7.0 CROSS CHECK PROGRAM

FOR THE

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

Page 2 of 64

2014 ANNUAL QUALITY ASSURANCE REPORT FOR THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

Approved By:

Robert L. Pullano

Director, Quality Systems

February 15, 2015 Rev. 1

Date

TABLE OF CONTENTS

1.	INTRODUCTION	5
2.	QUALITY ASSURANCE PROGRAMS FOR INTER-LABORATORY, INTRA-LABORATORY THIRD PARTY CROSS-CHECK	
3.	QUALITY ASSURANCE PROGRAM FOR INTERNAL AND EXTERNAL AUDITS	7
	PERFORMANCE EVALUATION ACCEPTANCE CRITERIA FOR ENVIRONMENTAL SAMPANALYSIS	
5.	PERFORMANCE EVALUATION SAMPLES	8
6.	QUALITY CONTROL PROGRAM FOR ENVIRONMENTAL SAMPLE ANALYSIS	8
7.	SUMMARY OF DATA RESULTS	9
8.	SUMMARY OF PARTICIPATION IN THE ECKERT & ZIEGLER ANALYTICS ENVIRONMENT CROSS-CHECK PROGRAM	
9.	SUMMARY OF PARTICIPATION IN THE MAPEP MONITORING PROGRAM1	0
10	D. SUMMARY OF PARTICIPATION IN THE ERA MRAD PT PROGRAM1	0
11	1. SUMMARY OF PARTICIPATION IN THE ERA PT PROGRAM1	0
12	2. CORRECTIVE ACTION REQUEST AND REPORT (CARR)1	0
13	3. REFERENCES	2

TABLE OF CONTENTS (CONTINUED)

TABLES

rable 1	2014 Radiological Proficiency Testing Results and Acceptance Criteria	13
Table 2	2014 Eckert & Ziegler Analytics Performance Evaluation Results	29
Table 3	2014 Department of Energy Mixed Analyte Performance Evaluation Program (MAPE Results	
Table 4	2014 ERA Program Performance Evaluation Results	36
Table 5	2014 ERA Program (MRAD) Performance Evaluation Results	38
Table 6	REMP Intra-Laboratory Data Summary: Bias and Precision By Matrix	.53
Table 7	All Radiological Intra-Laboratory Data Summary: Bias and Precision By Matrix	.55
Table 8	2014 Corrective Action Report Summary	.62
FIGURE	<u>is</u>	
Figure 1	Cobalt-60 Performance Evaluation Results and % Bias	44
Figure 2	Cesium-137 Performance Evaluation Results and % Bias	45
Figure 3	Tritium Performance Evaluation Results and % Bias	46
Figure 4	Strontium-90 Performance Evaluation Results and % Bias	47
Figure 5	Gross Alpha Performance Evaluation Results and % Bias	48
Figure 6	Gross Beta Performance Evaluation Results and % Bias	49
Figure 7	Iodine-131 Performance Evaluation Results and % Bias	50
Figure 8	Americium-241 Performance Evaluation Results and % Bias	51
Figure 9	Plutonium-238 Performance Evaluation Results and % Bias	52

Page 5 of 64

2014 ANNUAL QUALITY ASSURANCE REPORT FOR THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

1. Introduction

GEL Laboratories, LLC (GEL) is a privately owned environmental laboratory dedicated to providing personalized client services of the highest quality. GEL was established as an analytical testing laboratory in 1981. Now a full service lab, our analytical divisions use state of the art equipment and methods to provide a comprehensive array of organic, inorganic, and radiochemical analyses to meet the needs of our clients.

At GEL, quality is emphasized at every level of personnel throughout the company. Management's ongoing commitment to good professional practice and to the quality of our testing services to our customers is demonstrated by their dedication of personnel and resources to develop, implement, assess, and improve our technical and management operations.

The purpose of GEL's quality assurance program is to establish policies, procedures, and processes to meet or exceed the expectations of our clients. To achieve this, all personnel that support these services to our clients are introduced to the program and policies during their initial orientation, and annually thereafter during company-wide training sessions.

GEL's primary goals are to ensure that all measurement data generated are scientifically and legally defensible, of known and acceptable quality per the data quality objectives (DQOs), and thoroughly documented to provide sound support for environmental decisions. In addition, GEL continues to ensure compliance with all contractual requirements, environmental standards, and regulations established by local, state and federal authorities.

GEL administers the QA program in accordance with the Quality Assurance Plan, GL-QS-B-001. Our Quality Systems include all quality assurance (QA) policies and quality control (QC) procedures necessary to plan, implement, and assess the work we perform. GEL's QA Program establishes a quality management system (QMS) that governs all of the activities of our organization.

This report entails the quality assurance program for the proficiency testing and environmental monitoring aspects of GEL for 2014. GEL's QA Program is designed to monitor the quality of analytical processing associated with environmental, radiobioassay, effluent (10 CFR Part 50), and waste (10 CFR Part 61) sample analysis.

This report covers the category of Radiological Environmental Monitoring Program (REMP) and includes:

- Intra-laboratory QC results analyzed during 2014.
- Inter-laboratory QC results analyzed during 2014 where known values were available.

Page 6 of 64

2. Quality Assurance Programs for Inter-laboratory, Intra-laboratory and Third Party Cross-Check

In addition to internal and client audits, our laboratory participates in annual performance evaluation studies conducted by independent providers. We routinely participate in the following types of performance audits:

- Proficiency testing and other inter-laboratory comparisons
- Performance requirements necessary to retain Certifications
- Evaluation of recoveries of certified reference and in-house secondary reference materials using statistical process control data.
- Evaluation of relative percent difference between measurements through SPC data.

We also participate in a number of proficiency testing programs for federal and state agencies and as required by contracts. It is our policy that no proficiency evaluation samples be analyzed in any special manner. Our annual performance evaluation participation generally includes a combination of studies that support the following:

- US Environmental Protection Agency Discharge Monitoring Report, Quality Assurance Program (DMR-QA). Annual national program sponsored by EPA for laboratories engaged in the analysis of samples associated with the NPDES monitoring program. Participation is mandatory for all holders of NPDES permits. The permit holder must analyze for all of the parameters listed on the discharge permit. Parameters include general chemistry, metals, BOD/COD, oil and grease, ammonia, nitrates, etc.
- Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP). A semiannual
 program developed by DOE in support of DOE contractors performing waste analyses.
 Participation is required for all laboratories that perform environmental analytical measurements
 in support of environmental management activities. This program includes radioactive isotopes
 in water, soil, vegetation and air filters.
- ERA's MRAD-Multimedia Radiochemistry Proficiency test program. This program is for labs seeking certification for radionuclides in wastewater and solid waste. The program is conducted in strict compliance with USEPA National Standards for Water Proficiency study.
- ERA's InterLaB RadCheM Proficiency Testing Program for radiological analyses. This program completes the process of replacing the USEPA EMSL-LV Nuclear Radiation Assessment Division program discontinued in 1998. Laboratories seeking certification for radionuclide analysis in drinking water also use the study. This program is conducted in strict compliance with the USEPA National Standards for Water Proficiency Testing Studies. This program encompasses Uranium by EPA method 200.8 (for drinking water certification in Utah/Primary NELAP), gamma emitters, Gross Alpha/Beta, Iodine-131, naturally occurring radioactive isotopes, Strontium-89/90, and Tritium.
- ERA's Water Pollution (WP) biannual program for waste methodologies includes parameters for both organic and inorganic analytes.

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 7 of 64

- ERA's Water Supply (WS) biannual program for drinking water methodologies includes parameters for organic and inorganic analytes.
- Environmental Cross-Check Program administered by Eckert & Ziegler Analytics, Inc. This
 program encompasses radionuclides in water, soil, milk, naturally occurring radioactive isotopes
 in soil and air filters.

GEL procures single-blind performance evaluation samples from Eckert & Ziegler Analytics to verify the analysis of sample matrices processed at GEL. Samples are received on a quarterly basis. GEL's Third-Party Cross-Check Program provides environmental matrices encountered in a typical nuclear utility REMP. The Third-Party Cross-Check Program is intended to meet or exceed the inter-laboratory comparison program requirements discussed in NRC Regulatory Guide 4.15. Once performance evaluation samples have been prepared in accordance with the instructions provided by the PT provider, samples are managed and analyzed in the same manner as environmental samples from GEL's clients.

3. Quality Assurance Program for Internal and External Audits

During each annual reporting period, at least one internal assessment of each area of the laboratory is conducted in accordance with the pre-established schedule from Standard Operating Procedure for the Conduct of Quality Audits, GL-QS-E-001. The annual internal audit plan is reviewed for adequacy and includes the scheduled frequency and scope of quality control actions necessary to GEL's QA program. Internal audits are conducted at least annually in accordance with a schedule approved by the Quality Systems Director. Supplier audits are contingent upon the categorization of the supplier, and may or may not be conducted prior to the use of a supplier or subcontractor. Type I suppliers and subcontractors, regardless of how they were initially qualified, are re-evaluated at least once every three years.

