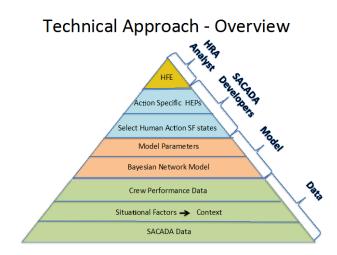

A Method to use SACADA Data for Estimating Human Error Probabilities of Human Failure Events

Human Reliability Analysis Data Workshop March 15 – 16, 2018



Participants

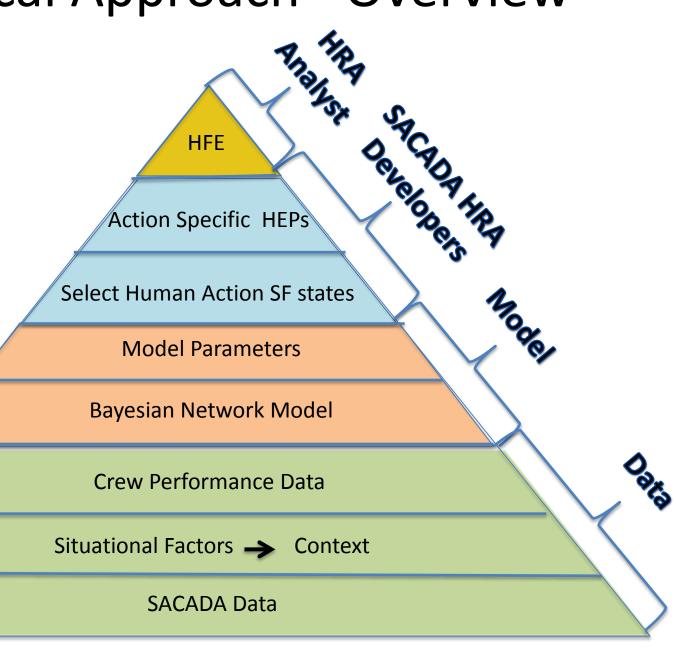
- Stanley Fitch, Project Manager, Trinitek Services
- Pamela F. Nelson, UNAM
- C.R. Grantom, CRG LLC

Outline

- Introduction/Background
- Objectives
- Technical Approach
 - Data
 - Models
 - SACADA HRA Developer
 - HRA Analyst
- Examples
- Conclusions
- Next Steps
- Q&A

Introduction

- SACADA (The Scenario Authoring, Characterization, and Debriefing Application)
- The SACADA has enabled NPP simulators to provide empirical data on control room processes and actions
- Over the last several years, a significant amount of simulator data has been acquired from a pilot NPP
- The data represents actual simulator exercises and scenarios developed by licensed Operations' simulator instructors
- The method also includes feedback information from licensed Operators
- The SACADA data structure breaks down control room actions into various Macrocognitive Functions (MCogs)
- Which in turn are broken down into Training Objective Elements (TOEs)


Research Questions

- Can simulator data inform HEPs for use in NPP HRAs?
- Can simulator data provide value added input for HRA?
- Can it be used to model actual operator actions in the control room?
- Can TOEs be compared to actions as a part of HFE Macrocognitive Functions?
- Can the resulting tool be used as a tool to improve human performance?

Research Objective

- Perform data analysis of the SACADA data to inform HRA and HEP estimates.
- Develop a data driven methodology to calculate HEPs from simulator data

Technical Approach - Overview

HFE NAME AND THE PARTY OF THE P

OENG.

Action Specific HEPs

Select Human Action SF states

Model Parameters

Bayesian Network Model

Crew Performance Data

Situational Factors → Context

SACADA Data

Model

OS/C

Data Development & Processing

- SACADA data is structured by Macrocognitive Functions (Mcog)
 - Monitoring/Detecting
 - Diagnosis
 - Response Planning
 - Manipulation
 - Communication (excluded from the study)
- Human actions in simulator scenarios are defined as Training Objective Elements (TOEs)
- Each TOE is characterized by a set of Situational Factor (SF) states referred to as the "Context"
 - TOEs and SF states are defined by licensed simulator instructors
 - TOEs with the same Context represent the same human action

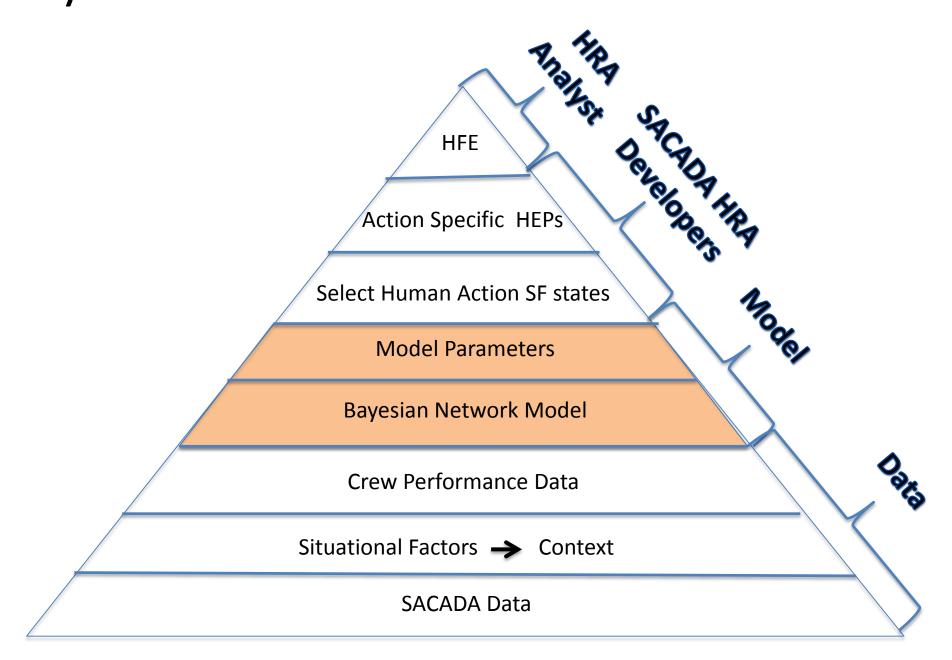
Context Counting

(Number of trials per context)

Cognitive Type: 1																
(including overarching)																
Monitoring/Detection Detection Type	Alarms/Stat us Tile Detection Mode	Alarms/Sta tus Tile Status of Alarm Board	Alarms/Stat us Tile Expectation of Alarm/Indic ation Change	Meter/Light /Flag Detection Mode	/Flag	Meter/Light /Flag Mimics/Dis play etc.	Overarching Issues Workload	Issues Time	Overarching Issues Extent of Communicat ions Required	Issues Other	Quantity (with Overarching)	Quantity with UNSAT	Quantity with	Total	Total SAT Δ	
0:NULL 1:Alarm 2:Status Tile 3:Meter 4:Indication Light 5:Flag 6:Computer 7:Other	1:Self- Revealing 2:Procedure	1:Dark 2:Busy 3:Overload ed	0:NULL 1:Expected 2:Not Expected 3:Not Applicable	1:Procedure Directed Check	1:Slight Change 2:Distinct Change	1:No Mimics 2:Small Indications 3:Similar	1:Normal 2:Concurren t Demands 3:Multiple Concurrent Demands	1:Expansive Time Available 2:Nominal Time Available 3:Barely Adequate Time Available	1:Nominal Communicat ion 2:Extensive Onsite Communicat ion 3:Extensive Communicat ion Within the Control	2:Noisy Background 3:Coordinati on 4:Communic ator						
1	1	1	0	0	0	0	1	1	1		6	0	0	0	0	78
1	1	1					_	1			1	0				16
1	1	1			0	_	2	2	1		_			_	_	_
1	1	1			0	0	2	2	2	0	1	0	1			
1	1	1	0	0	0	0	2	2	3		1	0	0	0	0	
1	1	1	0	0	0	0	2	3	1	5	1	0	0	0	0	
1	1	1	2	0	0	0	1	1	0	0	1	0	0	0	0	
1	1	1	2		0	_	1	1	1	0	13	1	1	_		157
1	1	1	2		0	_	1	1	1		1	0	_	_		
1	1	1	. 2		0	_	1	1	2	0	_	_	_	_	_	
1	1	1	_		0	_	1	1	3	1	1	0			_	_
1	1	1	2		0	_	1	2	1	0	8	0	0	_		
1	1	1	2		0	0	1	3	1	0	1	0	1	_		14
1	1	1	2		0	_	1	3	2	1	1	0		_		
1	1	1	2	0	0	0	2	1	1	0	1	0	0	0	0	_
1	1	1	_		0	0	2	2	1	0	1	0	0	0	0	15
			2		0	0	2	2		6						12

