
Transforming HRA using SACADA data, Bayesian 
methods, and DBNs

Katrina M. Groth, Jonathan D. Tedeschi, Ramin Moradi
University of Maryland



Proposed approach

 PIF hierarchy + SACADA + Cognitive Basis + DBNs 
 Result: New paradigm for HRA. 

 Data-driven, science-based, dynamic, transparent, repeatable.
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Proposed approach

 PIF hierarchy + SACADA + Cognitive Basis + DBNs 

 Method
 Map observables to data elements in HRA
 BN structure to capture detailed causal pathways & interdependencies 

based on cognitive basis
 (among PIFs, observable factors, CFs, and human performance).

 Bayesian updating + SACADA data for refining the parameters of the 
model.

 Dynamic BNs + IDAC to represent temporal aspects & dependency 
across HFEs (including of PSFs)
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Presentation Goal & Outline

Goal: Propose an approach for using the SACADA data and 
Bayesian methods to improve HEP estimation & HRA technical 
basis.

1. Understand and describe the SACADA data set
2. Propose approach & describe methods
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R&D Motivation

 Challenge: Existing HRA methods lack technical basis / are 
heavily reliant on expert judgment

 International HRA data collection projects offer the 
opportunity to enhance HRA technical basis.
 US NRC SACADA, Halden Reactor Project, KAERI, etc.

 New modeling efforts should focus on:
 Creating methods will strong technical basis (combining psychological 

research, operating experience, simulator data)
 Adding underlying causal model to answer “why”, not just “how often”
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Hybrid HRA/PRA model
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P(HFE1), P(HFE2), ….

Equipment data



 Example of one scenario with multiple malfunctions and TOEs

Description of SACADA Data 
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Description of SACADA Data

Scenarios Malfunctions TOEs
86 329 2155

Crew-Step Count Total Unsat Count Total Sat Delta Count
26153 209 261

Unique TOEs w/Unsat Unique TOEs w/Sat Delta TOEs w/Sat Del+Unsat
149 219 27

 All information comes from three sets of data received from the NRC

 Varying number of crews averaging ~12 crews performing each TOE 

 Some steps have multiple Sat delta and/or Unsatisfactory results
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Description of Data

 To describe the context for each TOE, Situational Factors are 
used, based on the mentioned cognitive types and other 
overarching factors, such as work load and time criticality.

 Similarly, Performance Factors are used to classify and describe 
the reasons for error of the steps that were not satisfactory.
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Situational Factors Performance Factors TOEs for each type
Monitoring/Detection 7 3 228

Diagnosis 6 4 151

Decision Making 4 2 323

Execution/Manipulation 5 3 321

Communication & 
Coordination 2 2 87

Overarching 5 7 1045

Total 29 21 2155



Mind map of CFs & frequency of use in 
public data set (to be updated)
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TOE types in the dataset

 Seeing how the cognitive types and importance levels are 
distributed over all steps, compared to the steps with sat delta 
and unsatisfactory results.

1. Null
2. Monitoring/Detection
3. Diagnosis 
4. Decision Making
5. Manipulation
6. Communication
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1. Null
2. Other
3. Significant
4. Safety Significant
5. Critical



Data Discussion

 Almost half of TOEs are without cognitive type
 Almost half of TOE has no PIFs indicated

 Includes 139 (39%) of the 341 TOEs that have Sat Delta or Unsat ratings

 9 Debriefed TOEs do not have any PIFs

 Unable to differentiate between “Null” (didn’t enter anything, 
so defaulted to 0) and “Not applicable” (intentionally entering 
0).

 Some Situational Factors (PIFs) may not used; some may be 
redundant; running additional analysis to identify gaps.

 Temporal ordering of TOEs is worth exploring further
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Methods
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Proposed approach

 Build BN causal model for each macro-cognitive function. 
 Use PIF hierarchy from Groth 2012 to provide neutral terminology
 Build causal structure for each BN based on published NRC Cognitive Basis 

for HRA (Whaley et al 2016).

 Quantify priors 
 Using existing HRA methods (SPAR-H? IDHEAS?) and published data 

sources as done in previous work.