In addition, prospective customers audit GEL during pre-contract audits. GEL hosts several external audits each year for both our clients and other programs. These programs include environmental monitoring, waste characterization, and radiobioassay. The following list of programs may audit GEL at least annually or up to every three years depending on the program.

- NELAC, National Environmental Laboratory Accreditation Program
- DOECAP, U.S. Department of Energy Consolidated Audit Program
- DOELAP, U.S. Department of Energy Laboratory Accreditation Program
- DOE QSAS, U.S. Department of Energy, Quality Systems for Analytical Services
- ISO/IEC 17025:2005
- A2LA, American Association for Laboratory Accreditation
- DOD ELAP, US Department of Defense Environmental Accreditation Program
- NUPIC, Nuclear Procurement Issues Committee
- South Carolina Department of Heath and Environmental Control (SC DHEC)

The annual radiochemistry laboratory internal audit (13-RAD-001) was conducted in July, 2014. One (1) finding, four (4) observations, and eight (8) recommendations resulted from this assessment. By September, 2014, the finding was closed and appropriate laboratory staff addressed each observation and recommendation.

Page 8 of 64

4. Performance Evaluation Acceptance Criteria for Environmental Sample Analysis

GEL utilized an acceptance protocol based upon two performance models. For those inter-laboratory programs that already have established performance criteria for bias (i.e., MAPEP, and ERA/ELAP), GEL will utilize the criteria for the specific program. For intra-laboratory or third party quality control programs that do not have a specific acceptance criteria (i.e. the Eckert-Ziegler Analytics Environmental Cross-check Program), results will be evaluated in accordance with GEL's internal acceptance criteria.

5. Performance Evaluation Samples

Performance Evaluation (PE) results and internal quality control sample results are evaluated in accordance with GEL acceptance criteria. The first criterion concerns bias, which is defined as the deviation of any one result from the known value. The second criterion concerns precision, which deals with the ability of the measurement to be replicated by comparison of an individual result with the mean of all results for a given sample set.

At GEL, we also evaluate our analytical performance on a regular basis through statistical process control (SPC) acceptance criteria. Where feasible, this criterion is applied to both measures of precision and accuracy and is specific to sample matrix. We establish environmental process control limits at least annually.

For Radiochemistry analysis, quality control evaluation is based on static limits rather than those that are statistically derived. Our current process control limits are maintained in GEL's AlphaLIMS. We also measure precision with matrix duplicates and/or matrix spike duplicates. The upper and lower control limits (UCL and LCL respectively) for precision are plus or minus three times the standard deviation from the mean of a series of relative percent differences. The static precision criteria for radiochemical analyses are 0 - 20%, for activity levels exceeding the contract required detection limit (CRDL).

6. Quality Control Program for Environmental Sample Analysis

GEL's internal QA Program is designed to include QC functions such as instrumentation calibration checks (to insure proper instrument response), blank samples, instrumentation backgrounds, duplicates, as well as overall staff qualification analyses and statistical process controls. Both quality control and qualification analyses samples are used to be as similar as the matrix type of those samples submitted for analysis by the various laboratory clients. These performance test samples (or performance evaluation samples) are either actual sample submitted in duplicate in order to evaluate the precision of laboratory measurements, or fortified blank samples, which have been given a known quantity of a radioisotope that is in the interest to GEL's clients.

Accuracy (or Bias) is measured through laboratory control samples and/or matrix spikes, as well as surrogates and internal standards. The UCLs and LCLs for accuracy are plus or minus three times the standard deviation from the mean of a series of recoveries. The static limit for radiochemical analyses is 75 - 125%. Specific instructions for out-of-control situations are provided in the applicable analytical SOP.

GEL's Laboratory Control Standard (LCS) is an aliquot of reagent water or other blank matrix to which known quantities of the method analytes are added in the laboratory. The LCS is analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements. Some methods may refer to these

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 9 of 64

samples as Laboratory Fortified Blanks (LFB). The requirement for recovery is between 75 and 125% for radiological analyses excluding drinking water matrix.

Bias (%) = (<u>observed concentration</u>) * 100 % (known concentration)

Precision is a data quality indicator of the agreement between measurements of the same property, obtained under similar conditions, and how well they conform to themselves. Precision is usually expressed as standard deviation, variance or range in either absolute or relative (percentage) terms.

GEL's laboratory duplicate (DUP or LCSD) is an aliquot of a sample taken from the same container and processed in the same manner under identical laboratory conditions. The aliquot is analyzed independently from the parent sample and the results are compared to measure precision and accuracy.

If a sample duplicate is analyzed, it will be reported as Relative Percent Difference (RPD). The RPD must be 20 percent or less, if both samples are greater than 5 times the MDC. If both results are less than 5 times MDC, then the RPD must be equal to or less than 100%. If one result is above the MDC and the other is below the MDC, then the RPD can be calculated using the MDC for the result of the one below the MDC. The RPD must be 100% or less. In the situation where both results are above the MDC but one result is greater than 5 times the MDC and the other is less than 5 times the MDC, the RPD must be less than or equal to 20%. If both results are below MDC, then the limits on % RPD are not applicable.

Difference (%) = (high duplicate result – low duplicate result) * 100 % (average of results)

7. Summary of Data Results

During 2013, forty-four (44) radioisotopes associated with seven (7) matrix types were analyzed under GEL's Performance Evaluation program in participation with ERA, MAPEP, and Eckert & Ziegler Analytics. Matrix types were representative of client analyses performed during 2014. Of the four hundred forty-five (445) total results reported, 98.6% (439 of 445) were found to be acceptable. The list below contains the type of matrix evaluated by GEL.

- Air Filter
- Cartridge
- Water
- Milk
- Soil
- Liquid
- Vegetation

Graphs are provided in Figures 1-9 of this report to allow for the evaluation of trends or biases. These graphs include radioisotopes Cobalt-60, Cesium-137, Tritium, Strontium-90, Gross Alpha, Gross Beta, Iodine-131, Americium-241, and Plutonium-238.

8. Summary of Participation in the Eckert & Ziegler Analytics Environmental Cross-Check Program

Page 10 of 64

Eckert & Ziegler Analytics provided samples for sixty-nine (69) individual environmental analyses. The accuracy of each result reported to Eckert & Ziegler Analytics, Inc. is measured by the ratio of GEL's result to the known value. All results fell within GEL's acceptance criteria (100%).

9. Summary of Participation in the MAPEP Monitoring Program

MAPEP Series 30 and 31 were analyzed by the laboratory. Of the one hundred thirty-eight (138) analyses, 97.8% (135 out of 138) of all results fell within the PT provider's acceptance criteria. Three analytical failures occurred: Uranium-234/233 and Uranium-238 in Soil and Uranium-238 in vegetation.

For the corrective actions associated with MAPEP Series 30, refer to CARR 140605-879 which is detailed in Table 8.

10. Summary of Participation in the ERA MRaD PT Program

The ERA MRad program provided samples (MRAD-20 and MRAD-21) for one hundred eighty-eight (188) individual environmental analyses. One hundred eighty-seven (187) of the 188 analyses fell within the PT provider's acceptance criteria (99.4%). One analytical failure occurred: Americium-241 in water.

For the corrective actions associated with MRAD-20, refer to CARR140520-874 which are detailed in Table 8.

11. Summary of Participation in the ERA PT Program

The ERA program provided samples (RAD-96, RAD-98, and 011014L) for fifty (50) individual environmental analyses. Of the 50 analyses, 96.0% (48 out of 50) of all results fell within the PT provider's acceptance criteria. One isotope failure occurred: Strontium-89 in water.

For the corrective actions associated with RAD-98 refer to corrective actions CARR140825-902 (Table 8).

12. Corrective Action Request and Report (CARR)

There are two categories of corrective action at GEL. One is corrective action implemented at the analytical and data review level in accordance with the analytical SOP. The other is formal corrective action documented by the Quality Systems Team in accordance with GL-QS-E-002. A formal corrective action is initiated when a nonconformance reoccurs or is so significant that permanent elimination or prevention of the problem is required. Formal corrective action investigations include root cause analysis.

GEL includes quality requirements in most analytical standard operating procedures to ensure that data are reported only if the quality control criteria are met or the quality control measures that did not meet the acceptance criteria are documented. A formal corrective action is implemented according to GL-QS-E-002 for Conducting Corrective/Preventive Action and Identifying Opportunities for Improvement. Recording and documentation is performed following guidelines stated in GL-QS-E-012 for Client NCR Database Operation.