Char worksheet sorted by context

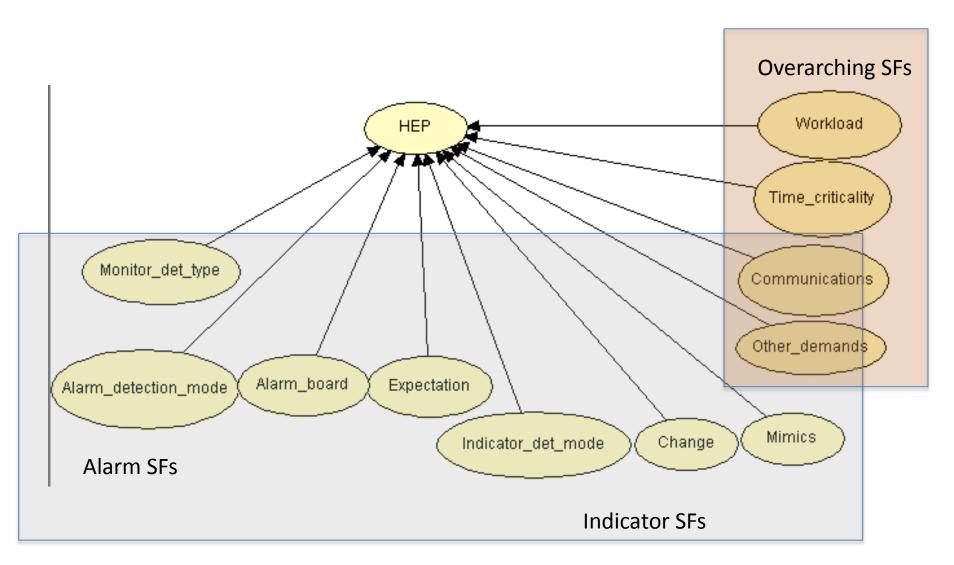
	A	В	С	L	M	N	0	Р	Q	R	S	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU
	TOE (training objective element)	+ Scen	Orig	nitive 1	Moni	Alar	Alar	Alar	Mete	Mete	Mete	Over	Over	Over	Over			Aggrega	te Totals		
1			Orde		torin	ms/S	ms/S	ms/S	r/Lig	r/Lig	r/Lig	archi	archi	archi	archi			¥ SAT Δ¥ SAT+ ¥ Total ¥			
				0:NU	0:NU	0:NU	0:NU	0:NU	0:NU	0:NU	0:NU	0:NU	0:NU	0:NU	0:NU						
2	<u>™</u>	•	~	-γ	LL wit	ш⊠	ш 🔽	LL 🔽	ш 🔽	LL 🔽	LL 🔼	ш	ц 🔽	ш	ш 🖾	UNSA	SAT M	SAT ∆ ✓	SAT+ ■	Total M	JNSA 🔀
	Evaluate and Respond to alarms IAW	Evalua	319	1	1	1	1	0	0	0	0	1	1	1	0	0	12	0	(12	0
	Evaluate and Respond to alarms IAW	Evalua	323	1	1	1	1	0	0	0	0	1	1	1	0	0	12	0	(12	0
	Report No. 12 Condensate Pump Trip																				
11	annunciator.	Report	618	1	1	1	1	0	0	0	0	1	1	1	0	0	15	0	(15	0
																					78
																					78
			40.5					-	_	_	_					_		_			_
	Determines 12 ACW pump has tripped	Detern		1	1	1	1	0	0	_	0	1	1	1	0	0	13		9	13	0
	,	Detern		1	1	1	1	0		_	0	1	1	1	0	0	12			12	0
36	Note the ICS alarm	Note t	1190	1	1	1	1	0	0	0	0	1	1	1	0	0	14	0	- (14	0
126	Passands to slave 10M01 P/F	Doonos	600					0	0	0	0	2			_	0	16	0	0	16	0
120	Responds to alarm 10M01 B/6	Respor	680	1	1	1	1	U	U	U	U	2	1	1	U	U	16	U	U	10	U
	Report SGFPT 12 TRIP annunciator and																				
	verify Main Feed Pump #12 has tripped.	Report	626	1	1	1	1	0	0	0	0	2	2	1	5	0	15	n	n	15	0
	Determines a Reactor Trip signal is	пероп	020	-	_		_				_	-		_		·	13			13	
	present with NO Reactor Trip	Detern	430	1	1	1	1	0	0	0	0	2	2	2	0	0	8	1	0	9	0
	Enters 0POP09-AN-02M4 and	Enters	549	1	1	1	1	0	0		0	2	2	3	0	0	14	0	0	14	0
				_	_	_	_			_			_	_		_			_		_
190	Determines that PT-0557 failed low	Detern	516	1	1	1	1	0	0	0	0	2	3	1	5	0	14	0	0	14	0
_	Enters OPOP09 and Ensures the Standby																				
195	OL-ACW pump starts and is maintaining	Enters	698	1	1	1	1	2	0	0	0	1	1	0	0	0	12	0	0	12	0
202	Identifies failure (Respond to alarms)	Identif	1	1	1	1	1	2	0	0	0	1	1	1	0	0	3	0	0	3	0
	Respond to SDG 12 trouble alarm per																				
	the alarm response procedure	Respor	124	1	1	1	1	2	0	0	0	1	1	1	0	0	13	0	1	14	0
	Responds to changes in indicated																				
221	letdown flow (alarm response)	Respor	188	1	1	1	1	2	0	0	0	1	1	1	0	0	11	1	0	12	0

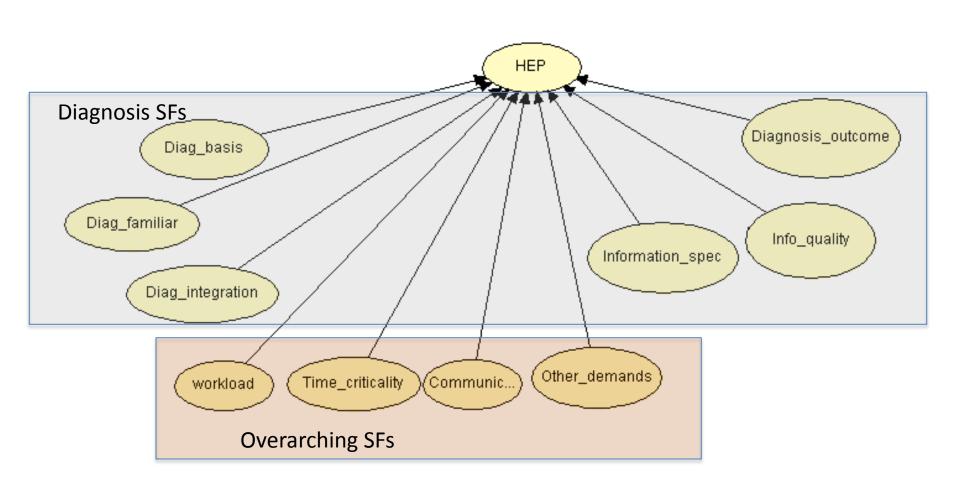

Note that several TOEs have the same context.

