

**UNITED STATES NUCLEAR REGULATORY COMMISSION
PRESSURIZED WATER REACTOR GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010--FORM A**

Please Print

Name: _____

Docket No.: _____

Facility: _____

Start Time: _____ Stop Time: _____

INSTRUCTIONS TO APPLICANT

Answer all the test items using the answer sheet provided, ensuring a single answer is marked for each test item. Each test item has equal point value. A score of at least 80 percent is required to pass this portion of the NRC operator licensing written examination. All examination materials will be collected 3 hours after the examination begins. This examination applies to a typical U.S. pressurized water reactor (PWR) nuclear power plant.

SECTION	QUESTIONS	% OF TOTAL	SCORE
COMPONENTS	1 - 22		
REACTOR THEORY	23 - 36		
THERMODYNAMICS	37 - 50		
TOTALS	50		

All work performed on this examination is my own. I have neither given nor received aid.

Applicant's Signature

RULES AND INSTRUCTIONS FOR THE NRC GENERIC FUNDAMENTALS EXAMINATION

During the administration of this examination the following rules apply:

NOTE: The generic term "control rod" refers to the length of neutron absorber material that can be positioned by the operator to change core reactivity.

NOTE: Numerical answers are rounded to the nearest whole number unless otherwise indicated.

1. Print your name in the blank provided on the cover sheet of the examination.
2. Fill in your individual docket number.
3. Fill in the name of your facility.
4. Fill in your start and stop times at the appropriate times.
5. Two aids are provided for your use during the examination:
 - (1) An equations and conversions sheet contained within the examination copy, and
 - (2) Steam tables and Mollier Diagram provided by your proctor.
6. Place your answers on the answer sheet provided. Credit will only be given for answers properly marked on this sheet. Follow the instructions for filling out the answer sheet.
7. Scrap paper will be provided for calculations.
8. Cheating on the examination will result in the automatic forfeiture of this examination. Cheating could also result in severe penalties.
9. Restroom trips are limited. Only **one** examinee may leave the room at a time. In order to avoid the appearance or possibility of cheating, avoid all contact with anyone outside of the examination room.
10. After you have completed the examination, sign the statement on the cover sheet indicating that the work is your own and you have neither given nor received any assistance in completing the examination. Either pencil or pen may be used.
11. Turn in your examination materials, answer sheet on top, followed by the examination copy and the examination aids, e.g., steam tables, handouts, and scrap paper.
12. After turning in your examination materials, leave the examination area, as defined by the proctor. If after leaving you are found in the examination area while the examination is in progress, your examination may be forfeited.

GENERIC FUNDAMENTALS EXAMINATION
EQUATIONS AND CONVERSIONS HANDOUT SHEET

EQUATIONS

$$\dot{Q} = \dot{m}c_p \Delta T$$

$$P = P_o 10^{\text{SUR}(t)}$$

$$\dot{Q} = \dot{m} \Delta h$$

$$P = P_o e^{(t/\tau)}$$

$$\dot{Q} = UA\Delta T$$

$$CR_{S/D} = S/(1 - K_{\text{eff}})$$

$$\dot{Q} \propto \dot{m}_{\text{Nat Circ}}^3$$

$$CR_1(1 - K_{\text{eff1}}) = CR_2(1 - K_{\text{eff2}})$$

$$\Delta T \propto \dot{m}_{\text{Nat Circ}}^2$$

$$1/M = CR_1/CR_X$$

$$K_{\text{eff}} = 1/(1 - \rho)$$

$$F = PA$$

$$\rho = (K_{\text{eff}} - 1)/K_{\text{eff}}$$

$$\dot{m} = \rho A \vec{v}$$

$$\text{SUR} = 26.06/\tau$$

$$\dot{W}_{\text{Pump}} = \dot{m} \Delta P v$$

$$\tau = \frac{\bar{\beta}_{\text{eff}} - \rho}{\lambda_{\text{eff}} \rho}$$

$$P = IE$$

$$\rho = \frac{\ell^*}{\tau} + \frac{\bar{\beta}_{\text{eff}}}{1 + \lambda_{\text{eff}} \tau}$$

$$P_A = \sqrt{3}IE$$

$$\ell^* = 1 \times 10^{-4} \text{ sec}$$

$$P_T = \sqrt{3}IEpf$$

$$\lambda_{\text{eff}} = 0.1 \text{ sec}^{-1} \text{ (for small positive } \rho \text{)}$$

$$P_R = \sqrt{3}IE \sin\theta$$

$$\text{DRW} \propto \varphi_{\text{tip}}^2 / \varphi_{\text{avg}}^2$$

$$\text{Thermal Efficiency} = \text{Net Work Out/Energy In}$$

$$\frac{g(z_2 - z_1)}{g_c} + \frac{(\vec{v}_2^2 - \vec{v}_1^2)}{2g_c} + v(P_2 - P_1) + (u_2 - u_1) + (q - w) = 0$$