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 11 of 64

Any employee at GEL can identify and report a nonconformance and request that corrective action be taken. Any GEL employee can participate on a corrective action team as requested by the QS team or Group Leaders. The steps for conducting corrective action are detailed in GL-QS-E-002. In the event that correctness or validity of the laboratory's test results in doubt, the laboratory will take corrective action. If investigations show that the results have been impacted, affected clients will be informed of the issue in writing within five (5) calendar days of the discovery.

Table 8 provides the status of CARRs for radiological performance testing during 2014. It has been determined that causes of the failures did not impact any data reported to our clients.

Page 12 of 64

13. References

- 1. GEL Quality Assurance Plan, GL-QS-B-001
- 2. GEL Standard Operating Procedure for the Conduct of Quality Audits, GL-QS-E-001
- GEL Standard Operating Procedure for Conducting Corrective/Preventive Action and Identifying Opportunities for Improvement, GL-QS-E-002
- GEL Standard Operating Procedure for AlphaLIMS Documentation of Nonconformance Reporting and Dispositioning and Control of Nonconforming Items, GL-QS-E-004
- 5. GEL Standard Operating Procedure for Handling Proficiency Evaluation Samples, GL-QS-E-013
- GEL Standard Operating Procedure for Quality Assurance Measurement Calculations and Processes, GL-QS-E-014
- 7. 40 CFR Part 136 Guidelines Establishing Test Procedures for the Analysis of Pollutants
- ISO/IEC 17025-2005, General Requirements for the Competence of Testing and Calibration Laboratories
- ANSI/ASQC E4-1994, Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs, American National Standard
- 10. 2003 NELAC Standard, National Environmental Laboratory Accreditation Program
- 11. 2009 TNI Standard, The NELAC Institute, National Environmental Accreditation Program
- 12. MARLAP, Multi-Agency Radiological Laboratory Analytical Protocols
- 13. 10 CFR Part 21, Reporting of Defects and Noncompliance
- 14. 10 CFR Part 50 Appendix B, Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants
- 15. 10 CFR Part 61, Licensing Requirements for Land Disposal and Radioactive Waste
- 16. NRC REG Guide 4.15 and NRC REG Guide 4.8

