.09    | 0.22    | 1.32        | 0.09    | 0.22    | 1.43     | 0.09    |
| 27664          | 0.22    | 1.42      | 0.09    | 0.21    | 1.31        | 0.09    | 0.22    | 1.42     | 0.09    |
| 27900          | 0.27    | 0.65      | 0.36    | 0.26    | 0.64        | 0.35    | 0.27    | 0.65     | 0.36    |
| 27922          | 0.28    | 0.65      | 0.35    | 0.26    | 0.65        | 0.36    | 0.28    | 0.65     | 0.36    |
| 29076          | 0.32    | 0.94      | 0.36    | 0.3     | 0.92        | 0.36    | 0.32    | 0.94     | 0.36    |
| 29098          | 0.32    | 0.94      | 0.36    | 0.3     | 0.91        | 0.35    | 0.32    | 0.94     | 0.36    |
| 29343          | 0.33    | 0.77      | 0.36    | 0.31    | 0.77        | 0.35    | 0.33    | 0.77     | 0.36    |
| 29365          | 0.34    | 0.77      | 0.36    | 0.31    | 0.77        | 0.36    | 0.34    | 0.77     | 0.36    |

Table 3.7.2-29: Relative Displacement at Selected Locations on Control Building

| Location           |         | CRB Model |         | •       | Triple Mode |         |         | Envelope |         |
|--------------------|---------|-----------|---------|---------|-------------|---------|---------|----------|---------|
| ID                 | Displ-X | Displ-Y   | Displ-Z | Displ-X | Displ-Y     | Displ-Z | Displ-X | Displ-Y  | Displ-Z |
| (Figure 3.7 .2-95) | (inch)  | (inch)    | (inch)  | (inch)  | (inch)      | (inch)  | (inch)  | (inch)   | (inch)  |
| 32322              | 0.03    | 0.02      | 0.21    | 0.05    | 0.03        | 0.07    | 0.05    | 0.03     | 0.21    |
| 32345              | 0.03    | 0.02      | 0.22    | 0.05    | 0.03        | 0.08    | 0.05    | 0.03     | 0.22    |
| 32526              | 0.02    | 0.01      | 0       | 0       | 0           | 0       | 0.02    | 0.01     | 0       |
| 34297              | 0.1     | 0.07      | 0.21    | 0.07    | 0.07        | 0.09    | 0.1     | 0.07     | 0.21    |
| 34311              | 0.09    | 0.07      | 0.15    | 0.09    | 0.06        | 0.04    | 0.09    | 0.07     | 0.15    |
| 34408              | 0.09    | 0.06      | 0.08    | 0.06    | 0.06        | 0.02    | 0.09    | 0.06     | 0.08    |
| 35463              | 0.16    | 0.17      | 0.26    | 0.11    | 0.22        | 0.11    | 0.16    | 0.22     | 0.26    |
| 35614              | 0.16    | 0.11      | 0.21    | 0.11    | 0.1         | 0.1     | 0.16    | 0.11     | 0.21    |
| 35627              | 0.15    | 0.11      | 0.15    | 0.12    | 0.1         | 0.05    | 0.15    | 0.11     | 0.15    |
| 35637              | 0.16    | 0.11      | 0.23    | 0.11    | 0.1         | 0.11    | 0.16    | 0.11     | 0.23    |
| 35787              | 0.15    | 0.11      | 0.05    | 0.11    | 0.09        | 0.03    | 0.15    | 0.11     | 0.05    |
| 35902              | 0.16    | 0.11      | 0.15    | 0.1     | 0.12        | 0.06    | 0.16    | 0.12     | 0.15    |
| 35925              | 0.16    | 0.11      | 0.15    | 0.1     | 0.1         | 0.06    | 0.16    | 0.11     | 0.15    |
| 36009              | 0.14    | 0.11      | 0.05    | 0.1     | 0.08        | 0.02    | 0.14    | 0.11     | 0.05    |
| 36158              | 0.15    | 0.11      | 0.14    | 0.11    | 0.09        | 0.06    | 0.15    | 0.11     | 0.14    |
| 37970              | 0.28    | 0.26      | 0.26    | 0.18    | 0.26        | 0.12    | 0.28    | 0.26     | 0.26    |
| 38144              | 0.28    | 0.2       | 0.23    | 0.19    | 0.16        | 0.13    | 0.28    | 0.2      | 0.23    |
| 38294              | 0.28    | 0.2       | 0.14    | 0.2     | 0.17        | 0.2     | 0.28    | 0.2      | 0.2     |
| 38409              | 0.27    | 0.2       | 0.15    | 0.17    | 0.17        | 0.07    | 0.27    | 0.2      | 0.15    |
| 38432              | 0.28    | 0.2       | 0.16    | 0.18    | 0.17        | 0.07    | 0.28    | 0.2      | 0.16    |
| 38652              | 0.27    | 0.19      | 0.22    | 0.17    | 0.15        | 0.12    | 0.27    | 0.19     | 0.22    |
| 38665              | 0.29    | 0.19      | 0.14    | 0.19    | 0.15        | 0.08    | 0.29    | 0.19     | 0.14    |
| 39083              | 0.35    | 0.25      | 0.2     | 0.23    | 0.21        | 0.1     | 0.35    | 0.25     | 0.2     |
| 39105              | 0.36    | 0.25      | 0.23    | 0.25    | 0.2         | 0.13    | 0.36    | 0.25     | 0.23    |
| 39215              | 0.36    | 0.25      | 0.17    | 0.28    | 0.21        | 0.23    | 0.36    | 0.25     | 0.23    |
| 39254              | 0.36    | 0.25      | 0.09    | 0.24    | 0.21        | 0.1     | 0.36    | 0.25     | 0.1     |
| 39368              | 0.36    | 0.25      | 0.16    | 0.25    | 0.22        | 0.09    | 0.36    | 0.25     | 0.16    |
| 39490              | 0.36    | 0.24      | 0.14    | 0.28    | 0.19        | 0.08    | 0.36    | 0.24     | 0.14    |
| 39705              | 0.44    | 0.31      | 0.21    | 0.3     | 0.36        | 0.13    | 0.44    | 0.36     | 0.21    |
| 39710              | 0.52    | 0.31      | 0.15    | 0.73    | 0.34        | 0.08    | 0.73    | 0.34     | 0.15    |
| 39715              | 0.45    | 0.31      | 0.23    | 0.34    | 0.34        | 0.14    | 0.45    | 0.34     | 0.23    |
| 39778              | 0.52    | 0.32      | 0.42    | 0.73    | 0.48        | 0.51    | 0.73    | 0.48     | 0.51    |
| 39860              | 0.44    | 0.31      | 0.22    | 0.29    | 0.34        | 0.14    | 0.44    | 0.34     | 0.22    |
| 39866              | 0.52    | 0.31      | 0.14    | 0.73    | 0.31        | 0.09    | 0.73    | 0.31     | 0.14    |
| 39872              | 0.45    | 0.31      | 0.22    | 0.33    | 0.3         | 0.14    | 0.45    | 0.31     | 0.22    |

Table 3.7.2-30: Comparison of Maximum Lug and Skirt Reactions using Soil Type 7 (CSDRS)

| Input Case | East Wing Wall<br>(x10 <sup>3</sup> kip) | Pool Wall<br>(x10 <sup>3</sup> kip) | West Wing Wall<br>(x10 <sup>3</sup> kip) | NPM Skirt E-W<br>Reaction<br>(x10 <sup>3</sup> kip) | NPM Skirt N-S<br>Reaction<br>(x10 <sup>3</sup> kip) |
|------------|------------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 12 NPMs    | 1.8                                      | 2.3                                 | 2.0                                      | 0.8                                                 | 0.9                                                 |
| 7 NPMs     | 1.8                                      | 2.3                                 | 1.9                                      | 0.8                                                 | 0.9                                                 |

Note: Highlighted values are the larger of the two cases

Table 3.7.2-31: Comparison of Maximum Lug and Skirt Reactions using Soil Type 9 (CSDRS-HF)

| Input Case | East Wing Wall<br>(x10 <sup>3</sup> kip) | Pool Wall<br>(x10 <sup>3</sup> kip) | West Wing Wall<br>(x10 <sup>3</sup> kip) | NPM Skirt E-W<br>Reaction<br>(x10 <sup>3</sup> kip) | NPM Skirt N-S<br>Reaction<br>(x10 <sup>3</sup> kip) |
|------------|------------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 12 NPMs    | 1.8                                      | 2.2                                 | 1.9                                      | 0.6                                                 | 0.9                                                 |
| 7 NPMs     | 1.8                                      | 2.1                                 | 2.0                                      | 0.7                                                 | 0.9                                                 |

Note: Highlighted values are the larger of the two cases

Table 3.7.2-32: Max Forces and Moments at wall locations using Soil Type 7, CSDRS Input

| Bay 1<br>West Wing Wall | Model  | In-Plane Stress<br>(kip/ft) |             |     | Ben | ding Mome<br>(kip-ft/ft) | Out of Plane Shear<br>(kip/ft) |     |     |
|-------------------------|--------|-----------------------------|-------------|-----|-----|--------------------------|--------------------------------|-----|-----|
|                         |        | Sxx                         | Sxx Syy Sxy |     | Mxx | Муу                      | Мху                            | Vxz | Vyz |
| Base                    | 12 NPM | 421                         | 82          | 132 | 415 | 101                      | 172                            | 59  | 21  |
|                         | 7 NPM  | 418                         | 83          | 130 | 494 | 120                      | 213                            | 67  | 25  |
| Lug                     | 12 NPM | 438                         | 175         | 113 | 197 | 665                      | 93                             | 49  | 72  |
|                         | 7 NPM  | 425                         | 195         | 119 | 211 | 761                      | 87                             | 51  | 88  |

| Bay 1 Pool Wall | Model  | In-Plane Stress<br>(kip/ft) |             |     | Ber | nding Mome<br>(kip-ft/ft) | Out of Plane Shear<br>(kip/ft) |     |     |
|-----------------|--------|-----------------------------|-------------|-----|-----|---------------------------|--------------------------------|-----|-----|
|                 |        | Sxx                         | Sxx Syy Sxy |     |     | Муу                       | Мху                            | Vxz | Vyz |
| Base            | 12 NPM | 110                         | 31          | 173 | 98  | 23                        | 11                             | 18  | 7   |
|                 | 7 NPM  | 105                         | 29          | 166 | 96  | 23                        | 13                             | 18  | 7   |
| Lug             | 12 NPM | 100                         | 117         | 115 | 130 | 153                       | 59                             | 139 | 42  |
|                 | 7 NPM  | 95                          | 121         | 139 | 139 | 215                       | 76                             | 166 | 52  |

| Bay 1 / 2 Wing Wall | Model  | In-Plane Stress<br>(kip/ft) |             |     | Ber | nding Mome<br>(kip-ft/ft) | ents | Out of Plane Shear<br>(kip/ft) |     |  |
|---------------------|--------|-----------------------------|-------------|-----|-----|---------------------------|------|--------------------------------|-----|--|
|                     |        | Sxx                         | Sxx Syy Sxy |     | Mxx | Муу                       | Мху  | Vxz                            | Vyz |  |
| Base                | 12 NPM | 231                         | 244         | 123 | 99  | 86                        | 45   | 15                             | 21  |  |
|                     | 7 NPM  | 227                         | 242         | 117 | 117 | 111                       | 65   | 15                             | 26  |  |
| Lug                 | 12 NPM | 196                         | 215         | 70  | 87  | 176                       | 58   | 18                             | 23  |  |
|                     | 7 NPM  | 193                         | 191         | 64  | 98  | 241                       | 56   | 26                             | 34  |  |

