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ABSTRACT

The effect of thermal aging on the degradation of fracture toughness and Charpy-impact
properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures.
The solidification behavior and the distribution and morphology of the ferrite phase in SS welds
are described. Thermal aging of the welds results in moderate decreases in Charpy-impact
strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds
decreases by 50-80 J/cm2. The decrease in fracture toughness J-R curve, or Ji; is relatively

small. Thermal aging has minimal effect and the welding process has a significant effect on the
tensile strength. Fracture properties of SS welds are controlled by the distribution and
morphology of second-phase particles. Failure occurs by the formation and growth of microvoids
near hard inclusions. Differences in fracture resistance of the welds arise from differences in the
density and size of inclusions. However, the existing data are inadequate to accurately establish
the effect of the welding process on fracture properties of SS welds. Consequently, the approach
used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on
establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated
and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been
reviewed and evaluated to define lower-bound J-R curve for austenitic SS welds in the unaged
and aged conditions. Thermal aging decreases the fracture toughness by about 20%. The
potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also
described. Lower-bound curves are presented that define the change in coefficient C and
exponent n of the power-law J-R curve and the J,. value for SS welds as a function of neutron
dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic
SS welds are also discussed.






FOREWORD

Stainless steel welds are used in light water reactor (LWR) systems. These welds have a duplex
structure consisting of austenite and ferrite phases. The ferrite phase increases tensile strength
and improves resistance to stress corrosion cracking. However, these austenitic SS welds are
susceptible to thermal aging. This is because the ferrite phase suffers from thermal embrittlement
after extended operation at reactor operating temperatures. In addition, these welds, when
exposed to neutron irradiation for extended periods, tend to degrade due to changes in their
microstructure and microchemistry. As a result, the weld fracture properties will change because
of neutron embrittlement and their susceptibility to irradiation-assisted stress corrosion cracking.

The purpose of the original NUREG/CR-6428 (1996) was to compile and evaluate the thermal
embrittlement on austenitic SS welds. NUREG/CR-6428 Rev.1 updates the fracture properties of
SS welds following a thorough review of available open literature results on Charpy-impact
energy, tensile properties, and fracture toughness J-R curves of thermally aged and neutron
irradiated welds. NUREG/CR-6428 Rev.1 also documents the potential combined effects of both
thermal and neutron embrittlement and revises the lower-bound fracture-toughness J-R curves for
austenitic SS welds during service in LWRs, using a much larger database.

Thermal aging of austenitic SS welds generally increases their hardness and tensile strength,
while decreasing weld ductility, impact strength and fracture toughness. Thermal aging of welds
decreases the Charpy upper-shelf energy and increases the Charpy energy transition
temperature. Long term operation degrades the fracture toughness of austenitic SS welds due to
thermal aging and the extent of degradation depending on the welding process. This is because
the welding process and conditions influence both the weld composition and weld microstructure.

The results of NUREG/CR-6428 Rev.1 may be used to: (a) determine when active aging
management of reactor primary pressure boundary and reactor vessel internal components
manufactured using SS weld materials is needed for license renewal (LR) of LWRs under 10 CFR
Part 54; (b) inform technical content in the subsequent license renewal guidance documents
NUREG-2191 and NUREG-2192; (c) determine appropriate inspection and flaw disposition
procedures for reactor vessel internals for use in American Society of Mechanical Engineers
(ASME) code development, and for developing appropriate staff positions for Title 10, Section
50.55a,“Codes and Standards,” of the Code of Federal Regulations (10 CFR 50.55a); and (d)
identify technical issues related to screening criteria for the lower bound value of the delta ferrite
limit at which significant loss of the fracture toughness of the SS welds could potentially occur
during the normal operation of the nuclear power plants.
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EXECUTIVE SUMMARY

Background

Austenitic stainless steels (SSs) are used extensively as structural alloys in light water reactor
(LWR) systems, including reactor primary pressure boundary and core internal components,
because of their excellent ductility, high notch toughness, corrosion resistance, and good
formability. Although wrought SSs are completely austenitic, welded SSs have a duplex structure
consisting of austenite and ferrite phases. The ferrite phase increases tensile strength and
improves resistance to stress corrosion cracking (SCC). However, structural materials such as
austenitic SS welds and cast austenitic stainless steel (CASS) are susceptible to thermal
embrittlement of the ferrite phase after extended operation at reactor operating temperatures. In
addition, exposure of these materials to neutron irradiation for extended periods, changes their
microstructure (radiation hardening) and microchemistry (radiation-induced segregation), which
degrades their fracture properties and increases their susceptibility to irradiation-assisted stress
corrosion cracking (IASCC).

The scope of this report is to compile and evaluate the thermal and neutron embrittlement data on
austenitic SS welds obtained after NUREG/CR-6428 (1996) was published, and (a) update the
results presented earlier in the report on Charpy impact energy, tensile properties, and fracture
toughness J-R curves, (b) establish the effects of thermal embrittlement on the degradation of
fracture properties, and (c) evaluate the potential combined effects of thermal and neutron
embrittlement. The lower-bound fracture-toughness J-R curves for austenitic SS welds during
extended service in LWRs have been revised to incorporate the effects of thermal and neutron
embrittlement using a much larger database. These curves bound the experimental fracture-
toughness data on austenitic SS welds reviewed in this study. The potential effects of reactor
coolant environment on fracture-toughness J-R curves are also discussed.

Material Characterization

Austenitic SS welds have a duplex structure, with ferrite being the minor phase distributed in
various forms in the austenite matrix. Typically, the ferrite content in commercial AISI 300 series
austenitic SSs welds varies between a couple of percent to 20 percent (%) depending on the
material composition and to some extent on weld cooling rate. The solidification mode of SSs can
be predicted based on the Crgy/Nigq ratio using the Schaeffer equation. For the austenite/ferrite
mode, the Crgy/Nigq ratio is generally between 1.49 and 1.95. The various phase transformations
that occur during solidification of austenitic SS welds, involve extensive solute redistribution.
Based on the weld composition and weld process conditions these transformations result in four
different ferrite morphologies in the weld.

Vermicular ferrite is the most commonly observed in austenitic SS welds containing 5 to 15%
ferrite. The word vermicular means the markings, motion, or tracks of worms. It appears as an
aligned skeletal network of ferrite. Lacy ferrite is observed in welds with 13 to 15% ferrite. The
lacy form of ferrite is characterized by long columns of interlaced ferrite oriented along the growth
direction in an austenite matrix. Acicular ferrite is observed in the crown passes of a weld and has
no directionality, and does not conform to any substructure. It is observed in weld containing
about 14% ferrite. Globular ferrite is in the form of globules, randomly distributed in a matrix of
austenite. Globular ferrite is formed because of thermal instability of any of the other forms of
ferrite, particularly the acicular form. Methods for estimating or measuring the ferrite content is
austenitic SS welds are discussed.
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Thermal Embrittlement

Thermal aging of austenitic SS welds, generally, increases their hardness and tensile strength,
and decreases ductility, impact strength, and fracture toughness. The degradation of fracture
properties occurs due to a combination of the strengthening of the ferrite matrix by spinodal
decomposition and the weakening of grain/phase boundaries because of the presence of second
phase particles. Fracture occurs along the delta ferrite regions where the second phase particles
initiate voids/cracks either by decohesion of the ferrite/austenite interphase or particle cracking.
The kinetics of thermal embrittlement are discussed.

Thermal aging of welds decreases the Charpy upper-shelf energy and increases the Charpy
energy transition temperature. The effect of thermal aging increases with increasing ferrite
content in the weld. Charpy impact energy at reactor temperatures is greater then at room
temperature, but the difference decreases with thermal aging. The effect of thermal aging on
tensile properties is to increase the yield and ultimate tensile stress and decrease the ductility.
The effect on ultimate tensile stress is greater then on the yield stress. However, the effect is
insignificant on welds with <10% ferrite.

Thermal aging also degrades the fracture toughness of austenitic SS welds; the welding process
has a significant effect. The effect on submerged arc (SA) and shielded metal arc (SMA) welds is
greater than on the gas tungsten arc (GTA) welds. However, since the composition and
microstructure of welds varies with the welding process and conditions, it is difficult to estimate the
change in fracture toughness as a function of time and temperature of aging. Therefore, the
approach adopted in this report is to establish the effect of thermal embrittlement on the fracture
toughness of SS welds and define the lower bound values of fracture toughness parameters, such
as, Jc and coefficient “C” and exponent “n” of the power-law J-R curve. Separate lower bound
values are presented for SA/SMA and GTA welds for unaged and aged SS welds. However,

the SS weld data used in this evaluation, for which the weld ferrite content was known, contained
less then or equal to 12% ferrite. Therefore, the applicability of these results to welds containing
higher ferrite content needs to be evaluated.

Combined Effects of Thermal and Neutron Embrittlement

The fracture toughness of austenitic SS welds decreases with increasing neutron irradiation dose.
The extent of embrittlement depends on the amount and morphology of the ferrite phase in the
weld. The mechanism of neutron embrittlement is briefly discussed. The point defects produced
by neutron irradiation strengthen the material, resulting in an increase in tensile strength and a
reduction in ductility and fracture toughness. The yield strength of austenitic SSs and welds can
increase significantly. The extent of irradiation hardening and the increase in yield stress depend
on the material composition, heat treatment and irradiation temperature. Correlations have been
developed for estimating the tensile properties as a function of neutron dose by the Materials
Reliability Program (MRP).

The fracture toughness of nonirradiated austenitic SSs is known to decrease as the test
temperature is increased. The J. values of austenitic SS and welds either nonirradiated or
irradiated to relatively low doses, decrease with increasing test temperature. However, for SSs
irradiated to 12 dpa or more, test temperature has no effect on fracture toughness. Available data
are inadequate to accurately establish the effect of irradiation temperature on fracture toughness
of SS welds. Similar to the effect of thermal embrittlement, lower bound values of J;; and
coefficient C and exponent n of the fracture toughness J-R curve are defined as a function of
neutron dose.
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AMP aging management program

ANL Argonne National Laboratory

ASME American Society of Mechanical Engineers
ASTM  American Society for Testing and Materials
AWS  American Welding Society

BWR  boiling water reactor

CASS cast austenitic stainless steels

CMTR certified material test record

CNSR  Chevron notch short rod

CR composition ratio
cw cold worked
CT compact tension

DBTT  ductile-brittle transition temperature
DO dissolved oxygen

dpa displacements per atom

EdF Electricité de France

EPFM elastic-plastic fracture mechanics
EPRI Electric Power Research Institute
FN ferrite number

FRA Framatome

GALL  Generic Aging Lessons Learned
GF George Fischer

GTA gas tungsten arc

HAZ heat-affected zone

IASCC irradiation-assisted stress corrosion cracking
J-R J-integral resistance

LEFM linear-elastic fracture mechanics
LWR light water reactor

MHI Mitsubishi Heavy Industry, Ltd.
MIG Metal inert gas

MMA manual metal arc

MRP Materials Reliability Program

MSIP  mechanical stress improvement process
NP National Power

NRC Nuclear Regulatory Commission
PIFRAC pipe fracture (database)

PWR  pressurized water reactor

RIS radiation-induced segregation

SA submerged arc

SCC stress corrosion cracking

SMA shielded metal arc

SS stainless steel
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TIG Tungsten inert gas
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NOMENCLATURE

Crack length

Uncracked ligament of Charpy specimen

Neutron dose in dpa

Specimen thickness

Coefficient of the power-law J-R curve

Chromium equivalent for the material

Room-temperature “normalized” Charpy-impact energy, i.e., Charpy-impact energy per
unit fracture area, at any given service and aging time (J/cm2). The fracture area for a
standard Charpy V-notch specimen (ASTM Specification E 23) is 0.8 cm2. The value of
impact energy in J has been divided by 0.8 to obtain “normalized” impact energy in J/cm2.
Increment in crack length

Increment in J

Elastic modulus

Ferrite content

J integral, a mathematical expression used to characterize the local stress-strain field at
the crack tip region (parameter J represents the driving force for crack propagation)
Stress intensity factor

Critical stress intensity factor

Equivalent critical stress intensity factor

Exponent of the power-law J-R curve

Nickel equivalent for the material

Aging parameter, i.e., the log of the time of aging at 400°C

Yield load for instrumented Charpy specimen

Maximum load for instrumented Charpy specimen

Activation energy for the process of thermal embrittlement (kJ/mole)

Load ratio

Service or aging time

Tearing modulus or temperature

Specimen width

Ferrite content calculated from the chemical composition of a material (%)

Poisson ratio

Flow stress, defined as the average of yield and ultimate stress

Ultimate stress

Yield stress
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In this report, all values of impact energy have been normalized with respect to the actual cross
sectional area of the Charpy impact specimen. Thus, for a standard Charpy-V-notch specimen
per ASTM Specification E 23 (i.e., 10 x 10-mm cross section and 2-mm V notch), impact energy
value in J has been divided by 0.8 cm? to obtain impact energy in J/cm2. Impact energies
obtained on subsize specimens were normalized with respect to the actual cross-sectional area
and appropriate correction factors were applied to account for size effects. Similarly, impact
energies from other standards such as U-notch specimen were converted to a Charpy-V-notch

value by appropriate correlations.