Page 13 of 64

TABLE 1 2014 RADIOLOGICAL PROFICIENCY TESTING RESULTS AND ACCEPTANCE CRITERIA

PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
EDA	1st /	00/04/44	RAD -	10/-4	0://	D 100	00.0	70.0	00 0 00 0	A t - t - t - t -
ERA	2014 1st /	02/24/14	96 RAD -	Water	pCi/L	Barium-133	80.6	76.2	63.8-83.8	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Cesium-134	64.7	66.8	54.4-73.5	Acceptable
	1st /	02/2 !! ! !	RAD -	· · · · · ·	Ponz	00014111 101	0	00.0	0 11 1 7 0.0	7.0000100.0
ERA	2014	02/24/14	96	Water	pCi/L	Cesium-137	112.0	109	98.1-122	Acceptable
	1st /		RAD -							
ERA	2014 1st /	02/24/14	96 RAD -	Water	pCi/L	Cobalt-60	95.0	88.7	79.8-99.9	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Zinc-65	200	185	166-218	Acceptable
LIVI	1st /	OLIZ III I	RAD -	r rator	POWE	2.110 00	200	100	100 210	710000110010
ERA	2014	02/24/14	96	Water	pCi/L	Gross Alpha	34.8	36.1	18.6-46.4	Acceptable
	1st /		RAD -		0.11					
ERA	2014	02/24/14	96	Water	pCi/L	Gross Beta	19.6	22.3	13.5-30.4	Acceptable
ERA	1st / 2014	02/24/14	RAD - 96	Water	pCi/L	Gross Alpha	34.6	36.1	18.6-46.4	Acceptable
	1st /	OZ/Z I/ TT	RAD -	· · · · · ·	POWE	Oroco / uprice	01.0	00.1	10.0 10.1	7.0000100.0
ERA	2014	02/24/14	96	Water	pCi/L	Radium-226	16.2	16.8	12.5-19.2	Acceptable
	1st /	00/04/44	RAD -	10/	0:"	D !! 000	4.00	F 0.4	0.04.0.07	
ERA	2014 1st /	02/24/14	96 RAD -	Water	pCi/L	Radium-228 Uranium	4.62	5.04	3.01-6.67	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	(Nat)	7.39	7.23	5.51-8.53	Acceptable
	1st /	02/2 // 1	RAD -	77410.	P 0 2	Uranium	7.00	7.20	0.01 0.00	7.00007.00.0
ERA	2014	02/24/14	96	Water	ug/L	(Nat) mass	11.00	10.6	8.07-12.5	Acceptable
ED 4	1st /	00/04/44	RAD -	10/-1	01/1	D 000	45.40	40.0	10 5 10 0	A 1 - 1-1-
ERA	2014 1st /	02/24/14	96 RAD -	Water	pCi/L	Radium-226	15.10	16.8	12.5-19.2	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Radium-228	4.66	5.04	3.01-6.67	Acceptable
	1st /	02/2 // 1	RAD -		P 0	Uranium	.,,,,	0,0,1	0101 0101	, 1000 p 10.0.
ERA	2014	02/24/14	96	Water	pCi/L	(Nat)	7.47	7.23	5.51-8.53	Acceptable
ED.4	1st /	00/04/44	RAD -	10/1		Uranium		40.0	0.07.40.5	
ERA	2014 1st /	02/24/14	96 RAD -	Water	ug/L	(Nat) mass	11.4	10.6	8.07-12.5	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Tritium	3320	3580	3030-3950	Acceptable
	1st /	02/2 // 1	RAD -	774101	P 0 1/1 2	Strontium-	5525	0000	0000 0000	7.100007100210
ERA	2014	02/24/14	96	Water	pCi/L	89	44.1	44.4	34.4-51.6	Acceptable
EDA	1st /	00/04/44	RAD -	10/-1	0:4	Strontium-	04.0	00.0	00 4 05 0	A
ERA	2014 1st /	02/24/14	96 RAD -	Water	pCi/L	90 Strontium-	34.2	30.3	22.1-35.2	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	89	38.9	44.4	34.4-51.6	Acceptable
LIVY	1st /	OL/L I/ I	RAD -	· · · · · ·	POWE	Strontium-	00.0		01.101.0	710000110010
ERA	2014	02/24/14	96	Water	pCi/L	90	27.1	30.3	22.1-35.2	Acceptable
·	1st /	00/00/44	0440441	144	0:"	Strontium-	40.0	007	000457	
ERA	2014	02/06/14	011014L	Water	pCi/L	89 Strontium-	42.3	38.7	29.3-45.7	Acceptable
ERA	1st / 2014	02/06/14	011014L	Water	pCi/L	89	42.2	38.7	29.3-45.7	Acceptable
	1st /		RAD -		1- 2"					
ERA	2014	02/24/14	96	Water	pCi/L	Iodine-131	25.2	24.4	20.2-28.9	Acceptable
EDA	1st /	00/04/44	RAD -	\\/at==	nC://	lodina 404	20.4	24.4	20.2.20.0	A accompand -
ERA	2014	02/24/14	96 E10846	Water	pCi/L	lodine-131	22.4 7.92E±01	24.4	20.2-28.9	Acceptable Acceptable
EZA	1st/2014	05/16/14	□1084b	Cartridge	pCi	Strontium-	7.83E+01	7.50E+03	1.04	Acceptable
EZA	1st/2014	05/16/14	E10847	Milk	pCi/L	89	9.14E+01	9.17E+01	1	Acceptable
						Strontium-				
EZA	1st/2014	05/16/14	E10847	Milk	pCi/L	90	1.27E+01	1.51E+01	0.84	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 14 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Iodine-131	9.84E+01	9.85E+01	1	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cerium-141	1.21E+02	1.19E+02	1.02	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cr-51	5.19E+02	4.91E+02	1.06	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cesium-134	1.79E+02	2.10E+02	0.85	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cesium-137	2.55E+02	2.53E+02	1.01	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cobalt-58	2.58E+02	2.68E+02	0.96	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Mn-54	3.01E+02	2.97E+02	1.01	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Iron-59	2.24E+02	2.19E+02	1.02	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Zinc-65	3.45E+02	3.23E+02	1.07	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cobalt-60	3.39E+02	3.37E+02	1.00	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	lodine-131	9.24E+01	8.99E+01	1.03	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cerium-141	8.19E+01	7.71E+01	1.06	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cr-51	3.32E+02	3.19E+02	1.04	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cesium-134	1.27E+02	1.36E+02	0.93	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cesium-137	1.69E+02	1.64E+02	1.03	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cobalt-58	1.75E+02	1.74E+02	1.01	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Mn-54	2.08E+02	1.93E+02	1.08	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Iron-59	1.68E+02	1.42E+02	1.18	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Zinc-65	2.25E+02	2.10E+02	1.07	Acceptable
EZA	1st/2014	05/16/14	E10849 MAPEP-	Water	pCi/L	Cobalt-60	2.31E+02	2.19E+02	1.02	Acceptable
MAPEP	2nd/2014	06/05/14	14- GrF30	Filter	Bq/sample	Gross Alpha	1.980	1.77	0.53-3.01	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- GrF30 MAPEP-	Filter	Bq/sample	Gross Beta	0.823	0.77	0.39-1.16	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaS30 MAPEP-	Soil	Bq/kg	Americium- 241	65	68	47.6-88.4	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaS30	Soil	Bq/kg	Cesium-134	5.44	0	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaS30	Soil	Bq/kg	Cesium-137	1270	1238	867-1609	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaS30	Soil	Bq/kg	Cobalt-57	947	966	676-1256	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaS30	Soil	Bq/kg	Cobalt-60	0.581	1.220	Sens. Eval.	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaS30	Soil	Bq/kg	Iron-55	580	643	444-824	Acceptable
			MAPEP- 14-			Manganese-				·
MAPEP	2nd/2014	06/05/14	MaS30 MAPEP- 14-	Soil	Bq/kg	54	1470	1430	1001-1859 False Pos	Acceptable
MAPEP	2nd/2014	06/05/14	MaS30 MAPEP-	Soil	Bq/kg	Nickel-63	6.95	0	Test	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaS30 MAPEP-	Soil	Bq/kg	Plutonium- 238	89.7	96.0	67-125	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaS30 MAPEP-	Soil	Bq/kg	Plutonium- 239/240	69.80	76.8	53.8-99.8	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaS30 MAPEP-	Soil	Bq/kg	Potassium- 40 Strontium-	703	622	435-809 False Pos	Acceptable
MAPEP	2nd/2014	06/05/14	14-	Soil	Bq/kg	90	1.48	0	Test	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 15 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number MaS30	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaS30	Soil	Bq/kg	Technetium- 99	37.1	0	False Pos Test	Acceptable
IVIAI LI	2110/2014	00/03/14	MAPEP-	3011	БЧ/ку	99	37.1	-	1651	
MAPEP	2nd/2014	06/05/14	14- MaS30 MAPEP-	Soil	Bq/kg	U-234/233	30.5	81.0	57-105	Not Accept.
MAPEP	2nd/2014	06/05/14	14- MaS30	Soil	Bq/kg	Uranium- 238	35	83	58-108	Not Accept.
			MAPEP- 14-		-19					
MAPEP	2nd/2014	06/05/14	MaS30 MAPEP-	Soil	Bq/kg	Zinc-65	766	695	487-904	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaW30 MAPEP-	Water	Bq/L	Americium- 241	0.759	0.720	0.504-0.936	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaW30	Water	Bq/L	Cesium-134	21.4	23.1	16.2-30.0	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Cesium-137	29.70	28.9	20.2-37.6	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Cobalt-57	28.0	27.5	19.3-35.8	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Cobalt-60	16.6	16.0	11.2-20.8	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Hydrogen-3	308	321	225-417	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Iron-55	0.3	0.0	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Manganese- 54	14.4	13.9	9.7-18.1	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Nickel-63	31.4	34.0	23.8-44.2	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Plutonium- 238	0.764	0.828	0.580-1.076	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Pu-239/240	0.6590	0.6760	0.473-0.879	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Potassium- 40	0.460	0	False Pos Test	Acceptable
			MAPEP- 14-			Strontium-				
MAPEP	2nd/2014	06/05/14	MaW30 MAPEP-	Water	Bq/L	90	8.32	8.51	5.96-11.06	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaW30	Water	Bq/L	Technetium- 99	9.5	10.3	7.2-13.4	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	U-234/233	0.210	0.225	0.158-0.293	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30	Water	Bq/L	Uranium- 238	1.41	1.45	1.02-1.89	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14-	Water	Bq/L	Zinc-65	-0.126	0.0	False Pos Test	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 16 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number MaW30	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	2nd/2014	06/05/14	MAPEP- 14- MaW30 MAPEP-	Water	Bq/L	Gross Alpha	0.96	0.85	0.255-1.443	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaW30 MAPEP-	Water	Bq/L	Gross Beta	4.7	4.2	2.10-6.29	Acceptable
MAPEP	2nd/2014	06/05/14	14- MaW30	Water	Bq/L	lodine-129	0.0227	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	ug/sample	Uranium- 235	0.018	0.020	0.014-0.026	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	ug/sample	Uranium- 238	8.77	10.4	7.3-13.5	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	ug/sample	Uranium- Total	8.80	10.4	7.3-13.5	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	ug/sample	Americium- 241	0.086	0.090	0.063-0.117	Acceptable
			MAPEP- 14-	ā						·
MAPEP	2nd/2014	06/05/14	RdF30 MAPEP- 14-	Filter	Bq/sample	Cesium-134	1.85	1.91	1.34-2.48	Acceptable
MAPEP	2nd/2014	06/05/14	RdF30 MAPEP- 14-	Filter	Bq/sample	Cesium-137	1.81	1.76	1.23-2.29 False Pos	Acceptable
MAPEP	2nd/2014	06/05/14	RdF30 MAPEP- 14-	Filter	Bq/sample	Cobalt-57	0.0757	0.00	Test	Acceptable
MAPEP	2nd/2014	06/05/14	RdF30 MAPEP-	Filter	Bq/sample	Cobalt-60	1.490	1.39	0.97-1.81	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdF30 MAPEP-	Filter	Bq/sample	Manganese- 54	0.0138	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdF30 MAPEP-	Filter	Bq/sample	Plutonium- 238	0.000819	0.00090	Sens. Eval.	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdF30 MAPEP-	Filter	Bq/sample	Pu-239/240	0.071	0.7720	0.054- 0.1004	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdF30 MAPEP-	Filter	Bq/sample	Strontium- 90	1.19	1.18	0.83-1.53	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdF30	Filter	Bq/sample	U-234/233	0.0159	0.0195	0.0137- 0.0254	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	Bq/sample	Uranium- 238	0.118	0.129	0.090-0.168	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	Bg/sample	Zinc-65	0.246	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	Bq/sample	Gross Alpha	0.656	1.20	0.36-2.04	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdF30	Filter	Bq/sample	Gross Beta	0.95	0.85	0.43-1.28	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14-	Filter	Bq/sample	Americium- 241	0.93	0.104	0.43-1.28	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 17 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number RdF30	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdV30	Vegetation	ug/sample	Uranium- 235	0.261	0.0268	0.0188- 0.0348	Not Accept.
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdV30 MAPEP-	Vegetation	ug/sample	Uranium- 238	12.7	13.3	9.3-17.3	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdV30 MAPEP-	Vegetation	ug/sample	Uranium- Total	12.7	13.3	9.3-17.3	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdV30 MAPEP-	Vegetation	ug/sample	Americium- 241	0.1100	0.108	0.076-0.140	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdV30 MAPEP-	Vegetation	Bq/sample	Cesium-134	5.65	6.04	4.23-7.85	Acceptable
MAPEP	2nd/2014	06/05/14	14- RdV30 MAPEP- 14-	Vegetation	Bq/sample	Cesium-137	4.98	4.74	3.32-6.16	Acceptable
MAPEP	2nd/2014	06/05/14	RdV30 MAPEP- 14-	Vegetation	Bq/sample	Cobalt-57	11.1	10.1	7.1-13.1	Acceptable
MAPEP	2nd/2014	06/05/14	RdV30 MAPEP- 14-	Vegetation	Bq/sample	Cobalt-60 Manganese-	7.21	6.93	4.85-9.01	Acceptable
MAPEP	2nd/2014	06/05/14	RdV30 MAPEP- 14-	Vegetation	Bq/sample	54 Plutonium-	9.24	8.62	6.03-11.21	Acceptable
MAPER	2nd/2014	06/05/14	RdV30 MAPEP- 14-	Vegetation	Bq/sample	238	0.116	0.121	0.085-0.157	Acceptable
MAPEP MAPEP	2nd/2014 2nd/2014	06/05/14	RdV30 MAPEP- 14- RdV30	Vegetation Vegetation	Bq/sample Bg/sample	Pu-239/240 Strontium- 90	1.580	0.154 1.46	0.0200 1.02-1.90	Acceptable Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdV30	Vegetation	Bq/sample	U-234/233	0.2640	0.2530	0.0177- 0.0329	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdV30	Vegetation	Bq/sample	Uranium- 238	0.174	0.165	0.116-0.215	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP- 14- RdV30	Vegetation	Bq/sample	Zinc-65	8.87	7.00	4.38-8.13	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20 MRAD-	Soil	pCi/kg	Actinium- 228 Americium-	1140	1240	795-1720	Acceptable
ERA	2nd/2014 2nd/2014	05/16/14	20 MRAD- 20	Soil Soil	pCi/kg pCi/kg	241 Bismuth- 212	976	399 1240	233-518 330-1820	Acceptable Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20 MRAD-	Soil	pCi/kg	Bismuth- 214	2290	1960	1180-2820	Acceptable
ERA ERA	2nd/2014 2nd/2014	05/16/14	20 MRAD- 20	Soil	pCi/kg pCi/kg	Cesium-134 Cesium-137	3080 8310	3390 8490	2220-4070 6510-10900	Acceptable Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20 MRAD-	Soil	pCi/kg	Cobalt-60	6570	6830	4620-9400	Acceptable
ERA ERA	2nd/2014 2nd/2014	05/16/14 05/16/14	20 MRAD-	Soil Soil	pCi/kg pCi/kg	Lead-212 Lead-214	1330 2800	1240 2070	812-1730 1210-3090	Acceptable Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 18 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number 20	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Manganese- 54	<44.3	<1000	0-1000	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Plutonium- 238	579	578	348-797	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Plutonium- 239	488	471.00	308-651	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Potassium- 40	10500	10500	7660-14100	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Strontium- 90	2500	2780	1060-4390	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Thorium- 234	3420	3360	1060-6320	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20 MRAD-	Soil	pCi/kg	Zinc-65 Strontium-	5700	5400	4300-7180	Acceptable
ERA	2nd/2014	05/16/14	20	Soil	pCi/kg	90	6730	8530	3250-13500	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- 234	2602	3390	2070-4350	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- 238	2425	3360	2080-4260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- Total	5027	6910	3750-9120	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium- Total(mass)	7110	10100	5570-12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- 234	3440	3390	2070-4350	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- 238	3680	3360	2080-4260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- Total	7310	6910	3750-9120	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium- Total(mass)	11000	10100	5570-12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20 MRAD-	Soil	pCi/kg	Uranium- 234 Uranium-	3740	3390	2070-4350	Acceptable
ERA	2nd/2014	05/16/14	20	Soil	pCi/kg	238	3780	3360	2080-4260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium- Total	7683	6910	3750-9120	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium- Total(mass)	11300	10100	5570-12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium- Total(mass)	11200	10100	5570-12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Americium- 241	1670	1490	911-1980	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Cesium-134	657	646	415-839	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Cesium-137	861	880	638-1220	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Cobalt-60	997	926	639-1290	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Curium-244	514	516	253-804	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Manganese- 54	<62.2	<300	0.00-300	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20 MRAD-	Vegetation	pCi/kg	Plutonium- 238 Plutonium-	2230	2110	1260-2890	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Vegetation	pCi/kg	239 Potassium-	3810	3740	2300-5150 23000-	Acceptable
ERA ERA	2nd/2014 2nd/2014	05/16/14 05/16/14	20 MRAD-	Vegetation Vegetation	pCi/kg pCi/kg	40 Strontium-	30800 2330	31900 2580	44800 1470-3420	Acceptable Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 19 of 64

