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Proposed approach

sSYrRrRA

= PIF hierarchy + SACADA + Cognitive Basis + DBNs

» Result: New paradigm for HRA.
= Data-driven, science-based, dynamic, transparent, repeatable.

Model structure: Built =

from existing HRA
Un Still determin- method (SPAR-H)
o i lant statu:
Easiness ambiguity I Crew trained to £ P o SaS T
b understand the RS Prior probabilities: Use
read scenario faskitalhﬂn existing HRA method &
Clear display usual expert elicitation
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I perception n simulator data from
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1

Method: Implement
Bayes' Theorem to
update probabilities in
model

Manipulation
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Proposed approach

sSYrRrRA

= PIF hierarchy + SACADA + Cognitive Basis + DBNSs

= Method

= Map observables to data elements in HRA
= BN structure to capture detailed causal pathways & interdependencies
based on cognitive basis
= (among PIFs, observable factors, CFs, and human performance).

= Bayesian updating + SACADA data for refining the parameters of the
model.

= Dynamic BNs + IDAC to represent temporal aspects & dependency
across HFEs (including of PSFs)




7%

sSYrRrRA

Presentation Goal & Outline

Goal: Propose an approach for using the SACADA data and
Bayesian methods to improve HEP estimation & HRA technical
basis.

1. Understand and describe the SACADA data set
2. Propose approach & describe methods




R&D Motivation -"x%;’
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= Challenge: Existing HRA methods lack technical basis / are
heavily reliant on expert judgment

= International HRA data collection projects offer the
opportunity to enhance HRA technical basis.
= US NRC SACADA, Halden Reactor Project, KAERI, etc.

= New modeling efforts should focus on:

= Creating methods will strong technical basis (combining psychological
research, operating experience, simulator data)

= Adding underlying causal model to answer “why”, not just “how often”




Hybrid HRA/PRA model
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Description of SACADA Data 3
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= Example of one scenario with multiple malfunctions and TOES

Malfunction TOE Order

Scenario Year Cycle Malf. Order

TOE (training objective element)

RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 1 TRIGGER step 1, Loss of Feedwater.

RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 2 Acknowledges annunciators using directed communications tc
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 3 Directs a manual reactor trip and entry into 0POP05-EQ-EOQ00.

RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 4 Perform Immediate 0POP05-EQ-EQ00 Immediate Actions from
R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 5 Reports Lockout on E1C

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 6 Stops SDG 13

RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 7 Takes 5G C PORV, to manual.

RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 1 Transition to OPOP0O5-EQ-ESO1

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 2 Crew begins monitoring Critical Safety Functions.

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 3 At ES-0.1step 3, crew recognizes that 'A" and 'C' MDFP are not '
R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 4 (Prior to ES-0.1, step 8) Notices and reports NO AFW Flow mak
R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 5 At ES-0.1 step 8, crew recognizes that 5G levels have been falli
R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 6 (After ES-0.1, step 8) Notices and reports decreasing 5G Level
R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 7 Motifies Owners of the Rx. Trip within 15 minutes of a unit trig
R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 8 Dispatches PO to check valve line up on B 5G

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 9 Reports criteria to enter FRH1 is met.

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 10 Determines FRHL is required.

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 11 ENTERS and Directs FRH1

R5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 12 Determines Bleed and Feed is Required based on requiremen
RS5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 13 Determines Feed & Bleed is required based on FR-H.1 step 9.

RS5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 14

RS5T211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 3 Commences FEED and BL 1 Determines Recirc valve is open and orders AF-009 to be shut




Description of SACADA Data @
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= All information comes from three sets of data received from the NRC

Malfunctions

86 329 2155

= Varying number of crews averaging ~12 crews performing each TOE

Crew-Step Count Total Unsat Count Total Sat Delta Count

26153 209 261

= Some steps have multiple Sat delta and/or Unsatisfactory results

Unique TOEs w/Unsat | Unique TOEs w/Sat Delta | TOEs w/Sat Del+Unsat

149 219 27
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Description of Data

= To describe the context for each TOE, Situational Factors are
used, based on the mentioned cognitive types and other
overarching factors, such as work load and time criticality.

= Similarly, Performance Factors are used to classify and describe
the reasons for error of the steps that were not satisfactory.