Sl units of measurements have been used in this report. Conversion factors for measurements in

British units are as follows:

To convert from to

in. mm

J’ ft-Ib

kJ/ m2 in.—Ib/in.2
kd/mole kcal/mole

multiply by
254
0.7376
5.71015
0.239

* When impact energy is expressed in J/cmz, first multiply by 0.8 to obtain impact energy of a standard Charpy V—

notch specimen in J.
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1 INTRODUCTION

Austenitic stainless steels (SSs) are used extensively as structural alloys in light water reactor
(LWR) systems, including reactor primary pressure boundary and core internal components,
because of their excellent ductility, high notch toughness, corrosion resistance, and good
formability. Although wrought SSs are completely austenitic, welded SSs have a duplex structure
consisting of austenite and ferrite phases. The ferrite phase increases tensile strength and
improves resistance to stress corrosion cracking (SCC). Furthermore, the ferrite phase is desired
in austenitic SS welds for controlling the weld solidification behavior and inhibiting the formation of
low melting point compounds such as sulfides and phosphides, which promote microfissuring [1].

However, materials with a duplex structure such as austenitic SS weld and cast austenitic SS
(CASS), are susceptible to thermal embrittlement after extended operation at reactor operating
temperatures [1-27], typically 282°C (540°F) for boiling water reactors (BWRs), 288-327°C
(550—621°F) for pressurized water reactor (PWR) primary coolant piping, and 343°C (650°F) for
PWR pressurizers. In addition, exposure to neutron irradiation for extended periods changes the
microstructure (radiation hardening) and microchemistry (radiation-induced segregation, or RIS)
[28-32] of these duplex materials, degrades their fracture properties [33—47], and increases their
susceptibility to irradiation-assisted stress corrosion cracking (IASCC) [46-55]. A critical
assessment of the susceptibility of austenitic SSs to IASCC and neutron embrittlement was
presented in NUREG/CR-7027 and two review articles [45,47,55]. The existing data were
evaluated to establish the effects of material parameters (such as composition, thermo-
mechanical treatment, microstructure, microchemistry, yield strength, and stacking fault energy)
and environmental parameters (such as water chemistry, irradiation temperature, dose, and dose
rate) on IASCC susceptibility and neutron embrittlement. The results indicate that for the same
irradiation conditions, the fracture toughness of thermally aged CASS material and austenitic SS
weld metal is lower than that of the HAZ of SS base materials, which, in turn, is lower than that of
solution-annealed SS base materials. The combined effects of thermal and neutron embrittlement
on the fracture toughness of CASS materials, has also been investigated [56,57].

For embrittled materials, a fracture mechanics methodology, such as elastic-plastic fracture
mechanics (EPFM) or linear-elastic fracture mechanics (LEFM) is needed for analysis of structural
integrity and development of inspection guidelines. The former involves the use of J integral-
resistance (J-R) curve approach, where failure is caused by plastic deformation. The J integral is
a mathematical expression used to characterize the local stress-strain field at the crack tip region
(parameter J represents the driving force for crack propagation), and the J-R curve characterizes
the resistance of the material to stable crack extension. The fracture toughness of such materials
is represented by fracture mechanics parameters such as Ji¢, the value of J near the onset of
crack extension, and the tearing modulus, T, which characterizes the slope of the J-R curve. The
tearing modulus is expressed as

T = (dJ/da)(E/cf?), (1)
where E is the elastic modulus, “a” is the crack length, and os is the flow stress defined as the
average of the yield stress (o) and ultimate stress (o), i.e., of = (cy*+oy)/2.

The LEFM methodology is used where failure involves negligible plastic deformation. The
fracture toughness of such materials is represented by the parameter K (i.e., plane strain
fracture toughness), which characterizes the resistance of the material to unstable crack

extension. For small-scale yielding (e.g., deep cracks in bending in a large specimen), the
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fracture toughness can be characterized by Ji.. For convenience, the fracture toughness Ji. is
represented in terms of a parameter K., which has the units of K,. and is determined from the
relationship

Kiec = (E"Jie)"?, (2)

where the normalized elastic modulus is given by E” = E/(1 — v2), E is the elastic modulus, and
v is the Poisson ratio. K. is equal to the critical stress intensity K. only in cases where LEFM
is applicable.

The thermal embrittlement of CASS materials and austenitic SS welds has been investigated at
Argonne National Laboratory (ANL) and the results were published in several NRC reports
[22-27]. A procedure and correlations have been developed at ANL for estimating fracture
toughness, tensile, and Charpy-impact properties of CASS components during service in LWRs
from known material information. The ANL estimation scheme originally described in
NUREG/CR-4513 Rev. 1 [24] is applicable to compositions within the American Society for
Testing and Materials (ASTM) Specifications A351 for Grades CF-3, CF-3A, CF-8, CF-8A, and
CF-8M.

In the ANL methodology for estimating thermal embrittlement of CASS materials, embrittlement is
characterized in terms of room temperature Charpy-impact energy. The extent or degree of
thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a
material after long-term aging) is determined from the chemical composition of the material [24].
Charpy-impact energy as a function of the time and temperature of reactor service is estimated
from the kinetics of thermal embrittlement, which are also determined from the chemical
composition. The fracture toughness J-R curve for the aged material is then obtained by
correlating room temperature Charpy-impact energy with fracture-toughness parameters. Tensile
yield and flow stresses, and Ramberg/Osgood parameters are estimated from the flow stress of
the unaged material and the kinetics of embrittlement [26].

However, the NUREG/CR-4513 Rev. 1 [24] methodology for estimating loss of fracture toughness
due to thermal embrittlement in LWR environments was limited to CASS materials with ferrite
contents up to 25%, and the synergistic effects of thermal and neutron embrittlement were not
evaluated. Limited data suggest that the concurrent exposure to neutron irradiation during reactor
service can result in a combined effect wherein the service-degraded fracture toughness can be
less than that predicted for either thermal or neutron irradiation embrittlement independently [56].
The ANL methodology was later updated to include CASS materials with up to 40% ferrite. In
addition, procedure for estimating the combined effects of thermal and neutron embrittlement on
loss of fracture toughness of CASS materials was also included. The results were presented in
NUREG/CR-4513, Rev. 2 [58].

Although austenitic SS welds have a duplex structure and their chemical compositions are similar
to those of CASS materials, their fracture toughness is lower than that of the wrought SSs and
most CASS materials. Typically, austenitic SS welds exhibit ductile dimpled fracture morphology
at temperatures up to 550°C (1022°F) [27]. Because of a high density of inclusions in the weld,
the dimples are relatively small and shallow, and often associated with inclusions. The overall
fracture toughness of SS welds is controlled by the density and morphology of second-phase
inclusions in these materials, which varies with the welding process. For example, gas tungsten
arc (GTA) welds exhibit the highest toughness; shielded metal arc (SMA) welds have intermediate
toughness; and submerged arc (SA) welds have the lowest toughness [1]. The median value of
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Jic is 492 kJ/m?2 (2809 in.-Ib/in.2) for GTA welds and 147 kJ/mZ2 (839 in.-Ib/in.2) for SA welds at
temperatures up to 125°C (257°F).

In addition, welding of austenitic SSs results in a heat affected zone (HAZ) adjacent to the fusion
zone, where the material microstructure and microchemistry are greatly altered because of the
precipitation of chromium (Cr)-rich carbides at the grain boundaries. The formation of the
carbides depletes Cr from the grain-boundary region thereby creating a region that is susceptible
to SCC. However, the fracture toughness of HAZ material is generally superior to that of the weld
metal and may be comparable to that of the base metal.

Because the microstructure and fracture behavior of austenitic SS welds is significantly different
from that of CASS materials, the ANL fracture toughness estimation methodology for CASS
materials is not applicable to austenitic SS welds. The NUREG/CR-4513 Rev. 2 correlations
account for mechanical-property degradation of typical heats of CASS, but do not consider the
effects of compositional or structural differences that may arise from various welding processes,
all of which have a strong effect on the failure mechanism of weld materials. Consequently, the
approach used for evaluating thermal and neutron embrittlement of austenitic SS welds, relies on
establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated
and irradiated SS welds.

The degradation of fracture toughness and Charpy-impact energy of several SS pipe welds was
evaluated in NUREG/CR-6428 [27]. A few welds from the reactor coolant pressure boundary
piping were aged for 7,000 to 10,000 h at 400°C (752°F) to simulate saturation conditions, the
lowest impact energy that would be achieved by the material after long-term aging. The results
were compared with data from other studies [1,12,13,59—77]. The results suggested that SS
welds with poor fracture toughness (e.g., SMA or SA welds) appear to be relatively insensitive to
thermal aging.

This earlier evaluation of fracture properties of austenitic SS welds due to thermal embrittlement
as well as the potential degradation due to neutron embrittlement has recently been updated
using a much larger database [78—96]. Most of the mechanical property data, particularly the
fracture toughness J-R curve data (i.e., Aa vs. J data), were obtained by digitizing good quality
plots from the reference documents. The combined effects of thermal and neutron embrittlement
were also evaluated. The initial results were published in a journal article [97]. This report
presents a revision of the original version of the NUREG/CR-6428 in its entirety. The lower bound
fracture toughness J-R curves for austenitic SS welds during extended service in LWRs have
been updated to incorporate the effects of thermal and neutron embrittiement using the larger
database. These curves bound the experimental fracture-toughness data on austenitic SS welds
reviewed in this study. The potential effects of reactor coolant environment on fracture toughness
J-R curves are also discussed.

1-3






2 MATERIAL CHARACTERIZATION

2.1 Solidification Behavior and Ferrite Morphology

Austenitic SS welds have a duplex structure, with ferrite being the minor phase distributed in
various forms in the austenite matrix. For commercial AlISI 300 series austenitic SSs, the weld
ferrite content varies in the range of 0 to about 20 volume percent (%) depending primarily on the
material composition, and to a lesser extent on weld cooling rate [98—108]. However, the
solidification behavior and subsequent solid-state transformation within the weld metal during
cooling (shown in Figure 2-1 control the microstructural characteristics of the weld. Therefore,

establishing the formation and distribution of different ferrite morphologies in the weld is rather
difficult [105].
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Figure 2-1 The 70% constant Fe vertical section of the Fe-Ni-Cr-system (Ref. 105).

In Figure 2-1, the structure of the equilibrium phase of composition C, with Fe-20 wt.% Cr and
10 wt.% Ni (e.g., Type 304 SS base metal welded with Type 308 electrode) is ferrite at high
temperatures [1380-1420°C (2516—2588°F)] and austenite at low temperatures (below 1120°C or
2048°F). Upon cooling from the é-ferrite phase, this composition passes through a two-phase
regime (d+y). The microstructures that result from changes in the various phases have been
related to the weld material phase diagram [103] and to the ratio of the Cr and Ni equivalents
(Creqg/Nigg) [99]. However, the microstructure is affected by the cooling rate [103,104]. In the
primary ferrite solidification mode (i.e., Ni contents <10%), primary ferrite is first formed followed
by solid-state transformation of ferrite (8) to austenite (y). In this case, the residual 3-ferrite is
observed at the dendrite core [105]. On the other hand, in the primary austenite solidification
mode (i.e., Ni contents 210%), the residual 5-ferrite is observed at the dendrite boundaries.
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Austenite mode: Crgg/Nigq < 1.48

Ferrite/austenite mode: 1.48 < Crgg/Nigq < 1.95

Ferrite mode: 1.95 < Crgg/Nigq

Creq = Cr + 1.5Si + Mo + 0.5Nb + 2Ti

Nieq = Ni + 0.5Mn + 30C + 30(N — 0.06).

The solidification mode of SSs can be predicted based on the Creqg/Nieq ratio using the
Schaeffler equation [102,109]:

where Creq and Nigq are determined from the material composition in wt.%,

Because of the differences in the solidification behavior of the weld, both the morphology and
composition of the &-ferrite can vary significantly between the different modes of solidification.
Note that Eqs. 6 and 7 are somewhat different than those used in the ASTM A800/800M
methodology (based on the Schoefer diagram) discussed later [110,111]. Furthermore, due to
differences in the Crgy/Nig, ratio of the base metal and weld compositions and solute segregation
during solidification, the composition of welds of nominal composition C, can vary significantly
prior to any solid-state transformation.

Figure 2-2
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Solute distributions predicted by different models in a frozen bar from liquid of
composition C,: (a) equilibrium cooling, (b) solute mixing in the liquid by
diffusion only, (c) complete mixing in the liquid, and (d) partial solute mixing in
the liquid (Ref. 112 as reproduced in Ref. 105).

Davies [112] has summarized the composition profiles predicted by different models (shown in
Figure 2-2) in a bar solidified from liquid of composition C,. The shows a case in which

equilibrium distribution coefficient k <1. The fraction of the melt of initial composition C,, which
has solidified is plotted along the x-axis. In Figure 2-2, line (a) represents the uniform composition
profile C, for equilibrium solidification. The other three cases are for no diffusion in the solid and

equilibrium at the liquid-solid interface. The most common assumption in the solidification of
castings or welds is complete mixing in the liquid; this condition is shown as curve (c) in the figure.
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The final liquid solidifies at an invariant composition as an eutectic. In welds, this occurs within
the interdendritic or intercell regions. Case (b) represents mixing in the liquid by diffusion only.
This results in the formation of a solute-rich boundary layer at the liquid-solid interface, which
depends on the solute distribution k, the diffusion coefficient in the liquid, and the solidification
velocity. The case (d) represents some mixing in the liquid by convection in addition to diffusion.
Note that in all cases, the initial solid to form at dendrite or cell core is of composition C.k,, where
ko is corresponds to the initial C,.

PWDR PWMS
Figure 2-3 Typical ferrite morphology of four different welds (Ref. 27).

