SUBSECTION 2.4.1 TABLE OF CONTENTS | <u>Section</u> | | | <u>Title</u> | <u>Page</u> | |----------------|-------|----------|---------------------|-------------| | | 2.4.1 | Hydrolog | ic Description | 2.4.1-1 | | | | , , | Site and Facilities | | | | | 2.4.1.2 | Hydrosphere | 2.4.1-1 | | | | | References | 2 4 1-4 | 2.4.1-i Revision 1 # SUBSECTION 2.4.1 LIST OF TABLES | <u>Number</u> | <u>Title</u> | |---------------|---| | 2.4.1-1 | Water Supply Withdrawals in the Clinch River Basin | | 2.4.1-2 | U.S. Geological Survey Historically Maintained Stream Gages on the Clinch River | | 2.4.1-3 | TVA Stream Gages in the Vicinity of the Clinch River Nuclear Site | | 2.4.1-4 | Monthly Average Discharges from Melton Hill Dam (2004–2013) | 2.4.1-ii Revision 1 # SUBSECTION 2.4.1 LIST OF FIGURES | <u>Number</u> | <u>Title</u> | |---------------|---| | 2.4.1-1 | Clinch River Water Supply Withdrawals Location Map | | 2.4.1-2 | Site Location Map | | 2.4.1-3 | Topographic Map | | 2.4.1-4 | Not Used | | 2.4.1-5 | (Sheet 1 of 2) Tennessee River System | | 2.4.1-5 | (Sheet 2 of 2) Tennessee River System | | 2.4.1-6 | (Sheet 1 of 11) Seasonal Operating Curve, Watts Bar Dam | | 2.4.1-6 | (Sheet 2 of 11) Seasonal Operating Curve, Fort Loudoun and Tellico Dams | | 2.4.1-6 | (Sheet 3 of 11) Seasonal Operating Curve, Boone Dam | | 2.4.1-6 | (Sheet 4 of 11) Seasonal Operating Curve, Cherokee Dam | | 2.4.1-6 | (Sheet 5 of 11) Seasonal Operating Curve, Douglas Dam | | 2.4.1-6 | (Sheet 6 of 11) Seasonal Operating Curve, Fontana Dam | | 2.4.1-6 | (Sheet 7 of 11) Seasonal Operating Curve, Fort Patrick Henry Dam | | 2.4.1-6 | (Sheet 8 of 11) Seasonal Operating Curve, Melton Hill Dam | | 2.4.1-6 | (Sheet 9 of 11) Seasonal Operating Curve, Norris Dam | | 2.4.1-6 | (Sheet 10 of 11) Seasonal Operating Curve, South Holston Dam | | 2.4.1-6 | (Sheet 11 of 11) Seasonal Operating Curve, Watauga Dam | 2.4.1-iii Revision 1 #### This Subsection contains information withheld under 10 CFR 2.390(a)(3) # 2.4.1 Hydrologic Description #### 2.4.1.1 Site and Facilities The site location is identified in Figure 2.4.1-2. Access to the site is via highway, Tennessee State Highway (TN) 58 and TN 95, rail to Oak Ridge Reservation, and barge or boat on the Clinch River arm of Watts Bar Reservoir. The relationship of the plant area to the surrounding topography is shown in Figure 2.4.1-3. For flood protection of the plant and its safety-related systems and equipment, the plant facilities, including any entry point to below grade structures, will be located above the maximum postulated flood level. The CRN Site is to be graded such that runoff is directed away from buildings to the extent possible and to the Clinch River arm of Watts Bar Reservoir. An evaluation of a representative site grading plan demonstrates acceptable runoff characteristics. The actual site grading plan will be based on selection of a technology and the associated site layout plan will be developed at combined license application (COLA). The Circulating Water System and the cooling towers obtain their source water from the Clinch River arm of Watts Bar Reservoir. Figure 2.4.11-2 shows the intake location at Clinch River Mile (CRM) 17.9 on the Clinch River arm of Watts Bar Reservoir. The City of Oak Ridge Department of Public Works would provide potable and wastewater services to the CRN Site. (Reference 2.4.1-6) Closed cooling systems would supply the internal plant reservoirs. The river would not supply any safety related systems. The outfall location at CRM 15.5, also shown in Figure 2.4.11-2, is approximately 2.4 river miles downstream to ensure there would be no recirculation. #### 2.4.1.2 