

**UNITED STATES NUCLEAR REGULATORY COMMISSION
BOILING WATER REACTOR GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 – FORM A**

Please Print

Name: _____

Docket No.: _____

Facility: _____

Start Time: _____ Stop Time: _____

INSTRUCTIONS TO APPLICANT

Answer all the test items using the answer sheet provided, ensuring a single answer is marked for each test item. Each test item has equal point value. A score of at least 80 percent is required to pass this portion of the NRC operator licensing written examination. All examination materials will be collected 3 hours after the examination begins. This examination applies to a typical U.S. boiling water reactor (BWR) nuclear power plant.

SECTION	QUESTIONS	% OF TOTAL	SCORE
COMPONENTS	1 - 22		
REACTOR THEORY	23 - 36		
THERMODYNAMICS	37 - 50		
TOTALS	50		

All work performed on this examination is my own. I have neither given nor received aid.

Applicant's Signature

RULES AND INSTRUCTIONS FOR THE NRC GENERIC FUNDAMENTALS EXAMINATION

During the administration of this examination the following rules apply:

NOTE: The term "control rod" refers to the length of neutron absorber material that can be positioned by the operator to change core reactivity.

NOTE: Numerical answers are rounded to the nearest whole number unless otherwise indicated.

1. Print your name in the blank provided on the cover sheet of the examination.
2. Fill in your individual docket number.
3. Fill in the name of your facility.
4. Fill in your start and stop times at the appropriate times.
5. Two aids are provided for your use during the examination:
 - (1) An Equations and Conversions Sheet contained within the examination copy, and
 - (2) Steam tables and Mollier Diagram provided by your proctor.
6. Place your answers on the answer sheet provided. Credit will only be given for answers properly marked on this sheet. Follow the instructions for filling out the answer sheet.
7. Scrap paper will be provided for calculations.
8. Cheating on the examination will result in the automatic forfeiture of this examination. Cheating could also result in severe penalties.
9. Restroom trips are limited. Only **one** examinee may leave the room at a time. In order to avoid the appearance or possibility of cheating, avoid all contact with anyone outside the examination room.
10. After you have completed the examination, sign the statement on the cover sheet indicating that the work is your own and you have neither given nor received any assistance in completing the examination. Either pencil or pen may be used.
11. Turn in your examination materials, answer sheet on top, followed by the examination copy and the examination aids, e.g., steam tables, handouts, and scrap paper.
12. After turning in your examination materials, leave the examination area as defined by the proctor. If after leaving you are found in the examination area while the examination is in progress, your examination may be forfeited.

GENERIC FUNDAMENTALS EXAMINATION EQUATIONS AND CONVERSIONS SHEET

EQUATIONS

$$\dot{Q} = \dot{m}c_p\Delta T$$

$$A = A_o e^{-\lambda t}$$

$$\dot{Q} = \dot{m}\Delta h$$

$$N = S/(1 - K_{eff})$$

$$\dot{Q} = UA\Delta T$$

$$CR_1(1 - K_{eff_1}) = CR_2(1 - K_{eff_2})$$

$$\dot{Q} \propto \dot{m}_{Nat\ Circ}^3$$

$$1/M = CR_1/CR_x$$

$$\Delta T \propto \dot{m}_{Nat\ Circ}^2$$

$$A = \pi r^2$$

$$K_{eff} = 1/(1 - \rho)$$

$$F = PA$$

$$\rho = (K_{eff} - 1)/K_{eff}$$

$$\dot{m} = \rho A \vec{v}$$

$$SUR = 26.06/\tau$$

$$\dot{W}_{Pump} = \dot{m}\Delta Pv$$

$$\tau = \frac{\bar{\beta}_{eff} - \rho}{\lambda_{eff} \rho}$$

$$P = IE$$

$$P_A = \sqrt{3}IE$$

$$\rho = \frac{\ell^*}{\tau} + \frac{\bar{\beta}_{eff}}{1 + \lambda_{eff} \tau}$$

$$P_T = \sqrt{3}IEpf$$

$$\ell^* = 1.0 \times 10^{-4} \text{ sec}$$

$$P_R = \sqrt{3}IE\sin\theta$$

$$\lambda_{eff} = 0.1 \text{ sec}^{-1} \text{ (for small positive } \rho \text{)}$$

$$\text{Thermal Efficiency} = \text{Net Work Out/Energy In}$$

$$DRW \propto \varphi_{tip}^2 / \varphi_{avg}^2$$

$$\frac{g(z_2 - z_1)}{g_c} + \frac{(\vec{v}_2^2 - \vec{v}_1^2)}{2g_c} + v(P_2 - P_1) + (u_2 - u_1) + (q - w) = 0$$

