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Overview

« Applications and advantages of MSRs
* Neutron flux spectrum characteristics

* Neutronic aspects of liquid fueled reactors that are different
from solid fueled reactors

— Delayed neutron precursor motion
— Fission product removal
— Fission gas bubble flow

» Reactivity feedback effects in MSRs

« Challenges
— Nuclear data availability and uncertainty
— Modeling tools, group structures, etc.

g,OAK RIDGE
>

. National Laboratory



Liquid-fueled Molten Salt Reactors:
Unique Reactor Physics Characteristics

 Liquid fuel reactor as a chemical plant M&%
i aclﬂr Rods

— Simplifying the handling and reprocessing of
fuel

Reactor

— Fuel (and delayed neutrons) flows around
primary loop

— Continuous production of gaseous fission and
transmutation products in the salt

« Complex chemical processes 0000 Fuet et

— Online removal of fission products (e.g., Frocaseing
sparging) 1\ -

— Online or batch feed of fissile material

— Batch discard of fuel material

* Thermal spectrum and fast spectrum MSRs
are pOSSible Emergency Dump Tanks

— Fluoride and chloride salts

Source: A Technology Roadmap for Generation IV
— FLiBe salt and graphite moderator are “classic” Nuclear Energy, Systems. CiRsl02I0

thermal MSR configuration
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Why Liquid Fuel Molten Salts?

* Enables high temperature at low pressure

* Online chemistry adjustment
— Can include fuel processing

 Potential for inherent safety depending on design options
— Fuel salt thermal expansion provides negative reactivity insertion
— Fuel draining under thermal excursions
— Low excess reactivity — fuel normally in most reactive configuration

- Potential to substantially reduce actinide waste production
— Eliminates requirement for precision fuel fabrication

* MSRs can be refueled as “infinite batch” reactors
— Results in maximum possible burnup

gOAK RIDGE
N

- National Laboratory



Neutronics advantages of MSRs

* Online refueling and » Excess neutrons

reprocessing — Thorium breeding and/or
actinide burning

- Excellent neutron economy |
— Fixed fuel cost

» Low absorption materials and .
* Fuel presence in salt

no cladding
. o _ — Negative thermal feedback
 Online criticality maintenance coefficient
— High availability « Low source term
* Flexible fuel composition — Low radiotoxic risk

— Without blending and fabrication L ow fuel load

— Enables actinide recycling — Low excess reactivity

Safety, Economics, Sustainability

Source: J. Kfepel et al. 2014. “Fuel cycle advantages and dynamics
features of liquid fueled MSR,” Annals of Nuclear Energy 64: 380-397. %OAK RIDGE
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MSRs Are Flexible Fuel Cycle Machines

« MSRs may be operated with a variety of fissile feed
materials, as burner, breeder, or self-sustaining reactors

- LEU, Th/33U, U/Pu, U/TRU, etc.

« MSRs can breed 233U from 232Th in any spectrum: thermal,
intermediate or fast
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Two-zone MSBR Geometry Design Example

Fissile fuel is “bred” in the blanket channels
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Key Differences in LWR and MSR Flux
Spectrum

 Typical LWR diffusion length (6 cm) vs. typical fluoride salt
MSR diffusion length (16 cm)
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Fission Reaction Rate Spectrum of MSR
versus Typical PWR

* Graphite moderator hardens fission reaction spectrum

* Graphite lifetime is an important consideration in thermal
spectrum MSRs

o 3.0E-02 k - k -

© ' PWR (hydrogen moderator)

5 2.59E-02 " - - MSR (graphite moderator)

S > 2.0E-02 o]

= al |

S £ 1.5E-02 ":i !

n o ™ {

'ug P 4'/\\ "l ’

5 3 1.0E-02 SN | !

.GN) / \ ,' 1 |h‘~

© 5.0E-03 A S :ulu

S / '0"1 ll "‘ kh'lhll"\

o 7 S—— — -

Z 0.0E+00 ©~ e O
1E08 1EO7 1E06 1EO5 1E04 1E03 1E02 1.E-01 1E+OO1E+O1

Energy (MeV)

Source: N. R. Brown et al. 2015. "Sustainable thorium nuclear fuel cycles: A comparison of
intermediate and fast neutron spectrum systems." Nuclear Engineering and Design 289: 252-265. %O AK RIDGE

National Laboratory



Neutron Flux Spectrum of MSRs (cont.)

