





















UJV Rez, a. s.

### Simulator Data Collection in Czech Republic

Jan Kubicek Jaroslav Holy

Washington, 15th March – 16th March, 2018 SACADA HRA data workshop

#### **Outline**



#### General introduction

- Power sources in the Czech Republic
- Czech NPPs: Temelin and Dukovany
- Introduction of UJV Rez
- Previous data collection projects
  - Trnava simulator data collection (I) 1998-2000
  - NPP Dukovany simulator data collection (II) 2010-2012
- Current data collection project
  - NPP Dukovany and Temelin data collection (III) 2017-2020



#### **Czech Power Plants**







#### Distribution of power sources



#### Gross power generation: 82 TWh (2017)

- Coal power plants: 37,6 TWh (45,8%)
- Nuclear power plants: 28,0 TWh (34,2%)
- Gas power plants: 5,1 TWh (6,3%)
- Hydro power plants: 2,9 TWh (3,5%)
- Solar power plants: 2,2 TWh (2,6%)
- Biomass: 2,0 TWh (2,5%)
- Wind power plants: 0,6 TWh (0,7%)
- Other (renewable energy): 3,6 TWh (4,4%)

#### ■ Total installed electrical capacity: 21 GWe (2014)

- Thermal power plants: 10,9 GW (52%)
- Nuclear power plants: 4,3 GW (20,5%)
- Hydro power plants: 2,3 GW (11%)
- Solar power plants: 2,1 GW (10%)
- Gas power plants: 1,3 GW (6%)
- Wind power plants: 0,3 GW (1%)



Information source: http://oenergetice.cz/energostat/

#### **Czech Nuclear Power Plants**



#### **Dukovany NPP (EDU)**

- In operation since 1985(-1987)
- Four VVER-440, Model 213 pressurized water reactors
- 2 turbogenerators per reactor Skoda: 250 MWe each
- Installed capacity increased up to 4 x 500 MWe during modernisation process in 2005-2012

#### **Temelin NPP (ETE)**

- In commercial operation since 2004
- Two VVER 1000/320 reactors
- Pressurized water reactor with 4 loops
- 1 turbogenerator per reactor Škoda: 1000 MWe



#### **UJV Rez – General information**



- UJV Rez (=Nuclear Research Institute) established in 1955
- UJV is a leading subject in research and development activities in nuclear technologies in the Czech Rep.
- UJV operates:
  - 2 research nuclear reactors,
  - hot cell facility,
  - research laboratories,
  - radionuclide irradiators,
  - technology for radioactive waste management, etc.
- Research activities are mainly targeted at assisting the
  - power plant operator,
  - regulatory body and
  - nuclear facilities contractors



Number of employees – cca 1000

## The first full-scope simulator data collection at Trnava

- Performed in time period 1998-2000
- Sponsored by DOE (U.S. Department of Energy)
- Coordinated by PNNL Pacific Northwest National Laboratory
- Cooperation with NPP Dukovany, PNNL, VEIKI Budapest and VUJE Trnava
- Project divided into 15 Tasks (steps)
- Every task documented in comprehensive report written in Czech and English
- 18 crews from NPP Dukovany went through 18 different scenarios (each crew passed 6 different
- cenarios) -> 108 simulator runs

#### Simulator Data Collection I - Goals



- Basic goal: to obtain information for re-quantification of human failure events of PSA model
- Extended goal: to provide plant with feedback regarding factors influencing operators' work, particularly concerning new symptom based procedures
- Potential goal: to help to advance control room staff training

#### Simulator Data Collection I (Tasks 1-5)



- Task 1, 2 preparation, organization and control of the project (carried out by PNNL)
- Task 3 revision of available worldwide experience with simulator data collection (in cooperation with VEIKI)
- Task 4 selection and preparation of appropriate methodology of data collection
- Task 5 preparation of accident scenarios for first series of data collection