$$P = P_o e^{t/\tau}$$

$$g = 32.2 \text{ ft/sec}^2$$

$$P = P_o 10^{SUR(t)}$$

$$g_c = 32.2 \text{ lbm-ft/lbf-sec}^2$$

CONVERSIONS

$$1 \text{ MW} = 3.41 \times 10^6 \text{ Btu/hr}$$

$$^{\circ}\text{C} = (5/9)(^{\circ}\text{F} - 32)$$

$$1 \text{ ft}^3_{\text{water}} = 7.48 \text{ gal}$$

$$1 \text{ hp} = 2.54 \times 10^3 \text{ Btu/hr}$$

$$^{\circ}\text{F} = (9/5)(^{\circ}\text{C}) + 32$$

$$1 \text{ gal}_{\text{water}} = 8.35 \text{ lbm}$$

$$1 \text{ Btu} = 778 \text{ ft-lbf}$$

$$1 \text{ kg} = 2.21 \text{ lbm}$$

$$1 \text{ Curie} = 3.7 \times 10^{10} \text{ dps}$$

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 1

A completely full water storage tank is being hydrostatically tested to 200 psig using a positive displacement pump (PDP) with a smooth and constant discharge flow rate of 6 gpm. The tank is protected by two relief valves that discharge to the atmosphere. The relief valves have the following characteristics:

- Relief valve A opening setpoint is 200 psig with an accumulation of 1.5 percent.
- Relief valve B opening setpoint is 200 psig with an accumulation of 3.0 percent.
- Each valve has linear flow rate characteristics and a maximum discharge flow rate of 6 gpm.

The PDP is inadvertently left running when tank pressure reaches 200 psig.

With the PDP running continuously, what will be the discharge flow rates of the relief valves when tank pressure stabilizes?

	<u>Relief</u> <u>Valve A</u>	<u>Relief</u> <u>Valve B</u>
A.	1 gpm	5 gpm
B.	2 gpm	4 gpm
C.	3 gpm	3 gpm
D.	4 gpm	2 gpm

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 2

During a local inspection of a manually operated 12-inch gate valve, the valve stem is observed to extend outward from the valve handwheel by 1 inch. The entire external valve stem is threaded, except for a 1-inch section that becomes smooth just before the valve stem enters the packing gland.

Which one of the following describes the position of the gate valve?

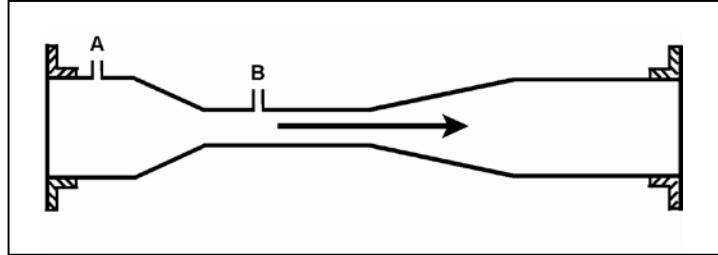
- A. The valve is fully open or nearly fully open.
- B. The valve is fully closed or nearly fully closed.
- C. The valve may be in any position because it is a rising stem gate valve.
- D. The valve may be in any position because it is a non-rising stem gate valve.

QUESTION: 3

Which one of the following describes the function and use of the backseat on a manual valve?

- A. Removes pressure from the packing/stuffing box and is typically used to isolate the stuffing box for valve repacking.
- B. Removes pressure from the packing/stuffing box and is typically used when needed to isolate packing leakage.
- C. Acts as a backup in case the primary seat leaks and is typically used during system isolation for personnel protection.
- D. Acts as a backup in case the primary seat leaks and is typically used when needed to prevent the primary seat from leaking excessively.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A**


QUESTION: 4

Refer to the drawing of a frictionless venturi flow element (see figure below). Subcooled water is flowing through the venturi with the following initial conditions:

Flow rate = 500 gpm
Tap A pressure = 48 psia
Tap B pressure = 44 psia

When flow rate is increased to 900 gpm, the pressure at tap A increases to 62 psia. What is the new pressure at tap B?

- A. 46 psia
- B. 49 psia
- C. 55 psia
- D. 60 psia

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 5

What is the purpose of the reference junction panel that is provided with many thermocouple circuits?

- A. Ensures that thermocouple output is amplified sufficiently for use by temperature indication devices.
- B. Ensures that temperature changes away from the thermocouple measuring junction do not affect thermocouple temperature indication.
- C. Ensures that electrical noise in the thermocouple extension wires does not affect thermocouple temperature indication.
- D. Ensures that different lengths of thermocouple extension wires do not affect thermocouple temperature indication.

QUESTION: 6

A loss-of-coolant accident resulted in a reactor scram. The source range monitors (SRMs) were fully inserted and are currently located in a voided section of the core.

If the SRMs are subsequently positioned below the core water level, the SRM count rate will...