$$A = A_0 e^{-\lambda t}$$

$$g_c = 32.2 \text{ lbm-ft/lbf-sec}^2$$

CONVERSIONS

$$1 \text{ Mw} = 3.41 \times 10^6 \text{ Btu/hr}$$

$$^{\circ}\text{C} = (5/9)(^{\circ}\text{F} - 32)$$

$$1 \text{ ft}^3_{\text{water}} = 7.48 \text{ gal}$$

$$1 \text{ hp} = 2.54 \times 10^3 \text{ Btu/hr}$$

$$^{\circ}\text{F} = (9/5)(^{\circ}\text{C}) + 32$$

$$1 \text{ gal}_{\text{water}} = 8.35 \text{ lbm}$$

$$1 \text{ Btu} = 778 \text{ ft-lbf}$$

$$1 \text{ kg} = 2.21 \text{ lbm}$$

$$1 \text{ Curie} = 3.7 \times 10^{10} \text{ dps}$$

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 1

Subcooled water is flowing through a throttled valve with the following initial parameters:

- Inlet pressure = 60 psia
- Outlet pressure = 50 psia
- Flow rate = 800 gpm

The valve is opened fully and the following parameters currently exist:

- Inlet pressure = 60 psia
- Outlet pressure = 55 psia

What is the approximate flow rate through the fully open valve?

- A. 400 gpm
- B. 566 gpm
- C. 635 gpm
- D. Cannot be determined without additional information.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 2

A typical check valve is designed to...

- A. permit flow in only one direction.
- B. prevent system overpressure.
- C. isolate system components.
- D. perform automatic pump venting.

QUESTION: 3

A bourdon-tube pressure detector was indicating 50 percent of scale when it was suddenly exposed to a high-pressure transient that caused permanent strain to the bourdon tube. The detector remained intact and actual pressure was restored to its original value.

During the pressure transient, the affected pressure indication initially went off-scale high. After the original pressure was restored, the indication was...

- A. unpredictable.
- B. less than 50 percent of scale.
- C. 50 percent of scale.
- D. greater than 50 percent of scale.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 4

Because of a thermocouple temperature display failure, the millivolt output of a thermocouple circuit is being converted to temperature using conversion tables. The tables are based on a thermocouple reference junction temperature of 32°F. The reference junction is located in a panel that is maintained at 120°F. Room temperature surrounding the panel is 80°F.

What adjustment must be made to the temperature value taken from the conversion tables to calculate the actual temperature at the measuring tip of the thermocouple?

- A. Add 48°F.
- B. Subtract 48°F.
- C. Add 88°F.
- D. Subtract 88°F.

QUESTION: 5

Which one of the following describes the positive space charge effect associated with a gas filled radiation detector?

- A. Multiple detector pulses result from a single ionization event because positive ions form a cloud around the negative electrode, which increases the electric field strength, thereby initiating secondary ionizations.
- B. Multiple detector pulses result from a single ionization event because positive ions form a cloud around the positive electrode, which increases the electric field strength, thereby initiating secondary ionizations.
- C. The pulse amplitude resulting from an ionization event is reduced because positive ions form a cloud around the negative electrode, which reduces the electric field strength, thereby limiting secondary ionizations.
- D. The pulse amplitude resulting from an ionization event is reduced because positive ions form a cloud around the positive electrode, which reduces the electric field strength, thereby limiting secondary ionizations.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 6

During reactor power operation, a reactor coolant sample is taken and analyzed. Which one of the following lists three radionuclides that are all indicative of a fuel cladding failure if detected in elevated concentrations in the reactor coolant sample?

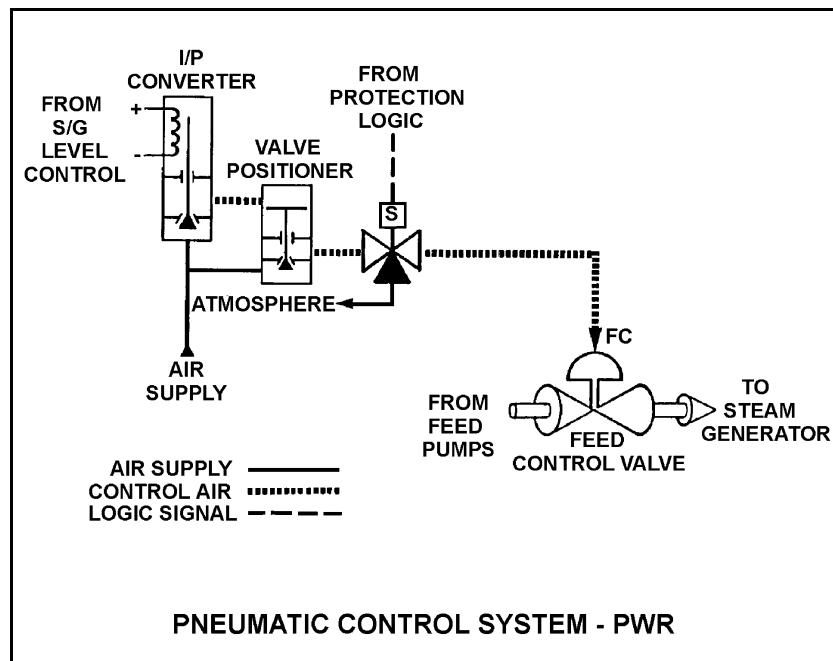
- A. Lithium-6, cobalt-60, and argon-41
- B. Iodine-131, cesium-138, and strontium-89
- C. Nitrogen-16, xenon-135, and manganese-56
- D. Hydrogen-2 (deuterium), hydrogen-3 (tritium), and oxygen-18