Note: Shaded entries are maximum forces either for the wing walls, or for the pool walls.

| Bay 5/6 Wing Wall | Model  | In-Plane Stress<br>(kip/ft) |     |     | Bei | nding Mome<br>(kip-ft/ft) | Out of Plane Shear<br>(kip/ft) |     |     |
|-------------------|--------|-----------------------------|-----|-----|-----|---------------------------|--------------------------------|-----|-----|
|                   |        | Sxx                         | Syy | Sxy | Мхх | Муу                       | Мху                            | Vxz | Vyz |
| Base              | 12 NPM | 134                         | 139 | 93  | 96  | 87                        | 48                             | 15  | 21  |
|                   | 7 NPM  | 132                         | 135 | 88  | 105 | 98                        | 58                             | 15  | 25  |
| Lug               | 12 NPM | 103                         | 118 | 56  | 91  | 180                       | 76                             | 17  | 25  |
|                   | 7 NPM  | 102                         | 113 | 47  | 95  | 189                       | 83                             | 18  | 29  |

| Bay 6 Pool Wall | Model  | In-Plane Stress<br>(kip/ft) |     |     | Bei | nding Mome<br>(kip-ft/ft) | Out of Plane Shear<br>(kip/ft) |     |     |
|-----------------|--------|-----------------------------|-----|-----|-----|---------------------------|--------------------------------|-----|-----|
|                 |        | Sxx                         | Syy | Sxy | Мхх | Муу                       | Мху                            | Vxz | Vyz |
| Base            | 12 NPM | 294                         | 80  | 162 | 80  | 20                        | 14                             | 20  | 7   |
|                 | 7 NPM  | 288                         | 78  | 156 | 79  | 20                        | 14                             | 20  | 7   |
| Lug             | 12 NPM | 179                         | 95  | 147 | 96  | 65                        | 25                             | 63  | 18  |
|                 | 7 NPM  | 180                         | 92  | 144 | 95  | 60                        | 27                             | 55  | 18  |

| Bay 6<br>East Wall | Model  | In-Plane Stress (kip/ft) Sxx Syy Sxy |     |     | Ber | nding Mome<br>(kip-ft/ft) | ents | Out of Plane Shear<br>(kip/ft) |     |  |
|--------------------|--------|--------------------------------------|-----|-----|-----|---------------------------|------|--------------------------------|-----|--|
|                    |        |                                      |     |     | Mxx | Муу                       | Мху  | Vxz                            | Vyz |  |
| Base               | 12 NPM | 401                                  | 68  | 210 | 129 | 35                        | 39   | 26                             | 8   |  |
|                    | 7 NPM  | 398                                  | 67  | 209 | 127 | 34                        | 37   | 26                             | 8   |  |
| Lug                | 12 NPM | 253                                  | 110 | 211 | 118 | 85                        | 50   | 55                             | 13  |  |
|                    | 7 NPM  | 253                                  | 108 | 211 | 117 | 81                        | 50   | 54                             | 13  |  |

Note: Shaded entries are maximum forces either for the wing walls, or for the pool walls.

**Table 3.7.2-33: Definition of Seismic Analysis Identification Codes** 

| Identification<br>Code |       | CSDRS Input |         |       |              |   | CSDRS Soil CSDRS<br>Type Inpu |    | CSDRS-HF<br>Input | F CSDRS-HF<br>Soil Type | Damping |           | Concrete Condition |         | Building Model |     |     |        |
|------------------------|-------|-------------|---------|-------|--------------|---|-------------------------------|----|-------------------|-------------------------|---------|-----------|--------------------|---------|----------------|-----|-----|--------|
|                        | Yermo | Capitola    | Chi-Chi | Izmit | El<br>Centro | 7 | 8                             | 11 | Lucerne           | 7                       | 9       | OBE<br>4% | SSE<br>7%          | Cracked | Uncracked      | RXB | CRB | Triple |
| 1                      | X     | Х           | X       | X     | X            | Χ | Χ                             | Х  | X                 | Χ                       | X       | -         | Х                  | X       | X              | Χ   | -   | -      |
| 2                      | Х     | Х           | X       | Х     | Х            | Χ | Χ                             | Χ  | Х                 | Χ                       | Χ       | -         | Х                  | Х       | Х              | -   | -   | Х      |
| 3                      | Х     | Х           | X       | Х     | Х            | Χ | Χ                             | Χ  | Х                 | Χ                       | Χ       | Х         | -                  | Х       | Х              | Χ   | -   | -      |
| 4                      | Х     | Х           | X       | Х     | Х            | Χ | Χ                             | Χ  | Х                 | Χ                       | Χ       | Х         | -                  | Х       | Х              | -   | -   | Х      |
| 5                      | -     | Х           | -       | -     | -            | Χ | -                             | -  | -                 | -                       | -       | Х         | -                  | Х       | Х              | Χ   | -   | -      |
| 6                      | Х     | Х           | X       | Х     | Х            | Χ | Χ                             | Χ  | Х                 | Χ                       | Χ       | Х         | -                  | Х       | Х              | -   | Х   | -      |
| 7                      | Х     | Х           | X       | Х     | Х            | Χ | Χ                             | Χ  | Х                 | Χ                       | Χ       | -         | Х                  | Х       | Х              | -   | Х   | -      |
| 8                      | Х     | Х           | Х       | Х     | Х            | Χ | -                             | -  | Х                 | -                       | Х       | -         | Х                  | Х       | Х              | -   | -   | Х      |

Note: All seismic analysis codes include runs in the three primary directions (i.e. east-west, north-south, and vertical).

**Table 3.7.2-34: SSC Seismic Analysis Identification Code Assignments** 

| SSC  | Description                                   | Identification Code                              |
|------|-----------------------------------------------|--------------------------------------------------|
| CNTS | containment system                            | 5                                                |
| SGS  | steam generator system                        | 5                                                |
| RXC  | reactor core                                  | 5                                                |
| CRDS | control rod drive system                      | 5                                                |
| CRA  | control rod assembly                          | 5                                                |
| NSA  | neutron source assembly                       | 5                                                |
| RCS  | reactor coolant system                        | 5                                                |
| CVCS | chemical and volume control system            | 5                                                |
| ECCS | emergency core cooling system                 | 5                                                |
| DHRS | decay heat removal system                     | 5                                                |
| CRHS | control room habitability system              | 6                                                |
| CRVS | normal control room HVAC system               | 6                                                |
| RFT  | Reactor Flange Tool                           | 5                                                |
| FHE  | fuel handling equipment                       | 3                                                |
| SFSS | spent fuel storage system                     | 3                                                |
| RPCS | reactor pool cooling system                   | 3, 4                                             |
| UHS  | ultimate heat sink                            | 3, 4                                             |
| CES  | containment evacuation system                 | 5                                                |
| MSS  | main steam system                             | 5                                                |
| FWS  | feedwater system                              | 5                                                |
| EDSS | highly reliable DC power system               | 3 <sup>1</sup> , 4 <sup>1</sup> , 6 <sup>2</sup> |
| MPS  | module protection system                      | 3 <sup>1</sup> , 4 <sup>1</sup> , 6 <sup>2</sup> |
| NMS  | neutron monitoring system                     | 3, 4                                             |
| SDIS | safety display and indication system          | 6                                                |
| ICIS | in-core instrumentation system                | 5                                                |
| PPS  | plant protection system                       | 3 <sup>1</sup> , 4 <sup>1</sup> , 6 <sup>2</sup> |
| RMS  | radiation monitoring system                   | 3 <sup>1</sup> , 4 <sup>1</sup> , 6 <sup>2</sup> |
| RXB  | Reactor Building                              | 1, 2                                             |
| RXB  | Reactor Building - NPM Lug and Skirt Supports | 5                                                |
| RBC  | Reactor Building crane                        | 3                                                |
| RBCM | Reactor Building Components - Pool Liner      | 1, 2                                             |
| RBCM | Reactor Building Components - Bioshield       | 3                                                |
| CRB  | Control Building                              | 7, 8                                             |
| SMS  | seismic monitoring system                     | 3 <sup>1</sup> , 4 <sup>1</sup> , 6 <sup>2</sup> |

<sup>&</sup>lt;sup>1</sup>Design for SSC located in the Reactor Building

 $<sup>^2</sup>$ Design for SSC located in the Control Building

Revision 5

**Table 3.7.2-35: Analysis Model Summary** 

| No. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Concrete<br>Condition  | Computer<br>Program | Types Considered                                                                | SSI and SSSI Time<br>History Inputs<br>Used                                      | Purpose                                                                                                                                  | Building<br>Response    | FSAR Explanation<br>and Figures                                                                                                                                                                                     | FSAR Results                                                |
|-----|-----------------------------------------|------------------------|---------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1   | RXB stand-alone<br>bldg                 | Uncracked &<br>cracked | SAP2000             | N/A                                                                             | N/A                                                                              | Static analysis                                                                                                                          | forces                  | Sections: 3.7.2.1.1.1,<br>3.7.2.1.2.1, 3.8.4.1.1,<br>3.8.4.3, 3.8.4.4.1,<br>3.8.5.4.1.2; Figures:<br>3.7.2-4, 3.8.4-15<br>through -20                                                                               | Tables: 3B-2 through<br>-25; Figures 3B-7<br>through -47    |
| 2   | RXB stand-alone<br>bldg                 | Uncracked & cracked    | SASSI2010           | 7, 8 & 11 (with<br>CSDRS Input); 7 & 9<br>(with CSDRS-HF<br>Input)              | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne | Seismic SSI analysis using<br>7% material damping                                                                                        |                         | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.1,<br>3.7.2.1.2.4, 3.7.2.4,<br>3.7.2.11, 3.7.5.1.4,<br>3.8.4.3, 3.8.5.4.1.2;<br>Figures 3.7.2-15<br>through -21 & -35<br>(SASSI Input); Table<br>3.7.2-8 (SASSI Input)          | Tables: 3B-2 through<br>-25; Figures 3B-7<br>through -47    |
| 3   | RXB stand-alone<br>bldg                 | Uncracked & cracked    | SASSI2010           | 7, 8 & 11 (with<br>CSDRS Input); 7 & 9<br>(with CSDRS-HF<br>Input)              | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne | Seismic ISRS generation<br>using 4% material<br>damping                                                                                  |                         | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.1,<br>3.7.2.1.2.4, 3.7.2.4,<br>3.7.2.5, 3.7.2.5.3,<br>3.7.2.9, 3.7.5.1.4,<br>3.8.4.3; Figures<br>3.7.2-15 through -21<br>& -35 (SASSI Input);<br>Table 3.7.2-8 (SASSI<br>Input) | Figures: 3.7.2-99<br>through -103                           |
| 4   | RXB stand-alone<br>bldg                 | Uncracked              | ANSYS               | Wall accelerations<br>are based on soil<br>types 7, 8, and 11<br>w CSDRS Input. | CSDRS: Capitola                                                                  | Slosh heights in reactor<br>pool and determine fluid-<br>structure interaction<br>effects of the RXB Pool                                | ons, fluid<br>pressures | Sections: 3.7.2.1.1.2,<br>3.7.2.1.2.4, 3.7.5.1.4,<br>3.8.4.3; Figures: 3.7.2-<br>32 through -35,<br>3.8.5-8 through -14                                                                                             | Table 3.7.2-8; Figures 3.7.2-36 through -39                 |
| 5   | RXB stand-alone<br>bldg - 7 NPM         | Cracked                | SASSI2010           | 7 (CSDRS) & 9<br>(CSDRS-HF)                                                     | CSDRS: Capitola<br>CSDRS-HF:<br>Lucerne                                          | Seismic ISRS generation<br>using 4% material<br>damping & 7 NuScale<br>Power Modules (NPMs) -<br>study for comparision<br>purposes only. | ISRS                    | Sections: 3.7.2.9.1,<br>3.8.4.3, 3.8.4.3.22.3;<br>Figure 3.7.2-98                                                                                                                                                   | Figures: 3.7.2-107, -<br>113, and 3.7.2-123<br>through -128 |