SACADA Data Input Preparation

(Remove original column headers and columns not used in Hugin)

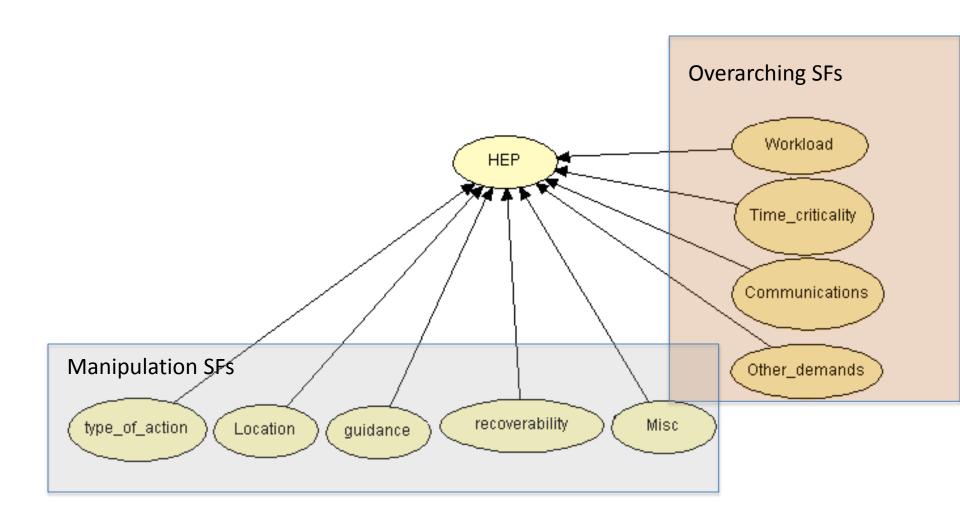
_1	A	В	С	D	Е	F	G	Н	1	J		K	L	M	N	0	Р	Q	R	S	Т
					Indicator_	Change	Mimics								Communic	Multiple_	Memory_	Alarm_iss	Indicator_i	Other_EM	Null
1	et_type	ection_mo	ard	n	det_mode				cality	ations		dard	kground	on	ation_una	demands	demands	ue	ssue		
2	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	1	0
3	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
4	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
5	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
6	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
7	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
8	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
9	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
10	6	0	0	0	0	1	. 0	1	1		1	0	0	0	0	0	0	0	0	0	1
11	6	0	0	0	0	1	. 0	1	1		1	0		_	0			0	0	0	1
12	6	0	0	0	_	1	. 0	1	1		1	0	_	0	0	_		_	0	0	1
13	6	0	0	0	0	1	. 0	1	1		1	0			0	-			0	0	1
14	1	1	1	2		0	-	1	1		1	0		_		_		_	_	0	_
15	1	1	1	2		0		1	1		1	0							_	0	
16	1	1	1	2		0	-	1	1		1	0	_	_	_	_	_	_	_	0	
17	1	. 1	1	2		0	-	1	1		1	0	_					_	_	0	
18	1	. 1	1	2	0	0		1	1		1	0		0	0				0	0	1
19	1	1	1	2	_	0	-	1	1		1	0	_		_	-			_	0	
20	1	. 1	1	2	0	0	_	1	1		1	0	_			_				0	_
21	1	1	1	2		0	_	1	1		1	0	_			_		_	_	0	
22	1	1	1	2		0		1	1		1	0	_					_	_	0	
23	1	. 1	1	2	0	0	-	1	1		1	0		_	_	_	_	_	_	0	
24	1	1	1	2		0		1	1		1					_				0	
25	1	1	1	2	_	0	0	1	1		1	0		_		-	_	_		0	
26	6		0	0		1	. 1	2	2		1	1	0			_				0	
27	6		0	_		1	. 1	2	2		1	1	0		_		_		_	0	
28	6				_	1	. 1	2	2		1	1	0	_		_	_		_	0	_
29	6	0	0		_	1	. 1	2	2		1	1	0					_		0	
30	6		0			1	. 1	2	2		1	1	0					_		0	
31	6	0				1	. 1	2	2		1	1	0						_	0	
32	6	0	0	_	_	1	. 1	2	2		1	1	0	_	_	_	_	_	_	0	_
33	6		0			1	. 1	2	2		1	1	0	0				_	_	0	
34	6	0			_	1	. 1	2	2		1	1	0	_		-		_	_	0	_
35	6	0	0			1	. 1	2	2		1	1	0		_					0	
36	6		0	_	_	1	. 1	2	2		1	1	0	_	_	_	_		_	0	_
37	6	0	0		2	1	. 1	2	2		1	1	0			_		_	_	0	_
38	1	1	2	2	_	0		2	2		1	0	_					_	_	0	
39	1	1	2	2		0		2	2		1	0			_		_			0	_
40	1	1	2	2		0		2	2		1									0	
41	1	1	2	2	0	0	0	2	2		1	0	0	0	0	0	0	0	0	0	1


Bayesian Network Models


Bayesian Network Approach

- Able to incorporate expert opinion and empirical data
- Graphical and visual
- HEPs are functions of SFs
- Updatable
 - Learning algorithm to include experience
- Hugin software program was chosen


Detection / Monitoring: MCog1


Diagnosis: MCog2a

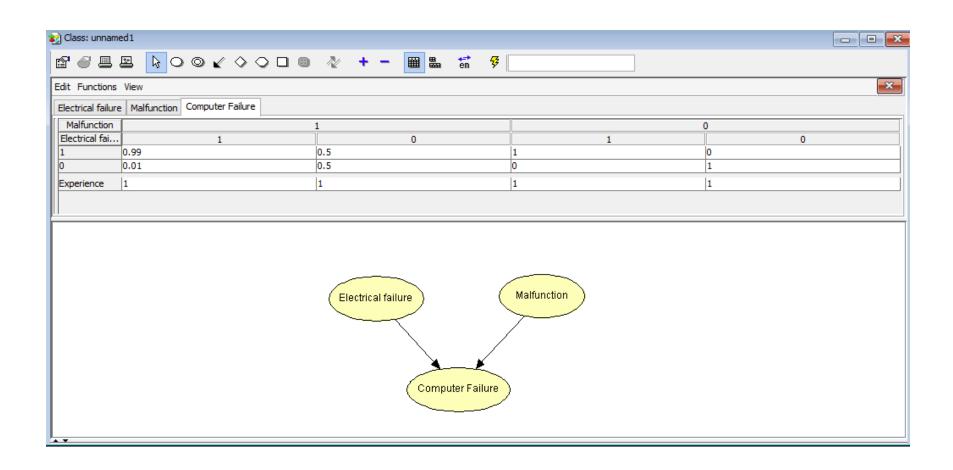
Response Planning: MCog2b

Manipulation: MCog3

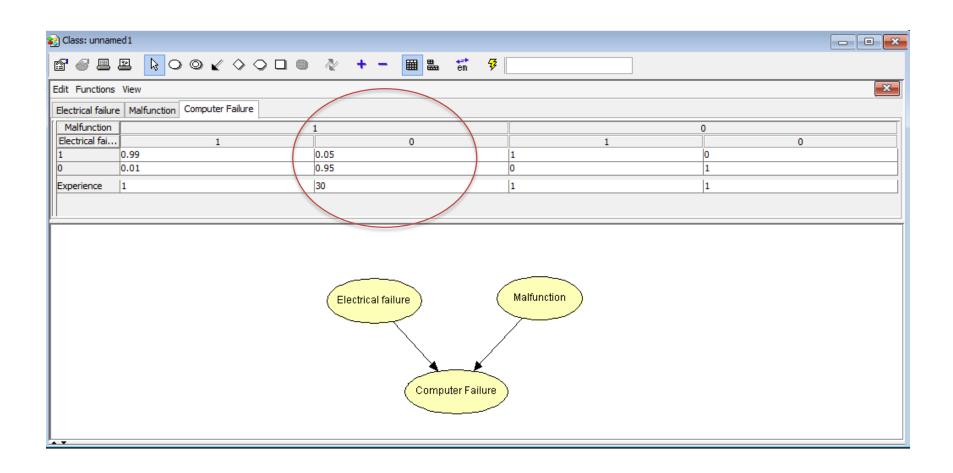
BN Model Parameters

- The probabilities of the SF states based on plant operating experience or expert judgment
- Prior probabilities for each context input
 - Expert judgment
 - HRA method (e.g., SPAR-h)
 - Other approach (weight factors developed from SACADA data, currently underway)
 - Over time, priors will come from SACADA data
- The number of trials and failures for each context
 - HUGIN uses counting-learning algorithm to update the prior from the SACADA input file

