SACADA for HRA Yung Hsien James Chang, Ph.D. Human Reliability Engineer Human Factors and Reliability Branch Division of Risk Analysis Office of Nuclear Regulatory Research Presented at the HRA Data Workshop March 15-16, 2018 # Lack Data, Large Variability #### **International HRA Empirical Study** #### **US HRA Empirical Study** ## SACADA Approach – #### Partnering with NPPs' Training Departments ## Establish a Win-Win Partnership Four students took the same exam. The results are: ### Differences #### **Training Department** - Improve performance - Retrospective analysis - Individual/crew-specific performance - Tend to be task oriented - Deterministic #### **HRA Analysts** - Predict performance - Predictive analysis - Statistical performance - Desire to be human centered - Probabilistic ### HRA's Human Centered Model ### One Data Point, Two Types of Information for Operator Training and HRA ### Beef Up Training Departments' Interests - Computerization to reduce simulation preparation efforts - Mobile device for flexibility in data collection - Instant emails to improve crew performance communication - Data output to identify crew performance issues ### Data Output to Identify Performance Issues | 3 | Row Labels | Sum of SAT+ | Sum of SAT Su | ım of SAT∆ Sun | of UNSAT Sur | n of Total | |----|--|-------------|---------------|----------------|--------------|------------| | 4 | ■ SG Tube Rupture in 1B Steam Generator | 3 | 200 | 4 | 1 | 208 | | 5 | Completes isolation of ruptured S/G:•Isolates AFW & Main FW to ruptured S/G.•Isolate | 0 | 13 | 0 | 0 | 13 | | 6 | Depressurize RCS to meet SI termination criteria before either of the following occur: | 0 | 13 | 0 | 0 | 13 | | 7 | Diagnose SGTR in B SG | 0 | 13 | 0 | 0 | 13 | | 8 | Direct a reactor trip and safety injection based on increasing RCS leakage. | 0 | 13 | 0 | 0 | 13 | | 9 | Directs/initiates RCS cooldown. | 0 | 13 | 0 | 0 | 13 | | 10 | Directs/stops RCS cooldown and maintains < target temperature. | 0 | 13 | 0 | 0 | 13 | | 11 | Enters POP05-EO-EO00, Reactor Trip or Safety Injection. | 0 | 12 | 1 | 0 | 13 | | 12 | Identifies during addendum 5 performance, The B train Essential chiller trip, and secure | 0 | 13 | 0 | 0 | 13 | | 13 | Identifies ECW pump 1B discharge pressure is low (shaft shear) | 2 | 11 | 0 | 0 | 13 | | 14 | Manually Trip Diesel Generator prior to any of the following occurring:∙Diesel Generato | 0 | 13 | 0 | 0 | 13 | | 15 | other items to discuss | 0 | 13 | 0 | 0 | 13 | | 16 | Performs Immediate actions of 0POP05-EO-EO00, including RNO actions for Throttle Val | 1 | 9 | 3 | 0 | 13 | | 17 | Properly select and maintain target temperature for cooldown based on the chart provi | 0 | 13 | 0 | 0 | 13 | | 18 | Refers to 0ERP01-ZV-IN01, Emergency Classification. Declares an Alert Based on SGTR g | 0 | 13 | 0 | 0 | 13 | | 19 | Terminate SI and control RCS pressure and makeup flow so that RCS pressure is at SG Pr | 0 | 12 | 0 | 1 | 13 | | 20 | Transitions to EO30 SGTR. | 0 | 13 | 0 | 0 | 13 | | 21 | ■ Loss of 250VDC | 1 | 78 | 1 | 0 | 80 | | 22 | Enters 0POP04-DC-0001 | 0 | 14 | 0 | 0 | 14 | | 23 | Enters 0POP04-DC-0001 Loss of 250V DC Power | 0 | 6 | 0 | 0 | 6 | | 24 | Responds to 1POP09-AN-03M2 250VDC trouble, notes no chargers on the bus | 1 | 18 | 1 | 0 | 20 | | 25 | Reviews CIP of 0POP04-DC-0001 regarding required additional action on a Main Generat | 0 | 14 | 0 | 0 | 14 | | 26 | Reviews CIP of 0POP04-DC-0001 regarding required additional action on a Main General | 0 | 6 | 0 | 0 | 6 | | 27 | Transfers Aux busses to Standby transformers | 0 | 20 | 0 | 0 | 20 | ## SACADA Data and Quantity ### SACADA Data for HEP Estimates - Three NRC contractors will present their methods of how to use SACADA data to estimate HEPs in this workshop - Each contractor should demonstrate how to use SACADA data to estimate an HFE's HEP - Encourage you to critique their methods - Please focus on method, not numbers - Your opinions will shape the NRC's HRA data research ## **SACADA Operation Experience** - Aim for a practical long term data collection - Plant staff collect data instead of researchers - Benefit to the plant operator training - Computerization to Reduce effort, improve training effectiveness and efficiency, and not increase operation cost - Flexible operation, e.g., use mobile device to accomodate different debriefing styles - Think ahead on how the collected data will be used to inform HEP estimates ### "New" Data Domains **Severe Accidents** **Digitalized Controls** Portable Equipment **Extreme Hazards** **Small Modular Reactors** **Actual Events** ### **Enhance Collaboration** - Each organization has its own method to collect human performance information fro HRA - Validation: Can the results be compared? - Aggregation: Can Bayesian updated be applied? - Share the data collection tools - Understand each others' data needs and methods - Is it feasible to have a commonly accepted method and tool (may be for each data domain)?