_ Situational Factors | Performance Factors | TOEs for each type

Monitoring/Detection

Diagnosis 6 4 151
Decision Making 4 2 323
Execution/Manipulation 5 3 321
Communication & 5 5 87

Coordination
Overarching 5 7 1045
Total 29 21 2155
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TOE types in the dataset @
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= Seeing how the cognitive types and importance levels are
distributed over all steps, compared to the steps with sat delta
and unsatisfactory results.

Mormalized Cognitive Type Distribution

Normalized Importance Distribution
I i data I ! data

09r I Unsat/Sat Delta data| | S I Unsat/Sat Delta data | |
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0.8 08

2. Monitoring/Detection Lo Nl
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Data Discussion
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= Almost half of TOEs are without cognitive type
= Almost half of TOE has no PIFs indicated

= Includes 139 (39%) of the 341 TOEs that have Sat Delta or Unsat ratings

= 9 Debriefed TOEs do not have any PIFs

= Unable to differentiate between “Null” (didn’t enter anything,
so defaulted to 0) and “Not applicable” (intentionally entering
0).

= Some Situational Factors (PIFs) may not used; some may be
redundant; running additional analysis to identify gaps.

= Temporal ordering of TOEs is worth exploring further




sSYrRrRA

Methods
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Proposed approach

= Build BN causal model for each macro-cognitive function.
= Use PIF hierarchy from Groth 2012 to provide neutral terminology
= Build causal structure for each BN based on published NRC Cognitive Basis
for HRA (Whaley et al 2016).
= Quantify priors
= Using existing HRA methods (SPAR-H? IDHEAS?) and published data
sources as done in previous work.

Update model using SACADA data

= Develop mapping of SACADA data onto nodes of BN model

= Conduct Bayesian updating on the conditional probability tables using method
from Groth, Swiler, Smith.

Extend into dynamic space using DBNs + IDAC




Taxonomy of PIFs

= Provides application neutral, clearly defined, non-overlappins(jf"mﬁ
set of factors for modeling use.

Organization Team Person Machine Situation Stressors
f Organization- based 1 Team-based f Person-based 1 Machine-based Situation-based Stressor-basad

s Training Program « Communication s Attention e HSI e External Environment e Perceived Situation:
—~  Availability — Availability — To Task — Input e Hardware & Software — Severity
~ Quality — Quality — To Surroundings = Output Conditions ~ Urgency

s Corrective Action Program e Direct Supervision e Physical & Psychological e System Responses e Task Load e Perceived Decision:
— Availability — Leadership Abilities — Ambiguity e Time Load — Responsibility
= Quality — Team member — Alertness e Other Loads — Impact

e Other Programs e Team Coordination — Fatigue — Non-task + Personal
- Availability e Team Cohesion —~ Impairment — Passive Information + Plant
~ Quality e Role Awareness ~ Sensory Limits e Task Complexity * Society

o Safety Culture — Physical attributes — Cognitive

o Management Activities — Other —~ Task Execution
— Staffing « Bias

# Number
+ Qualifications
# Team composition

e Morale/Attitude

— Problem Solving Style
— Information Use

~ Scheduling —~ Prioritization
+ Prioritization + Conflicting Goals
+ Frequency + Task Order
e Workplace adequacy ~ Compliance
e Resources e Knowledge/Experience
— Procedures e Skills
+  Availability e Familiarity with Situation
+# Quality
-~ Tools
#  Availability
* Qllﬂl-it}'

— Necessary Information
+ Availability
+ Quality

Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability
Engineering and System Safety, 108, 154-174.




BN-based guantitative models for HRA

Training
Org. Culture

Resources

Team

Knowledge

@

LTA

0.37

Adequate

0.63

LTA

0.48

Adequate

0.52

LTA

0.40

Adequate

0.60

LTA

0.46

Adequate

0.54

LTA

0.53

Adequate

0.47

Org. Culture

LTA

Adeq.

LTA 0.36

0.62

Resources

Machine

Adequate | 0.64

0.38

Knowledge

LTA

Adeq.

LTA 0.47

0.87

Attitnde |

Org. Culture LTA

Adeq.

Resources | LTA | Adeq. | LTA

Adeq.

