

13.2 ANALYSIS OF ACCIDENTS WITH RADIOPHYSICAL AND CRITICALITY SAFETY CONSEQUENCES

This section presents an analysis of accident sequences with radiological and criticality safety consequences. In Section 13.1.3, a number of the hazards and accident sequences identified in the PHA that require further evaluation are grouped and identified. These accident sequences were evaluated using both qualitative and quantitative techniques. Accidents for operations with SNM (including irradiated target processing, target material recycle, waste handling, and target fabrication), radiochemical, and hazardous chemicals were analyzed. Initiating events for the analyzed sequences include operator error, loss of power, external events, and critical equipment malfunctions or failures. Criticality accidents are assumed to have high consequences to the worker if not prevented.

Most of the quantitative consequence estimates presented in these accident analyses were for releases to an uncontrolled area (public). The worker safety consequence estimates are primarily qualitative. As the design matures, quantitative worker safety consequence analyses will be performed. Updated frequency (likelihood) and the worker and public quantitative safety consequences will be provided in the Operating License Application.

Section 13.2.1 addresses the MHA. The MHA presented here is slightly different than Chapter 19.0, “Environmental Review,” due to additional safety margin being added to the radiological inventory. A radiological inventory safety margin has been used in each of the accidents presented in this chapter. The MHA sequence and calculation methodology are the same in both chapters; however, the larger inventory used here creates a slightly higher consequence in this chapter.

The next four sections (Sections 13.2.2 through 13.2.5) present key representative sequences for radiological and criticality accidents.

- Section 13.2.2 discusses spills and spray accidents with both radiological and criticality safety consequences
- Section 13.2.3 discusses dissolver offgas accidents
- Section 13.2.4 discusses leaks into auxiliary system accidents with both radiological and criticality safety consequences
- Section 13.2.5 discusses loss of electrical power

These accidents cover failure of primary vessels and piping in the processing areas, loss of fission product gas removal efficiency, leaks into auxiliary systems, and loss of power to the RPF.

Section 13.2.6 briefly presents evaluations of natural phenomena events. The stringent design criteria and requirements for the RPF structure, as discussed in Chapter 3.0, “Design of Structures, Systems, and Components,” will require the RPF design to survive certain low-return frequency events. Therefore, the return frequency of most of the external events that the RPF will be designed to withstand are highly unlikely per Table 13-1.

The remainder of the accident sequences, identified in the PHA as requiring further evaluation, are summarized in Section 13.2.7. Each sequence is identified and the associated IROFS (if any) listed. The IROFS not discussed in Sections 13.2.2 through 13.2.6 are also discussed in this section. Numerous accident sequences with both radiological and criticality safety consequences have been evaluated. Some accident sequences are bounded or covered in the preceding accident analysis; others, on further evaluation, have an unmitigated likelihood or consequence that does not require IROFS-level controls.

The discussions that follow form the basis for evaluating the accident sequences at this point in the RPF project development. The additional required information will be provided in the Operating License Application.

13.2.1 Maximum Hypothetical Accident

The MHA, which is not credible for reasons discussed later in this section, consists of a fire-related gross failure of the target dissolution offgas treatment system that releases all radioiodine and noble gas radioisotopes retained in that system out the RPF stack without mitigation. Dose consequences for an MHA have been extrapolated from results in EDF-3124-0003, *Preliminary Maximum Hypothetical Accident to Support the Northwest Medical Isotope Facility Environmental Report*. The source term used in the MHA analysis in this chapter has a 1.32 safety factor applied to the source term used in the Chapter 19 MHA (this 1.32 safety factor is used in all of the inventory estimates in this chapter).

The inventory for the MHA is based on a set of initial conditions that were designed to maximize the potential source term and bound the credible scenarios. These assumptions include:

- [Proprietary Information]
- All iodine and noble gases in the targets released into the offgas system, and no iodine or noble gases captured in the nitrogen oxide (NO_x) scrubbers or retained in the dissolver solution
- [Proprietary Information]
- Greater than expected release of material (e.g., the entire inventory of iodine is assumed to be deposited on a single IRU, no plating out of iodine, or subsequent capture downstream of IRU)

The source term used in the MHA is from NWMI-2013-CALC-011, *Source Term Calculations*. The breakdown of the radionuclide inventory used in NWMI-2013-CALC-011 is extracted from NWMI-2013-CALC-006, *Overall Summary Material Balance – MURR Target Batch*, using the reduced set of 123 radioisotopes. NWMI-2014-CALC-014, *Selection of Dominant Target Isotopes for NWMI Material Balances*, identifies the 123 dominant radioisotopes included in the MURR material balance (NWMI-2013-CALC-006). NWMI-2014-CALC-014 provides the basis for using the 123 radioisotopes from the total list of 660 radioisotopes potentially present in irradiated targets. The majority of omitted radioisotopes exist in trace quantities and/or decay swiftly to stable nuclides. The reduced set of 123 radioisotopes consists of those that dominate the radioactivity and decay heat of irradiated targets.

The bounding iodine and noble gas isotopic source terms used were taken from NWMI-2013-CALC-011 and are summarized in Table 13-17.

Table 13-17. Maximum Bounding Holdup Inventories of Gaseous Iodine, Krypton, and Xenon Fission Product Isotopes in the Target Dissolver Offgas Treatment System

Iodine		Krypton		Xenon	
Isotope	Ci	Isotope	Ci	Isotope	Ci
^{129}I	3.67E-05	$^{83\text{m}}\text{Kr}$	9.65E+02	$^{131\text{m}}\text{Xe}$	1.84E+02
^{130}I	9.06E-01	^{85}Kr	2.98E+01	^{133}Xe	4.03E+04
^{131}I	1.70E+04	$^{85\text{m}}\text{Kr}$	2.36E+03	$^{133\text{m}}\text{Xe}$	1.19E+03
^{132}I	2.54E+04	^{87}Kr	2.12E+02	^{135}Xe	3.02E+04
$^{132\text{m}}\text{I}$	1.09E+00	^{88}Kr	3.18E+03	$^{135\text{m}}\text{Xe}$	2.81E+03
^{133}I	3.32E+04	Total Ci	6.75E+03	Total Ci	7.46E+04
$^{133\text{m}}\text{I}$	5.50E+00	-	-	-	-
^{134}I	3.39E+02	-	-	-	-
^{135}I	1.72E+04	-	-	-	-
Total Ci	9.32E+04	-	-	-	-

As a conservative analysis, a combustion accident that releases all of the accumulated iodine, xenon, and krypton as gases was assumed to take place. As a result of the combustion, the entire inventory would also be released over a 2-hr period directly to the 22.9 meter (m) (75-foot [ft]) stack and into the environment. The Radiological Safety Analysis Code (RSAC), Version 6.2 (RSAC-6.2), was used to model the dispersion resulting from the MHA. The following parameters were used for model runs:

- Mixing depth: 400 m (1,312 ft) (default)
- Air density: 1,250 grams (g)/cubic meters (m³) (1.25 ounces [oz]/cubic feet [ft³]) (sea level)
- Pasquill-Gifford σ (NRC Regulatory Guide 1.145, *Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants*)
- No plume rise (i.e., buoyancy or stack momentum effects)
- No plume depletion (wet or dry deposition)
- 2-hr release (constant release of all activity)
- 2-hr exposure
- ICRP-30, *Limits for Intakes of Radionuclides by Workers*, inhalation model
- Finite cloud immersion model
- Breathing rate: 3.42E-4 m³/second (sec) (1.2E-2 ft³/sec) (ICRP-30 heavy activity)
- Respiratory fraction: 1.0

Table 13-18, Table 13-19, and Table 13-20 show the distance-dependent inhalation, exposure, and total receptor MHA doses, respectively, versus distance from the RPF stack for an assumed bounding 2-hr exposure. Figure 13-2 shows a plot of the total dose data presented in Table 13-20.

Table 13-18. Maximum Hypothetical Accident Inhalation Committed Effective Dose Equivalent

Distance (m)	Dose (rem)			
	Iodine	Krypton	Xenon	Total
100	1.39E-19	3.15E-23	8.16E-31	1.39E-19
200	9.04E-05	2.07E-08	5.40E-16	9.04E-05
300	1.12E-01	2.59E-05	6.78E-13	1.12E-01
400	1.57E+00	3.64E-04	9.62E-12	1.57E+00
500	5.37E+00	1.25E-03	3.34E-11	5.37E+00
600	1.03E+01	2.40E-03	6.45E-11	1.03E+01
700	1.48E+01	3.47E-03	9.37E-11	1.48E+01
800	1.81E+01	4.28E-03	1.17E-10	1.81E+01
1,000	2.16E+01	5.17E-03	1.43E-10	2.17E+01
1,100	2.22E+01	5.32E-03	1.48E-10	2.22E+01
1,200	2.20E+01	5.32E-03	1.49E-10	2.20E+01
1,300	2.16E+01	5.23E-03	1.48E-10	2.17E+01
1,400	2.10E+01	5.10E-03	1.45E-10	2.10E+01
1,500	2.02E+01	4.92E-03	1.41E-10	2.02E+01
1,600	1.94E+01	4.74E-03	1.37E-10	1.94E+01
1,700	1.86E+01	4.55E-03	1.33E-10	1.86E+01

Peak total dose is bolded and italicized.

Table 13-19. Maximum Hypothetical Accident External Dose

Distance (m)	Dose (rem)			
	Iodine	Krypton	Xenon	Total
100	5.97E-01	3.60E-02	6.52E-02	6.98E-01
200	5.76E-01	3.48E-02	6.28E-02	6.73E-01
300	5.46E-01	3.31E-02	5.95E-02	6.39E-01
400	5.24E-01	3.18E-02	5.69E-02	6.13E-01
500	5.10E-01	3.09E-02	5.52E-02	5.96E-01
600	4.92E-01	2.98E-02	5.32E-02	5.75E-01
700	4.71E-01	2.86E-02	5.11E-02	5.51E-01
800	4.49E-01	2.73E-02	4.87E-02	5.25E-01
1,000	4.09E-01	2.49E-02	4.45E-02	4.79E-01
1,100	3.92E-01	2.40E-02	4.28E-02	4.59E-01
1,200	3.76E-01	2.30E-02	4.11E-02	4.40E-01
1,300	3.60E-01	2.20E-02	3.93E-02	4.22E-01
1,400	3.46E-01	2.13E-02	3.78E-02	4.05E-01
1,500	3.31E-01	2.03E-02	3.63E-02	3.88E-01
1,600	3.18E-01	1.95E-02	3.48E-02	3.73E-01
1,700	3.06E-01	1.87E-02	3.35E-02	3.59E-01

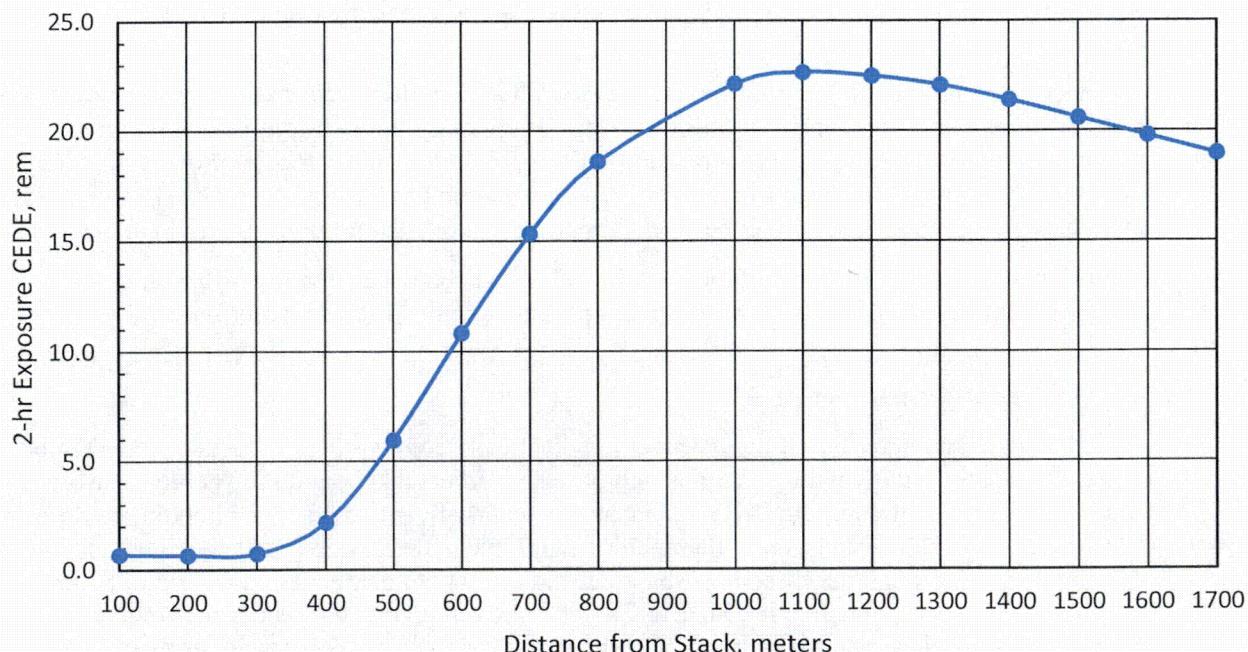

Peak total dose is bolded and italicized.

Table 13-20. Maximum Hypothetical Accident Total Effective Dose Equivalent

Distance (m)	Dose (rem)			
	Iodine	Krypton	Xenon	Total
100	5.97E-01	3.60E-02	6.52E-02	6.98E-01
200	5.76E-01	3.48E-02	6.28E-02	6.73E-01
300	6.59E-01	3.32E-02	5.95E-02	7.51E-01
400	2.09E+00	3.22E-02	5.69E-02	2.18E+00
500	5.88E+00	3.21E-02	5.52E-02	5.97E+00
600	1.08E+01	3.22E-02	5.32E-02	1.08E+01
700	1.53E+01	3.21E-02	5.11E-02	1.53E+01
800	1.85E+01	3.16E-02	4.87E-02	1.86E+01
1,000	2.21E+01	3.01E-02	4.45E-02	2.21E+01
1,100	2.26E+01	2.93E-02	4.28E-02	2.26E+01
1,200	2.24E+01	2.83E-02	4.11E-02	2.25E+01
1,300	2.20E+01	2.73E-02	3.93E-02	2.21E+01
1,400	2.13E+01	2.63E-02	3.78E-02	2.14E+01
1,500	2.05E+01	2.53E-02	3.63E-02	2.06E+01
1,600	1.97E+01	2.43E-02	3.48E-02	1.98E+01
1,700	1.89E+01	2.33E-02	3.35E-02	1.90E+01

Peak total dose is bolded and italicized.

Total CEDE Dose Results for 75 ft Stack

Figure 13-2. Total Effective Dose Equivalent (Inhalation plus External) for 2-Hour Ground Level Exposure from Maximum Hypothetical Accident

RSAC-6.2 calculates inhalation doses using the ICRP-30 model with Federal Guidance Report No. 11 dose conversion factors (DCF) (EPA 520/1-88-020, *Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion*). The committed dose equivalent (CDE) is calculated for individual organs and tissues over a 50-year period after inhalation. The CDE for each organ or tissue is multiplied by the appropriate ICRP-26, *Recommendations of the International Commission on Radiological Protection*, weighting factor and then summed to calculate the committed effective dose equivalent (CEDE).

The RSAC-6.2 gamma dose from the cloud (the person may or may not be immersed in the cloud depending on the plume position in relation to the ground surface) is the effective dose equivalent (EDE), which is the sum of the products of the dose equivalent to the organ or tissue and the weighting factors applicable to each of the body organs or tissues that is irradiated.

The summation of the two RSAC-6.2 doses is the total effective dose equivalent (TEDE), which is the sum of the EDE (for external exposures) and the CEDE (for inhalation exposures).

The RSAC-6.2 dose calculations and dose terminology are consistent with 10 CFR 20 terminology based on ICRP-26/30. The doses and dose commitments (~22.7 roentgen equivalent man [rem]) are within intermediate consequences severity categories (<25 rem).

13.2.1.1 Credibility of the Maximum Hypothetical Accident

The MHA is not credible for the following reasons:

1. All iodine retention and noble gas holdup occurs in a single dissolver offgas treatment train that is completely destroyed by fire to cause the release. In reality, there are three such trains and only two trains will nominally be in service at any given time.
2. Continuous processing of [Proprietary Information] targets per week (i.e., [Proprietary Information]. [Proprietary Information] targets/week would not likely occur on a continuous basis.
3. Based on maximum bounding isotopic inventories, all [Proprietary Information] targets processed weekly are received at [Proprietary Information]. [Proprietary Information] is the minimum possible decay time for receipt of targets and does not include time for receipt processing, target disassembly, and movement of irradiated LEU target material to the dissolver. The [Proprietary Information] would also be further decayed [Proprietary Information] prior to arrival at the RPF.
4. Approximately 50 to 60 percent of iodine would either be removed from the offgas stream by absorption into the NO_x scrubber waste stream or remain in the dissolver solution.
5. No credit is taken for mitigating offgas treatment equipment that will be situated downstream of the dissolver offgas treatment train.
6. Complete destruction by fire of the IRU that hypothetically contains 99.9 percent of the retained offgas radioiodine, along with the carbon bed-based adsorbers that hold up the noble gas isotopes and trace iodine. However, the IRU bed material contains silver that reacts with iodine to form silver iodide, which is listed as non-flammable in multiple material safety datasheets, and thus will not burn. Although the carbon bed-based adsorbers containing the noble gas isotopes and trace iodine can burn, note that in Table 13-20, the radioiodine dose consequences are three orders of magnitude greater than those for krypton and xenon. Therefore, even disregarding items 1 through 5 above, the MHA off-site dose consequences are significantly overestimated.

13.2.2 Liquid Spills and Sprays with Radiological and Criticality Safety Consequences

Liquid solution spill and spray events causing a radiological exposure hazard were identified by the PHA that represent a hazard to workers from direct exposure or inhalation and an inhalation exposure hazard to the public in the unmitigated scenario. The PHA also identified fissile solution leaks with worker safety concerns from a solution-type accidental nuclear criticality. This analysis addresses both of these hazards and identifies controls (in addition to the double-contingency controls identified in Chapter 6.0, “Engineered Safety Features,” Section 6.3) to prevent an accidental criticality and reduce exposure from a spray or spill.

13.2.2.1 Initial Conditions

Initial conditions of the process are described by a tank filled with process solution. Multiple vessels are projected to be at initial conditions throughout the process, and the PHA reduced the variety of conditions to the following three configurations that span the range of potential initial conditions:

- A process tank containing low-dose uranium solutions, with no or trace quantities of fission product radionuclides located in a contact maintenance-type of enclosure typical of the target fabrication systems
- A process tank containing high-dose uranium solutions located in a hot cell-type of enclosure typical of the irradiated target dissolution system
- A process tank containing ⁹⁹Mo product solution located in a hot cell-type of enclosure typical of the molybdenum (Mo) purification system (this condition does not lead to a criticality safety concern)

In each case, a vessel is assumed to be filled with process solution appropriate to the process location with the process offgas ventilation system operating. A level monitoring system is available to monitor tank transfers and stagnant storage volumes on all tanks processing LEU or fission product solutions.

Bounding radionuclide concentrations in liquid streams were developed for five regions of the process in NWMI-2013-CALC-011: (1) target dissolution, (2) Mo recovery and purification, (3) uranium recovery and recycle, (4) high-dose liquid waste handling, and (5) low-dose liquid waste handling. The bounding radionuclide concentrations are based on material balances during the processing of MURR targets, which represent the highest target inventory of fission products entering the RPF due to a combination of high target exposure power and short decay time after EOI. The predicted radionuclide concentrations are increased by 10 percent to address truncating the radioisotope list tracked by material balance calculations for calculation simplification. Predicted batch isotope quantities were further increased by 20 percent as a margin for the radionuclide concentration estimates. This adds a 1.32 margin to the radionuclides stream compositions presented in Chapter 4.0, “Radioisotope Production Facility Description.”

Two high-dose uranium solutions located in hot cell enclosures have been evaluated for the Construction Permit Application:

- **Dissolver product in the target dissolution system** – Based on a minimum radionuclide decay time of [Proprietary Information], representing the minimum time for receipt of targets at the RPF
- **Uranium separation feed in the uranium recovery and recycle system** – Based on a radionuclide decay time of [Proprietary Information] after EOI, representing the minimum lag storage time required for impure uranium solution prior to starting separation of uranium from fission products

The source term used in this analysis is from NWMI-2013-CALC-011. The breakdown of the radionuclide inventory used in NWMI-2013-CALC-011 is extracted from NWMI-2013-CALC-006 using the reduced set of 123 radioisotopes. NWMI-2014-CALC-014 identifies the 123 dominant radioisotopes included in the MURR material balance (NWMI-2013-CALC-006). NWMI-2014-CALC-014 provides the basis for using the 123 radioisotopes from the total list of 660 radioisotopes potentially present in irradiated targets. The majority of omitted radioisotopes exist in trace quantities and/or decay swiftly to stable nuclides. The reduced set of 123 radioisotopes consists of those that dominate the radioactivity and decay heat of irradiated targets.

Bounding solution concentrations from NWMI-2013-CALC-011 are summarized in Table 13-21. Additional conservatism has been incorporated in the dissolver product radionuclide concentrations. The nominal diluted dissolver product volume is [Proprietary Information] dissolver batch. Predicted dissolver product concentrations are increased by a factor of 2.4, to approximate a dissolver product volume of [Proprietary Information] in a dissolver prior to dilution, producing a uranium concentration of [Proprietary Information] (creating a maximum radioactive liquid source term for the RPF). The criticality evaluations also bound the [Proprietary Information] batch size. The uranium separation feed composition reflects planned processing adjustments that reduce the solution uranium concentration to [Proprietary Information]. Note that while most of the radioisotopes concentration are noticeably lower in the uranium separation feed stream of Table 13-21, some daughter isotopes (e.g., americium-241 [^{241}Am]) have increased due to parent decay.

