



# Issues Identified In The Procurement of Reverse Engineered Components 11/5/2015



#### **Jeffrey Jacobson**

Electrical Vendor Inspection Branch
Division of Construction Inspection
& Operational Programs
Office of New Reactors



#### **Presentation Overview**

- NRC Vendor Inspection Program Overview
- Reverse Engineering Issues
- Steris IN
- Questions

# **NRC Vendor Inspection Program**

- Covers manufacturers, test facilities, suppliers, and other service suppliers for both new and operating reactors
- Completed 39 inspections last year
- Provides regulatory oversight of NUPIC/utility effectiveness
- http://www.nrc.gov/reactors/newreactors/oversight/qualityassurance/vendor-insp/insp-reports/2015/

# Typical Purchasing Methods for Replacement Components

- There are several methods for procuring replacement nuclear safety related components
  - Original safety related OEM replacement
  - "Identical" commercial component, dedicated by either a third party or the utility
  - "Similar" component, either safety-related or commercial grade and dedicated (may be considered a design change)
  - Reverse engineered component, purchased from a commercial supplier and dedicated
  - Reverse engineered component, purchased as an Appendix B safety related component

### **Reverse Engineered Components**

- No real standard definition of what constitutes a reverse engineered component
- Criterion III "Design Control" of Appendix B still applies
- Requires at a minimum an Equivalency Evaluation
- Can not typically be considered equivalent unless:
  - Critical characteristics of the component are understood and documented
  - All relevant interfacing requirements are evaluated
  - Design verification, as required by Criterion III is reperformed
  - Qualification (as required) is re-established either through testing or analysis

## **Design Verification**

- Design verification testing is different than production testing and is typically more comprehensive
- In order to verify the adequacy of the design of the reverse engineered component (as required by Criterion III of Appendix B to 10 CFR Part 50) the following factors need to be considered:
  - Environmental factors
  - All input and output interface requirements
  - Other design considerations

#### **Environmental Factors**

- Operating and accident temperatures/pressures/humidity/radiation (as applicable) including self heating contributions
- Seismic requirements
- EMI/RFI as applicable

# Input and Output Interface Requirements

- Mechanical/electrical connections
- Input and output operating voltages/currents
- Other electrical and/or mechanical parameters

# Other Design Considerations

- Failure rates
- Design life
- For mechanical components
  - Surface finishes
  - Heat treatment and other special processes
  - Specially selected mating components
  - Mechanical stresses/loads
  - Mechanical fits/tolerances
- For electrical components
  - Voltage/current withstand
  - Introduction of new failure modes(analog vs digital)

# NRC Identified Weaknesses in Reverse Engineered Procurements

- Assuming equivalency without reverification of design
- Not clearly specifying interface requirements to vendor performing reverse engineering
- Inadequate or incomplete design verification testing
- Taking credit for past qualification without performing a proper similarity analysis

#### **Steris Information Notice**

- Provides a summary of the issue and links to key documents
- Does not provide any new NRC positions
- Reinforces the need to include appropriate margins in the qualification process

# Questions