» The neutron flux spectrum of MSRs can vary significantly as
a function of energy, even for the same design

« Example is the startup of a thorium fuel cycle using U/Pu

from spent nuclear fuel
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Fuel Salt versus Moderator Ratio

* Neutron flux spectrum shifts as fuel salt is added to the
system and moderator is removed

* Enrichment is adjusted to maintain criticality in these
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MSR Spectrum: Challenges

» Although diffusion calculations have been shown to work
well for MSRs, fine energy group and few energy group
structures are not well defined

* These group structures would need to be developed for each
MSR type

* For thermal spectrum (graphite moderated, fluoride salt)
MSRs with LEU fuel, 4-group structure developed for FHRs
may be a good starting point

300
Group # Upper Bound LowerBound & 200 = Plank (AHTR)
1 2.0000E+01  9.1188E-03 SE .. | rematie (FHRDR)
52
2 9.1188E-03 2.9023E-05 35t o
- Q
(O]
3 2.9023E-05 7.3000E-07 ¢ g -100
E -—
4 7.3000E-07 1.0000E-12 £ =9
-300 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Source: C. Gentry, G. I. Maldonado, and K. S. Kim. 2016. “Development of
a Two-Step Reactor Physics Analysis Procedure for Advanced High 0 20 40 60 80 100 120 140 160
Temperature Reactors,” in Proceedings of PHYSOR 2016: Unifying Theory ) Burnup (GWd/t)
and Experiments in the 21st Century_ Source: N.R. Brown et al. 2016. Preconceptua| esign

of a fluoride high temperature salt-cooled engineering

demonstration reactor: core design and safety &O AK RIDGE
analysis.” Annals of Nuclear Energy 103: 49-59. NSO ADO RO



Delayed Neutron Precursor Drift

- Because the fuel is flowing, approximately 50% of delayed
neutrons are generated outside of the core region

* This impacts the value of 8 and the controllability of the
reactor
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Consequences of Moving Fuel in MSRs

 Fuel carries delayed neutron precursors out of the core

— Solid fuel reactors are critical due to delayed neutrons emitted
from precursor decay (fundamental a eigenvalue is limited by
the precursor decay constants and is on the order of s)

— Without delayed neutron precursors, the reactor is
uncontrollable (prompt a eigenvalues are much greater in
magnitude than precursor decay constants)

* Fission source calculated by standard lattice physics
codes is biased

— Prompt neutrons and some delayed neutrons are emitted in
the liquid fuel while it is in the core

— Some delayed neutrons are emitted after the liquid fuel leaves
the core (coolant loop, chemical processing, etc.)

— Neutronics tools need delayed neutron convection term to
model fission source for MSRs % OAK RIDGE
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Fission Product Removal

« Some MSR designs are intended to actively separate fission
and/or transmutation products

* Even if there is no active separation, there will be passive
separation, e.g., noble gas fission products

* Fission product gas bubbles may impact reactor stability
— Although MSRE was shown to be stable during operation

¥ OAK RIDGE
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Modeling and Simulation of MSRs:

Depletion (Bateman) Equations

* ORIGEN solves a set of depletion equations using
fluxes provided from a transport calculation

* These equations describe the rate of change of the
nuclides in the problem

AN, & _& _ ’
=1 AN +D> f.o N, -(1+DPc, +F)N.
Cl’t -y ik — k& k [ [ [ [
Decay rate Production rate Loss rate of nuclide /i due
of nuclide j of nuclide j to decay, irradiation, or
into nuclide i from irradiation other means

* For a solid fuel reactor, the fuel is stationary; there is no
additional removal or feed term

Source: B. Betzler et al. 2016. “Modeling and Simulation of the
Start-up of a Thorium-Based Molten Salt Reactor,” in Proceedings ;OAK RIDGE
of PHYSOR 2016. - National Laboratory



Modeling and Simulation of MSRs:

Depletion (Bateman) Equations

* For a liquid fuel reactor, the additional removal/feed
term is likely nonzero

— Represents removal of fission products, addition of fertile and
fissile material, etc.

— Must be expressed in terms of a decay constant

— An accurate removal/feed rate must take into account liquid
fuel flow rates and reactor design

d y J J

 For a solid fuel reactor, the fuel is stationary; there is no
additional removal or feed term
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Source: B. Betzler et al. 2016. “Modeling and Simulation of the
Start-up of a Thorium-Based Molten Salt Reactor,” in Proceedings
of PHYSOR 2016. #’QAK RIDGE
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Example MSR Separation Processes
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Reactivity Feedback Effects

 Fuel salt temperature (spectral) and density

— Net negative (density component may be positive or
negative)

* Moderator temperature
— May be negative or positive

* Moderator thermal expansion
— Negative, but longer time scale

» Changes in flow rate
— Stable, depending on design

gOAK RIDGF
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Example Fuel Salt Temperature and Density
Reactivity Feedback Effects