QUESTION: 7

Consider a direct-acting proportional flow controller that is maintaining flow rate at a value that is offset from the controller setpoint. If the controller's gain is increased, the controller's offset will _____ and the controller's proportional band will _____.

- A. decrease; decrease
- B. decrease; increase
- C. increase; decrease
- D. increase; increase

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**


QUESTION: 8

Refer to the drawing of a pneumatic control system (see figure below).

An increasing steam generator (SG) water level will decrease the SG level control signal and reduce the control air pressure applied to the feed control valve which reduces feedwater flow to the SG.

If the level control signal is manually increased, how will the pneumatic control system affect steam generator level?

- A. Level will decrease because the valve positioner will close more.
- B. Level will decrease because the valve positioner will open more.
- C. Level will increase because the valve positioner will close more.
- D. Level will increase because the valve positioner will open more.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

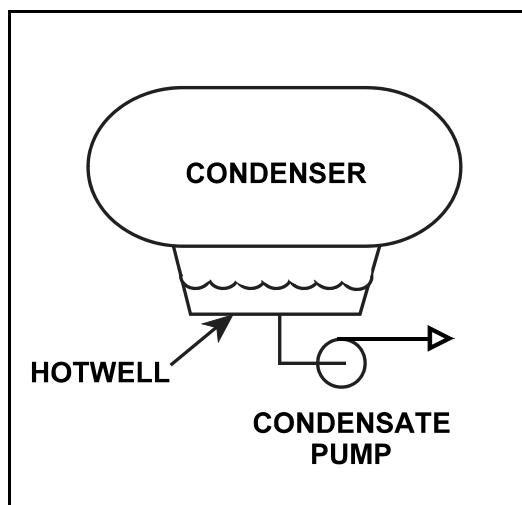
QUESTION: 9

Which one of the following describes the response of a direct-acting proportional-integral controller, operating in automatic mode, to an increase in the controlled parameter above the controller set point?

- A. The controller will develop an output signal that continues to increase until the controlled parameter equals the controller set point, at which time the output signal stops increasing.
- B. The controller will develop an output signal that will remain directly proportional to the difference between the controlled parameter and the controller set point.
- C. The controller will develop an output signal that continues to increase until the controlled parameter equals the controller set point, at which time the output signal becomes zero.
- D. The controller will develop an output signal that will remain directly proportional to the rate of change of the controlled parameter.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 10


Refer to the drawing of a steam condenser, hotwell, and condensate pump (see figure below).

Given the following:

- The eye of the pump impeller is located 6.0 feet below the bottom of the hotwell.
- Hotwell water level is 6.0 feet.
- Hotwell water temperature is 90°F.
- Condenser pressure is 1.3 psia.
- Fluid velocity and friction head losses are zero.

What is the net positive suction head available to the condensate pump?

- A. 6.0 feet
- B. 7.4 feet
- C. 12.0 feet
- D. 13.4 feet

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 11

Which one of the following is an indication of pump runout?

- A. High discharge pressure
- B. Low pump motor current
- C. High pump flow rate
- D. Pump flow reversal

QUESTION: 12

A motor-driven centrifugal pump is operating normally in a closed loop cooling water system. When the pump discharge flow control valve is opened further, the pump is unable to provide the desired volumetric flow rate due to cavitation. Which one of the following will enable a higher pump volumetric flow rate before cavitation occurs?

- A. Remove the existing motor and install a motor with a lower horsepower rating.
- B. Remove the existing motor and install a motor with a higher horsepower rating.
- C. Remove the existing pump and install a same-capacity pump with a lower minimum net positive suction head requirement.
- D. Remove the existing pump and install a same-capacity pump with a higher minimum net positive suction head requirement.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 13

Which one of the following describes the proper location for a relief valve that will be used to prevent exceeding the design pressure of a positive displacement pump and associated piping?

- A. On the pump suction piping upstream of the suction isolation valve.
- B. On the pump suction piping downstream of the suction isolation valve.
- C. On the pump discharge piping upstream of the discharge isolation valve.
- D. On the pump discharge piping downstream of the discharge isolation valve.

QUESTION: 14

Which one of the following breaker trip signals will trip the associated motor breaker if a motor bearing seizes while the motor is running?