- A. decrease due to decreased neutron migration length.
- B. decrease due to decreased thermal neutron flux.
- C. increase due to increased neutron migration length.
- D. increase due to increased thermal neutron flux.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 7

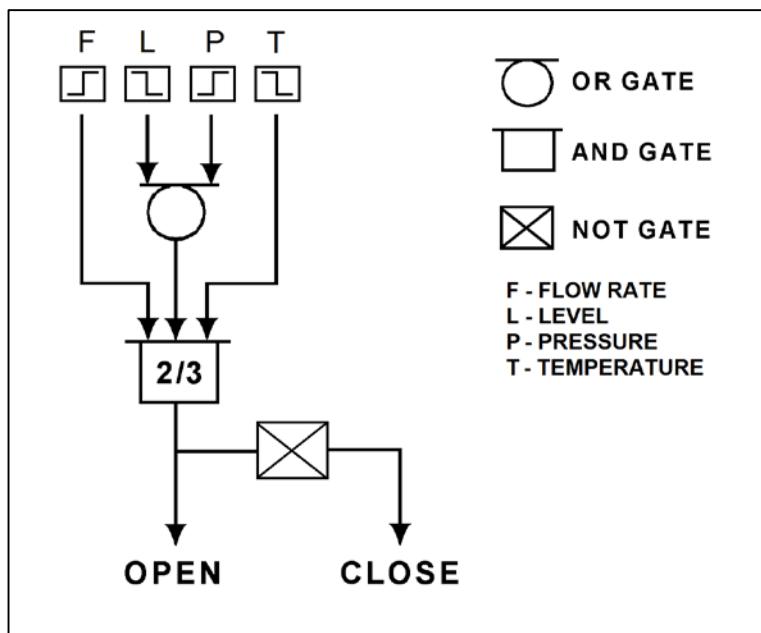
A nuclear plant worker normally wears a thermoluminescent dosimeter (TLD) or similar device for measuring radiation exposure. When a self-reading pocket dosimeter (SRPD) is also required, where will the SRPD be worn and why?

- A. Below the waist near the TLD to measure radiation from the same source(s).
- B. Below the waist away from the TLD to measure radiation from different sources.
- C. Above the waist near the TLD to measure radiation from the same source(s).
- D. Above the waist away from the TLD to measure radiation from different sources.

QUESTION: 8

Consider a direct-acting proportional flow controller that is maintaining flow rate at a value that is offset from the controller setpoint. If the controller's gain is increased, the controller's offset will _____; and the controller's proportional band will _____.

- A. decrease; decrease
- B. decrease; increase
- C. increase; decrease
- D. increase; increase


USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 9

Refer to the logic diagram for a valve controller (see figure below).

Which one of the following combinations of flow rate (F), level (L), pressure (P), and temperature (T) inputs will result in the valve receiving a CLOSE signal? (The options below indicate whether the parameters are higher or lower than the associated bistable setpoints.)

	INPUTS			
	F	L	P	T
A.	Higher	Higher	Lower	Higher
B.	Lower	Lower	Higher	Lower
C.	Higher	Lower	Lower	Higher
D.	Lower	Higher	Higher	Lower

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 10

Which one of the following is an effective method for ensuring that a centrifugal pump remains primed and does not become gas bound during pump operation and after pump shutdown?

- A. Install the pump below the level of the suction supply.
- B. Install a check valve in the discharge piping of the pump.
- C. Install an orifice plate in the discharge piping of the pump.
- D. Install a pump recirculation line from the pump discharge piping to the pump suction piping.

QUESTION: 11

A centrifugal pump is operating normally in a closed cooling water system. If system pressure is increased by 10 psi, the available net positive suction head (NPSH) for the pump will _____; and the pump mass flow rate will _____. (Assume the water density does not change and the minimum required NPSH for the pump is maintained.)

- A. increase; increase
- B. increase; remain the same
- C. decrease; decrease
- D. decrease; remain the same

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 12

A radial-flow centrifugal cooling water pump is driven by an AC induction motor. The pump can supply cooling water to several heat loads, all of which are in parallel alignment. The following pump conditions initially exist:

Pump motor current = 100 amps
Pump flow rate = 400 gpm
Pump suction temperature = 70°F

Four hours later, the motor is drawing 95 amps. Which one of the following could be responsible for the observed decrease in motor amps?

- A. The temperature of the cooling water being pumped decreased to 60°F with no change in pump flow rate.
- B. The temperature of the cooling water being pumped increased to 80°F with no change in pump flow rate.
- C. Cooling water flow was established to an additional heat load with no change in the temperature of the cooling water being pumped.
- D. Cooling water flow was isolated from an out-of-service heat load with no change in the temperature of the cooling water being pumped.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 13

A rotary positive displacement pump (PDP) is being used to supply water to a piping system. The PDP is driven by an AC induction motor. The initial parameters are:

System pressure = 500 psig
PDP flow rate = 50 gpm
PDP motor current = 40 amps

After several hours, the PDP motor speed is increased such that the new PDP flow rate is 100 gpm. If system pressure does not change, what is the approximate value of the PDP motor current at the 100 gpm flow rate?

- A. 80 amps
- B. 160 amps
- C. 320 amps
- D. 640 amps

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 14

A main generator is connected to an infinite power grid with the following generator output parameters:

22 KV
60 Hertz
975 MW
200 MVAR (out)

Main generator stator winding temperature is abnormally high. Which one of the following contains a combination of manual adjustments to the main generator speed control and voltage regulator setpoints such that each adjustment will reduce the main generator stator winding temperature?
(Assume power factor remains less than 1.0.)