Examples of typical ferrite morphology of four different welds are shown in Figure 2-3. PWWO is
a 0.305-m (12-in.) schedule 100 pipe mockup weld with overlays, PWCE is a 0.71-m (28-in.)
Type 304 pipe-weld, PWDR is a 0.254-m (10-in.) Type 304 SS pipe weld after service in the
Dresden reactor, and PWMS is a 0.71-m (28-in.) SS pipe weld treated by the Mechanical Stress
Improvement Process (MSIP).
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David [104] studied the ferrite morphology and variations in ferrite content in two Type 308 SS
multipass welds and identified four distinct ferrite morphologies: vermicular, lacy, acicular, and
globular. The welds were prepared by the GTA process with a 25-mm thick Type 304L SS plate
containing a single-V butt joint. The compositions of the 304L plate and 308 filler metal were
0.019C, 1.75 Mn, 0.63 Si, 0.029 P, 0.006 S, 10.0 Ni, 18.55 Cr, and balance Fe (wt.%) and 0.016
C, 1.95 Mn, 0.35 Si, 0.029 P, 0.004 S, 9.76 Ni, 20.14 Cr, and balance Fe (wt.%), and Crgg/Niegq =
1.66, respectively. One of the welds was made with the joint surfaces buttered with the weld
metal and the other without buttering. Ferrite number, FN, was measured using a Magne-gage in
accordance with American Welding Society A4.2-74 [113].

The average FNs of the root pass deposited in the buttered and not buttered weld were 13 and 8,
respectively. The lower ferrite content of the weld prepared without buttering was attributed to
weld-metal dilution with the base metal. The ferrite number of the root pass decreased further
because of the dilution of ferrite from the thermal effects during the subsequent weld passes.
Variations in ferrite content were also observed in both welds within a cross section of the bead,
along the length and width of the weld. The FN values' at various weld locations varied from 9 to
13 and 5 to 14 for the buttered and not buttered welds, respectively. Based on the composition of
the weld metal, the calculated ferrite content for the weld, without dilution, is 8.1% from Hull's
equivalent factor [101], 5.9 from the ASTM A800/A800M methodology (based on the Schoefer
diagram) [110,111], and about 13.8% from the modified Schaeffler (or Delong) diagram [114,115].

Note that the ferrite content determined using the ASTM A800 methodology is significantly lower
than the average measured value of FN 11 for the buttered weld. However, since the ferrite
content was measured using a Magne-gage, such instruments are very sensitive to surface
roughness or surface curvature. Furthermore, phases other than ferrite and austenite may form at
higher temperatures during welding, which may alter the magnetic response of the material such
that the indicated ferrite content is quite different than of the same material not subjected to the
welding process. It should also be mentioned that the variations in ferrite content in part might be
due to differences in the N pickup during welding [104].

The results of the study by David indicate that the solidification sequences in Type 308 SS welds
include primary crystallization of é-ferrite with subsequent envelopment by austenite, followed by
further transformations from liquid to y and & to y [104]. As the sample cools below the solidus
temperature, the transformation at the liquid-y interface is completed, leaving behind a skeletal
network of untransformed 5-ferrite along the cores of the primary and secondary dendrite arms.
This residual ferrite is rich in Cr, which makes it very stable. However, primary ferrite, with lower
average Cr content (24—25 wt.%), may transforms into Widmanstatten austenite and ferrite during
rapid cooling. These two transformations involve extensive solute redistribution by diffusion; the
results may be used to explain the various ferrite morphologies observed in SS welds [104]. The
details regarding the four different morphologies are as follows.

Vermicular ferrite (i.e., skeletal ferrite morphology) was most commonly observed in austenitic SS
welds with FN 5-15, and was predominantly observed in the weld root pass and the two
subsequent passes. The vermicular (meaning the form, markings, motion, or tracks of worms)
morphology, depending on the sectional cut viewed, appears as an aligned skeletal network of
ferrite or as a curved skeletal form. The alignment is along the heat flow direction, which is also
the primary dendrite growth direction. Studies by Fredricksson [116] indicated that the tip of the
individual dendrites at the solidification front, where the temperature gradients were steep,

' FN values determined from the modified Schaeffler diagram.
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transformed to a lathy-ferrite morphology. However, the core of the dendrite, where the cooling
rate was much slower, consisted of vermicular ferrite morphology. Fredricksson concluded that
the vermicular ferrite is formed by a diffusion controlled reaction in which Ni is partitioned to the
austenite and Cr to the ferrite, leaving a Cr-rich Ni-depleted ferrite in the core of the ferrite
dendrites (i.e., skeletal ferrite morphology). These results have been validated by Suutala et al.
[102] and Lippold and Savage [103].

Lacy morphology was observed predominantly in the third pass of the weld; the ferrite content
varied between FN 13 and 15. The lacy structure looked very regular and aligned. The lacy form
of ferrite is characterized by long columns of interlaced ferrite oriented along the growth direction
in an austenite matrix. Most likely, it forms by the transformation of primary é-ferrite to
Widmanstatten austenite and ferrite.

Acicular morphology was present in the sixth and crown passes of the weld; the ferrite content
was about FN 14. However, unlike the previous two morphologies, the acicular structure had no
directionality and did not conform to the solidification substructure in any way. This morphology is
typical of weld metals with Creq/Nieq = 2. It also forms by the low-temperature transformation of
primary ferrite to austenite and ferrite.

Globular ferrite is in the form of globules, randomly distributed in a matrix of austenite. The
structure has no directionality and is not related to the overall solidification substructure. It was
commonly observed in weld passes 4, 5, and 6; the FN was ~10. Globular ferrite is formed
because of thermal instability of any of the other forms of ferrite, particularly the acicular form.

Similar results were observed by Abe and Watanabe [109] in Type 316L SS welds that were
prepared using two different filler metals, with 11.27 and 13.72 wt.% Ni. One weld solidified in
primary ferrite mode and the other in primary austenite mode. The ferrite content of the two welds
was 12.7% and 2.5%, respectively. The low-Ni, high ferrite weld showed predominantly a
vermicular morphology with small amounts of lathy and acicular ferrite, while the high-Ni, low
ferrite weld showed islands of 5-ferrite at the dendrite or cell boundaries. Note that these ferrite
morphologies may appear continuous or discontinuous depending on the section of the weld
viewed. Therefore, caution must be exercised in such characterization of the ferrite.

Note that for austenitic SS welds (or CASS materials) to be resistant to SCC in BWR environment,
a minimum ferrite of 7.5% and a maximum C content of 0.035 wt.% is recommended in NRC
NUREG-1801, The Generic Aging Lessons Learned (GALL) Report [117]. The GALL report
identifies aging management programs (AMPs) that are determined to be acceptable to manage
aging effects of systems, structures, and components in the scope of license renewal. These
acceptable AMPs are described in Chapter Xl of the report. The AMP for managing SCC of
wrought and cast SSs and welds includes recommendations for selection of materials that are
resistant to sensitization. These resistant materials are for new and replacement components,
and include low-carbon grades of austenitic SS and weld metal with a maximum carbon of 0.035
wt.% and a minimum ferrite of 7.5% in weld metal and CASS materials.

2.2 Estimation of Ferrite Content

The ferrite content in austenitic SS welds is a function of the chemical composition and the
welding process history. Typically, the ferrite content of duplex structures such as austenitic SS
welds is determined from the (a) chemical composition, (b) magnetic response, or

(c) metallographic examination of the material. Among the magnetic methods, the Magne-Gage
and Ferritescope are the most commonly used instruments for measuring the ferrite content. The
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Magne-Gage is a continuous-reading type instrument that utilizes a spring to measure the
attraction between a magnet and the material of unknown ferrite content, and the response is
compared with that of a calibrated sample. The Ferritescope operates on the magneto-induction
principle measures the relative magnetic permeability of the specimen.

However, because the probes of these instruments are small, the surface roughness or curvature
of the sample is an important parameter that can vary the magnetic linkage with the material being
measured. In addition, phases other than ferrite and austenite may form in the material during
service, which may alter the magnetic response of the material such that the indicated ferrite
content is quite different from that of the same chemical composition that has undergone a
different heat treatment.

Until 1973, ferrite contents in duplex structures such as CASS materials and austenitic SS welds
were determined by metallographic examination of the structure. A sample of the material was
polished and etched to reveal the ferrite and austenite phases and a grid was superimposed over
the image of an optical microscope to determine by point counting the percentage of ferrite in the
sample. The main drawback with this method is that the point count estimates of ferrite may vary
with the etching technique used to reveal the ferrite phase, and with the number of grid points
used in the measurements. Furthermore, it is tedious and obtaining metallographic samples from
various regions of the weld may not be practical.

Although a quantitative metallographic method provides the most accurate estimate of ferrite
content, determination of ferrite percent from chemical composition of the material offers the most
useful and most common method for ferrite control during solidification of the metal from a melt
during welding. However, the accuracy of these estimations depends on the accuracy of the
chemical analysis procedure, and the degree of variability of composition within the weld. The
most commonly used methods are described below.

2.2.1 Hull's Equivalent Factor

When a certified material test record (CMTR) is available, the ferrite content is calculated from
chemical composition in terms of Hull's equivalent factors [101] for nickel and chromium given by

Creq = Cr+ 1.21(Mo) + 0.48(Si) - 4.99 (8)
and
Nigg = (Ni) + 0.11(Mn) - 0.0086(Mn)2 + 18.4(N) + 24.5(C) + 2.77, (9)

where the concentrations of the various alloying and interstitial elements is in wt.%. The
concentration of N is often not available in a CMTR; if not known, it is assumed to be 0.04 wt.%.
The ferrite content 8. is given by

8¢ = 100.3(Creq/ Nigq)? - 170.72(Creq/ Nigq) + 74.22. (10)

The measured ferrite content and values calculated from Hull's equivalent factor for the various
CASS heats used in studies at ANL [22], the Georg Fischer Co. (GF) [2], Electricité de France
(EdF) [15], National Power (NP) [16], Framatome (FRA) [6], and the Electric Power Research
Institute (EPRI) [7] are shown in Figure 2-4. For most heats, the difference between the estimated
and measured values is +6% ferrite. The results also indicate that the calculated ferrite content
was generally lower than the measured values for CF-8M heats that contained 210% Ni.
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2.2.2 ASTM A800/800M Methodology

In the ASTM A800/800M methodology [110,111] the ferrite content of the weld is estimated from
the central line of the of the diagram at the composition ratio of chromium equivalent, Cregg, to
nickel equivalent, Nigq, determined from the following formula:

(Creg/Nigq) =
(Cr+ 1.5Si + 1.4Mo + Nb - 4.99)/(Ni +30C + 0.5Mn + 26(N - 0.02) + 2.77) (11)
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Figure 2-4 Plots of measured ferrite content and values calculated from Hull's equivalent
factor for various CASS materials.

The values of the composition ratio (CR) for a given ferrite content (F), or vice versa, is then
determined mathematically from the equation of the central line:

CR=0.9 + 3.38883 x 10-2F - 5.58175 x 104F2 + 4.22861 x 10-5F3 (12)

The measured ferrite content and values calculated from ASTM A800/A800M methodology for the
same heats of CASS materials plotted in Figure 2-4 are shown in Figure 2-5. The results indicate
that for ferrite contents greater than 20%, the calculated ferrite content for several heats is lower
than the measured values. Most of these heats with significantly lower calculated values
contained 22.0-23.0 wt.% Cr and about 8.0-8.5 wt.% Ni. Compared to the ferrite content
calculated from Hull' equivalent factor, the ASTM A800/A800M methodology under predicts the
ferrite content for CASS materials with greater than 15% ferrite. The difference between the two
methods can be seen clearly in Figure 2-6.
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The measured ferrite content and values calculated from Hull’s equivalent factor or the ASTM
A800/A800M methodology for several austenitic SS welds used in studies at ANL [27] and by
Slama et al., [6] Mills [12], Lucas et al. [78,79] are plotted in Figure 2-7a and b, respectively.
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Figure 2-7 Plots of measured ferrite content and (a) values calculated from Hull's
equivalent factor or (b) values calculated from ASTM A800/A800M
methodology for various austenitic SS welds.
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These limited data indicate that the measured ferrite contents are generally higher. For example,
for welds with measured ferrite between 5 and 11%, the values calculated from Hull’'s equivalent
factor range between 3 and 7%; the maximum difference is about 4% ferrite. Furthermore, as
seen before for CASS materials, the difference between the measured values and those
calculated from the ASTM A800 methodology is slightly larger.
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3 THERMAL EMBRITTLEMENT OF AUSTENITIC SS WELDS

It is known that binary iron-chromium alloys and ferritic SSs are susceptible to severe
embrittlement when exposed to temperatures in the range of 270 to 475°C (518 to 887°F)
[118-121]. The potential for significant embrittlement of CASS materials, which consists of both
austenite and ferrite phases, has been confirmed by studies at ANL [22—27] and elsewhere
[2-6,14—16] on materials that were aged at temperatures of 290—450°C (554—842°F) for times up
to 70,000 h (~8 yr). The results indicate that thermal aging of CASS materials (ASTM
Specification A-351 for Grades2 CF-3, CF-3A, CF-8, CF-8A, and CF-8M) at 270-350°C (518—
662°F) increases their hardness and tensile strength; decreases ductility, impact strength, and
fracture toughness; and shifts the Charpy transition curve to higher temperatures. The effect of
thermal aging is observed to decrease at temperatures above 400°C (752°F). For example, the
extent of thermal embrittlement in CASS materials aged at 450°C (842°F) is less than that in
materials aged for similar times at 400°C (752°F) [46].