 Update model using SACADA data
 Develop mapping of SACADA data onto nodes of BN model
 Conduct Bayesian updating on the conditional probability tables using method 

from Groth, Swiler, Smith.

 Extend into dynamic space using DBNs + IDAC
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PersonOrganization Machine Situation StressorsTeam

Taxonomy of PIFs
 Provides application neutral, clearly defined, non-overlapping 

set of factors for modeling use.
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Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability 
Engineering and System Safety, 108, 154-174.



BN-based quantitative models for HRA

Baseline: P(Err)
1.88E-03
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𝑃𝑃 𝐻𝐻𝐻𝐻𝐻𝐻 = ∑𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃 𝐻𝐻𝐻𝐻𝐻𝐻 𝐸𝐸𝐸𝐸𝐸, 𝐸𝐸𝐸𝐸𝐸, 𝐸𝐸𝐸𝐸𝐸, 𝐸𝐸𝐸𝐸𝐸 ∗ 𝑃𝑃 𝐸𝐸𝐸𝐸𝐸|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗
𝑃𝑃 𝐸𝐸𝐸𝐸𝐸|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑃𝑃 𝐸𝐸𝐸𝐸𝐸|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑃𝑃 𝐸𝐸𝐸𝐸𝐸|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 *P(PSFs)

Groth, Katrina  M., & Mosleh, Ali.  (2012). Deriving causal Bayesian networks from human reliability analysis data: A methodology 
and example model. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226, 361-379.



BN-based quantitative models for HRA

Crew Failure 
Mode (CFM)

Baseline
P(CFM)

Skip procedure step 6.41E-03
Postpone step 1.22E-02

Data discounted 3.42E-03
Data incorrectly 
processed 2.06E-02
Data not obtained 1.88E-03

Incorrect operation 4.74E-04
Omit component 1.04E-03
Unintentionally 
delay 1.51E-03
Select wrong 
component 1.15E-03
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• Model structure explicitly link PSFs outcomes(e.g., crew 
failure modes; macrocognitive functions)

• Quantitative relationships can be defined with multiple types 
of data and/or experts; update w/Bayesian methods.

Etc.



Build BN causal model for each 
macrocognitive function. 
 Build BN causal model for each macrocognitive function. 

 Detection
 Diagnosis
 Decision Making
 Execution
 Teamwork/Communication 

 Build structure for each BN by mapping from NRC cognitive 
literature basis

18



Use BNs to capture known causal paths 
 Create model structures which explicitly illustrates the causal 

paths from NRC Cognitive basis – all relevant PSFs used, 
including “PSF details” and factors which may not be 
observable.

 Follow approach from Zwirglmaier (2017) -- implemented this 
of this one of IDHEAS CFMs; need to do for others
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Zwirglmaier, K., Straub, D., & Groth, K. M. (2017) Capturing cognitive causal paths in human reliability analysis 
with Bayesian network models, Reliability Engineering & System Safety, 158, 117-129.



Method for updating HEP & PSFs using 
observations data
 Method developed by Groth & Swiler 2013, applied to SPAR-

case study w/ Halden data.
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• Groth & Swiler (2013). Bridging the gap between HRA research and HRA practice: A Bayesian Network version of SPAR-H. 
Reliability Engineering and System Safety, 115, 33-42. 

• Groth, Smith & Swiler (2014). A Bayesian method for using simulator data to enhance human error probabilities assigned by existing 
HRA methods. Reliability Engineering & System Safety,128, 32-40.