Hydrosphere #### 2.4.1.2.1 Surface Water #### Site Location The CRN Site is located on the north bank of the Clinch River in the upper reach of Watts Bar Reservoir between CRM 19 and CRM 14.5 (Reference 2.4.1-1). The drainage area at CRM 16.0 is 3382 sq mi. The nearest facility downstream of the CRN Site with a surface water withdrawal registration with the State of Tennessee is the Oak Ridge Bear Creek Plant, located downstream of the CRN Site as shown on Table 2.4.1-1 and Figure 2.4.1-1 (Location No. 45). This plant is also known as the City of Oak Ridge's West End Water Treatment Plant (WTP) and the K-25 Water Treatment Plant. The Oak Ridge Bear Creek Plant ceased water production on September 30, 2014, and Oak Ridge Utilities which now owns the facility has no plans to resume production at the site. Surface water supplies withdrawn from the 350 mi stretch of the Clinch River between the headwaters near Tazewell, Virginia and the confluence with the Tennessee River at CRM 0 and Tennessee River Mile (TRM) 567.8 are shown in Figure 2.4.1-1 and listed in Table 2.4.1-1. (Reference 2.4.1-6) The Clinch River originates in Tazewell County, Virginia, about 175 mi northeast of the CRN Site (Reference 2.4.1-2). From its headwaters, the Clinch River flows approximately 350 river miles in a southwesterly direction to its confluence with the Tennessee River at TRM 567.8, near Kingston, Tennessee (Reference 2.4.1-3). Except for its northwestern edge, the river basin above the site is in the Appalachian Valley physiographic sub-region. Comparatively narrow parallel ridges and somewhat broader intervening valleys, which lie in a northeast-southwest direction, characterize this area. The Cumberland Mountains, which range up to approximately 2.4.1-1 Revision 1 4200 ft in elevation, form the northwestern boundary of the basin. The southeastern boundary follows Clinch Mountain and Black Oak Ridge with elevations ranging up to approximately 4700 ft (Reference 2.4.1-2). The slope of the Clinch River from Norris Dam at CRM 79.8 to CRM 7.0 averages about 1.5 ft per river mile (Reference 2.4.1-2). #### **Tributaries** The principal tributary of the Clinch River is the Powell River which parallels the Clinch River to the northeast. The Powell River enters the Clinch River at CRM 88.8. Drainage area of the Powell River at its mouth is 938 sq mi. (Reference 2.4.1-3) The second largest tributary of the Clinch River is the Emory River which enters the Clinch River from the north at CRM 4.4 and has a drainage area of 865 sq mi. There are seven Clinch River tributaries with drainage areas greater than 5 sq mi upstream of CRN and downstream of Norris Dam. They are Pawpaw Creek, Whiteoak Creek, Beaver Creek, Bullrun Creek, Hinds Creek, Cane Creek and Coal Creek at CRM 19.1, 20.8, 39.6, 46.7, 65.8, 71.3 and 75, respectively. Downstream, Poplar Creek at CRM 12 is the only Clinch River tributary with a greater than five square miles drainage area (Reference 2.4.1-3). ## **Reservoir Water Flow** (SRI/CEII) Three dams directly control the water surface elevation at the CRN Site: Norris Dam and Melton Hill Dam, located upstream on the Clinch River; and Watts Bar Dam, located downstream at TRM 529.9. Norris Dam at CRM 79.8, located about 62 mi upstream from the CRN Site, was completed in March 1936. (Reference 2.4.1-2) Norris Dam is a large structure having a maximum height of approximately 265 ft and an overall length of 1570 ft. There are ft. The remainder of the dam consists of sections having a combined length of ft and ft. At a top-of-dam elevation of 1061 ft National Geodetic Vertical Datum of 1929 (NGVD29) Norris Dam is capable