- A. Undervoltage
- B. Underfrequency
- C. Instantaneous overcurrent
- D. Time-delayed overcurrent

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 15

A main generator is connected to an infinite power grid with the following initial generator parameters:

Terminal Voltage:	22 KV
Frequency:	60 Hertz
Load--Real:	575 MW
Load--Reactive:	100 MVAR (out)
Power Factor:	0.985

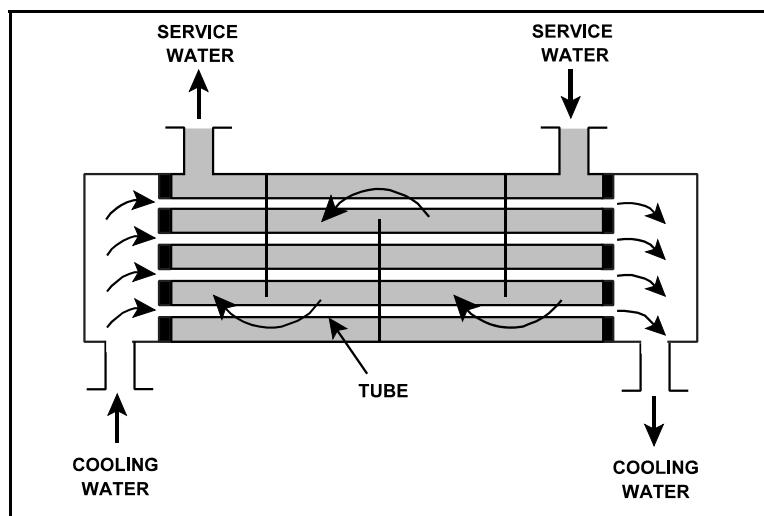
Which one of the following contains a combination of manual adjustments to the main generator voltage regulator and speed control setpoints in which each adjustment will result in main generator operation at a power factor closer to 1.0. (Assume that generator power factor remains less than 1.0.)

	<u>Voltage Setpoint</u>	<u>Speed Setpoint</u>
A.	Increase	Increase
B.	Increase	Decrease
C.	Decrease	Increase
D.	Decrease	Decrease

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 16

Refer to the drawing of a heat exchanger (see figure below).


The heat exchanger is in service with the following inlet temperatures:

Service water inlet temperature: 130°F

Cooling water inlet temperature: 70°F

Assume that both fluids have the same specific heat, and that service water mass flow rate is greater than cooling water mass flow rate. Which one of the following pairs of heat exchanger outlet temperatures is possible?

	Service Water <u>Outlet Temp.</u>	Cooling Water <u>Outlet Temp.</u>
A.	120°F	82°F
B.	110°F	90°F
C.	100°F	98°F
D.	90°F	106°F

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 17

A nuclear power plant is operating at steady-state 100 percent power. Assuming that condenser cooling water inlet temperature and flow rate do not change, if condenser vacuum decreases, condensate temperature will...

- A. increase because condensate subcooling has decreased.
- B. increase because condenser saturation pressure has increased.
- C. decrease because condensate subcooling has increased.
- D. decrease because condenser saturation pressure has decreased.

QUESTION: 18

Which one of the following is an indication that a demineralizer resin has become exhausted?

- A. Decreased demineralizer process water flow rate.
- B. Decreased demineralizer influent conductivity.
- C. Decreased demineralizer differential pressure.
- D. Decreased demineralizer decontamination factor.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