**Table 3.7.2-35: Analysis Model Summary (Continued)** 

| No. | Analysis Model                      | Concrete<br>Condition    | Computer<br>Program | SSI and SSSI Soil<br>Types Considered                                                                             | SSI and SSSI Time<br>History Inputs<br>Used                                                                       | Purpose                                                                               | Building<br>Response | FSAR Explanation and Figures                                                                                                                    | FSAR Results                                                                             |
|-----|-------------------------------------|--------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| б   | RXB base mat -<br>partial model     | Uncracked                | SAP2000             | RXB soil pressures<br>applied envelope<br>the RXB stand-<br>alone and triple<br>building SAP and<br>SASSI models. | RXB soil pressures<br>applied envelope<br>the RXB stand-<br>alone and triple<br>building SAP and<br>SASSI models. | Static analysis of RXB base<br>mat. Uses both stand-<br>alone and combined<br>models. | Member<br>forces     | Sections: 3.8.4.3,<br>3.8.5.4.1.2; Figures<br>3.8.5-1 & -2                                                                                      | Figures: 3.8.5-4 and 3.8.5-5                                                             |
| 7   | RXB base mat -<br>partial model     | Uncracked                | SAP2000             | RXB soil pressures<br>applied envelope<br>the RXB stand-<br>alone and triple<br>building SAP and<br>SASSI models. | RXB soil pressures<br>applied envelope<br>the RXB stand-<br>alone and triple<br>building SAP and<br>SASSI models. | Seismic analysis of RXB<br>base mat. Uses both<br>stand-alone and<br>combined models. | Member<br>forces     | Sections: 3.8.4.3,<br>3.8.5.4.1.2, 3.8.5.5.4,<br>& 3.8.5.6.3; Figures<br>3.8.5-1 thru -7.                                                       | Section 3.8.5.1                                                                          |
| 8   | CRB base mat -<br>partial model     | Uncracked                | SAP2000             | CRB soil pressures<br>applied envelope<br>the CRB stand-<br>alone and triple<br>building SAP and<br>SASSI models. | CRB soil pressures<br>applied envelope<br>the CRB stand-<br>alone and triple<br>building SAP and<br>SASSI models. | Seismic analysis of CRB<br>base mat. Uses both<br>stand-alone and<br>combined models. | Member<br>forces     | Sections: 3.8.5.4.1.3,<br>3.8.5.5.4, 3.8.5.6.3;<br>Figure 3.8.5-3a                                                                              | Sections: 3.8.5.1 &<br>3B.3.3.1; Figures: 3B-<br>75 & -76; Tables: 3B-<br>34 through -41 |
| 9   | RXB lug restraint<br>-partial model | Cracked                  | SAP2000             | N/A                                                                                                               | N/A                                                                                                               | Design of the NPM lug<br>supports                                                     | Member<br>forces     | Sections: 3.7.2.1.2.2,<br>3.8.2.1.3, 3.8.2.4.2,<br>3.8.4.3; Figures: 3.7.2-<br>22, -23, -26, -27, -28,<br>& 3.8.2-3                             | Tables: 3B-26 & 27;<br>Figures: 3B-51<br>through -64                                     |
| 10  | CRB stand-alone<br>bldg             | Uncracked<br>and cracked | SAP2000             | N/A                                                                                                               | N/A                                                                                                               | Static analysis                                                                       | Member<br>forces     | Sections: 3.7.2.1.1.1,<br>3.7.2.1.2.5, 3.8.4.1.2,<br>3.8.4.3, 3.8.4.4.2;<br>Figures: 3.7.2-50<br>through - 52, 3.8.4-21<br>through - 26, 3.8.5- | Tables: 3B-28<br>through - 49; Figures<br>3B-65 through - 85                             |
| 11  | CRB stand-alone<br>bldg             | Uncracked<br>and cracked | SASSI2010           | 7, 8 & 11 (with<br>CSDRS Input); 7 & 9<br>(with CSDRS-HF<br>Input)                                                | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne                                  | Seismic SSI analysis using<br>7% material damping                                     | Member<br>forces     | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.5, 3.7.2.4,<br>3.7.2.11, 3.8.4.3;<br>Figures: 3.7.2-53<br>through -58, 3.8.5-34<br>& -35                    | Tables: 3B-28<br>through - 49; Figures<br>3B-65 through - 85                             |

**Table 3.7.2-35: Analysis Model Summary (Continued)** 

| No. | Analysis Model                                     | Concrete<br>Condition                 | Computer<br>Program | SSI and SSSI Soil<br>Types Considered                              | SSI and SSSI Time<br>History Inputs<br>Used                                      | Purpose                                                 | Building<br>Response    | FSAR Explanation and Figures                                                                                                                       | FSAR Results                                                                                               |
|-----|----------------------------------------------------|---------------------------------------|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|     | CRB stand-alone<br>bldg                            | Uncracked<br>and cracked              | SASSI2010           | 7, 8 & 11 (with<br>CSDRS Input); 7 & 9<br>(with CSDRS-HF<br>Input) | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne | Seismic ISRS generation<br>using 4% material<br>damping | ISRS                    | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.5, 3.7.2.4,<br>3.7.2.5, 3.7.2.5.6,<br>3.7.2.9, 3.8.4.3;<br>Figures: 3.7.2-53<br>through -58, 3.8.5-34<br>& -35 | See envelope of<br>cracked and<br>uncraked condition -<br>Figures: 3.7.2-117a<br>through -122b.            |
|     | RXB-CRB-RWB<br>multiple bldg                       | Uncracked<br>and cracked              | SAP2000             | N/A                                                                | N/A                                                                              | Static analysis                                         | Member<br>forces        | Sections: 3.7.2.1.2.7,<br>3.8.4.3; Figures: 3.7.2-<br>59 through -66                                                                               | Tables: 3B-2 through<br>-25, 3B-28 through -<br>51; Figures: 3B-7<br>through -47 and 3B-<br>65 through -85 |
| 14  | RXB-CRB-RWB<br>multiple bldg<br>(RXB)              | Uncracked<br>and cracked              | SASSI2010           | 7, 8 & 11 (with<br>CSDRS Input); 7 & 9<br>(with CSDRS-HF<br>Input) | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne | Seismic SSI analysis using 7% material damping          | RXB<br>member<br>forces | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.7, 3.7.2.4,<br>3.7.2.11, 3.8.4.3;<br>Figures: 3.7.2-67<br>through -75                                          | Tables: 3B-2 through -25, 3B-28 through -51; Figures: 3B-7 through -47 and 3B-65 through -85               |
| 15  | RXB-CRB-RWB<br>multiple bldg<br>(CRB)              | Uncracked<br>and cracked              | SASSI2010           | 7 (CSDRS) & 9<br>(CSDRS-HF)                                        | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne | Seismic SSI analysis using<br>7% material damping       | CRB<br>member<br>forces | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.7, 3.7.2.4,<br>3.7.2.11, 3.8.4.3;<br>Figures: 3.7.2-67<br>through -75                                          | Tables: 3B-2 through -25, 3B-28 through -51; Figures: 3B-7 through -47 and 3B-65 through -85               |
| 16  | RXB-CRB-RWB<br>multiple bldg<br>(RXB)              | Uncracked<br>and cracked              | SASSI2010           | 7, 8 & 11 (with<br>CSDRS Input); 7 & 9<br>(with CSDRS-HF<br>Input) | CSDRS: Capitola,<br>Chi-Chi, El Centro,<br>Izmit, Yermo.<br>CSDRS-HF:<br>Lucerne | Seismic ISRS generation<br>using 4% material<br>damping | RXB ISRS                | Sections: 3.7.2.1.1.3,<br>3.7.2.1.2.7, 3.7.2.4,<br>3.7.2.5, 3.7.2.9, 3.8.4.3                                                                       | Figures: 3.7.2-104<br>through -106                                                                         |
| 17  | Envelope of ISRS<br>for RXB                        | Envelope of<br>cracked &<br>uncracked | SASSI2010           | See above                                                          | See above                                                                        | Seismic ISRS generation using 4% material damping       | ISRS                    | Sections: 3.7.2.5.3,<br>3.7.2.9                                                                                                                    | Figures: 3.7.2-107<br>through -113                                                                         |
| 18  | Envelope of ISRS<br>for CRB                        | Envelope of<br>cracked &<br>uncracked | SASSI2010           | See above                                                          | See above                                                                        | Seismic ISRS generation using 4% material damping       | ISRS                    | Sections:3.7.2.5.6,<br>3.7.2.9                                                                                                                     | Figures: 3.7.2-117a<br>through -122b                                                                       |
| 19  | RXB linear<br>stability - stand-<br>alone building | Cracked & uncracked                   | N/A                 | N/A                                                                | N/A                                                                              | Evaluate flotation, sliding, and overturning            | Factor of safety        | Sections: 3.8.4.3,<br>3.8.5, 3.8.5.4.1.2,<br>3.8.5.5, 3.8.5.6.1                                                                                    | Table 3.8.5-5                                                                                              |

Tier 2

**Table 3.7.2-35: Analysis Model Summary (Continued)** 

|    | Analysis Model                                                                                                                                                                     | Concrete<br>Condition  | Computer<br>Program | SSI and SSSI Soil<br>Types Considered                          | SSI and SSSI Time<br>History Inputs<br>Used                                                                 | Purpose                                                                                 | Building<br>Response              | FSAR Explanation and Figures                         | FSAR Results                                                                              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|
|    | RXB nonlinear<br>stability - stand-<br>alone model<br>(however, input<br>seismic base<br>reactions<br>envelope both<br>the RXB Stand-<br>Alone and Triple<br>Bldg SASSI<br>Models) | Cracked &<br>uncracked | ANSYS               | 7, 8 & 11 (with<br>CSDRS Input); 9<br>(with CSDRS-HF<br>Input) | CSDRS Averaged<br>Reactions from:<br>Capitola, Chi-Chi,<br>El Centro, Izmit,<br>Yermo. CSDRS-HF:<br>Lucerne | Evaluate flotation, sliding, and overturning                                            | Displace-<br>ment                 |                                                      | Figures: 3.8.5-53<br>through -76; Table<br>3.8.5-12                                       |
|    | CRB linear<br>stability - stand-<br>alone building                                                                                                                                 | Cracked &<br>uncracked | N/A                 | N/A                                                            | N/A                                                                                                         | Evaluate flotation, sliding, and overturning                                            | safety                            | Sections: 3.8.4.3,<br>3.8.5, 3.8.5.4.1.3,<br>3.8.5.5 | Not presented                                                                             |
| 22 | CRB nonlinear<br>stability - stand-<br>alone model                                                                                                                                 | Cracked & uncracked    | ANSYS               | 7 & 11 (with CSDRS<br>Input)                                   | CSDRS: Capitola                                                                                             | Evaluate flotation, sliding, and overturning                                            |                                   | 3.8.5.6.2; Figures:<br>3.8.5-26 & -27, 3.8.5-        | Table 3.8.5-13;<br>Figures: 3.8.5-49 & -<br>50; Sections:<br>3.8.5.6.2.2 &<br>3.8.5.6.2.3 |
| 23 | RXB-CRB-RWB<br>multiple bldg -<br>settlement                                                                                                                                       | Cracked &<br>uncracked | SAP2000             | N/A                                                            | N/A                                                                                                         | Evaluate settlement for RXB and CRB                                                     | Settlement                        | Sections: 3.8.4.3;<br>Figures: 3.8.5-41              | Table 3.8.5-8                                                                             |
|    | NuScale Power<br>Module (NPM's 1<br>and 6)                                                                                                                                         | Cracked & uncracked    | ANSYS               | 7 (with CSDRS<br>Input)                                        | CSDRS: Capitola                                                                                             | Determine reaction forces<br>for NPM, ISRS and time<br>histories for NPM<br>components. | forces,<br>moments,<br>ISRS, time | 3.7.3; Appendix 3A;<br>Table 3.9-8; TR-0916-         | TR-0916-51502<br>Tables 8-1 through<br>8-9; Figures B-1<br>through B-33                   |
|    | RXB fuel storage<br>racks                                                                                                                                                          | N/A                    | ANSYS               | Analysis based on<br>RXB ISRS                                  | RXB ISRS                                                                                                    | Structural analysis of the RXB fuel storage racks                                       | stresses                          | 3.8.4.3.1.7, 9.1; TR-<br>0816-49833                  | See COL Item 9.1-8                                                                        |
| 26 | Reactor Building<br>crane (RBC)                                                                                                                                                    | N/A                    | ANSYS               | Analysis based on RXB ISRS                                     | Analysis based on<br>RXB ISRS                                                                               | Structural analysis of RBC                                                              | Member<br>forces                  | Section 9.1.5                                        | Not presented                                                                             |