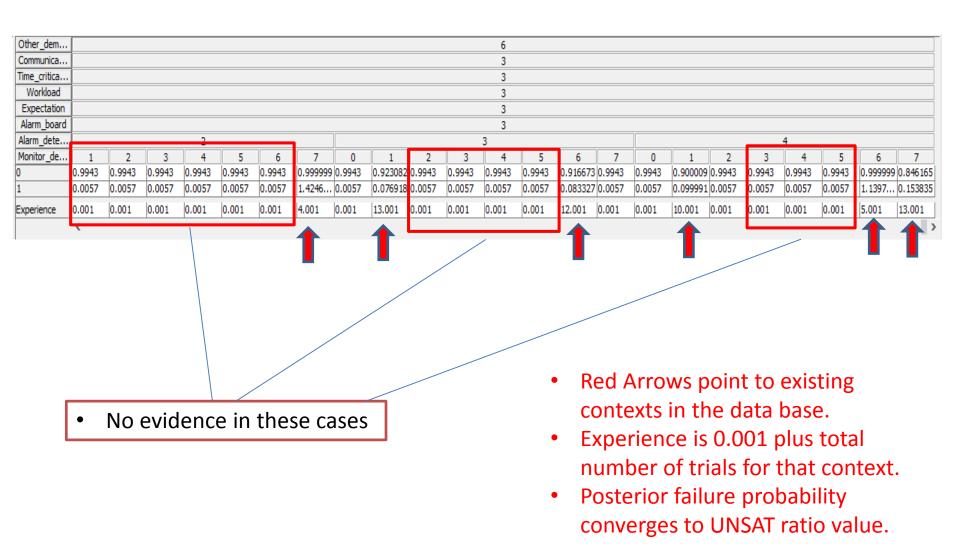
Input field observations

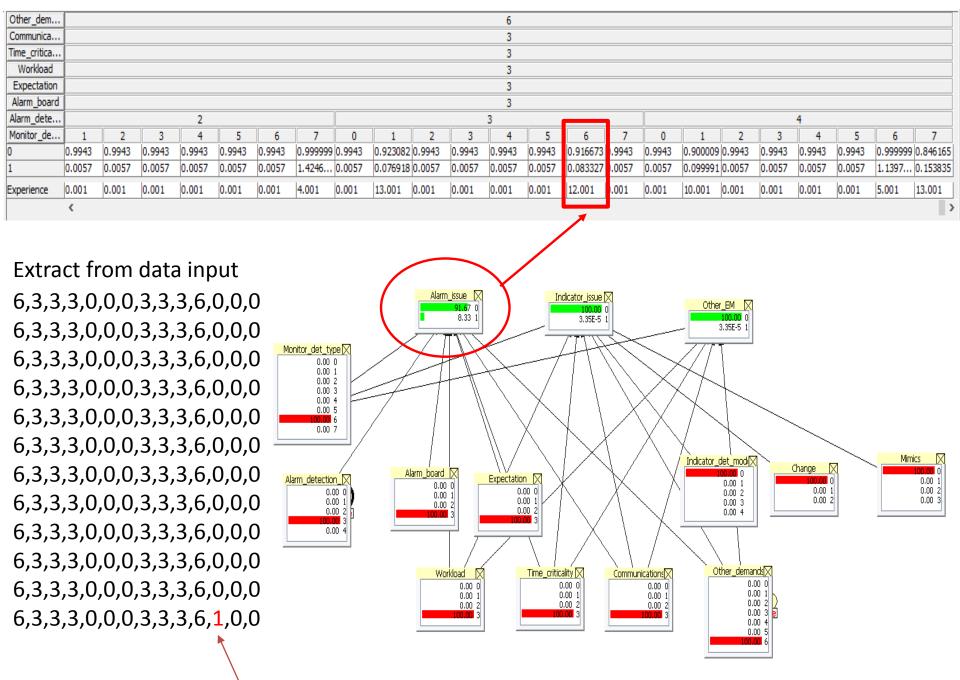

Learning algorithm:

```
((Prior probability * prior experience) + failures)/
(prior experience + no. of trials)
((0.5x1)+1)/(1+29)=.05
```


 Thus, the probability of this cell went from 0.5 to .05

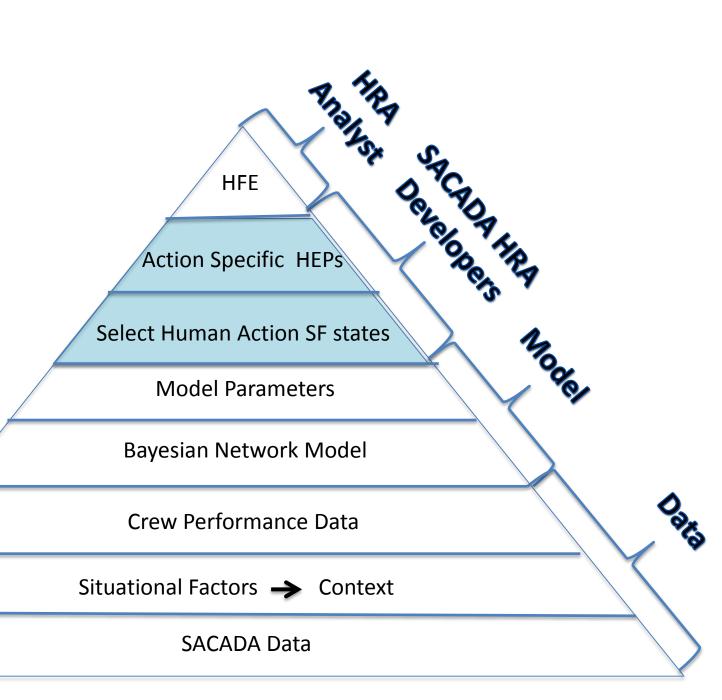
All 29 observations were in one cell of the CPT and one of those had a failure.