ERA ERA ERA ERA	2nd/2014 2nd/2014 2nd/2014 2nd/2014 2nd/2014 2nd/2014	05/16/14 05/16/14 05/16/14	20 MRAD- 20 MRAD- 20 MRAD- 20 MRAD-	Vegetation Vegetation	pCi/kg pCi/kg	90 Uranium- 234				
ERA ERA ERA ERA	2nd/2014 2nd/2014 2nd/2014 2nd/2014	05/16/14 05/16/14 05/16/14	20 MRAD- 20 MRAD- 20	Vegetation					-	
ERA ERA ERA ERA	2nd/2014 2nd/2014 2nd/2014 2nd/2014	05/16/14 05/16/14 05/16/14	20 MRAD- 20	Vegetation			1920	1760	1160-2260	Acceptable
ERA ERA	2nd/2014 2nd/2014	05/16/14	20	Vogotation		Uranium- 238	1970	1750	1170-2220	Acceptable
ERA ERA	2nd/2014 2nd/2014	05/16/14		1/000101:0:-		Uranium-				
ERA .	2nd/2014		INIKAD-	Vegetation	pCi/kg	Total	4025	3580	2430-4460	Acceptable
ERA ·		05/40/44	20 MRAD-	Vegetation	ug/kg	Uranium- Total(mass)	5920	5240	3510-6650	Acceptable
	2nd/2014	05/16/14	20 MRAD-	Vegetation	pCi/kg	Zinc-65 Uranium-	1030	919	663-1290	Acceptable
ERA	2110/2017	05/16/14	20	Vegetation	pCi/kg	234	1730	1760	1160-2260	Acceptable
	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium- 238	2000	1750	1170-2220	Acceptable
EDA	01/0044	054044	MRAD-	\	0:"	Uranium-	0047	0500	0.400.4400	
ERA :	2nd/2014	05/16/14	MRAD-	Vegetation	pCi/kg	Total	3817	3580	2430-4460	Acceptable
ERA :	2nd/2014	05/16/14	20 MRAD-	Vegetation	ug/kg	Uranium- Total(mass)	5990	5240	3510-6650	Acceptable
ERA :	2nd/2014	05/16/14	20	Vegetation	ug/kg	Uranium- Total(mass)	5620	5240	3510-6650	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Americium- 241	60.2	59.7	36.8-80.8	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Cesium-134	920	1010	643-1250	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Cesium-137	816	828	622-1090	Acceptable
	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Cobalt-60	1130	1120	867-1400	Acceptable
	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Iron-55	254	240	74.4-469	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Manganese- 54	<6.64	<50.0	0-50.0	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Plutonium- 238	51.3	56.3	38.6-74.0	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Plutonium- 239	47.5	48.6	35.2-63.5	Acceptable
	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Strontium- 90	76.7	78.9	38.6-118	Acceptable
			MRAD-			Uranium-				
ERA :	2nd/2014	05/16/14	20	Filter	pCi/Filter	234	33.8	36.4	22.6-54	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20 MRAD-	Filter	pCi/Filter	Uranium- 238	34.5	36.1	23.3-49.9	Acceptable
ERA :	2nd/2014	05/16/14	20 MRAD-	Filter	pCi/Filter	Uranium- Total	70.3	74.3	41.1-113	Acceptable
ERA :	2nd/2014	05/16/14	20	Filter	ug/Filter	Uranium- Total(mass)	104	108	69.1-152	Acceptable
	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Zinc-65	737	667	478-921	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium- 234	35.5	36.4	22.6-54	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium- 238	35.3	36.1	23.3-49.9	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium- Total	72.4	74.3	41.1-113	Acceptable
ERA :	2nd/2014	05/16/14	MRAD- 20	Filter	ug/Filter	Uranium- Total(mass)	105	108	69.1-152	Acceptable
	2nd/2014	05/16/14	MRAD- 20	Filter	ug/Filter	Uranium- Total(mass)	100	108	69.1-152	Acceptable
			MRAD-							
	2nd/2014 2nd/2014	05/16/14 05/16/14	20 MRAD-	Filter Filter	pCi/Filter pCi/Filter	Gross Alpha Gross Beta	60.9 58.9	46 53.8	15.4-71.4 34.0-78.4	Acceptable Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 20 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Americium- 241	186	114	76.8-153	Not Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Cesium-134	1540	1660	1220-1910	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Cesium-137	2760	2690	2280-3220	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Cobalt-60	1320	1270	1100-1490	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Iron-55	1230	1200	716-1630	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Manganese- 54	<7.54	<100	0.00-100	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Plutonium- 238	37	44	32.6-54.9	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Plutonium- 239	124	160	124-202	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Strontium- 90	95	890	580-1180	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 234	77.8	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 238	50.8	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- Total	156	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium- Total(mass)	233	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Zinc-65	2030	1800	1500-2270	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 234	82.1	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 238	84.6	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- Total	170	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium- Total(mass)	253	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 234	80.5	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 238	90.0	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- Total	175	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium- Total(mass)	269	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 234	77.8	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- 238	78.3	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium- Total	156	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium- Total(mass)	233	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium- Total(mass)	232	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Gross Alpha	141.0	133	47.2-206	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Gross Beta	172	174.0	99.6-258	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Tritium	5280	5580	3740-7960	Acceptable
EZA	2nd/2014	08/08/14	E10897	Cartridge	pCi	lodine-131	8.73E+01	8.54E+01	1.02	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 21 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
EZA	2nd/2014	08/08/14	E10898	Milk	pCi/L	Strontium- 89	9.84E+01	9.13E+01	1.08	Acceptable
LLA	2110/2014	00/00/14		IVIIIX	po//L	Strontium-	3.04L101	3.10L101	1.00	Acceptable
EZA	2nd/2014	08/08/14	E10898	Milk	pCi/L	90	1.44E+01	1.45E+01	0.99	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	lodine-131	9.89E+01	9.09E+01	1.09	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cerium-141	1.38E+02	1.24E+02	1.12	Acceptable
E7A	224/2014	08/08/14	E10899	Mills	nC://	Chromium-	2 60 5 1 02	0.505.00	1.06	Acceptable
EZA EZA	2nd/2014 2nd/2014	08/08/14	E10899	Milk Milk	pCi/L pCi/L	51 Cesium-134	2.68E+02 1.58E+02	2.53E+02 1.62E+02	1.06 0.97	Acceptable Acceptable
EZA	2nd/2014 2nd/2014	08/08/14	E10899	Milk	pCi/L pCi/L	Cesium-137	1.27E+02	1.02E+02 1.20E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cobalt-58	1.20E+02	1.12E+02	1.07	Acceptable
LL/ (ZHa/ZOTT	00/00/11	L10000	Willix	POWE	Manganese-	1.202.02	1.122.02	1.07	71000010010
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	54	1.67E+02	1.56E+02	1.07	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Iron-59	1.02E+02	1.02E+02	1.00	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Zinc-65	2.68E+02	2.52E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cobalt-60	2.42E+02	2.24E+02	1.08	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Iodine-131	1.13E+02	9.83E+01	1.15	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cerium-141	1.52E+02	1.43E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Chromium- 51	3.62E+02	2.94E+02	1.23	Acceptable
EZA	2nd/2014 2nd/2014	08/08/14	E10900	Water	pCi/L pCi/L	Cesium-134	1.69E+02	1.88E+02	0.90	Acceptable
EZA	2nd/2014 2nd/2014	08/08/14	E10900	Water	pCi/L	Cesium-137	1.48E+02	1.39E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cobalt-58	1.46E+02	1.30E+02	1.03	Acceptable
						Manganese-	1,0,1= 0=		1,100	7 1000 101010
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	54	1.88E+02	1.80E+02	1.04	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Iron-59	1.29E+02	1.19E+02	1.09	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Zinc-65	3.29E+02	2.93E+02	1.12	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cobalt-60	2.74E+02	2.60E+02	1.05	Acceptable
ERA	3rd / 2013	08/25/14	RAD - 98	Water	pCi/L	Barium-133	67.8	68.7	57.3-75.6	Acceptable
	3rd /	1	RAD -							
ERA	2013	08/25/14	98	Water	pCi/L	Cesium-134	71	72.3	59.0-79.5	Acceptable
ERA	3rd / 2013	08/25/14	RAD - 98	Water	pCi/L	Cesium-137	161	163	147-181	Acceptable
ERA	3rd /	00/23/14	RAD -	vvalei	pCi/L	Cesium-137	101	103	147-101	Acceptable
ERA	2013	08/25/14	98	Water	pCi/L	Cobalt-60	76.7	75.5	68.0-85.5	Acceptable
	3rd /		RAD -							
ERA	2013	08/25/14	98	Water	pCi/L	Zinc-65	92	82	73.8-98.5	Acceptable
ED A	3rd /	00/05/44	RAD - 98	\\/oto=	~C:/I	Cross Alpha	45.0	45.4	00.6.57.4	Acceptable
ERA	2013 3rd /	08/25/14	RAD -	Water	pCi/L	Gross Alpha	45.3	45.4	23.6-57.4	Acceptable
ERA	2013	08/25/14	98	Water	pCi/L	Gross Beta	32.3	33.4	21.7-41.1	Acceptable
	3rd /		RAD -							
ERA	2013	08/25/14	98	Water	pCi/L	Gross Alpha	48.6	45.4	23.6-57.4	Acceptable
ERA	3rd /	08/25/14	RAD - 98	Water	nCi/I	Radium-226	8.26	9.06	6.80-10.6	Acceptable
EKA	2013 3rd /	08/25/14	RAD -	vvater	pCi/L	Radium-226	8.20	9.06	0.80-10.6	Acceptable
ERA	2013	08/25/14	98	Water	pCi/L	Radium-226	8.54	9.06	6.80-10.6	Acceptable
	3rd /		RAD -							
ERA	2013	08/25/14	98	Water	pCi/L	Radium-226	9.7	9.06	6.80-10.6	Acceptable
ED A	3rd /	00/05/44	RAD -	10/-1		D I' 000	F 07	F 07	0.00.070	A
ERA	2013 3rd /	08/25/14	98 RAD -	Water	pCi/L	Radium-228	5.07	5.07	3.03-6.79	Acceptable
ERA	2013	08/25/14	98	Water	pCi/L	Radium-228	5.74	5.07	3.03-6.79	Acceptable
	3rd /		RAD -			Uranium				
ERA	2013	08/25/14	98	Water	pCi/L	(Nat)	13.9	13.5	10.7-15.4	Acceptable
EDA	3rd /	00/05/4	RAD -	10/-1		Uranium	00.05	40.0	450000	
ERA	2013 3rd /	08/25/14	98 RAD -	Water	ug/L	(Nat) mass Uranium	22.25	19.8	15.6-22.6	Acceptable
ERA	2013	08/25/14	98	Water	pCi/L	(Nat)	13	13.5	10.7-15.4	Acceptable
ERA	3rd /	08/25/14	RAD -	Water	ug/L	Uranium	20.7	19.8	15.6-22.6	Acceptable
· · ·	0.47	30,20,17			~3,-					cooptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 22 of 64