Table 13-21. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
^{241}Am	[Proprietary Information]	[Proprietary Information]
^{136m}Ba	[Proprietary Information]	[Proprietary Information]
^{137m}Ba	[Proprietary Information]	[Proprietary Information]
^{139}Ba	[Proprietary Information]	[Proprietary Information]
^{140}Ba	[Proprietary Information]	[Proprietary Information]
^{141}Ce	[Proprietary Information]	[Proprietary Information]
^{143}Ce	[Proprietary Information]	[Proprietary Information]
^{144}Ce	[Proprietary Information]	[Proprietary Information]
^{242}Cm	[Proprietary Information]	[Proprietary Information]
^{243}Cm	[Proprietary Information]	[Proprietary Information]
^{244}Cm	[Proprietary Information]	[Proprietary Information]
^{134}Cs	[Proprietary Information]	[Proprietary Information]
^{134m}Cs	[Proprietary Information]	[Proprietary Information]
^{136}Cs	[Proprietary Information]	[Proprietary Information]
^{137}Cs	[Proprietary Information]	[Proprietary Information]
^{155}Eu	[Proprietary Information]	[Proprietary Information]
^{156}Eu	[Proprietary Information]	[Proprietary Information]
^{157}Eu	[Proprietary Information]	[Proprietary Information]
^{129}I	[Proprietary Information]	[Proprietary Information]

Table 13-21. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
¹³⁰ I	[Proprietary Information]	[Proprietary Information]
¹³¹ I	[Proprietary Information]	[Proprietary Information]
¹³² I	[Proprietary Information]	[Proprietary Information]
^{132m} I	[Proprietary Information]	[Proprietary Information]
¹³³ I	[Proprietary Information]	[Proprietary Information]
^{133m} I	[Proprietary Information]	[Proprietary Information]
¹³⁴ I	[Proprietary Information]	[Proprietary Information]
¹³⁵ I	[Proprietary Information]	[Proprietary Information]
^{83m} Kr	[Proprietary Information]	[Proprietary Information]
⁸⁵ Kr	[Proprietary Information]	[Proprietary Information]
^{85m} Kr	[Proprietary Information]	[Proprietary Information]
⁸⁷ Kr	[Proprietary Information]	[Proprietary Information]
⁸⁸ Kr	[Proprietary Information]	[Proprietary Information]
¹⁴⁰ La	[Proprietary Information]	[Proprietary Information]
¹⁴¹ La	[Proprietary Information]	[Proprietary Information]
¹⁴² La	[Proprietary Information]	[Proprietary Information]
⁹⁹ Mo	[Proprietary Information]	[Proprietary Information]
⁹⁵ Nb	[Proprietary Information]	[Proprietary Information]
^{95m} Nb	[Proprietary Information]	[Proprietary Information]
⁹⁶ Nb	[Proprietary Information]	[Proprietary Information]
⁹⁷ Nb	[Proprietary Information]	[Proprietary Information]
^{97m} Nb	[Proprietary Information]	[Proprietary Information]
¹⁴⁷ Nd	[Proprietary Information]	[Proprietary Information]
^{236m} Np	[Proprietary Information]	[Proprietary Information]
²³⁷ Np	[Proprietary Information]	[Proprietary Information]
²³⁸ Np	[Proprietary Information]	[Proprietary Information]
²³⁹ Np	[Proprietary Information]	[Proprietary Information]
²³³ Pa	[Proprietary Information]	[Proprietary Information]
²³⁴ Pa	[Proprietary Information]	[Proprietary Information]
^{234m} Pa	[Proprietary Information]	[Proprietary Information]
¹¹² Pd	[Proprietary Information]	[Proprietary Information]
¹⁴⁷ Pm	[Proprietary Information]	[Proprietary Information]
¹⁴⁸ Pm	[Proprietary Information]	[Proprietary Information]
^{148m} Pm	[Proprietary Information]	[Proprietary Information]
¹⁴⁹ Pm	[Proprietary Information]	[Proprietary Information]
¹⁵⁰ Pm	[Proprietary Information]	[Proprietary Information]

Table 13-21. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
¹⁵¹ Pm	[Proprietary Information]	[Proprietary Information]
¹⁴² Pr	[Proprietary Information]	[Proprietary Information]
¹⁴³ Pr	[Proprietary Information]	[Proprietary Information]
¹⁴⁴ Pr	[Proprietary Information]	[Proprietary Information]
^{144m} Pr	[Proprietary Information]	[Proprietary Information]
¹⁴⁵ Pr	[Proprietary Information]	[Proprietary Information]
²³⁸ Pu	[Proprietary Information]	[Proprietary Information]
²³⁹ Pu	[Proprietary Information]	[Proprietary Information]
²⁴⁰ Pu	[Proprietary Information]	[Proprietary Information]
²⁴¹ Pu	[Proprietary Information]	[Proprietary Information]
^{103m} Rh	[Proprietary Information]	[Proprietary Information]
¹⁰⁵ Rh	[Proprietary Information]	[Proprietary Information]
¹⁰⁶ Rh	[Proprietary Information]	[Proprietary Information]
^{106m} Rh	[Proprietary Information]	[Proprietary Information]
¹⁰³ Ru	[Proprietary Information]	[Proprietary Information]
¹⁰⁵ Ru	[Proprietary Information]	[Proprietary Information]
¹⁰⁶ Ru	[Proprietary Information]	[Proprietary Information]
¹²² Sb	[Proprietary Information]	[Proprietary Information]
¹²⁴ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁵ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁶ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁷ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁸ Sb	[Proprietary Information]	[Proprietary Information]
^{128m} Sb	[Proprietary Information]	[Proprietary Information]
¹²⁹ Sb	[Proprietary Information]	[Proprietary Information]
¹⁵¹ Sm	[Proprietary Information]	[Proprietary Information]
¹⁵³ Sm	[Proprietary Information]	[Proprietary Information]
¹⁵⁶ Sm	[Proprietary Information]	[Proprietary Information]
⁸⁹ Sr	[Proprietary Information]	[Proprietary Information]
⁹⁰ Sr	[Proprietary Information]	[Proprietary Information]
⁹¹ Sr	[Proprietary Information]	[Proprietary Information]
⁹² Sr	[Proprietary Information]	[Proprietary Information]
⁹⁹ Tc	[Proprietary Information]	[Proprietary Information]
^{99m} Tc	[Proprietary Information]	[Proprietary Information]
^{125m} Te	[Proprietary Information]	[Proprietary Information]
¹²⁷ Te	[Proprietary Information]	[Proprietary Information]

Table 13-21. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
^{127m} Te	[Proprietary Information]	[Proprietary Information]
¹²⁹ Te	[Proprietary Information]	[Proprietary Information]
^{129m} Te	[Proprietary Information]	[Proprietary Information]
¹³¹ Te	[Proprietary Information]	[Proprietary Information]
^{131m} Te	[Proprietary Information]	[Proprietary Information]
¹³² Te	[Proprietary Information]	[Proprietary Information]
¹³³ Te	[Proprietary Information]	[Proprietary Information]
^{133m} Te	[Proprietary Information]	[Proprietary Information]
¹³⁴ Te	[Proprietary Information]	[Proprietary Information]
²³¹ Th	[Proprietary Information]	[Proprietary Information]
²³⁴ Th	[Proprietary Information]	[Proprietary Information]
²³² U	[Proprietary Information]	[Proprietary Information]
²³⁴ U	[Proprietary Information]	[Proprietary Information]
²³⁵ U	[Proprietary Information]	[Proprietary Information]
²³⁶ U	[Proprietary Information]	[Proprietary Information]
²³⁷ U	[Proprietary Information]	[Proprietary Information]
²³⁸ U	[Proprietary Information]	[Proprietary Information]
^{131m} Xe	[Proprietary Information]	[Proprietary Information]
¹³³ Xe	[Proprietary Information]	[Proprietary Information]
^{133m} Xe	[Proprietary Information]	[Proprietary Information]
¹³⁵ Xe	[Proprietary Information]	[Proprietary Information]
^{135m} Xe	[Proprietary Information]	[Proprietary Information]
^{89m} Y	[Proprietary Information]	[Proprietary Information]
⁹⁰ Y	[Proprietary Information]	[Proprietary Information]
^{90m} Y	[Proprietary Information]	[Proprietary Information]
⁹¹ Y	[Proprietary Information]	[Proprietary Information]
^{91m} Y	[Proprietary Information]	[Proprietary Information]
⁹² Y	[Proprietary Information]	[Proprietary Information]
⁹³ Y	[Proprietary Information]	[Proprietary Information]
⁹³ Zr	[Proprietary Information]	[Proprietary Information]
⁹⁵ Zr	[Proprietary Information]	[Proprietary Information]
⁹⁷ Zr	[Proprietary Information]	[Proprietary Information]
Totals	[Proprietary Information]	[Proprietary Information]

Source: Table 2-1 of NWMI-2013-CALC-011, *Source Term Calculations*, Rev. A, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

EOI = end of irradiation.

13.2.2.2 Identification of Event Initiating Conditions

The accident initiating event is generally described as a process equipment failure, but also could be operator error or initiated by a fire/explosion. Multiple mechanisms were identified during the PHA that resulted in the equivalent of a failure that spills or sprays the tank contents, resulting in rapid and complete draining of a single tank to the enclosure in the vicinity of the tank location.

13.2.2.3 Description of Accident Sequences

The accident sequence for a tank leak is described as follows.

1. Process vessel fail or personnel error causes the tank contents to be emptied to the vessel enclosure floor in the vicinity of the leaking tank.
2. Tank liquid level monitoring and liquid level detection in the enclosure floor sump region alarms, informing operators that a tank leak has occurred.
3. Processing activities in the affected system are suspended based on location of the sump alarm.
4. Operators identify the location of the leaking vessel and take actions to stop additions to the leaking tank.
5. A final stable condition is achieved when solution accumulated in the sump has been transferred to a vessel available for the particular sump material and removed from the enclosure floor.

The accident sequence for a spray leak is similar to that of a tank leak and is described as follows.

1. The process line, containing pressurized liquid, ruptures or develops a leak during a transfer, spraying solution into the source or receiver tank enclosure and transferring leaked material to an enclosure floor in the vicinity of the leak.
2. Transfer liquid level monitoring and liquid level detection in the enclosure floor sump region alarms, informing operators that a leak has occurred.
3. Processing activities in the affected system are suspended based on location of the sump alarm.
4. Operators identify the location of the leaking vessel and take actions to ensure that the motive force of the leaking transfer line has been deactivated.
5. A final stable condition is achieved when solution accumulated in the sump has been transferred to a vessel available for the particular sump material and removed from the enclosure floor.

Maintenance activities to repair the cause of a tank or spray leak are initiated after achieving the final stable condition.

13.2.2.4 Function of Components or Barriers

The process vessel enclosure floor, walls, and ceiling will provide a barrier that prevents transfer of radioactive material to an uncontrolled area during a liquid spill or spray accident. For accidents involving high-dose uranium solutions and ⁹⁹Mo product solution, the process vessel enclosure floor, walls, and ceiling will provide shielding for the worker. The enclosure structure barriers are to function throughout the accident until (and after) a stable condition has been achieved.

The process enclosure secondary confinement (or ventilation) system will provide a barrier to prevent transfer of radioactive material to an uncontrolled area during a liquid spill or spray accident from radioactive material in the airborne particulate and aerosols generated by the event. The secondary confinement system is to function throughout the accident until a stable condition has been achieved.

The process enclosure sump system represents a component credited (part of the double-contingency analysis) for preventing the occurrence of a solution-type accidental nuclear criticality due to spills or sprays of fissile material. The sump system is to function throughout the accident until a stable condition has been achieved.

13.2.2.5 Unmitigated Likelihood

A spill or spray can be initiated by operations or maintenance personnel error or equipment failures. Failure rates for tanks, vessels, pipes, and pumps are estimated from WSRC-TR-93-262, *Savannah River Site Generic Data Base Development*. Table 13-2 (Section 13.1.1.1) shows qualitative guidelines for applying the likelihood categories. Operator error and tank failure as initiating events are estimated to have an unmitigated likelihood of “not unlikely.”

Additional detailed information describing a quantitative evaluation, including assumptions, methodology, uncertainties, and other data, will be developed for the Operating License Application.

13.2.2.6 Radiation Source Term

The following source term descriptions are based on information developed for the Construction Permit Application. Additional detailed information describing source terms will be developed for the Operating License Application.

13.2.2.6.1 Direct Exposure Source Terms

Liquid spill source terms are dependent on the vessel location in the process system. The following source terms describe the three configurations used to span the range of initial conditions:

- **Low-dose uranium solutions** were bounded by the maximum projected uranium concentration solution in the target fabrication system. The primary attribute of low-dose uranium solutions used for consideration of direct exposure consequences is that fission products have been separated from recycled uranium to allow contact operation and maintenance of the target fabrication system within ALARA (as low as reasonably achievable) guidelines. Chapter 4.0, Section 4.2, shows that a pencil tank of this material would be less than 1 millirem (mrem)/hr; therefore, no radiological IROFS are required for this stream.
- **High-dose uranium solutions** were bounded by a spill from the irradiated target dissolver after dissolution is complete. Dissolution of the targets produces an aqueous solution containing uranyl nitrate, nitric acid, and fission products. The primary attribute of high-dose uranium solutions used for consideration of direct exposure consequences is that equipment operation and maintenance must be conducted in a shielded hot cell environment due to the presence of fission products.
- **^{99}Mo product solution** was bounded by a small solution volume (less than 1 L) containing the weekly inventory of product from processing MURR targets. The product is an aqueous solution containing ~ 0.2 M sodium hydroxide (NaOH) with a total inventory of 1.3×10^4 curies (Ci) ^{99}Mo .

13.2.2.6.2 Confinement Release Source Terms

Confinement release source terms are based on the five-factor algebraic formula for calculating source terms for airborne release accidents from NUREG/CR-6410, as shown by Equation 13-1.

$$ST = MAR \times DR \times ARF \times RF \times LPF \quad \text{Equation 13-1}$$

where,

ST	=	Source term (activity)
MAR	=	Material at risk (activity)

DR	=	Damage ratio (dimensionless)
ARF	=	Airborne release fraction (dimensionless)
RF	=	Respirable fraction (dimensionless)
LPF	=	Leak path factor (dimensionless)

Confinement release source terms for spray used the source term parameters listed in Table 13-22. Four source term cases were developed for evaluation based on the two bounding liquid concentrations shown in Table 13-21 and the source term parameter alternatives.

Table 13-22. Source Term Parameters

Parameter ^a	Unmitigated spray release	Mitigated spray release
Material at risk (MAR)	Table 13-21	Table 13-21
Damage ratio (DR)	1.0	1.0
Airborne release fraction (ARF)	0.0001 (1.0 for Kr, Xe, and iodine) ^b	0.0001 (1.0 for Kr, Xe, and iodine) ^b
Respirable fraction (RF)	1.0	1.0
Leak path factor (LPF)	1.0	0.0005 (1.0 for Kr, Xe; 0.1 for iodine)

Source: Table 2-1 of NWMI-2015-RPT-009, *Fission Product Release Evaluation*, Rev. B, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

^a Parameter definitions derived from NUREG/CR-6410, *Nuclear Fuel Cycle Facility Accident Analysis Handbook*, U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, Washington, D.C., March 1998.

^b Accident dose consequences were found to be sensitive to iodine source term parameters. Further work may allow for a lower iodine ARF.

Kr = krypton.

Xe = xenon.

The DR was set to 1.0 for all cases. The assumed volume was 100 L of solution contained by a vessel being affected by the spill or spray release.

The ARF and RF values are functions of the release mechanism and do not enter into consideration for a mitigated versus unmitigated release. Thus, for both the unmitigated and mitigated cases, the ARF and RF were set to representative values based on the guidance in NUREG/CR-6410 and DOE-HDBK-3010, *DOE Handbook – Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities*. A spray release due to rupture of a pressurized pipe (transfer line) is modeled as depressurization of a liquid through a leak below the liquid surface level. Both NUREG/CR-6410 and DOE-HDBK-3010 report an ARF of 1×10^{-4} and a RF of 1.0 for a spray leak involving a low temperature aqueous liquid. These values take into consideration upstream pressures as high as 200 pounds (lb)/square inch (in.²) gauge. The spray mechanism is also bounded by a droplet size distribution produced from commercial spray nozzles. This approach is conservative, as the effective nozzle created by a pipe failure is unlikely to be optimized to the extent of a manufactured spray nozzle. Therefore, an ARF of 1×10^{-4} and a RF of 1.0 were used for all isotopes, except iodine and the noble gas fission products Kr and Xe. Radioisotopes of Kr, Xe, and iodine were assigned an ARF of 1.0 for all cases.

For the unmitigated evaluations, the LPF was set to 1.0, since the unmitigated release scenario credits no confinement measures (i.e., no credit was taken for any aspect of the facility design or equipment performance). The gravitational settling associated with flow throughout the facility and the removal action of high-efficiency particulate air (HEPA) filtration may be lumped into an effective value for LPF. The performance of different filtration systems is presented in Appendix F of DOE-HDBK-3010. For scoping purposes, a HEPA filtration efficiency of 99.95 percent was selected for all mitigated cases, which corresponds to an LPF of 0.0005.

The HEPA filter LPF was applied to all isotopes except Kr, Xe, and iodine. An LPF of 1.0 was selected for Kr and Xe in the mitigated spray release evaluation, assuming these isotopes behave as a gas when airborne and are not removed by HEPA filtration or sufficiently retained on the high-efficiency gas adsorption (HEGA) modules. The mitigated analysis credits an iodine removal capability in the facility ventilation exhaust gas equipment, with an iodine removal efficiency of 90 percent. The credited removal efficiency corresponds to an LPF of 0.1 for iodine due to the HEGA modules co-located with the HEPA filters.

13.2.2.7 Evaluation of Potential Radiological Consequences

Confinement release consequence estimates for the Construction Permit Application are based on NUREG-1940, *RASCAL 4: Description of Models and Methods*. Additional detailed information describing validation of models, codes, assumptions, and approximations will be developed for the Operating License Application.

13.2.2.7.1 Direct Exposure Consequences

The potential radiological exposure hazard of liquid spills depends on the vessel location in the process system. Low-dose uranium solutions are generally contact-handled, and direct radiation exposure to the worker is expected to be slightly elevated but well within ALARA guidelines. Therefore, no IROFS are required to control radiation exposure from spilled low-dose uranium solutions.

Vessels located within hot cells require shielding to control worker radiation exposure independent of whether process solution is contained in the vessel or spilled to the enclosure floor. High-dose uranium solutions are assumed to require hot cell shielding. Spills of ⁹⁹Mo solution from the Mo recovery and purification processes, and during handling prior to shipment of the product, involve product solution that contains high-dose ⁹⁹Mo. The direct whole-body exposure from radiation does not change from the normal case and must always be shielded to reduce the dose rate for workers to ALARA. As a preliminary estimate using a point-source dose rate conversion factor for ⁹⁹Mo of 0.112924 rem/hr at 1 m per Ci ⁹⁹Mo, the unshielded dose rate for the product is: MAR = 1.3×10^4 Ci ⁹⁹Mo

$$^{99}\text{Mo} \text{ dose rate at 1 m} = 1.30 \times 10^4 \text{ Ci } ^{99}\text{Mo} \times 0.1129 \text{ rem/hr/Ci } ^{99}\text{Mo} = 1.5 \times 10^3 \text{ rem/hr}$$

In a very short period of time, a worker can receive a significant intermediate or high consequence dose. Therefore, both high-dose uranium and ⁹⁹Mo product solution vessels must be located in hot cells for normal operations to control the direct exposure to workers.

Based on the analysis of several accidental nuclear criticalities in industry, LA-13638, *A Review of Criticality Accidents*, identifies that a uranium solution criticality can yield between 10^{16} to 10^{17} fissions. Dose rates for anyone in the target fabrication area can have high consequences. Consequences for a shielded hot cell criticality will be developed for the Operating License Application.

13.2.2.7.2 Confinement Release Consequence

Receptor dose consequences are evaluated in NWMI-2015-RPT-009, *Fission Product Release Evaluation*, using the RASCAL code developed for the NRC specifically for this purpose (NUREG-1940). Four release consequence estimates were prepared to support the Construction Permit Application based on unmitigated and mitigated spray release events using the two liquid radionuclide concentrations shown in Table 13-22. Common inputs to the consequence evaluations are listed in Table 13-23. Consequence evaluation results are shown in Table 13-24 for a 100 L spray release event, indicating the unmitigated spray release of dissolver solution is an immediate consequence event and significantly bounds the uranium separation feed solution spray release. The comparison in Table 13-24 indicates that the dissolver solution spray release bounds the consequences of spray releases involving liquids of other composition.

The Construction Application Permit evaluation summarized in Table 13-24 currently indicates the bounding spray release mitigated consequences are predicted to produce a public receptor dose of 0.97 rem, which is less than the limit for a credible intermediate-consequence event listed in 10 CFR 70.61 (5 rem).

Table 13-23. Release Consequence Evaluation RASCAL Code Inputs

Input	Description
Primary tool	STDose – Source term to dose option selected as the primary tool in RASCAL for all cases.
Event type	Other release – RASCAL includes separate models for nuclear power plant
	accidents involving spent fuel, accidents involving fuel cycle activities, and other
	radioactive material releases at non-reactor facilities. The other radioactive
	material releases option was selected for all cases.
Facility location ^a	Columbia, Missouri
County	Boone
Time zone	Central
Latitude/longitude	38.9520° N/92.3290° W
Elevation	231 m
Plume rise	None – For scoping purposes, the enthalpy and momentum of the RPF stack
	exhaust was assumed negligible.
Meteorology	Summer-night-calm – Selected for scoping purposes and features wind speed of
	6.4 km/hr (4 mi/hr), Pasquill Class F stability, no precipitation, relative humidity
	of 80%, and ambient temperature of 12.8°C (55°F). Low wind speed and stable
	conditions selected to provide maximum dose to near-field receptors.
Receptor distance	100 m – Selected to approximate site boundary. Input represents minimum value
	for RASCAL input.
Dose conversion factors	ICRP-72 ^b – Selected as the most current and authoritative set of dose conversion
	factors available.

Source: Table 2-1 of NWMI-2015-RPT-009, *Fission Product Release Evaluation*, Rev. B, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

^a Location information obtained from Wikipedia.

^b ICRP-72, *Age-Dependent Doses to the Members of the Public from Intake of Radionuclides – Part 5 Compilation of Ingestion and Inhalation Coefficients*, International Commission on Radiological Protection, Ottawa, Canada, 1995.

RASCAL = Radiological Assessment System for Consequence Analysis. RPF = Radioisotope Production Facility.

Table 13-24. Spray Release Consequence Summary

Process stream	Dissolver product		Uranium separations feed	
	Case	1	2	3
Mitigation	Unmitigated	Mitigated	Unmitigated	Mitigated
Receptor dose, total EDE	12 rem	0.97 rem	0.078 rem	0.006 rem
Stack height	10 m (33 ft) ^a	23 m (75 ft)	10 m (33 ft) ^a	23 m (75 ft)
Release mechanism	Spray leak, 100 L		Spray leak, 100 L	
Release duration	1 hr		1 hr	

Source: Table 2-1 and Table 2-7 of NWMI-2015-RPT-009, *Fission Product Release Evaluation*, Rev. B, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

^a Lowest value for plume height available as input to RASCAL and recommended by help file as input modeling a ground-level release.

EDE = effective dose equivalent. | RASCAL = Radiological Assessment System for Consequence Analysis.

13.2.2.8 Identification of Items Relied on for Safety and Associated Functions

Unmitigated spill and spray releases have the potential to produce direct exposure and confinement releases with high consequence to workers and the public. Hot cell shielding is designed to provide protection from uncontrolled liquid spills and sprays that result in redistribution of high-dose uranium and ⁹⁹Mo product solution in the hot cell. From a direct exposure perspective, a liquid spill does not represent a failure or adverse challenge to the hot cell shielding boundary function. However, the hot cell shielding boundary must also function to prevent migration of liquid spills to uncontrolled areas outside the shielding boundary.

Liquid spill and spray-type releases occur as a result of the partial failure of process vessels to contain either the fissile solution (for areas outside of the hot cell) or to contain fissile or high-dose radiological solutions (for areas inside the hot cell). In either case, the process vessel spray release results in an event that carries with it a higher airborne radionuclide release magnitude than a simple liquid spill. The spray-type release also carries the extra hazard of potential chemical burns to eyes and skin, with the complication of radiological contamination. Consequently, spray protection is a secondary safety function needed to satisfy performance criteria. The liquid spill and spray confinement safety function of the hot cell liquid confinement boundary is then credited for confining the spray to the hot cell and protecting the worker from sprays of radioactive caustic or acidic solution with the potential to cause intermediate or high consequences. The airborne filtering safety feature of the hot cell secondary confinement boundary is credited with reducing airborne concentrations in the hot cells to levels outside the hot cell boundary, which are below intermediate consequence levels for workers and the public during the event.

Three IROFS are identified to control liquid spill and spray accidents from process vessels.

- IROFS RS-01, “Hot Cell Liquid Confinement Boundary”
- IROFS RS-03, “Hot Cell Secondary Confinement Boundary”
- IROFS RS-04, “Hot Cell Shielding Boundary”

Liquid spill and spray events involving solutions containing fissile material have the potential for producing liquid nuclear criticalities that must be prevented. The following IROFS are identified to control nuclear criticality aspects of the liquid spill and spray events.

- IROFS CS-07, “Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels”

- IROFS CS-08, “Floor and Sump Geometry Control on Slab Depth, Sump Diameter or Depth for Floor Spill Containment Berms”
- IROFS CS-09, “Double-Wall Piping”

Functions of the identified IROFS are described in the following sections.

13.2.2.8.1 IROFS RS-01, Hot Cell Liquid Confinement Boundary

IROFS RS-01 functions to mitigate the impact of liquid spills from process vessels in the hot cells. As a passive engineered control (PEC) and safety feature, the hot cell liquid confinement boundary will provide an integrated system of features that protects workers and the public from the high-dose radiation generated during primary confinement releases of primarily liquid solutions during the ^{99}Mo recovery process. The hot cell liquid confinement boundary will also protect the environment from releases of product solution from the primary confinement of the processing vessels. In addition, the barrier will provide a function of confining spills of irradiated LEU target solid material in some of the irradiated target handling hot cells.

The primary safety function of the hot cell liquid confinement boundary is to capture and contain liquid releases and to prevent those releases from exiting the boundary, causing high dose to workers or the public, or contaminating the environment. A secondary function of the liquid confinement boundary is to prevent contact chemical exposure to workers from acidic or caustic solutions contaminated with licensed material that exceeds the performance criteria established by NWMI for the RPF.

As a PEC to contain spills and sprays of high-dose product solution, the hot cell liquid confinement boundary will consist of sealed flooring with multiple layers of protection from release to the environment. Various areas will be diked to contain specific releases, and sumps of appropriate design will be provided with remote-operated pumps to mitigate liquid spills by capturing the liquid in appropriate safe-geometry tanks. Additional IROFS apply to the flooring and sumps for criticality safety double-contingency controls in some areas. In the ^{99}Mo purification product and sample hot cell, smaller confinement catch basins will be provided under points of credible spill potential in addition to use of a sealed floor. Entryway doors into a designated liquid confinement area will be sealed against credible liquid leaks to outside the boundary. This continuous barrier is also credited to prevent spills or sprays of high-dose product solutions that are acidic or caustic from causing adverse exposure to personnel through direct contact with skin, eyes, and mucus membranes, where the combination of the chemical exposure and the radiological contamination would lead to serious injury and long-lasting effects or even death.

Specific design features of the liquid confinement barrier, a liquid barrier to uncontrolled areas and worker radiation exposure from leaked solution, include:

- Continuous, impervious floor with an acid- or caustic-resistant surface finish
- Hot cell walls and ceiling designed to control worker dose from liquids accumulated in sumps
- Monitors with alarms to indicate a liquid release has occurred
- Sealed penetrations designed to prevent liquid leaks through the barrier to uncontrolled areas
- Sump solution collection vessels for accumulating leaked process solution

13.2.2.8.2 IROFS RS-03, Hot Cell Secondary Confinement Boundary

IROFS RS-03 functions to mitigate the impact of liquid spills and sprays from process vessels in the hot cells. As a system of PECs and AECs, the hot cell secondary confinement boundary safety feature is engineered to provide backup to credible upsets in the primary confinement system using the following safety functions:

- Provide negative air pressure in the hot cell (Zone I) relative to lower zones outside the hot cell using exhaust fans equipped with HEPA filters and HEGA modules to remove the release of radionuclides (both particulate and gaseous) to outside the primary confinement boundary to below 10 CFR 20 release limits during normal and abnormal operations.
- Components credited include:
 - Zone I Inlet HEPA filters to provide an efficiency of 99.97 percent for removal of radiological particulates from the air that may reverse flow from Zone I to Zone II
 - Zone I ducting to ensure that negative air pressure can be maintained by conveying exhaust air to the stack
 - Zone I exhaust train HEPA filters to provide 99.97 percent removal of radiological particulates from the air that flows to the stack
 - Zone I exhaust train HEGA modules to provide 90 percent removal of iodine gas from the air that flows to the stack
 - Zone I exhaust stack to provide dispersion of radionuclides in normal and abnormal releases at a discharge point of 22.9 m (75 ft) above the building ground level
 - Stack monitoring and interlocks to monitor discharge and signal changing on service filter trains during normal and abnormal operations

As a system of PECs and AECs, the purpose of this IROFS is to mitigate high-dose radionuclide releases to maintain exposure to acceptable levels to both the worker and the public in a highly reliable and available manner. The hot cell secondary confinement boundary will perform this function using the following engineered features to ensure a high level of reliability and availability.