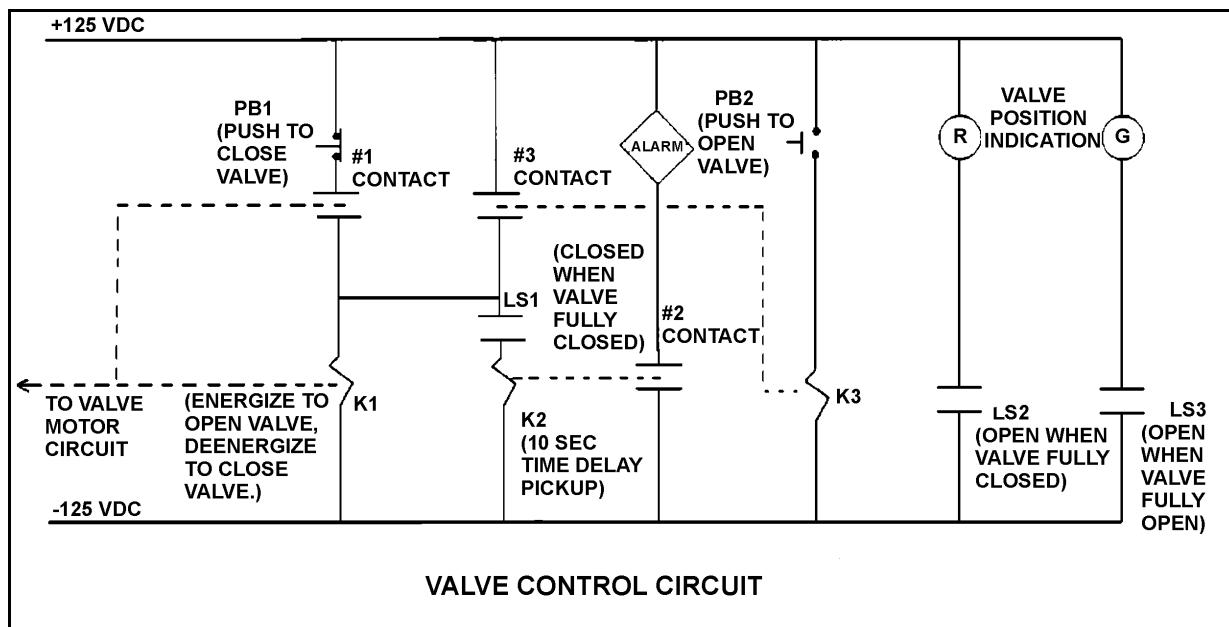
QUESTION: 19

A nuclear power plant has been operating normally at 100 percent power for one month and with the same reactor coolant boron concentration for the last 24 hours.

Which one of the following changes associated with the in-service reactor coolant demineralizer will cause a reduction in reactor coolant boron concentration in the demineralizer effluent?

- A. Increase the temperature of the reactor coolant being processed from 95°F to 105°F.
- B. Decrease the temperature of the reactor coolant being processed from 105°F to 95°F.
- C. Increase the flow rate of reactor coolant being processed from 75 gpm to 100 gpm.
- D. Decrease the flow rate of reactor coolant being processed from 75 gpm to 50 gpm.

USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A


QUESTION: 20

Refer to the drawing of a valve control circuit (see figure below).

Note: Limit switch (LS) contacts are shown open regardless of valve position, but relay contacts are shown open/closed according to the standard convention for control circuit drawings.

Pushbutton PB2 has been momentarily depressed and then released, and the valve is currently at mid-stroke and moving to the open position. Under these conditions, which one of the following describes the position of contacts #1, #2, and #3?

- A. #1 closed; #2 open; #3 open
- B. #1 open; #2 closed; #3 closed
- C. #1 open; #2 closed; #3 open
- D. #1 closed; #2 open; #3 closed

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 21

A 480 VAC motor control center supplies a load through a breaker and a manual disconnect. Which one of the following sequences will provide the greatest level of personnel safety when deenergizing the load for maintenance and when reenergizing the load after the maintenance?

<u>DEENERGIZING</u>	<u>REENERGIZING</u>
A. Open breaker first	Shut breaker first
B. Open breaker first	Shut disconnect first
C. Open disconnect first	Shut breaker first
D. Open disconnect first	Shut disconnect first

QUESTION: 22

The following indications are observed for a motor breaker in the control room:

Red position indicating light is off.
Green position indicating light is off.
Load amps indicate normal load current.

Assuming one of the indicating lights is burned out, what is the condition of the breaker?

- A. Closed and racked in
- B. Open and racked in
- C. Closed and racked to "test" position
- D. Open and racked to "test" position

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 23

Delayed neutrons are fission neutrons that...

- A. are released at the instant of fission.
- B. are responsible for the majority of U-235 fissions.
- C. have reached thermal equilibrium with the surrounding medium.
- D. are expelled at a lower average kinetic energy than most other fission neutrons.

QUESTION: 24

With a nuclear power plant operating at 85 percent power and rod control in Manual, the operator borates the reactor coolant system an additional 10 ppm. Assuming reactor power does not change during the boration, shutdown margin will...

- A. decrease and stabilize at a lower value.
- B. decrease, then increase to the original value as coolant temperature changes.
- C. increase and stabilize at a higher value.
- D. increase, then decrease to the original value as coolant temperature changes.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 25

Which one of the following is the major cause for the change in the core delayed neutron fraction from the beginning to the end of a fuel cycle?

- A. Burnup of the burnable poisons.
- B. Changes in the fuel composition.
- C. Buildup of fission product poisons.
- D. Shift in the core axial power distribution.

QUESTION: 26

Which one of the following contains the nuclides responsible for most of the resonance capture of fission neutrons in a nuclear reactor core at the beginning of the sixth fuel cycle? (Assume that each refueling replaces one-third of the fuel.)

- A. U-235 and Pu-239
- B. U-235 and U-238
- C. U-238 and Pu-239
- D. U-238 and Pu-240

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 27

Given the following initial parameters:

Total power coefficient: -0.020% $\Delta K/K\%$
Boron worth: -0.010% $\Delta K/K/\text{ppm}$
Control rod worth: -0.020% $\Delta K/K/\text{inch}$
Initial reactor coolant system
(RCS) boron concentration: 600 ppm

Which one of the following is the final RCS boron concentration required to support increasing plant power from 20 percent to 50 percent with 10 inches of control rod withdrawal? (Ignore any change in fission product poison reactivity.)