As mentioned earlier, in austenitic SS welds, the ferrite phase is desired for controlling the weld
solidification behavior. Because the ferrite phase is brittle at low temperatures, austenitic SS
welds also exhibit a ductile-brittle transition temperature (DBTT) phenomenon. However, at
ambient and elevated temperatures, the ferrite phase shows a ductile deformation behavior. The
fracture toughness of Type 304/308 and 316/16-8-2 welds is dependent on the weld process, but
not composition [1]. For a given weld process, both these weld metals exhibit similar fracture
toughness [12]. In general, GTA welds exhibit higher toughness than the SMA and SA welds.
The Ji; values for the latter are about one-third those for the GTA welds.

Austenitic SS welds generally contain 5-15% ferrite, but their mechanical properties differ from
those of CASS materials. Studies conducted at ANL [27] indicated that, for a given ferrite content,
the tensile strength of austenitic SS welds is higher and fracture toughness is lower than that of
CASS materials. Experimental data [27] indicate that CASS materials with very poor fracture
toughness are relatively insensitive to thermal aging. In these steels, failure is controlled by void
formation near inclusions or other flaws in the material (i.e., by processes that are not sensitive to
thermal aging). These results suggest that austenitic SS welds with poor fracture toughness

(e.g., SA and SMA welds) should be relatively less sensitive to thermal aging than GTA welds; the
GTA welds however, exhibit superior fracture properties.

3.1 Mechanism of Thermal Embrittlement

The overall fracture toughness of austenitic SS welds is controlled by the density and morphology
of the second phase particles and to some extent on the ferrite content of the weld. The fracture
toughness of welds is generally lower than that of wrought or cast SSs because of the higher
density of inclusions. It depends on the weld process and not the composition [1]. For a given
weld process, both 304/308 and 316/16-8-2 welds exhibit similar fracture toughness [12]. Among
austenitic SS welds, the SA and SMA welds have poor fracture toughness relative to the GTA
welds; they have a high density of manganese- and silicon-rich silicates and silicides. High silicon
contents are generic to the SA and SMA welds because of silicon pickup from the flux. Typically

? The CF-3A and CF-8A grades represent high tensile strength material. The chemical composition of these grades is
further restricted within the composition limits of CF-3 and CF-8, to obtain a ferrite/austenite ratio that results in higher
ultimate and yield strengths. In this report, they are considered equivalent to CF-3 and CF-8 grades.
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SA welds have 0.6-1.0% Si, SMA welds have 0.5-0.8% Si, and GTA welds have less than 0.5%
Si[1].

Furthermore, in materials with a duplex structure (e.g., austenitic SS welds), the ferrite phase
exhibits a ductile-to-brittle-transition temperature. Its plastic straining capacity is substantially
decreased at low temperatures. However, the ferrite phase is ductile at room temperature and
higher temperatures. Therefore, in the unaged condition, austenitic SS welds exhibit a ductile
dimpled fracture. The transition temperatures of unaged materials are relatively low. The
differences in the transition temperature for the various unaged heats and grades of CASS
materials are due to the amount of ferrite and the differences in the mechanism of brittle fracture.
The high-carbon CF-8 or CF-8M steels have a higher transition temperature than CF-3 steels
because of the presence of phase boundary carbides. The carbides weaken the boundaries and
lead to premature phase boundary separation with little or no strain hardening. For austenitic SS
welds, because the ferrite volume fraction is typically less than 15%, the ferrite content has little
effect on the overall fracture toughness of welds. However, the existing data indicate that the
fracture toughness of welds is strongly influenced by specimen orientation.

The thermal aging of austenitic SS welds at 300-450°C (572—842°F) results in thermal
embrittlement of the ferrite and, depending on the amount, morphology, and distribution of ferrite
and second-phase particles, the ductile-to-brittle-transition temperature shifts to higher
temperatures [1,22—-26]. Thermal aging of austenitic SS welds leads to spinodal decomposition of
the ferrite to form the o' phase, and formation of Ni- and Ti-rich silicides (the G phase, TigNigSi7)
in the ferrite, precipitation of My3Cg carbides on the phase boundaries, and limited MgC carbides
in the matrix [1]. The degradation of fracture properties occurs due to a combination of the
strengthening of the ferrite matrix by spinodal decomposition and the weakening of grain/phase
boundaries because of the presence of second phase particles. Fracture occurs along the delta
ferrite regions where the second phase particles initiate voids/cracks either, by decohesion of the
ferrite/austenite interphase or particle cracking [12]. The dominant failure-process is transgranular
dimple fracture, and intergranular cracking is limited to a few isolated regions [1].

3.1.1 Kinetics of Thermal Embrittlement

The degree of thermal embrittlement of materials with duplex structures (e.g., CASS materials and
austenitic SS welds) is characterized in terms of the Charpy-impact energy of notched toughness
specimens. The “best estimates” of the degree of thermal embrittlement at reactor operating
temperatures are determined from Arrhenius extrapolation of laboratory data obtained at higher
temperatures (e.g., 400°C). The aging time to reach a given degree of embrittiement at different
temperatures is determined from the following equation:

t=10° exp[g{% — é}]
, (13)

where Q is the activation energy, R is the gas constant, T is the temperature, and P is an aging
parameter that describes the combined effect of time and temperature on aging. It represents the
degree of aging reached after 10P h at 400°C (752°F). Thus, P = 1 for aging 10 h at 400°C. The
aging parameter for any given aging condition is obtained by rewriting Eq. 13 so that,

(¥ 1o00Q( 1 1)

P —log(t) - -
9 19.143LT5+273 673) (14)
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Information regarding the activation energy for the process of thermal embrittlement of austenitic
SS welds is rather limited. However, the degree of thermal embrittlement of CF-3, CF-8, and
CF-8M CASS materials has been investigated extensively at ANL [22-27]. The kinetics of
thermal embrittlement of CASS materials are controlled by three processes: spinodal
decomposition, precipitation and growth of phase boundary carbides, and precipitation of G phase
in ferrite. Small changes in the composition cause the kinetics to vary significantly. The activation
energies range from 65 to 230 kJ/mole (15 to 55 kcal/mole). The low values are most likely due to
the formation of carbides/nitrides at the phase boundaries or G-phase and/or y, precipitation in
ferrite. The presence of Ni-Si-Mo clusters in the ferrite matrix of an unaged material is considered
a signature of steels that show low activation energy (i.e., fast embrittlement). Such materials
contain G-phase particles after aging.

Studies on low-temperature thermal aging of Types 304L and 316L SS welds containing about 10%
ferrite yielded an activation energy of 113 kJ/mol for the thermal embrittliement of Type 304L weld in
the range of 335—400°C [122]. For Type 316L weld, the activation energy was 148 kJ/mol in the aging
temperature range of 365—400°C and 90 kJ/mol in the aging temperature range of 335-365°C, an
average of 120 kJ/mol over the entire temperature range of 335-400°C. The welds were
prepared by multi pass GTA welding process using Type 308L filler wire for the Type 304 SS plate
and Type 316L filler wire for the Type 316L SS plate [122]. The material was aged up to 20,000 h
at 335—400°C. Thermal aging of these welds at 400°C resulted in both spinodal decomposition
and G-phase precipitation in the ferrite. However, aging up to 20,000 h at 335 and 365°C showed
only spinodal decomposition [122]. The embrittlement rate determined by Charpy-impact and
microhardness tests was considerably higher for the Type 316L weld compared to the Type 304L
weld. The difference was attributed to the presence of Mo in the Type 316 SS, which increases
the precipitation of G phase. These results for SS welds are consistent with the mechanism and
kinetics of embrittlement observed in CASS materials.

3.2 Extent of Thermal Embrittlement

3.2.1 Charpy-Impact Energy

Nearly all of the initial studies on thermal embrittlement of austenitic SS welds and CASS
materials (i.e., materials with duplex structures) consisted of Charpy V-notch impact test data,
mostly at room temperature. A few studies included Charpy ductile-to-brittle-transition
temperature data. In these studies, the transition temperature curves were represented by a
hyperbolic tangent function of the form

CV=K°+BQ,{1—tanh{TBC°"H

(15)

where Cy is the normalized Charpy V-notch impact energy, K, is the lower—shelf energy, T is the
test temperature in °C, By, is half the distance between the upper and lower shelf energy, Cgy is
the mid-shelf Charpy transition temperature in °C, and D¢y, is the half width of the transition region.
The transition curves for a few austenitic SS welds are shown in Figure 3-1; the data for a SA-508
Class 3 low-alloy steel forging are also included for comparison [27,65]. The Charpy-impact data
obtained at ANL for the thermally aged Type 304/308 pipe weld represent the saturation condition
(i.e., the condition when the lowest impact strength is achieved by the material after long-term
service at reactor temperatures). The results indicate that thermal aging increased the mid-shelf
Charpy transition temperature by 47°C (i.e., from —105°C to —58°C), and decreased upper shelf
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Figure 3-1 The Charpy transition temperature curves for (a) few austenitic SS
welds and (b) SA 508 Class 3 low-alloy steel weld (Refs. 27,65).

energy by 50 J/cm?2 (30 ft-Ib.) [27]. Similar behavior was observed for all welds; thermal aging
resulted in moderate decreases in impact energy at both room temperature and 290°C [27]. The
Charpy-impact upper-shelf energy decreased by 50-80 J/cm?2 (30—47 ft:Ib) for the various welds.

Similar behavior was also observed in the recent study on thermal embrittlement of Type 308L
and Type 316L GTA welds [122]. Aging for up to 20,000 h at 335 and 400°C increased DBTT
transition temperature from —196°C to —115°C and —83°C, respectively, for the Type 304L weld,
and from —196°C to —48°C and —54°C, respectively, for the Type 316L weld. The increase in
DBTT was faster for the welds aged at 400°C. The upper shelf Charpy-impact energy decreased
from about 200 J to 120 J for the Type 304L weld and from about 175 J to 115 J for the

Type 316L weld.

Another study on thermal embrittiement of three multi pass SMA welds containing 4, 8, and 12%
ferrite, showed increase in Charpy-impact transition temperature and decrease in upper shelf
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energy after thermal aging up to 50,000 h at 343°C [61]. The results are presented in Figure 3-2a
and b. The effects increased as the ferrite content increased, and continues to increase with
increasing aging time. The 12% ferrite weld exhibits a transition temperature increase of about
60°C, and a drop in upper-shelf energy of 34% after aging for 50,000 h. Microstructural
examination of the aged welds indicated that the ferrite contains both heterogeneously and
homogeneously nucleated G-phase and phase separation by spinodal decomposition into Fe-rich
and Cr-rich regions. The authors concluded that the primary cause of the hardening and thus the
property degradation of the welds were caused by spinodal decomposition of the ferrite rather
than the G-phase precipitation.
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Figure 3-2 The change in (a) Charpy upper-shelf energy and (b) Charpy energy transition
temperature for thermally aged Type 308 SMA weld (Ref. 61).
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The Charpy-impact data for SMA, SA, and GTA welds prepared from Types 308 or 316 filler metal
and in unaged and aged conditions, are shown in Figure 3-3 [1,12,13,27,59—74]. The results for
the unaged welds show large variation. The Charpy-impact energy of some welds can be as low
as 50 J (37 ft-lb). In general, the GTA welds exhibit higher impact strength than the SMA or SA
welds. The impact energies of thermally aged welds [27,59—74] fall within the large scatter band
of the unaged welds. The results indicate that the effect of thermal aging on Charpy-impact
strength depends on the initial impact strength of the weld. Welds with relatively high impact
strength (e.g., the GTA welds) show a significant decrease in impact energy whereas those with
poor impact strength show minimal change. However, the data shown in Figure 3-3 indicate that
even in the fully embrittled condition, austenitic SS welds have 250 J (37 ft-Ib) impact energy.
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Figure 3-3 Plots of Charpy-impact energy of unaged (Refs. 1,12,13,27,59-74) and aged
(Refs. 59-62) austenitic stainless steel welds as a function of temperature.

An example of the change in Charpy-impact energy, C,, with test temperature as a function of
ferrite content of welds, is shown in Figure 3-4 [69]. For an unaged Type 308 manual metal arc
(MMA) weld, the difference between the value of Cy, at room temperature and at the upper shelf is
about 30 J/cm?2. The actual Cy values with increasing ferrite content first decreased when the
ferrite increased from 5.2% to 14.0%, but increased back to the same level for the weld with
19.0% ferrite. Similar data for a Type 316 SA weld with 7.0-10.5% ferrite is also included in the
figure for comparison. The Cy, values for the SA weld are comparable to those for the MMA weld
with 10.4% ferrite.

The potential effects of thermal aging on the Charpy-impact energy of a CF-3 pipe MMA orbital
weld as a function of test temperature are shown in Figure 3-5 [75]. The results indicate that
thermal aging for 3000 h at 300°C has no effect at reactor temperatures and the room
temperature Cy is slightly increased. Aging for 1500 h at 400°C or 5000 h at 350°C deceased Cy
by about 10 J/cm? at 300°C and only marginally at room temperature. However, the aging times
at these temperatures are inadequate for estimating end-of-design-life changes. For example,
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Figure 3-5 The change in Charpy-impact energy Cy with temperature for an unaged or

aged CF-3 pipe MMA orbital weld (Ref. 75).

