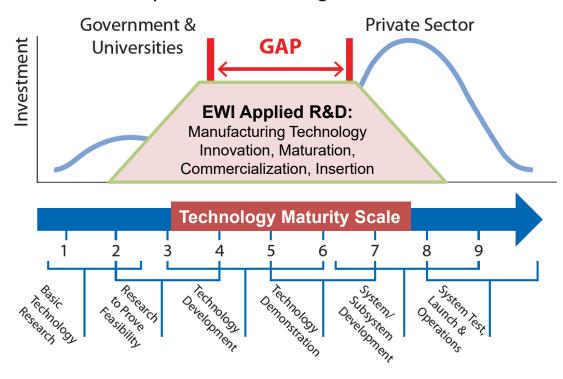


Fundamentals of Additive Manufacturing for Production

Frank Medina, Ph.D.
Technology Leader, Additive Manufacturing
Director, Additive Manufacturing Consortium
fmedina@ewi.org
915-373-5047

About EWI

Non-profit applied manufacturing R&D company


- Develops, commercializes, and implements leading-edge manufacturing technologies for innovative businesses
- Thought-leader in many cross-cutting technologies
 - ->160,000 sq-ft in 3 facilities with full-scale test labs (expanding)
 - ->\$40 million in state of the art capital equipment (expanding)
 - ->170 engineers, technicians, industry experts (expanding)

EWI Applied R&D Bridges the Gap Between Research and Application

Gap in Manufacturing Innovation

Source: NIST AMNPO presentation Oct. 2012

Connecting Colorado to EWI's Capabilities Nationally

- **◆EWI Colorado opened in 2016**
- Customers have access to EWI capabilities nationally
- Among the broadest range of metal AM capabilities

2016 Loveland CO:

Quality assessment: NDE, process monitoring, health monitoring

1984 Columbus OH:

Joining, forming, metal additive mfg, materials characterization, testing

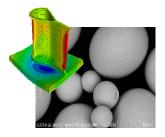
2015 Buffalo NY:

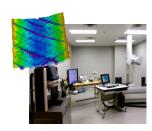
Agile automation, machining, metal additive mfg, metrology

Growing Range of Cross-Cutting Manufacturing Technologies

Materials Joining

Forming


Machining & Finishing


Additive Manufacturing


Agile Automation

Applied Materials
Science

Testing & Characterization

Quality Measurement

AM is Materials Joining

Manufacturing of complex 3D parts by *joining* successive beads and layers

675 feet of weld (Audi R8)

1-inch L-PBF Cube

5 miles of weld

3,400 feet of weld

EWI's Focus Areas are Aligned with the Needs of Industry

EWI Metal AM Focus Areas

In Process Quality Control Post Process Inspection

Materials and Process Development Support Design Allowable Database Generation

Advancements for Manufacturing Machines Design for Additive / Technology Application

Industry Support:
Additive Manufacturing Consortium

Seven AM Technologies

In order to help standardize additive manufacturing in the United States the ASTM F42 Committee on Additive Manufacturing Technologies was formed in 2009 and categorized AM technologies into seven categories

- Powder Bed Fusion
- Sheet Lamination
- Material Extrusion
- Directed Energy Deposition
- Material Jetting
- Vat Photopolymerization
- Binder Jetting

EWI has all Seven AM Technologies

EWI AM Capabilities Overview

Laser PBF EOS M280

Laser PBF – Open Architecture EWI-Designed and Built

Electron Beam PBF Arcam A2X

Sheet Lamination UAM Fabrisonic

Laser DED RPM 557

Electron Beam DED Siacky EBAM 110

Key Considerations for an AM Part

- Every part is not an ideal candidate for AM!
- Critical questions to ask before considering AM:
 - Do current manufacturing constraints limit parts <u>performance</u>?
 - Can sub-components be merged to avoid <u>assembly</u>?
 - Can number of <u>joints</u> be minimized?
 - Can weight & material be reduced and achieve the same function?
 - Is extensive tooling needed to manufacturing part?
 - Can <u>new material</u> combinations increase part performance?
 - Can part <u>durability</u> be maximized?