**Table 3.7.2-35: Analysis Model Summary (Continued)** 

| No. | Analysis Model                                    | Concrete<br>Condition  | Computer<br>Program | SSI and SSSI Soil<br>Types Considered | SSI and SSSI Time<br>History Inputs<br>Used | Purpose                                                                                               | Building<br>Response   | FSAR Explanation<br>and Figures                                                                                                           | FSAR Results                                                                                                     |
|-----|---------------------------------------------------|------------------------|---------------------|---------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|     | RXB bioshield -<br>partial model                  | Cracked &<br>uncracked | SAP2000             | Analysis based on<br>RXB ISRS         |                                             | Structural analysis of bioshield                                                                      |                        | Sections: 3.7.3,<br>3.7.3.3.1; Figures:<br>3.7.2-176a through<br>3.7.2-176d, 3.7.3-1<br>through 3.7.3-4;<br>Tables 3.7.3-8<br>through -14 | Table 3.7.3-14                                                                                                   |
| 28  | Reactor Flange<br>Tool Refueling<br>Configuration | Cracked &<br>uncracked | ANSYS               | Soil Type 7 (with<br>CSDRS Input)     | CSDRS: Capitola                             | Determine core plate time<br>histories and ISRS, as well<br>as reactions for structural<br>components | moments,<br>ISRS, time | 3.8.4.3.1.12, 3.8.4.4.2,<br>3.8.4.5<br>Figures: 3.8.4.34,                                                                                 | Tables: 3.8.4-21,<br>3.8.4-22, 3.8.4-23;<br>TR-0916-51502<br>Tables 8-8 and 8-9;<br>Figures B-34 through<br>B-39 |

Table 3.7.2-36: SASSI2010 3D Equivalent Stick Model

|                   |                     |                            | Interface B                | Boundary Conditions        |      |      |      |
|-------------------|---------------------|----------------------------|----------------------------|----------------------------|------|------|------|
| Location          | Support             | X (East-West)              | Y (North - South)          | Z (Vertical)               | RX   | RY   | RZ   |
|                   | CNV pool wall lug   | Restrained                 | Free                       | Free                       | Free | Free | Free |
| Top of NPM        | CNV west side lug   | Free                       | Restrained                 | Free                       | Free | Free | Free |
|                   | CNV east side lug   | Free                       | Restrained                 | Free                       | Free | Free | Free |
|                   | End of rigid beam 1 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
|                   | End of rigid beam 2 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
| Base of NPM skirt | End of rigid beam 3 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
| support (2 node   | End of rigid beam 4 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
| link elements)    | End of rigid beam 5 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
|                   | End of rigid beam 6 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
|                   | End of rigid beam 7 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |
|                   | End of rigid beam 8 | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free | Free | Free |

**Table 3.7.2-37: ANSYS 3D Finite Element Beam Model** 

|                                               |                              |                            | Interface                  | Boundary Conditions        | Interface Boundary Conditions |      |      |  |  |  |  |  |  |
|-----------------------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|------|------|--|--|--|--|--|--|
| Location                                      | Support                      | X (East-West)              | Y (North - South)          | Z (Vertical)               | RX                            | RY   | RZ   |  |  |  |  |  |  |
|                                               | CNV pool wall lug            | Spring with high stiffness | Free                       | Free                       | Free                          | Free | Free |  |  |  |  |  |  |
| Top of NPM                                    | CNV west side lug            | Free                       | Spring with high stiffness | Free                       | Free                          | Free | Free |  |  |  |  |  |  |
| ·<br>                                         | CNV east side lug            | Free                       | Spring with high stiffness | Free                       | Free                          | Free | Free |  |  |  |  |  |  |
|                                               | End of rigid beam 1          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| <u> </u>                                      | End of rigid beam 2          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
|                                               | End of rigid beam 3          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| Base of NPM skirt                             | End of rigid beam 4          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| support (2 node                               | End of rigid beam 5          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| link element)                                 | End of rigid beam 6          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| <u> </u>                                      | End of rigid beam 7          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| <u> </u>                                      | End of rigid beam 8          | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |
| NPM base-to -<br>base of NPM skirt<br>support | Spider center <sup>(1)</sup> | Spring with high stiffness | Spring with high stiffness | Spring with high stiffness | Free                          | Free | Free |  |  |  |  |  |  |

Note (1): Two nodes are included at this location (nodes 101 and 600 in TR-0916-51502). Only translation is transferred between these two nodes; that is, the NPM is free to twist.

**Table 3.7.2-38: Not Used** 

Table 3.7.2-39: Comparison of Lug Reactions due to Capitola Input for Model A and Model B

| Input Model                          | East Wing Wall<br>N-S Lug Reaction<br>(lbf) | Pool Wall<br>E-W Lug Reaction<br>(lbf) | West Wing Wall<br>N-S Lug Reaction<br>(lbf) | CNV Skirt<br>E-W Reaction<br>(lbf) | CNV Skirt<br>N-S Reaction<br>(lbf) |
|--------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------|------------------------------------|
| Model A<br>(No Soil<br>Separation)   | 1,681,105                                   | 2,193,854                              | 1,872,121                                   | 723,757                            | 809,450                            |
| Model B<br>(with Soil<br>Separation) | 1,306,025                                   | 1,871,725                              | 1,325,447                                   | 683,689                            | 739,499                            |
| % Difference <sup>†</sup>            | -22.3%                                      | -14.7%                                 | -29.2%                                      | -5.5%                              | -8.6%                              |

†% Difference = (Model B - Model A) / (Model A) × 100

Table 3.7.2-40: Comparison of Maximum Out-of-Plane Shears and Moments due to Capitola Input in RXB Exterior Walls

| Row No. | Z-         | Me       | odel A (No S          | oil Separatio | on)             | Mod      | del B (With           | Soil Separat | ion)        |
|---------|------------|----------|-----------------------|---------------|-----------------|----------|-----------------------|--------------|-------------|
|         | Coordinate | Vxz      | Vyz                   | Mxx+Mxy       | Myy+Mxy         | Vxz      | Vyz                   | Mxx+Mxy      | Муу+Мху     |
|         | (in)       | (kip/ft) | (kip/ft)              | (kip-ft/ft)   | (kip-ft/ft)     | (kip/ft) | (kip/ft)              | (kip-ft/ft)  | (kip-ft/ft) |
| 1       | 1132.5     | 91       | 91                    | 229           | 220             | 85       | 84                    | 207          | 203         |
| 2       | 1057.5     | 95       | 95                    | 413           | 411             | 89       | 87                    | 373          | 370         |
| 3       | 982.6      | 67       | 68                    | 215           | 225             | 67       | 68                    | 165          | 169         |
| 4       | 907.5      | 54       | 53                    | 332           | 332             | 65       | 66                    | 373          | 373         |
| 5       | 832.5      | 75       | 75                    | 221           | 221             | 96       | 97                    | 231          | 240         |
| 6       | 760.1      | 96       | 97                    | 202           | 166             | 86       | 88                    | 170          | 190         |
| 7       | 682.5      | 69       | 66                    | 226           | 209             | 88       | 89                    | 284          | 286         |
| 8       | 607.5      | 53       | 53                    | 168           | 148             | 63       | 64                    | 184          | 179         |
| 9       | 532.5      | 49       | 49                    | 168           | 158             | 60       | 61                    | 217          | 234         |
| 10      | 457.5      | 45       | 45                    | 131           | 135             | 56       | 56                    | 155          | 171         |
| Max     | imum       | 96       | 97                    | 413           | 411             | 96       | 97                    | 373          | 373         |
| Сар     | acities    | 21       | <b>2</b> <sup>†</sup> | 129           | 98 <sup>‡</sup> | 21       | <b>2</b> <sup>†</sup> | 12           | 98          |

†Minimum OOP shear capacity: 56 kip/ft from concrete and 146 kips/ft from stirrups.

Table 3.7.2-41: Comparison of Maximum Out-of-Plane Shear Forces and Moments in CRB Exterior Walls due to Capitola Input

| Row No.   | Elevation<br>(ft) | Maximui                |                        | emands in E<br>eparation) | ach Row      | Maximu       |          | Demands in E<br>Separation) | ach Row     |
|-----------|-------------------|------------------------|------------------------|---------------------------|--------------|--------------|----------|-----------------------------|-------------|
|           |                   | Vxz                    | Vyz                    | Mxx+Mxy                   | Муу+Мху      | Vxz          | Vyz      | Mxx+Mxy                     | Муу+Мху     |
|           |                   | (kip/ft)               | (kip/ft)               | (kip-ft/ft)               | (kip-ft/ft)  | (kip/ft)     | (kip/ft) | (kip-ft/ft)                 | (kip-ft/ft) |
|           |                   | For                    | the Three R            | ows of Wall S             | Shell Elemen | its above Gi | rade     |                             |             |
| 1         | 101.7             | 12                     | 7                      | 61                        | 21           | 12           | 7        | 59                          | 22          |
| 2         | 95.0              | 12                     | 4                      | 25                        | 17           | 12           | 6        | 33                          | 25          |
| 3         | 88.3              | 14                     | 14                     | 45                        | 21           | 14           | 18       | 47                          | 30          |
| Maxi      | mum               | 14                     | 14                     | 61                        | 21           | 14           | 18       | 59                          | 30          |
| Seismic I | Demands           |                        |                        |                           |              |              |          |                             |             |
| (above    | Grade)            |                        |                        |                           |              |              |          |                             |             |
| Capa      | cities            | 37                     | 37                     | 378                       | 378          | 37           | 37       | 378                         | 378         |
|           |                   | (=37+0 <sup>†</sup> )  | (=37+0 <sup>†</sup> )  |                           |              |              |          |                             |             |
|           |                   | Fo                     | or the 8 Row           | s of Wall Sh              | ell Elements | below Grad   | le       | •                           | •           |
| 4         | 81.9              | 20                     | 14                     | 35                        | 38           | 27           | 18       | 46                          | 37          |
| 5         | 75.6              | 12                     | 5                      | 37                        | 26           | 15           | 6        | 50                          | 30          |
| 6         | 69.4              | 11                     | 6                      | 36                        | 27           | 13           | 9        | 34                          | 28          |
| 7         | 63.1              | 11                     | 15                     | 35                        | 24           | 10           | 16       | 29                          | 29          |
| 8         | 56.9              | 12                     | 11                     | 33                        | 20           | 10           | 10       | 28                          | 18          |
| 9         | 50.6              | 12                     | 4                      | 31                        | 28           | 10           | 4        | 26                          | 26          |
| 10        | 43.8              | 11                     | 5                      | 25                        | 29           | 10           | 5        | 22                          | 27          |
| 11        | 36.9              | 6                      | 13                     | 17                        | 28           | 6            | 13       | 15                          | 26          |
| Maxi      | mum               | 20                     | 15                     | 37                        | 38           | 27           | 18       | 50                          | 37          |
|           | Demands           |                        |                        |                           |              |              |          |                             |             |
| •         | Grade)            |                        |                        |                           |              |              |          |                             |             |
| Capa      | cities            | 84                     | 84                     | 378                       | 378          | 84           | 84       | 378                         | 378         |
|           |                   | (=37+47 <sup>†</sup> ) | (=37+47 <sup>†</sup> ) |                           |              |              |          |                             |             |

<sup>†</sup> Total OOP Shear Capacity = Concrete Shear Capacity + Stirrup Shear Capacity.