- As a PEC, the hot cell floor, walls, ceilings, and penetrations are designed to provide an air intrusion barrier sufficient to allow the exhaust system to maintain negative air pressure under normal and credible abnormal conditions. This barrier is not required to be air-tight, but must be controlled to the extent that the design capacity of the exhaust fans can maintain negative pressure. Design features associated with this function include airlocks for normal egress, cask and bagless transfer ports that can only open when the cask or container is properly sealed to the port, and appropriately sized ventilation ports between zones.
- Along with the AECs of the filtered ventilation system, this boundary will provide secondary confinement and prevent uncontrolled release of general radiological airborne gases and particulates that escape the primary confinement to reduce releases to the monitored stack to acceptable release levels during normal and abnormal operations.
- The Zone I exhaust system will serve the hot cell, high-integrity canister (HIC) loading area, and solid waste loading area. This exhaust system will maintain Zone I spaces at negative pressure with respect to atmosphere. All make-up air to Zone I spaces will be cascaded from Zone II spaces.

- HEPA filters will be included on both the inlet and outlet ducts to Zone I. The hot cell outlet HEPA filters will minimize the spread of contamination from the hot cell into the ductwork leading to the exhaust filter train but are not credited with reducing exposure to workers and/or the public. The hot cell inlet HEPA filters will prevent contamination spread during an upset condition that results in positive pressurization of Zone I spaces with respect to Zone II spaces.
- The process offgas subsystem will enter the Zone I exhaust subsystem just upstream of the filter train. The exhaust train outlet HEPA filters will prevent contamination from entering the stack. The stack will disperse radiological gases and particulate to levels below release limits in normal operations and below intermediate consequence levels during process upsets.
- As an AEC, the hot cell secondary confinement system will also serve as backup to the primary offgas treatment system by providing a backup stage of carbon retention bed removal (consisting of an iodine removal) capacity before exhausting into the ventilation system described above. This system will have limited availability for iodine adsorption if the primary system fails.

13.2.2.8.3 IROFS RS-04, Hot Cell Shielding Boundary

IROFS RS-04 functions to prevent worker dose rates from exceeding exposure criteria due to the presence of radioactive materials in the hot cell vessels before or after a liquid spill accident. As a PEC and safety feature, the hot cell shielding boundary will provide an integrated system of features that protect workers from the high-dose radiation generated during the ^{99}Mo recovery process. The primary safety function of the hot cell shielding boundary will be to reduce the radiation dose at the worker/hot cell interface to ALARA. The shield will also protect workers and the public at the controlled area boundary.

The hot cell shielding boundary will provide shielding for workers and the public during normal operations to reduce worker exposure to an average of 0.5 mrem/hr, or less, in normally accessible workstations and occupied areas outside of the hot cell. The hot cell shielding boundary will provide shielding for workers and the public during process upsets to reduce the worker exposure to a TEDE of 5 rem, or less, at workstations and occupied areas outside of the hot cell.

As a PEC, shielding will be provided by a thick concrete, steel-reinforced wall with steel cladding that reduces the normally expected operational exposures from within the boundary to an average of 0.5 mrem/hr, or less, outside of the boundary. Where direct visual access is required, leaded-glass windows with appropriate thicknesses will be used to reduce normally expected operational exposures from within the boundary to an average of 0.5 mrem/hr, or less, outside of the boundary. Some shielding will be movable, such as around the high-dose waste cask loading area. Where penetrations are required, the engineered design provides for access-controlled, non-occupied corridors or airlocks where potential radiation streaming is safely mitigated by multiple layers of shielding or through a torturous path. The shielding is also designed to reduce the exposure from postulated upsets within the hot cell shielding boundary to less than a low-consequence exposure to workers and the public of 5 rem, or less, per incident. These incidents include spills, sprays, fires, and other releases of radionuclides contained within the boundary. The shield may be divided into protection areas for the purposes of applying limiting conditions of operation. Each shielded protected area will be operable when the equipment in that area is in the operating or standby modes.

13.2.2.8.4 IROFS CS-07, Pencil Tank and Vessel Spacing Control using Fixed Interaction Spacing of Individual Tanks or Vessels

IROFS CS-07 functions to ensure that potential interactions between full vessels and a sump filled by a liquid spill or spray have been considered to prevent a nuclear criticality event. As a PEC, pencil tanks and other standalone vessels (controlled with safe geometry or volume constraints) are designed and fabricated with a fixed interaction spacing for safe storage and processing of the fissile solutions. The safety function of fixed interaction spacing of individual barrels in pencil tanks and between other single processing vessels or components is designed to minimize interaction of neutrons between vessels such that under normal and credible abnormal process upsets, the systems will remain subcritical. The fixed interaction control of tanks, vessels, or components containing fissile solutions will prevent accidental nuclear criticality, a high consequence event. The fixed interaction control distance from the safe slab depth spill containment berm is specified where applicable.

13.2.2.8.5 IROFS CS-08, Floor and Sump Geometry Control on Slab Depth, Sump Diameter or Depth for Floor Spill Containment Berms

IROFS CS-08 functions to ensure that sump designs have been considered to prevent a nuclear criticality event by geometry if filled with liquid from a spill or spray release. As a PEC, the floor under designated tanks, vessels, and workstations will be constructed with a spill containment berm that maintains a safe-geometry slab depth to be determined with final design, and one or more collection sumps with diameters or depths to be determined in final design. The safety function of this spill containment berm is to safely contain spilled fissile solution from systems overhead and prevent an accidental nuclear criticality if one of the tanks or related piping leaks, ruptures, or overflows (if so equipped with overflows to the floor). Each spill containment berm will be sized for the largest single credible leak associated with the overhead systems. The interaction distance for the spill containment area is provided in IROFS CS-07. The sump will have a monitoring system to alert the operator that the IROFS has been used and may not be available for a follow-on event. A spill containment berm will be operable if it contains reserve volume for the largest single credible spill. Spill containment berm sizes and locations will be determined by the final design.

13.2.2.8.6 IROFS CS-09, Double-Wall Piping

IROFS CS-09 functions to control liquid spills or sprays in a similar manner to IROFS CS-08. As a PEC, the piping system conveying fissile solution between credited locations will be provided with a double-wall barrier to contain any spills that may occur from the primary confinement piping. IROFS CS-09 is used at locations that pass through the facility where creating a spill containment berm (IROFS CS-08) under the piping is neither practical nor desirable for personnel chemical protection purposes. The double-wall piping arrangement is designed to gravity drain to a safe-geometry set of tanks or to a safe-geometry containment berm. The safety function of this PEC is to safely contain spilled fissile solution from system piping and prevent an accidental nuclear criticality if the primary confinement piping leaks or ruptures. The double-wall piping arrangement will maintain the safe-geometry diameter of the solution. The secondary safety function of the double-wall piping is to prevent personnel injury from exposure to acidic or caustic licensed material solutions that are conveyed in the piping.

Defensive-in-Depth

The following defense-in-depth features were identified by the liquid spill and spray accident evaluations.

- Alarming radiation area monitors will provide continuous monitoring of the dose rate in occupied areas, and alarm at an appropriate setpoint above background.

- Continuous air monitoring will be provided to alert operators of high airborne radiation levels that exceed derived air concentration (DAC) limits.
- HEPA filters on hot cell outlets are not credited and will reduce the impact of spills or sprays to the public.
- Most product solution and uranium solution processing systems will operate at or slightly below atmospheric pressure, or solutions will be pumped between tanks that are at atmospheric pressure to reduce the likelihood of system breach at high pressure.
- Tanks, vessels, components, and piping are designed for high reliability with materials that will minimize corrosion rates associated with the processed solutions.

13.2.2.9 Mitigated Estimates

The controls selected will mitigate both the frequency and consequences of this accident. The controls selected and described above will prevent a criticality associated with accidental spills and sprays of SNM. The selected IROFS have reduced the off-site consequences to acceptable levels (less than 1 rem to the public). Table 13-24 provides the mitigated public dose estimates. Workers will be protected by the selected secondary confinement and shielding IROFSs. Additional detailed information, including worker dose and detailed frequency estimates, will be developed for the Operating License Application.

13.2.3 Target Dissolver Offgas Accidents with Radiological Consequences

The MHA, as discussed in Section 13.2.1, is a complete release of the iodine (and noble gases) from a loaded dissolver offgas IRU. This accident is the loss of efficiency of the IRU due to a process upset (e.g., flooding of the NO_x scrubber) or equipment failure (e.g., loss of the IRU heater) during the dissolution of irradiated targets. The primary components of the dissolver offgas include:

- NO_x scrubbers (caustic and absorbers)
- IRUs
- Pressure-relief vessel
- Primary adsorbers (carbon media beds for 6 days noble gas holdup)
- Iodine guard beds (remove any iodine not trapped in the IRUs)
- Filters
- Vacuum receiver tanks
- Vacuum pumps (draw a downstream vacuum on the target dissolver offgas treatment train)
- Secondary adsorbers (additional carbon media beds to hold up noble gases for an additional 60 days)

The IRUs nominally removes about 99.9 percent of the iodine in the offgas stream after the NO_x scrubbers. NWMI expects the availability and operation of IRUs will become part of the technical specification to meet annual release limits. The iodine released from dissolution of the irradiated targets will have three primary pathways: (1) a fraction of the iodine will stay in the dissolver solution (this iodine is a key dose contributor to liquid spills and sprays accidents [see Section 13.2.2]), (2) a significant portion of the iodine gas exiting the dissolver will be captured in the caustic scrubber (and other NO_x treatment absorbers) and end up in the high dose liquid waste tanks, and (3) the remainder of the iodine will be captured in the IRUs.

These IRUs will remove the bulk of the radioactive iodine that passes through the dissolver scrubbers during the dissolution process. As demonstrated by the MHA analysis discussed in Section 13.2.1, iodine will be the greatest contributor to the EDE for gaseous accident-related releases from the RPF.

The primary and secondary adsorbers will be important for delaying the release of radioactive noble gases (radioisotopes of Kr and Xe) until these isotopes have had time to decay. However, as shown in the MHA analysis, the dose impact of noble gases will be orders of magnitude below that of radioiodine. Therefore, this evaluation focuses on accidents or upsets negatively impacting the IRU performance as the bounding offgas accident.

13.2.3.1 Initial Conditions

The target dissolver and associated offgas treatment train are assumed to be operational and in service prior to the occurrence of any accident sequence that affects the IRUs. The IRUs are assumed to be loaded with the conservative bounding holdup inventory of iodine, as determined in NWMI-2013-CALC-011 and used in the MHA.

As discussed in the MHA, there is no credible event where the inventory on the IRUs would be released. Therefore, this evaluation focuses on accident sequences where the inventory at risk is from a single dissolution [Proprietary Information]. The maximum amount of iodine [Proprietary Information] is shown in

Table 13-25. The mass balance projects about 20 percent of the iodine will stay in the

dissolver solution and nearly 50 percent of the elemental iodine (I_2) that does volatize will be captured in the NO_x scrubbers (primary the caustic scrubber) and transferred to the high dose liquid waste system. However, for this analysis, all of the iodine is assumed to remain in the offgas stream to the IRUs.

13.2.3.2 Identification of Event Initiating Conditions

There are a number of events identified in the PHA that have the potential to impact the normal efficient operation of the target dissolver offgas treatment train. The three most likely sequences with the potential to impact efficient operation include: (1) excessive moisture carryover in the gas stream due to a process upset in the NO_x units, (2) high gas flow rates due to process conditions in the dissolver (e.g., excessive sweep air) or poor NO_x recovery, and (3) loss of temperature control (loss of power or failure of temperature controller) to the IRU. All three of these accidents have the potential to reduce the IRU efficiency.

13.2.3.3 Description of Accident Sequences

The accident sequences for loss of IRU efficiency include the following.

- An [Proprietary Information] is being dissolved.
- A process upset occurs that reduces the IRU efficiency by an unspecified amount.
- The event is identified by the operator either from a process control alarm (e.g., low heater temperature) or a radiation alarm on the gas stream or piping exiting the hot cell.

Table 13-25. Maximum Bounding Inventory of Radioiodine ([Proprietary Information])

Isotope	Ci
^{129}I	[Proprietary Information]
^{130}I	[Proprietary Information]
^{131}I	[Proprietary Information]
^{132}I	[Proprietary Information]
^{132m}I	[Proprietary Information]
^{133}I	[Proprietary Information]
^{133m}I	[Proprietary Information]
^{134}I	[Proprietary Information]
^{135}I	[Proprietary Information]
Total I Ci	[Proprietary Information]

I = iodine.

- Following procedure, the operator turns the steam off to the dissolver (to slow down the dissolution process).
- The operator troubleshoots the upset condition and switches to the back IRU, if warranted, and/or manually opens the valve to the pressure-relief tank in the dissolver offgas system to capture the offgas stream.

If the initiator for the event is loss of power or the event creates a condition where vacuum in the dissolver offgas system is lost, the pressure-relief tank valve would automatically open to capture the offgas stream. This tank has been sized to contain the complete gas volume of a dissolution cycle.

13.2.3.4 Function of Components or Barriers

The IRUs will be the primary iodine capture devices; however, there will be iodine guard beds downstream of each of the primary noble gas adsorbers. The vent system piping will direct the dissolver offgas to the pressure-relief tank or through the guard beds and into the primary process vessel vent system. This system will also have iodine removal beds located downstream of the point where the target dissolver offgas treatment train discharges into the process vessel vent system. Thus, the system will provide a redundant iodine removal capacity that backs up the target dissolver offgas treatment train IRUs. The process vessel vent system will discharge to the Zone I exhaust header, which has a HEGA module that is a defense-in-depth component for this accident sequence.

13.2.3.5 Unmitigated Likelihood

Loss of iodine removal efficiency can be initiated by operations or maintenance personnel error or equipment failures. Failure rates for tanks, vessels, pipes, and pumps are estimated from WSRC-TR-93-262. Table 13-2 shows qualitative guidelines for applying the likelihood categories. Operator error and equipment failure as initiating events are estimated to have an unmitigated likelihood of “not unlikely.”

Additional detailed information describing a quantitative evaluation, including assumptions, methodology, uncertainties, and other data, will be developed for the Operating License Application.

13.2.3.6 Radiation Source Term

The radioiodine inventory is given in Section 13.2.3.1. As discussed with regard to the MHA, the dose consequences of noble gas radioisotopes are orders of magnitude less than that of iodine radioisotopes. Therefore, the iodine source term is the focus of this accident sequence evaluation. No credit is taken for any iodine removal in the dissolver scrubbers or residual iodine remaining in the dissolver solution. Conversely, in this accident, the previous capture iodine is not part of the source term. Therefore, the source term is 27,100 Ci. Additional detailed information describing the validation of models, codes, assumptions, and approximations will be developed for the Operating License Application.

The source term for this accident is based on a set of initial conditions that were designed to bound the credible offgas scenarios. These assumptions include:

- [Proprietary Information]
- All the iodine in the targets released into the off gas system, and no iodine or noble gases captured in the NO_x scrubbers or retained in the dissolver solution
- Iodine removal efficiency of the dissolver offgas IRU goes to zero
- Greater than expected release of material (e.g., no plating out of iodine, or subsequent iodine capture in downstream of unit operations)

The bounding iodine value includes the 1.32 safety factor used in NWMI-2013-CALC-011. The breakdown of the radionuclide inventory used in NWMI-2013-CALC-011 is extracted from NWMI-2013-CALC-006 using the reduced set of 123 radioisotopes. NWMI-2014-CALC-014 identifies the 123 dominant radioisotopes included in the MURR material balance (NWMI-2013-CALC-006). NWMI-2014-CALC-014 provides the basis for using the 123 radioisotopes from the total list of 660 radioisotopes potentially present in irradiated targets. The majority of omitted radioisotopes will exist in trace quantities and/or decay swiftly to stable nuclides. The reduced set of 123 radioisotopes consists of those that dominate the radioactivity and decay heat of irradiated targets.

13.2.3.7 Evaluation of Potential Radiological Consequences

Radiological consequences are bounded by those of the MHA (Section 13.2.1). The unmitigated dose consequences should be about 3.4 times less than the MHA results for the public, based on the source term ratio. Realistic radiological consequences are negligible due to the presence of defense-in-depth iodine capabilities in the dissolver offgas system and in the process vessel vent system that backs up the performance of the target dissolver offgas treatment train IRUs. Additional detailed information describing validation of the models, codes, assumptions, and approximations will be developed for the Operating License Application.

Assuming this accident has similar release characteristic as the MHA, the radiological dose consequences can be estimated using the ratio of source terms. This is reasonable since a dissolution takes 1 to 2 hr. The entire inventory would also be released over a 2-hr period directly to the 22.9 m (75-ft) stack and into the environment. RSAC-6.2 was used to model the dispersion resulting from the MHA. The following parameters were used for model runs:

- Mixing depth: 400 m (1,312 ft) (default)
- Air density: 1,250 g/m³ (1.25 oz/ft³) (sea level)
- Pasquill-Gifford σ (NRC Regulatory Guide 1.145)
- No plume rise (i.e., buoyancy or stack momentum effects)
- No plume depletion (wet or dry deposition)
- 2-hr release (constant release of all activity)
- 2-hr exposure
- ICRP-30 inhalation model
- Finite cloud immersion model
- Breathing rate: 3.42E-4 m³/sec (1.2E-2 ft³/sec) (ICRP-30 heavy activity)
- Respiratory fraction: 1.0

Table 13-25 show the distance-dependent total receptor accident doses, respectively, versus distance from the RPF stack for 2-hr exposure. This table was developed using MHA dose consequences and dividing by a ratio of the MHA and the accident source term. The maximum public dose is 6.65 rem at 1,100 m.

Table 13-26. Target Dissolver Offgas Accident Total Effective Dose Equivalent

Distance (m)	TEDE (rem)	
	Total	
100	2.05E-01	
200	1.98E-01	
300	2.21E-01	
400	6.41E-01	
500	1.76E+00	
600	3.18E+00	
700	4.50E+00	
800	5.47E+00	
1,000	6.50E+00	
1,100	6.65E+00	
1,200	6.62E+00	
1,300	6.50E+00	
1,400	6.29E+00	
1,500	6.06E+00	
1,600	5.82E+00	
1,700	2.05E-01	

Peak total dose is bolded and italicized.

TEDE = total effective dose equivalent.

RSAC-6.2 calculates inhalation doses using the ICRP-30 model with Federal Guidance Report No. 11 DCFs (EPA 520/1-88-020). The CDE is calculated for individual organs and tissues over a 50-year period after inhalation. The CDE for each organ or tissue is multiplied by the appropriate ICRP-26 weighting factor and then summed to calculate the CEDE.

The RSAC-6.2 gamma dose from the cloud is the EDE (the person may or may not be immersed in the cloud depending on the plume position in relation to the ground surface), which is the sum of the products of the dose equivalent to the organ or tissue and the weighting factors applicable to each of the body organs or tissues that is irradiated.

The summation of the two RSAC-6.2 doses is the TEDE, which is the sum of the EDE (for external exposures) and the CEDE (for inhalation exposures).

The RSAC-6.2 dose calculations and dose terminology are consistent with 10 CFR 20 terminology based on ICRP-26/30. The doses and dose commitments (~6.65 rem) are within intermediate consequences severity categories (<25 rem).

13.2.3.8 Identification of Items Relied on for Safety and Associated Functions

IROFS RS-03, Hot Cell Secondary Confinement Boundary

The applicable part of IROFS RS-03 that specifically mitigates target dissolver offgas treatment train IRU failures is the process vessel vent iodine removal beds. These beds are located downstream of where the target dissolver offgas treatment train discharges into the process vessel vent system; hence, the beds provide a backup to the target dissolver offgas treatment train IRUs. IROFS RS-03 is categorized as an AEC.

IROFS RS-09, Primary Offgas Relief System

As an AEC, a relief device will be provided that relieves pressure from the system to an on-service receiver tank maintained at vacuum, with the capacity to hold the gases generated by the dissolution of one batch of targets in the target dissolution tank. The safety function of this system is to prevent failure of the primary confinement system by capturing gaseous effluents in a vacuum receiver. To perform this function, a relief device will relieve into a vacuum receiver that is sized and maintained at a vacuum consistent with containing the capacity of one batch of targets in dissolution.

Defensive-in-Depth

The following defense-in-depth features preventing target dissolver offgas accidents were identified by the accident evaluations.

- Releases at the stack will be monitored for radionuclide emissions to ensure that the overall removal efficiency of the system is reducing emissions to design levels and well below regulator limits.
- A spare dissolver offgas IRU will be available if the online IRU unit loses efficiency.
- The primary carbon retention bed will include an iodine adsorption stage that reduces iodine as a normal backup to the IRU.

13.2.3.9 Mitigated Estimates

The controls selected do not affect the frequency of this accident but mitigate the consequences. The process vessel vent iodine removal bed and the HEGA module in the Zone I exhaust system will mitigate the dose consequences by a factor of 100. The selected IROFS have reduced the off-site consequences to acceptable levels (less than 66 mrem to the public). Additional detailed information, including worker dose estimates and detailed frequency, will be developed for the Operating License Application.

13.2.4 Leaks into Auxiliary Services or Systems with Radiological and Criticality Safety Consequences

In the unmitigated scenario, liquid solution leaks into secondary containment (e.g., cooling water jackets) were identified by the PHA to represent a hazard to workers from direct radiological exposure or inhalation and an inhalation exposure hazard to the public. The PHA also identified fissile solution leaks into secondary containment as an event that could lead to an accidental nuclear criticality. The accidents covered by this analysis bound the family of accidents where highly radioactive or fissile solution leaves the hot cell or other shielded areas via auxiliary systems and creates a worker safety or criticality concern.

13.2.4.1 Initial Conditions

Initial conditions are described as a tank or vessel (with a heating or cooling jacket) filled with process solution. Multiple vessels are projected to be at this initial condition throughout the process. The second primary configuration of concern is the hot cell and target fabrication condensers associated with the four concentrator or evaporator systems. The evaporator(s) initial conditions are normal operations, in which boiling solutions generate an overhead stream that needs to be condensed. The bounding source term is expected to be the dissolvers or the feed tanks in the Mo recovery and purification system. Table 13-27 lists the radionuclide liquid concentration for. The [Proprietary Information] stream is used to represent and bound the uranium recovery and recycle and target fabrication evaporators feed streams.