PT Provider	Quarter / Year 2013	Report Received Date	Sample Number 98	Sample Media	Unit	Analyte / Nuclide (Nat) mass	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
ERA	3rd / 2013 3rd /	08/25/14	RAD - 98 RAD -	Water	pCi/L	Tritium	10200	11200	9750-12300	Acceptable
ERA	2013 3rd /	08/25/14	98 RAD -	Water	pCi/L	Tritium Strontium-	10400	11200	9750-12300	Acceptable Not
ERA	2013	08/25/14	98	Water	pCi/L	89	56.3	42.7	32.9-49.8	Acceptable
ERA	3rd / 2013	08/25/14	RAD - 98 RAD -	Water	pCi/L	Strontium- 90	28.2	31.7	23.1-36.7	Acceptable Not
ERA	3rd / 2013	08/25/14	98	Water	pCi/L	Strontium- 89	56.5	42.7	32.9-49.8	Acceptable
ERA	3rd / 2013	08/25/14	RAD - 98	Water	pCi/L	Strontium- 90	26	31.7	23.1-36.7	Acceptable
ERA	3rd / 2013 3rd /	08/25/14	RAD - 98 RAD -	Water	pCi/L	lodine-131	28.6	26.1	21.7-30.8	Acceptable
ERA	2013	08/25/14	98	Water	pCi/L	lodine-131	22.3	26.1	21.7-30.8	Acceptable
EZA	3rd/2014	11/22/14	E10993	Cartridge	pCi	lodine-131	9.47E+01	8.99E+01	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10994	Milk	pCi/L	Strontium- 89 Strontium-	9.73E+01	9.69E+01	1.00	Acceptable
EZA	3rd/2014	11/22/14	E10994	Milk	pCi/L	90	1.31E+01	1.64E+00	0.80	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	lodine-131	1.04E+02	9.76E+01	1.07	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cerium-141	1.28E+02	1.26E+02	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Chromium- 51	3.12E+02	2.88E+02	1.08	Acceptable
EZA	3rd/2014 3rd/2014	11/22/14	E10995	Milk	pCi/L	Cesium-134	1.51E+02	1.58E+02	0.96	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cesium-137	2.03E+02	1.93E+02	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cobalt-58	1.44E+02	1.43E+02	1.01	Acceptable
						Manganese-				
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	54	1.49E+02	1.42E+02	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Iron-59	1.82E+02	1.58E+02	1.15	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Zinc-65	7.41E+01	7.30E+01	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cobalt-60	3.14E+02	2.94E+02	1.06	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	lodine-131	1.02E+02	9.88E+01	103	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cerium-141 Chromium-	1.30E+02	1.25E+02	104	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	51	2.75E+02	2.86E+02	0.96	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cesium-134	1.45E+02	1.56E+02	0.93	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cesium-137	1.94E+02	1.92E+02	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cobalt-58	1.43E+02	1.42E+02	1.01	Acceptable
						Manganese-				
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	54	1.46E+02	1.41E+02	1.04	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Iron-59	1.66E+02	1.57E+02	1.06	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Zinc-65	7.55E+01	7.24E+01	1.04	Acceptable
EZA	3rd/2014	11/22/14	E10996 MAPEP- 14-	Water	pCi/L	Cobalt-60	3.09E+02	2.95E+02	1.05	Acceptable
MAPEP	4th /2014	01/09/15	GrF31 MAPEP-	Filter	Bq/sample	Gross Alpha	0.433	0.530	0.16-0.09	Acceptable
MAPEP	4th /2014	01/09/15	14- GrF31 MAPEP-	Filter	Bq/sample	Gross Beta	1.060	1.060	0.53-1.59	Acceptable
MAPEP	4th /2014	01/09/15	14- MaS31 MAPEP-	Soil	Bq/Kg	Americium- 241	88.4	85.5	59.9-111.2	Acceptable
MAPEP	4th /2014	01/09/15	14- MaS31	Soil	Bq/Kg	Cesium-134	588	622	435-809	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Cesium-137	1.67		False Pos Test	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 23 of 64