of approximately 344,000 cubic feet per second (cfs) of discharge. Norris Dam impounds approximately 2,552,000 acre-feet (ac-ft) of water at the top of gates elevation, 1034 ft NGVD29. Norris Dam provides hydro power production, flood control, navigation benefits, improved dissolved oxygen (DO), and low flow regulation to enhance downstream water quality. (Reference 2.4.1-7) Melton Hill Dam is located 5.2 mi upstream of the CRN Site at CRM 23.1 and was completed in May 1963. It is a run-of-the-river dam and a smaller structure than Norris Dam. It has a maximum height of only about 84 ft and an overall length of 1020 ft. Melton Hill Dam has gates with a combined length of the dam consists of having a combined length of the dam consists of the dam concrete lock and powerhouse sections with a combined length of the dam concrete lock and powerhouse sections with a combined length of the dam concrete lock and powerhouse sections with a combined length of the dam concrete lock and powerhouse sections with a combined length of the dam concrete lock and powerhouse sections with a combined length of the dam concrete lock and powerhouse sections with a combined length of the dam consists Watts Bar Dam located downstream of the CRN Site was completed in 1942. Although Watts Bar Dam is located over 50 mi downstream of the site, the backwater from the reservoir extends upstream to the Melton Hill Dam tailwater (Reference 2.4.1-2). Watts Bar Dam is a large structure having a maximum height of about 112 ft and a length of approximately 2960 ft. Watts Bar Dam has a spillway consisting of twice gates for a combined crest length of a spillway consisting of the sections having a combined length of the section of the section and minor ancillary structures with a total length of the section of the section of the section and minor ancillary structures with a total length of the section sect 2.4.1-2 Revision 1 Bar screen house over flow elevation of 767 ft NGVD29, the Watts Bar Dam is capable of approximately 1,144,000 cfs of discharge. Watts Bar Dam impounds approximately 1,175,000 ac-ft of water at the top of gates elevation, 745 ft NGVD29. (Reference 2.4.1-9) TVA operates its dams and associated features as part of an integrated system. Therefore, in addition to the three dams described above which directly control water surface elevation, nine dams upstream in the Tennessee River system have the potential to influence flood levels at Watts Bar Reservoir and, as a result, at the CRN Site. These are Fort Loudoun Dam on the Tennessee River; Watauga, South Holston, Boone, Fort Patrick Henry, Cherokee, and Douglas Dams above Fort Loudoun; and Fontana and Tellico Dams on the Little Tennessee River. The location of TVA dams and reservoirs with respect to the CRN Site are shown in Figure 2.4.1-5. (Reference 2.4.1-5) TVA developed historical flow information for the Clinch River in the vicinity of the CRN Site from multiple sets of stream gages. Through 1968, the U.S. Geological Survey maintained stream gages on the Clinch River in the vicinity of the CRN Site, as shown in Table 2.4.1-2. In addition, TVA has operated stream gages in the vicinity of the CRN Site as listed in Table 2.4.1-3. Since the completion of Melton Hill Dam in 1963, the daily average flow rate is about 4800 cfs at the CRN Site. There has been an average of about 13 days per year during which there were no releases from the dam. However, since 1990 there has been an average of only 0.5 days per year during which there were no releases from the dam. The longest period of no release from the dam occurred in February and March 1966 when there was no flow below the