Table 13-27. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
²⁴¹ Am	[Proprietary Information]	[Proprietary Information]
^{136m} Ba	[Proprietary Information]	[Proprietary Information]
^{137m} Ba	[Proprietary Information]	[Proprietary Information]
¹³⁹ Ba	[Proprietary Information]	[Proprietary Information]
¹⁴⁰ Ba	[Proprietary Information]	[Proprietary Information]
¹⁴¹ Ce	[Proprietary Information]	[Proprietary Information]
¹⁴³ Ce	[Proprietary Information]	[Proprietary Information]
¹⁴⁴ Ce	[Proprietary Information]	[Proprietary Information]
²⁴² Cm	[Proprietary Information]	[Proprietary Information]
²⁴³ Cm	[Proprietary Information]	[Proprietary Information]
²⁴⁴ Cm	[Proprietary Information]	[Proprietary Information]
¹³⁴ Cs	[Proprietary Information]	[Proprietary Information]
^{134m} Cs	[Proprietary Information]	[Proprietary Information]
¹³⁶ Cs	[Proprietary Information]	[Proprietary Information]

Table 13-27. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
¹³⁷ Cs	[Proprietary Information]	[Proprietary Information]
¹⁵⁵ Eu	[Proprietary Information]	[Proprietary Information]
¹⁵⁶ Eu	[Proprietary Information]	[Proprietary Information]
¹⁵⁷ Eu	[Proprietary Information]	[Proprietary Information]
¹²⁹ I	[Proprietary Information]	[Proprietary Information]
¹³⁰ I	[Proprietary Information]	[Proprietary Information]
¹³¹ I	[Proprietary Information]	[Proprietary Information]
¹³² I	[Proprietary Information]	[Proprietary Information]
^{132m} I	[Proprietary Information]	[Proprietary Information]
¹³³ I	[Proprietary Information]	[Proprietary Information]
^{133m} I	[Proprietary Information]	[Proprietary Information]
¹³⁴ I	[Proprietary Information]	[Proprietary Information]
¹³⁵ I	[Proprietary Information]	[Proprietary Information]
⁸³ m Kr	[Proprietary Information]	[Proprietary Information]
⁸⁵ Kr	[Proprietary Information]	[Proprietary Information]
^{85m} Kr	[Proprietary Information]	[Proprietary Information]
⁸⁷ Kr	[Proprietary Information]	[Proprietary Information]
⁸⁸ Kr	[Proprietary Information]	[Proprietary Information]
¹⁴⁰ La	[Proprietary Information]	[Proprietary Information]
¹⁴¹ La	[Proprietary Information]	[Proprietary Information]
¹⁴² La	[Proprietary Information]	[Proprietary Information]
⁹⁹ Mo	[Proprietary Information]	[Proprietary Information]
⁹⁵ Nb	[Proprietary Information]	[Proprietary Information]
^{95m} Nb	[Proprietary Information]	[Proprietary Information]
⁹⁶ Nb	[Proprietary Information]	[Proprietary Information]
⁹⁷ Nb	[Proprietary Information]	[Proprietary Information]
^{97m} Nb	[Proprietary Information]	[Proprietary Information]
¹⁴⁷ Nd	[Proprietary Information]	[Proprietary Information]
^{236m} Np	[Proprietary Information]	[Proprietary Information]
²³⁷ Np	[Proprietary Information]	[Proprietary Information]
²³⁸ Np	[Proprietary Information]	[Proprietary Information]
²³⁹ Np	[Proprietary Information]	[Proprietary Information]
²³³ Pa	[Proprietary Information]	[Proprietary Information]
²³⁴ Pa	[Proprietary Information]	[Proprietary Information]
^{234m} Pa	[Proprietary Information]	[Proprietary Information]
¹¹² Pd	[Proprietary Information]	[Proprietary Information]
¹⁴⁷ Pm	[Proprietary Information]	[Proprietary Information]
¹⁴⁸ Pm	[Proprietary Information]	[Proprietary Information]

Table 13-27. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
^{148m} Pm	[Proprietary Information]	[Proprietary Information]
¹⁴⁹ Pm	[Proprietary Information]	[Proprietary Information]
¹⁵⁰ Pm	[Proprietary Information]	[Proprietary Information]
¹⁵¹ Pm	[Proprietary Information]	[Proprietary Information]
¹⁴² Pr	[Proprietary Information]	[Proprietary Information]
¹⁴³ Pr	[Proprietary Information]	[Proprietary Information]
¹⁴⁴ Pr	[Proprietary Information]	[Proprietary Information]
^{144m} Pr	[Proprietary Information]	[Proprietary Information]
¹⁴⁵ Pr	[Proprietary Information]	[Proprietary Information]
²³⁸ Pu	[Proprietary Information]	[Proprietary Information]
²³⁹ Pu	[Proprietary Information]	[Proprietary Information]
²⁴⁰ Pu	[Proprietary Information]	[Proprietary Information]
²⁴¹ Pu	[Proprietary Information]	[Proprietary Information]
^{103m} Rh	[Proprietary Information]	[Proprietary Information]
¹⁰⁵ Rh	[Proprietary Information]	[Proprietary Information]
¹⁰⁶ Rh	[Proprietary Information]	[Proprietary Information]
^{106m} Rh	[Proprietary Information]	[Proprietary Information]
¹⁰³ Ru	[Proprietary Information]	[Proprietary Information]
¹⁰⁵ Ru	[Proprietary Information]	[Proprietary Information]
¹⁰⁶ Ru	[Proprietary Information]	[Proprietary Information]
¹²² Sb	[Proprietary Information]	[Proprietary Information]
¹²⁴ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁵ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁶ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁷ Sb	[Proprietary Information]	[Proprietary Information]
¹²⁸ Sb	[Proprietary Information]	[Proprietary Information]
^{128m} Sb	[Proprietary Information]	[Proprietary Information]
¹²⁹ Sb	[Proprietary Information]	[Proprietary Information]
¹⁵¹ Sm	[Proprietary Information]	[Proprietary Information]
¹⁵³ Sm	[Proprietary Information]	[Proprietary Information]
¹⁵⁶ Sm	[Proprietary Information]	[Proprietary Information]
⁸⁹ Sr	[Proprietary Information]	[Proprietary Information]
⁹⁰ Sr	[Proprietary Information]	[Proprietary Information]
⁹¹ Sr	[Proprietary Information]	[Proprietary Information]
⁹² Sr	[Proprietary Information]	[Proprietary Information]
⁹⁹ Tc	[Proprietary Information]	[Proprietary Information]
^{99m} Tc	[Proprietary Information]	[Proprietary Information]
^{125m} Te	[Proprietary Information]	[Proprietary Information]

Table 13-27. Bounding Radionuclide Liquid Stream Concentrations (4 pages)

Unit operation	Target dissolution	Uranium recovery and recycle
Decay, hours after EOI	[Proprietary Information]	[Proprietary Information]
Stream description	Dissolver product	Uranium separation feed
Isotope	Bounding concentration (Ci/L)	Bounding concentration (Ci/L)
¹²⁷ Te	[Proprietary Information]	[Proprietary Information]
^{127m} Te	[Proprietary Information]	[Proprietary Information]
¹²⁹ Te	[Proprietary Information]	[Proprietary Information]
^{129m} Te	[Proprietary Information]	[Proprietary Information]
¹³¹ Te	[Proprietary Information]	[Proprietary Information]
^{131m} Te	[Proprietary Information]	[Proprietary Information]
¹³² Te	[Proprietary Information]	[Proprietary Information]
¹³³ Te	[Proprietary Information]	[Proprietary Information]
^{133m} Te	[Proprietary Information]	[Proprietary Information]
¹³⁴ Te	[Proprietary Information]	[Proprietary Information]
²³¹ Th	[Proprietary Information]	[Proprietary Information]
²³⁴ Th	[Proprietary Information]	[Proprietary Information]
²³² U	[Proprietary Information]	[Proprietary Information]
²³⁴ U	[Proprietary Information]	[Proprietary Information]
²³⁵ U	[Proprietary Information]	[Proprietary Information]
²³⁶ U	[Proprietary Information]	[Proprietary Information]
²³⁷ U	[Proprietary Information]	[Proprietary Information]
²³⁸ U	[Proprietary Information]	[Proprietary Information]
^{131m} Xe	[Proprietary Information]	[Proprietary Information]
¹³³ Xe	[Proprietary Information]	[Proprietary Information]
^{133m} Xe	[Proprietary Information]	[Proprietary Information]
¹³⁵ Xe	[Proprietary Information]	[Proprietary Information]
^{135m} Xe	[Proprietary Information]	[Proprietary Information]
^{89m} Y	[Proprietary Information]	[Proprietary Information]
⁹⁰ Y	[Proprietary Information]	[Proprietary Information]
^{90m} Y	[Proprietary Information]	[Proprietary Information]
⁹¹ Y	[Proprietary Information]	[Proprietary Information]
^{91m} Y	[Proprietary Information]	[Proprietary Information]
⁹² Y	[Proprietary Information]	[Proprietary Information]
⁹³ Y	[Proprietary Information]	[Proprietary Information]
⁹³ Zr	[Proprietary Information]	[Proprietary Information]
⁹⁵ Zr	[Proprietary Information]	[Proprietary Information]
⁹⁷ Zr	[Proprietary Information]	[Proprietary Information]
Totals	[Proprietary Information]	[Proprietary Information]

Source: Table 2-1 of NWMI-2013-CALC-011, *Source Term Calculations*, Rev. A, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

EOI = end of irradiation.

In each case, a jacketed vessel is assumed to be filled with process solution appropriate to the process location, with the process offgas ventilation system operating. A level monitoring system will be available to monitor tank transfers and stagnant store volumes on all tanks processing LEU or fission product solutions.

The source term used in this analysis is from NWMI-2013-CALC-011. The breakdown of the radionuclide inventory used in NWMI-2013-CALC-011 is extracted from NWMI-2013-CALC-006 using the reduced set of 123 radioisotopes. NWMI-2014-CALC-014 identifies the 123 dominant radioisotopes included in the MURR material balance (NWMI-2013-CALC-006). NWMI-2014-CALC-014 provides the basis for using the 123 radioisotopes from the total list of 660 radioisotopes potentially present in irradiated targets. The majority of omitted radioisotopes exist in trace quantities and/or decay swiftly to stable nuclides. The reduced set of 123 radioisotopes consists of those that dominate the radioactivity and decay heat of irradiated targets.

13.2.4.2 Identification of Event Initiating Conditions

The accident initiating event is generally described as a process equipment failure. The PHA identified similar accident sequences in four nodes associated with leaks of enriched uranium solution into heating and/or cooling coils surrounding safe-geometry tanks or vessels. The PHA identified predominately corrosive degradation of the tank or overpressure of the tank as potential causes that might damage this interface and allow enriched uranium solution to leak into the cooling system media or into the steam condensate for the heating system.

The primary containment fails, which allows radioactive or fissile solutions to enter an auxiliary system. Radioactive or fissile solution leaks across the mechanical boundary between a process vessel and associated heating/cooling jacket into the heating/cooling media. Where heating/cooling jackets or heat exchangers are used to heat or cool a fissile and/or high-dose process solution, the potential exists for the barrier between the two to fail and allow fissile and/or high-dose process solution to enter the auxiliary system. If the auxiliary system is not designed with a safe-geometry configuration, or if this system exits the hot cell containment, confinement, or shielding boundary in an uncontrolled manner, either an accidental criticality is possible or a high-dose to workers or the public can occur.

Where auxiliary services enter process solution tanks, the potential exists for backflow of high-dose radiological and/or fissile process solution into the auxiliary service systems (purge air, chemical addition line, water addition line, etc.). Since these systems are not designed for process solutions, this event can lead to either accidental nuclear criticality or to high-dose radioactive exposures to workers occupying areas outside the hot cell confinement boundary.

13.2.4.3 Description of Accident Sequences

The PHA made no assumption about the geometry or the extent of the heating/cooling subsystem. Consequently, an assumption is made that without additional control, a credible accidental nuclear criticality could occur, as the fissile solution enters into the heating/cooling system not designed for fissile solution, or as the solution exits the shielded area and creates a high worker dose consequence. If the system is not a closed loop, a direct release to the atmosphere can also occur. Either of these potential outcomes can exceed the performance criteria of one process upset, leading to accidental nuclear criticality or a release that exceeds intermediate or high consequence levels for dose to workers, the public, or environment.

The accident sequence for a tank leak into the cooling water (or heating) system includes the following.

- The process vessel wall fails and the tank contents leak into the cooling jacket and medium, or the process medium leaks into the vessel.
- Tank liquid level monitoring and liquid level instrumentation are functional; however, depending on the size of the leak, the tank level instrumentation may or may not detect that a tank has leaked.
- The cooling water system monitor (conductivity or pH) detects a change in the cooling water, and an alarm notifies the operator.
- The operator places the system in a safe configuration and troubleshoots the source of the leak.
- Maintenance activities to identify, repair, or replace the cause of the leak are initiated after achieving the final stable condition.

Additional PHA accident sequences include the backflow (siphon) or backup of process solutions into the chemical or water addition systems. The controls for these accidents are described in Section 13.2.4.8.

13.2.4.4 Function of Components or Barriers

This accident sequence requires the failure of the primary confinement in a safe-geometry vessel or tank, the normal condition criticality safety control for the process. This same barrier will provide primary containment of the high-dose process solution to maintain the solution within the hot cell containment, confinement, and shielding boundary. The heating and cooling systems will have secondary loops (closed loops), so a second failure is required for the fissile solution to enter into a non-geometric-safe auxiliary system or into a non-shielded auxiliary system out of the hot cells.

13.2.4.5 Unmitigated Likelihood

Leaks into auxiliary services can be initiated by mechanical failure of equipment boundaries between the process solutions and auxiliary system fluids, or backflow of high-dose radiological or fissile solution to a chemical supply system. Failure rates for tanks, vessels, pipes, and pumps are estimated from WSRC-TR-93-262. Table 13-2 shows qualitative guidelines for applying the likelihood categories. Failures resulting in leaks or backflows as initiating events are estimated to have an unmitigated likelihood of “not unlikely.”

Additional detailed information describing a quantitative evaluation, including assumptions, methodology, uncertainties, and other data, will be developed for the Operating License Application.

13.2.4.6 Radiation Source Term

The following source term descriptions are based on information developed for the Construction Permit Application. Additional detailed information describing source terms will be developed for the Operating License Application.

Source terms associated with leaks and backflows into auxiliary system are dependent on vessel location in the process system. The high-dose uranium solution source term bounds this analysis. Solution leaks into the cooling or heating system were bounded by the irradiated target dissolver after dissolution is complete. The target dissolution process produces an aqueous solution containing uranyl nitrate, nitric acid, and fission products. The fission product inventory is bounded by dissolution of a batch of MURR targets that is decayed [Proprietary Information], with an equivalent uranium concentration of 283 g U/L. The primary attribute of high-dose uranium solutions used for consideration of direct exposure consequences is that equipment operation and maintenance must be conducted in a shielded hot cell environment due to the presence of fission products.

13.2.4.7 Evaluation of Potential Radiological Consequences

The following evaluations are based on information developed for the Construction Permit Application. Additional detailed information describing radiological consequences will be developed for the Operating License Application.

13.2.4.7.1 Direct Exposure Consequences

The potential radiological exposure hazard of liquid spills discussed in Section 13.2.2 bound the consequences from radiation exposure for these accident sequences. Even the low-dose uranium solutions, while generally contact-handled, have similar exposure consequences due to the criticality hazard. Auxiliary systems located within hot cells will require shielding to control worker radiation exposure independent of whether process solution is contained in the vessel or leaked into the auxiliary system. Thus, in a very short period of time, a worker can receive a significant intermediate or high consequence dose rate.

Based on the analysis of several accidental nuclear criticalities in industry, LA-13638 identifies that a uranium solution criticality can yield between 10^{16} to 10^{17} fissions. Dose rates for anyone in the target fabrication area can have high consequences. Consequences for a shielded hot cell criticality will be developed for the Operating License Application.

13.2.4.7.2 Confinement Release Consequences

Not applicable to this accident sequence.

13.2.4.8 Identification of Items Relied on for Safety and Associated Functions

Hot cell shielding is designed to provide protection from leaks into the heating and cooling closed loop auxiliary systems that result in redistribution of high-dose uranium solutions in the hot cell. From a direct exposure perspective, this type of accident does not represent a failure or adverse challenge to the hot cell shielding boundary function.

13.2.4.8.1 IROFS RS-04, Hot Cell Shielding Boundary

IROFS RS-04 functions to prevent worker dose rates from exceeding exposure criteria due to the presence of radioactive materials in the hot cell vessels before or after a leak to the cooling and heating auxiliary systems.

As a PEC and safety feature, the hot cell shielding boundary will provide an integrated system of features that protect workers from the high-dose radiation generated during radioisotope processing. A primary safety function of the hot cell shielding boundary will be to reduce the radiation dose at the worker/hot cell interface to ALARA. While protecting workers, the shield will also protect the public at the controlled area boundary. The hot cell shielding boundary will provide shielding for workers and the public during normal operations to reduce worker exposure to an average of 0.5 mrem/hr, or less, in normally accessible workstations and occupied areas outside of the hot cell.¹ The hot cell shielding boundary will also provide shielding for workers and the public during process upsets to reduce worker exposure to a TEDE of 5 rem, or less, at workstations and occupied areas outside of the hot cell.²

¹ Some operations may have higher doses during short periods of the operation. The average worker exposure rate is designed to be 0.5 mrem/hr, or less. Areas not normally accessible by the worker may have higher dose rates (e.g., streaming radiation around normally inaccessible remote manipulator penetrations well above the worker's head).

² The shielding is not credited for mitigating dose rates during an accidental nuclear criticality; instead, additional IROFS are identified to provide double-contingency protection to prevent (reduce the likelihood of) an accidental nuclear criticality.

As a PEC, shielding will be provided by a thick concrete, steel-reinforced wall with steel cladding that reduces the normally expected operational exposures from within the boundary to an average of 0.5 mrem/hr, or less, outside of the boundary. Where direct visual access is required, leaded-glass windows with appropriate thicknesses will be used to reduce normally expected operational exposures from within the boundary to an average of 0.5 mrem/hr, or less, outside of the boundary. Some shielding will be movable, such as around the high-dose waste cask loading area. Where penetrations are required, the engineered design provides for access-controlled, non-occupied corridors or airlocks where potential radiation streaming is safely mitigated by multiple layers of shielding or through a torturous path. The shielding is also designed to reduce the exposure from postulated upsets within the hot cell shielding boundary to less than a low consequence exposure to workers and the public of 5 rem, or less, per incident. These incidents include spills, sprays, fires, and other releases of radionuclides contained within the boundary. The shield may be divided into protection areas for the purposes of applying limiting conditions of operation. Each shielded protected area will be operable when the equipment in that area is in the operating or standby modes.

13.2.4.8.2 IROFS CS-06, Pencil Tank and Vessel Spacing Control using the Diameter of the Tanks, Vessels, or Piping

All tanks, vessels, or piping systems involved in a process upset will be controlled with a safe-geometry confinement IROFS that consists of IROFS CS-06 to provide a diameter of the vessels confinement or IROFS CS-26 to provide safe volume confinement.

13.2.4.8.3 IROFS CS-10, Closed Safe Geometry Heating or Cooling Loop with Monitoring and Alarm

As a PEC, a closed-loop safe-geometry heating or cooling loop with monitoring for uranium process solution or high-dose process solution will be provided to safely contain fissile process solution that leaks across this boundary, if the primary boundary fails. The dual-purpose safety function of this closed loop is to prevent fissile process solution from causing accidental nuclear criticality and to prevent high-dose process solution from exiting the hot cell containment, confinement, or shielded boundary (or, for systems located outside of the hot cell containment, confinement, or shielded boundary, to prevent low-dose solution from exiting the facility), causing excessive dose to workers and the public, and/or a release to the environment. The heat exchanger materials will be compatible with the harsh chemical environment of the tank or vessel process (this may vary from application to application). Sampling of the heating or cooling media (e.g., steam condensate conductivity, cooling water radiological activity, uranium concentration, etc.) will be conducted to alert the operator that a breach has occurred and that additional corrective actions are required to identify and isolate the failed component and restore the closed loop integrity. Discharged solutions from this system will be handled as potentially fissile and sampled according to IROFS CS-16 and CS-17 prior to discharge to a non-safe geometry.

13.2.4.8.4 IROFS CS-27, Closed Heating or Cooling Loop with Monitoring and Alarm

As a PEC, on the evaporator or concentrator condensers, a closed cooling loop with monitoring for breakthrough of process solution will be provided to contain process solution that leaks across this boundary, if the boundary fails. IROFS CS-27 is applied to those high-heat capacity cooling jackets (requiring very large loop heat exchangers) servicing condensers where the leakage is always from the cooling loop to the condenser, reducing back-leakage, and the risk of product solutions entering the condenser is very low by evaporator or concentrator design.

The purpose of this safety function is to monitor the condition of the condenser cooling jacket to ensure that in the unlikely event that a condenser overflow occurs, fissile and/or high-dose process solution will not flow into this non-safe geometry cooling loop and cause nuclear criticality. The closed loop will also isolate any high-dose fissile product solids (from the same event) from penetrating the hot cell shielding boundary, and any high-dose fission gases from penetrating the hot cell shielding boundary during normal operations. The heat exchanger materials will be compatible with the harsh chemical environment of the tank or vessel process (this may vary from application to application). Sampling of the cooling media (e.g., cooling water radiological activity, uranium concentration, etc.) will be conducted to alert the operator that a breach has occurred and that additional corrective actions are required to identify and isolate the failed component and to restore the closed loop integrity. Closed loop pressure will also be monitored to identify a leak from the closed loop to the process system. Discharged solutions from this system will be handled as potentially fissile and sampled according to IROFS CS-16 and CS-17 prior to discharge to a non-safe geometry.

13.2.4.8.5 IROFS CS-20, Evaporator or Concentrator Condensate Monitoring

As an AEC, the condensate tanks will use a continuously active uranium detection system to detect high carryover of uranium that shuts down the evaporator feeding the tank. The purpose of this system is to (1) detect an anomaly in the evaporator or concentrator indicating high uranium content in the condenser (due to flooding or excessive foaming), and (2) prevent high concentration uranium solution from being available in the condensate tank for discharge to a non-favorable geometry system or in the condenser for leaking to the non-safe geometry cooling loop. The safety function of this IROFS is to prevent an accidental nuclear criticality. The detection system will work by continuously monitoring condensate uranium content and detecting high uranium concentration, and then shutting down the evaporator to isolate the condensate from the condenser and condensate tank. At a limiting setpoint, the uranium monitor-detecting device will close an isolation valve in the inlet to the evaporator (or otherwise secure the evaporator) to stop the discharge of high-uranium content solution into the condenser and condensate collection tank.

The uranium monitor is designed to produce a valve-open permissive signal that fails to an open state, closing the valve on loss of electrical power. The isolation valve is designed to fail-closed on loss of instrument air, and the solenoid is designed to fail-closed on loss of signal. The locations where this IROFS is used will be determined during final design.

13.2.4.8.6 IROFS CS-18, Backflow Prevention Device

As a PEC or AEC, chemical and gas addition ports to fissile process solution systems will enter through a backflow prevention device. This device may be an anti-siphon break, an overloop seal, or other active engineering feature that addresses the conditions of backflow and prevents fissile solution from entering non-safe geometry systems or high-dose solutions from exiting the hot cell shielding boundary in an uncontrolled manner. The safety function of this IROFS is to prevent fissile solutions and/or high-dose solutions from backflowing from the tank into systems that are not designed for fissile solutions that could lead to accidental nuclear criticality or to locations outside of the hot cell shielding boundaries that might lead to high exposures to the worker. Each hazardous location will be provided an engineered backflow prevention device that provides high reliability and availability for that location.

The backflow prevention device features for high-dose product solutions will be located inside the hot cell shielding and confinement boundaries of IROFS RS-04 and RS-01, respectively. The feature is designed such that spills from overflow are directed to a safe geometry confinement berm controlled by IROFS CS-08 (described in NWMI-2015-SAFETY-004, *Quantitative Risk Analysis of Process Upsets Associated with Passive Engineering Controls Leading to Criticality Accident Sequences*, Section 3.1.6.3) or to safe-geometry tanks controlled by IROFS CS-11.

13.2.4.8.7 IROFS CS-19, Safe Geometry Day Tanks

As a PEC, safe-geometry day tanks will be provided where the first barrier cannot be a backflow prevention device. The safety function of this PEC is to prevent accidental nuclear criticality by providing a safe-geometry tank if a fissile solution backs-up into an auxiliary chemical addition system. IROFS CS-19 will be used where conventional backflow prevention in pressurized systems is not reliable. The safe-geometry day tank will be provided for those chemical addition activities where the reagent cannot be added via an anti-siphon break since the tank or vessel is not vented and operates under some backpressure conditions. The feature works by providing a safe-geometry vessel that is filled with chemical reagent using the conventional backflow prevention devices, and then provides a pump to add the reagents to the respective process system under pressure. Safe-geometry day tanks servicing high-dose product solutions systems will be located in the hot cell shielding or confinement boundaries of IROFS RS-04 and RS-01, respectively.

Defensive-in-Depth

The following defense-in-depth features preventing leaks into auxiliary services or systems were identified by the accident evaluations.

- All tanks will be vented and unpressurized under normal use.
- The heating and cooling systems will operate at pressures that are higher than the processing systems that they heat or cool. The majority of system leakage would typically be in the direction of the heat transfer media to the processing system.
- All vented tanks are designed with level indicators that are available to the operator to detect the level of solution in a tank remotely. Operating procedures will identify an operational high-level fill operating limit for each tank. As part of the level detector, a high-level audible alarm and light will be provided to indicate a high level above this operating limit so that the operator can take action to correct conditions leading to failure of the operating limit. With batch-type operation with typically low volume transfers, the sizing of the tanks will include sufficient overcapacity to handle reasonable perturbations in operations caused by variations in chemical concentrations and operator errors (adding too much).
- Tank and vessel walls will be made of corrosion-resistant materials and have wall thicknesses that are rated for long service with harsh acid or basic chemicals.
- Purge and gas reagent addition lines (air, nitrogen, and oxygen) will be equipped with check valves to prevent flow of process solutions back into uncontrolled geometry portions (tanks, receivers, dryers, etc.) of the delivery system.

13.2.4.9 Mitigated Estimates

The controls selected will mitigate both the frequency and consequences of this accident. The controls selected and described above will prevent a criticality associated with SNM leaks into auxiliary systems. The selected IROFS have reduced the potential worker safety consequences to acceptable levels. Additional detailed information, including worker dose and detailed frequency estimates, will be developed for the Operating License Application.

13.2.5 Loss of Power

13.2.5.1 Initial Conditions

Initial conditions of the event are described by normal operation of all process systems and equipment.

13.2.5.2 Identification of Event Initiating Conditions

Multiple initiating events were identified by the PHA that could result in the loss of normal electric power.

13.2.5.3 Description of Accident Sequences

The loss of power event sequence includes the following.