#### Simulator Data Collection I (Tasks 6-10)



- Task 6 preparation of manual data collection tools
- Task 7 development of data collection procedure
- Task 8 first series of simulator data collection (Autumn 1998, 6 crews in 7 accident scenarios), qualitative data analysis
- Task 9 development of specific methodology for quantitative data analysis, quantitative analysis of data
- Task 10 development of tools for semi-automatic data collection (bar code sheets, configuration of bar code readers)



#### Simulator Data Collection I (Tasks 11-15)



- Task 11 preparation of scenarios for second series of data collection
- Task 12 second series of simulator data collection (Spring 1999, 6 crews in six 5 accident scenarios)
- Task 13 qualitative and quantitative analysis of data from second series of data collection
- Task 14 transfer of methodology to VUJE Trnava, Slovak Republic
- Task 15 third series of data collection, data evaluation and quantitative analysis (Spring 2000, 6 crews in 6 accident scenarios, re-qualification <u>finished</u>)

### Simulator Data Collection I - data evaluation



- Control room crew performance of every crew in every individual step of symptom based procedures analyzed and described
- Average score of every crew in every procedure as well as every simulated accident scenario derived
- Statistical hypotheses about importance of factors influencing operators work formulated and tested
- Some human error probabilities in PSA modified



## Simulator Data Collection I - classification of individual procedural step



- Score 0 step performed without problems
- Score 1 hesitation, small problems, but the result OK
- Score 2 significant failure not influencing accident scenario as a whole
- Score 3 serious failure, simulator instructor intervention necessary



# Simulator Data Collection I - some qualitative insights



- Communication was found to be key factor when working with symptom based procedures
- Many types of deficient communication some measures related to training as well as work in accident conditions proposed
- Another key factor is psychological profile of shift supervisor
- Quality of the process of selection of candidates for operators and particularly shift supervisor function is very important



# Simulator Data Collection I - some qualitative insights (2)



- No significant difference between performance of reactor and turbine operator confirmed
- Negative influence of failure of performance in next steps not confirmed
- Significant difference between crews performance during re-qualification and after it confirmed on high confidence level (conclusion: the crews are well trained, the training process was effective)



## Simulator Data Collection I - requantification of HEP



- HEP adjustment approximately in order of 20-30%
- Positive adjustment made in most cases (cooling down by pre-defined trend)
- Negative adjustment in two cases (crew work with primary circuit charging system)
- Highest positive adjustment fast loop isolation after SGTR - HEP value went down by 32.5%



# Simulator Data Collection I - requantification of HEP



| Action                                                                                                     | Full-scope simulator statistics        | Original value | New value |
|------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|-----------|
| Operator opens the control valves of feedwater lines.                                                      | 6 trials, without significant problem  | 2,03E-02       | 1,81E-02  |
| Operator starts auxiliary feedwater pump manually.                                                         | 24 trials, without significant problem | 9,00E-03       | 7,40E-03  |
| Operator opens the valves on emergency feedwater lines manually.                                           | 6 trials, without significant problem  | 2,96E-02       | 2,51E-02  |
| Operator performs high rate cooldown (60°C, SGTR scenario).                                                | 12 trials, without significant problem | 2,00E-02       | 1,60E-02  |
| Operator performs isolation of hydroaccumulators.                                                          | 18 trials, without significant problem | 2,00E-02       | 1,47E-02  |
| Operator performs isolation of the primary circuit loop with interfacing LOCA by main isolation valves.    | 12 trials, without significant problem | 2,40E-02       | 1,86E-02  |
| Operator performs isolation of steam generator from the secondary circuit side.                            | 12 trials, 1 problem                   | 4,10E-02       | 5,50E-02  |
| Operator starts main feedwater pumps manually.                                                             | 24 trials, without significant problem | 9,00E-03       | 7,40E-03  |
| Operator performs isolation of the primary circuit loop with damaged steam generator in the SGTR scenario. | 12 trials, without significant problem | 4,00E-02       | 2,70E-02  |
| Operator starts primary circuit charging pump manually.                                                    | 36 trials, 2 problems                  | 3,03E-02       | 4,35E-02  |