Tier 2 3.7-232 Revision 5

Table 3.7.2-42: Total Vertical Seismic RXB Base Reactions due to Capitola Input

| Concrete Case         | Soil Type | Seismic Input |                                                   | Vertical Reaction<br>ps) | % Difference <sup>‡</sup> |
|-----------------------|-----------|---------------|---------------------------------------------------|--------------------------|---------------------------|
|                       |           |               | Model A Model B (No Separation) (Soil Separation) |                          |                           |
| Cracked<br>7% Damping | 7         | Capitola      | 222,932                                           | 222,537                  | -0.2%                     |

 $<sup>$^{\</sup>pm}\% = (Model B - Model A) / (Model A) \times 100$ 

**Table 3.7.2-43: Total Vertical Seismic CRB Base Reactions** 

| Concrete Case         | Soil Type | Seismic Input |                            | Vertical Reaction<br>ps)     | % Diff <sup>‡</sup> |
|-----------------------|-----------|---------------|----------------------------|------------------------------|---------------------|
|                       |           |               | Model A<br>(No Separation) | Model B<br>(Soil Separation) |                     |
| Cracked<br>7% Damping | 7         | Capitola      | 22,228                     | 22,787                       | +3%                 |

<sup>‡ % = (</sup>Model B-Model A)/ (Model A)\*100%

Table 3.7.2-44: Relative Displacement at Critical Locations of Standalone CRB Model

|                      |        |        | Relative Displa | cements (inch) |        |        |
|----------------------|--------|--------|-----------------|----------------|--------|--------|
| Node No.             |        | 7P     |                 |                | DM     |        |
|                      | X-Disp | Y-Disp | Z-Disp          | X-Disp         | Y-Disp | Z-Disp |
| 32322                | 0.01   | 0.01   | 0.03            | 0.01           | 0.01   | 0.02   |
| 34297                | 0.03   | 0.03   | 0.03            | 0.03           | 0.03   | 0.03   |
| 35463                | 0.03   | 0.03   | 0.01            | 0.03           | 0.03   | 0.01   |
| 36158                | 0.04   | 0.06   | 0.02            | 0.04           | 0.06   | 0.02   |
| 37970                | 0.05   | 0.04   | 0.02            | 0.05           | 0.03   | 0.02   |
| 38665                | 0.10   | 0.09   | 0.02            | 0.10           | 0.10   | 0.02   |
| 39083                | 0.11   | 0.11   | 0.04            | 0.11           | 0.12   | 0.04   |
| 39490                | 0.15   | 0.11   | 0.02            | 0.16           | 0.12   | 0.02   |
| 39705                | 0.16   | 0.17   | 0.05            | 0.16           | 0.18   | 0.05   |
| 39778                | 0.42   | 0.20   | 0.42            | 0.45           | 0.21   | 0.42   |
| Maximum <sup>†</sup> | 0.42   | 0.20   | 0.42            | 0.45           | 0.21   | 0.42   |

†Maximum displacements are found at Node 39778 at the center of the roof.

Table 3.7.2-45: Comparison of Maximum Forces and Moments in the North Pool Wall near the North Lug Support of RXM1 between 7P and DM

| Force or Moment              | Description                                       | ı   | Maximum Val | ues                            |
|------------------------------|---------------------------------------------------|-----|-------------|--------------------------------|
| Compared                     |                                                   | 7P  | DM          | Difference<br>(%) <sup>†</sup> |
| Sxx (kip/ft)                 | In-Plane Force in the EW Direction                | 182 | 186         | -2.3%                          |
| Syy (kip/ft)                 | In-Plane Force in the Vertical Direction          | 164 | 172         | -4.9%                          |
| Sxy (kip/ft)                 | In-Plane Shear Force                              | 211 | 221         | -4.6%                          |
| Mxx (kip-ft/ft) <sup>‡</sup> | Bending about the Vertical Axis                   | 326 | 347         | -6.1%                          |
| Myy (kip-ft/ft) <sup>‡</sup> | Bending about EW Axis                             | 372 | 393         | -5.2%                          |
| Vxz (kip/ft)                 | Out-of-Plane Shear in the Vertical Section        | 214 | 228         | -6.1%                          |
| Vyz (kip/ft)                 | Out-of-Plane Shear in the Horizontal (EW) Section | 92  | 97          | -4.4%                          |

<sup>† % = (7</sup>P-DM)/DM\*100. A negative % indicates that the 7P value is less than the DM value

<sup>‡</sup> The twisting moment Mxy was added to Mxx and Myy.

Table 3.7.2-46: Comparison of Maximum Seismic Out-of-Plane Shear Forces and Moments in CRB Exterior Walls

| Elevation<br>No. | Elevation<br>Centroid    | Maximums in Each Elevation<br>(7P) |                       |             | Maximums in Each Elevation<br>(DM) |              |                       |             |             |
|------------------|--------------------------|------------------------------------|-----------------------|-------------|------------------------------------|--------------|-----------------------|-------------|-------------|
|                  | Z (in)                   | Vxz                                | Vyz                   | Mxx+Mxy     | Муу+Мху                            | Vxz          | Vyz                   | Mxx+Mxy     | Муу+Мху     |
|                  |                          | (kip/ft)                           | (kip/ft)              | (kip-ft/ft) | (kip-ft/ft)                        | (kip/ft)     | (kip/ft)              | (kip-ft/ft) | (kip-ft/ft) |
|                  |                          | For                                | the Three R           | ows of Wall | Shell Elemer                       | its above Gi | rade                  |             |             |
| 1                | 1220                     | 12                                 | 7                     | 61          | 21                                 | 11           | 7                     | 61          | 23          |
| 2                | 1140                     | 12                                 | 4                     | 25          | 16                                 | 12           | 4                     | 27          | 18          |
| 3                | 1060                     | 14                                 | 15                    | 45          | 23                                 | 15           | 16                    | 44          | 24          |
| Maxi             | mum                      | 14                                 | 15                    | 61          | 23                                 | 15           | 16                    | 61          | 24          |
|                  | Demands<br>Grade)        |                                    |                       |             |                                    |              |                       |             |             |
| •                | cities                   | 3                                  | 7                     | 378         |                                    | 37           |                       | 378         |             |
|                  |                          |                                    | Wal                   | Shell Eleme | nts below G                        | rade         |                       | 1           |             |
| 4                | 982.5                    | 21                                 | 14                    | 36          | 38                                 | 22           | 15                    | 39          | 37          |
| 5                | 907.5                    | 13                                 | 6                     | 37          | 27                                 | 14           | 6                     | 39          | 27          |
| 6                | 832.5                    | 12                                 | 6                     | 37          | 26                                 | 12           | 6                     | 37          | 28          |
| 7                | 757.5                    | 12                                 | 15                    | 36          | 25                                 | 12           | 15                    | 36          | 26          |
| 8                | 682.5                    | 12                                 | 12                    | 35          | 20                                 | 12           | 13                    | 35          | 21          |
| 9                | 607.5                    | 13                                 | 4                     | 34          | 28                                 | 13           | 5                     | 34          | 28          |
| 10               | 525.0                    | 11                                 | 5                     | 27          | 29                                 | 11           | 6                     | 28          | 28          |
| 11               | 442.5                    | 6                                  | 14                    | 17          | 28                                 | 5            | 13                    | 19          | 27          |
| Seismic [        | mum<br>Demands<br>Grade) | 21                                 | 15                    | 37          | 38                                 | 22           | 15                    | 39          | 37          |
|                  | cities                   |                                    | <b>4</b> <sup>†</sup> |             | 78                                 |              | <b>4</b> <sup>†</sup> | 37          | 78          |

<sup>†</sup> Total OOP Shear Capacity = Concrete Shear Capacity + Stirrup Shear Capacity.

Table 3.7.2-47: Comparison of RXB Relative Displacements between 7P and DM

| Node  | Coordinate |        |        |        | 7P     |        |        | DM     |        |
|-------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| No.   | Х          | Υ      | Z      | X-DIS  | Y-DIS  | Z-DIS  | X-DIS  | Y-DIS  | Z-DIS  |
|       | (inch)     | (inch) | (inch) | (inch) | (inch) | (inch) | (inch) | (inch) | (inch) |
| 10974 | 0          | 873    | 420    | 0.06   | 0.11   | 0.19   | 0.06   | 0.10   | 0.15   |
| 11148 | 420        | 453    | 420    | 0.05   | 0.10   | 0.08   | 0.05   | 0.09   | 0.07   |
| 12085 | 3672       | 453    | 420    | 0.06   | 0.12   | 0.10   | 0.06   | 0.11   | 0.10   |
| 12242 | 4092       | 873    | 420    | 0.06   | 0.13   | 0.20   | 0.06   | 0.11   | 0.17   |
| 16947 | 0          | 873    | 720    | 0.11   | 0.24   | 0.25   | 0.10   | 0.22   | 0.22   |
| 17121 | 420        | 453    | 720    | 0.10   | 0.20   | 0.09   | 0.10   | 0.18   | 0.08   |
| 18031 | 3672       | 453    | 720    | 0.12   | 0.24   | 0.13   | 0.12   | 0.22   | 0.13   |
| 18187 | 4092       | 873    | 720    | 0.11   | 0.23   | 0.24   | 0.11   | 0.21   | 0.22   |
| 22832 | 0          | 873    | 1020   | 0.16   | 0.45   | 0.32   | 0.16   | 0.44   | 0.29   |
| 23006 | 420        | 453    | 1020   | 0.15   | 0.35   | 0.10   | 0.15   | 0.34   | 0.09   |
| 23919 | 3672       | 453    | 1020   | 0.17   | 0.39   | 0.15   | 0.17   | 0.37   | 0.15   |
| 24076 | 4092       | 873    | 1020   | 0.18   | 0.37   | 0.29   | 0.18   | 0.35   | 0.27   |
| 25509 | 0          | 873    | 1320   | 0.21   | 0.76   | 0.36   | 0.21   | 0.74   | 0.34   |
| 25569 | 420        | 453    | 1320   | 0.20   | 0.95   | 0.10   | 0.20   | 0.94   | 0.08   |
| 26345 | 3672       | 453    | 1320   | 0.23   | 0.58   | 0.16   | 0.23   | 0.56   | 0.15   |
| 26471 | 4092       | 873    | 1320   | 0.25   | 0.54   | 0.33   | 0.25   | 0.51   | 0.31   |
| 27489 | 0          | 873    | 1548   | 0.26   | 0.95   | 0.37   | 0.26   | 0.93   | 0.35   |
| 27664 | 2019.5     | 453    | 1548   | 0.22   | 1.61   | 0.05   | 0.22   | 1.64   | 0.05   |
| 27922 | 4092       | 873    | 1548   | 0.30   | 0.66   | 0.35   | 0.30   | 0.63   | 0.33   |
| 29098 | 0          | 873    | 1824   | 0.34   | 1.13   | 0.38   | 0.34   | 1.11   | 0.36   |
| 29365 | 4092       | 873    | 1824   | 0.37   | 0.80   | 0.36   | 0.38   | 0.77   | 0.34   |