Data: Mapping SACADA variables onto 
SPAR-H PSFs
 Simulator studies on NPP crews

 Collects detailed, second-by-second data on plant parameters
 Collects detailed data on human performance

 2010 runs: 15 experiments on 4 crews
 (See www.hrp.no for more details)
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http://www.hrp.no/


Example of Halden data mapped SPAR-
H PSFs

Case A

Case B

Case C

Case D
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Quantification: P(PSFs)
PSF Source Probability distribution
P(Time)
5 states

NUREG/CR-6949

P(Stress)
3 states

NUREG/CR-6949

P(ExpertTrain)
3 states

Curve fit
(Available from 
plant data)
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Quantification: P(Error|PSFs)

 Use existing HRA model (e.g., SPAR-H) 

 NHEP: 0.001 for action tasks (via SPAR-H)

 Augment with expert elicitation as needed.
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𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

∏⋅=
8

1

iPSFNHEPHEP



Halden data to SPAR-H

 Prior (SPAR-H)
 Posterior (SPAR-H + data)
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Case P(error|case)
A 1.0e-3
B 0.1688
C 1.0
D 1.0e-4

Case SPAR-H P(error|case)
A 9.92e-4
B 0.500 (or 0.214)
C 1.0
D 1.0e-4

Confirms some of the SPAR-H assignments. Changes others.



Combining BNs with IDAC: Mosleh & 
Chang
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DBNs for Event (HFE) dependency 
Quantification
 Dynamic Belief Networks (DBNs) to model dependency 

between sequential human activities (human failure events)
 First proposed in Groth (2009), Mosleh (2012) Ekanem & Mosleh 2013
 Expanded in HUNTER framework (Boring et al 2015)
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• Boring, R., Mandelli, D., Joe, J., Smith, C., & Groth, K. (2015). A Research Roadmap for Computation-Based Human Reliability Analysis. Idaho 
National Laboratory, INL/EXT-15-36051.

• Mosleh, A., Shen, S.-H., Kelly, D. L., Oxstrand, J. H., & Groth, K. (2012). A Model-Based Human Reliability Analysis Methodology. Proceedings of 
the International Conference on Probabilistic Safety Assessment and Management (PSAM 11). 

• Ekanem, N. J., & Mosleh, A. (2013). Human failure event dependency modeling and quantification: A Bayesian network approach, Proceedings of the 
European Society for Reliability Annual Meeting (ESREL 2013).



DBNs for HFE dependency 
Quantification: taking it one step farther
 Repeated sub-models for each cognitive type

 PSF lag/linger & HFE-to-subsequent-HFE dependency
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Implications for HRA

1. Using HRA data adds credibility
2. Expanding causal details and using cognitive basis adds traceability & 

credibility
3. BNs allow information & data fusion, dependency & uncertainty handling
4. DBNs + SACADA allow first look into temporal evolution of human 

performance in NPPs
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Summary: Proposed approach

 Build BN causal model for each macro-cognitive function. 
 Use PIF hierarchy from Groth 2012 to provide neutral terminology
 Build causal structure for each BN based on published NRC “Cognitive Basis 

for HRA” (Whaley et al 2016).

 Quantify priors 
 Using SPAR-H and published data sources as done in Groth, Swiler, Smith. 

 Update model using SACADA data
 Develop mapping of SACADA data onto nodes of BN model
 Conduct Bayesian updating on the conditional probability tables using method 

from Groth, Swiler, Smith.

 Extend into dynamic space using DBNs + IDAC
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Thank you!
kgroth@umd.edu



References
1. Chang, Y.J., Bley, D., Criscione L., Kirwan, B., Mosleh, A., Madary, T., Nowell, R., Richards, R., Roth, E. M., Sieben, S., & 

Zoulis, A. (2014). The SACADA database for human reliability and human performance, Reliability Engineering & System 
Safety, 125, 117-133.

2. Whaley, A.M. et al., “Cognitive Basis for Human Reliability Analysis,” US Nuclear Regulatory Commission, Washington 
DC, NUREG-2114, Jan. 2016.

3. Groth, Katrina M., Smith, Curtis L., Swiler, Laura P., (2014). A Bayesian method for using simulator data to enhance human 
error probabilities assigned by existing HRA methods. Reliability Engineering & System Safety, 128, 32-40. 

4. Groth & Swiler (2013). Bridging the gap between HRA research and HRA practice: A Bayesian Network version of SPAR-
H. Reliability Engineering and System Safety, 115, 33-42. 

5. Groth, Katrina  M., & Mosleh, Ali.  (2012). Deriving causal Bayesian networks from human reliability analysis data: A 
methodology and example model. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and 
Reliability, 226, 361-379.