	Speed <u>Setpoint</u>	Voltage <u>Setpoint</u>
A.	Increase	Increase
B.	Increase	Decrease
C.	Decrease	Increase
D.	Decrease	Decrease

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 15

For large electric motors, why must the number of starts during a specified period of time be limited?

- A. To protect the power supply cables from insulation breakdown due to high starting current.
- B. To protect the motor windings from overheating.
- C. To prevent motor thrust bearing damage due to lack of lubrication.
- D. To prevent rotor seizure due to thermal expansion of the windings.

QUESTION: 16

Which one of the following describes the proper sequence for placing a steam (shell) and water (tube) heat exchanger into service?

- A. The water side is valved in before the steam side to minimize thermal shock.
- B. The water side is valved in before the steam side to ensure adequate venting.
- C. The steam side is valved in before the water side to minimize scale buildup on the heat exchanger tubes.
- D. The steam side is valved in before the water side to ensure that the cooldown rate does not exceed 100°F/hr.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A**

QUESTION: 17

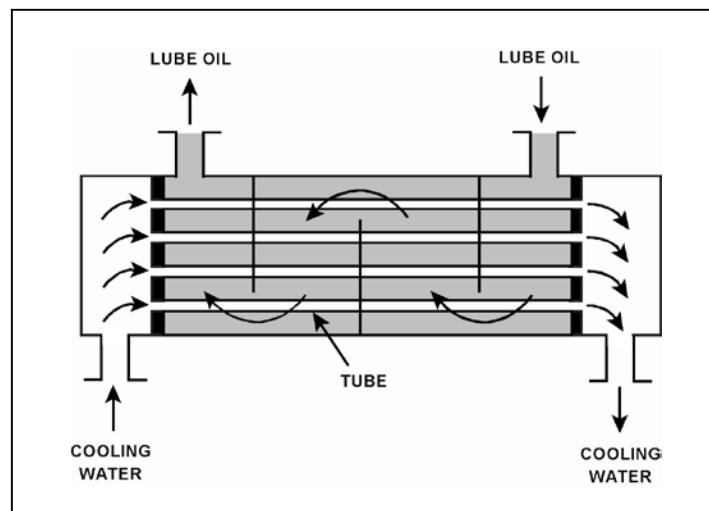
A main condenser absolute pressure of 4 inches Hg is equivalent to...

- A. 11 inches Hg vacuum.
- B. 13 inches Hg vacuum.
- C. 26 inches Hg vacuum.
- D. 28 inches Hg vacuum.

**USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A**

QUESTION: 18

Refer to the drawing of an operating lube oil heat exchanger (see figure below).


The heat exchanger was initially placed in continuous service 6 months ago. During the 6-month period of operation, mineral deposits have accumulated inside the heat exchanger tubes.

The following parameters are currently stable at their initial values:

- Lube oil mass flow rate
- Lube oil inlet temperature
- Lube oil outlet temperature
- Cooling water inlet temperature

Compared to their initial values, the current cooling water outlet temperature is _____; and the current cooling water mass flow rate is _____.

- A. lower; smaller
- B. lower; greater
- C. higher; greater
- D. higher; smaller

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 19

The cation exchange resin in a mixed-bed demineralizer removes undesirable _____ ions from solution while releasing desirable _____ ions into solution.

- A. negative; negative
- B. negative; positive
- C. positive; negative
- D. positive; positive