#### Simulator Data Collection I – conclusions



- Simulator data collection and evaluation methodology transferred, modified and extended
- The methodology was used to gather and analyze data within more than two years of full-scope simulator exercises
- Using of methodology is restricted to analysis of crews working with symptom based procedures
- Significant increasing reliability of NPP Dukovany control room crews when working with new symptom based procedures was confirmed (by using of "objective" formal statistical methods)



# The Second Simulator Data Collection at Dukovany NPP



- Facility: Dukovany NPP full-scope training simulator
- 24-34 crews involved (depended on scenario)
- Time period 2010-2013
  - 2011: **24 crews** involved in **4 scenarios** corresponds to 96 simulator runs
  - 2012: **34 crews** involved in **5 scenarios** corresponds to 170 simulator runs
  - 2013: 30 crews involved in 2 scenarios corresponds to 60 simulator runs
- Mode of collection combination of offline (automatic software) and online (personal observation) collection



#### Simulator Data Collection II - Main Goals



#### Basic goals:

- to obtain information for better quantification of human failure events included in PSA model
- to provide feedback and recommendations for improvement of symptom based procedures and training
- Extended goal: to provide plant with feedback regarding factors influencing operators' work:
  - available time windows
  - task complexity
  - stress level, etc.



#### Simulator Data Collection II - Schedule



#### 2010: Preparation of the project

- UJV Rez prepared methodology for data collection
- 120 important parameters and indications of equipment status (running x stand-by pumps, open x closed valves,...) appointed for collection

#### 2011: Data collection

- OSC Company created special software for collection of selected data
- Training instructors in cooperation with UJV experts appointed 4 training scenarios for collection
- Simulator runs started in October 2011



#### Simulator Data Collection II - Schedule



- 2012: Analysis and evaluation of collected data + data collection
  - 6 training scenarios appointed for collection
  - Simulator runs started in September 2012
  - Analysis and evaluation of data collected in 2011-2012
- 2013: Analysis and evaluation of collected data + data collection
  - 2 training scenarios appointed for collection
  - Simulator runs started in January 2013
  - Analysis and evaluation of data collected in 2012-2013



#### Simulator Data Collection II - Scenarios



- 2011 (bold scenarios analysed in detail):
  - 1. Leakage on seal lines related to main reactor coolant pump
  - 2. Rupture of main feedwater collector (3000 t/h)
  - 3. Steam generator collector rupture (300 t/h) and PORV stuck open
  - 4. Fire at RRCS system (Reactor Rod Control System) leading to ATWS (Anticipated Transient without Scram)



#### Simulator Data Collection II - Scenarios



- 2012 (bold scenarios analysed in detail):
  - 1. Failure of generator breaker followed by automatic switchover to standby power assured by 110 kV switchyard
  - 2. Inadvertent closure of main steam isolation valve (MSIV)
  - 3. Steam generator collector rupture (400 t/h) combined with stuck closed main isolation valve in a cold leg followed by pressurized thermal shock (PTS)
  - 4. Pressurized thermal shock caused by stuck closed main isolation valve in combination with high pressure injection
  - 5. Steamline break into containment (30 t/h) without ESFAS (Engineered Safety Features Actuation System) actuation
  - 6. Leakage from system US20 outside containment
- SGCR + PTS scenarios trained together as one session



#### **Simulator Data Collection II - Scenarios**



- 2013 (bold scenarios analysed in detail):
  - 1. Hot leg rupture (250 t/h)
  - 2. Rupture of SG1 followed by feedwater leak into SG compartment (1200 t/h)...



- Results and recommendations summarized in EPRI Report:
  - Use of Simulator Data to Support HRA: A Case Study from UJV Rez. EPRI, Palo Alto, CA: 2013. 3002001038.
- The main findings of the project were presented to CR crews during special education lessons





- Recommendations to <u>HRA Quantification</u> (Failure Mechanisms, PSFs)
  - Changed quantification of some human failure events included in PSA (using Bayesian approach)
  - Take into account "group setting" control of some components (plant specific factor)
  - Confirmed some qualitative assumptions:
    - Negative dependence between operator errors
    - Need to consider
      - experience of operators
      - length of step,
      - number of negations,
      - step logic,



etc.