1. Electrical power to the RPF is lost due to an initiating event.
2. The uninterruptible power supply automatically provides power to systems that support safety functions, protecting RPF personnel and the public. The following systems are supported with an uninterruptible power supply:
 - Process and facility monitoring and control systems
 - Facility communication and security systems
 - Emergency lighting
 - Fire alarms
 - Criticality accident alarm systems
 - Radiation protection systems
3. Upon loss of power, the following actions occur:
 - Inlet bubble-tight isolation dampers within the Zone I ventilation system close, and the heating, ventilation, and air conditioning (HVAC) system is automatically placed into the passive ventilation mode of operation.
 - Process vessel vent system is automatically placed into the passive ventilation mode of operation, and all electrical heaters cease operation as part of the passive operation mode.
 - Pressure-relief confinement system for the target dissolver offgas system is activated on reaching the system relief setpoint, and dissolver offgas is confined in the offgas piping, vessels, and pressure-relief tank (IROFS RS-09).
 - Process vessel emergency purge system is activated for hydrogen concentration control in tank vapor spaces (IROFS FS-03).
 - Uranium concentrator condensate transfer line valves are automatically configured to return condensate to the feed tank due to residual heating or cooling potential for transfer of process fluids to waste tanks (IROFS CS-14/CS-15).
 - All equipment providing a motive force for process activities cease, including:
 - Pumps performing liquid transfers of process solutions
 - Pumps supporting operation of the steam and cooling utility heat transfer fluids
 - Equipment supporting physical transfer of items (primarily cranes)
4. Operators follow alarm response procedures.
5. The facility is now in a stable condition.

13.2.5.4 Function of Components or Barriers

All facility structural components of the hot cell secondary confinement boundary (in a passive ventilation mode) and hot cell shielding boundary (walls, floors, and ceilings) will remain intact and functional. The engineered safety features requiring power will activate or go to their fail-safe configuration.

13.2.5.5 Unmitigated Likelihood

Loss of power can be initiated by off-site events or mechanical failures of equipment. Failures resulting in loss of power as initiating events are estimated to have an unmitigated likelihood of “not unlikely.”

Additional detailed information describing a quantitative evaluation, including assumptions, methodology, uncertainties, and other data, will be developed for the Operating License Application.

13.2.5.6 Radiation Source Term

The loss of power evaluation is based on information developed for the Construction Permit Application. Detailed information describing radiation source terms for the loss of power event will be developed for the Operating License Application.

13.2.5.7 Evaluation of Potential Radiological Consequences

The loss of power evaluation is based on information developed for the Construction Permit Application. A detailed evaluation of potential radiological consequences will be developed for the Operating License Application.

13.2.5.8 Identification of Items Relied on for Safety and Associated Functions

No additional IROFS have been identified specific to this event other than maintain operability of the IROFS listed in Section 13.2.5.3. The loss of normal electric power will not result in unsafe conditions for either workers or the public in uncontrolled areas.

Defensive-in-Depth

The following defense-in-depth feature, minimizing the impact of a loss of power event, was identified by the accident evaluations.

- A standby diesel generator will be available at the RPF.

13.2.6 Natural Phenomena Events

Chapter 2.0, “Site Characteristics,” and Chapter 3.0 discuss the design of SSCs to withstand external events. The RPF is designed to withstand the effects of natural phenomena events. Consequences of natural phenomena accident sequences have been evaluated. Sections 13.2.6.1 through 13.2.6.6 provide event descriptions and identify any additional controls required to protect the health and safety of workers, the public, and environment.

13.2.6.1 Tornado Impact on Facility and Structures, Systems, and Components

The adverse impact of a tornado on facility operations has a number of facets that must be evaluated. This evaluation addresses the facility design as impacted by the maximum-sized tornado with a return frequency of 10^{-5} /year (yr).

- High winds can lead to significant damage to the facility structure. Damage to the structure is a function of the strength of the tornado winds, duration, debris carried by the winds, direction of impact, and facility design. This evaluation determines the impact of tornado winds on the facility from a design basis perspective to ensure that the design prevents impact to SSCs in the building.
- The local area impact may result in loss of utilities (e.g., electrical power) and reduced access by local emergency responders. Loss of power is evaluated (Section 13.2.5) as a potential cause for all adverse events. The individual PHA nodes evaluate the loss of site power and loss of power distribution to each subsystem.

- High winds may directly impact SSCs important to safety (e.g., components of the fire protection system are located in areas adjacent to the building) and reduce the reliability of those SSCs to respond to additional events (like loss of electrical power) that can be initiated concurrently with the tornado (either as an indirect result or as an additional random failure). This evaluation analyzes the impact of tornado winds on these SSCs.

Tornado impact on the facility structure – High wind pressures could cause a partial or complete collapse of the facility structure, which may cause damage to SSCs important to safety or impact the availability and reliability of those SSCs. A partial or complete structural collapse may also lead directly to a radiological or chemical release or a potential nuclear criticality, if damage caused by the collapse creates a violation of criticality spacing requirements. Tornado wind-driven missiles could penetrate the facility building envelope (walls and roof), impacting the availability and reliability of SSCs important to safety, or may lead directly to a radiological or chemical release.

Tornado impact on SSCs important to safety located outside the main facility – High wind pressures and tornado wind-driven missiles could damage SSCs important to safety located outside the RPF building envelope. The damage sustained may impact the availability and reliability of the SSCs important to safety. Loss of site power may affect the ability of SSCs important to safety located within the facility building envelope to respond to additional events.

A partial or complete collapse of the facility structure could also lead directly to an accident with adverse intermediate or high consequences. The only IROFS located outside the RPF building envelope is the exhaust stack. Buckling or toppling of the exhaust stack would affect its ability and availability to mitigate other events with intermediate consequences. The return frequency of the design basis tornado is $10^{-5}/\text{yr}$, making the initiating event highly unlikely.

No additional IROFS are required.

13.2.6.2 High Straight-Line Winds Impact the Facility and Structures, Systems, and Components

Similar to the tornado, high straight-line winds can also damage the facility structure, which in turn can lead to damage to SSCs relied on for safety. This evaluation demonstrates how the facility design addressed straight-line winds with a return interval of 100 years or more, as required by building codes.

Buckling or toppling of the exhaust stack would affect the ability and availability to mitigate other events with intermediate consequences. A partial or complete collapse of the facility structure may also lead directly to an accident with adverse intermediate or high consequences.

The facility is designed as a Risk Category IV structure, a standard industrial facility with equivalent chemical hazards, in accordance with American Society of Civil Engineers (ASCE) 7, *Minimum Design Loads for Buildings and Other Structures*. The return frequency of the basic (design) wind speed for Risk Category IV structures is $5.88 \times 10^{-4}/\text{yr}$ (mean return interval, MRI = 1,700 yr). At this return frequency, the straight-line wind event is not likely but credible during the design life of the facility and is considered in the structural design as a severe weather event. The provisions of the ASCE 7 standard, when used with companion standards such as American Concrete Institute (ACI) 318, *Building Code Requirements for Structural Concrete*, and American Institute of Steel Construction (AISC) 360, *Specification for Structural Steel Buildings*, are written to achieve the target maximum annual probabilities of established in ASCE 7. The highest maximum probability of failure, which is for a failure that is not sudden and does not lead to a wide-spread progression of collapse, targeted for Risk Category IV structures is 5.0×10^{-6} . Therefore, the likelihood of failure of the structure when subjected to the design basis straight-line wind in conjunction with other loads, as required by ASCE 7, is highly unlikely.

No additional IROFS are required.

13.2.6.3 Heavy Rain Impact on Facility and Structures, Systems, and Components

Localized heavy rain can overwhelm the structural integrity of the RPF roofing system. This evaluation determines the impact of probable maximum precipitation (PMP) in the form of rain on the roofing structure. The PMP is defined as “theoretical greatest depth of precipitation for a given duration that is physically possible over a particular drainage area at a certain time of year.” In other words, the PMP represents the theoretical worst-case of the most precipitation the atmosphere is capable of discharging to a particular area over a selected period of time. The PMP is based on an empirical methodology with no defined annual exceedance probability.

For impact on the facility, the PMP for 25.9 square kilometers (km^2) (10 square miles [mi^2]) is evaluated. Large amounts of rain water accumulating on the roof could lead to collapse of the roof. A partial or complete collapse of the facility roof may impact the availability or reliability of SSCs relied on for safety located within the RPF building envelope to respond to other events of high consequence.

From the National Weather Service (NWS)/National Oceanic and Atmospheric Administration (NOAA) Hydrometeorological Report No. 51, *Probable Maximum Precipitation Estimates, United States East of the 105th Meridian*, the PMP is defined as “theoretical greatest depth of precipitation for a given duration that is physically possible over a particular drainage area at a certain time of year.” In other words, the PMP represents the theoretical worst-case of the most precipitation the atmosphere is capable of discharging to a particular area over a selected period of time. The PMP is based on an empirical methodology with no defined annual exceedance probability. Although the NWS/NOAA has historically stated that it is not possible to assign an exceedance probability to the PMP (NOAA Technical Report NWS 25, *Comparison of Generalized Estimates of Probable Maximum Precipitation with Greatest Observed Rainfalls*), several academic studies and papers have undertaken the exercise to determine the annual exceedance probability for PMP using modern probabilistic techniques and storm modeling and have found that the exceedance probability varies by location but is quite low (NAP, 1994). As such, the PMP event has been determined to be highly unlikely.

No additional IROFS are required.

The roof of the RPF is designed to prevent rainwater from accumulating on the roof. In accordance with 2012 International Building Code (IBC) and ASCE 7, the roof structure is designed to safely support the weight of rainwater accumulation with the primary drainage system blocked and the secondary drainage system at its design flow rate when subjected to a rainfall intensity based on the 100-yr hourly rainfall rate. Deflections of roof members are limited to prevent rainwater ponding on the roof. The roof structure is also designed to support the extreme winter precipitation load discussed in Section 13.2.6.6.

13.2.6.4 Flooding Impact to the Facility and Structures, Systems, and Components

Regional flooding from large precipitation events raising the water levels of local streams and rivers to above the 500-yr flood level can have an adverse impact on the structure and SSCs within. These impacts include the structural damage from water and the damage to power supplies and instrument control systems for SSCs relied on for safety. The infiltration of flood water into the facility could cause the failure of moderation control requirements and lead to an accidental nuclear criticality. Direct damage or impairment of SSCs could also be caused by flooding in the facility.

The site will be graded to direct the stormwater from localized downpours with a rainfall intensity for the 100-yr storm for a 1-hr duration around and away from the RPF. Thus, no flooding from local downpours is expected based on standard industrial design. Rainwater that falls on the waste management truck ramp and accumulates in the trench drain has low to no consequence for radiological, chemical, and criticality hazards.

Situated on a ridge, the RPF will be located above the 500-yr flood plain according to the flood insurance rate map for Boone County, Missouri, Panel 295 (FEMA, 2011). The site is above the elevation of the nearest bodies of water (two small ponds and a lake), and no dams are located upstream on the local streams. This data conservatively provides a 2×10^{-3} year return frequency flood, which can be considered an unlikely event according to performance criteria. However, the site is located at an elevation of 248.4 m (815 ft), and the 500-year flood plain starts at an elevation of 231.6 m (760 ft), or 16.8 m (55 ft) below the site. Since the site is located only 6.1 m (20 ft) below the nearest high point on a ridge (relative to the local topography), is well above the beginning of the 500-yr flood plain, and is considered a dry site, the probable maximum flood from regional flooding is considered highly unlikely, without further evaluation.³

No additional IROFS are required.

13.2.6.5 Seismic Impact to the Facility and Structures, Systems, and Components

Beyond the impact on the facility structure and the potential for falling facility components impacting SSCs or direct damage to SSCs causing adverse events, other activities were identified as sensitive to seismic events. During the irradiated target shipping cask unloading preparations, the shield plug fasteners will be removed from an upright cask before mating the cask to the cask docking port. During the short period between that activity and installing the cask, a seismic event could dislodge the lift/cask combination and result in dislodging the shield plug in the presence of personnel. This event would result in potentially lethal doses to workers in a short period of time.

Seismic ground shaking can directly damage SSCs relied on for safety or lead to damage of the facility, including partial or complete collapse, which could impact SSCs relied on for safety inside and outside the RPF. Damage to the facility could also impact SSCs, causing radiological and chemical releases of intermediate consequence.

Leaks of fissile solution, compromising the safe-geometry and safe interaction storage in solid material storage arrays and pencil tanks or vessels containing enriched uranium solutions, could lead to a criticality accident, a high consequence accident. NWMI-2015-SAFETY-004, Section 3.1, identifies IROFS to prevent and mitigate this accident scenario.

Dislodging the irradiated target shipping cask during unloading preparations could expose workers to a potentially lethal radiation dose. This event is considered a high consequence accident.

The safe-shutdown earthquake, or design basis earthquake, for the RPF is specified as the risk-targeted maximum considered earthquake (MCE_R), as determined in accordance with ASCE 7 and Federal Emergency Management Agency (FEMA) P-753, *NEHRP Recommended Seismic Provisions for New Buildings and Other Structures*. The MCE_R for this site is governed by the probabilistic maximum-considered earthquake ground-shaking, which has an annual frequency of exceedance of 4×10^{-4} (2,500-yr return period). This event is considered unlikely.

Using the provisions of ASCE 7 for standard industrial facilities with equivalent chemical hazards, Risk Category IV results in a design basis earthquake equal to the safe-shutdown earthquake specified. When designed in accordance with ASCE 7 and companion standards, the maximum probability of a complete or partial structural failure is 3 percent conditioned on the occurrence of the maximum-considered earthquake ground-shaking, or a probability of failure of 1.2×10^{-5} . Therefore, failure of the facility subject to the maximum-considered earthquake ground-shaking is considered highly unlikely.

³ The recommended standard for determining the probably maximum flood, ANS 2.8, *Determining Design Basis Flooding at Power Reactor Sites*, has been withdrawn.

No credit can be taken for physical features of the irradiated target cask lifting fixture for the unmitigated case; therefore, the unmitigated likelihood is equal to the annual probability of exceedance for the safe shutdown earthquake, $f_{\text{earthquake}} = 4 \times 10^{-4}$.

13.2.6.5.1 IROFS FS-04, Irradiated Target Cask Lifting Fixture

As a PEC, the irradiated target cask lifting fixture will be designed to prevent the cask from tipping within the fixture and prevent the fixture itself from toppling during a seismic event.

13.2.6.6 Heavy Snow Fall or Ice Buildup on Facility and Structures, Systems, and Components

This evaluation addresses snow loading on the facility structure. The facility protects the SSCs, and an extreme snow-loading event may cause failure of the roof, impacting the SSCs' ability to perform associated safety functions. NRC DC/COL ISG-07, *Interim Staff Guidance on Assessment of Normal and Extreme Winter Precipitation Loads on the Roofs of Seismic Category I Structures*, provides guidance on the design of Category I structures for snow load that conservatively bounds the RPF. The normal snow load as defined in the NRC ISG is the 100-yr snowpack, which is equivalent to the design snow load for Risk Category IV structures determined in accordance with ASCE 7.

Collapse of the roof may damage SSCs that are relied on for safety, leading to accident sequences such as accidental nuclear criticality (e.g., a pencil tank was crushed and interaction controls violated) or a radiological release (e.g., if a hot cell confinement boundary was breached and a primary confinement boundary damaged), or may prevent an SSC from being available to perform its function.

The extreme winter precipitation load, as defined in the NRC ISG, is a combination of the 100-yr snowpack and the liquid weight of the probable maximum winter precipitation. The probable maximum winter precipitation is based on the seasonal variation of the PMP, given in NWS/NOAA Hydrometeorological Report 53, *Seasonal Variation of 10-Square Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian*, for winter months. The PMP is defined in Section 13.2.6.3. Considering the extreme winter precipitation load is a combination of the 100-yr snowpack and the theoretical worst-case precipitation event, the extreme winter precipitation load is highly unlikely.

The normal snow load is the 100-yr snowpack, which is equivalent to the design snow load for a Risk Category IV structure determined in accordance with ASCE 7. The return frequency of the normal snow load is relatively high and expected to be likely to occur during the design life of the facility. The provisions of the ASCE 7 standard, when used with companion standards such as ACI 318 and AISC 360, are written to achieve the target maximum annual probabilities of failure established in ASCE 7. The highest probability of failure, which is for a failure that is not sudden and does not lead to a wide-spread progression of collapse, targeted for Risk Category IV structures is 5.0×10^{-6} . Therefore, the likelihood of failure of the structure when subjected to the normal design snow load in conjunction with other loads as required by ASCE 7 is highly unlikely.

No additional IROFS are required.

13.2.7 Other Accidents Analyzed

A total of 75 accident sequences identified for further evaluation by the PHA were analyzed for the Construction Permit Application. A summary of all accidents analyzed is provided in Table 13-28. This table includes the accidents evaluated in Section 13.2.2 to 13.2.6 for completeness. Table 13-28 lists each accident sequence number, a descriptive title of the accident, and IROFS identified (if needed) to prevent or mitigate the consequences of the accident sequence.

The preliminary IROFS for each sequence are listed in the far right column of Table 13-28. The IROFS number and title are provided. If the accident sequence is bounded by the accidents discussed in Section 13.2.2 to 13.2.6, a pointer to the bounding accident sequence is listed. After further analysis, if the IROFS level controls were determined to not be required either due to reduced consequences or reduced frequency, this is stated. Other accident sequences have IROFS identified, and a pointer is included to the section where the control is discussed in more detail.

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.R.01	High-dose solution or enriched uranium solution spill causing a radiological exposure hazard	<ul style="list-style-type: none"> • IROFS RS-01, Hot Cell Liquid Confinement Boundary • IROFS RS-03, Hot Cell Secondary Confinement Boundary • IROFS RS-04, Hot Cell Shielding Boundary • IROFS CS-07, Pencil Tank and Vessel Spacing Control using Fixed Interaction Spacing of Individual Tanks or Vessels • IROFS CS-08, Floor and Sum Geometry Control on Slab Depth, Sump Diameter or Depth for Floor Spill Containment Berms • IROFS CS-09, Double-Wall Piping • See Section 13.2.2.8
S.R.02	Spray release of solutions spilled from primary offgas treatment solutions, resulting in radiological consequences	<ul style="list-style-type: none"> • Bounded by S.R.01
S.R.03	Spray release of high-dose or enriched uranium-containing product solution, resulting in radiological consequences	<ul style="list-style-type: none"> • Bounded by S.R.01
S.R.04	Liquid enters process vessel ventilation system damaging IRU or retention beds, releasing retained radionuclides	<ul style="list-style-type: none"> • IROFS RS-09, Primary Offgas Relief System • IROFS RS-03, Hot Cell Secondary Confinement Boundary • See Section 13.2.3.8
S.R.05	High-dose solution enters the UN blending and storage tank	<ul style="list-style-type: none"> • Not credible or low consequence
S.R.06	High flow through IRU causing premature release of high-dose iodine gas	<ul style="list-style-type: none"> • Bounded by S.R.04
S.R.07	Loss of temperature control on the IRU leading to release of high-dose iodine	<ul style="list-style-type: none"> • Bounded by S.R.04
S.R.08	Loss of vacuum pumps	<ul style="list-style-type: none"> • Bounded by S.R.04
S.R.09	Loss of IRU or carbon bed media to downstream part of the system	<ul style="list-style-type: none"> • Bounded by S.R.04
S.R.10	Wrong retention media added to bed or saturated retention media	<ul style="list-style-type: none"> • Event unlikely with intermediate consequence

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.R.12	Mo product cask removed from the hot cell boundary with improper shield plug installation	<ul style="list-style-type: none"> Event unlikely with intermediate consequence
S.R.13	High-dose containing solution leaks to chilled water or steam condensate system	<ul style="list-style-type: none"> IROFS RS-04, Hot Cell Shielding Boundary IROFS CS-06, Pencil Tank and Vessel Spacing Control using the Diameter of the Tanks, Vessels, or Piping IROFS CS-10, Closed Safe-Geometry Heating or Cooling Loop with Monitoring and Alarm IROFS CS-27, Closed Heating or Cooling Loop with Monitoring and Alarm IROFS CS-20, Evaporator or Concentrator Condensate Monitoring IROFS CS-18, Backflow Prevention Device IROFS CS-19, Safe-Geometry Day Tanks See Section 13.2.4.8
S.R.14	IX resin failure due to wrong reagent or high temperature	<ul style="list-style-type: none"> Bounded by S.R.01
S.R.16	Backflow of high-dose radiological and/or fissile solution into auxiliary system (purge air, chemical addition line, water addition line, etc.)	<ul style="list-style-type: none"> Bounded by S.R.13
S.R.17	Carryover of high-dose solution into condensate (a low-dose waste stream)	<ul style="list-style-type: none"> IROFS RS-08, Sample and Analysis of Low Dose Waste Tank Dose Rate Prior to Transfer Outside the Hot Cell Shielded Boundary IROFS RS-10, Active Radiation Monitoring and Isolation of Low-Dose Waste Transfer See Section 13.2.7.1
S.R.18	High-dose solution flows into the solidification media hopper	<ul style="list-style-type: none"> Low consequence event that does not challenge IROFS RS-04
S.R.19	High target basket retrieval dose rate	<ul style="list-style-type: none"> Design evolved after PHA, accident sequence eliminated
S.R.20	Radiological spill of irradiated LEU target material in the hot cell area	<ul style="list-style-type: none"> Bounded by S.R.01
S.R.21	Damage to the hot cell wall providing shielding	<ul style="list-style-type: none"> Low consequence event that does not damage shielding function of IROFS RS-04
S.R.22	Decay heat buildup in unprocessed LEU target material removed from targets leads to higher-dose radionuclide offgassing	<ul style="list-style-type: none"> Low consequence event

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.R.23	Offgassing from irradiated target dissolution tank occurs when the upper valve is opened	<ul style="list-style-type: none"> • IROFS RS-03, Hot Cell Secondary Confinement Boundary • See Section 13.2.2.8
S.R.24	Bagless transport door failure	<ul style="list-style-type: none"> • IROFS RS-03, Hot Cell Secondary Confinement Boundary • IROFS RS-04, Hot Cell Shielding Boundary • See Section 13.2.2.8
S.R.25	HEPA filter failure	<ul style="list-style-type: none"> • IROFS RS-03, Hot Cell Secondary Confinement Boundary • See Section 13.2.2.8
S.R.26	Failed negative air balance from zone-to-zone or failure to exhaust a radionuclide buildup in an area	<ul style="list-style-type: none"> • IROFS RS-03, Hot Cell Secondary Confinement Boundary • See Section 13.2.2.8
S.R.27	Extended outage of heat leading to freezing, pipe failure, and release of radionuclides from liquid process systems	<ul style="list-style-type: none"> • Highly unlikely event for process solutions containing fission products • Bounded by S.C.04 for target fabrication systems
S.R.28	Target or waste shipping cask or container not loaded or secured according to procedure, leading to personnel exposure	<ul style="list-style-type: none"> • Information will be provided in the Operating License Application
S.R.29	High dose to worker from release of gaseous radionuclides during cask receipt inspection and preparation for target basket removal	<ul style="list-style-type: none"> • IROFS RS-12, Cask Containment Sampling Prior to Closure Lid Removal • IROFS RS-13, Cask Local Ventilation During Closure Lid Removal and Docking Preparations • See Section 13.2.7.1
S.R.30	Cask docking port failures lead to high-dose to worker due to streaming radiation and/or high airborne radioactivity	<ul style="list-style-type: none"> • IROFS RS-04, Hot Cell Shielding Boundary • IROFS RS-15, Cask Docking Port Enabling Sensor • See Sections 13.2.2.8 and 13.2.7.1
S.R.31	Chemical burns from contaminated solutions during sample analysis	<ul style="list-style-type: none"> • Judged unlikely event with intermediate consequence
S.R.32	Crane load drop accidents	<ul style="list-style-type: none"> • IROFS FS-01, Enhanced Lift Procedure • IROFS FS-02, Overhead Cranes • See Section 13.2.7.1

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.C.01	Failure of facility enrichment limit	<ul style="list-style-type: none"> Judged highly unlikely based on supplier's checks and balances
S.C.02	Failure of administrative control on mass (batch limit) during handling of fresh U, scrap U, LEU target material, targets, and samples	<ul style="list-style-type: none"> IROFS CS-02, Mass and Batch Handling Limits for Uranium Metal, [Proprietary Information], Targets, and Laboratory Sample Outside Process Systems IROFS CS-03, Interaction Control Spacing Provided by Administrative Control IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement See Section 13.2.7.2
S.C.03	Failure of interaction limit during handling of fresh U, scrap U, LEU target material, targets, containers, and samples	<ul style="list-style-type: none"> IROFS CS-02, Mass and Batch Handling Limits for Uranium Metal [Proprietary Information], Targets, and Laboratory Sample Outside Process Systems IROFS CS-03, Interaction Control Spacing Provided by Administrative Control IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement See Section 13.2.7.2
S.C.04	Spill of process solution from a tank or process vessel leading to accidental criticality	<ul style="list-style-type: none"> IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement using the Diameter of Tanks, Vessels, or Piping IROFS CS-07, Pencil Tank and Vessel Spacing Control using Fixed Interaction Spacing of Individual Tanks or Vessels IROFS CS-08, Floor and Sump Geometry Control of Slab Depth, Sump Diameter or Depth for Floor Spill Containment Berms IROFS CS-09, Double-Wall Piping IROFS CS-26, Processing Component Safe Volume Confinement See Section 13.2.7.2
S.C.05	Leak of fissile solution into the heating or cooling jacket on the tank or vessel	<ul style="list-style-type: none"> Bounded by S.R.13
S.C.06	System overflow to process ventilation involving fissile material	<ul style="list-style-type: none"> IROFS CS-11, Simple Overflow to Normally Empty Safe Geometry Tank with Level Alarm IROFS CS-12, Condensing Pot or Seal Pot in Ventilation Vent Line IROFS CS-13, Simple Overflow to Normally Empty Safe Geometry Floor with Level Alarm in the Hot Cell Containment Boundary See Section 13.2.7.2