- A. 520 ppm
- B. 560 ppm
- C. 640 ppm
- D. 680 ppm

QUESTION: 28

A nuclear reactor is operating at 60 percent power near the end of a fuel cycle with the controlling group of control rods inserted 5 percent into the core. Which one of the following will cause group differential rod worth to become less negative? (Consider only the direct effect of the indicated change.)

- A. Burnable poison rods become increasingly depleted.
- B. Core Xe-135 concentration decreases toward an equilibrium value.
- C. Reactor coolant temperature is allowed to decrease from 575°F to 570°F.
- D. The group of control rods is inserted an additional 0.5 percent..

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 29

If core quadrant power distribution (sometimes called quadrant power tilt or azimuthal tilt) is maintained within design limits, which one of the following conditions is most likely?

- A. Axial power distribution is within design limits.
- B. Radial power distribution is within design limits.
- C. Nuclear instrumentation is indicating within design accuracy.
- D. Departure from nucleate boiling ratio is within design limits.

QUESTION: 30

One hour after a reactor trip from sustained 100 percent power operation, the xenon-135 removal process consists primarily of...

- A. beta decay.
- B. gamma decay.
- C. neutron capture.
- D. gamma capture.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 31

Nuclear reactors A and B are operating at steady-state 100 percent power with equilibrium core Xe-135. The reactors are identical except that reactor A is operating near the end of core life and reactor B is operating near the beginning of core life.

Which reactor is experiencing the most negative reactivity from equilibrium core Xe-135?

- A. Reactor A due to a greater concentration of equilibrium core Xe-135.
- B. Reactor A due to lower competition from the fuel for thermal neutrons.
- C. Reactor B due to a greater thermal neutron flux in the core.
- D. Reactor B due to a smaller accumulation of stable fission product poisons.

QUESTION: 32

Why are burnable poisons installed in a new nuclear reactor core instead of using a larger reactor coolant boron concentration?

- A. To prevent boron precipitation during normal operation.
- B. To establish a more negative moderator temperature coefficient.
- C. To minimize the distortion of the neutron flux distribution caused by soluble boron.
- D. To allow the loading of excessive reactivity in the form of higher fuel enrichment.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 33

During a nuclear reactor startup, the first reactivity addition caused the source range count rate to increase from 20 to 40 cps. The second reactivity addition caused the count rate to increase from 40 to 160 cps.

Which one of the following statements accurately compares the two reactivity additions?

- A. The first reactivity addition was larger.
- B. The second reactivity addition was larger.
- C. The first and second reactivity additions were equal.
- D. There is not enough data given to determine the relationship of reactivity values.

QUESTION: 34

After taking critical data during a reactor startup, the operator establishes a positive 48-second reactor period to increase reactor power to the point of adding heat (POAH). Which one of the following is the approximate amount of reactivity needed to stabilize power at the POAH? (Assume $\overline{\beta}_{\text{eff}} = 0.00579$.)

- A. $-0.010\% \Delta K/K$
- B. $-0.012\% \Delta K/K$
- C. $-0.10\% \Delta K/K$
- D. $-0.12\% \Delta K/K$

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 35

A nuclear power plant is operating at equilibrium 50 percent power. Control rods are manually withdrawn for 5 seconds. Which one of the following plant parameter changes will be observed when the plant stabilizes?

- A. Reactor coolant temperature will be higher.
- B. Reactor coolant system pressure will be lower.
- C. Reactor power will be higher.
- D. Pressurizer level will be lower.