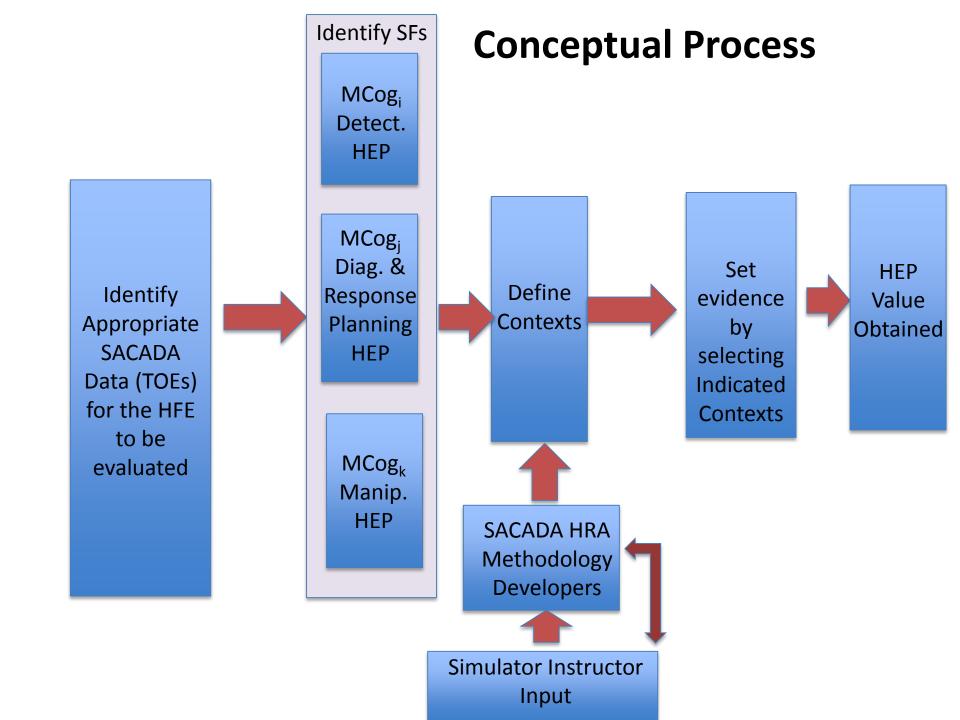

Original Conditional Probability Table



Probability of computer failure updated with 1 failure in 29 observations

Part of Alarm_Issue Conditional Probability Table





1 unsat, 12 trials: 1/12=0.08333...= 8.33%

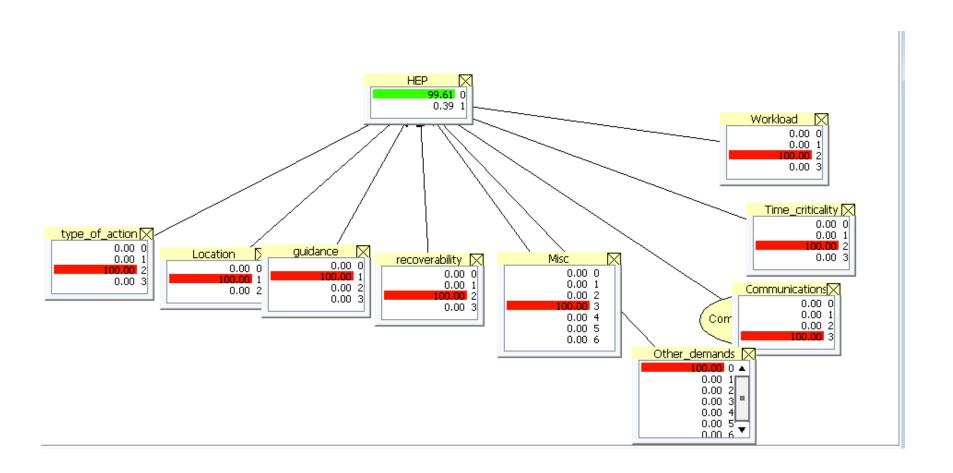
Prior probability and its significance

- If there are 0 failures in a number of trials, the probability will become small
- If there are 1 or more failures in a number of trials, the probability will trend toward the failure rate observed, independent of the prior probability.
- If there are no trials, the prior remains the same, thus prior becomes important for those human actions where no SACADA trials have occurred.

Example 1: Feed and bleed

SFs from TOEs

TOE


MCog SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8

Commences monitoring Critical Safety									
Functions. (Recognizes and informs US									
of red path on Heat Sink.)	1	6	0	0	0	3	2	0	0
Transitions to OPOP05-EO-FRH1,									
Response to Loss Of Secondary Heat									
Sink when addendum 5 is complete.	2	0	0	0	0	0	0	0	2
Trip RCPs per FRH1 CIP or step 2 due									
to inadequate WR S/G level. (<50% on									
2 or more SG)	3	0	0	0	0	0	0	0	0
Initiate RCS bleed and feed so that the									
RCS depressurizes sufficiently for HHSI									
pump injection to occur	3	0	0	0	0	0	0	0	0

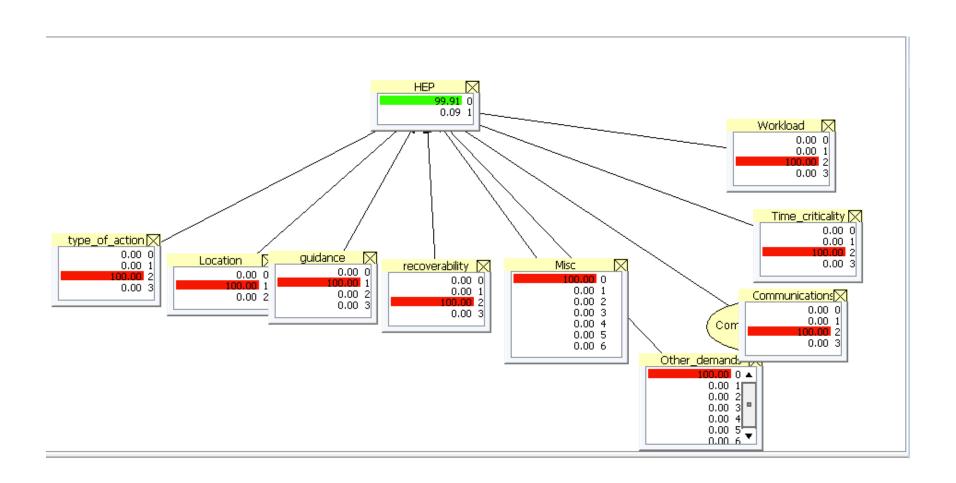
Identify SFs

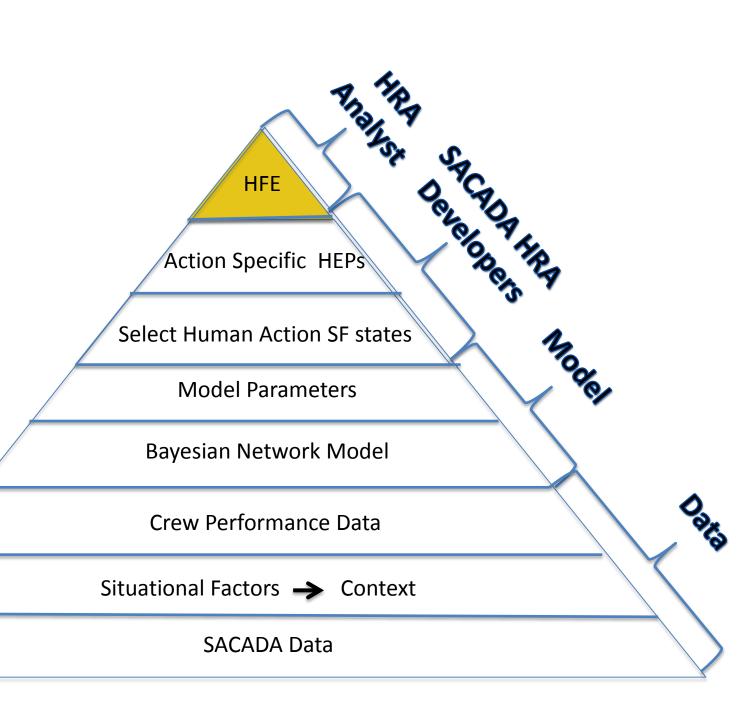
TOE 8	Description	SACADA PSFs									
тое	Description	Detection Macrocognitive Function	Diagnosis & Planning Response Macrocognitive Function	Manipulation Macrocognitive Function	Overarching Contexts						
1249	Commences monitoring Critical Safety Functions. (Recognizes and informs US of red path on Heat Sink.)	Detection Type: Computer Detection Mode: Procedure Directed Individual Indicator: Slight Change									
1250	Transitions to 0POP05-EO-FRH1, Response to Loss Of Secondary Heat Sink when addendum 5 is complete.		Diagnosis and Response Planning: Diagnosis or Response Planning Primarily Response Planning/Decision Making Response Planning /Decision Making Basis Knowledge Response Planning /Decision Making Uncertainty Clear								

Feed& Bleed:MCog3=.0039

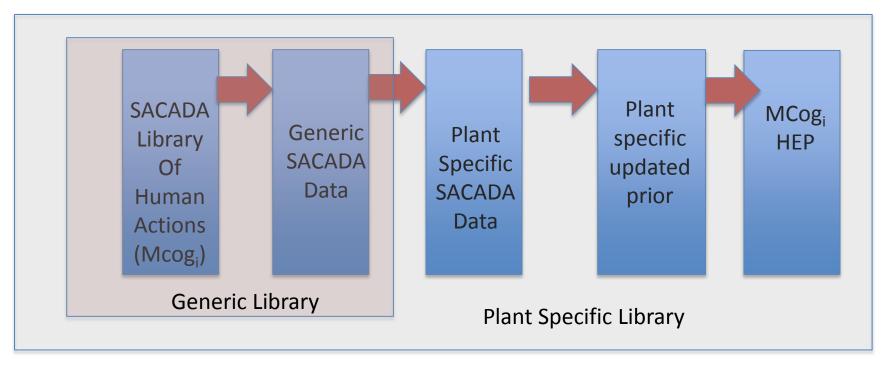
Feed & Bleed HFE Results

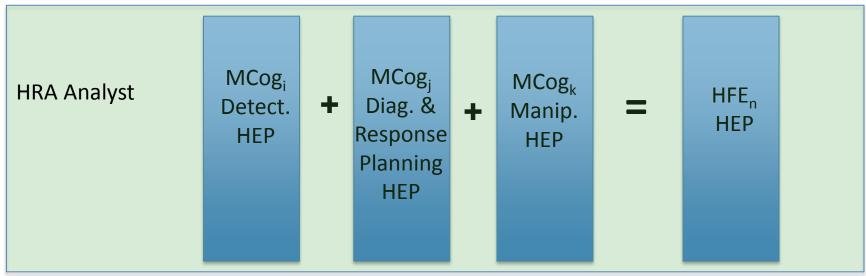
- MCog1 0.0033
- MCog2a 0
- MCog2b 0.053
- MCog3 0.0039