LTA 0.62

0.50 | 0.57

0.52

Complexity g uate | 0.38

0.50 | 0.43

0.48

P(HFE) = Y peps P(HFE|EC1,EC2,EC3,EC4) » P(EC1|PSFs) *

P(EC2|PSFs) * P(EC3|PSFs) * P(EC4|PSFs) *P(PSFs) Baseline: P(Err)
1.88E-03

Groth, Katrina M., & Mosleh, Ali. (2012). Deriving causal Bayesian networks from human reliability analysis data: A methodology
and example model. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226, 361-379.
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BN-based guantitative models for HRA

e Model structure explicitly link PSFs outcomes(e.g., crew
failure modes; macrocognitive functions)

e Quantitative relationships can be defined with multiple types
of data and/or experts; update w/Bayesian methods.

Crew Failure Baseline

Mode (CFM) P(CFM)

Postpone step 1.22E-02

Data incorrectly
processed 2.06E-02

Incorrect operation 4.74E-04

Unintentionally
delay

1.51E-03




Build BN causal model for each P
macrocognitive function. g odl

= Build BN causal model for each macrocognitive function.
= Detection
= Diagnosis
= Decision Making
= Execution
= Teamwork/Communication

= Build structure for each BN by mapping from NRC cognitive
literature basis
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= Create model structures which explicitly illustrates the causal
paths from NRC Cognitive basis — all relevant PSFs used,

Including “PSF details” and factors which may not be
observable.

= Follow approach from Zwirglmaier (2017) -- implemented this
of this one of IDHEAS CFMs need to do for others

Stlll determin-

Use BNs to capture known causal paths
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_ nominal J / usual 1
Clear display ) Several
of range for Indicators Training Workload <«
z easy to read and 11 ﬁlﬂm‘lS
comparison o
ey \ / @
HSI/ of urgency,
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Zwirglmaier, K., Straub, D., & Groth, K. M. (2017) Capturing cognitive causal paths in human reliability analysis

with Bayesian network models, Reliability Engineering & System Safety, 158, 117-129.




Method for updating HEP & PSFs using Z4%.
observations data .ol

= Method developed by Groth & Swiler 2013, applied to SPAR-
case study w/ Halden data.

Model structure: Built
from existing HRA
method (SPAR-H)

N P(Error) = Z P(Error|PSFs,_g ) = P(PSFs),_g
PSFs

Prior probabilities: Use ]
existing HRA method & P(Error) = NHEP-T T PSF:
expert elicitation . e Bumime  Nomnal Bagy st rsdequc

Data: Extract from
simulator data from
nuclear power research

Method: Implement T s ,
2 From application Likelihood : .,

Bayes’ Theorem to -

update probabilities in

model

» Groth & Swiler (2013). Bridging the gap between HRA research and HRA practice: A Bayesian Network version of SPAR-H.
Reliability Engineering and System Safety, 115, 33-42.

» Groth, Smith & Swiler (2014). A Bayesian method for using simulator data to enhance human error probabilities assigned by existing

HRA methods. Reliability Engineering & System Safety,128, 32-40.
-




Data: Mapping SACADA variables onto #3%.
SPAR-H PSFs ~,

= Simulator studies on NPP crews
= Collects detailed, second-by-second data on plant parameters
= Collects detailed data on human performance

= 2010 runs: 15 experiments on 4 crews
= (See www.hrp.no for more details)



http://www.hrp.no/

Example of Halden data mapped SPAR- 2%
H PSFs Jn.oal

Time Stressors Complexity ExpertTrain Procedures ErgoHMI Fitness WorkProcs Error?

Extra Nom. Moderate  Nom. Awail., but poor Nom. Nom. Nom. No -

Extra Nom. Moderate  Nom. Awail., but poor Nom. Nom. Nom. No L Case A
Extra Nom. Moderate  Nom. Awail., but poor Nom. Nom. Nom. No

Extra Nom. Moderate  Nom. Avail., but poor Nom. Nom. Nom. No _

Barely adeq. High Moderate  Nom. Awail., but poor Nom. Nom. Nom. No =

Barely adeq. High Moderate  Nom. Avail., but poor Nom. Nom. Nom. Yes(No) | Case B
Barely adeq. High Moderate  Nom. Awail., but poor Nom. Nom. Nom. Yes(No)

Barely adeq. High Moderate  Nom. Awail., but poor Nom. Nom. Nom. Yes

Inadequate High High Low Awail., but poor Nom. Nom. Poor Yes 7]

Inadequate High High Low Awail., but poor Nom. Nom. Poor Yes L Case C
Inadequate High High Low Avail., but poor Nom. Nom. Poor Yes