	STATE STATE									Market Control
PT Provider	Quarter / Year	Report Received Date	Sample Number MAPEP-	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	4th /2014	01/09/15	14- MaS31	Soil	Bq/Kg	Cobalt-57	1160	1116	781-1451	Accontable
IVIAPEP	40172014	01/09/15	MAPEP-	3011	Бүлу	Copail-57	1160	1116	761-1451	Acceptable
MAPEP	4th /2014	01/09/15	14- MaS31	Soil	Bq/Kg	Cobalt-60	821	779	545-1013	Acceptable
			MAPEP- 14-							
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-	Soil	Bq/Kg	Iron-55	796	680	476-884	Acceptable
MAPEP	4th /2014	01/09/15	14- MaS31 MAPEP-	Soil	Bq/Kg	Manganese- 54	1060	1009	706-1312	Acceptable
MAPEP	4th /2014	01/09/15	14- MaS31	Soil	Bq/Kg	Nickel-63	924	980	686-1274	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Plutonium- 238	0.92	0.48	Sens. Eval.	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Plutonium- 239/240	61.5	58.6	41.0-76.2	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Potassium- 40	879	824	577-1071	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Strontium- 90	891	858	601-1115	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Technetium- 99	466	589	412-766	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	U-234/233	905	89	62-116	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaS31	Soil	Bq/Kg	Uranium- 238	257	259	181-337	Acceptable
			MAPEP- 14-							
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-	Soil	Bq/Kg	Zinc-65	605.0	541	379-703	Acceptable
MAPEP	4th /2014	01/09/15	14- MaW31 MAPEP-	Water	Bq/L	Americium- 241	0.915	0.880	0.62-1.14	Acceptable
MAPEP	4th /2014	01/09/15	14- MaW31 MAPEP-	Water	Bq/L	Cesium-134	-0.06		False Pos Test	Acceptable
MAPEP	4th /2014	01/09/15	14- MaW31	Water	Bq/L	Cesium-137	18.4	18.4	12.9-23.9	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Cobalt-57	25	24.7	17.3-32.1	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Cobalt-60	12.5	12.4	8.7-16.1	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Hydrogen-3	216	208	146-270	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Iron-55	34.0	31.5	22.1-41.0	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Manganese- 54	14.2	14.0	9.8-18.2	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 24 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number MAPEP-	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	4th /2014	01/09/15	14- MaW31	Water	Bq/L	Nickel-63	23.6	24.6	17.2-32.0	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31 MAPEP-	Water	Bq/L	Plutonium- 238	0.547	0.618	0.433-0.803	Acceptable
MAPEP	4th /2014	01/09/15	14- MaW31	Water	Bq/L	Plutonium- 239/240	0.015	0.005	Sens. Eval.	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Potassium- 40	174	161	113-209	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Strontium- 90	0.03		False Pos Test	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Technetium- 99	6.92	6.99	4.89-9.09	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Uranium- 234/233	0.206	0.205	0.144-0.267	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Uranium- 238	1.280	1.420	0.99-1.85	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Zinc-65	11.900	10.90	7.6-14.2	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Gross Alpha	0.793	0.701	0.201-1.192	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- MaW31	Water	Bq/L	Gross Beta	6.220	5.94	2.97-8.91	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	ug/sample	Uranium- 235	0.040	0.040	0.0278- 0.0516	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	ug/sample	Uranium- 238	19.3	20.3	14.2-26.4	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	ug/sample	Uranium- Total	19.00	20.4	14.3-26.5	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	ug/sample	Americium- 241	0.0561	0.067	0.0472- 0.0876	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Cesium-134	0.8640	0.96	0.67-1.25	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Cesium-137	1.190	1.20	0.84-1.56	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Cobalt-57	1.540	1.43	1.00-1.86	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Cobalt-60	1.200	1.10	0.77-1.43	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Manganese- 54	0.808	0.75	0.53-0.98	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Plutonium- 238	0.155	0.107	0.075-0.139	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 25 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number MAPEP-	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	4th /2014	01/09/15	14- RdF31	Filter	Bq/sample	Plutonium- 239/240	0.048	0.0468	0.0328- 0.0608	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31 MAPEP-	Filter	Bq/sample	Strontium- 90	0.762	0.70	0.492-0.914	Acceptable
MAPEP	4th /2014	01/09/15	14- RdF31	Filter	Bq/sample	Uranium- 234/233	0.037	0.0358	0.0251- 0.0465	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Uranium- 238	0.227	0.253	0.177-0.329	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdF31	Filter	Bq/sample	Zinc-65	0.779	0.76	0.53-0.99	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP- 14- RdV31 MAPEP-	Vegetation	Bq/sample	Americium- 241	0.226	0.19	0.135-0.251	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Cesium-134	4.750	5.20	3.64-6.67	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Cesium-137	6.910	6.60	4.62-8.58	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Cobalt-57	-0.002	0.00	False Pos Test	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Cobalt-60	0.008	0.00	False Pos Test	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Manganese- 54	7.980	7.88	5.52-10.24	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Plutonium- 238	0.001	0.001	Sens. Eval.	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Plutonium- 239/240	0.1510	0.171	0.120-0.222	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Strontium- 90	2.330	2.32	1.62-3.02	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Uranium- 234/233	0.046	0.047	0.0326- 0.0606	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Uranium- 238	0.332	0.324	0.227-0.421	Acceptable
MAPEP	4th /2014	01/09/15	14- RdV31 MAPEP-	Vegetation	Bq/sample	Zinc-65	2.850	2.63	1.84-3.42	Acceptable
MAPEP	4th /2014	01/09/15	14-SrF- 31 MAPEP-	Filter	Bq/sample	Strontium- 89	3.62	3.79	2.65-4.93	Acceptable
MAPEP	4th /2014	01/09/15	14-SrF- 31 MAPEP-	Filter	Bq/sample	Strontium- 90	3.62	3.79	2.65-4.93	Acceptable
MAPEP	4th /2014 3rd /	01/09/15	14- XaW-31 MRAD-	Water	Bq/L	lodine-129 Actinium-	4.56	4.55	3.19-5.92	Acceptable
ERA ERA	2014 3rd /	11/25/14 11/25/14	21 MRAD-	Soil Soil	pCi/kg pCi/kg	228 Americium-	1280 825	1240 763	795-1720 431-956	Acceptable Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 26 of 64