dam for 29 consecutive days. TVA completed a comprehensive Reservoir Operations Study (ROS) in 2004 to determine whether changes in the operation of the Tennessee River system would produce greater overall public value for the people of the Tennessee Valley. The preferred alternative implemented in the spring of 2004 resulted in: (1) changes in minimum flow requirements for system operating objectives, (2) establishment of reservoir balancing guides for each tributary storage reservoir to ensure that proportional water releases for downstream system needs are drawn from the tributary reservoirs equitably, (3) scheduled recreational releases at five additional tributary projects, subject to flood control operations or extreme drought conditions (4) establishment of weekly average flow requirements for different periods of the year at Chickamauga and (5) application of other requirements as defined in the Final Programmatic ROS Environmental Impact Statement. As a result of the implementation of the ROS in 2004, historical flow data from Melton Hill Dam are presented for the period 2004 – 2013 only. (Reference 2.4.1-5) Monthly average discharges from Melton Hill Dam for the period 2004 – 2013 are shown in Table 2.4.1-4. #### **Reservoir Water Levels** Since completion of the Watts Bar Dam in 1942, TVA has regulated water levels on the Watts Bar Reservoir as a part of the integrated operation of the river system. Reservoir operating guidelines establish pool level parameters for daily operation. Figure 2.4.1-6 Sheet 1 of 11 is the seasonal operating curve for Watts Bar Reservoir which reflects target water surface elevations for each month of the year. Reservoir operations may temporarily deviate from normal operating guides to meet navigation, flood-control, critical power production situations or other requirements. Since 1942, the minimum elevation of Watts Bar Reservoir headwater was 733.7 ft NGVD29 and occurred on March 20, 1945. The maximum elevation was 747.4 ft NGVD29 and occurred on May 7, 2003. Since 1999, the minimum elevation of Watts Bar Reservoir at the Melton Hill tailwater was 735.0 ft NGVD29 and occurred both on January 9, 2002 and December 15, 2005. The maximum recorded Melton Hill tailwater elevation of 765.1 ft NGVD29 occurred on April 2, 2000. 2.4.1-3 Revision 1 #### 2.4.1.2.2 Groundwater Subsection 2.4.12 contains a detailed description of the hydrogeologic conditions at and in the vicinity of the CRN Site and includes the regional and local groundwater resources that could be affected by the construction and operation of SMRs at the CRN Site. The regional and site-specific data on the physical and hydrologic characterization of these groundwater resources are summarized in order to provide the basic data for an evaluation of impacts on the aquifers in the area. Subsection 2.4.12.2.1.2 provides information regarding current groundwater users and identifies: - Community water systems, which serve the same people year-round (e.g., homes) - Non-transient non-community water systems, which serve the same people but not year-round (e.g., schools that have their own water supply) - Transient non-community water systems, which do not consistently serve the same people (e.g., rest stops, campgrounds) In addition, Subsection 2.4.12.2.1.2 includes information pertaining to individual wells in the vicinity of the CRN Site obtained from the Tennessee Department of Environment and Conservation, Division of Water Resources, Drinking Water Unit. #### 2.4.1.3 References - 2.4.1-1. Tennessee Valley Authority (TVA), Final Environmental Impact Statement, Watts Bar Reservoir Land Management