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.C.07	Fissile solution leaks across mechanical boundary between process vessels and heating/cooling jackets into heating/cooling media	<ul style="list-style-type: none"> • Bounded by S.R.13
S.C.08	Backflow of high-dose radiological and/or fissile solution into auxiliary system (purge air, chemical addition line, water addition line, etc.)	<ul style="list-style-type: none"> • Bounded by S.R.13
S.C.09	High concentrations of uranium enter the concentrator or evaporator condensates	<ul style="list-style-type: none"> • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement using the Diameter of Tanks, Vessels, or Piping • IROFS CS-07, Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels • IROFS CS-26, Processing Component Safe Volume Confinement • See Section 13.2.7.2
S.C.10	High concentrations of uranium enter the low-dose or high-dose waste collection tanks	<ul style="list-style-type: none"> • IROFS CS-14, Active Discharge Monitoring and Isolation • IROFS CS-15, Independent Active Discharge Monitoring and Isolation • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • See Section 13.2.7.2
S.C.11	High concentrations of uranium in contactor solvent regeneration aqueous waste	<ul style="list-style-type: none"> • Bounded by S.C.04 and S.C.10
S.C.12	High concentrations of uranium in the LEU target material wash solution	<ul style="list-style-type: none"> • IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement using the Diameter of Tanks, Vessels, or Piping • IROFS CS-07, Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels • See Section 13.2.7.2

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.C.13	High concentrations of uranium in the nitrous oxide scrubber	<ul style="list-style-type: none"> • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement using the Diameter of Tanks, Vessels, or Piping • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • See Section 13.2.7.2
S.C.14	High concentrations of uranium in the IX waste collection tanks effluent	<ul style="list-style-type: none"> • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • See Section 13.2.7.2
S.C.15	High concentrations of uranium in the IX resin waste	<ul style="list-style-type: none"> • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement using the Diameter of Tanks, Vessels, or Piping • IROFS CS-07, Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • See Section 13.2.7.2
S.C.17	High concentrations of uranium in the solid waste encapsulation process	<ul style="list-style-type: none"> • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • IROFS CS-21, Visual Inspection of Accessible Surfaces for Foreign Debris • IROFS CS-22, Gram Estimator Survey of Accessible Surfaces for Gamma Activity • IROFS CS-23, Nondestructive Assay of Items with Inaccessible Surfaces • IROFS CS-24, Independent Nondestructive Assay of Items with Inaccessible Surfaces • IROFS CS-25, Target Housing Weighing Prior to Disposal • See Section 13.2.7.2
S.C.19	Failure of PEC – Component safe geometry dimension or safe volume	<ul style="list-style-type: none"> • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement using the Diameter of Tanks, Vessels, or Piping • IROFS CS-07, Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels • IROFS CS-26, Processing Component Safe Volume Confinement • See Section 13.2.7.2
S.C.20	Failure of concentration limits	<ul style="list-style-type: none"> • No credible path leading to criticality identified or not credible by design

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.C.21	Target basket passive design control failure on fixed interaction spacing	<ul style="list-style-type: none"> • IROFS CS-02, Mass and Batch Handling Limits for Uranium Metal, [Proprietary Information], Targets, and Laboratory Sample Outside Process Systems • IROFS CS-03, Interaction Control Spacing Provided by Administrative Control • See Section 13.2.7.2
S.C.22	High concentration of uranium in the TCE evaporator residue	<ul style="list-style-type: none"> • IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement Using the Diameter of Tanks, Vessels, or Piping • IROFS CS-07, Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • See Section 13.2.7.2
S.C.23	High concentration in the spent silicone oil waste	<ul style="list-style-type: none"> • IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement • IROFS CS-05, Container Batch Volume Limit • IROFS CS-06, Pencil Tank, Vessel, or Piping Safe Geometry Confinement Using the Diameter of Tanks, Vessels, or Piping • IROFS CS-07, Pencil Tank and Vessel Spacing Control Using Fixed Interaction Spacing of Individual Tanks or Vessels • IROFS CS-16, Sampling and Analysis of Uranium Mass or Concentration Prior to Discharge or Disposal • IROFS CS-17, Independent Sampling and Analysis of Uranium Concentration Prior to Discharge or Disposal • See Section 13.2.7.2
S.C.24	High uranium content on HEPA filters and subsequent failure	<ul style="list-style-type: none"> • Bounded by S.C.17
S.C.27	Failure of administratively controlled container volume limits	<ul style="list-style-type: none"> • IROFS CS-03, Interaction Control Spacing Provided by Administrative Control • IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement • IROFS CS-05, Container Batch Volume Limit • See Section 13.2.7.2
S.C.28	Crane load drop accidents	<ul style="list-style-type: none"> • IROFS FS-01, Enhanced Lift Procedure • IROFS FS-02, Overhead Cranes • See Section 13.2.7.2
S.F.01	Pyrophoric fire in uranium metal	<ul style="list-style-type: none"> • Event highly unlikely based on credible physical conditions
S.F.02	Accumulation and ignition of flammable gas in tanks or systems	<ul style="list-style-type: none"> • IROFS FS-03, Process Vessel Emergency Purge System • See Section 13.2.7.3

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.F.03	Hydrogen detonation in reduction furnace	<ul style="list-style-type: none"> Judged highly unlikely based on credible physical conditions
S.F.04	Fire in reduction furnace	<ul style="list-style-type: none"> Judged unlikely based on event frequency
S.F.05	Fire in a carbon retention bed	<ul style="list-style-type: none"> IROFS FS-05, Exhaust Stack Height See Section 13.2.7.3
S.F.06	Accumulation of flammable gas in ventilation system components	<ul style="list-style-type: none"> Bounded by S.F.02
S.F.07	Fire in nitrate extraction system - combustible solvent with uranium	<ul style="list-style-type: none"> Event unlikely with immediate or low consequences
S.F.08	General facility fire	<ul style="list-style-type: none"> Information will be provided in the Operating License Application
S.F.09	Hydrogen explosion in the facility due to a leak from the hydrogen storage or distribution system	<ul style="list-style-type: none"> Information will be provided in the Operating License Application
S.F.10	Combustible fire occurs in hot cell area	<ul style="list-style-type: none"> Information will be provided in the Operating License Application
S.F.11	Detonation or deflagration of natural gas leak in steam generator room	<ul style="list-style-type: none"> Information will be provided in the Operating License Application
S.N.01	Tornado impact on facility and SSCs important to safety	<ul style="list-style-type: none"> Judged highly unlikely event based on return frequency
S.N.02	High straight-line winds impact the facility and SSCs important to safety	<ul style="list-style-type: none"> Judged highly unlikely to result in structure failure
S.N.03	Heavy rain impact on facility and SSCs important to safety	<ul style="list-style-type: none"> Bounded by S.N.06
S.N.04	Flooding impact to the facility and SSCs important to safety	<ul style="list-style-type: none"> Judged highly unlikely event based on facility location above the 500-year flood plain
S.N.05	Seismic impact to the facility and SSCs important to safety	<ul style="list-style-type: none"> Judged highly unlikely to result in structure failure IROFS FS-04, Irradiated Target Cask Lifting Fixture See Section 13.2.6.5
S.N.06	Heavy snowfall or ice buildup on facility and SSCs important to safety	<ul style="list-style-type: none"> Judged highly unlikely to result in structure failure
S.M.01	Vehicle strikes SSC important to safety and causes damage or leads to an accident sequence of intermediate or high consequence	<ul style="list-style-type: none"> Judged likely event with low consequence

Table 13-28. Analyzed Accidents Sequences (9 pages)

Accident sequence designator from PHA	Descriptor	Preliminary IROFS Identified
S.M.02	Facility evacuation impacts on operations	<ul style="list-style-type: none"> Judged likely event with low consequence
S.M.03	Localized flooding due to internal system leakage or fire suppression sprinkler activation	<ul style="list-style-type: none"> IROFS CS-08, Floor and Sump Geometry Control of Slab Depth, Sump Diameter or Depth for Floor Spill Containment Berms See Section 13.2.7.2
S.CS.01	Nitric acid fume release	<ul style="list-style-type: none"> No IROFS currently identified

HEPA = high-efficiency particulate air.
 IROFS = items relied on for safety.
 IRU = iodine removal unit.
 IX = ion exchange.
 LEU = low-enriched uranium.
 Mo = molybdenum.
 PEC = passive engineered control.
 PHA = preliminary hazards analysis.
 SSC = structures, systems, and components.
 TCE = trichloroethylene
 U = uranium.
 UN = uranyl nitrate.

Table 13-29 provides a summary of all IROFS identified by the accident analyses performed for the Construction Permit Application. Table 13-29 also identifies whether the IROFS were considered engineered safety features or administrative controls. Engineered safety features are described in Chapter 6.0, and the administrative controls are discussed in Chapter 14.0, “Technical Specifications.” Additional IROFS are anticipated to be identified (or the current IROFS modified) by additional design detail developed for the Operating License Application.

Table 13-29. Summary of Items Relied on for Safety Identified by Accident Analyses (3 pages)

IROFS designator	Descriptor	Engineered safety feature	Administrative control
RS-01	Hot cell liquid confinement boundary	✓	
RS-02	Reserved		
RS-03	Hot cell secondary confinement boundary	✓	
RS-04	Hot cell shielding boundary	✓	
RS-05	Reserved		
RS-06	Reserved		
RS-07	Reserved		
RS-08	Sample and analysis of low-dose waste tank dose rate prior to transfer outside the hot cell shielded boundary		✓
RS-09	Primary offgas relief system	✓	
RS-10	Active radiation monitoring and isolation of low-dose waste transfer	✓	
RS-11	Reserved		
RS-12	Cask containment sampling prior to closure lid removal		✓
RS-13	Cask local ventilation during closure lid removal and docking preparations	✓	

Table 13-29. Summary of Items Relied on for Safety Identified by Accident Analyses (3 pages)

IROFS designator	Descriptor	Engineered safety feature	Administrative control
RS-14	Reserved		
RS-15	Cask docking port enabling sensor	✓	
CS-01	Reserved		
CS-02	Mass and batch handling limits for uranium metal, [Proprietary Information], targets, and laboratory sample outside process systems		✓
CS-03	Interaction control spacing provided by administrative control		✓
CS-04	Interaction control spacing provided by passively designed fixtures and workstation placement	✓	
CS-05	Container batch volume limit		✓
CS-06	Pencil tank, vessel, or piping safe geometry confinement using the diameter of tanks, vessels, or piping	✓	
CS-07	Pencil tank and vessel spacing control using fixed interaction spacing of individual tanks or vessels	✓	
CS-08	Floor and sump geometry control of slab depth, sump diameter or depth for floor spill containment berms	✓	
CS-09	Double-wall piping	✓	
CS-10	Closed safe geometry heating or cooling loop with monitoring and alarm	✓	
CS-11	Simple overflow to normally empty safe geometry tank with level alarm	✓	
CS-12	Condensing pot or seal pot in ventilation vent line	✓	
CS-13	Simple overflow to normally empty safe geometry floor with level alarm in the hot cell containment boundary	✓	
CS-14	Active discharge monitoring and isolation	✓	
CS-15	Independent active discharge monitoring and isolation	✓	
CS-16	Sampling and analysis of uranium mass or concentration prior to discharge or disposal		✓
CS-17	Independent sampling and analysis of uranium concentration prior to discharge or disposal		✓
CS-18	Backflow prevention device	✓	
CS-19	Safe-geometry day tanks	✓	
CS-20	Evaporator or concentrator condensate monitoring	✓	
CS-21	Visual inspection of accessible surfaces for foreign debris		✓
CS-22	Gram estimator survey of accessible surfaces for gamma activity		✓
CS-23	Nondestructive assay of items with inaccessible surfaces		✓
CS-24	Independent nondestructive assay of items with inaccessible surfaces		✓
CS-25	Target housing weighing prior to disposal		✓
CS-26	Processing component safe volume confinement	✓	

Table 13-29. Summary of Items Relied on for Safety Identified by Accident Analyses (3 pages)

IROFS designator	Descriptor	Engineered safety feature	Administrative control
CS-27	Closed heating or cooling loop with monitoring and alarm	✓	
FS-01	Enhanced lift procedure		✓
FS-02	Overhead cranes		✓
FS-03	Process vessel emergency purge system	✓	
FS-04	Irradiated target cask lifting fixture	✓	
FS-05	Exhaust stack height	✓	

IROFS = items relied on for safety.

The following subsections describe the IROFS that are not previously discussed elsewhere in this chapter. The IROFS are grouped according to their respective accident sequence categories, as shown in Table 13-30.

13.2.7.1 Items Relied on for Safety for Radiological Accident Sequences (S.R.)

The following IROFS fall under the radiological accident sequence category and are not discussed elsewhere in this chapter.

13.2.7.1.1 IROFS RS-08, Sample and Analysis of Low Dose Waste Tank Dose Rate Prior to Transfer Outside the Hot Cell Shielded Boundary

As an augmented administrative control (AAC), prior to transferring the solution from the low-dose waste tank to the low-dose waste encapsulation system outside of the hot cell shielded boundary, the low-dose waste tank will be administratively locked out, sampled, and the sample analyzed for high radiation. Batches that satisfy the sample criteria can be transferred to the low-dose waste encapsulation system. The safety function of this AAC is to prevent transfer of low-dose solution to outside the shielded boundary at radiation dose rates that would lead to intermediate- or high-dose consequences to workers.

13.2.7.1.2 IROFS RS-10, Active Radiation Monitoring and Isolation of Low Dose Waste Transfer

As an AEC, the recirculating stream and discharge stream of the low-dose waste tank will be simultaneously monitored in a background shielded trunk outside of the hot cell shielded cavity. The continuous gamma-ray instrument monitoring the recirculation line and the transfer line will provide an open permissive signal to a dedicated isolation valve in the transfer line. The safety function of the system is to prevent transfer of low-dose waste solutions with exposure rates in excess of approved limits (safety limits and limiting safety system settings to be determined later) to outside the shielded boundary at radiation dose rates that would lead to intermediate- or high-dose consequences to workers or the public.

Table 13-30. Accident Sequence Category Definitions

Accident sequence category	Definition	Section containing related IROFS description
S.R.	Radiological	13.2.7.1
S.C.	Criticality	13.2.7.2
S.F.	Fire or explosion	13.2.7.3
S.N.	Natural phenomena	13.2.7.4
S.M.	Man-made	13.2.7.5
S.CS.	Chemical safety	13.2.7.6

IROFS = items relied on for safety.

The system functions by monitoring both the recirculation line for the low-dose waste collection tank and the transfer line to the low-dose waste encapsulation system outside of the hot cell shielded boundary. Monitoring will be performed in a shielded trunk, which reduces the background from the normally shielded hot cell areas to acceptable levels for monitoring. In this closed-loop system, the gamma monitor will provide an open permissive signal to a fail-closed isolation valve in the transfer line, allowing the isolation valve to open.

If the radiation levels exceed a safety limit setpoint during recirculation for sampling or during transfers, the isolation valve will be closed. The isolation valve will also fail closed on loss of power and loss of instrument air.

13.2.7.1.3 IROFS RS-12, Cask Containment Sampling Prior to Closure Lid Removal

As an AEC, a sampling system will be connected to the cask vent to sample the atmosphere within the cask prior to closure lid removal. The system will sample the contents of the cask and have the ability to remediate the atmosphere using a vacuum system if dose rates are too high (safety limits to be determined). The safety function of IROFS RS-12 is to prevent personnel exposure to high-dose gaseous radionuclides.

The system will identify a hazardous concentration of high-dose gases in the cask, and if a high dose is identified, will remediate the situation through evacuation to a safe processing system. The system works by evacuating a sample of the gas and analyzing the sample as it passes by a detector. If high activity is detected, the system will alarm. The operator will use the system to evacuate and backfill the cask with fresh air (from a protected pressurized source such as a compressed bottle) until the atmospheres are within approved safety limits.

13.2.7.1.4 IROFS RS-13, Cask Local Ventilation During Closure Lid Removal and Docking Preparations

As an AEC, a local capture ventilation system will be used over the closure lid to remove any escaped gases from the breathing zone of the worker during removal of the closure lid, removal of the shielding block bolts, and installation of the lifting lugs. The safety function of IROFS RS-13 is to prevent exposure to the worker by evacuating any high-dose gaseous radionuclides from the worker's breathing zone and preventing immersion of the worker in a high-dose environment. The system will use a dedicated evacuation hood over the top of the cask during containment closure lid removal. The gases will be removed to the Zone 1 secondary containment system for processing.

13.2.7.1.5 IROFS RS-15, Cask Docking Port Enabling Sensor

As an AEC, the cask docking port will be equipped with sensors that detect when a cask is mated with the cask docking port door. The sensors feed an enabling circuit that will prevent the door from being opened when no cask is present. The safety function of IROFS RS-15 is to prevent the cask docking port door from being opened, allowing a streaming radiation path to an accessible area and to prevent Zone II to Zone I air pressure imbalances that would allow air to migrate into the Zone II airlock. The system will also prevent a high streaming dose to workers from targets inside the hot cell, if the cask lift fails following mating. The system is designed to provide an enabling contact signal and positive closure signal when the sensor does not sense a cask mated to the door, causing the door to close.

13.2.7.1.6 IROFS FS-01, Enhanced Lift Procedure

As an Administrative Control (AC), lifts of high-dose rate containers or casks or of heavy objects (weight limit to be determined in final design) that move over hot cells in the standby or operating modes will use an enhanced lift procedure to reduce the likelihood of an upset. Enhancements will use the guidelines in DOE-STD-1090-2011, *Hoisting and Rigging*, for critical lifts (for nonroutine cover block lifts) and pre-engineered production lifts (for routine container and cask lifts using pre-engineered fixtures). The safety function of IROFS FS-01 is to prevent (by reducing the likelihood) a dropped load or striking an SSC with a heavy load, causing damage that leads to an intermediate or high consequence event. The IROFS will be administered through the use of operating and maintenance procedures.

13.2.7.2 Items Relied on for Safety for Criticality Accident Sequences (S.C.)

The following IROFS fall under the criticality accident sequence category and are not discussed elsewhere in this chapter.

13.2.7.2.1 IROFS CS-02, Mass and Batch Handling Limits for Uranium Metal, [Proprietary Information], Targets, and Laboratory Samples Outside Process Systems

As a simple AC, mass and batch limits will be applied to handling, processing, and storage activities where uranium metal, [Proprietary Information] (LEU target material), targets, and/or samples are used. The mass or batch limits will be set such that the handled quantity can sustain double-batching or one interaction control failure with another approved quantity of fissile material, approved volume of fissile material, or an approved configuration for a tank, vessel, or IX column.

Where safe batches are allowed, fixtures will be used to ensure that the safe batch is not exceeded (e.g., where [Proprietary Information] are allowed as a safe batch, the operator will be provided with a carrying fixture that allows only [Proprietary Information]). For targets, the housing is credited for maintaining the contents dry. Final limits for each activity will be set in final design.

13.2.7.2.2 IROFS CS-03, Interaction Control Spacing Provided by Administrative Control

As a simple AC, while handling approved quantities of uranium metal, approved quantities of [Proprietary Information] (LEU target material), batches of targets, or batches of samples, an interaction control will be maintained between quantities being handled; fissile solution tanks, vessels, or IX columns; and safe-geometry ventilation housings. Interaction control spacing will be set in final design when all process upsets are evaluated.

13.2.7.2.3 IROFS CS-04, Interaction Control Spacing Provided by Passively Designed Fixtures and Workstation Placement

As a PEC, fixed interaction control fixtures or workstations will be provided for holding or processing approved containers with designated quantities of uranium metal, quantities of [Proprietary Information] (LEU target material), batches of targets, and batches of samples. The fixtures are designed to hold only the approved container or batch and are fixed with 61 centimeter (cm) (2-ft) edge-to-edge spacing from all other fissile material containers, workstations, or fissile solution tanks, vessels, or IX columns. Where LEU target material is handled in open containers, the design should prevent spills from readily spreading to an adjacent workstation or storage location. Final workstation and fixture spacing will be determined in final design when all process upsets are evaluated. Workstations with interaction controls will include the following (not an all-inclusive listing):

- LEU target material trichloroethylene (TCE) wash column workstation containing a safe-geometry funnel
- LEU target material ammonium hydroxide rinse column workstations containing safe-geometry funnels
- Target basket fixture that provides safe spacing of a batch of targets from another batch in the target receipt cell

13.2.7.2.4 IROFS CS-05, Container Batch Volume Limit

As a simple AC to address the activity of sampling and small quantity storage, a volumetric batch limit will be applied such that the total number of small sample or storage containers is controlled to a safe total volume. Many activities at the RPF will involve very high-dose solutions; only small quantities of a sample may be removed from the shielded area for analysis due to radiological reasons. As a result, sample bottles will be relatively small. The uranium content in these containers will often be unknown. To provide safe storage and handling in the laboratory environment, a safe volumetric batch limit on these small containers will be applied.

Some potentially contaminated uranium waste streams will also be generated at the RPF that require quantification of the uranium content prior to disposal. These waste streams will need a safe volume container for interim storage while the uranium content is being identified. The final set of approved containers and volumes will be provided during final design when all process upsets are evaluated.

13.2.7.2.5 IROFS CS-11, Simple Overflow to Normally Empty Safe Geometry Tank with Level Alarm

As a PEC, for each vented tank containing fissile or potentially fissile process solution for which IROFS CS-11 is assigned, a simple overflow line will be installed below the level of the process vessel ventilation port and any chemical addition ports (where an anti-siphon safety feature will be installed). The overflow drain will prevent the process solution from entering the respective non-geometrically favorable portions of the process ventilation system and any chemical addition ports (where the solutions will enter through anti-siphon devices). The safety function of this feature is to prevent accidental nuclear criticality in non-geometrically favorable portions of the process ventilation system. The overflow will be directed to a safe-geometry storage tank, which will normally be empty. The overflow storage tank will be equipped with a level alarm to inform the operator when use of the IROFS has been initiated so that actions may be taken to restore operability of the safety feature by emptying the tank. The locations where this IROFS is used will be determined during final design.

13.2.7.2.6 IROFS CS-12, Condensing Pot or Seal Pot in Ventilation Vent Line

As a PEC, downstream of each tank for which IROFS CS-12 is assigned, a safe geometry condensing pot or seal pot will be installed to capture and redirect liquids to a safe-geometry tank or flooring area with safe-geometry sumps. One such condensing or seal pot may service several related tanks within the safe-geometry boundary of the ventilation system. The condensing or seal pot will prevent fissile solution from flowing into the respective non-geometrically favorable process ventilation system by directing the solution to a safe-geometry tank or flooring area with safe-geometry sumps.

The safety function of IROFS CS-12 is to prevent accidental nuclear criticality in non-geometrically favorable portions of the process ventilation system. The safe-geometry tank or sumps will be equipped with a level alarm to inform the operator when use of the IROFS has been initiated. Each individual tank or vessel operation must be evaluated for required capacity for overflow to ensure that a suitable overflow volume is available.

A monitoring and alarm circuit will be provided so that common overflow tanks or safe slab flooring or sumps may be used for multiple tanks or vessels, and limiting conditions of operation will be defined to ensure that the IROFS is made available in a timely manner or operations are suspended following an overflow event of a single tank. Where independent seal or condensing pots are credited, the drains of the seal or condensing pots must be directed to independent locations to prevent a common clog or overcapacity condition from defeating both.

13.2.7.2.7 IROFS CS-13, Simple Overflow to Normally Empty Safe Geometry Floor with Level Alarm in the Hot Cell Containment Boundary

As a PEC for each vented tank containing fissile or potentially fissile process solution for which IROFS CS-13 is assigned, a simple overflow line will be installed above the high alarm setpoint. The overflow will be directed to one or more safe-geometry flooring configurations with safe-geometry sumps. IROFS CS-13 will prevent accidental criticality by ensuring that overflowing fissile solutions are captured in a safe-geometry slab configuration with safe-geometry sumps. These flooring areas (separated as needed to support operations in different hot cell areas) will normally be empty. The flooring areas will be equipped with a sump level alarm to inform the operator when use of the IROFS has been initiated.

13.2.7.2.8 IROFS CS-14, Active Discharge Monitoring and Isolation

As an AEC for discharges from safe-geometry systems to non-favorable geometry systems, an active uranium detection system will be used to close an isolation valve in the discharge line at a uranium concentration limit and/or cumulative mass limit (the limit[s] to be set sufficiently low to preclude follow-on process upsets and sufficiently high to maintain an operating limit setpoint below the safety setpoint). This system will prevent a high-concentration uranium solution from being discharged to a non-favorable geometry system.

The safety function of IROFS CS-14 is to prevent an accidental nuclear criticality. The closed-loop system is designed to isolate the discharge points listed below by actively monitoring the solution stream for uranium concentration using a suitable uranium monitor. At a limiting setpoint, the uranium monitor will close an isolation valve in the discharge line to stop the discharge. The uranium monitor is designed to produce a valve-open permissive signal that fails to an open state, closing the valve on loss of electrical power. The isolation valve is designed to fail-closed on loss of instrument air, and the solenoid is designed to fail-closed on loss of signal. The locations where this IROFS is used will be determined during final design.

13.2.7.2.9 IROFS CS-15, Independent Active Discharge Monitoring and Isolation

As an AEC for discharges from safe-geometry systems to non-favorable geometry systems, an independent active uranium detection system will be used to close an independent isolation valve in the discharge line at a uranium concentration limit and/or cumulative mass limit (the limit[s] to be set sufficiently low to preclude follow-on process upsets and sufficiently high to maintain an operating limit setpoint below the safety setpoint). This system will prevent a high concentration uranium solution from being discharged to a non-favorable geometry system.