1500 h at 400°C is equivalent to about 4 years of reactor operation. Furthermore, the difference
between the room temperature and upper-shelf Charpy-impact energy is small. However, the
ferrite content of the weld is only 4.0-5.0%, and thermal aging effects are expected to be

marginal.

The effect of thermal aging on the room temperature C,, for Type 308 MMA weld with 4, 8, and
12% ferrite and Type 316L GTA weld with 10 and 14% ferrite, are shown in Figure 3-6 and
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temperature of Type 308 MMA welds with different ferrite content (Ref. 61).

Figure 3-7, respectively [61,78,79]. The results for thermal aging of Type 308 MMA weld at 343°C
show that the room-temperature Charpy-impact energy decreases with increasing aging time, and
the reduction in Charpy-impact energy increases with an increase in ferrite content of the weld
[61]. At 343°C, the decrease in room temperature Cy, starts after aging for about 500-1000 h.

The effect of thermal aging at 300 and 400°C, on the Charpy-impact energy, Cy, at 25 and 288°C,
of Type 316L GTA weld with 10 or 14% ferrite as a function of aging time, is shown in Figure 3-7a
and b [78,79]. Similar to the aging behavior of the Type 308 MMA weld, thermal aging at 300 or
400°C decreases the Charpy-impact energy of Type 316L GTA weld both at room temperature
and at reactor temperature. The Charpy-impact energy of the GTA weld with 14% ferrite is
greater then that of the weld with 10% ferrite. After long-term aging of the GTA welds at 400°C
(i.e., more than about 3000 h) the impact energies of both welds at reactor temperature are the
same as those at room temperature. The thermal aging behavior at 400°C of a CF-8M CASS
material with 15.5% ferrite, is shown in Figure 3-7b for comparison. In general, the Cy, values of
the CASS material are lower. However, unlike the behavior of GTA welds, Cy continues to
decrease even after 3000 h aging at 400°C.

Metallographic examination [27] of the fracture surface of unaged and aged weld metal Charpy-
impact test specimens tested at room temperature indicate that the overall fracture behavior of the
welds is controlled by the distribution and morphology of second-phase particles. All welds exhibit
a dimple fracture. Photomicrographs of the fracture surface of Charpy specimens of a Type 308L
SMA weld in the unaged and aged conditions and tested at room temperature are shown in
Figure 3-8. Nearly every dimple is initiated by decohesion of an inclusion (most likely manganese
silicide). Failure occurs by nucleation and growth of microvoids and rupture of the remaining
ligaments. The hard inclusions in the weld resist deformation, and the buildup of high local
stresses leads to decohesion of the particle/matrix interface. Inferior fracture resistance of the
welds may be attributed to the higher density and larger size of inclusions. The ferrite phase
seems to have little effect on the fracture properties of the welds. Cleavage of ferrite is typically
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not observed in the welds. However, cleavage of the ferrite phase may occur at very low
temperatures, particularly for welds containing more than 10% ferrite.
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Figure 3-7 The change in Charpy-impact energy Cy with temperature for austenitic
stainless steel welds as a function of ferrite content (Ref. 69).

3.2.2 Tensile Properties

The tensile yield and ultimate stresses for SMA, SA, and GTA welds prepared by using Types 308
or 316 filler metal, in the unaged and aged conditions, are shown as a function of test temperature
in Figure 3-9 [1,12,13,27,59—74]. The tensile data at ANL were estimated from the instrumented
Charpy-impact test results [27]. For a Charpy specimen, the yield stress oy is estimated from the

expression

oy = Cq P, B/W b2, (16)
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Figure 3-8 Photomicrographs of the fracture surface of (a) unaged and (b) aged Type
308L SMA weld Charpy specimens tested at room temperature (Ref. 27).

and the ultimate stress o, is estimated from the expression
oy = Cy Py, BIW b2, (17)

where Py and Py, are the yield and maximum load, respectively; W is the specimen width; B is the
specimen thickness; b is the uncracked ligament; and C4 and C, are constants [123]. The yield
and maximum loads were obtained from load-time traces of the instrumented Charpy-impact
tests. The constants C4 and C, were determined by comparing the Charpy-impact test results
with existing tensile-property data for Type 308 and 316 weld metals. The best value of the
constants was 2.2 for both C4 and C,. The estimated yield and ultimate stress for the various
welds are compared with existing data for Type 308 or 316 welds in Figure 3-9. Average values
of yield and ultimate stress for PWWO, PWCE, PWDR, and PWMS welds are listed in Table 3-1
[27]. Thermal aging has little or no effect on the tensile properties of Type 308 welds. These
results are consistent with the data from several other studies [59-62].

Table 3-1 Tensile yield and ultimate stress of various stainless steel welds, estimated
from Charpy-impact data.

Room Temp. 290°C

Material Aging Temp. Aging Time Yield Stress Ultimate Stress  Yield Stress Ultimate Stress
ID (°C) (h) (MPa) (MPa) (MPa) (MPa)
PWCE - - 425 643 315 430
400 10,000 442 635 321 490
PWWO - - 472 633 349 446
400 7,700 478 620 346 472
PWDR - - 437 608 289 421
400 10,000 443 519 300 409
PWMS — — 471 650 327 456
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Figure 3-9 Tensile yield and ultimate stress of austenitic SS welds (Refs. 1,
12,13,27,59-74). Solid lines are the best fit to the data (Ref. 27).

The data in Figure 3-9 show significant scatter in the values of both yield and ultimate stresses. In
general, both yield stress and ultimate tensile stress are lower at reactor temperatures than at
room temperature. However, for some weak welds, the difference is insignificant, particularly for
the yield stress. The limited data for aged welds show little or no effect of thermal aging (see open
and closed inverted triangles in Figure 3-9). However, as discussed earlier, this is because of the
relatively low ferrite content and thin vermicular ferrite morphology of these welds.

A few examples of the change in yield and ultimate tensile stress with temperature, of Type 308
MMA welds with different ferrite contents and a Type 316L GTA weld with 10% ferrite, are shown
in Figure 3-10. The solid lines in the figure are the best-fit curve plotted in Figure 3-9; all of these
welds are above the best-fit curve. The results indicate that both the yield and ultimate tensile
stresses increase with the ferrite content of the weld. The yield stress of the Type 308 MMA and
Type 316L GTA welds containing 10% ferrite are essentially the same, but the ultimate tensile
stress of the Type 316L GTA weld is lower.

The difference is most likely due to the carbon content of the welds. Examples of the effect of
thermal aging at 343°C on the tensile properties of Type 19-9L MMA weld with 5.0-9.0% ferrite,
and a Type 308 SMA weld with different ferrite contents, are shown in Figure 3-11aand b. The
tensile strength of austenitic SS welds increases with thermal aging at temperatures of 250—
400°C. However, unlike the significant effect on Charpy impact energy, the change in tensile
strength is relatively small. Thermal aging seems to have little or no effect on the yield stress and
the ultimate tensile stress is slightly increased.

3.2.3 Fracture Toughness J-R Curves

The NRC sponsored fracture toughness J-R curve data compiled in the Pipe Fracture (PIFRAC)
Database and from a few other sources [12,59-65], are shown in Figure 3-12 [27]. The database
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Figure 3-10 Tensile yield and ultimate stress of austenitic SS welds with different ferrite
contents (Refs. 69). Solid lines from Figure 3-9.

PIFRAC? [66—77] was originally compiled at Materials Engineering Associates, Inc. [80] and later
updated by Battelle Memorial Institute [81]. The results indicate that fracture properties of
austenitic SS welds are relatively insensitive to filler metal [12]. However, the welding process
significantly affects fracture toughness [124]. In general, GTA welds exhibit higher fracture
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Figure 3-11  The effect of thermal aging on the room-temperature tensile
properties of Type 19-9L and Type 308 SMA welds (Ref. 61,62).

3 G. Wilkowski and N. Ghadiali, “Short Crack in Piping and Piping Welds,” in Technical Data CD-ROM, Battelle
Columbus Division, Columbus, OH (May 1995).
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resistance than SA or SMA welds. The statistical differences in SA and SMA weld fracture
toughness J-R curves have also been evaluated [82] and results indicate no difference between
SA and SMA welds J-R curves. The results also indicate that, in general, the fracture toughness
of austenitic SS welds is higher at room temperature than at reactor temperature. In the earlier
study on thermal embrittlement of austenitic SS welds at ANL [27], the lower-bound fracture
toughness J-R curve at 288°C for SS welds was represented by the expression proposed by
Wilkowski in NUREG/CR-4878 and given by

J(kJ/m?2) = 73.4 + 83.5 Aa(mm)0-643, (18)

where 73.4 kJ/m2 is the fracture toughness Ji.. The lower bound J-R curve given by Eq. 18 can
also be represented in terms of the standard power law J-R curve expressed as

J(kJ/m2) = 138 Aa(mm)0-45, (19)

The J-R curve data at 100—427°C for SA welds, MMA and SMA welds, and GTA, metal inert arc
(MIG), and tungsten inert gas (TIG) welds from several studies [12,13,39,62—68,75-77,78,79,
83-85] and some of the significant results from earlier ANL study [27] are shown in Figure 3-13.
The results indicate that fracture toughness of Type 316 welds is lower than that of Type 308
welds and that fracture toughness of low-C 316L and 308L welds, are lower than those of Type
316 and 308 welds, respectively. In addition, fracture toughness at room temperature is typically
higher than at reactor temperatures. The results also indicate that the fracture toughness of
GTA/MIG/TIG welds is generally superior to that of SA or SMA welds. The J value at 2.5-mm
crack extension (J, 5) is in the range of 600—-1200 kJ/m2 for GTA/MIG/TIG welds, and 300—

700 kd/m?2 for SMA welds. The lower-bound J-R curves in Egs. 18 and 19 essentially represent
the SA and SMA weld data; it is quite conservative for GTA or TIG weld fracture toughness data.
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Based on the fracture toughness data evaluated in this study, the lower-bound power-law J-R
curve for unaged GTA/MIG/TIG welds may be represented by
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J(kJ/m2) = 330 Aa(mm)0-45,

(20)

However, additional data are needed to validate this lower bound curve for GTA/MIG/TIG welds.
Note that the fracture toughness J-R data obtained by Lucas et al. [78,79] were not considered in
establishing the above lower bound J-R curve because they are considered an outlier. For the
two GTA welds (with FNs of 10 and 14) investigated by Lucas et al., the fracture toughness J-R
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curves at 288°C were comparable to the lower-bound J-R curve for SA/SMA welds (i.e., Eq. 19).
Furthermore, the reported J;; values (in the range of 130—155 kJ/m?2) were determined using a

slope of two times the flow stress, which is inappropriate for high toughness, ductile, and strain
hardening materials. The analytical procedures described in the ASTM Specifications for J.

determination are not applicable for such materials; they significantly over predict crack extension
and, therefore, yield nonconservative values of Ji. [32,125]. For austenitic SSs, a value of four

times the flow stress better defines the blunting line. The recalculated values of J;; using a
steeper slope for the blunting line are in the range of 100-120 kJ/m2. These results are unusual
for GTA welds.
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The limited fracture toughness J-R data [12,13,27,62,85] at 288-427°C for thermally aged SMA/
MMA and GTA/MIG/TIG welds are shown in Figure 3-14. In thermal aging studies, aging for
about 7,000-10,000 h at 400°C is sufficient to achieve saturation toughness (i.e., the minimum
value that could be achieved after long-term aging). The results indicate that the welds
investigated at ANL [27] or by Mills [12,13] showed little or no effect of aging for 7,700 h or 10,000
h at 400°C. However, the SMA or GTA/TIG welds investigated by Mitsubishi Heavy Industries,
Ltd. (MHI) show significant effects of aging for 10,000 h or higher at 400°C or for 40,000 h or
higher at 300 and 350°C.# The difference, most likely, is because of differences in the amount
and morphology of the ferrite in the welds. The welds studied at ANL or by Mills had relatively low
ferrite content and discontinuous vermicular ferrite morphology, whereas the welds studied at MHI
had higher ferrite and probably had continuous lacy ferrite morphology.

In the earlier study at ANL [27], the lower-bound fracture toughness J-R curve at 288°C for
thermally aged austenitic SS welds was represented by the expression

J(kJ/m2) = 40.0 + 83.5 Aa(mm)0-643, (21)

where 40 kJ/m? is the fracture toughness Ji; of thermally aged SS welds. This lower bound J-R
curve can be represented in terms of the power law J-R curve, expressed as

4K. Hojo, Japanese PWR Owner’s Group’s CASS Database prepared by Mitsubishi Heavy Industries, Ltd. presented
at the ASME Code Meetings, Working Group Flaw Tolerance Evaluation, Washington DC, August 2014. However,
the quality of the J-R curve plots was not good for Aa less then 1.0 mm and J less then 400 kJ/m2.
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J(kJ/m2) = 117 Aa(mm)0-45, (22)
Like the lower-bound J-R curve for unaged welds, Eq. 22 represents the lower-bound J-R curve
for aged SA/SMA welds. Based on the fracture toughness data evaluated in this study, the lower-
bound power-law J-R curve for aged GTA/MIG/TIG welds may be represented by

J(kJ/m2) = 270 Aa(mm)0:45. (23)
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These lower bound curves for aged materials are shown in Figure 3-14. These proposed lower
bound J-R curves for unaged SS welds are compared with the fracture toughness data used in
the analysis performed for the technical basis document for American Society of Mechanical
Engineers (ASME) Section XI, Article IWB-3640 (1989 edition), in Figure 3-15. The J-R curve
reconstructed from the data for the ASME IWB-3640 SA weld is also shown in the figure. The
lower bound curve for unaged welds (i.e., Eq. 19) bounds most of the experimental data obtained
at 200 and 288°C (392 and 550°F) for Linde 80 weld metal [83].
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Figure 3-15  Fracture toughness J-R curves for Linde 80 welds at 200 and 288°C and the
lower-bound J-R curve for unaged SS welds.