Inadequate High High Low Awail., but poor Nom. Nom. Poor Yes

Extra Nom. Nom. Nom. Nom. Nom. Nom. Nom. No =

Extra Nom. Nom. Nom. Nom. Nom. Nom. Nom. I'-Ic- = Case D
Extra Nom. Nom. Nom. Nom. Nom. Nom. Nom. |

,_




Quantification: P(PSFs)
PSF

Probability distribution

P(Time) NUREG/CR-6949 1
5 states 0.5 .
0 . _ ..
Expansive  Extratime Nominal time Barely adeq. Inadequate
time time time
P(Stress) NUREG/CR-6949 1
3 states . .
0 - .
Nominal High Extreme

P(ExpertTrain)  Curve fit 1
3 states (Available from s

plant data) a - -

High Medium | Low

Similar NUREG/CR-6949 values for: P(Complexity), P(Procedures), P(ErgoHMI),
P(Fitness), P(WorkProcs)

Next steps: Combining simulator data with NUREG/CR-6949 values




Quantification: P(Error|PSFs) @
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P(Error|Time, Stress, Complexity, ExpertTrain, Procedures, ErgoHMI, Fitness, WorkProcs)

= Use existing HRA model (e.g.,SSPAR-H)

HEP = NHEP -] | PSF:
= NHEP: 0.001 for action tasks (vid SPAR-H)

= Augment with expert elicitation as needed.




Halden data to SPAR-H —’:?Q‘

Prior (SPAR-H)

sSYrRrRA

= Posterior (SPAR-H + data)

Case P(errorjcase) Case
A 1.0e-3 A
B 0.1688 B
C 1.0 C
D 1.0e-4 D

SPAR-H P(error|case)
9.92e-4

0.500 (or 0.214)

1.0

1.0e-4

Confirms some of the SPAR-H assignments. Changes others.




Combining BNs with IDAC: Mosleh & 2%
Chang Prcard

Human Error in IDA Framework
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DBNSs for Event (HFE) dependency 5%
Quantification ;‘i{a

= Dynamic Belief Networks (DBNs) to model dependency
between sequential human activities (human failure events)
= First proposed in Groth (2009), Mosleh (2012) Ekanem & Mosleh 2013
= Expanded in HUNTER framework (Boring et al 2015)

Detection PSFs Diagnosis PSFs Copy of Detection Manipulation
PSFs PSFs
ki ki ki K
Detection1 Diagnosel Detection? Manipulation2
7] [7] [7] [7]
Stepi
Stepd o
: Step2 Stept

Copy of
Diagnosi
£ PSFe A

DecidePlanz
Ki
Stepd

e Boring, R., Mandelli, D., Joe, J., Smith, C., & Groth, K. (2015). A Research Roadmap for Computation-Based Human Reliability Analysis. Idaho
National Laboratory, INL/EXT-15-36051.

e Mosleh, A., Shen, S.-H., Kelly, D. L., Oxstrand, J. H., & Groth, K. (2012). A Model-Based Human Reliability Analysis Methodology. Proceedings of
the International Conference on Probabilistic Safety Assessment and Management (PSAM 11).

« Ekanem, N. J., & Mosleh, A. (2013). Human failure event dependency modeling and quantification: A Bayesian network approach, Proceedings of the
European Society for Reliability Annual Meeting (ESREL 2013).




DBNs for HFE dependency 5%
Quantification: taking it one step farther ¥

= Repeated sub-models for each cognitive type
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Implications for HRA

1. Using HRA data adds credibility

2. Expanding causal details and using cognitive basis adds traceability &
credibility

3. BNs allow information & data fusion, dependency & uncertainty handling

4. DBNs + SACADA allow first look into temporal evolution of human
performance in NPPs




Summary: Proposed approach @
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Build BN causal model for each macro-cognitive function.
= Use PIF hierarchy from Groth 2012 to provide neutral terminology

= Build causal structure for each BN based on published NRC “Cognitive Basis
for HRA” (Whaley et al 2016).

= Quantify priors
= Using SPAR-H and published data sources as done in Groth, Swiler, Smith.

Update model using SACADA data

= Develop mapping of SACADA data onto nodes of BN model

= Conduct Bayesian updating on the conditional probability tables using method
from Groth, Swiler, Smith.