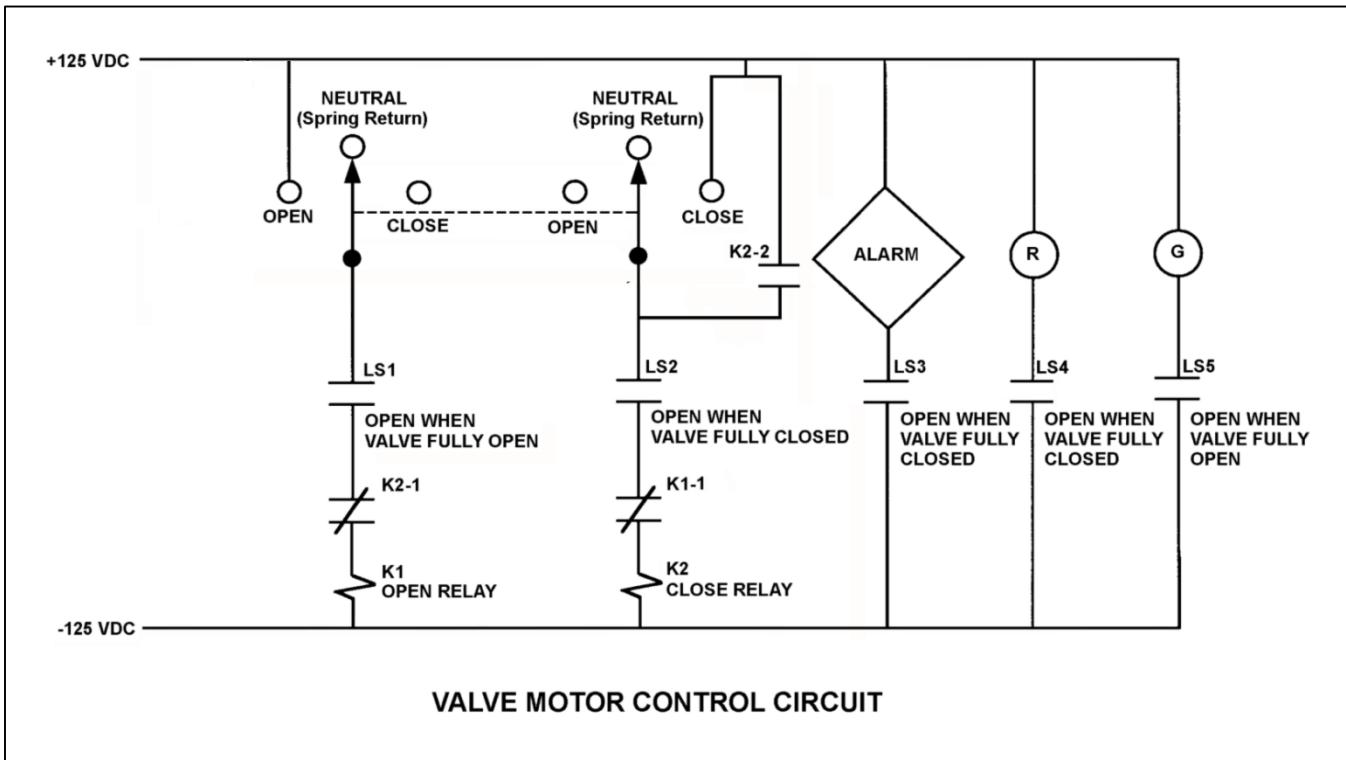
QUESTION: 20

A mixed-bed ion exchanger is being used to process reactor coolant. The ion exchanger has been in service for 6 months at 100 percent power. A temperature controller malfunction causes the ion exchanger influent temperature to exceed the resin's maximum temperature limit before being manually restored to normal. Ion exchanger water chemistry analyses are being performed to check for resin decomposition.

Which one of the following water chemistry test results would indicate that significant resin decomposition has occurred?

- A. A significant decrease in the ion exchanger's effluent conductivity.
- B. A significant increase in the ion exchanger's effluent radioactivity.
- C. A significant increase in the ion exchanger's decontamination factor.
- D. A significant increase in the ion exchanger's effluent dissolved gases.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A


QUESTION: 21

Refer to the drawing of a valve motor control circuit (see figure below) for a valve that is currently fully open and has a 16-second stroke time.

Note: Limit switch (LS) contacts are shown open regardless of valve position, but relay contacts are shown open/closed according to the standard convention for control circuit drawings.

An operator takes the control switch to CLOSE. Two seconds later, after verifying the valve is closing, the operator releases the control switch. When the valve stops moving, what will be the status of the alarm and the red (R) and green (G) indicating lights?

	<u>Alarm</u>	<u>Red Ind. Light</u>	<u>Green Ind. Light</u>
A.	On	On	On
B.	On	Off	Off
C.	Off	On	Off
D.	Off	Off	On

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 22

A 480 VAC motor is supplied power via an electrical disconnect in series with a breaker. Which one of the following describes the proper operations to isolate power to the motor?

- A. Open the disconnect first, then the breaker.
- B. Open the breaker first, then the disconnect.
- C. Open the device that is closest to the motor first.
- D. Open the device that is closest to the power source first.

QUESTION: 23

The ideal neutron moderator has a _____ microscopic scattering cross section for thermal neutrons and a _____ density.

- A. small; low
- B. small; high
- C. large; low
- D. large; high

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 24

A reactor scrammed from 100 percent steady-state power due to an instrument malfunction 30 hours ago. All systems operated normally.

Given the following absolute values of reactivities added since the scram, assign a (+) or (-) as appropriate and choose the current value of core reactivity.

Xenon = () 1.5 % $\Delta K/K$
Fuel temperature = () 2.5 % $\Delta K/K$
Control rods = () 14.0 % $\Delta K/K$
Voids = () 3.5 % $\Delta K/K$

- A. -6.5 % $\Delta K/K$
- B. -9.5 % $\Delta K/K$
- C. -11.5 % $\Delta K/K$
- D. -13.5 % $\Delta K/K$

QUESTION: 25

The total neutron flux in a shutdown reactor is constant at 5.0×10^3 n/cm²-sec. If non-fission neutron sources are supplying a constant flux of 1.0×10^2 n/cm²-sec, what is K_{eff} ?

- A. 0.98
- B. 0.96
- C. 0.94
- D. Cannot be determined without additional information.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 26

The moderator temperature coefficient of reactivity generally becomes _____ negative over core life because the utilization of thermal neutrons _____.

- A. more; decreases
- B. less; decreases
- C. more; increases
- D. less; increases

QUESTION: 27

Which one of the following will cause the void coefficient to become less negative? (Consider only the direct effects of the indicated changes.)

- A. Core void fraction increases.
- B. Fuel temperature decreases.
- C. Gadolinium burns out.
- D. Control rods are partially inserted.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 28

A reactor is initially critical below the point of adding heat (POAH) during a reactor startup. If control rods are manually withdrawn for 5 seconds, reactor power will...