• HFE HEP = .0602


RHR cut in results

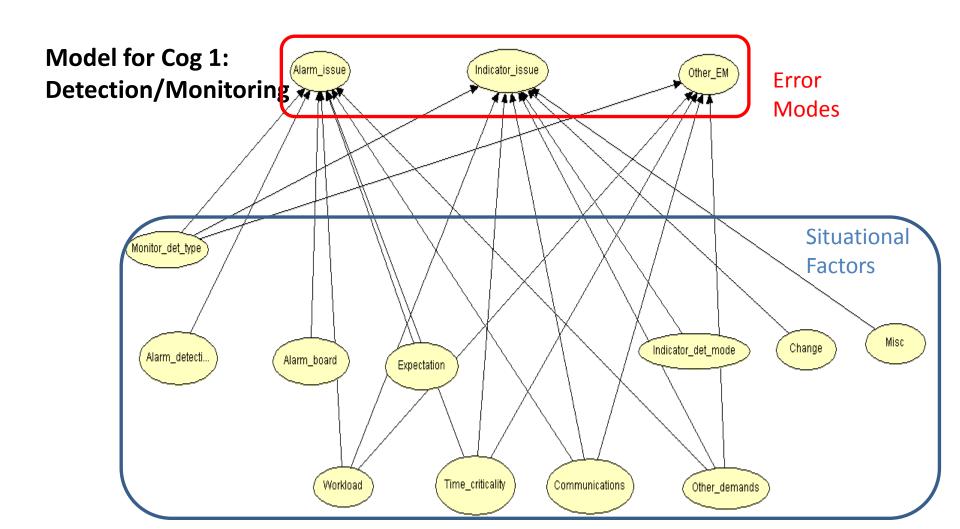
- MCog1 .0041
- MCog2a 0
- MCog2b .01
- MCog3 .0009


• HFE HEP = 0.015

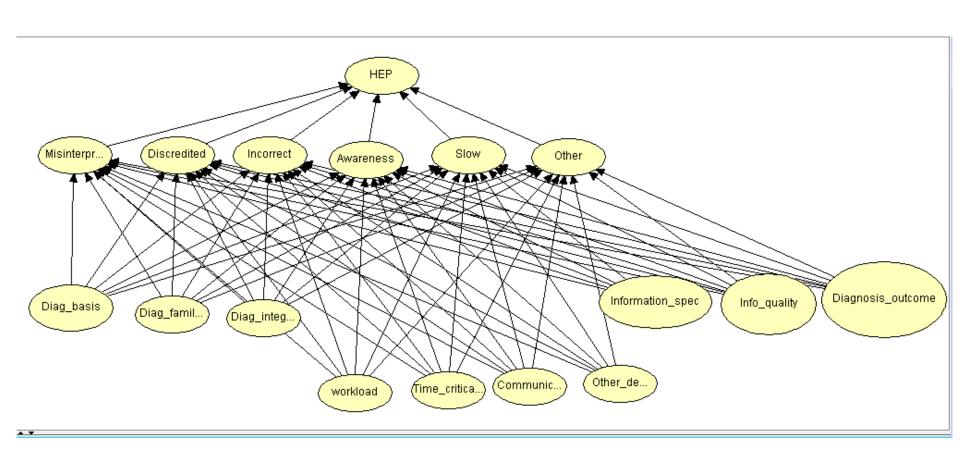

RHR cut in: MCog3 = .0009

SACADA HRA Configuration Control: Conceptual Process

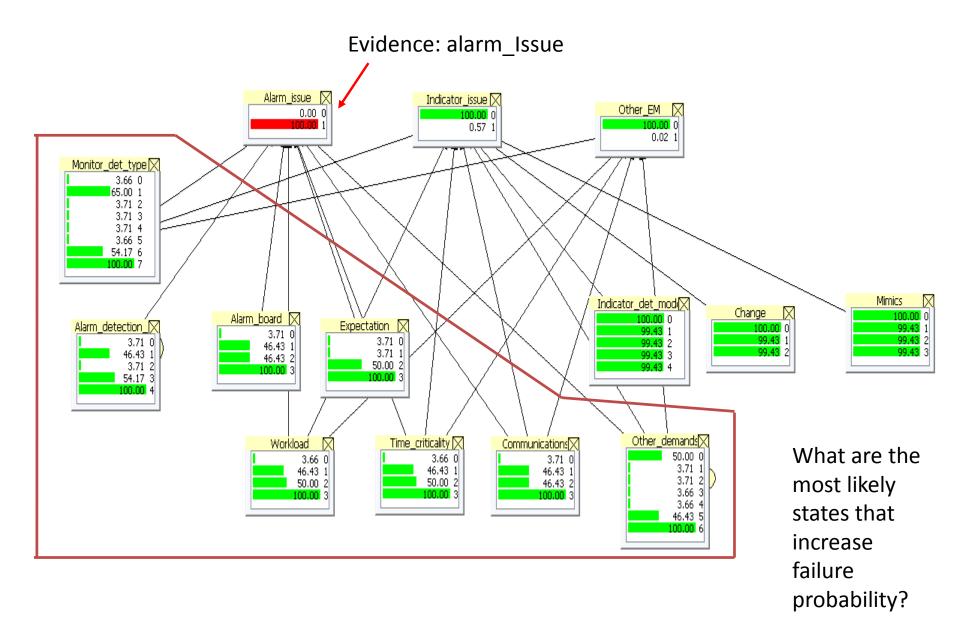
Conclusions

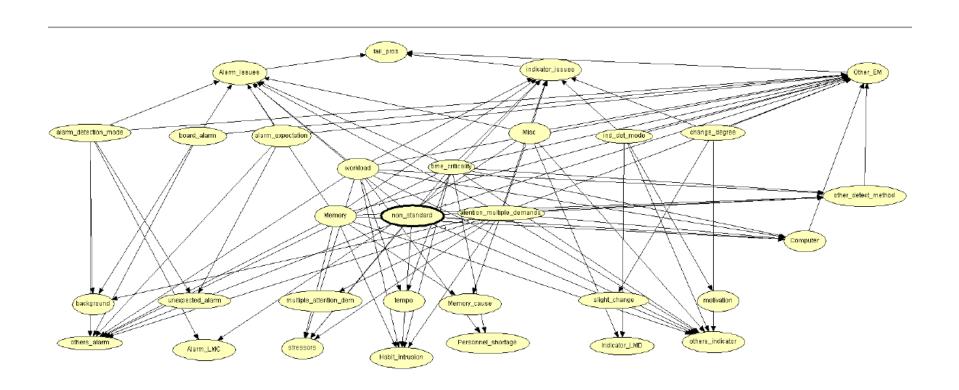

- The SACADA data has been shown to be useful for developing HEPs
- Meets the requirements from the ASME/ANS PRA standard
- Realistic
- Over time can grow to provide generic HEPs that are updatable with plant specific HEPs
- Can be used to improve plant performance

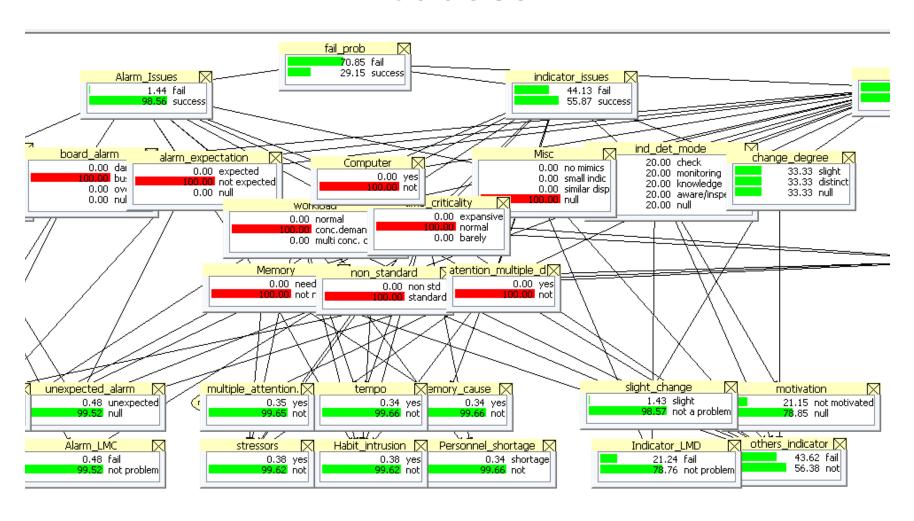
Next Steps


- Create library of human actions
 - Refine models
 - Refine corresponding input files
 - Improve SACADA data input processes
- Incorporate recovery data
- Address dependencies
- Characterize uncertainties
- Calculate SF weight factors for priors
- Find next pilot plant
- Share insights to improve the SACADA system