The J. values for unaged and aged austenitic SS SA, SMA/MMA, and GTA/MIG/TIG welds are
plotted as a function of test temperature in Figure 3-16. The results indicate that at reactor
temperatures, the fracture toughness J. of unaged and aged austenitic SS, SA and SMA welds
can be as low as 40 kJ/m2. At room temperature, the minimum J;; values of unaged and aged
SA/SMA welds are slightly higher, 70 kJ/m?2.

However, the existing data are quite limited and the observed difference in the minimum fracture
toughness of SS welds with temperature may be unique to the data set reviewed in this study. In
the unaged condition, the 308/316 SA welds and 316 SMA welds have the lowest J; values. The
minimum J,¢ value of 308/316 GTA, MIG, or TIG welds is significantly higher than for SA or SMA
welds. The available data in Figure 3-16 indicate that the fracture toughness Ji; values of unaged
and aged 308/316 GTA welds are above 170 kJ.m2; however, the data for aged GTA welds is
rather limited. As mentioned earlier, the data obtained by Lucas et al. on 316 GTA weld was
excluded from this analysis; these data are considered outliers.

The fracture toughness J-R curves for unaged and aged austenitic SS welds (i.e., Eq. 19 for
unaged welds and Eq. 22 for aged welds) are compared in Figure 3-17 with the data in the
technical basis document for ASME Section XI, Article IWB-3640 (1989 edition) [62,67,74]. The
results indicate that the proposed curves are consistent with the available fracture toughness data
for unaged and aged austenitic SS, SMA and SA welds. Slightly higher lower-bound J-R curves
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(i.e., Egs. 20 and 23) are proposed for unaged and aged GTA welds. However, the existing data
for aged GTA welds are limited, and additional fracture data should be obtained to check the

adequacy of the lower bound J-R

curves for the GTA weld.
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3.2.3.1 Potential Effects of Reactor Coolant Environment

A recent study on low-temperature crack propagation for thermally aged CF-8 material in PWR
environments showed that at reactor operating temperatures, the fracture toughness J-R curve is
generally lower in PWR water than it is in air, and in PWR shutdown water chemistry (SWC) at
54°C it is significantly lower than in air [126]. The CF-8 material was aged for about 15.8 y at
350°C. The large reduction in fracture toughness of the aged material was attributed to potential
synergy between hydrogen embrittlement and thermal embrittlement associated with
decomposition of the ferrite at reactor temperatures. The significant environmental effects in
simulated PWR SWC were associated with hydrogen-induced intergranular cracking.

Similar effect of reactor coolant environment on fracture toughness J-R data has also been
observed for Type 316L GTA welds containing 10% or 14% ferrite [78,79]. The fracture
toughness J-R curves for these welds at 288°C in air and BWR environment with 300 ppb
dissolved oxygen (DO) are shown in Figure 3-18. As mentioned earlier, these results indicate that
the fracture toughness of the as-welded material is much lower than that of a typical GTA weld. It
is comparable to that of a thermally aged SA/SMA weld. However, the results show that the in-
situ fracture toughness of these welds in the reactor coolant environment is up to 40% lower than
in air. The degradation was attributed to absorption of hydrogen in the material during exposure
to the high-temperature aqueous environment [78,79].
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Figure 3-18 Fracture toughness J-R curve data for as-welded Type 316L GTA weld at
288°C in air and BWR environment with 300 ppb DO (Ref. 78,79).

In contrast, ANL studies on the effects of reactor coolant environment on fracture toughness of
neutron-irradiated, wrought austenitic SSs, including HAZ material [47], indicated insignificant
effect of environment. However, it was not clear why environmental effects were insignificant. It
is possible that since the ANL study was conducted on irradiated SSs with very low fracture
toughness (i.e., J;c <200 kJ/m?2), environmental effects are insignificant for such material. It is
more likely that the difference was due to the differences in the material; the ANL study was
conducted on single-phase wrought SS whereas the other two studies were on materials with
duplex structure of ferrite and austenite phases. However, because the degradation in fracture

3-20



toughness in BWR environment was attributed to absorption of hydrogen in the material, the
results in Figure 3-18 do not necessarily over estimate environmental effects in BWR hydrogen
water chemistry (HWC) environments. Additional fracture toughness data in LWR environments
are needed to accurately establish the environmental effects on fracture toughness of SSs welds.

A low-fracture-toughness behavior has been observed for single-phase alloys such as Alloys 600
and 690 in hydrogenated water at 54°C and at low displacement rates (i.e., under quasi-static
conditions) [127,128]. Nakajima et al. have also observed potential effects of a simulated BWR
environment on the fracture toughness of sensitized Type 304 SS at 98 and 288°C and slow
strain rates [129]. They observed no effect of displacement rate for the as-received Type 304 SS.
However, the fracture toughness of the sensitized material decreased with a decreasing
displacement rate and an increasing degree of sensitization. At 288°C, the effect of a water
environment increased with increasing DO in the environment (i.e., the fracture toughness
decreased with increasing DO).

These results indicate potential effects of the reactor coolant environment on the fracture
toughness of thermally aged austenitic SS materials with duplex structures. The effects are
particularly significant at low temperatures and under PWR SWC environments. However, the
available data are inadequate to accurately establish the effects of environment on fracture
toughness, particularly under low-temperature, BWR HWC conditions. Additional fracture
toughness tests on thermally aged austenitic SS welds in air and LWR environments are needed
to better understand the combined effects of hydrogen embrittlement and thermal embrittiement in
LWR environments. In the interim, degradation of the fracture toughness of austenitic SS welds
due to reactor coolant environment needs to be evaluated on a case-by-case basis.

3.3 Summary

Based on the above discussions and evaluation of the available fracture toughness J-R curve
data, the recommended lower bound J-R curve for unaged and thermally aged austenitic SS
welds are summarized below. Equation 19 represents the J-R curve for unaged SA and SMA
welds:

J(kJ/m2) = 138 Aa(mm)0-45,
Equation 20 represents the J-R curve for unaged GTA welds:

J(kd/m2) = 330 Aa(mm)0-45,
Equation 22 represents the J-R curve for thermally aged SA and SMA welds:

J(kJ/m2) = 117 Aa(mm)0-45,
Equation 23 represents the J-R curve for thermally aged GTA welds:

J(kJ/m2) = 270 Aa(mm)0-45,
In addition, potential degradation of the fracture toughness of austenitic SS welds due to reactor

coolant environment also needs to be evaluated, particularly at low temperatures and under PWR
SWC environments.
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4 COMBINED EFFECTS OF THERMAL AND NEUTRON
EMBRITTLEMENT

The potential combined effects of thermal and neutron embrittiement of austenitic SS welds was
discussed briefly with those of CASS materials in a journal article entitled, “Methodology for
Estimating Thermal and Neutron Embrittlement of Cast Austenitic Stainless Steels during Service
in LWRs,” published earlier [97]. Although the actual values of maximum neutron dose for
austenitic SS welds in reactor core internals after 60-y service are not available, they can be
appreciable, particularly for PWRs. A neutron dose of 8—10 dpa is expected for BWR core
shroud; it is likely also to bound welds in the PWR core barrel as well. The fracture toughness of
these duplex materials decreases with increasing neutron irradiation dose. The extent of
embrittlement (i.e., loss of fracture toughness) depends on the amount and morphology of the
ferrite phase in the material. In addition, most of the existing fracture-toughness data on austenitic
SS and associated welds have been obtained on materials irradiated in fast reactors, which may
be non-conservative for LWR conditions.

4.1 Mechanism of Neutron Embrittlement

Neutron irradiation of materials can produce damage by displacing atoms from their lattice
position. Each displaced atom creates a vacancy and self-interstitial atom pair. These defects
are unstable, and most of them are annihilated by recombination. The surviving defects rearrange
into more stable configurations such as dislocation loops, network dislocations, precipitates, and
cavities (or voids), or migrate to sinks such as grain boundaries, dislocations, or surfaces of
second phase particles. The production, annihilation, and migration of the point defects lead to
changes in the microstructure and microchemistry of the material. These changes vary with the
material composition and thermo-mechanical treatment and irradiation temperature and dose rate
[32]. Irradiation damage is characterized by either the neutron fluence (n/m2) or the average
number of displacements per atom (dpa).>

Under LWR conditions, the microstructure produced by irradiation seems to change significantly
for temperatures above 300°C. At 275-300°C, the defect structure primarily consists of small
“pblack spot” defect clusters (<4 nm in diameter) and large dislocation loops (4-20 nm in diameter)
that are primarily faulted interstitial Frank loops. At higher temperatures, the microstructure
contains large faulted loops and network dislocations, and cavities/voids (clusters of vacancies
and/or gas bubbles) and precipitates form at higher doses [32,49,130-132]. The size of the
dislocation loops increases with increasing irradiation dose. The saturation size of the loops
depends on the irradiation conditions and material characteristics. Under LWR conditions, the
loop density saturates at a relatively low dose (about 1 dpa), and the average loop diameter
saturates at about 5 dpa [32]. In addition, alloying elements can affect the material microstructure
(e.g., P, Ti, and Nb increase the loop density and decrease loop size). The loop size increases
and loop density decreases with irradiation temperature. At temperatures of 300-350°C, the
microstructure primarily consists of large Frank loops and a network of tangled dislocations [32].
Also, cavities and voids form at high doses and high temperatures. Cavities or voids have not
been observed in SSs irradiated below 300°C.

S Conversion to dpa is as follows: for LWRs, E>1 MeV and 1026 n/m2 ~15 dpa; and for fast reactors, E>0.1 MeV and
1026 n/m2 ~5 dpa.
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Irradiation at temperatures above 350°C leads to the formation of second phase particles. The
available data suggest that radiation-induced precipitation is not a concern at temperatures below
350°C. Metal carbides are the primary stable precipitates in 300-series SSs under LWR
conditions, although RIS of Ni and Si to sinks may lead to the formation of y’ (Ni3Si) and G phase
(MgNi46Si7). Precipitation of Ni-Si clusters at LWR temperatures is quite commonly observed.
Precipitates are primarily in the matrix and often attached to dislocations but are rarely observed
at grain boundaries despite high levels of Ni and Si solute segregation [133].

4.2 Effect on Mechanical Properties

4.2.1 Tensile Properties

The point defect clusters and precipitates produced by irradiation act, to varying extent, as
obstacles to dislocation motion, resulting in an increase in tensile strength and a reduction in
ductility and fracture toughness of the material. In general, cavities (or voids) are strong barriers,
large faulted Frank loops are intermediate barriers, and small loops and bubbles are weak barriers
to dislocation motion [28]. The yield strength of irradiated SSs can increase up to five times that of
the non-irradiated material after a neutron dose of about 5 dpa [30]. The extent of irradiation
hardening and the increase in yield stress of austenitic SSs depend on the material composition
and thermo-mechanical treatment, as well as the irradiation temperature. The greatest increase
in yield strength for a given dose occurs at irradiation temperatures near 300°C (572°F).

Tensile properties data have been obtained on solution-annealed and cold worked (CW)

Type 304, 304L, 316, 316L, and 347 SSs, including weld HAZ material, Type 308 and 309 weld
metals, and CF-8 cast austenitic SSs, irradiated at 300—400°C (572—752°F) in fast reactors and
LWRs [35-37,134-136]. The 0.2% yield strength, ultimate tensile strength, uniform elongation,
and total elongation at elevated temperatures are plotted in Figure 4-1 as a function of neutron
dose for the weld metals and CASS materials. However, most data in these figures were
obtained on materials irradiated in the BOR-60 fast reactor. Data on LWR-irradiated materials are
limited, in particular, for austenitic SS welds and at high neutron dose.

The curves in these figures represent the correlations [137] developed by the Materials Reliability
Program (MRP) for estimating the tensile properties as a function of neutron dose. The 0.2%
yield strength, ultimate tensile strength, uniform elongation, and total elongation data at 330°C
were fitted to an exponential equation of the form;

Property = Ag +A4 (1-exp(-d/dp)), (24)

where d is the neutron dose in dpa and the coefficients Ag, A4, and dg for the irradiated material

property equations are listed in Table 4-1 and Table 4-2. The baseline reference tensile
properties of nonirradiated materials are represented by a fourth-order polynomial [137] of the
form:

Property = Cg + C4T + CoT2 + C3T3 + C4T4, (25)

where T is the temperature (°C) and the coefficients for the different tensile property equations are
listed in Table 4-3.