Types of Additive Manufacturing

ASTM International:

Technical Committee F42 on Additive Manufacturing

Vat Photopolymerization

Material Jetting

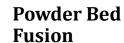
Binder Jetting

Material Extrusion

Powder Bed Fusion

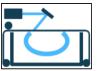
Directed Energy Deposition

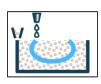
Sheet Lamination


Types of Additive Manufacturing

ASTM International:

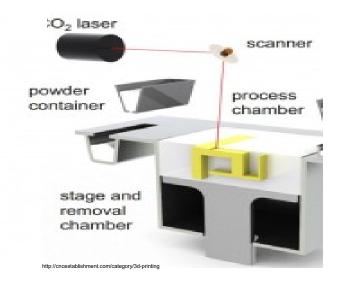
Technical Committee F42 on Additive Manufacturing



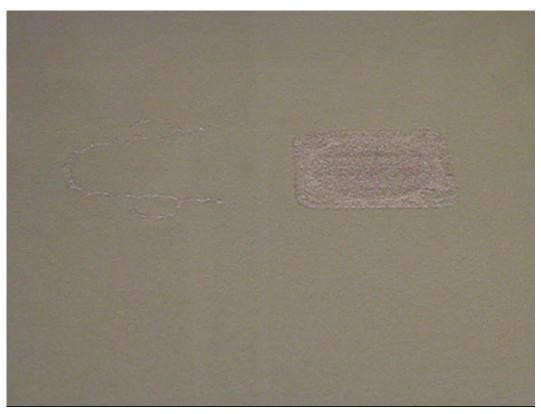


Directed Energy Deposition

Sheet Lamination


Binder Jetting

Powder Bed Fusion Processes


Laser powder bed fusion:

- Laser selectively melts and consolidates fine powder layer-bylayer
- Systems operate at room temperature under Nitrogen or Argon environment depending on build material.
- Maximum build chamber size: 31.5"X16"X20"
- Deposition rate: ~ 0.02- 0.2 lbs/hr
- Materials: AlSi10Mg,CoCr, Ni alloys, Steels, titanium alloys
- Surface Roughness: $10-20\mu m$ Ra

Powder Bed Fusion Processes

Laser Powder Bed Fusions Processes

Design Considerations:

— Overhang features:

- Most materials are able to build features 45° off vertical.
- Support structures need to be added for greater overhanging features.
- Supports not only act as mechanical structures but are required to mitigate internal stress build u in parts
- Circular/rectangular features can be redesigned into tear drop shape (selfsupporting) to avoid use of supports.

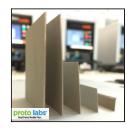
— Surface roughness:

- Surface roughness is dependent on material, layer thickness and part orientation.
- Vertical side walls usually have a better Ra than horizontal or angular surfaces.

Words in title should be initial capped Gurk, Rebecca, 4/24/2017 GR22

Laser Powder Bed Fusions Processes

Design Considerations:


— Minimum feature size:

- The minimum feature size is dependent on the spot size of the laser beam.
- Best possible spot size is ~50 μm .
- Important to consider while support removal.

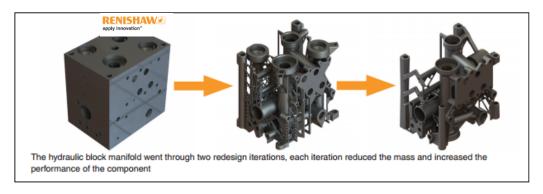
— Aspect ratio:

 Typically a height to width ratio of 40:1 is considered as a rule of thumb for laser powder bed systems.

— Internal channels:

- Complex internal channels are possible as long as overhang lengths and self-supporting angles as considered.
- If channels need support, support accessibility for removal should also be considered.
- Design should also account for powder removal before stress relief.