Plan, Loudon, Meigs, Rhea, and Roane Counties, Tennessee, Panel 4 map, F9, February 2009. - 2.4.1-2. TVA, Clinch Breeder Reactor Project PSAR, Book 255-10.0 CRBR-General, 1973. - 2.4.1-3. TVA, Division of Water Control Planning, Hydraulic Data Branch, *Drainage Areas for Streams in Tennessee River Basin*, Knoxville, Tennessee, Report No. 0-5829-R-2, March 1970. - 2.4.1-4. TVA, Stream Gages in the Tennessee River Basin, October 1970. - 2.4.1-5. TVA, Reservoir Operations Study Final Programmatic EIS, 2004. - 2.4.1-6. TVA, Clinch River Small Modular Reactor Site, Regional Surface Water Use Study, Public Version, Rev. 2, April 24, 2015. - 2.4.1-7. TVA River Operations, *TVA Water Control Project Manual (Blue Book) for Norris Dam*, July 1998. - 2.4.1-8. TVA River Operations, *TVA Water Control Project Manual (Blue Book) for Melton Hill Dam*, December 1999. - 2.4.1-9. TVA River Operations, *TVA Water Control Project Manual (Blue Book) for Watts Bar Dam*, August 1999. - 2.4.1-10. TVA, Watts Bar Updated Final Safety Analysis Report, through Amendment 114, Figure 2.4-3 (Sheets 2–12), October 15, 2015. 2.4.1-4 Revision 1 # Table 2.4.1-1 (Sheet 1 of 2) Water Supply Withdrawals in the Clinch River Basin | | Name | Type of Withdrawal | Source | |----|---|--------------------|--------------------------| | 1 | Kingston Fossil Plant | Thermoelectric | Watts Bar Reservoir | | 2 | Oak Ridge Dept of Public Works, Clinch River Plant | Public Supply | Clinch River | | 3 | Oak Ridge Country Club | Irrigation | Stream Or We | | 4 | Greater Tazewell Regional Water Treatment Plant | Public Supply | Cox's Branch Reservoir | | 5 | Greater Tazewell Regional Water Treatment Plant | Public Supply | Clinch River | | 6 | Greater Tazewell Regional Water Treatment Plant | Public Supply | Lake Whitten | | 7 | Pounding Mill Quarry Corp, Pounding Mill Plant | Mining | Clinch River | | 8 | Tazewell County Public Service Authority, Claypool Hill Water Treatment Plant | Public Supply | Little River | | 9 | Town of Richlands, Richlands Water Treatment Plant | Public Supply | Clinch River | | 10 | Knox Creek Coal Corp, Coal Creek No. 3 Preparation Plant | Mining | Coal Creek Above Red Ash | | 11 | Knox Creek Coal Corp, Coal Creek No. 3 Preparation Plant | Mining | Jamison Creek | | 12 | Town of Lebanon, Lebanon Water Treatment Plant | Public Supply | Big Cedar Creek | | 13 | Clinchfield Coal Co, Moss No. 2 Preparation Plant | Mining | Hurricane Fork | | 14 | Dickenson-Russell Coal Co LLC, Moss No. 3 Preparation Plant | Mining | Chaney Creek | | 15 | American Electric Power Co, Clinch River Power Plant | Thermoelectric | Clinch River | | 16 | Lake Bonaventure Country Club | Irrigation | Lake Bonaventure | | 17 | Town of St. Paul, St. Paul Water Treatment Plant | Public Supply | Clinch River | | 18 | Wise County Regional Water Treatment Plant | Public Supply | Clinch River | | 19 | Coeburn Water Treatment Plant | Public Supply | Tom's Creek Reservoir | | 20 | Fisheries Division of the Virginia Department of Game and Inland Fisheries-Marion Fish Cultural Station | Industrial | Corder and Ramey Branch | | 21 | Wise Water Treatment Plant | Public Supply | Wise Reservoir | | 22 | Wise Water Treatment Plant | Public Supply | Bear Creek | | 23 | Gate City Water Treatment Plant | Public Supply | Big Moccasin Creek | | 24 | Paramount Coal Co Virginia LLC, Ramsey Preparation Plant | Mining | Guest River | | 25 | Big Stone Gap Water Treatment Plant | Public Supply | South Fork Powell River | | 26 | Appalachia Water Treatment Plant | Public Supply | Appalachia Reservoir | | 27 | Duffield Water Treatment Plant | Public Supply | Spurlock Branch | | 28 | Duffield Water