Table 3.7.2-48: North RXB Wall Soil Pressure Comparison

| Soil Layer Centroidal Z | 7P            | DM            |
|-------------------------|---------------|---------------|
| (inch)                  | Soil Pressure | Soil Pressure |
|                         | (ksf)         | (ksf)         |
| 907.5                   | 2.4           | 2.6           |
| 832.5                   | 3.9           | 3.9           |
| 757.5                   | 8.0           | 8.1           |
| 682.5                   | 6.8           | 6.8           |
| 607.5                   | 5.3           | 5.7           |
| 532.5                   | 5.3           | 5.2           |
| 457.5                   | 4.3           | 4.7           |
| 382.5                   | 4.5           | 4.4           |
| 307.5                   | 3.6           | 3.0           |

Table 3.7.2-49: Building Models Used for RXB Basemat Design

| Software | Bldgs. Included in the Model     | Basemat Modeled As         | Bldg. Model Results Used          |
|----------|----------------------------------|----------------------------|-----------------------------------|
|          | Standalone (RXB)                 | 2 Layers of Solid Elements | Envelope of Soil Bearing Pressure |
| SASSI    | FSAR Table 3.7.2-1               |                            | from Seismic Loads of both Models |
| 3A331    | Triple Bldg. (RXB, CRB, and RWB) | 2 Layers of Solid Elements |                                   |
|          | FSAR Table 3.7.2-12              |                            |                                   |
|          | Standalone (RXB)                 | 2 Layers of Solid Elements | Envelope of Soil Bearing Pressure |
| SAP2000  | FSAR Table 3.8.4-6               |                            | from Static Loads of both Models  |
| 3AF 2000 | Triple Bldg. (RXB, CRB, and RWB) | 2 Layers of Solid Elements |                                   |
|          | FSAR Section 3.7.2.1.2.7         |                            |                                   |

## Table 3.7.2-50: Basemat Model Used for RXB Basemat Design

| Software | Bldgs. Included in the Model | Basemat Modeled As        | Results Used                        |
|----------|------------------------------|---------------------------|-------------------------------------|
| SAP2000  | Standalone (RXB)             | 1 Layer of Shell Elements | Enveloping Soil Bearing Pressure    |
|          | FSAR Figure 3.8.5-1          |                           | from Static and Seismic Loads       |
|          |                              |                           | Applied as Pressures on the Basemat |
|          |                              |                           | Model                               |

Table 3.7.2-51: Building Models Used for CRB Basemat Design

| Software | Bldgs. Included in the Model                                 | Basemat Modeled As        | Bldg. Model Results Used                                                                                                                                                              |
|----------|--------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Standalone (CRB)<br>FSAR Table 3.7.2-9                       | 1 Layer of Solid Elements | <ol> <li>Enveloping foundation forces<br/>and moments are obtained by</li> </ol>                                                                                                      |
| SASSI    | Triple Bldg. (RXB, CRB, and RWB)<br>FSAR Table 3.7.2-12      | 1 Layer of Solid Elements | post-processing the forces and moments in the bottom of the shell elements of the exterior walls joining the basemat as the forces and moments for the perimeter area of the basemat. |
|          |                                                              |                           | <ol> <li>Envelop the centroidal vertical<br/>stresses (σ<sub>zz</sub>) in the foundation<br/>solid elements of the entire<br/>basemat.</li> </ol>                                     |
|          | Standalone (CRB)<br>FSAR Table 3.8.4-8                       | 1 Layer of Solid Elements | Enveloping foundation forces     and moments are obtained by                                                                                                                          |
| SAP2000  | Triple Bldg. (RXB, CRB, and RWB)<br>FSAR Section 3.7.2.1.2.7 | 1 Layer of Solid Elements | post-processing the forces and<br>moments in the bottom of the<br>shell element walls joining the<br>basemat.                                                                         |
|          |                                                              |                           | <ol> <li>Enveloping foundation static<br/>forces and moments are<br/>obtained by post-processing the<br/>foundation solid element nodal<br/>forces of the entire basemat.</li> </ol>  |

Tier 2 3.7-242 Revision 5

Table 3.7.2-52: Basemat Model Used for CRB Basemat Design

| Software | Bldgs. Included in the Model       | Basemat Modeled As        | Results Used                                                                                                                                                                                                                                                                                                                  |
|----------|------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAP2000  | Standalone (CRB) FSAR Figure 3B-74 | 1 Layer of Shell Elements | 1) Total (static + seismic) enveloping centroidal vertical stresses (σ <sub>zz</sub> ) obtained from the building model are applied as upward pressure to the isolated basemat shell model in the foundation solid elements of the entire basemat. This provides forces and moments in the interior region of the foundation. |
|          |                                    |                           | <ul> <li>2) For elements in the perimeter region, the (static + seismic) enveloping wall forces and moments are used as foundation forces and moments.</li> <li>3) For the elements in the tunnel:</li> </ul>                                                                                                                 |
|          |                                    |                           | a) the total (static + seismic) wall forces and moments are used as foundation seismic forces and moments.                                                                                                                                                                                                                    |
|          |                                    |                           | <ul> <li>b) In addition, total (static + seismic) enveloping centroidal vertical stresses         (σ<sub>zz</sub>) obtained from the building model are applied as upward uniformly distributed loads on tunnel dimension by hand calculation.</li> </ul>                                                                     |
|          |                                    |                           | c) Total demand forces and<br>moments are obtained as<br>(3a+3b).                                                                                                                                                                                                                                                             |

Table 3.7.2-53: Floor Elevation and Nodes for Floor ISRS Generation

| Floor No. |            |            | Standalone | Triple Model | Coordinates (inch) |       |     |  |
|-----------|------------|------------|------------|--------------|--------------------|-------|-----|--|
|           | Elevation  |            | RXB Node   | Node         | Х                  | Υ     | Z   |  |
| 1         | EL 24'-0"  | Top of     | 3996       | 3652         | 0                  | 873   | 120 |  |
|           |            | Basemat    | 4741       | 4325         | 1872               | 873   | 120 |  |
|           |            |            | 5642       | 5142         | 4092               | 873   | 120 |  |
| 2         | EL. 25'-0" | Pool Floor | 6041       | 5525         | 2019.5             | 305.5 | 132 |  |
|           |            | (NPM Base) | 6093       | 5577         | 2314.5             | 305.5 | 132 |  |
|           |            |            | 6145       | 5629         | 2609.5             | 305.5 | 132 |  |
|           |            |            | 6197       | 5681         | 2904.5             | 305.5 | 132 |  |
|           |            |            | 6249       | 5733         | 3199.5             | 305.5 | 132 |  |
|           |            |            | 6301       | 5785         | 3509.5             | 305.5 | 132 |  |
|           |            |            | 6065       | 5549         | 2167               | 177   | 132 |  |
|           |            |            | 6013       | 5497         | 1872               | 177   | 132 |  |
|           |            |            | 6069       | 5553         | 2167               | 453   | 132 |  |
|           |            |            | 6017       | 5501         | 1872               | 453   | 132 |  |
|           |            |            | 6325       | 5809         | 3672               | 177   | 132 |  |
|           |            |            | 6273       | 5757         | 3347               | 177   | 132 |  |
|           |            |            | 6329       | 5813         | 3672               | 453   | 132 |  |
|           |            |            | 6277       | 5761         | 3347               | 453   | 132 |  |
|           |            |            | 6317       | 5801         | 3672               | -453  | 132 |  |
|           |            |            | 6265       | 5749         | 3347               | -453  | 132 |  |
|           |            |            | 6321       | 5808         | 3672               | -177  | 132 |  |
|           |            |            | 6269       | 5753         | 3347               | -177  | 132 |  |
|           |            |            | 6057       | 5541         | 2167               | -453  | 132 |  |
|           |            |            | 6005       | 5489         | 1872               | -453  | 132 |  |
|           |            |            | 6061       | 5545         | 2167               | -177  | 132 |  |
|           |            |            | 6009       | 5493         | 1872               | -177  | 132 |  |
| 3         | EL. 50'-0" |            | 10974      | 9955         | 0                  | 873   | 420 |  |
|           |            |            | 11050      | 10022        | 216                | 0     | 420 |  |
|           |            |            | 11054      | 10026        | 216                | 279   | 420 |  |
|           |            |            | 11234      | 10185        | 824                | 705   | 420 |  |
|           |            |            | 11542      | 10451        | 1872               | 453   | 420 |  |
|           |            |            | 11675      | 10566        | 2314.6             | 621   | 420 |  |
|           |            |            | 11995      | 10844        | 3347               | 621   | 420 |  |
|           |            |            | 12174      | 11002        | 3924               | 88.5  | 420 |  |
|           |            |            | 12178      | 11006        | 3924               | 360   | 420 |  |
|           |            |            | 12242      | 11067        | 4092               | 873   | 420 |  |
| 4         | EL. 75'-0" |            | 16925      | 14941        | 0                  | -873  | 720 |  |
|           |            |            | 16947      | 14963        | 0                  | 873   | 720 |  |
|           |            |            | 17207      | 15193        | 824                | 705   | 720 |  |
|           |            |            | 17630      | 15556        | 2314.5             | 621   | 720 |  |
|           |            |            | 17942      | 15826        | 3347               | 621   | 720 |  |
|           |            |            | 18031      | 15903        | 3672               | 453   | 720 |  |
|           |            |            | 18123      | 15986        | 3924               | 360   | 720 |  |