- A. increase to a stable critical power level below the POAH.
- B. increase temporarily, then decrease and stabilize at the original value.
- C. increase to a stable critical power level at the POAH.
- D. increase temporarily, then decrease and stabilize below the original value.

QUESTION: 29

As moderator temperature increases, the differential rod worth becomes...

- A. more negative due to longer neutron diffusion lengths.
- B. more negative due to decreased resonance absorption of neutrons.
- C. less negative due to reduced moderation of neutrons.
- D. less negative due to decreased moderator absorption of neutrons.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 30

A reactor has been shut down for 7 days to perform maintenance. A reactor startup is performed, and power level is increased to 50 percent over a two-hour period.

Ten hours after reactor power reaches 50 percent, the magnitude of xenon-135 negative reactivity will be...

- A. increasing toward a downturn.
- B. increasing toward an equilibrium value.
- C. decreasing toward an equilibrium value.
- D. decreasing toward an upturn.

QUESTION: 31

A reactor had been operating at 100 percent power for 10 weeks when a scram occurred. The reactor was made critical 24 hours later, and power level is currently being maintained low in the intermediate range.

To maintain a constant power level for the next several hours, control rods must be...

- A. inserted, because xenon-135 burnout will cause increased neutron flux peaking near the periphery of the core.
- B. maintained at the present position as xenon-135 establishes equilibrium for the current power level.
- C. inserted, because xenon-135 will essentially follow its normal decay curve.
- D. withdrawn, because xenon-135 concentration is increasing toward equilibrium.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 32

At the beginning of a fuel cycle (BOC), the control rods are inserted relatively deep into the core at 100 percent power. At the end of a fuel cycle (EOC), the control rods are nearly fully withdrawn at 100 percent power.

Which one of the following is the primary reason for the change in the full power control rod position?

- A. Reactivity from the power defect is much less at EOC.
- B. Reactivity from the void coefficient is much greater at EOC.
- C. The excess reactivity in the core is much less at EOC.
- D. The integral control rod worth is much greater at EOC.

QUESTION: 33

Given:

- C Reactors A and B are identical except that reactor A has an effective delayed neutron fraction of 0.0055 and reactor B has an effective delayed neutron fraction of 0.0052.
- C Reactor A has a stable period of 42 seconds and reactor B has a stable period of 45 seconds.
- C Both reactors are initially operating at 1.0×10^{-8} percent power.

The reactor that is supercritical by the greater amount of positive reactivity is reactor _____; and the first reactor to reach 1.0×10^{-1} percent power will be reactor _____.

- A. A; A
- B. A; B
- C. B; A
- D. B; B

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 34

A reactor is critical and a reactor coolant heatup is in progress with coolant temperature currently at 140°F. If the point of adding heat is initially 0.1 percent reactor power, and reactor power is held constant at 1.0 percent during the heatup, which one of the following describes the coolant heatup rate (HUR) from 140°F to 200°F?

- A. HUR will initially decrease and then increase.
- B. HUR will slowly decrease during the entire period.
- C. HUR will slowly increase during the entire period.
- D. HUR will remain the same during the entire period.

QUESTION: 35

A reactor is critical just below the point of adding heat when an inadvertent reactor scram occurs. All control rods fully insert except for one rod, which remains fully withdrawn. Five minutes after the reactor scram, with reactor period stable at approximately -80 seconds, the remaining withdrawn control rod suddenly and rapidly fully inserts.

Which one of the following describes the reactor response to the insertion of the last control rod?

- A. The negative period will remain stable at approximately -80 seconds.
- B. The negative period will immediately become shorter, and then stabilize at a value significantly shorter than -80 seconds.
- C. The negative period will immediately become shorter, and then lengthen and stabilize at approximately -80 seconds.
- D. The negative period will immediately become longer, and then shorten and stabilize at approximately -80 seconds.

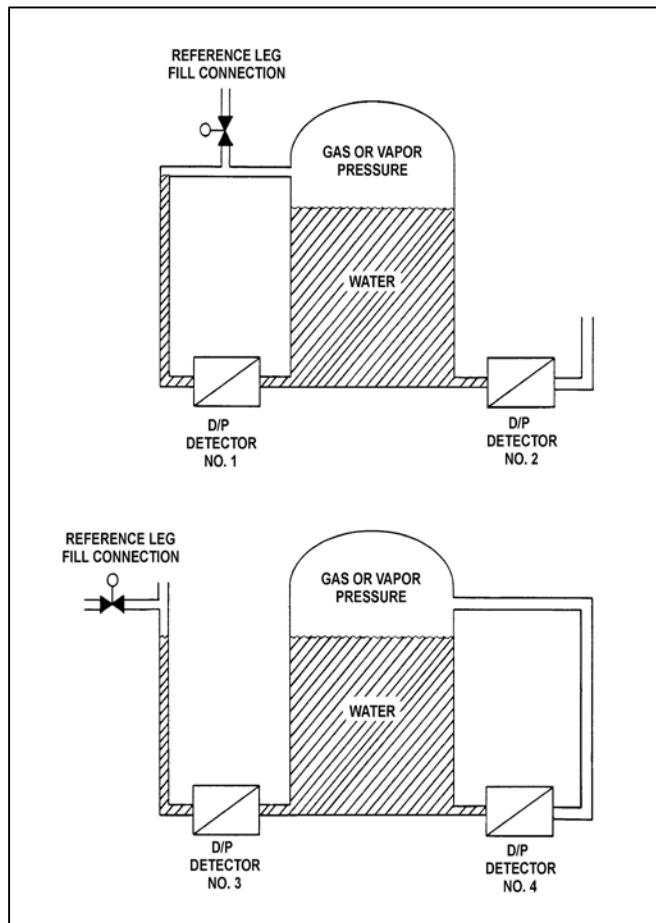
**USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A**