Treatment Plant | Public Supply | North Fork Clinch River | | 29 | Pennington Gap Water Treatment Plant | Public Supply | Powell River | | 30 | Sneedville Utility District, Water Plant | Public Supply | Brier Creek Tributary | | 31 | Claiborne County Utility District, Water Plant | Public Supply | Water Plant | | 32 | Arthur-Shawnee Utility District, Filter Plant | Public Supply | Powell River | | 33 | La Follette Water Dept, Norris Lake Plant | Public Supply | Norris Lake | | 34 | Rexnord Corporation Link-Belt Bearing | Industrial | Clinch River | | 35 | Clinton Utilities Board, Clinch River Plant | Public Supply | Clinch River | 2.4.1-5 Revision 1 # Table 2.4.1-1 (Sheet 2 of 2) Water Supply Withdrawals in the Clinch River Basin | | Name | Type of Withdrawal | Source | |----|--|--------------------|--------------------------------------| | 36 | North Anderson County Utility District, Water Plant | Public Supply | Clinch River | | 37 | Hallsdale Powell Utility District, Bull Run Creek
Embayment | Public Supply | Melton Hill Reservoir | | 38 | West Knox Utility District, Melton Hill/Old/Daugherty | Public Supply | Melton Hill Old | | 39 | Bull Run Fossil Plant | Thermoelectric | Clinch River | | 40 | Anderson County Utility Board, Filter Plant | Public Supply | Clinch River | | 41 | Centennial Golf Course | Irrigation | Clinch River | | 42 | Caryville-Jacksboro Utility District, Cove Lake Plant | Public Supply | Cove Lake | | 43 | West Knox Utility District, Melton HIII /New/Williams | Public Supply | Melton Hill New | | 44 | West Knox Utility District, Melton HIII /New/Williams | Public Supply | Melton Hill New | | 45 | Oak Ridge Bear Creek Plant | Industrial | Clinch River | | 46 | Cumberland Utility District, Little Emory River Plant | Public Supply | Little Emory | | 47 | Lakeside Golf Course | Irrigation | Smith Creek | | 48 | Kingston Water System, TN River/Watts Bar | Public Supply | Watts Bar Reservoir | | 49 | Plateau Utility District, Crooked Fork Creek Plant | Public Supply | Crooked Fork Creek | | 50 | Harriman Utility Board, Emory River Plant | Public Supply | Emory River | | 51 | Crab Orchard Utility District ^(a) | Public Supply | Otter Creek Impoundment | | 52 | Bear Trace at Cumberland Mountain State Park ^(a) | Irrigation | Irrigation Pump | | 53 | Deer Creek Golf Club ^(a) | Irrigation | Genesis Pond | | 54 | Crossville Water Dept ^(a) | Public Supply | Lake Holiday | | 55 | River Run Golf Club ^(a) | Irrigation | Little Obed Creek | | 56 | Crossville Water Dept ^(a) | Public Supply | Meadow Park Lake | | 57 | Paramont Coal Co Virginia, Deep Mine 35 | Mining | Chaney Creek | | 58 | Big Stone Gap Water Treatment Plant | Public Supply | Powell River-Emergency
Withdrawal | ⁽a) Downstream of the Clinch River Nuclear Site Source: Reference 2.4.1-7 2.4.1-6 Revision 1 Table 2.4.1-2 U.S. Geological Survey Historically Maintained Stream Gages on the Clinch River | Stream Gage Location | River Mile | Period of Record | | | |-----------------------|--------------|------------------------|--|--| | Near Wheat | 14.4
14.4 | 1936–1941
1967–1968 | | | | Below Melton Hill Dam | 23.1 | 1962–1964 | | | | Near Scarboro | 39.0 | 1941–1962 | | | | Near Kingston | 1.3 | 1897–1934 | | | | Kingston Steam Plant | 2.6 | 1951–1956 | | | | Near Lake City | 75.9 | 1927–1945 | | | #### Notes: Historic discharge data for the above-listed gages are incorporated into a single USGS gage with identification number 03538150 and can be retrieved via web address http://waterdata.usgs.gov/tn/nwis/ Reference 2.4.1-2 2.4.1-7 Revision 1 Table 2.4.1-3 TVA Stream Gages in the Vicinity of the Clinch River Nuclear Site | Station Name | River Mile | Period of Record | |---------------------------------|------------|------------------| | Kingston ^(a) | TRM 568.1 | 1941– | | Below Melton Hill Dam Tailwater | CRM 23.1 | 1961– | | Melton Hill Dam Headwater | CRM 23.1 | 1963– | | Clinton ^(b) | CRM 58.8 | 1965– | | Norris Dam | CRM 78.8 | 1937– | ⁽a) Recent data can be obtained for the Kingston gage by accessing gage identification number KGTT1 at web address http://www.nws.noaa.gov/oh/hads/ 2.4.1-8 Revision 1 ⁽b) The Clinch River gage near Clinton was out of service for an unknown time period. Recent data can be obtained for the Clinton gage by accessing gage identification number CCLT1 at web address http://www.nws.noaa.gov/oh/hads/ Table 2.4.1-4 Monthly Average Discharges from Melton Hill Dam (2004–2013) ## Monthly Average Discharge (cubic feet per second) | | 2004 | 2005 | <u>2006</u> | 2007 | 2008 | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | |-----------|--------|------|-------------|------|------|-------------|-------------|-------------|-------------|-------------| | January | 8860 | 9150 | 2910 | 6070 | 1090 | 8370 | 10,300 | 5010 | 8690 | 10,800 | | February | 7240 | 6390 | 2930 | 2170 | 1510 | 5170 | 13,000 | 3600 | 8830 | 14,500 | | March | 4380 | 4360 | 1910 | 1640 | 1880 | 3880 | 2320 | 14,800 | 10,800 | 5490 | | April | 1510 | 3350 | 2240 | 1850 | 1520 | 1840 | 1050 | 7540 | 1210 | 4000 | | May | 1560 | 4900 | 3030 | 1710 | 1260 | 7340 | 2540 | 6400 | 1310 | 6940 | | June | 7580 | 1780 | 1820 | 3810 | 2260 | 3620 | 2250 | 3430 | 1530 | 6460 | | July | 3280 | 2240 | 2790 | 5090 | 3290 | 3310 | 2400 | 3950 | 2970 | 6190 | | August | 4800 | 3890 | 6030 | 5710 | 4600 | 5250 | 6280 | 6450 | 5350 | 3120 | | September | 5050 | 4850 | 2440 | 1730 | 1540 | 3680 | 3850 | 3930 | 3500 | 4750 | | October | 3450 | 4110 | 3660 | 2590 | 719 | 5570 | 2710 | 4030 | 4260 | 6330 | | November | 7620 | 2420 | 6060 | 844 | 589 | 6290 | 3170 | 7860 | 4920 | 3860 | | December | 14,900 | 2720 | 4150 | 865 | 3710 | 11,900 | 8140 | 13,690 | 3170 | 8630 | | | | | | | | | | | | | 2.4.1-9 Revision 1 Exempted from Disclosure by Statute – Withheld Under 10 CFR 2.390(a)(3) (See Part 7 of this Early Site Permit Application) Figure 2.4.1-1. Clinch River Water Supply Withdrawals Location Map 2.4.1-10 Revision 1 Figure 2.4.1-2. Site Location Map 2.4.1-11 Revision 1 Figure 2.4.1-3. Topographic Map 2.4.1-12 Revision 1 Figure 2.4.1-4. Not Used 2.4.1-13 Revision 1 Figure 2.4.1-5. (Sheet 1 of 2) Tennessee River System 2.4.1-14 Revision 1 Figure 2.4.1-5. (Sheet 2 of 2) Tennessee River System 2.4.1-15 Revision 1 Figure 2.4.1-6. (Sheet 1 of 11) Seasonal Operating Curve, Watts Bar Dam Source: Reference 2.4.1-10 Figure 2.4.1-6. (Sheet 2 of 11) Seasonal Operating Curve, Fort Loudoun and Tellico Dams 2.4.1-17 Revision 1 Figure 2.4.1-6. (Sheet 3 of 11) Seasonal Operating Curve, Boone Dam 2.4.1-18 Revision 1 Figure 2.4.1-6. (Sheet 4 of 11) Seasonal Operating Curve, Cherokee Dam 2.4.1-19 Revision 1 Figure 2.4.1-6. (Sheet 5 of 11) Seasonal Operating Curve, Douglas Dam 2.4.1-20 Revision 1 Source: Reference 2.4.1-10 Figure 2.4.1-6. (Sheet 6 of 11) Seasonal Operating Curve, Fontana Dam 2.4.1-21 Revision 1 Figure 2.4.1-6. (Sheet 7 of 11) Seasonal Operating Curve, Fort Patrick Henry Dam 2.4.1-22 Revision 1 Figure 2.4.1-6. (Sheet 8 of 11) Seasonal Operating Curve, Melton Hill Dam 2.4.1-23 Revision 1 Figure 2.4.1-6. (Sheet 9 of 11) Seasonal Operating Curve, Norris Dam 2.4.1-24 Revision 1 Figure 2.4.1-6. (Sheet 10 of 11) Seasonal Operating Curve, South Holston Dam 2.4.1-25 Revision 1 Figure 2.4.1-6. (Sheet 11 of 11) Seasonal Operating Curve, Watauga Dam 2.4.1-26 Revision 1