The safety function of IROFS CS-15 is to prevent an accidental nuclear criticality. The closed-loop system is designed to isolate the discharge points listed below by actively monitoring the solution stream for uranium concentration using a suitable monitor to detect uranium. At a limiting setpoint, the monitor will close an isolation valve in the discharge line to stop the discharge. The monitor is designed using a different monitoring method and isolation valve than used in IROFS CS-14 to produce a valve-open permissive signal that fails to an open state, closing the valve on loss of electrical power.

The isolation valve is designed to fail-closed on loss of instrument air, and the solenoid is designed to fail-closed on loss of signal. The locations where this IROFS is used will be determined during final design.

13.2.7.2.10 IROFS CS-16, Sampling and Analysis of U Mass/Concentration Prior to Discharge/Disposal

As an AAC, prior to initiating discharge from the safe-geometry container, tanks, or vessels assigned IROFS CS-16 to non-favorable geometry systems, the container, tank, or vessel will be isolated and placed under administrative control, recirculated or otherwise uniformly mixed, sampled, and the sample analyzed for uranium content. The discharge or disposal will only be approved following independent review of the sample results to confirm that the uranium content is below a concentration or a mass limit (to be determined for each individual application based on expected volumes and follow-on processing needs) and under the independent oversight of a supervisor (who administratively controls the locks on the discharge system). Uranium mass in the disposal container or vessel will be tracked to ensure that the mass or concentration limit for the container is not exceeded.

The safety function of IROFS CS-16 is to prevent accidental nuclear criticality caused by discharging or disposing of high-concentration uranium to an uncontrolled system. The IROFS functions as described by ensuring, through physical sampling and analysis, that the uranium content of an isolated container, tank, or vessel (both inlets and outlets isolated, as applicable) is below a safe, single parameter limit on solution concentration or under a safe mass for the disposal container. Systems, tanks, or vessels for which IROFS CS-16 applies, include:

- TCE recycle tanks
- Spent silicone oil
- Condensate tanks (either as normal or backup controls)

13.2.7.2.11 IROFS CS-17, Independent Sampling and Analysis of U Concentration Prior to Discharge/Disposal

As an AAC, prior to initiating discharge from the safe-geometry tanks or vessels assigned IROFS CS-17 to non-favorable geometry systems, the tank or vessel will be isolated and placed under administrative control, recirculated, sampled, and the sample analyzed for uranium content. The recirculation or uniformly mixing, sampling, and analysis activities will be independent (performed at a different time, using different operators or laboratory technicians, and different analysis equipment, checked with independent standards) of that performed in IROFS CS-16. The discharge or disposal will only be approved following independent review of the sample results to confirm the uranium content is below the limiting setpoint for uranium concentration or batch mass for the contents and under the independent oversight of a supervisor (who administratively controls the locks on the discharge system). Uranium mass in the disposal container or vessel will be tracked and independently verified to ensure that the mass or concentration limit for the container is not exceeded.

The safety function of IROFS CS-17 is to prevent accidental nuclear criticality caused by discharging high-concentration uranium to an uncontrolled system. The IROFS functions as described by ensuring, through physical sampling and analysis, that the uranium content of an isolated tank or vessel is below a safe, single parameter limit on solution concentration or mass for a disposal container. Systems, tanks, or vessels for which IROFS CS-17 applies include:

- TCE recycle tanks
- Spent silicone oil
- Condensate tanks (either as normal or backup controls)

13.2.7.2.12 IROFS CS-21, Visual Inspection of Accessible Surfaces for Foreign Debris

As a simple AC, a visual inspection will be performed to identify foreign matter on accessible surfaces of equipment and waste materials approved for this method prior to disposal. All visible foreign material is assumed to be uranium. All surfaces must be non-porous. Materials involved must be solids (no solutions or liquids present). All surfaces must be visually accessible either directly or through approved inspection devices. The inspection criterion is for no foreign material of discernible thickness to be visible (transparent films allowed). The safety function of this AC is to ensure that no significant uranium deposits exist on the item being disposed, to prevent an accumulation of a minimum subcritical mass of uranium in the disposal container. The control will be exercised at designated waste consolidation stations, holding specifically approved waste containers, and on the items approved by the Criticality Safety Manager. The waste will not be consolidated until independent measurements conducted according to IROFS CS-22 or IROFS CS-24 have been completed. The item will be controlled during the waste measurement analysis period. Items initially approved include disassembled irradiated or scrap target housing parts or pieces.

13.2.7.2.13 IROFS CS-22, Gram Estimator Survey of Accessible Surfaces for Gamma Activity

As an AAC, a gram estimator survey will be performed on all accessible surfaces of equipment and waste materials approved for this method prior to disposal. The survey will be performed on low-risk waste streams that have surfaces that are 100 percent accessible with the measurement instrument. The measurement setpoint is designed to detect activity from 15 g of ^{235}U uniformly spread over 30 kilograms (kg) of 4-mil (thousandth of an inch) thick polyethylene sheeting (both sides) as a bounding waste form for disposal at the U.S. Department of Transportation (DOT) fissile-excepted limit of 0.5 g $^{235}\text{U}/\text{L}$ kg non-fissile material.

The purpose of this IROFS is to provide a backup instrument AAC to visual inspection (IROFS CS-21) for bulking and disposal of low-risk waste to prevent accidental nuclear criticality. All surfaces will need to be accessible to the instrument used. The waste stream must not be contaminated with significant fission product radionuclides since all activity is attributed to uranium. This survey will be performed as backup to the visual inspection described in IROFS CS-21. An independent person from the one performing the visual inspection of IROFS CS-21 will perform the survey. The control will be exercised at designated waste consolidation stations, holding specifically approved waste containers, on the waste items using survey instrument(s) and setpoint(s) approved by the Criticality Safety Manager. Waste consolidation will be conducted after independent verification of the two methods of quantifying uranium mass has been performed. IROFS CS-22 is applicable to radiological waste generated outside the hot cell boundary that has had a low risk for direct contact with uranium-bearing materials.

13.2.7.2.14 IROFS CS-23, Non-Destructive Assay of Items with Inaccessible Surfaces

As an AAC, a nondestructive assay (NDA) method will be used on approved waste streams to quantify the uranium mass prior to disposal. An approved waste container with an approved uranium mass limit will receive the waste. A running inventory of items and uranium mass will be maintained with the waste disposal container.

The purpose of this IROFS is to prevent accidental nuclear criticality by controlling the mass of enriched uranium that is disposed in a non-safe geometry waste container. At designated waste consolidation stations holding specifically approved waste containers, the control will be exercised on the waste items using NDA techniques and mass or concentration limits approved by the Criticality Safety Manager. The waste will not be consolidated until independent measurements conducted according to IROFS CS-24 are completed. The item will be controlled during the waste measurement analysis period.

13.2.7.2.15 IROFS CS-24, Independent NDA of Items with Inaccessible Surfaces

As an AAC, an independent NDA method will be used on approved waste streams to quantify the uranium mass prior to disposal. An approved waste container with an approved uranium mass limit will receive the waste. A running inventory of items and uranium mass will be maintained with the waste disposal container.

The purpose of this IROFS is to prevent accidental nuclear criticality by controlling the mass of enriched uranium that is disposed in a non-safe geometry waste container. The control will be used as a backup to IROFS CS-16, IROFS CS-21 or IROFS CS-23, as approved by the Criticality Safety Manager for each waste stream. At designated waste consolidation stations holding specifically approved waste containers, the control will be exercised on the waste items using NDA techniques and mass or concentration limits approved by the Criticality Safety Manager. Waste consolidation will be conducted after independent verification of the two methods of quantifying uranium mass has been performed.

13.2.7.2.16 IROFS CS-25, Target Housing Weighing Prior to Disposal

As an AAC, on disposal of empty target housings, target housing pieces will be weighed and the weight compared to the original housing tare weight. The removed LEU target material will be weighed, and the weight compared to the original loading of LEU target material prior to disposal. The weights will agree within tolerances approved by the Criticality Safety Manager. Any differences will be attributed as [Proprietary Information] mass remaining in the wastes. An approved waste container with an approved uranium mass limit will receive the waste. A running inventory of items and uranium mass will be maintained with the waste disposal container.

The purpose of this IROFS is to prevent accidental nuclear criticality by controlling the mass of enriched uranium that is disposed in a non-safe geometry waste container. The control will be used as a backup to IROFS CS-16 for the disposal of target housings. At designated waste consolidation stations holding specifically approved waste containers, the control will be exercised on the waste items weighed on approved scales and at mass or concentration setpoint(s) approved by the Criticality Safety Manager. Waste consolidation will be conducted after independent verification of the two methods of quantifying uranium mass (the go/no-go method of IROFS CS-16, and the quantitative method of IROFS CS-25) have been performed.

13.2.7.2.17 IROFS CS-26, Processing Component Safe Volume Confinement

As a PEC, some processing components (e.g., pumps, filter housings, and IX columns) will be controlled to a safe volume for safe storage and processing of fissile solutions. The safety function of the safe volume component is also one of confinement of the contained solution. The safe volume confinement of fissile solutions will prevent accidental nuclear criticality, a high consequence event. The safe volume confinement conservatively includes the outside diameter of any heating or cooling jackets (or any other void spaces that may inadvertently capture fissile solution) on the component. Where insulation is used on the outside wall of the component, the insulation will be closed foam or encapsulated type (so as not to soak up solution during a leak) and will be compatible with the chemical nature of the contained solution.

13.2.7.3 Items Relied on for Safety for Fire or Explosion Accident Sequences (S.F.)

The following IROFS fall under the fire or explosion accident sequence category and are not discussed elsewhere in this chapter.

13.2.7.3.1 IROFS FS-05, Exhaust Stack Height

As a PEC, the exhaust stack is designed and fabricated with a fixed height for safe release of the gaseous effluents.

13.2.7.3.2 IROFS FS-02, Overhead Cranes

Overhead cranes will be designed, operated, and tested according to ASME B30.2, *Overhead and Gantry Cranes (Top Running Bridge, Single or Multiple Girder, Top Running Trolley Hoist)*. Lifting devices for shipping containers will be designed, operated, and tested according to ANSI N14.6, *Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4,500 kg) or More for Nuclear Materials*.

The safety function of IROFS FS-02 is to prevent (by reducing the likelihood) mechanical failure of cranes during heavy lift activities. This IROFS will be implemented through the facilities configuration management and management measures programs.

13.2.7.3.3 IROFS FS-03, Process Vessel Emergency Purge System

As an AEC, an emergency backup set of bottled nitrogen gas will be provided for tanks that have the potential to reach the hydrogen lower flammability limit either through the radiolytic decomposition of water or through reaction with the nitric acid (or other reagents added during processing). The system will monitor the pressure or flow going to the header and open an isolation valve on low pressure or flow (setpoint to be determined) to restore the sweep gas flow to the system using nitrogen. The system will be configured to provide more than 24 hr of sweep gas for the required tanks.

The safety function of IROFS FS-03 is to prevent a hydrogen-air mixture in the tanks from reaching lower flammability limit conditions to prevent the deflagration or detonation hazard. The purge gases will be exhausted through the dissolver offgas or the process vessel ventilation system. The system is designed to sense low pressure or flow on the normal sweep system and introduce a continuous purge of nitrogen from a reliable emergency backup station of bottled nitrogen into each affected vessel.

13.2.7.4 Items Relied on for Safety for Natural Phenomena Accident Sequences (S.N.)

The IROFS under the natural phenomena accident sequence category are discussed in Section 13.2.6.

13.2.7.5 Items Relied on for Safety for Man-Made Accident Sequences (S.M.)

There are no IROFS specifically identified for the man-made accident sequence category.

13.2.7.6 Items Relied on for Safety for Chemical Accident Sequences (S.CS.)

There are no IROFS specifically identified for the chemical accident sequence category.

13.3 ANALYSIS OF ACCIDENTS WITH HAZARDOUS CHEMICALS

This section analyzes the hazardous chemical-based accident sequences identified in the PHA.

13.3.1 Chemical Burns from Contaminated Solutions During Sample Analysis

13.3.1.1 Chemical Accident Description

This accident sequence occurs during sampling and analysis activities performed outside the hot cell confinement and shielding boundary where facility personnel (operators and/or technicians) may handle radioactively contaminated acidic or caustic solutions. There are two possible modes of occurrence for this accident.

- A sample container is dropped during handling activities outside a laboratory hood, resulting in a spill/splash event.
- A spill occurs during sample handling or analysis where the container is required to be opened.

13.3.1.2 Chemical Accident Consequences

Either of the modes described above can result in damage to skin and/or eye tissue on exposure to the acidic or caustic sample solution. This accident sequence may result in long-term or irreversible tissue damage, particularly to the eyes.

13.3.1.3 Chemical Process Controls

Facility personnel will be required to follow strict protocols for sampling and analysis activities at the RPF. Sampling locations, techniques, containers to be used, routes to take through the RPF when transporting a sample, analysis procedures, reagents, analytical equipment requirements, and sample material disposal protocols will all be specified per procedures and/or work plans prepared and discussed prior to sampling or analytical activities. Operators and technicians will be required to wear personal protective equipment, specifically for eye and skin protection.

Radiologically contaminated acidic and caustic solution samples will be handled in approved containers. Containers will be properly sealed when removed from sample locations and vent hoods during transport and/or storage.

Sample containers will also be opened only when securely located in an approved laboratory hood, with the hood lowered for spray protection. This process will provide an additional layer of protection for eyes and skin (e.g., protective eyewear/face shield, laboratory coat or apron, anti-contamination chemical resistant gloves, etc.).

13.3.1.4 Chemical Process Surveillance Requirements

Specific surveillance requirements will be identified in the Operating Permit Application. For this accident sequence, surveillance may consist of management auditing or oversight of sampling and analysis activities to ensure adherence to the specified protocol of procedures, personal protective equipment usage, approved container usage, and laboratory hood etiquette.

13.3.2 Nitric Acid Fume Release

13.3.2.1 Chemical Accident Description

This accident consists of a release of nitric acid fumes inside or outside of the RPF originating from one of the nitric acid storage tanks in the chemical storage and preparation room.

13.3.2.2 Chemical Accident Consequences

Chapter 19.0 identifies hazardous chemical release scenarios for the facility using several of the stored chemicals. A 1-hr release of the bounding RPF inventory of 5,000 L of nitric acid was shown to cause a concentration of 1,200 parts per million (ppm) at the controlled area fence line and 19.1 ppm at 434 m (1,425 ft) (nearest resident location) under dispersion conditions of moderate wind. Unmitigated exposure to a nearby worker would be much higher. The AEGL-2, 60-minute (min) exposure limit for nitric acid is 24 ppm, which is high consequence to the public. AEGL-3, the 10-min exposure limit, is 170 ppm for a high consequence exposure to the worker. These determinations were made using the ALOHA (Areal Locations of Hazardous Atmospheres) computer code for estimating the consequences of chemical releases. The use of ALOHA is recognized by the NRC in NUREG/CR-6410.

The impact and consequences of a chemical release on RPF operations would require personnel to either evacuate the facility or, under some circumstances, shelter in place depending on the location of the event.

13.3.2.3 Chemical Process Controls

The RPF will follow U.S. Environmental Protection Agency and Occupational Safety and Health Administration regulations for design, construction, and operation of chemical preparation and storage areas. Chemical handling procedures will be provided to operators to ensure safe handling of chemicals according to applicable regulatory requirements and consistent with the applicable material safety data sheets.

IROFS to prevent or mitigate events that could impact the chemical storage tanks in the RPF chemical storage and preparation room are addressed in Section 13.2.5.

13.3.2.4 Chemical Process Surveillance Requirements

Specific surveillance requirements for chemical use and storage at the RPF will be identified in the Operating Permit Application.

13.4 REFERENCES

10 CFR 20, "Standards for Protection Against Radiation," *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 30, "Rules of General Applicability to Domestic Licensing of Byproduct Material," *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 50, "Domestic Licensing of Production and Utilization Facilities," *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 70, "Domestic Licensing of Special Nuclear Material," *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 70.61, "Performance Requirements," *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 71, "Packaging and Transportation of Radioactive Material," *Code of Federal Regulations*, Office of the Federal Register, as amended.

ACI 318, *Building Code Requirements for Structural Concrete*, American Concrete Institute, Farmington Hills, Michigan, 2014.

AISC 360, *Specification for Structural Steel Buildings*, American Institute of Steel Construction, Chicago, Illinois, 2010.

ANS 2.8, *Determining Design Basis Flooding at Power Reactor Sites*, American Nuclear Society, La Grange Park, Illinois, 1992, W2002.

ANSI N14.6, *Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4,500 kg) or More for Nuclear Materials*, American Nuclear Society, La Grange Park, Illinois, 1993.

ANSI/ANS-8.1, *Nuclear Criticality Safety in Operations with Fissionable Material Outside Reactors*, American Nuclear Society, La Grange Park, Illinois, 1998 (Reaffirmed 2007).

ASCE 7, *Minimum Design Loads for Buildings and Other Structures*, American Society of Civil Engineers, Reston, Virginia, 2010.

ASME B30.2, *Overhead and Gantry Cranes (Top Running Bridge, Single or Multiple Girder, Top Running Trolley Hoist)*, American Society of Mechanical Engineers, New York, New York, 2005.

CDC, 2010, *NIOSH Pocket Guide to Chemical Hazards*, 2010-168c, Centers for Disease Control and Prevention, <http://www.cdc.gov/niosh/npg/>, downloaded February 27, 2015.

DC/COL ISG-07, *Interim Staff Guidance on Assessment of Normal and Extreme Winter Precipitation Loads on the Roofs of Seismic Category I Structures*, U.S. Nuclear Regulatory Commission, Washington, D.C., 2008.

DOE-HDBK-3010, *DOE Handbook – Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities*, Change Notice No. 1, U.S. Department of Energy, Washington, D.C., December 1994 (R2013).

DOE-STD-1090-2011, *Hoisting and Rigging*, U.S. Department of Energy, Washington, D.C., September 30, 2011.

EDF-3124-0003, *Preliminary Maximum Hypothetical Accident to Support the Northwest Medical Isotope Facility Environmental Report*, Rev. 1, Portage, Inc., Idaho Falls, Idaho.

EPA 520/1-88-020, Federal Guidance Report No. 11, *Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion*, U.S. Environmental Protection Agency, Washington, D.C., September 1988.

FEMA, 2011, “Flood Insurance Rate Map,” Panel 295 of 470, Boone County, Missouri and Incorporated Areas, Map # 29019C0295D, Federal Emergency Management Agency, Washington, D.C., March 17, 2011.

FEMA P-753, *NEHRP Recommended Seismic Provisions for New Buildings and Other Structures*, Federal Emergency Management Agency, Washington, D.C., 2009.

Hydrometeorological Report No. 51, *Probable Maximum Precipitation Estimates, United States East of the 105th Meridian*, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Washington, D.C., 1978.

Hydrometeorological Report No. 53 (NUREG/CR-1486), *Seasonal Variation of 10-Square Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian*, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, U.S. Nuclear Regulatory Commission, Office of Hydrology National Weather Service, Washington, D.C., April 1980.

IBC, 2012, *International Building Code*, as amended, International Code Council, Inc., Washington, D.C., February 2012.

ICRP-26, *Recommendations of the International Commission on Radiological Protection*, International Commission on Radiological Protection, Ottawa, Canada, 1977.

ICRP-30, *Limits for Intakes of Radionuclides by Workers*, International Commission on Radiological Protection, Ottawa, Canada, 1979.

ICRP-72, *Age-Dependent Doses to the Members of the Public from Intake of Radionuclides – Part 5 Compilation of Ingestion and Inhalation Coefficients*, International Commission on Radiological Protection, Ottawa, Canada, 1995.

LA-13638, *A Review of Criticality Accidents*, Los Alamos National Laboratory, Los Alamos, New Mexico, 2000.

NAP 1994, *Estimating Bounds on Extreme Precipitation Events*, National Academy Press, National Research Council, Washington, D.C., 1994.

NOAA Technical Report NWS 25, *Comparison of Generalized Estimates of Probable Maximum Precipitation with Greatest Observed Rainfalls*, National Oceanic and Atmospheric Administration, Washington, D.C., 1980.

NUREG-1537, *Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors - Format and Content*, Part 1, U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Washington, D.C., February 1996.

NUREG-1940, *RASCAL 4: Description of Models and Methods*, U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, Washington, D.C., December 2012.

NUREG/CR-6410, *Nuclear Fuel Cycle Facility Accident Analysis Handbook*, U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, Washington, D.C., March 1998.

NWMI-2013-CALC-006, *Overall Summary Material Balance – MURR Target Batch*, Rev. A, Northwest Medical Isotopes, LLC, Corvallis, Oregon, June 2013.

NWMI-2013-CALC-011, *Source Term Calculations*, Rev. A, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

NWMI-2014-051, *Integrated Safety Analysis Plan for the Radioisotope Production Facility*, Rev. A, Northwest Medical Isotopes, Corvallis, Oregon, 2014.

NWMI-2014-CALC-014, *Selection of Dominant Target Isotopes for NWMI Material Balances*, Rev. A, Northwest Medical Isotopes, LLC, Corvallis, Oregon, September 2014.

NWMI-2015-RPT-009, *Fission Product Release Evaluation*, Rev. B, Northwest Medical Isotopes, LLC, Corvallis, Oregon, February 2015.

NWMI-2015-SAFETY-001, *NWMI Radioisotope Production Facility Preliminary Hazards Analysis*, Rev. A, Northwest Medical Isotopes, Corvallis, Oregon, 2015.

NWMI-2015-SAFETY-004, *Quantitative Risk Analysis of Process Upsets Associated with Passive Engineering Controls Leading to Criticality Accident Sequences*, Rev. A, Northwest Medical Isotopes, Corvallis, Oregon, 2015.

Regulatory Guide 1.145, *Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants*, Rev. 1, U.S. Nuclear Regulatory Commission, Washington, D.C., February 1983.

WSRC-TR-93-262, *Savannah River Site Generic Data Base Development*, Rev. 1, Westinghouse Savannah River Company, Savannah River Site, Aiken, South Carolina, May 1988.

Chapter 14.0 – Technical Specifications

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0
June 2015

Prepared by:
Northwest Medical Isotopes, LLC
815 NW 9th Ave, Suite 256
Corvallis, OR 97330

This page intentionally left blank.

Chapter 14.0 – Technical Specifications

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0

Date Published:
June 29, 2015

Document Number: NWMI-2013-021	Revision Number: 0
Title: Chapter 14.0 – Technical Specifications Construction Permit Application for Radioisotope Production Facility	
Approved by: Carolyn Haass	Signature: <i>Carolyn C Haass</i>

This page intentionally left blank.

REVISION HISTORY

Rev	Date	Reason for Revision	Revised By
0	6/29/2015	Initial Application	Not required

This page intentionally left blank.

CONTENTS

14.0	TECHNICAL SPECIFICATIONS	14-1
14.1	Outline	14-1
14.1.1	Introduction	14-1
14.1.2	Safety Limit and Limiting Safety System Setting	14-2
14.1.3	Limiting Condition of Operation	14-3
14.1.4	Surveillance Requirements	14-3
14.1.5	Design Features	14-3
14.1.6	Administrative Controls	14-3
14.2	References	14-4

TERMS

Acronyms and Abbreviations

AC	administrative control
ANS	American Nuclear Society
ANSI	American National Standards Institute
CFR	Code of Federal Regulations
IROFS	items relied on for safety
ISA	integrated safety analysis
LCO	limiting condition of operation
LSSS	limiting safety system setting
NWMI	Northwest Medical Isotopes, LLC
RPF	Radioisotope Production Facility
SL	safety limit
SSC	systems, structures, and components

14.0 TECHNICAL SPECIFICATIONS

This chapter describes the process by which the Northwest Medical Isotopes, LLC (NWMI) Radioisotope Production Facility (RPF) technical specifications will be developed and written. For the Construction Permit Application, NWMI has prepared the strategy and content of what will be required for technical specifications during RPF operations. No technical specifications were developed for the Construction Permit Application. The technical specifications will be included in the submission of the Operating License Application.

The format and content of the technical specifications for the RPF will be based on the guidance provided in American National Standards Institute/American Nuclear Society (ANSI/ANS) 15.1, *The Development of Technical Specifications for Research Reactors*; NUREG-1537, *Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Format and Content*; and the final interim staff guidance augmenting NUREG-1537 (NRC, 2012). The technical specifications will be consistent with Title 10, *Code of Federal Regulations*, Part 50.34, “Contents of Applications; Technical Information,” and will address the applicable paragraphs of 10 CFR 50.36, “Technical Specifications.” However, the technical specifications will be written to address the differences between the RPF and either power or research reactors.

The proposed technical specifications will form a comprehensive set of parameters to ensure that normal RPF operations will not result in off-site radiation exposures in excess of the guidelines in 10 CFR 20, “Standards for Protection Against Radiation,” and also reasonably ensure that the RPF will function as analyzed in the Operating License Application. Adherence to the technical specifications will limit the likelihood of malfunctions and mitigate the consequences to the public of off-normal or accident events.