At high neutron doses, as the irradiated yield strength approaches the ultimate strength of the
material there is a change in the deformation mode. Deformation by a planar slip mechanism is

4-2



QD
~

I B
Type 3 8, 308L Weld -i(

1000

s 304 HAZ, & Cast SS

/]
4|
& 308-1

800
A MRP Curve

(SA), BOR-60 at 330°C, 330°C
308-2 (SB), BOR-60 at 330°C, 330°C
308-3 (FE), BOR-60 at 330°C, 330°C

308-4 (J1), BOR-60 at 330°C, 330°C

600 /

HAZ (SB5-SB6), 304-SA BOR-60 at 330°C, 330°C
HAZ Base (J2), 304-CW BOR-60 at 330°C, 330°C

CF-8 Unaged (J4), BOR-60 at 330°C, 330°C

CF-8 Aged 400°C/100 h (J8), BOR-60 at 330°C, 330°C
CF-8 Aged 400°C/950 h (J9), BOR-60 at 330°C, 330°C

E308L Oskarshamn 1/2 at 280°C, 270-297°C

Yield Strength (MPa)

308 Cladding UBR at 288°C, 288°C

AP OIDNOPALIVD>O

309 Cladding UBR at 288°C, 288°C

20 40 60 80 100
Neutron Dose (dpa)

I ! I ! |
Type 08, 308L Weld

Py
(o}
~

Vi V|

304 HAZ, & Cast SS

1000

308-1 (SA), BOR-60 at 330°C, 330°C

(
308-2 (SB), BOR-60 at 330°C, 330°C
308-3 (FE), BOR-60 at 330°C, 330°C

gth (MPa)
oo
o
o

308-4 (J1), BOR-60 at 330°C, 330°C

4x
£ MRP Curve

HAZ (SB5-SB6), 304-SA BOR-60 at 330°C, 330°C

HAZ Base (J2), 304-CW BOR-60 at 330°C, 330°C
CF-8 Unaged (J4), BOR-60 at 330°C, 330°C

o2}
o
o
— T

CF-8 Aged 400°C/100 h (J8), BOR-60 at 330°C, 330°C

CF-8 Aged 400°C/950 h (J9), BOR-60 at 330°C, 330°C
E308L Oskarshamn 1/2 at 280°C, 270-297°C

308 Cladding UBR at 288°C, 288°C

4P OINOPALVD>O

400v

309 Cladding UBR at 288°C, 288°C

Ultimate Tensile Stren
o 4

200

Figure 4-1

20 40 60 80 100
Neutron Dose (dpa)

Change in (a) yield strength, (b) ultimate tensile strength, (c) uniform
elongation, and (d) total elongation as a function of neutron dose for weld
metals, Type 304 HAZ, and CF-8 CASS materials at elevated temperature
(Ref. 47).

4-3



L N N B
Type 308, 308L Weld (c)
| 304 HAZ, & Cast SS
10
|
|
:é O 308-1 (SA), BOR-60 at 330°C, 330°C
3 il A 308-2(SB), BOR-60 at 330°C, 330°C
< X > 308-3 (FE), BOR-60 at 330°C, 330°C
8 \ El \V4 308-4 (J1), BOR-60 at 330°C, 330°C
'-g = < HAZ (SB5-SB6), 304-SA BOR-60 at 330°C, 330°C
(@] A N HAZ Base (J2), 304-CW BOR-60 at 330°C, 330°C
IS & CF-8 Unaged (J4), BOR-60 at 330°C, 330°C
Wt E\fl A CF-8 Aged 400°C/100 h (J8), BOR-60 at 330°C, 330°C
§ 1\ (o) MRP Curve O CF-8 Aged 400°C/950 h (J9), BOR-60 at 330°C, 330°C
] \ ~ A
= N, e Phe
> b
X
Ao
0.1 S\
0 20 40 60 80 100
Neutron Dose (dpa)
I 1 T I 1
Type 308, 308L Weld, (d)
304 HAZ, & Cast SS
100
" O 308-1(SA), BOR-60 at 330°C, 330°C
A 3082 (SB), BOR-60 at 330°C, 330°C
= \ > 308-3 (FE), BOR-60 at 330°C, 330°C
é y \V 308-4 (J1), BOR-60 at 330°C, 330°C
c < HAZ (SB5-SB6), 304-SA BOR-60 at 330°C, 330°C
o P N HAZ Base (J2), 304-CW BOR-60 at 330°C, 330°C
® O CF-8 Unaged (J4), BOR-60 at 330°C, 330°C
o) A CF-8 Aged 400°C/100 h (J8), BOR-60 at 330°C, 330°C
5 1  CF-8 Aged 400°C/950 h (J9), BOR-60 at 330°C, 330°C
o 10 5 @  E308L Oskarshamn 1/2 at 280°C, 270-297°C
© Y= ~, AN A 308 Cladding UBR at 288°C, 288°C
- g v 309 Cladding UBR at 288°C, 288°C
P g
MRP Curve
A
/|
>
I
>
1
0 20 40 60 80 100
Neutron Dose (dpa)
Figure 4-1 Change in (a) yield strength, (b) ultimate tensile strength, (¢) uniform

elongation, and (d) total elongation as a function of neutron dose for weld
metals, Type 304 HAZ, and CF-8 CASS materials at elevated temperature
(Ref. 47). (Contd.)

4-4



Table 4-1 Material property equations for irradiated CW Type 316 stainless steel.
Property = Ag +A1 (1-exp(-d/dg))
Property Units Ao A1 do
0.2% yield strength MPa 500 470 3
Ultimate tensile strength MPa 650 330 3
Uniform elongation % 10 -9.7 2
Total elongation % 18 -11 5

Table 4-2 Material property equations for irradiated solution-annealed Type 304
stainless steel.
Property = Ag+ A1 (1-exp(-d/ dg))
Property Units Ao A1 do
0.2% vyield strength MPa 200 600 3
Ultimate tensile strength MPa 450 350 3
Uniform elongation % 40 -39.5 1
Total elongation % 45 -37 25

Table 4-3 Material property equations for solution-annealed and nonirradiated Type 304
stainless steel.
Property = Cg + C4T + CoT2+ C3 T3+ C4 T4
Property Units Co C1 Co Cs C4
0.2% yield strength MPa 270.09 -0.5702 9.1162E-4  -5.6198E-7
Ultimate tensile strength MPa 617.275 -1.7750 7.0659E-3  -1.0769E-5  4.8941E-9
Uniform elongation % 55.8688 -0.1893 5.3656E-4  -4.5779E-7
Total elongation % 71.6321 -0.1956 5.7562E-4  -7.1266E-7 3.2172E-10

promoted, and the material exhibits strain softening [138]. This process can be explained by
“dislocation channeling,” whereby dislocation motion along a narrow band of slip planes clears the
irradiation-induced defect structure, creating a defect-free channel that offers less resistance to
subsequent dislocation motion or deformation. Nearly all SSs exhibit strain softening, and little or
no uniform elongation, at irradiation dose above 3-5 dpa. The engineering stress vs. strain curves
for Type 304 SS irradiated to 2 and 3 dpa showing strain softening is presented in Figure 4-2
[139,140]. The enhanced planar slip also leads to a pronounced degradation in the fracture
toughness of austenitic SSs. An assessment of neutron embrittlement of irradiated austenitic SSs
is presented in an Argonne topical report [47] as well as a journal article [55].

4.2.2 Charpy-Impact Energy

Figure 4-3a and b show the effects of thermal aging and neutron irradiation of austenitic SS welds
as a function of test temperature [69,70]. The tests involving neutron irradiation at 371°C were
conducted in the EBR-II reactor in Idaho. Similar to the results for the MMA weld, thermal aging
decreases the Cy values for SA and SMA welds, the decrease at reactor temperature is greater
than at room temperature. Neutron irradiation further decreases the Charpy-impact energy. For
the irradiated welds, the effect of test temperature on Cy, is insignificant. For the SA weld
irradiated and tested at 371°C, Cy, is decreased from 110 to 31 J/cm2. However, although the Cy
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values for the SA weld are lower then those for the SMA weld the SA welds contain 15% ferrite
compared to 7.2% in the SMA welds.
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Figure 4-2 The engineering stress-strain plots at 289°C for irradiated Type 304 SS
showing strain softening (Ref. 139,140).
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4.2.3 Fracture Toughness

The existing data on neutron-irradiated wrought austenitic SSs, CASS materials, and their welds
indicate (a) little or no loss of toughness below an exposure of about 0.3 dpa, (b) substantial
decrease in toughness at 0.3—10 dpa, and (3) little or no further reduction in toughness beyond
10 dpa [45,47]. However, the extent and the rate of decrease in fracture toughness vary among
the various grades of materials. The effects of material parameters (e.g., composition, thermo-
mechanical treatment, microstructure, microchemistry, yield strength, stacking fault energy) and
environmental parameters (e.g., water chemistry, irradiation temperature, dose, dose rate) on
neutron embrittlement have been summarized in earlier ANL publications [45,47]. The results
were used to (a) define a threshold fluence level above which irradiation effects on the fracture
toughness of cast and wrought austenitic SSs are significant and (b) evaluate the potential of
neutron embrittlement of these materials under LWR operating conditions.

Examples of fracture toughness J-R curves for unirradiated and irradiated Types 308 and 316 SS
welds are presented in Figure 4-4. The Type 308 MMA weld was irradiated in a fast reactor,
EBR-Il, at 427°C [86] and the Type 316 weld was irradiated in Dido or Pluto materials test
reactors at 370°C [39]. Prior to irradiation, the Type 316 weld was given a heat treatment at
650°C for 2 h for dimensional stability. The results indicate significant decrease in fracture
toughness of these welds. However, the irradiation temperature for the Type 308 weld was much
higher than in LWRs and the neutron spectrum was different. Existing fracture toughness data on
neutron- irradiated, wrought austenitic SSs indicate that neutron embrittlement is maximum
around 290°C and is greater for materials irradiated in LWRs than in fast reactors [45].

4.2.3.1 Effect of Test Temperature

The fracture toughness of nonirradiated austenitic SSs is known to decrease as the test
temperature is increased. The change in the J,; of irradiated SSs as a function of test

temperature is plotted in Figure 4-5 for several grades of SSs and welds irradiated in LWRs and
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Figure 4-4 Fracture toughness J-R curves for unirradiated and irradiated Types 308 and
316 SS welds at 427 and 370°C, respectively (Refs. 39,86).

fast reactors. The fracture toughness of steels irradiated to relatively low doses (less than 5 dpa)
decreases with increasing test temperature in most cases. However, for steels irradiated to more
than 12 dpa, the test temperature has little effect on fracture toughness. The data on materials
irradiated in LWRs or fast reactors exhibit similar trends. It should be noted that at 12-dpa-fluence
level, the toughness value is already low, which makes it difficult to discern definitive trends. The
effect of test temperature is also reflected in the fracture morphology of highly irradiated materials.

At temperatures above 230°C (446°F) the failure mode is predominantly channel fracture
characterized by a faceted fracture surface. It is associated with highly localized deformation
along a narrow band of slip planes whereby the initial dislocation motion along the narrow band
clears away the irradiation-induced defect structure, creating a defect-free channel that offers less
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resistance to subsequent dislocation motion. The localization of the deformation ultimately leads
to channel failure.

4.2.3.2 Effect of Irradiation Temperature

The available data are inadequate to establish accurately the effects of the irradiation temperature
on the fracture toughness of austenitic SSs. However, tensile data indicate that irradiation
hardening is highest, and ductility loss is maximum, at an irradiation temperature of =300°C
(=572°F) [138]. Thus, the J|¢ values for all materials irradiated above 350°C (662°F) (e.g., fast
reactor irradiations), particularly for neutron exposures greater than 20 dpa, would be greater than
for materials irradiated at temperatures of 290-320°C (554—-608°F).

700

| T T LN I U Y B I B | |
- O ¢ Austenitic Stainless Steels -
CA. ----I\--- 316 SS, 56 dpa, 377-400°C ]
600 | > 316CW, 82 dpa, 395-425°C  —}
LY - - & — 316L Weld, 3 dpa, 90°C =
& ~ N - §/— 316L Weld, 3 dpa, 250°C 7]
g N A - —& —  304L, 12 dpa, 280°C ]
S 500 N ———— 308L Weld, 12 dpa, 280°C ]
S = N\ --</\-- 304,09 dpa, 280°C =
© n \. -~ -- 308L,07dpa 280°C .
=
— & Open Symbols: Fast Reactor -
% 400 > Ctosed-8ymbots:{-\WH
. [ ]
c - v .
S SNV . ]
=}
3 300 - o A .
|l B - n
S u X ]
5 200
E :L s i ]
= A _ . ]
100 e T O
- ® o ]
~ — -—;M—E——&?—u—--r.ﬁ,—_, D{a ]
O Lodrd. Lol Ll 1 | - | I
0 100 200 300 400 500

Test Temperature (°C)

Figure 4-5 Fracture toughness J|; of irradiated austenitic stainless steels and welds as a
function of test temperature (Ref. 46).