#### Recommendations to <u>Training</u>

- Pay more attention to the instructions stated in the <u>Conditional</u> <u>Information Pages</u>
- Too <u>fast or imprecise (too silent) reading of procedure</u> text by the unit supervisor
- Observed deficiencies related to knowledge of some specific terms
  - Cool down at maximum allowed rate
  - Six different types of reactor power
- Using <u>three-way communication</u> during phone calls <u>with local</u> <u>personal only</u>
- Enable operators to observe performance of other crews





- Recommendations to <u>Procedures</u>
- Goal: Identify shortcomings in ergonomy of symptom based procedures related to human factors aspects (design, formulations, logic, step length,...)
- Scope of analyzed procedures:
  - Procedures for abnormal conditions LOCAs (type A)
  - Emergency operating procedures (type E)
  - Procedures for function restoration (type FR)
  - Procedures for low power and shut down states (type SD)
- Note: Czech symptom based procedures are based on Westinghouse logic of procedures



### Simulator Data Collection II - Recommendations to Procedures



- Generally, <u>quality of the procedures</u> was assessed as <u>very high</u>
- Several recommendations were formulated, e.g.:
  - Problems with <u>NOT logic</u> -> eliminate if possible
  - More <u>accurate formulations</u> (parameter is stable, pressure is normal, the value of parameter X "trends" to the value of Y,...)
  - Adding or removing some <u>definitions of important terms</u> (3 types of levels in SGs or pressurizer, 6 different types of reactor power)
  - Some procedural steps were too complicated or long -> divide into more steps
  - Different shading of rows in case of long tables
  - Missing logic operators (-AND-, -OR-, -IF THEN-,...) -> <u>rigorous</u> using of logic operators + <u>highlight</u> all the operators (in bold)





- Time period 2017-2020
- Funded by Technology Agency of the Czech Rep.
  - TACR provides financial support for R&D from national budget
- Facility:
  - Dukovany NPP (EDU) full-scope training simulator (FSS)
  - Temelin NPP (ETE) full-scope training simulator (FSS)
- Crews involved
  - 32 crews at Dukovany NPP
  - 16 crews at Temelin NPP
- Mode of collection combination of offline (automatic software) and online (personal observation) collection
- Cooperation with Czech universities



- Goal of the project is development and testing of NPP control room simulator data collection methods and results, with focus on abnormal and emergency operation.
- The main areas of interest are:
- 1. searching of priorities in human factors treatment for CR crew, including support of HRA as a part of PSA
- 2. improvement of control room operators training
- 3. improvement of ergonomics of symptom based and other procedures used by CR crew
- 4. improvement of simulation runs, searching for problems occurred during simulations





#### Schedule

- 09/2017: Development of collecting module (software) for EDU
- 12/2017: Data collection at EDU (1st run)
- 03/2018: Development of collecting module (software) for ETE
- 06/2018: Data collection at ETE (1st run)
- 12/2018: Analysis of data: results & recommendations (1st run)
- 2019: Continuation of data collection at EDU and ETE NPPs (2nd run)
- 12/2019: Analysis of data: results & recommendations (2nd run)
- 2020: Continuation of data collection at EDU and ETE NPPs (3rd run)
- 10/2020: Final results & recommendations (based on all runs)





- Scenarios selected for collection at Dukovany NPP:
  - Main Steam Collector Break (50 t/h)
  - Large Loss of Coolant Accident Followed by Flooding of Hermetic Rooms
  - LOCA (65 t/h) and Steam Generator Tube Rupture (17 t/h)
- Analysis of data from these scenarios started in March 2018
- Scenarios for collection at Temelin FSS will be selected in April 2018





### Thank you for your attention!