GR51 Words in title should be initial capped


Gurk, Rebecca, 4/24/2017

Laser Powder Bed Fusion Processes

Some Examples:

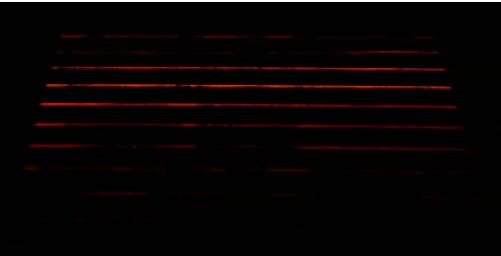
Powder Bed Fusion Processes

Electron beam powder bed fusion:

- High energy electron beam melt layers of powder to create the desired geometry under controlled vacuum.
- Maximum build chamber size: 13.7380" dia. X 15" H
- Deposition rate: ~ 0.1- 0.5 lbs/hr
- Materials: Titanium alloys, CoCr, Ni alloys, TiAl, Cu, Niobium, Mg, Steels, Nb, Tantalum
- Surface Roughness: 15-30μm Ra

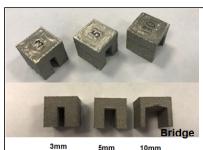
Build setup in Magics

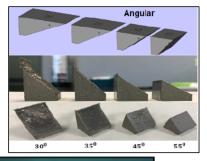
Machine Setup

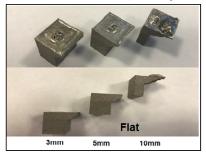

Build Completed

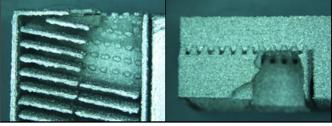
Powder Recovery System Final Part

Electron Beam Melting




EB Powder Bed Fusion Processes


Design Considerations:


— Overhang features:

- Most materials are able to build features 45⁰ off vertical.
- Support structures need to be added for greater overhanging features.
- Most alloys can build with free hanging supports.
- Surfaces in contact with support have bad surface quality.

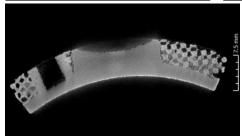
Surface in contact with supports

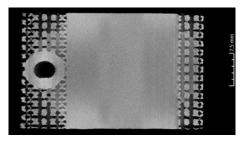
Free hanging supports

EB Powder Bed Fusion Processes

Design Considerations:

- Semi-sintered powder removal:
 - Powder removal becomes difficult in case of mesh structures, blind holes and internal channels.
 - Pore size of ~ 400 μm is possible
 - It is dependent on the depth and size of the feature.

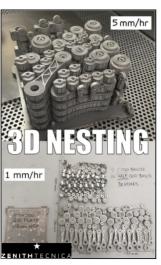

Difficulty scale 1-very easy (PRS)


2- easy (PRS)

3-medium

4-hard

5-very hard



Powder Bed Fusion Processes

Design Considerations:

- Part nesting:
 - EBM technology allows us to stack parts through out the height of the build chamber.
 - Ensure that parts are in contact with each other through supports

 Distribute parts evenly across a the build plate to avoid heat build up and deformation.

Heat build up

Part Nesting

Powder Bed Fusion Processes

Some Examples:

Turbine blades

Race car gear box

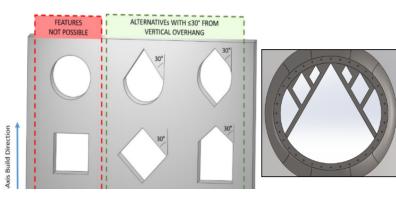
Acetabular cups with trabecular structures

Housing combining lattice structures and solid sections

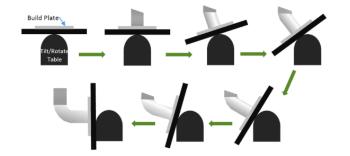
Custom cranial implant

Direct Energy Deposition Processes

Laser Direct Energy Deposition:


- High power laser is fired at a target to create a localized melt pool.
- A stream of metal powder is delivered into the melt pool and a weld bead is created.
- Maximum build chamber size:
 - -5'X5'X7'
- 5 axis motion non coordinated motion
- Deposition rate: ~ 5 lbs/hr
- Materials:
 - Titanium alloys, steel alloys, aluminum, nickel alloys, cobalt alloys, tungsten carbide
- Surface Roughness
 - *−* ~30 *μm*+

Laser Direct Energy Deposition Processes


Design Considerations:

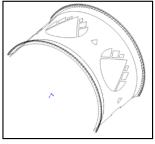
- Holes and channels:
 - Holes and channels normal to the build direction need to be modified to tear drop, lemon shaped, diamond shaped or by adding angled support into the design.