4.2.3.3 Fracture Toughness Lower-bound J-R Curves

A fracture toughness J-R curve may be used to analyze material deformation behavior for loading
beyond Jic. The J-R curve is expressed in terms of the J integral and crack extension (Aa) by the

power law J = C(Aa)". At dose levels below the threshold dose for saturation (~7 dpa), the
neutron embrittlement of austenitic SSs can be represented by a decrease in the coefficient C
with neutron dose. The variation of fracture toughness coefficient C of austenitic SS welds as a
function of neutron dose is plotted in Figure 4-6. The two curves in the figure represent the
disposition curve proposed by EPRI for BWRs [38], and a modified version of the trend curve
proposed for coefficient C that bounds the existing fracture toughness data for austenitic SSs,
CASS materials, and their welds, in earlier ANL studies [45,47]. All fracture toughness tests were
conducted in air, except the test conducted by Dr. Chen at ANL on a SA weld from the Grand Gulf
Type 304L core shroud (shown as closed inverted triangle), which was performed in low-DO,
high-purity water. The solid curve represents a modified version of the trend curve proposed in
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NUREG/CR-7027 for coefficient C that bounds the existing data. The experimental data shown in
Figure 4-6 are bounded by the following expression for C:

C = 25 + 92 exp[-0.35(dpa)4]. (26)

The value of the coefficient C for welds irradiated to neutron dose less than 0.1 dpa represents
the lower-bound value for the unirradiated SA, SMA, or MMA welds. The existing data indicate
that the lower-bound fracture toughness curve for unaged and aged GTA welds is likely to be
higher, it is not clear whether this trend would also be observed for irradiated welds. The existing
data are inadequate to accurately establish the lower-bound J-R curve for GTA, MIG, or TIG
welds as a function of neutron dose. The results plotted in Figure 4-6 also indicate that the lower
bound curve proposed by EPRI between coefficient C and neutron dose, overestimates the value
of coefficient C, particularly at neutron dose <0.5 dpa. A large fraction of the existing experimental
data is below the proposed EPRI lower-bound curve.
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Figure 4-6 Coefficient C of the J-R curve as a function of neutron dose for SS welds. The
data points plotted at 0.007 dpa are for nonirradiated materials.

The variation of fracture toughness power-law exponent n for the irradiated austenitic SS weld
data shown in Figure 4-6 is plotted as a function of neutron dose in Figure 4-7. A value of 0.45 is
assumed as the minimum value for unirradiated, but thermally aged, welds. In addition, the value
of the exponent decreases with increasing neutron dose, and is assumed to reach a saturation
value of 0.20 at a dose of 5 dpa. Fracture toughness data for neutron does >10 dpa are very
limited. Most of the experimental data shown in Figure 4-7 are bounded by the expression for
exponent n given by:

n =0.45-0.0926 [2 + log(dpa)]. (27)
Note that the fracture mechanics methodology proposed by EPRI for irradiated SSs [36], and

adopted by MRP [42], assumes a value of exponent n that increases with neutron dose;
n increases from about 0.40 at 0.2 dpa to 0.64 at 4.5 dpa. The n values for fracture toughness
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J-R curves for SS welds are typically lower then these values, and n generally decreases with
increasing neutron dose [45,47]. The estimated value of J at 2.5-mm crack extension, Js s,

determined from Eqgs. 26 and 27, is plotted as a function of neutron dose in Figure 4-8.
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Figure 4-7 Exponent n of the J-R curve as a function of neutron dose for SS welds. The
data points plotted at 0.007 dpa are for nonirradiated materials.
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Figure 4-8 Jo 5 as a function of neutron dose for austenitic SS welds.
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The results indicate that the J, 5 values are below 150 kJ/mZ2 for welds irradiated above about

0.3 dpa. The saturation J, 5 for welds irradiated above 7 dpa is about 30 kJ/m2. The existing
fracture toughness Ji; data at 290-320°C for austenitic SS welds irradiated in fast reactors® and
LWRs are plotted as a function of neutron dose in Figure 4-9 [27,35,36,78,86—91]. The change in
lower-bound Ji; value as a function of neutron dose is given by

Jic = 7.5 + 67 exp[-0.23(dpa)'4]. (28)
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Figure 4-9 Fracture toughness J; values as a function of neutron dose for SS welds. The
data points plotted at 0.007 dpa are for nonirradiated materials.

The lower-bound curve represents (a) a threshold dose of about 0.3 dpa for neutron
embrittlement; (b) a minimum fracture toughness J. of about 74.5 kJ/m2 for neutron doses below
0.15 dpa; (c) a saturation threshold of about 6—-8 dpa beyond which the fracture toughness of
these materials appears to saturate; (d) a saturation fracture toughness Ji; of 7.5 kJ/mZ2; and

(e) a description of the change in toughness between 0.1 and 10 dpa. The J; value of ~74 kJ/m2
for neutron doses below the threshold dose is appropriate for austenitic SS unaged SMA and SA
welds. A value higher than 74 kJ/m2 may be considered (and justified) for SS GTA/MIG/TIG
welds. At typical temperatures for LWR core internals (i.e., 290-370°C), the saturation J,; of

7.5 kJ/m? corresponds to K. of ~38 MPa m'/2, and the minimum J,; of 74.5 kJ/mZ2 for welds with
neutron doses below 0.15 dpa corresponds to a K, of 118—120 MPa m'/2,

The experimental data shown in Figure 4-6 and Figure 4-9 also indicate that the existing
fracture toughness data for irradiated austenitic SSs and their welds are not bounded by the
disposition curve proposed by EPRI for BWRs [38]. Furthermore, saturation K; of 55 MPa m1/2
at 4.5 dpa, proposed by the EPRI curve, is also higher than the value of 38 MPa m'2 predicted

6 The data obtained by Sindelar et al., Kim et al., and Mills are for materials irradiated in fast reactors.
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by the lower-bound curve shown in Figure 4-9, and proposed by MRP for PWRs [42]. The
saturation K for the EPRI curve was based on data for which the specimen orientation was
unknown. Studies about the effect of specimen orientation on fracture toughness indicate that
fracture toughness in the transverse orientation is nearly half of that in the longitudinal
orientation [36]. Therefore, the saturation K . proposed by EPRI may not represent the actual
lower-bound value.
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5 SUMMARY

The existing mechanical property data on thermal and neutron embrittlement of austenitic SS
welds has been compiled and evaluated to (a) update the results presented earlier in
NUREG/CR-6428 (1996) on Charpy impact energy, tensile properties, and fracture toughness J-R
curves, (b) establish the effects of thermal embrittlement on the degradation of fracture properties,
and (c) evaluate the potential combined effects of thermal and neutron embrittlement. The lower-
bound fracture-toughness J-R curves for austenitic SS welds during extended service in LWRs
have been revised to incorporate the effects of thermal and neutron embrittlement using a much
larger database. The potential effects of reactor coolant environment on fracture-toughness J-R
curves were also discussed.

Austenitic SS welds have a duplex structure, with ferrite being the minor phase distributed in
various forms in the austenite matrix. Typically, the commercial AISI 300 series austenitic SSs
welds contain up to 20% ferrite depending on the weld composition and weld cooling-rate. Based
on these material and weld process conditions, four different ferrite morphologies are observed in
the weld. These morphologies are vermicular, lacy, acicular, and globular ferrite. Vermicular
ferrite is most common.

Thermal Embrittlement

The degradation of fracture properties of austenitic SS welds due to thermal embrittlement occurs
due to a combination of the strengthening of the ferrite matrix by spinodal decomposition and the
weakening of grain/phase boundaries because of the presence of second phase particles.
Thermal aging increases the hardness and tensile strength, and decreases ductility, impact
strength, and fracture toughness. Fracture occurs along the delta ferrite regions where the
second phase particles initiate voids/cracks either by decohesion of the ferrite/austenite
interphase or particle cracking. The kinetics of thermal embrittlement were discussed.

Thermal aging of welds decreases the Charpy upper-shelf energy and increases the Charpy
energy transition temperature. The effect of thermal aging is greater in welds with more than 10%
ferrite. Charpy impact energy at reactor temperatures is greater then at room temperature, but
the difference decreases with thermal aging. The effect of thermal aging on tensile properties is
to increase the yield and ultimate tensile stress and decrease the ductility. The effect on ultimate
tensile stress is greater then on the yield stress. However, the effect is insignificant on welds with
<10% ferrite.

Thermal aging also degrades the fracture toughness of austenitic SS welds. The welding process
has a significant effect on the extent of degradation. The effect on SA and SMA welds is greater
than on the GTA weld. However, since the composition and microstructure of welds varies with
the welding process and conditions, it is difficult to estimate the change in fracture toughness as a
function of time and temperature of aging. Therefore, the approach adopted in this report is to
establish the effect of thermal embrittlement on the fracture toughness of SS welds and define the
lower bound values of fracture toughness parameters, such as, J;. and coefficient C and exponent
n of the power-law J-R curve. Separate lower bound values are presented for SA/SMA and GTA
welds for unaged and aged SS welds.

Combined Effects of Thermal and Neutron Embrittlement
The fracture toughness of austenitic SS welds decreases with increasing neutron irradiation dose.

The extent of embrittlement depends on the amount and morphology of the ferrite phase in the
weld. The mechanism of neutron embrittlement was briefly discussed. The point defects



produced by neutron irradiation strengthen the material, resulting in an increase in tensile strength
and a reduction in ductility and fracture toughness. The yield strength of austenitic SSs and welds
can increase significantly. The extent of irradiation hardening and the increase in yield stress
depend on the material composition, heat treatment and irradiation temperature. The MRP has
developed correlations for estimating the tensile properties as a function of neutron dose.

The fracture toughness of nonirradiated austenitic SSs is known to decrease as the test
temperature is increased. The J. values of austenitic SS and welds either nonirradiated or
irradiated to relatively low doses, decrease with increasing test temperature. However, for SSs
irradiated to 12 dpa or more, test temperature has no effect on fracture toughness. Available data
are inadequate to accurately establish the effect of irradiation temperature on fracture toughness
of SS welds. Similar to the effect of thermal embrittlement, lower bound values of J;; and
coefficient “C” and exponent “n” of the fracture toughness J-R curve are defined as a function of
neutron dose.
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APPENDIXB J-R CURVE CHARACTERIZATION

The fracture toughness J-R curve data were fitted to the power-law curve (of the form

J = CAaM), and the fracture toughness J); values were determined in accordance with ASTM
Specifications E 813-81 and E 813-85. For the former, J,. is defined as the intersection of the
blunting line given by J = 265 Aa, and the linear fit of the J-vs.-Aa test data between the

0.15-mm and 1.5-mm exclusion lines. The flow stress, oy, is the average of the 0.2% vyield
strength and the ultimate strength. The ASTM Specification E 813-85 procedure defines Ji; as the
intersection of the 0.2-mm offset line with the power-law fit of the test data between the exclusion
lines.

However, fracture toughness J-R curve tests on materials with relatively high toughness, ductility,
and significant strain hardening ability, such as austenitic stainless steel, indicate that a slope of
four times the flow stress (4c5) for the blunting line expresses the J-vs.-Aa data better than the
slope of 2o¢ that is defined in E 813-81 or E 813-85. Therefore, in this study, the fracture
toughness Ji; values were determined from the reported values of flow stress and coefficient C
and exponent n of the power-law curve, using a slope of 4c; for the blunting line and the 0.2-mm
offset line. The reported values of Ji; are listed in Table B2, only when any of these values was
not available.

The various validity criteria specified in ASTM Specification E 813-85 for J,c and in ASTM
Specification E 1152-87 for the J-R curve have been used to qualify the results from test data.
The various criteria include maximum values of crack extension and J-integral as well as the limit
for initial uncracked ligament. Hutchinson and Paris [A.37] have suggested a crack extension limit
defined in terms of a ® value expressed as

® = (b)) (dJida) >> 1, (B-1)

where b is the unbroken ligament given by (W-a), the difference between specimen width W and
crack length a. Typically, a critical w-value of 5 is used as a minimum value. The tentative J-R
curve procedure proposed by Albrecht et al. [A.37], limits crack extension to 10% of the original
unbroken ligament (i.e., 0.1by). However, Ernst [A.37] had suggested that the crack length limit
could be increased to 0.3bg [i.e., ~3.8 mm crack extension for a 0.5T compact tension (CT)
specimen].

The J vs. Aa values as well as the associated values of coefficient C, exponent n, and Ji., for
austenitic SS welds in the unaged or aged and with or without neutron irradiation, are listed in
Table B3. Note that for a few tests, the modified-J values are listed instead of deformation-J.
These J-R curves are identified as J,,, vs. Aa in Table B2, and the rest as deformation-J vs. Aa.
For the modified-J tests, the Jic, coefficient C, and exponent n, correspond to the modified-J vs.
Aa curves. In these earlier J-R tests, modified-J values were reported because Ernst [A.41] had
shown that J,,, was independent of the test specimen size. In general, J.,, vs. Aa curve is higher
than the Jq vs. Aa curve; the difference between the two increases with crack extension. An

example of the deformation and modified J-R curves for thermally aged cast SS material is shown
in Fig. B.1. Typically, the values of the coefficient C of the J-R curve are not increased
significantly, but the J,,, values at 2.5 mm crack extension are about 12% higher than the J4

values.

B-1



The tensile property and Charpy V-notch impact test data for unaged and thermally aged
austenitic SS welds from the Argonne study, are presented in NUREG/CR-6428 [A.27].

1000.0 1 1 1 1 I 1 1 1 1 I 1 1 T T 1 1 1 1 1 1 1 1 1 1 1 T
[ Cast CF-8M Steel i
| Specimen # 753-02T e
800.0 | Test Temp. 290°C A= ]
| Aged 50,000 h at 320°C y i i
Flow stress 415.0 MPa AL —"
i -2 _—3 |
_600.0 - 0 -
N 5 A O 4
g B ’:g/@O//O/ ]
=S )

2 - A |
= 4000 .got -
: Qé/ —=o—— Deformation J ]

| 0/ - - A — Modified J
200.0 7~ J,_def. =209.2 kd/m® ™
/ J mod.=2149kJm* |
—@ IC . . —

0. L 1 1 1 1 1 1 1 L L 1 1 ] 1 1 L l J ) Il J l Il L ] 1
%.0 1.0 20 3.0 4.0 5.0 6.0

Crack Extension Aa (mm)

Figure B.1 Comparison of the deformation-J and modified-J vs. crack extension curves
at 290°C for a thermally aged cast stainless steel material.
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