Human Performance Improvements


- Develop human performance tools using SACADA debrief control room crew error modes and error causes
- Determine HEPs at Error Mode level
- Use to determine the SF states that most likely result in errors
- Use to determine the most likely error causes
- Can be used for maintenance and surveillance


Diagnosis: MCog2a


Inference

Error Modes SF Error Causes

Model With Error Modes and Error Causes

Q & A

Contact Information

Trinitek Services, Inc.
PO Box 1608
Sandia Park, New Mexico USA
(505) 286-4387
http://www.3tks.com/

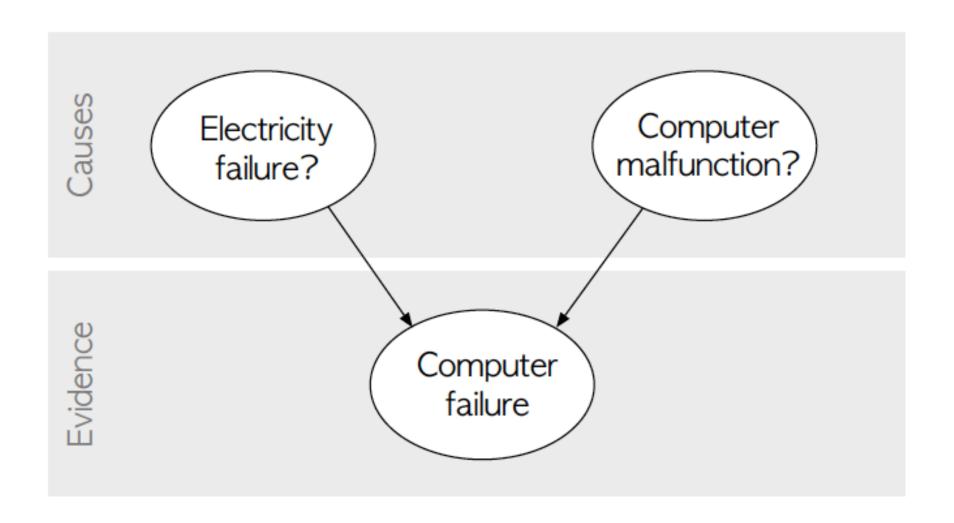
Pamela F. Nelson, Ph.D.
UNAM
+52(777)363-5814
pnelson_007@yahoo.com

C.R. "Rick" Grantom, P.E. CRG, LLC (979)583-8130 crgrantom@hotmail.com

References

- http://download.hugin.com/webdocs/manuals/Htmlhelp/index.ht ml
- Distributed Computing and Artificial Intelligence, 11th International Conference, Bayes Theorem Reinforcement Learning algorithm,

https://books.google.com.mx/books?id=79UkBAAAQBAJ&pg=PA145&lpg=PA145&dq=Counting-


<u>Learning+Algorithm+probability&source=bl&ots=eZgk7e8CM-</u> <u>&sig=fc1HeRXw_y69skeSoq9X3DXr4BY&hl=es&sa=X&ved=0ahUKEwirl4KC3oXYAhXB3SYKHVifAFwQ6AEIODAC#v=onepage&q=Counting-Learning%20Algorithm%20probability&f=false</u>

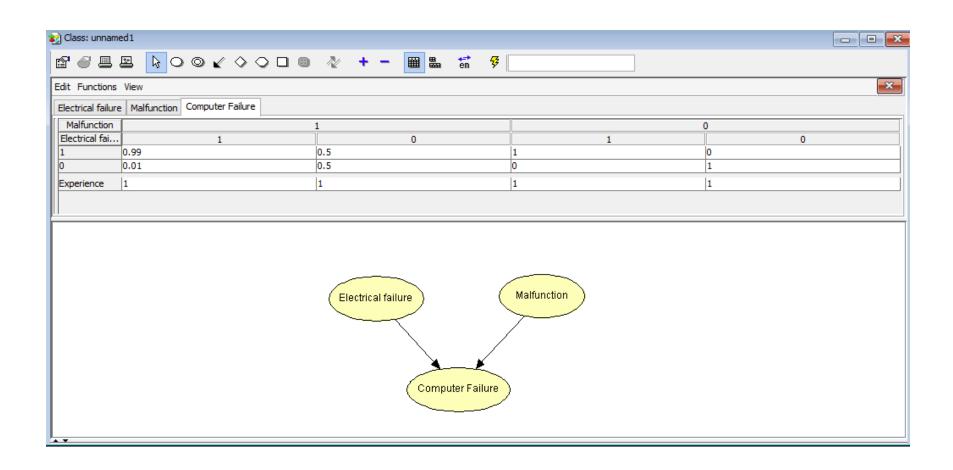
- Michal Horn'y, Bayesian Networks, Technical Report No. 5, Boston University School of Public Health, April 2014.
- https://www.norsys.com/WebHelp/NETICA/X_Counting_Learning_ Algorithm.htm

Backup Slides

Numerical process in HUGIN

Example 1

The goal


- The goal is to calculate the posterior conditional probability distribution of each of the possible unobserved causes given the observed evidence, i.e. P [Cause I Evidence].
- However, in practice we are often able to obtain only the converse conditional probability distribution of observing evidence given the cause, P [Evidence I Cause].

$$P [Cause | Evidence] = P [Evidence | Cause] \cdot \frac{P [Cause]}{P [Evidence]}$$

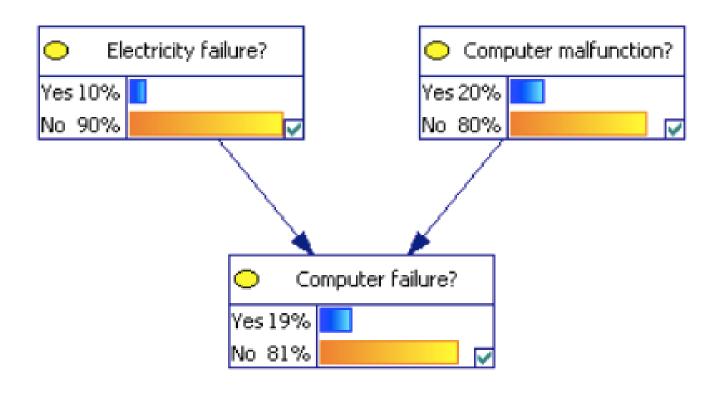
Original Conditional Probability Table

- Let Electricity Failure = E; Computer Malfunction
 = M; Computer failure = C
- Probabilities of failure
 - -P[E = yes] = 0.1
 - P [M = yes] = 0.2.
- It is reasonable to assume electricity failure and computer malfunction as independent
 - P [C = yes | E = no; M = no] = 0.
 - P [C = yes | E = no; M = yes] = 0.5
 - -P[C = yes | E = yes; M = no] = 1
 - P [C = yes | E = yes; M = yes] = .99

Original Conditional Probability Table

Joint Probability for Computer failure

$$P[C = yes] = \sum_{E,M} P[C = yes, E, M]$$


$$= \sum_{E,M} \left(P[C = yes | E, M] \cdot P[E] \cdot P[M] \right)$$

$$= 0.19$$

Calculation in detail

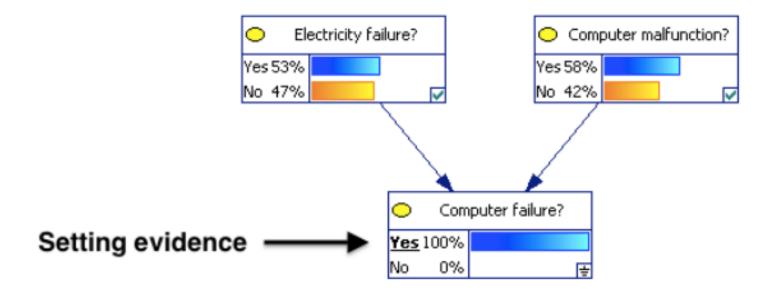
- (Computer failure = yes) =
- P(C=yesIE=1,M=1)*P(E=1)*P(M=1)
 - + P(C=1|E=0, M=1) *P(E=0)*P(M=1)
 - + P(C=1IE=1, M=0) *P(E=1)*P(M=0)
 - + P(C=1IE=0, M=0) *P(E=0)*P(M=0)
 - = .99*.1*.2 + .5*.9*.2 + 1*.1*.8 + 0*.9*.8
 - = .19