QUESTION: 36

A nuclear power plant has been operating at 100 percent power for several weeks when a reactor scram occurs. How much time will be required for core decay heat production to decrease to one percent power following the scram?

- A. 1 to 8 seconds
- B. 1 to 8 minutes
- C. 1 to 8 hours
- D. 1 to 8 days

**USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A**


QUESTION: 37

Refer to the drawing of two water storage tanks with four differential pressure (D/P) level detectors (see figure below).

The tanks are identical and are being maintained at 2 psig overpressure, 60°F, and the same constant water level. The tanks are located within a sealed containment structure that is being maintained at standard atmospheric pressure. All level detectors have been calibrated and are producing the same level indication.

If a ventilation malfunction causes the containment structure pressure to decrease to 13 psia, which detectors will produce the lowest level indications?

- A. 1 and 3
- B. 2 and 4
- C. 1 and 4
- D. 2 and 3

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 38

A nuclear power plant is operating at 100 percent power. Steam is escaping to atmosphere through a flange leak in a steam line that supplies the low pressure unit of the main turbine.

Given:

- C Steam line pressure is 280 psia.
- C Steam line steam temperature is 450EF.

What is the approximate temperature of the steam as it reaches standard atmospheric pressure?

- A. 212EF
- B. 268EF
- C. 322EF
- D. 378EF

QUESTION: 39

Which one of the following explains why the condensation of turbine exhaust steam in a main condenser creates a vacuum?

- A. The entropy of the exhaust steam increases as it condenses.
- B. The entropy of the exhaust steam decreases as it condenses.
- C. The specific volume of the exhaust steam increases as it condenses.
- D. The specific volume of the exhaust steam decreases as it condenses.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 40

Given the following:

- A saturated steam-water mixture with an inlet quality of 70 percent is flowing through a moisture separator.
- The moisture separator is 100 percent efficient for removing moisture.

How much moisture will be removed by the moisture separator from 50 lbm of the steam-water mixture?

- A. 15 lbm
- B. 30 lbm
- C. 35 lbm
- D. 50 lbm

QUESTION: 41

A nuclear power plant is operating at full power when a 200 gpm reactor coolant leak occurs, which results in a reactor scram and initiation of emergency coolant injection. Reactor vessel pressure stabilizes at 900 psia. All centrifugal injection pumps are operating with all pump miniflow paths isolated. The shutoff heads for the pumps are as follows:

High pressure coolant injection (HPCI) pumps = 1,200 psia
Low pressure coolant injection (LPCI) pumps = 200 psia

If the injection pumps continue operating under these conditions, which pumps are more likely to fail, and why?

- A. LPCI pumps, due to pump overheating.
- B. LPCI pumps, due to motor overheating.
- C. HPCI pumps, due to pump overheating.
- D. HPCI pumps, due to motor overheating.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 42

A nuclear power plant is initially operating at steady-state 100 percent power. If an unplanned load rejection causes the main generator load to rapidly decrease to 90 percent, the voids in the two-phase flow in the reactor core will initially _____; which causes indicated reactor vessel water level (measured in the downcomer) to initially _____.

- A. shrink; decrease
- B. shrink; increase
- C. expand; decrease
- D. expand; increase

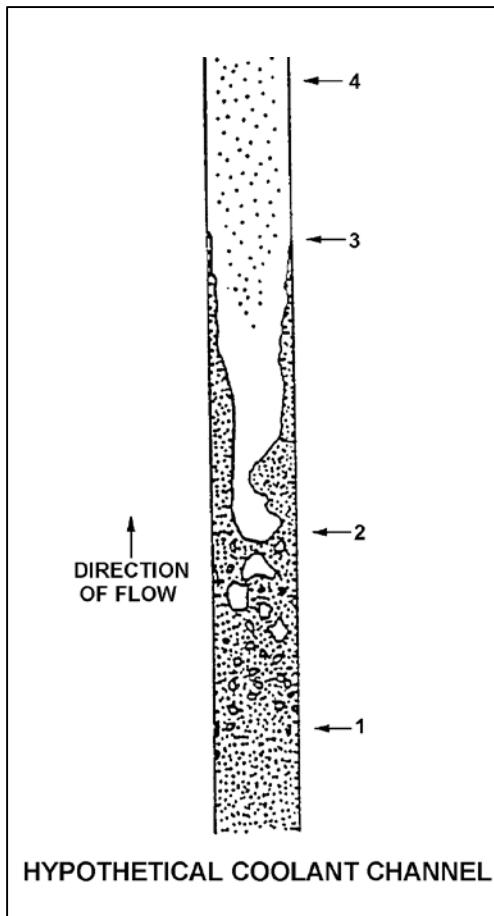
QUESTION: 43

Given the following data for a steam condenser:

Total tube area	= 500,000 ft ²
Cooling water flow rate	= 200,000 gpm
Condenser pressure	= 1.0 psia
Specific heat of cooling water (c_p)	= 1.0 Btu/lbm-°F
Cooling water inlet temperature	= 60°F
Cooling water outlet temperature	= 80°F
Steam condensing rate	= 3,000,000 lbm/hr
Mass of cooling water	= 8.34 lbm/gal

What is the condenser heat load (MW)?

- A. 587 MW
- B. 629 MW
- C. 671 MW
- D. 733 MW


**USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A**

QUESTION: 44

Refer to the drawing of a hypothetical fuel bundle coolant channel (see figure below).

For the hypothetical fuel bundle coolant channel shown below, at what point along its length does transition boiling begin?

- A. 1
- B. 2
- C. 3
- D. 4

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 45

Reactors A and B are identical. Reactor A is operating at 75 percent power and reactor B is operating at 50 percent power. Both reactors have the same power distribution and core mass flow rate.

Compared to the center fuel bundle in reactor A, the center fuel bundle in reactor B has the _____ coolant flow rate and the _____ critical power.

- A. lower; lower
- B. lower; higher
- C. higher; lower
- D. higher; higher

QUESTION: 46

Reactor coolant flow that bypasses the core is necessary to...

- A. provide a source of water to the incore thermocouples to ensure they measure a representative coolant temperature.
- B. act as a neutron reflector to minimize fast neutron leakage.
- C. ensure that recirculation pump flow rate is adequate to prevent pump overheating.
- D. provide cooling to prevent excessive boiling in the bypass region.

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 47

Which one of the following operations is most likely to cause significant pellet-cladding interaction?

- A. Increasing reactor power from 20 percent to 50 percent near the beginning of a fuel cycle.
- B. Increasing reactor power from 20 percent to 50 percent near the end of a fuel cycle.
- C. Increasing reactor power from 70 percent to 100 percent near the beginning of a fuel cycle.
- D. Increasing reactor power from 70 percent to 100 percent near the end of a fuel cycle.

QUESTION: 48

If fuel pellet densification occurs in a fuel rod producing a constant power output, the average linear heat generation rate in the fuel rod will _____ because pellet densification causes fuel pellets to _____.

- A. decrease; swell
- B. decrease; shrink
- C. increase; swell
- D. increase; shrink

USNRC GENERIC FUNDAMENTALS EXAMINATION
JUNE 2015 BWR – FORM A

QUESTION: 49

The 2,200°F maximum fuel cladding temperature limit is imposed because...

- A. 2,200°F is approximately 500°F below the fuel cladding melting temperature.
- B. the rate of the zircaloy-steam reaction increases significantly at temperatures above 2,200°F.
- C. any cladding temperature higher than 2,200°F correlates to a fuel centerline temperature above the fuel melting point.
- D. the thermal conductivity of zircaloy decreases rapidly at temperatures above 2,200°F.

QUESTION: 50

Two identical reactors have been in operation for the last 10 years. Reactor A has experienced 30 heatup/cooldown cycles with an average capacity factor of 60 percent. Reactor B has experienced 40 heatup/cooldown cycles with an average capacity factor of 50 percent.

Which reactor will have the lower reactor vessel nil-ductility transition temperature, and why?

- A. Reactor A, due to the higher average capacity factor.
- B. Reactor A, due to the fewer number of heatup/cooldown cycles.
- C. Reactor B, due to the lower average capacity factor.
- D. Reactor B, due to the greater number of heatup/cooldown cycles.

***** FINAL ANSWER KEY *****

**JUNE 2015 NRC GENERIC FUNDAMENTALS EXAMINATION
BOILING WATER REACTOR - ANSWER KEY**

<u>FORM A</u>	<u>FORM B</u>	<u>ANS.</u>	<u>FORM A</u>	<u>FORM B</u>	<u>ANS.</u>
1	15	D	26	40	D
2	16	B	27	41	B
3	17	B	28	42	C
4	18	B	29	43	A
5	19	B	30	44	B
6	20	D	31	45	C
7	21	C	32	46	C
8	22	A	33	47	A
9	23	A	34	48	B
10	24	A	35	49	C
11	25	B	36	50	C
12	26	D	37	1	C
13	27	A	38	2	D
14	28	D	39	3	D
15	29	B	40	4	A
16	30	A	41	5	A
17	31	C	42	6	A
18	32	B	43	7	A
19	33	D	44	8	C
20	34	B	45	9	D
21	35	D	46	10	D
22	36	B	47	11	D
23	37	D	48	12	D
24	38	A	49	13	B
25	39	A	50	14	C