— Ducts:

- Bend-like features are made possible by utilizing the tilt/rotate table in incremental steps.
- Each section is designed as a separate CAD file.

Laser Direct Energy Deposition Processes

Design Considerations:


- The technology favors thin walled parts.
- Single walled parts have to be redesigned as surface models.
- Different features of the part require different parameters and thus have to designed as separate files and arranged accordingly.
- Additional supporting structures need to be added to the part to minimize part distortion due to stresses.

Secondary payload adapter

Modified part

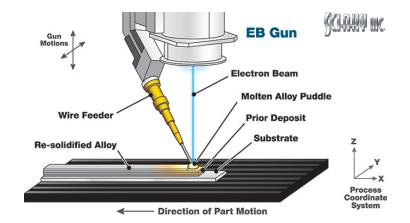
Surface Model

Final part



Laser Direct Energy Deposition Processes

Some Examples :



Direct Energy Deposition Processes

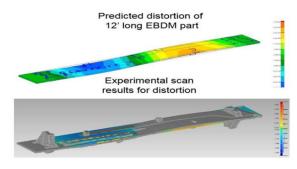
Electron Beam Direct Energy Deposition:

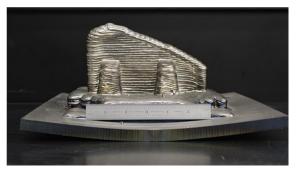
- Wire fed DED process derived from EB welding.
- Near net shape manufacturing
- Maximum build chamber size:
 - -8.8'X4'X5'
- 5-7 axis motion coordinated motion
- Deposition rate: 7-20 lbs/hr
- Materials:
 - Titanium alloys, Nickel alloys, Tantalum, Tungsten, Niobium ,Stainless Steels, Aluminum (2310,4043),Magnesium
- Surface Roughness
 - Irrelevant for near net shape

EB Direct Energy Deposition Processes

Design Considerations:

— Overhanging features:

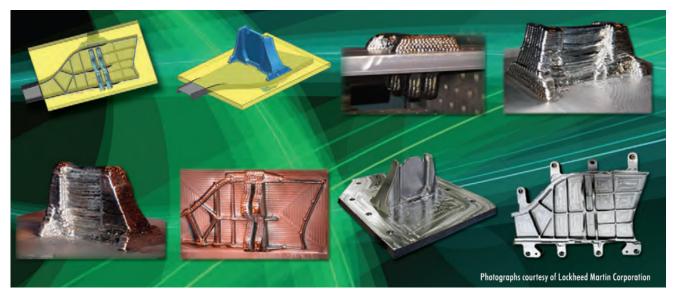

- All tool path must be supported by either the substrate or a previous deposit.
- This limitation can be compensated for through 4+ Axis part manipulation, and / or secondary set-up operations.


— Feature size v/s deposition rate:

 Increase in deposition rate (wire size, travel speed) = decrease in feature resolution

— Thermal Distortion:

 High deposition rates and large melt pools generate significant thermal stresses which require substrate and fixture considerations in some circumstances



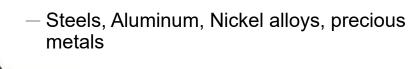
EB Direct Energy Deposition Processes

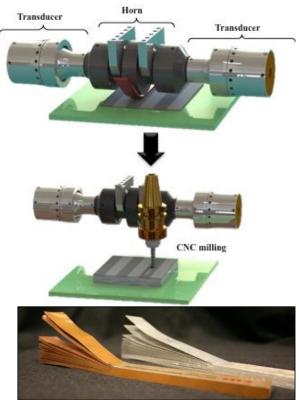
Design Considerations:

- Time / material constraint:
 - Limit of filament life is approximately 9hrs
 - Limit to material that can be placed on a spool / in the chamber for deposition

EB Direct Energy Deposition Processes

Sample Examples:

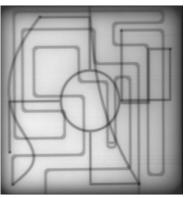



Sheet Lamination

Ultrasonic Additive Manufacturing

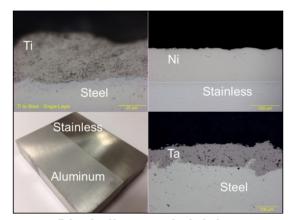
- A solid state bond is created between metal foils by using high frequency sound waves.
- Waves are transmitted through a steel 'horn' causing the metal foils to vibrate and exposes the virgin material on the face of the foil creating a solid state bond.
- Embedding electronics and sensor
- Maximum build chamber size:
 - -6'X6'
- Materials:

BRISONIC



Sheet Lamination

Some Examples:


Multi-material heat exchanger

x-ray image of complex internal flow paths

SiC fibers in aluminum laminate

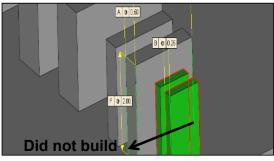
Dissimilar metals joining

Binder jetting :

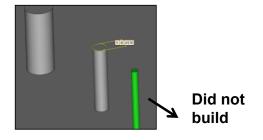
- Liquid binder is deposited on metal powder layers as per the desired geometry to set the part together.
- This part is then cured followed by either direct sintering or infiltration to get the final part.
- Maximum build chamber size: 31"X19"X15"

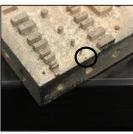
Materials: Steels, Ni alloys, Tungstens, Sand, Ceramics, CoCr, Iron,
 Carbon, SiC

— Surface finish: \sim 15 μm

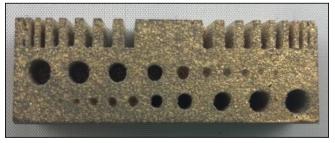

Infiltration process

Design Considerations:


- Overhanging feature:
 - Can build overhanging features without support structures
- Minimum feature size:
 - Minimum wall thickness of >0.5 mm can be built and infiltrated



- Minimum cylindrical feature >0.5 mm dia. can be built and infiltrated


Design Considerations:

Wick and Runner design

 In case of infiltration, the wick and runner could be designed into the part itself.

— Minimum feature size:

- Minimum through hole > 2.5mm, blind hole > 3mm and min. gap between walls >1mm can be built after infiltration.
- These values are also dependent on the size of thermal support grit used during infiltration.

— Shrinkage factor:

 Incase of direct sintering, shrinkage has to be accounted for during sintering based on the build material.

Some Examples:

Prosthetic hand Stainless steel/bronze matrix

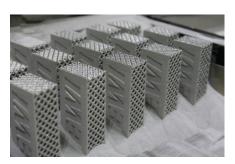
Stator(3"- 5")
Stainless steel/bronze matrix

Strainer plates

Overall Summary & Conclusions

Metal Part Manufacture is now possible using many different AM techniques

- —Tooling and Metal Part prototyping are common applications
- Direct Manufacturing of Novel Designs, Compositions and Geometries is being actively pursued
- —Direct approaches are becoming increasingly available and reliable, but remain expensive for many types of geometries and volumes
- -Knowing the technology limitations is a good key for success



Questions

Francisco Medina, Ph.D.
Technology Leader, Additive Manufacturing
Director, Additive Manufacturing Consortium
fmedina@ewi.org
915.373.5047

http://ewi.org/technologies/additive-manufacturing/

ewi.org • 614.688.5000

EWI is the leading engineering and technology organization in North America dedicated to developing, testing, and implementing advanced manufacturing technologies for industry. Since 1984, EWI has offered applied research, manufacturing support, and strategic services to leaders in the aerospace, automotive, consumer electronic, medical, energy, government and defense, and heavy manufacturing sectors. By matching our expertise to the needs of forward-thinking manufacturers, our technology team serves as a valuable extension of our clients' innovation and R&D teams to provide premium, game-changing solutions that deliver a competitive advantage in the global marketplace.

EWI FACILITIES AND LABS

Columbus, Ohio

EWI (Headquarters) 1250 Arthur E. Adams Drive Columbus, OH 43221 614.688.5000 info@ewi.org

Buffalo, New York

Buffalo Manufacturing Works 847 Main Street Buffalo, NY 14203 716,710.5500 mnutini@ewi.org

Loveland, Colorado

Rocky Mountain Center for Innovation & Technology 815 14th Street SW Loveland, CO 80537 970.573.1675 merion@ewi.org

Contact info needs to be updated Gurk, Rebecca, 4/24/2017 GR50