The RPF integrated safety analysis (ISA) process identified systems, structures, or components (SSC) that are defined as items relied on for safety (IROFS). The importance of these SSCs will also need to be reflected in the technical specifications. Each IROFS will need to be examined and likely translated into a limiting condition of operation (LCO). This translation will involve identifying the most appropriate specification to ensure operability and a corresponding surveillance periodicity for the IROFS. An IROFS could potentially be translated into a design function but this seems less likely than translating it into a LCO.

The outline for the technical specifications that will be prepared during development of the Operating License Application is provided below.

14.1 OUTLINE

14.1.1 Introduction

The introductory section will identify the scope, purpose, and format of the technical specifications. A list of definitions will be identified to provide consistent language throughout the document.

[Business Sensitive and Proprietary - Withhold from Public Disclosure per 10 CFR 2.390]

Term	Definition
Actions	Actions are that part of a limiting condition for operation that prescribes Required Actions to be taken under designated conditions within specified completion times.
Administrative control (AC)	...(described in Section 14.1.6)
Design features	...(described in Section 14.1.5)
Limiting condition for operation (LCO)	...(described in Section 14.1.3)
Limiting safety system setting (LSSS)	...(described in Section 14.1.2)
Modes	Modes are used to (1) determine safety limits, limiting control settings, limiting conditions for operation, and administrative controls program applicability, (2) distinguish facility operational conditions, (3) determine minimum staffing requirements, and (4) provide an instant facility status report.
Operable/operability	A system, subsystem, component, or device shall be operable or have operability when it is capable of performing its specified safety function(s), and (1) setpoints are within limits, (2) operating parameters necessary for operability are within limits, and (3) when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication, or other auxiliary equipment that are required for the system, subsystem, component, or device to perform its safety function(s) are also capable of performing their related safety support function(s).
Safety limit (SL)	...(described in Section 14.1.2)
Shall	Denotes a mandatory requirement that must be complied with to maintain the requirements, assumptions, or conditions of the facility safety basis.
Surveillance requirements	...(described in Section 14.1.4)
Verify/verification	A qualitative assessment to confirm or substantiate that specific plant conditions exist. This assessment may include collecting sample data or quantitative data; taking instrument readings; recording data and information on logs, datasheets, or electronic media; and evaluating data and information according to procedures.

14.1.2 Safety Limit and Limiting Safety System Setting

Safety limits (SL) will be established from basic physical conditions, as determined by appropriate process variables, to ensure that the integrity of the principal physical barrier is maintained if the SLs are not exceeded. Limiting safety system settings (LSSS) will be established for the operation of the RPF to defend the SL. The LSSS will be limiting values for setting instrumentation by which point protective action will be initiated. SLs for radiochemical and chemical processing will be developed to maintain operations within limits pursuant to 10 CFR 50.36 to protect workers and the public. As an example, the amount of radioactive material will be limited so as not to exceed the shielding and confinement capabilities of the systems and components in which the materials are processed or stored. Each SL and LSSS will have an identified applicability, objective, specification, and basis. Currently, neither the SL nor LSSS have been specifically identified but may be part of the Operating License Application.

14.1.3 Limiting Condition of Operation

Administratively established constraints on equipment and operational characteristics will be identified and described. These limits will be the lowest functional capability or performance level required for safe operation of the facility. Each LCO will have an identified applicability, objective, specification, and basis. The basis of each LCO will be provided and consistent with analysis provided in the Operating License Application. Anticipated systems covered in this section include containment, ventilation, effluent monitoring, and criticality monitoring. Windows, or short time periods, of approved inoperability will be established to create operational flexibility. The basis of these windows will be analyzed in the Operating License Application.

14.1.4 Surveillance Requirements

A set of requirements will provide maximum intervals for checks, tests, and calibrations for each system or component identified in Section 14.1.3 to verify a minimum performance or operability level. The basis for each will be identified and will be derived from either an analysis presented in the Operating License Application or experience, engineering judgment, or manufacturer recommendations.

14.1.5 Design Features

This section will establish the minimum design functions of safety-related SSCs, particularly construction or geometric arrangements. These design functions, if altered or modified, are implied to significantly affect safety and will not be identified in other sections. Anticipated areas covered in this section include the site and facility description, and fissionable material storage. Design features that will be provided in the technical specifications are the features of the RPF (e.g., materials of construction and geometric arrangements) that would have a significant effect on safety if those features were altered or modified. The requirements of 10 CFR 50.36(c)(4) are specified here as they pertain to the above referenced processes.

14.1.6 Administrative Controls

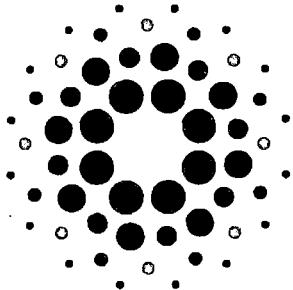
This section will establish the administrative structure and controls for the RPF and will identify the roles, responsibility, and reporting lines for NWMI management (e.g., Levels 1 through 4). Other requirements include:

- Identifying minimum staffing and supervisory functions
- Preparing and maintaining call lists
- Selecting and training personnel
- Developing a process for creating and modifying procedures
- Identifying actions to be taken in case of an SL violation (if applicable), exceeding an LCO, or release of radioactivity in excess of regulatory limits
- Developing reporting requirements for annual operating conditions or events
- Specifying records retention

This section will also identify the creation of a Review and Audit Committee and will address the establishment of a charter, review and audit functions, quorum requirements, membership expertise, and meeting frequency for the committee.

14.2 REFERENCES

10 CFR 20, "Standards for Protection Against Radiation," *Code of Federal Regulations*, Office of the Federal Register, as amended.


10 CFR 50, "Domestic Licensing of Production and Utilization Facilities," *Code of Federal Regulations*, Office of the Federal Register, as amended.

ANSI/ANS 15.1, *The Development of Technical Specifications for Research Reactors*, American National Standards Institute/American Nuclear Society, LaGrange Park Illinois, 2013.

NRC, 2012, *Final Interim Staff Guidance Augmenting NUREG-1537, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors," Parts 1 and 2, for Licensing Radioisotope Production Facilities and Aqueous Homogeneous Reactors*, Docket ID: NRC-2011-0135, U.S. Nuclear Regulatory Commission, Washington, D.C., October 30, 2012.

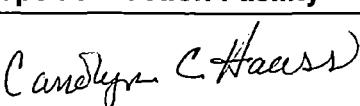
NUREG-1537 (Part 1), *Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Format and Content*, U.S. Nuclear Regulatory Commission, Washington, D.C., February 1996.

Chapter 15.0 – Financial Qualifications

Construction Permit Application for Radioisotope Production Facility

**NWMI-2013-021, Rev. 0
June 2015**

Prepared by:
Northwest Medical Isotopes, LLC
815 NW 9th Ave, Suite 256
Corvallis, OR 97330


This page intentionally left blank.

Chapter 15.0 – Financial Qualifications

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0

Date Published:
June 29, 2015

Document Number: NWMI-2013-021	Revision Number: 0
Title: Chapter 15.0 – Financial Qualifications Construction Permit Application for Radioisotope Production Facility	
Approved by: Carolyn Haass	Signature:

This page intentionally left blank.

REVISION HISTORY

Rev	Date	Reason for Revision	Revised By
0	6/29/2015	Initial Application	Not required

This page intentionally left blank.

CONTENTS

15.0	FINANCIAL QUALIFICATIONS	15-1
15.1	Financial Ability to Construct a Facility	15-1
15.2	Financial Ability to Safely Operate a Facility	15-2
15.3	Financial Ability to Safely Decommission a Facility.....	15-3
15.4	Foreign Ownership, Control, or Domination.....	15-4
15.5	Nuclear Insurance and Indemnity.....	15-4
15.6	References	15-5

TABLES

Table 15-1.	Estimated Radioisotope Production Facility's Operating Costs and Expected Revenues for Years 1–5	15-3
-------------	--	------

TERMS

Acronyms

⁹⁹ Mo	molybdenum-99
CFR	Code of Federal Regulations
FOCD	foreign ownership, control, or domination
LEU	low-enriched uranium
LLC	limited liability corporation
NRC	U.S. Nuclear Regulatory Commission
NWMI	Northwest Medical Isotopes, LLC
RPF	radioisotope production facility
SRP	Standard Review Plan
U.S.	United States
U.S.C.	United States Code

15.0 FINANCIAL QUALIFICATIONS

Financial information for Northwest Medical Isotopes, LLC (NWMI) is presented in this chapter per Title 10, *Code of Federal Regulations*, Part 50, “Domestic Licensing of Production and Utilization Facilities,” Subparts 50.33(d)(3)(iii), 50.33(f), and 50.33(k). Information regarding the Price-Anderson Act, Section 170 of the Atomic Energy Act of 1954 (42 U.S.C. § 2011 et seq.), as amended, is also provided. This information establishes NWMI’s financial qualifications to design, construct, operate, and decommission, and to own a radioisotope production facility (RPF). The following information is presented in the following sections:

- Financial ability to construct an RPF authorized by the Construction Permit (Section 15.1)
- Financial ability to safely operate an RPF (Section 15.2)
- Financial ability to safely decommission an RPF (Section 15.3)
- Information regarding foreign ownership, control, or domination (FOCD) (Section 15.4)
- Information regarding nuclear insurance and indemnity (Section 0)

15.1 FINANCIAL ABILITY TO CONSTRUCT A FACILITY

The U.S. Nuclear Regulatory Commission (NRC) requires that an applicant for a construction permit submit sufficient financial information to demonstrate reasonable assurance that the applicant can obtain the necessary funds to cover the estimated design, construction, and startup costs for the RPF, and the related fuel-cycle costs (e.g., for low-enriched uranium [LEU] from the U.S. Department of Energy) pursuant to 10 CFR 50.33(f). In addition, the applicant is required to indicate source(s) of the funds to cover the costs.

The financial guidelines to be followed by the applicant are provided in 10 CFR 50, Appendix C, “A Guide for the Financial Data and Related Information Required to Establish Financial Qualifications for Construction Permits and Combined Licenses.” This appendix (1) distinguishes between applicants that are established organizations and those that are newly formed entities organized primarily for the purpose of engaging in the activity for which the permit is sought, and (2) provides a guide for the financial data and related information required to establish financial qualifications for construction permits. NWMI is considered a newly formed entity per 10 CFR 50, Appendix C.

NWMI is submitting information that demonstrates the company possesses or has reasonable assurance of obtaining the necessary funds to cover estimated design, construction, and startup costs and the related fuel-cycle costs.

NWMI is submitting information demonstrating that the company possesses or has reasonable assurance of obtaining the necessary funds to cover estimated design, construction, and startup costs, and related fuel-cycle costs. The estimated NWMI costs to construct an RPF are summarized below. These estimates are based on NWMI’s preliminary design of the RPF completed in May 2015. The estimated NWMI costs to construct an RPF are summarized below.

Total facility costs	[Proprietary Information]
Plant equipment	[Proprietary Information]
LEU costs for RPF startup and first year	[Proprietary Information]
Total estimated costs	[Proprietary Information]

NWMI prepared an RPF base estimate that covers all components of the project (e.g., scope, conditions, and characteristics), including engineering and construction equipment, materials, and labor. The estimate incorporates data from previous and similar projects and NWMI's preliminary RPF time-cycle logistical study that includes data for labor requirements, materials, operations, and maintenance. The base estimate also used inputs from the completed project file, project schedule, and knowledge of site conditions. The estimate was escalated to the year of construction dollars using a construction cost index and to the mid-point of construction. NWMI developed clear and concise documentation for traceability that will allow future updates, review, and validation of the estimate.

To date, NWMI has received [Proprietary Information] in equity financing and anticipates facility financing [Proprietary Information] for the final design and construction of the RPF using various sources of financing, including equity and debt to be completed in the 3rd quarter 2016. Total RPF estimated costs are [Proprietary Information]. NWMI research and development, preliminary design, regulatory, and permitting cost projections are fully funded through existing equity financing receipts and commitments. NWMI has established a wholly owned subsidiary for the RPF and expects construction to be debt-financed. The RPF site is located in the Discovery Ridge Research Park (Columbia, Missouri) and on land owned by the University of Missouri system and will be leased for [Proprietary Information].

15.2 FINANCIAL ABILITY TO SAFELY OPERATE A FACILITY

NWMI will be applying for a Class 103 license per 10 CFR 50.22, “Class 103 licenses; for Commercial and Industrial Facilities,” and 10 CFR 70, “Domestic Licensing of Special Nuclear Material.” Additional future applications will be applied for, including receipt, possession, and use of source material under 10 CFR 40, “Domestic Licensing of Source Material,” and byproduct material under 10 CFR 30, “Rules of General Applicability to Domestic Licensing of Byproduct Material.” NWMI expects to request an operating license for a term of 30 years.

NWMI is providing financial information that demonstrates the company possesses or has reasonable assurance of obtaining the funds necessary to cover estimated facility operational costs for the term of the operating license. Table 15-1 provides the estimated NWMI RPF operating costs and expected revenues for the first five years of RPF commercial operations.

Table 15-1. Estimated Radioisotope Production Facility's Operating Costs and Expected Revenues for Years 1–5

\$000	2018	2019	2020	2021	2022
Revenue	[Proprietary Information]				
Cost of goods sold	[Proprietary Information]				
Gross profit	[Proprietary Information]				
% Gross profit	[Proprietary Information]				
Operating expenses	[Proprietary Information]				
Income from operations	[Proprietary Information]				
Non-operating expenses	[Proprietary Information]				
Income taxes	[Proprietary Information]				
Net income	[Proprietary Information]				
Net income % of revenue	[Proprietary Information]				

Pursuant to 10 CFR 50.33(f)(2), the sources of funds to cover these costs will be derived from the expected revenues associated with the sale of molybdenum-99.

NWMI prepared the RPF operations base estimate based on previous and similar projects and base cost estimating. The operations base estimate also used inputs from NWMI's preliminary RPF time-cycle logistical study that includes data for labor requirements, materials, operations, and maintenance. NWMI developed clear and concise documentation for traceability that will allow future updates, review, and validation of the estimate.

15.3 FINANCIAL ABILITY TO SAFELY DECOMMISSION A FACILITY

NWMI will provide financial information that demonstrates reasonable assurance that funds will be available to decommission the RPF in accordance with 10 CFR 50.33(f) as part of the Operating License application. In addition, the financial information will be submitted in accordance with 10 CFR 50.75(d).

In addition, pursuant to 10 CFR 50.75(e), the RPF decommissioning report will contain financial assurances, including a cost estimate for the RPF decommissioning, identification of which method(s) will be used to provide funds for decommissioning, and a description of the means of adjusting the cost estimate and associated funding level periodically over the operational life of the RPF to account for changes in labor, energy, and waste disposal.

Based on previous experience and discussions with nuclear industry experts, NWMI has developed a preliminary cost estimate for decommissioning the RPF to be [Proprietary Information]. NWMI's current business strategy anticipates that decommissioning of the RPF will be financed by an external escrow account in which deposits will be made annually, coupled with either a surety method, insurance, or some other form of guaranty. Financial projections assume that the annual escrow deposit will be approximately [Proprietary Information] and adjusted for inflation periodically, which provides reasonable assurance that decommissioning funds will be available for the RPF.

The NWMI RPF Decommissioning Plan, including detailed costs and associated financial assurances, will be provided in the Operating License application. The estimated costs of decommissioning will be developed using the analysis of the RPF design and analysis of estimates and actual costs of decommissioning similar facilities.

15.4 FOREIGN OWNERSHIP, CONTROL, OR DOMINATION

NWMI understands that the NRC will evaluate our application in a manner that is consistent with the guidance provided in the Standard Review Plan (SRP) regarding “Foreign Ownership, Control, or Domination of applicants for Reactor Licenses,” June 1999, referred to as the “SRP on FOCD.” This evaluation will determine whether NWMI is owned, controlled, or dominated by an alien, a foreign corporation, or a foreign government.

The NRC’s position outlined in the SRP on FOCD states “the foreign control prohibition should be given an orientation toward safeguarding the national defense and security.” Furthermore, the SRP on FOCD outlines how the effects of foreign ownership may be mitigated through implementation of a “negation action plan” to ensure that any foreign interest is effectively denied control or domination over the applicant.

NWMI fully understands that a financial analyst will review all of the information submitted by the company to determine whether there is FOCD. If it is determined that there is FOCD, additional action would be necessary to negate FOCD, and the applicant would be advised and requested to submit a Negative Action Plan.

NWMI is a limited liability company organized under the laws of the state of Oregon. NWMI is *not* owned, controlled, or dominated by alien, foreign corporation, or foreign government. In addition, NWMI is not acting as an agent or representative of another person or company in filing the Construction Permit Application.

NWMI is governed and managed by a six-member Board of Managers, all of whom are U.S. citizens. NWMI currently has 18 members. To the best of our knowledge, all members holding more than one percent of NWMI’s membership interests are U.S. citizens or entities owned or controlled by U.S. citizens.

15.5 NUCLEAR INSURANCE AND INDEMNITY

The Price-Anderson Act provides a system to pay funds for claims by members of the public for personal injury and property damage resulting from any nuclear incident. The Price-Anderson Act provides coverage in varying degrees. The implementing regulations regarding the Price-Anderson Act are provided in 10 CFR 140, “Financial Protection Requirements and Indemnity Agreements.”

NWMI understands the requirement to have and maintain financial protection and insurance requirements under the Price-Anderson Act. The NWMI RPF is planned to be licensed under both 10 CFR 50 for the processing of irradiated LEU to recover ⁹⁹Mo and recycle LEU, and 10 CFR 70 for the fabrication of LEU targets that will be irradiated in a network of domestic university reactors. Prior to the RPF becoming operational, NWMI plans to obtain and maintain financial protection in the form of nuclear liability insurance. The amount of insurance required will be developed and finalized during the Operations License Application.

NWMI will also execute and maintain an indemnification agreement with the NRC for the duration of the RPF Operating License. In addition, pursuant to 10 CFR 140.13, “Amount of Financial Protection Required of Certain Holders of Construction Permits and Combined Licenses under 10 CFR 52,” NWMI will maintain financial protection of \$1 million in insurance prior to fuel (or LEU) being accepted by NWMI at the RPF, and full financial protection prior to operation of the RPF.

NWMI will not purchase property insurance pursuant to 10 CFR 50.54(w).

15.6 REFERENCES

10 CFR 30, “Rules of General Applicability to Domestic Licensing of Byproduct Material,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 40, “Domestic Licensing of Source Material,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 50, “Domestic Licensing of Production and Utilization Facilities,” *Code of Federal Regulations*, Appendix C, “A Guide for the Financial Data and Related Information Required To Establish Financial Qualifications for Construction Permits and Combined Licenses,” Office of the Federal Register, as amended.

10 CFR 50.22, “Class 103 Licenses; for Commercial and Industrial Facilities,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 50.33, “Contents of Applications; General Information,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

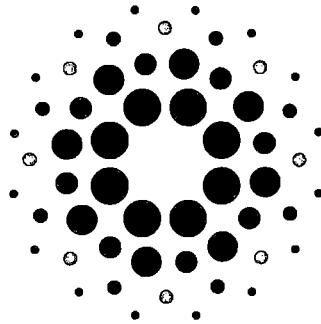
10 CFR 50.54, “Conditions of Licenses,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 50.75, “Reporting and Recordkeeping for Decommissioning Planning,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 70, “Domestic Licensing of Special Nuclear Material,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

10 CFR 140, “Financial Protection Requirements and Indemnity Agreements,” *Code of Federal Regulations*, Office of the Federal Register, as amended.


10 CFR 140.13, “Amount of Financial Protection Required of Certain Holders of Construction Permits and Combined Licenses under 10 CFR 52,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

42 U.S.C. § 2011 et seq., “Atomic Energy Act of 1946,” *United States Code*, as amended.

64 FR 52355, “Final Standard Review Plan on Foreign Ownership, Control, or Domination,” *Federal Register*, Volume 64, Issue 187, U.S. Nuclear Regulatory Commission, Washington, D.C., September 28, 1999.

This page intentionally left blank.

Chapter 16.0 – Other License Considerations

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0
June 2015

Prepared by:
Northwest Medical Isotopes, LLC
815 NW 9th Ave, Suite 256
Corvallis, OR 97330

This page intentionally left blank.

Chapter 16.0 – Other License Considerations

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0

Date Published:
June 29, 2015

Document Number: NWMI-2013-021	Revision Number: 0
Title: Chapter 16.0 – Other License Considerations Construction Permit Application for Radioisotope Production Facility	
Approved by: Carolyn Haass	Signature: <i>Carolyn C. Haass</i>

This page intentionally left blank.

CONTENTS

16.0	OTHER LICENSE CONSIDERATIONS.....	16-1
16.1	Prior Use of Facility Components	16-1
16.2	Medical Use of the Radioisotope Production Facility.....	16-1

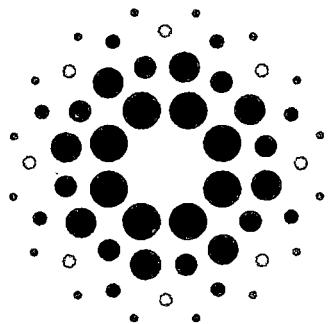
TERMS

Acronyms and Abbreviations

NWMI	Northwest Medical Isotopes, LLC
RPF	Radioisotope Production Facility

16.0 OTHER LICENSE CONSIDERATIONS

16.1 PRIOR USE OF FACILITY COMPONENTS


Northwest Medical Isotopes, LLC (NWMI) Radioisotope Production Facility (RPF) will only use new and appropriately qualified components and systems to conduct all special nuclear material and radioisotope production processes. Thus, discussions involving used components and systems are not applicable to the NWMI RPF.

16.2 MEDICAL USE OF THE RADIOISOTOPE PRODUCTION FACILITY

NWMI RPF does not include equipment or facilities associated with direct medical administration of radioisotopes or other radiation-based therapies. Thus, discussions involving medical use of the RPF is not applicable for this Construction Permit Application.

This page intentionally left blank

Chapter 17.0 – Decommissioning and Possession- Only License Amendments

Construction Permit Application for Radioisotope Production Facility

**NWMI-2013-021, Rev. 0
June 2015**

Prepared by:
Northwest Medical Isotopes, LLC
815 NW 9th Ave, Suite 256
Corvallis, OR 97330

This page intentionally left blank.

Chapter 17.0 – Decommissioning and Possession-Only License Amendments

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0

Date Published:
June 29, 2015

Document Number: NWMI-2013-021	Revision Number: 0
Title: Chapter 17.0 – Decommissioning and Possession-Only License Amendments Construction Permit Application for Radioisotope Production Facility	
Approved by: Carolyn Haass	Signature: <i>Carolyn C. Haass</i>

This page intentionally left blank.

CONTENTS

17.0	DECOMMISSIONING AND POSSESSION-ONLY LICENSE AMENDMENTS	17-1
17.1	Decommissioning	17-1
17.2	Possession-Only License Amendments	17-1
17.3	References	17-1

TERMS

Acronyms and Abbreviations

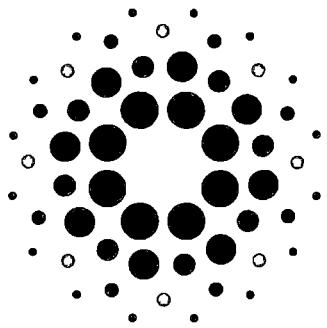
CFR	Code of Federal Regulations
NWMI	Northwest Medical Isotopes, LLC
RPF	Radioisotope Production Facility

17.0 DECOMMISSIONING AND POSSESSION-ONLY LICENSE AMENDMENTS

17.1 DECOMMISSIONING

Per Title 10, *Code of Federal Regulations*, Subpart 50.34, “Contents of Applications; Technical Information,” (10 CFR 50.34) paragraph (a)(1)(i), a construction permit applicant for a non-power reactor (or production facility) is required to submit in their Construction Permit Application the information prescribed in 10 CFR 50.34, paragraphs (a)(2) through (a)(8). Thus, the Construction Permit Application is not required to include a decommissioning plan. A decommissioning report will be submitted in accordance with 10 CFR 50.33(k)(1) with the Operating License Application.

17.2 POSSESSION-ONLY LICENSE AMENDMENTS


This section relates to a possession-only license and is not applicable to the Northwest Medical Isotopes, LLC Radioisotope Production Facility.

17.3 REFERENCES

10 CFR 50.34, “Contents of Applications; Technical Information,” *Code of Federal Regulations*, Office of the Federal Register, as amended.

This page intentionally left blank

Chapter 18.0 – Highly Enriched Uranium to Low-Enriched Uranium Conversion

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0
June 2015

Prepared by:
Northwest Medical Isotopes, LLC
815 NW 9th Ave, Suite 256
Corvallis, OR 97330

This page intentionally left blank.

Chapter 18.0 – Highly Enriched Uranium to Low-Enriched Uranium Conversion

Construction Permit Application for Radioisotope Production Facility

NWMI-2013-021, Rev. 0

Date Published:
June 29, 2015

Document Number: NWMI-2013-021	Revision Number: 0
Title: Chapter 18.0 – Highly Enriched Uranium to Low-Enriched Uranium Conversion, Construction Permit Application for Radioisotope Production Facility	
Approved by: Carolyn Haass	Signature: <i>Carolyn Haass</i>

This page intentionally left blank.

18.0 HIGHLY ENRICHED URANIUM TO LOW-ENRICHED URANIUM CONVERSION

This chapter of the Construction Permit Application addressing the conversion of highly enriched uranium to low-enriched uranium is not applicable to the Northwest Medical Isotopes, LLC Radioisotope Production Facility.

This page intentionally left blank.