Table 3.7.2-53: Floor Elevation and Nodes for Floor ISRS Generation (Continued)

| Floor No. | TOC         | Note        | Standalone | Triple Model | C       | oordinates (inc | h)   |
|-----------|-------------|-------------|------------|--------------|---------|-----------------|------|
|           | Elevation   |             | RXB Node   | Node         | Х       | Y               | Z    |
| 5         | EL. 100'-0" | Grade Floor | 22810      | 19886        | 0       | -837            | 1020 |
|           |             |             | 22821      | 19897        | 0       | 0               | 1020 |
|           |             |             | 22832      | 19908        | 0       | 837             | 1020 |
|           |             |             | 22905      | 19972        | 216     | -228            | 1020 |
|           |             |             | 23092      | 20138        | 824     | 705             | 1020 |
|           |             |             | 23517      | 20503        | 2314.5  | 621             | 1020 |
|           |             |             | 23829      | 20773        | 3347    | 621             | 1020 |
|           |             |             | 24008      | 20931        | 3924    | 88.5            | 1020 |
|           |             |             | 24012      | 20935        | 3924    | 360             | 1020 |
|           |             |             | 23386      | 20390        | 1872    | 453             | 1020 |
|           |             |             | 23915      | 20847        | 3672    | 177             | 1020 |
|           |             |             | 23919      | 20851        | 3672    | 453             | 1020 |
| 6         | EL. 126'-0" |             | 25487      | 22328        | 0       | -873            | 1320 |
|           |             |             | 25509      | 22350        | 0       | 873             | 1320 |
|           |             |             | 25625      | 22466        | 824     | 705             | 1320 |
|           |             |             | 25826      | 22667        | 1872    | 453             | 1320 |
|           |             |             | 25831      | 22672        | 1872    | 873             | 1320 |
|           |             |             | 25952      | 22793        | 2314.5  | 621             | 1320 |
|           |             |             | 26258      | 23099        | 3347    | 621             | 1320 |
|           |             |             | 26345      | 23186        | 3672    | 453             | 1320 |
|           |             |             | 26419      | 23260        | 3924    | 88.5            | 1320 |
|           |             |             | 26423      | 23264        | 3924    | 360             | 1320 |
|           |             |             | 26471      | 23312        | 4092    | 873             | 1320 |
| Roof      | EL. 181'-0" | Top of Roof | 29953      | 26794        | 0       | -537            | 1980 |
|           |             |             | 29960      | 26801        | 0       | 0               | 1980 |
|           |             |             | 29967      | 26808        | 0       | 537             | 1980 |
|           |             |             | 30110      | 26951        | 824     | 0               | 1980 |
|           |             |             | 30350      | 27191        | 2019.5  | 0               | 1980 |
|           |             |             | 30357      | 27198        | 2019.5  | 537             | 1980 |
|           |             |             | 30515      | 27356        | 2830.75 | 0               | 1980 |
|           |             |             | 30748      | 27589        | 4092    | -537            | 1980 |
|           |             |             | 30755      | 27596        | 4092    | 0               | 1980 |
|           |             |             | 30762      | 27603        | 4092    | 537             | 1980 |

## **Table 3.7.2-54: SASSI Containment Vessel Skirt Coordinates**

|       | X (in.) | Y (in.) | Z (in.) |
|-------|---------|---------|---------|
| RXM 1 | 2019.5  | 305.5   | 132     |
| RXM 6 | 3509.5  | 305.5   | 132     |

**Table 3.7.2-55: SASSI Containment Vessel Lug Coordinates** 

|       |           | X (in.) | Y (in.) | Z (in.) |
|-------|-----------|---------|---------|---------|
| RXM 1 | West Lug  | 1915.88 | 305.5   | 673.73  |
|       | North Lug | 2019.5  | 409.12  | 673.73  |
|       | East Lug  | 2123.12 | 305.5   | 673.73  |
| RXM 6 | West Lug  | 3405.88 | 305.5   | 673.73  |
|       | North Lug | 3509.5  | 409.12  | 673.73  |
|       | East Lug  | 3613.12 | 305.5   | 673.73  |

Table 3.7.2-56: Selected Crane Wheel Locations and a Crane Rail Slab Node for In-Structure Response Spectra Presentation

| Location No. | C       | oordinates (inche | es)    | Location Description                             |
|--------------|---------|-------------------|--------|--------------------------------------------------|
|              | X (E-W) | Y (N-S)           | Z (VT) |                                                  |
| 1            | 2215    | -453              | 1548   | SW Crane Wheel                                   |
| 2            | 2215    | 453               | 1548   | NW Crane Wheel                                   |
| 3            | 3067.25 | -453              | 1548   | SE Crane Wheel                                   |
| 4            | 3067.25 | 453               | 1548   | NE Crane Wheel                                   |
| 5            | 420.0   | 453               | 1548   | Crane Rail Slab at Grid Line RX-2 at El. 145'-6" |

Table 3.7.2-57: Coordinates of Standalone and Triple Building Models for Control Building Floor In-Structure Response Spectra Generation

| Count No. | Standalone CRB Model |        |       | Triple Building Model |        |       |
|-----------|----------------------|--------|-------|-----------------------|--------|-------|
|           | X Y                  |        | Z     | Х                     | Υ      | Z     |
|           | (in.)                | (in.)  | (in.) | (in.)                 | (in.)  | (in.) |
| 1         | 4500                 | -700   | 405   | 4470                  | -705   | 405   |
| 2         | 4500                 | -8     | 405   | 4470                  | -8     | 405   |
| 3         | 4500                 | 700    | 405   | 4470                  | 705    | 405   |
| 4         | 4968                 | -8     | 405   | 4938                  | -8     | 405   |
| 5         | 5154                 | 58.5   | 405   | 5124                  | 58.5   | 405   |
| 6         | 5436                 | -700   | 405   | 5406                  | -705   | 405   |
| 7         | 5436                 | -8     | 405   | 5406                  | -8     | 405   |
| 8         | 5436                 | 700    | 405   | 5406                  | 705    | 405   |
| 9         | 4500                 | -270   | 570   | 4470                  | -270   | 570   |
| 10        | 4500                 | 700    | 570   | 4470                  | 705    | 570   |
| 11        | 4693                 | -491.5 | 570   | 4663                  | -491.5 | 570   |
| 12        | 4751.33              | -270   | 570   | 4721.33               | -270   | 570   |
| 13        | 4751.33              | -8     | 570   | 4721.33               | -8     | 570   |
| 14        | 5436                 | -700   | 570   | 5406                  | -705   | 570   |
| 15        | 4389                 | -270   | 720   | 4359                  | -270   | 720   |
| 16        | 4500                 | -8     | 720   | 4470                  | -8     | 720   |
| 17        | 4500                 | 700    | 720   | 4470                  | 705    | 720   |
| 18        | 4693                 | -491.5 | 720   | 4663                  | -491.5 | 720   |
| 19        | 4809.67              | -8     | 720   | 4779.67               | -8     | 720   |
| 20        | 4809.67              | 58.5   | 720   | 4779.67               | 58.5   | 720   |
| 21        | 4809.67              | 353.5  | 720   | 4779.67               | 353.5  | 720   |
| 22        | 5436                 | -700   | 720   | 5406                  | -705   | 720   |
| 23        | 4389                 | -270   | 1020  | 4359                  | -270   | 1020  |
| 24        | 4500                 | -8     | 1020  | 4470                  | -8     | 1020  |
| 25        | 4500                 | 58.5   | 1020  | 4470                  | 58.5   | 1020  |
| 26        | 4500                 | 700    | 1020  | 4470                  | 705    | 1020  |
| 27        | 4693                 | -491.5 | 1020  | 4663                  | -491.5 | 1020  |
| 28        | 4809.67              | -8     | 1020  | 4779.67               | -8     | 1020  |
| 29        | 4809.67              | 58.5   | 1020  | 4779.67               | 58.5   | 1020  |
| 30        | 4809.67              | 284    | 1020  | 4779.67               | 284    | 1020  |
| 31        | 5304                 | -324.5 | 1020  | 5274                  | -324.5 | 1020  |
| 32        | 5304                 | -8     | 1020  | 5274                  | -8     | 1020  |
| 33        | 5304                 | 284    | 1020  | 5274                  | 284    | 1020  |
| 34        | 5436                 | -700   | 1020  | 5406                  | -705   | 1020  |
| 35        | 4500                 | 700    | 1260  | 4470                  | 700    | 1260  |
| 36        | 4693                 | -491.5 | 1260  | 4663                  | -491.5 | 1260  |
| 37        | 4809.67              | -8     | 1260  | 4779.67               | -8     | 1260  |
| 38        | 4809.67              | 58.5   | 1260  | 4779.67               | 58.5   | 1260  |
| 39        | 4809.67              | 423    | 1260  | 4779.67               | 423    | 1260  |
| 40        | 5436                 | -700   | 1260  | 5406                  | -700   | 1260  |
| 41        | 4500                 | 700    | 1518  | 4470                  | 700    | 1518  |
| 42        | 5436                 | -700   | 1518  | 5406                  | -700   | 1518  |

**Table 3.7.2-58: Coordinates of Selected Reactor Flange Tool Nodes** 

| Joint | X     | Υ     | Z     |
|-------|-------|-------|-------|
| No.   | (in.) | (in.) | (in.) |
| 6328  | 1191  | -228  | 132.1 |
| 6329  | 1255  | -88.5 | 132.1 |
| 6330  | 1383  | -88.5 | 132.1 |
| 6331  | 1447  | -228  | 132.1 |

Table 3.7.2-59: Comparison of Empty Dry Dock Condition Lug Reactions with Final Safety Analysis Report Results (Capitola Input and Nominal NuScale Power Module Stiffness)

| Dry Dock<br>Condition | West Wing Wall<br>N-S Lug Reaction<br>(kips) | Pool Wall<br>E-W Lug Reaction<br>(kips) | East Wing Wall<br>N-S Lug Reaction<br>(kips) |
|-----------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------|
| Full                  | 1,333                                        | 1,392                                   | 1,377                                        |
| Empty                 | 1,319                                        | 1,273                                   | 1,277                                        |

Table 3.7.2-60: Comparison of Maximum Empty Dry Dock Condition Forces in NuScale Power Module Skirt Supports with Final Safety Analysis Report Results (Capitola Input and Nominal NuScale Power Module Stiffness)

| Dry Dock<br>Condition | CNV Skirt<br>E-W Reaction<br>(kips) | CNV Skirt<br>N-S Reaction<br>(kips) | CNV Skirt<br>Vertical Reaction<br>(kips) |
|-----------------------|-------------------------------------|-------------------------------------|------------------------------------------|
| Full                  | 524                                 | 455                                 | 1,625                                    |
| Empty                 | 539                                 | 452                                 | 1,645                                    |

Figure 3.7.2-1: Control Building, Reactor Building, and Radioactive Waste Building in Soil (Looking Northeast)

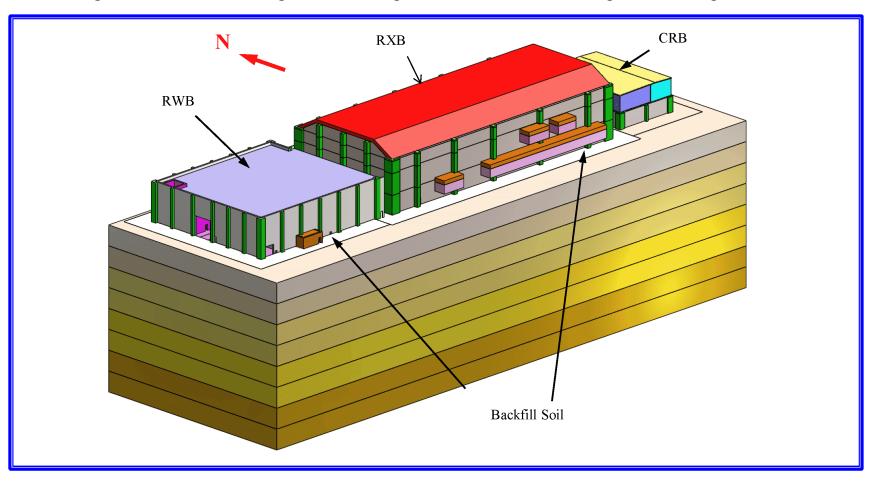



Figure 3.7.2-2: Section View of Control Building, Reactor Building, and Radioactive Waste Building in Soil (Looking Northeast)