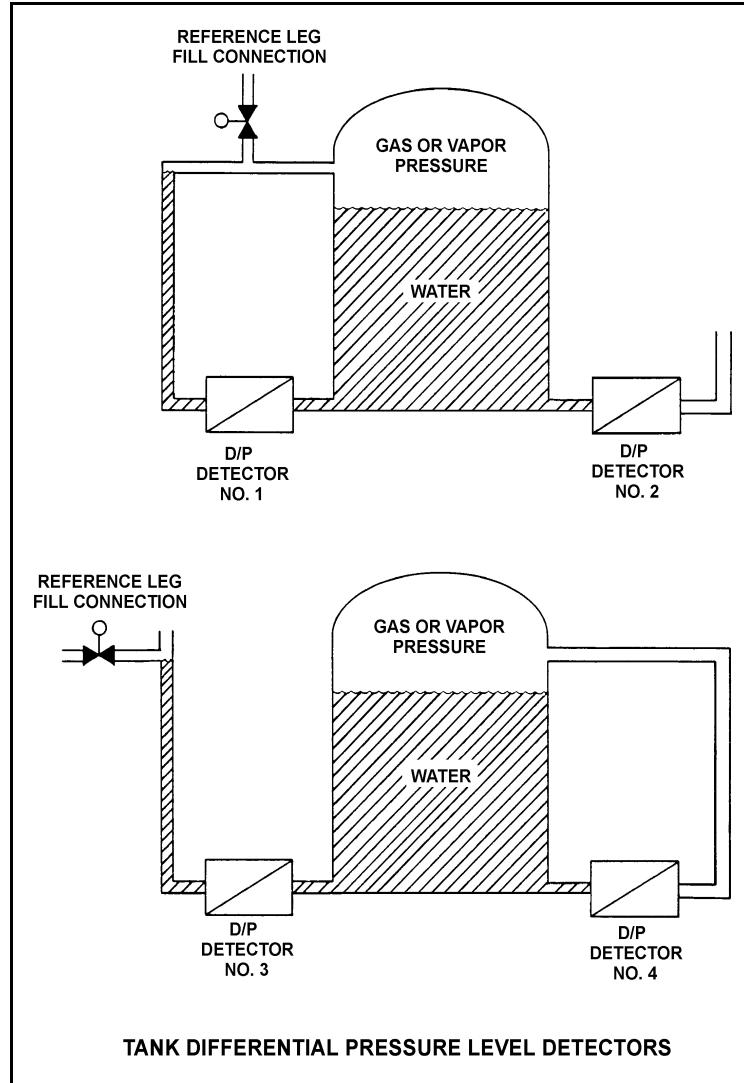
QUESTION: 36

A nuclear reactor startup is in progress and criticality has just been achieved. After recording critical rod height, the operator withdraws control rods for 10 seconds to establish a stable positive 0.2 dpm startup rate. One minute later (prior to the point of adding heat) the operator inserts the same control rods for 15 seconds. (Assume the positive and negative reactivity insertion rates are the same.)

During the control rod insertion, the startup rate will become...

- A. negative during the entire period of control rod insertion.
- B. negative shortly after the control rods pass through the critical rod height.
- C. negative just as the control rods pass through the critical rod height.
- D. negative shortly before the control rods pass through the critical rod height.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**


QUESTION: 37

Refer to the drawing of four identical tank differential pressure (D/P) level detectors (see figure below).

The tanks are identical and are currently at 2 psig overpressure, the same constant water level, and a temperature of 60°F. They are surrounded by atmospheric pressure. All level detectors have been calibrated and are producing the same level indication.

If a leak in the top of each tank causes a complete loss of overpressure, which level detector(s) will produce the lowest level indication?

- A. No. 1 only
- B. No. 2 only
- C. No. 1 and 4
- D. No. 2 and 3

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 38

An open vessel contains one pound-mass of water at 206°F and standard atmospheric pressure. Which one of the following will be caused by the addition of 3.0 Btu to the water?

- A. The water temperature will rise by approximately 3°F.
- B. Approximately 3 percent of the water mass will vaporize.
- C. The water density will decrease by approximately 3 percent.
- D. The water will become superheated by approximately 3°F.

QUESTION: 39

Saturated steam enters a frictionless convergent-divergent nozzle with the following parameters:

Pressure = 850 psia
Velocity = 10 ft/sec

The steam at the throat of the nozzle has a subsonic velocity of 950 ft/sec.

Given that nozzles convert enthalpy to kinetic energy, and assuming no heat transfer to or from the nozzle, what is the enthalpy of the steam at the throat of the nozzle?

- A. 1,162 Btu/lbm
- B. 1,171 Btu/lbm
- C. 1,180 Btu/lbm
- D. 1,189 Btu/lbm

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 40

A nuclear power plant is operating at power. Steam is escaping to atmosphere through a flange leak in a steam supply line to the low pressure section of the main turbine.

Given:

- Steam line pressure is 200 psia.
- Steam line temperature is 400°F.

Assuming no heat transfer to/from the steam, what is the approximate temperature of the steam as it reaches atmospheric pressure?

- A. 212°F
- B. 284°F
- C. 339°F
- D. 375°F

QUESTION: 41

If the moisture content of the steam supplied to a main turbine increases, (assume no change in steam pressure, condenser pressure, or control valve position) turbine work will...

- A. decrease, because the enthalpy of the steam being supplied to the turbine has decreased.
- B. decrease, because moist steam is more likely to leak between turbine stages.
- C. increase, because the enthalpy of the steam being supplied to the turbine has increased.
- D. increase, because moist steam is less likely to leak between turbine stages.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 42

Cavitation in an operating pump may be caused by...

- A. lowering the pump suction temperature.
- B. throttling the pump suction valve.
- C. increasing the pump backpressure.
- D. increasing the pump suction pressure.

QUESTION: 43

An ideal positive displacement pump is initially operating with the following parameters:

Suction pressure: 10 psig
Discharge pressure: 25 psig
Flow rate: 100 gpm

A pump discharge valve is throttled such that pump discharge pressure increases to 40 psig. If pump suction pressure does not change, the pump flow rate will...