Before observing any evidence

Setting Evidence

- Assume now that we had attempted to turn the computer on, but it did not start.
- In other words, we observe C = yes with probability 1 and we wonder how the probability distribution of electricity failure E and computer malfunction M changed given the observed evidence.
- Using the Bayes formula, we find

Bayes formula

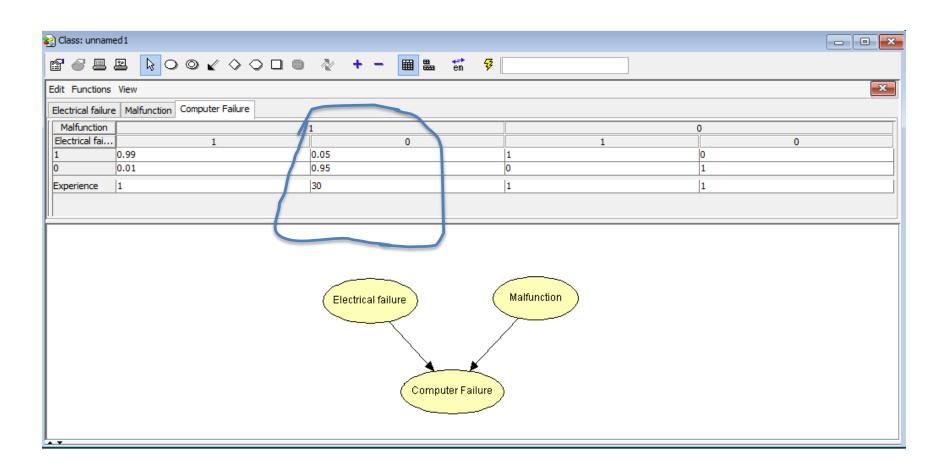

$$\begin{split} \mathbf{P}\left[E = \mathbf{yes} \,|\, C = \mathbf{yes}\right] &= \sum_{M} \mathbf{P}\left[E = \mathbf{yes},\, M \,|\, C = \mathbf{yes}\right] \\ &= \sum_{M} \frac{\mathbf{P}\left[C = \mathbf{yes} \,|\, E = \mathbf{yes},\, M\right] \cdot \mathbf{P}\left[E = \mathbf{yes}\right] \cdot \mathbf{P}\left[M\right]}{\mathbf{P}\left[C = \mathbf{yes}\right]} = 0.53 \\ \mathbf{P}\left[M = \mathbf{yes} \,|\, C = \mathbf{yes}\right] &= \sum_{E} \mathbf{P}\left[E,\, M = \mathbf{yes} \,|\, C = \mathbf{yes}\right] \\ &= \sum_{E} \frac{\mathbf{P}\left[C = \mathbf{yes} \,|\, E,\, M = \mathbf{yes}\right] \cdot \mathbf{P}\left[E\right] \cdot \mathbf{P}\left[M = \mathbf{yes}\right]}{\mathbf{P}\left[C = \mathbf{yes}\right]} = 0.58 \end{split}$$

Hand Calculation

```
    [P(C=yesIE=1,M=1)*P(E=1)*P(M=1)]/P(C=1)
    + [P(C=1IE=1, M=0) *P(E=1)*P(M=0)]/P(C=1)
    = [(.99*.1*.2)/.19] + [(1*.1*.8)/.19]
    = .53
```

```
    P(C=yesIE=1,M=1)*P(E=1)*P(M=1) / P(C=1)
    + P(C=1IE=0, M=1) *P(E=0)*P(M=1) /P(C=1)
    =(.99*.1*.2)/.19 + (.5*.9*.2)/.19
    = .58
```

Hugin Result

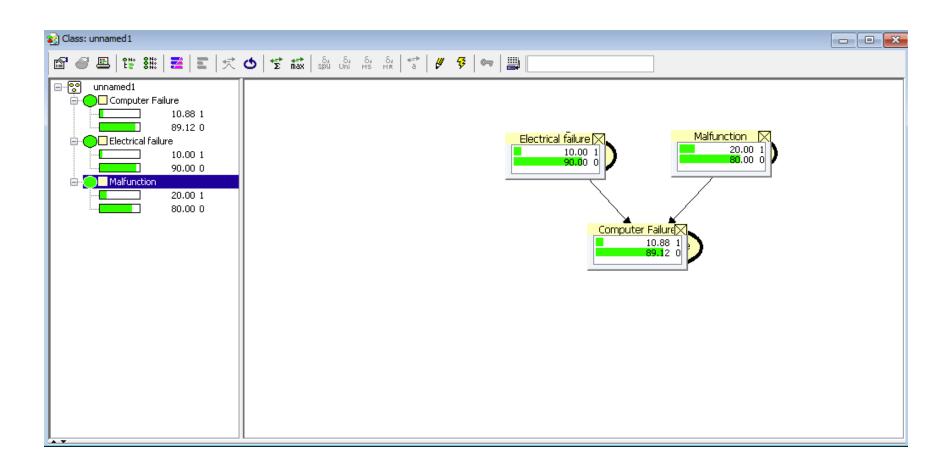

Input field observations

- Prior probability for E=0, M=1 is 0.5 (see slide 4)
- Learning algorithm:
 ((Prior probability * prior experience) + failures)/
 (prior experience + no. of trials)

$$((0.5x1)+1)/(1+29)=.05$$

- Thus, the probability of this cell went from
 .5 to .05 (see slide 5 and 13)
- All 29 observations were E=0, M=1 and one of those had a computer failure.

Probability of computer failure updated with 29 observations



Posterior Joint Probability Hand Calculation

```
    Posterior (Computer failure = yes) =

  P(C=yesIE=1,M=1)*P(E=1)*P(M=1)
 + P(C=1|E=0, M=1) *P(E=0)*P(M=1)
 + P(C=1|E=1, M=0) *P(E=1)*P(M=0)
 + P(C=1IE=0, M=0) *P(E=0)*P(M=0)
 = .99*.1*.2 + .05*.9*.2 + 1*.1*.8 + 0*.9*.8
 = .1088
```

Posterior Joint Probability HUGIN Calculation

Calculate weight factors for SFs

Mon det type	1: alarm issue	2: status tile	3: meter	4: indication light	5: flag
trials	1217	77	343	299	no tested
unsat	12	. 0	6	0	
ratio	0.009860312	. 0	0.017492711	0	
factor (for 0.01)	0.986031224	. 0	1.749271137	0	0
det mode alarm status	1: self revealing	2: procedure dir ch	3: proc dir monit	4: awareness	
trials	1136	23	not tested	135	
unsat	3	0		3	
ratio	0.002640845	0		0.02222222	
factor (for 0.01)	0.264084507	0		2.22222222	
alarm board	1:dark	2: busy	3: overloaded		
trials	573	,	77		
unsat	1				
ratio	0.001745201		0.038961039		
factor (for 0.01)	0.17452007			ı	
140101 (101 0.01)	0.17432007	0.510555000	3.030103030		
expectation alarm/indic	1: expected	2: not expected			
trials	46	1039			
unsat	C	6			
ratio	C	0.005774783			
factor (for 0.01)	T C	0.577478345			
meter ligh flag det	1: procedure dir	2: knowledge	3: proc dir monit	4: awareness	
trials	622	-	77	520	
unsat	3			0	
ratio	0.004823151		0.012987013	ŭ	
factor (for 0.01)	0.482315113				
ractor (for 0.01)	0.402515113	2.43302433	1.250701255		
meter ligh flag change	1: slight	2: distinct			
trials	691	. 786			
unsat	2	. 8			
ratio	0.002894356	0.010178117			
factor (for 0.01)	0.289435601				
MLM display	1: no mimics	2: small indications	3: similar disp		
trials	89		not tested		
unsat	1				
	0.011235955				
ratio	0.011235955				