 Net effect is negative, driven by strongly negative fuel
temperature spectral effect

» Density component can sometimes be positive
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dynamics features of liquid fueled MSR,” Annals of Nuclear %OAK RIDGE
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Reactivity Effects of Delayed Neutron
Precursor Drift (1/2)

« Experimental observations from MSRE and model predictions for
fuel pump start-up and coast-down transients

« Results from DYN3D German nodal kinetics code in two groups,
similar to US NRC code PARCS

* US NRC code PARCS needs modification for delayed neutron
precursor motion
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Reactivity Effects of Delayed Neutron

Precursor Drift (2/2)

- Experimental observations from MSRE and model

predictions for natural circulation transient

* This example shows that neutronics codes (DYN3D) with the
fidelity of the US NRC code PARCS can accurately predict
passive safety performance of MSRs (if modified for

precursor drift)

Source: J. Kfepel et al. 2007. "DYN3D-
MSR spatial dynamics code for molten
salt reactors." Annals of Nuclear
Energy 34: 449-462. (Used with
permission)
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Stability of MSRE and Reactivity Feedback

- MSRE was determined analytically to be inherently stable
* Predictions were confirmed experimentally

» Example: reactivity insertion behavior
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Nuclear Data Availability and Uncertainty

* Nuclear data uncertainties impact the ability to predict MSR
neutronics
— Absorption reactions
* in lithium are important for thermal spectrum fluoride salt MSRs
* in chlorine are important for fast spectrum chloride salt MSRs
— Thermal neutron scattering
« S(a,B) libraries are needed, especially for Li and Be in FLiBe

« Some examples follow for thermal spectrum and fast
spectrum MSRs

#‘,OAK RIDGE
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Example: Sensitivity and Uncertainty (S/U)
Analysis

* |dentify potential sources of bias due to neutron cross-
sections through uncertainty analysis

- Use sensitivity profiles as a function of energy as a tool to
design informed experiments that can address those
potential sources of bias

o Ok/k
2T YT
* At the high level, the goal of S/U analysis is to:

— Have high quality critical experiments for validation of reactor physics
calculations for fluoride salt reactor concepts: operations and design

— Assess adequacy of ENDF cross-sections

&QAK RIDGE
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S/U Analysis

« Use uncertainty analysis to identify potentlal
sources of bias due to cross-section
Potential bias uncertainties

Y
\/ * If there are significant contributors to A
N4 uncertainty, identify specific target validation
L needs through sensitivity analysis ,
* Design experiments that capture the h
appropriate energy dependence of the
izl ezpilre sensitivities to meet the validation need )

%OAK RIDGE
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Sensitivity and Uncertainty (S/U) Analysis of
MSR Application Models

* Model of a typical liquid fueled MSR unit cell geometry were
adapted for S/U analysis

« Scoping S/U analysis was completed for MSR models
— Both Th/?33U and LEU fueled MSR

[] fulel salt
[] graphite 1
S/U analysis of MSR LEU
model shows uncertainty
contributions from ’Li, C, °F
MSR Model

Source: J. J. Powers, T. J. Harrison, and J. C. Gehin. 2013. "A New Approach for
Modeling and Analysis of Molten Salt Reactors Using Scale." Proceedings of the

2013 International Conference on Mathematics and Computational Methods #,OAK RIDGE
Applied to Nuclear Science and Engineering (M&C 2013). - National Laboratory



Observation from S/U Analysis

* For liquid fueled thermal spectrum fluoride salt reactors ‘Li
seems to be the most significant contributor to potential bias
In the FLiBe salt

— For the range of ’Li enrichments considered and the limited set of
application models

* Unlike LWRSs, SFRs, and HTGRs, there is an almost total
lack of available benchmarks for MSRs

— Integral critical experiments would support salt reactor development

gOAK RIDGE
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Example: 3°CI (n,p) for Chloride Salt Reactors

» Discrepancies in libraries (e.g., ENDF/B VII.0O vs. ENDF/B
VIl.1) and lack of data in the fast energy range significantly
impacts criticality predictions (1000s of pcm)
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Conclusions

 MSRs present potential neutronics advantages
— “Infinite batch” refueling (low excess reactivity)
— Possibility for online removal of fission products
— Strong potential for inherent safety and stability

- MSRs are very different from traditional solid fueled systems
due to fuel cycle flexibility and delayed neutron precursor
drift

* There is a wide variety of different MSR concepts with many
different salts, potential missions, and neutronic
characteristics

« US NRC tools such as PARCS need modification to account
for reactor physics of MSRs

* Very strong need for benchmark experiments and validation

data to benchmark simulation tools
_#‘,OAK RIDGF
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