- A. remain constant.
- B. decrease in direct proportion to the change in pump differential pressure.
- C. decrease in direct proportion to the square of the change in pump differential pressure.
- D. decrease in direct proportion to the square root of the change in pump differential pressure.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 44

A nuclear power plant is initially operating at 80 percent power with a core ΔT of 48°F when a station blackout occurs. Natural circulation is established and core ΔT stabilizes at 40°F. If reactor coolant mass flow rate is 3 percent, which one of the following is the current core decay heat level?

- A. 1 percent
- B. 2 percent
- C. 3 percent
- D. 4 percent

QUESTION: 45

A nuclear power plant is currently shut down after several months of operation at full power. The shutdown cooling system is in operation, maintaining an average reactor coolant system (RCS) temperature of 280°F. A pressure control malfunction causes RCS pressure to slowly and continuously decrease from 100 psia while RCS temperatures remain constant.

Which one of the following describes where nucleate boiling will first occur?

- A. At a scratch on the surface of a fuel rod near the top of a fuel assembly.
- B. At a scratch on the surface of a fuel rod near the bottom of a fuel assembly.
- C. In the bulk fluid of a coolant channel near the top of a fuel assembly.
- D. In the bulk fluid of a coolant channel near the bottom of a fuel assembly.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 46

A nuclear power plant is operating with the following initial conditions:

- Reactor power is 45 percent in the middle of a fuel cycle.
- Axial and radial power distributions are peaked in the center of the core.

Which one of the following will decrease the steady-state departure from nucleate boiling ratio?

- A reactor trip occurs and one control rod remains fully withdrawn from the core.
- A pressurizer malfunction increases reactor coolant system pressure by 20 psig with no control rod motion.
- The operator decreases reactor coolant boron concentration by 5 ppm with no control rod motion.
- Core Xe-135 builds up in proportion to the axial and radial power distribution with automatic rod control.

QUESTION: 47

Which one of the following is most likely to result in steam bubble formation in a reactor vessel head while maintaining a 60°F subcooling margin in the hottest reactor coolant system (RCS) hot leg?

- Performing a 25°F/Hr RCS cooldown on natural circulation.
- Performing a 50°F/Hr RCS cooldown on natural circulation.
- Performing a 25°F/Hr RCS heatup on forced circulation.
- Performing a 50°F/Hr RCS heatup on forced circulation.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 48

Adequate core bypass flow is needed to...

- A. cool the excore nuclear instrument detectors.
- B. provide reactor coolant pump minimum flow requirements.
- C. prevent stratification of reactor coolant inside the reactor vessel.
- D. equalize the temperatures between the reactor vessel and the upper vessel head.

QUESTION: 49

A nuclear reactor is operating at 80 percent power with all control rods fully withdrawn and in manual control. Compared to a 50 percent insertion of one control rod, a 50 percent insertion of a group (or bank) of control rods will cause a _____ increase in the steady state core maximum axial power peaking factor and a _____ increase in the steady state core maximum radial power peaking factor. (Assume reactor power remains constant.)

- A. smaller; smaller
- B. smaller; larger
- C. larger; smaller
- D. larger; larger

**USNRC GENERIC FUNDAMENTALS EXAMINATION
SEPTEMBER 2010 PWR--FORM A**

QUESTION: 50

Which one of the following would be most likely to cause pressurized thermal shock of a reactor vessel?

- A. Starting a reactor coolant pump in an idle loop with the associated steam generator temperature less than RCS loop temperature.
- B. Starting a reactor coolant pump in an idle loop with the associated steam generator temperature greater than RCS loop temperature.
- C. Continuous emergency coolant injection to the RCS during and after a complete and unisolable rupture of a steam generator steam outlet nozzle.
- D. Continuous emergency coolant injection to the RCS during and after a complete and unisolable rupture of a reactor vessel coolant outlet nozzle.

***** FINAL ANSWER KEY *****

**SEPTEMBER 2010 NRC GENERIC FUNDAMENTALS EXAMINATION
PRESSURIZED WATER REACTOR - ANSWER KEY**

<u>FORM A</u>	<u>FORM B</u>	<u>ANS.</u>	<u>FORM A</u>	<u>FORM B</u>	<u>ANS.</u>
1	15	D	26	40	D
2	16	A	27	41	B
3	17	D	28	42	C
4	18	C	29	43	B
5	19	D	30	44	A
6	20	B	31	45	B
7	21	A	32	46	B
8	22	D	33	47	A
9	23	A	34	48	C
10	24	D	35	49	A or C
11	25	C	36	50	A or D
12	26	C	37	1	D
13	27	C	38	2	A
14	28	D	39	3	C
15	29	C	40	4	C
16	30	A	41	5	A
17	31	B	42	6	B
18	32	D	43	7	A
19	33	B	44	8	B
20	34	A	45	9	A
21	35	B	46	10	C
22	36	A	47	11	B
23	37	D	48	12	D
24	38	C	49	13	C
25	39	B	50	14	C