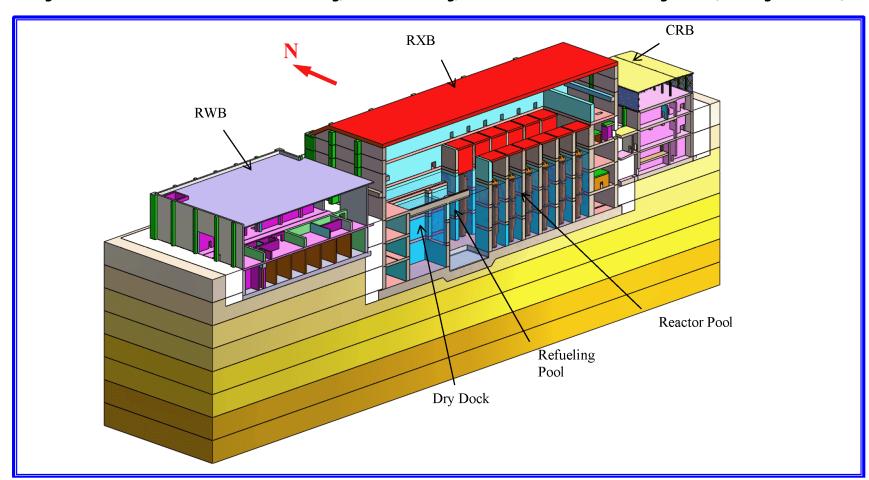
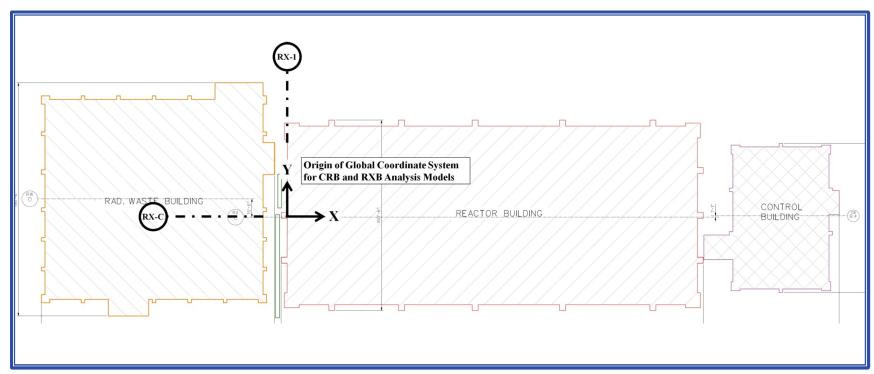




Figure 3.7.2-3: Global Origin of Building Models



3.7-255

North

Figure 3.7.2-4: Reactor Building Model Showing Global X, Y, and Z Axes at Origin

Figure 3.7.2-5: Location at Northeast Corner on Top of Basemat used for 7P versus 9P Comparison

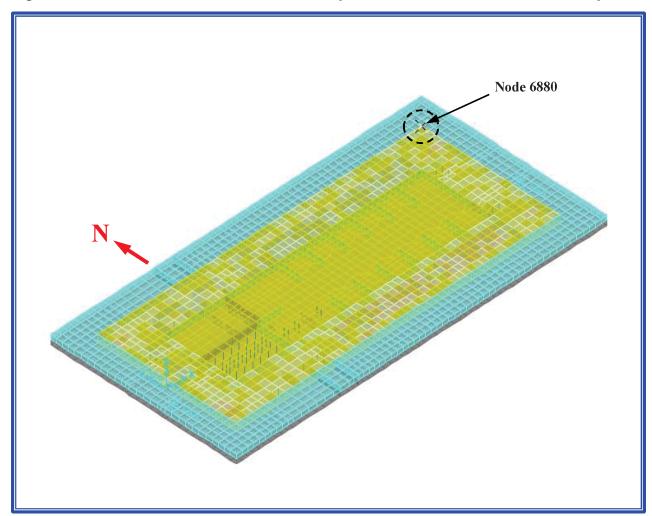



Figure 3.7.2-6: Location at NPM 1 East Wing Wall at Lug Support used for 7P versus 9P Comparison

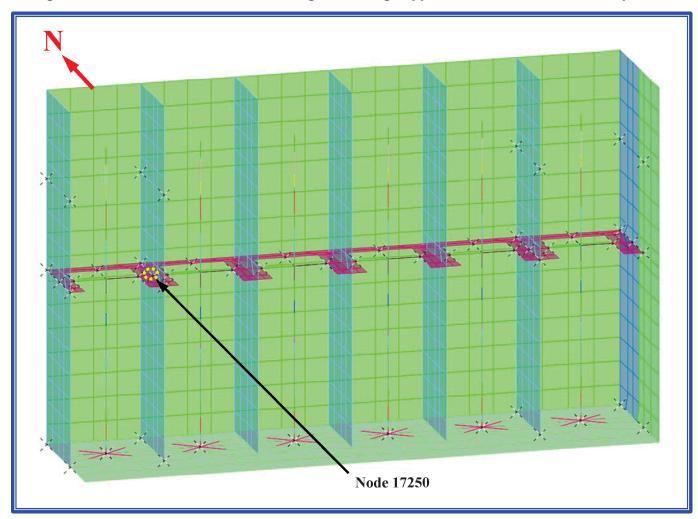



Figure 3.7.2-7: Location at Center of Roof Slab used for 7P versus 9P Comparison

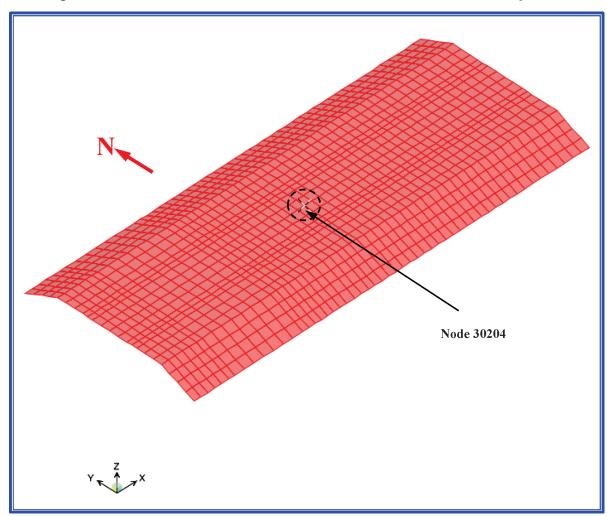
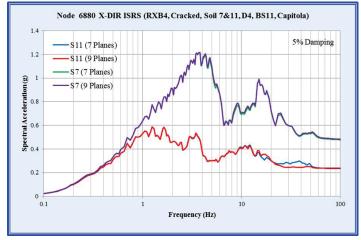
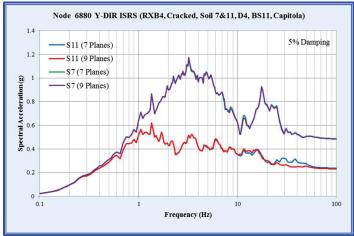





Figure 3.7.2-8: 7P Versus 9P Comparison at Northeast Corner on Top of Basemat





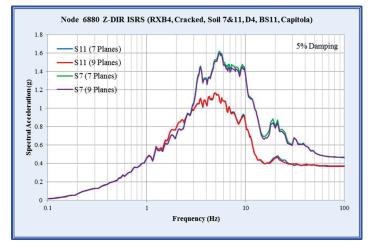
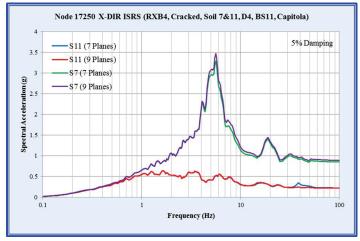
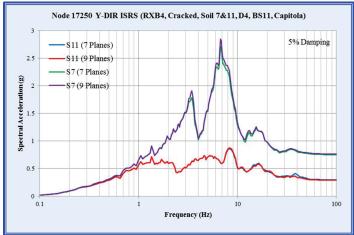





Figure 3.7.2-9: 7P Versus 9P Comparison at NPM 1 East Wing Wall at Lug Support





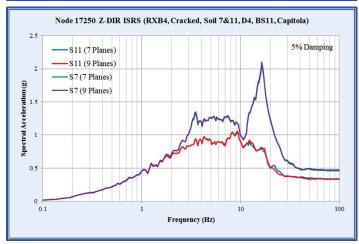
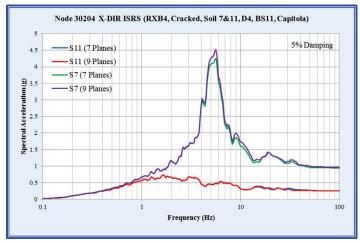
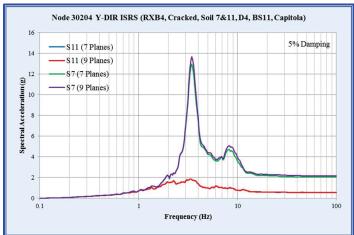
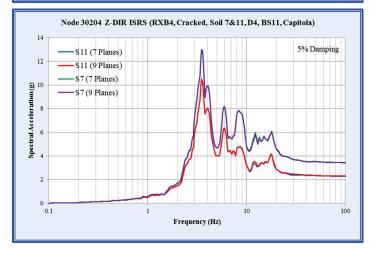






Figure 3.7.2-10: 7P Versus 9P Comparison at Center of Roof Slab







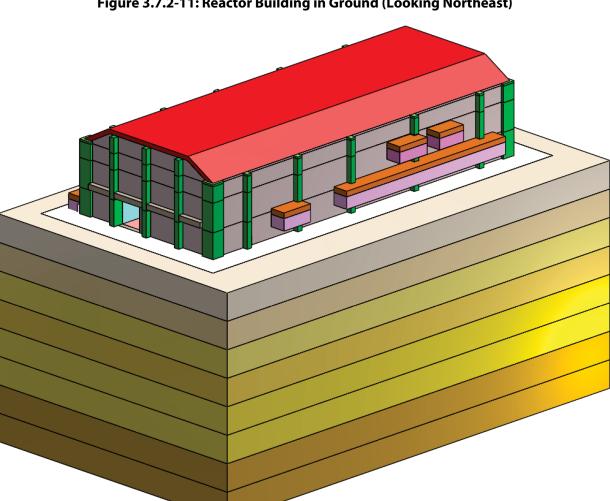



Figure 3.7.2-11: Reactor Building in Ground (Looking Northeast)

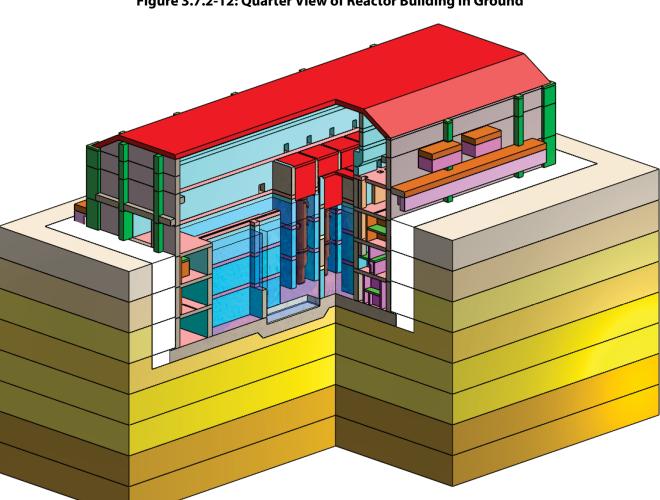



Figure 3.7.2-12: Quarter View of Reactor Building in Ground

Figure 3.7.2-13: Longitudinal View of Half of Reactor Building in Ground