Extend into dynamic space using DBNs + IDAC
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Visual recap of approach

= Bayesian Networks causal
models

= To capture causal relationships &
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Basic HRA Process -'@Q‘
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Identify 2

= HRA Objectives:

= |dentify: Define human failure events (HFEs) for inclusion
In PRA;

= Represent: Model the factors that contribute to HFES;
= Quantify: Assign human error probability (HEP) values ;




Relevant Terminology
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= Human Error Probabilities (HEPS)

= Likelihood that for a given situation, a human failure will occur

= Training Objective Elements (TOEs)

= Steps taken to remedy a malfunction, considered a single data point

= Performance Influencing Factors (PIFs)

= Conditions present during the scenario that have an effect on the outcome, also known as
Context Factors

= Cognitive Types

Macro-cognitive functions used to describe different types of human behavior. These include:

= Monitoring/Detection = Execution/Manipulation

= Diagnosis = Teamwork/Communication
= Decision Making = Supervising




Description of Data -@r"
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= Example of data taxonomy

The situational factors for characterizing the context of detecting the status change of an indicator.

Situational factors and optional statuses
Situational factors specific to the macrocognitive function

Detecting Maode:;

o Procedure directed check: procedure directs crew to check a specific indicator or parameter,

o Procedure directed monitoring.

o Knowledge driven monitoring: knowledge of the situation or expectation of change in the parameter prompts crew to monitor.
o Awarenessf/inspection: non-procedurally directed monitoring or awareness of plant parameters.

Degree of change:
o Slight change: i.e.,, requires some effort to detect the change.
o Distinct change: i.e., prominent and readily detected if looked at.

Miscellaneous:

1 No mimics: requires operator to rely on memory.

1 Small indications: can be read only from a close distance.

1 Similar displays: multiple identical displays in the same bank of control panel.

Situational factors with overarching effects are same as shown in Table Al.

Chang, Y.J., Bley, D., Criscione L., Kirwan, B., Mosleh, A., Madary, T., Nowell, R., Richards, R., Roth, E. M., Sieben, S., & Zoulis, A. (2014). The
SACADA database for human reliability and human performance, Reliability Engineering & System Safety, 125, 117-133.




Types of data

=  Actual counts of failure and success

= Simulator data
= H2ERA, OPERA, SACADA

= Retrospective data
= HERA, HFIS, CORE-DATA, NUCLARR

= Expert Estimates

= Point estimates of HEP(of HEP, of the effect of a PIF, of PIF
Interrelationships, of the frequency of a PIF in events)

= | inear models

= Cognitive models
= Direction of relationship between two PIFs
= Magnitude of impact of PIF on error

= HEPs generated by applying HRA models

sSYrRrRA




Causal Models

SYRRA
= HRA is one of several areas of PRA that use
causal models instead of statistical models.
= Statistical models: “How often?”
= Predictions for static, uncertain conditions
= Require data
— Classical statistics: large (infinite) number of >
exchangeable observations
— Bayesian statistics: sparse data —
= Causal models: “Why?” 0
= Predictions for changing (uncertain) conditions Q

= May or may not use data o = =N
@ ® @

Common cause




Example BN built directly from »
SACADA “Diagnosis” SFs ;‘:f;

Missinginfo Conflictinginfo
ki 7

Misleadinginfo
K i

[ Outcome [ Familiarity > Diagnosis Basis
(2 Information specifici (> Information Integration| 2 Information quali
P ty ToProcedure ¢ Standard Skill qualty
Lt ToSkil T Novel Procedure S
Nenspecific - |ToKnowled. . ki NetRegquired 7] Anomaly ki Knowledge |.,?.__,,_o-“" Narmal [7]
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Bayesian Network: A tool & a model

= A model which...
= Explicitly encodes relevant variables & dependencies
= ...Interms of a simplified probability distribution
= Permits multiple types of data/information to be used in a single
reasoning framework.
= A tool for reasoning (under uncertainty) about causes and
effects

= Conducting inference (reasoning from cause to effect) and diagnosis
(reasoning from effect to cause)

= About uncertain states, with limited information, under changing

conditions (o™ @
““"*"‘ ‘@ Parent | Pr(a) | Pr(@)
@‘ Child |20 | Pribla) | Prbla)
Pr(b) | Pr(bla) | Pr(bla)

Context

P(EC N PSF1 N PSF2N PSF3NBM)
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