6. Zwirglmaier, K., Straub, D., & Groth, K. M. (2017) Capturing cognitive causal paths in human reliability analysis with 
Bayesian network models, Reliability Engineering & System Safety, 158, 117-129.

7. Boring, R., Mandelli, D., Joe, J., Smith, C., & Groth, K. (2015). A Research Roadmap for Computation-Based Human 
Reliability Analysis. Idaho National Laboratory, INL/EXT-15-36051.

8. Mosleh, A., Shen, S.-H., Kelly, D. L., Oxstrand, J. H., & Groth, K. (2012). A Model-Based Human Reliability Analysis 
Methodology. Proceedings of the International Conference on Probabilistic Safety Assessment and Management (PSAM 11). 

9. Ekanem, N. J., & Mosleh, A. (2013). Human failure event dependency modeling and quantification: A Bayesian network 
approach, Proceedings of the European Society for Reliability Annual Meeting (ESREL 2013).

10. Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability 
Engineering and System Safety, 108, 154-174.

32



Backup
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Visual recap of approach
 Bayesian Networks causal 

models
 To capture causal relationships & 

uncertainty
 Extend to DBN to handle 

temporal aspects & scenario 
evolution

 Bayesian parameter updating
 To incorporate data into 

probability assignments
 IDAC model 
 To capture scenario & PSF 

evolution

34



Basic HRA Process

 HRA Objectives:
 Identify: Define human failure events (HFEs) for inclusion 

in PRA;
 Represent: Model the factors that contribute to HFEs;
 Quantify: Assign human error probability (HEP) values ;

35

Identify Represent Quantify



Relevant Terminology

 Human Error Probabilities (HEPs) 
 Likelihood that for a given situation, a human failure will occur

 Training Objective Elements (TOEs) 
 Steps taken to remedy a malfunction, considered a single data point

 Performance Influencing Factors (PIFs) 
 Conditions present during the scenario that have an effect on the outcome, also known as 

Context Factors 

 Cognitive Types 
Macro-cognitive functions used to describe different types of human behavior. These include:
 Monitoring/Detection
 Diagnosis
 Decision Making

 Execution/Manipulation
 Teamwork/Communication
 Supervising
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 Example of data taxonomy 

Description of Data
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Chang, Y.J., Bley, D., Criscione L., Kirwan, B., Mosleh, A., Madary, T., Nowell, R., Richards, R., Roth, E. M., Sieben, S., & Zoulis, A. (2014). The 
SACADA database for human reliability and human performance, Reliability Engineering & System Safety, 125, 117-133.



Types of data
 Actual counts of failure and success

 Simulator data
 H2ERA, OPERA, SACADA

 Retrospective data
 HERA, HFIS, CORE-DATA, NUCLARR

 Expert Estimates 
 Point estimates of HEP(of HEP, of the effect of a PIF, of PIF 

interrelationships, of the frequency of a PIF in events)
 Linear models

 Cognitive models
 Direction of relationship between two PIFs
 Magnitude of impact of PIF on error

 HEPs generated by applying HRA models
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Causal Models

 HRA is one of several areas of PRA that use 
causal models instead of statistical models.
 Statistical models: “How often?”

 Predictions for static, uncertain conditions
 Require data

– Classical statistics: large (infinite) number of 
exchangeable observations

– Bayesian statistics: sparse data 

 Causal models: “Why?”
 Predictions for changing (uncertain) conditions
 May or may not use data
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Example BN built directly from 
SACADA “Diagnosis” SFs
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Bayesian Network: A tool & a model

 A model which…
 Explicitly encodes relevant variables & dependencies
 …In terms of a simplified probability distribution
 Permits multiple types of data/information to be used in a single 

reasoning framework.

 A tool for reasoning (under uncertainty) about causes and 
effects
 Conducting inference (reasoning from cause to effect) and diagnosis 

(reasoning from effect to cause)
 About uncertain states, with limited information, under changing 

conditions
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𝑃𝑃 𝐸𝐸𝐸𝐸 ∩ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∩ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∩ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∩ 𝐵𝐵𝐵𝐵
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