			ile Statement							
PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
	2014		21			241				
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Bismuth- 212	1620	1240	330-1820	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Bismuth- 214	2900	2810	1690-4040	Acceptable
	3rd /		MRAD-							
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Cesium-134	1960	2140	1400-2570	Acceptable
ERA	2014	11/25/14	21	Soil	pCi/kg	Cesium-137	6760	6550	5020-8430	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Cobalt-60	4480	4260	2880-5860	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Lead-212	1260	1240	812-1730	Acceptable
	3rd /		MRAD-							
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Lead-214 Manganese-	3480	2750	1610-4100	Acceptable
ERA	2014	11/25/14	21	Soil	pCi/kg	54	<30.0	<1000	0-1000	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Plutonium- 238	732	739	444-1020	Acceptable
	3rd /		MRAD-			Plutonium-			111 1020	
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	239 Potassium-	281	309	202-427	Acceptable
ERA	2014	11/25/14	21	Soil	pCi/kg	40	11500	10700	7810-14400	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Strontium- 90	8790	8420	3210-13300	Acceptable
	3rd /		MRAD-			Thorium-				
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	234	2000	2350	743-4420	Acceptable
ERA	2014	11/25/14	21	Soil	pCi/kg	Zinc-65	3910	3270	2600-4350	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Uranium- 234	2280	2370	1450-3040	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Uranium- 238	2340	2350	1450-2980	Acceptable
	3rd /		MRAD-			Uranium-				
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Total Uranium-	4762	4540	2360-6390	Acceptable
ERA	2014	11/25/14	21	Soil	ug/kg	Total(mass)	7020	7050	3890-8870	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Americium- 241	2260	2290	1400-3505	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Cesium-134	837	849	545-1100	Acceptable
	3rd /		MRAD-	-				,		•
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	Cesium-137	729	644	467-896	Acceptable
ERA	2014	11/25/14	21	Vegetation	pCi/kg	Cobalt-60	818	784	541-1100	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Curium-244	361	367	180-572	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Manganese- 54	<25.3	<300	0-300	Acceptable
	3rd /		MRAD-			Plutonium-				
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	238 Plutonium-	886	862	514-1180	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	239	675	701	430-965	Acceptable
ERA	2014	11/25/14	21	Vegetation	pCi/kg	Potassium- 40	35300	30900	22300- 43400	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Strontium- 90	1230	1710	975-2270	Acceptable
	3rd /		MRAD-			Uranium-				
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	234 Uranium-	1980	1780	1170-2290	Acceptable
ERA	2014	11/25/14	21	Vegetation	pCi/kg	238	1970	1760	1170-2240	Acceptable
ERA	3rd /	11/25/14	MRAD-	Vegetation	pCi/kg	Uranium-	4038	3620	2450-4510	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 27 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
	2014	See The Control of th	21		Art have good and have a support arranged as the same	Total		Service and the service and th	A STATE OF THE STA	
	3rd /		MRAD-			Uranium-				
ERA	2014	11/25/14	21	Vegetation	ug/kg	Total(mass)	5910	5280	3540-6710	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Uranium- 234	1670	1780	1170-2290	Acceptable
LIVI	3rd /	TIZOTT	MRAD-	Vegetation	pointg	Uranium-	1070	1700	1110 2200	710000110010
ERA	2014	11/25/14	21	Vegetation	pCi/kg	238	1800	1760	1170-2240	Acceptable
EDA	3rd / 2014	11/05/11	MRAD-	Vegetation	nCillea	Uranium- Total	2550	2620	2450 4540	Assentable
ERA	3rd /	11/25/14	MRAD-	Vegetation	pCi/kg		3556	3620	2450-4510	Acceptable
ERA	2014	11/25/14	21	Vegetation	ug/kg	Uranium- Total(mass)	5390	5280	3540-6710	Acceptable
ED A	3rd /	44/05/44	MRAD-	\ /t-#		Uranium-	5000	5000	0540.0740	A t - I-I -
ERA	2014 3rd /	11/25/14	MRAD-	Vegetation	ug/kg	Total(mass)	5860	5280	3540-6710	Acceptable
ERA	2014	11/25/14	21	Vegetation	pCi/kg	Zinc-65	1930	1570	1130-2200	Acceptable
	3rd /		MRAD-			Americium-				
ERA	2014	11/25/14	21	Filter	pCi/Filter	241	41.4	38.6	23.8-52.2	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Cesium-134	742	765.0	487-949	Acceptable
LIVY	3rd /	11/20/11	MRAD-	1 iitoi	powi intoi	Occidin 101	7-12	700.0	107 010	71000010010
ERA	2014	11/25/14	21	Filter	pCi/Filter	Cesium-137	677	647	486-850	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Cobalt-60	543	523	405-653	Acceptable
ERA	3rd /	11/25/14	MRAD-	Filler	pol/Filler	Copail-00	543	525	405-055	Acceptable
ERA	2014	11/25/14	21	Filter	pCi/Filter	Iron-55	117	120.0	37.2-234	Acceptable
	3rd /		MRAD-		0.75	Manganese-				
ERA	2014 3rd /	11/25/14	MRAD-	Filter	pCi/Filter	54 Plutonium-	<5.87	<50	0.00-50.0	Acceptable
ERA	2014	11/25/14	21	Filter	ug/Filter	238	32.9	35.7	24.5-46.9	Acceptable
	3rd /		MRAD-			Plutonium-				
ERA	2014	11/25/14	21	Filter	pCi/Filter	239	26.8	29.1	21.1-38.0	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Strontium- 90	187	168	82.1-252	Acceptable
	3rd /		MRAD-		p = 11, 11, 11	Uranium-				
ERA	2014	11/25/14	21	Filter	pCi/Filter	234	26	28	27.8-41.9	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Uranium- 238	28	27.60	17.8-38.2	Acceptable
LIVI	3rd /	11/20/11	MRAD-	T IIIO	powi iitoi	Uranium-	20	27.00	17.0 00.2	71000010010
ERA	2014	11/25/14	21	Filter	pCi/Filter	Total	56	57	31.4-86.3	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	ug/Filter	Uranium-	82.6	82.7	52.9-116	Acceptable
LIVA	3rd /	11/25/14	MRAD-	Tillel	ug/i iitei	Total(mass)	02.0	02.1	32.9-110	Acceptable
ERA	2014	11/25/14	21	Filter	pCi/Filter	Zinc-65	629	547	392-755	Acceptable
ED A	3rd /	44105144	MRAD-	F:14.0.4	"C:/F:lto"	Uranium-	00	00	07.0.44.0	Assentable
ERA	2014 3rd /	11/25/14	21 MRAD-	Filter	pCi/Filter	234 Uranium-	28	28	27.8-41.9	Acceptable
ERA	2014	11/25/14	21	Filter	pCi/Filter	238	25	27.60	17.8-38.2	Acceptable
	3rd /		MRAD-		01/5	Uranium-				
ERA	2014 3rd /	11/25/14	MRAD-	Filter	pCi/Filter	Total	55	57	31.4-86.3	Acceptable
ERA	2014	11/25/14	21	Filter	ug/Filter	Uranium- Total(mass)	75.1	82.7	52.9-116	Acceptable
	3rd /		MRAD-			Uranium-				
ERA	2014	11/25/14	21 MDAD	Filter	ug/Filter	Total(mass)	90.7	82.7	52.9-116	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Gross Alpha	47.4	36.9	12.4-57.3	Acceptable
	3rd /		MRAD-							
ERA	2014	11/25/14	21	Filter	pCi/Filter	Gross Beta	27.2	21.1	13.3-30.8	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Americium- 241	72.4	68.6	46.2-92.0	Acceptable
LIVA	3rd /	11/40/14	MRAD-	v valei	POIL	471	14.4	00.0	70,2-02.0	/ roochranic
ERA	2014	11/25/14	21	Water	pCi/L	Cesium-134	816.0	850	624-977	Acceptable
ERA	3rd /	11/25/14	MRAD-	Water	pCi/L	Cesium-137	1310	1240	1060-1490	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 28 of 64

PT Provider	Quarter / Year	Report Received Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
	2014		21							
ED A	3rd /	44/05/44	MRAD-	VA. 1	0:#	0 1 11 00	1100	4070	000 4050	
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Cobalt-60	1130	1070	930-1250	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Iron-55	130	134	79.9-182	Acceptable
LIVI	3rd /	11/20/14	MRAD-	vvator	POIL	Manganese-	100	104	75.5-102	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	54	<6.34	<100	0.00-100	Acceptable
	3rd /		MRAD-			Plutonium-				
ERA	2014	11/25/14	21	Water	pCi/L	238	35	33	24.6-41.4	Acceptable
	3rd /		MRAD-			Plutonium-				
ERA	2014	11/25/14	21	Water	pCi/L	239	46.4	51	39.7-64.4	Acceptable
	3rd /		MRAD-			Strontium-				
ERA	2014	11/25/14	21	Water	pCi/L	90	300	254	165-336	Acceptable
ERA	3rd / 2014	11/05/11	MRAD- 21	Motor	~C://	Uranium- 234	40	44	20.0.50.5	A t - b l -
EKA	3rd /	11/25/14	MRAD-	Water	pCi/L	Uranium-	42	44	32.9-56.5	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	238	50	43.50	33.2-53.4	Acceptable
LIVA	3rd /	11/25/14	MRAD-	vvatci	POIL	Uranium-	30	43.30	33.2-33.4	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Total	92	89	65.5-115	Acceptable
	3rd /		MRAD-			Uranium-				7 1000 p 10.010
ERA	2014	11/25/14	21	Water	ug/L	Total(mass)	137	130	104-157	Acceptable
	3rd /		MRAD-							·
ERA	2014	11/25/14	21	Water	pCi/L	Zinc-65	1070	921	768-1160	Acceptable
	3rd /		MRAD-			Uranium-			1	
ERA	2014	11/25/14	21	Water	pCi/L	234	43	44	32.9-56.5	Acceptable
ERA	3rd / 2014	11/25/14	MRAD-	Water	»C:/I	Uranium- 238	45	40.50	22.0.52.4	Assentable
ERA	3rd /	11/25/14	MRAD-	vvalei	pCi/L	Uranium-	45	43.50	33.2-53.4	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Total	90	89	65.5-115	Acceptable
LIVY	3rd /	11/20/14	MRAD-	VVator	powe		30	- 00	00.0-110	Acceptable
ERA	2014	11/25/14	21	Water	ug/L	Uranium- Total(mass)	134	130	104-157	Acceptable
2011/2011/2011/2011	3rd /		MRAD-		J	Uranium-				7.000 7.000,0
ERA	2014	11/25/14	21	Water	pCi/L	234	49	44	32.9-56.5	Acceptable
	3rd /		MRAD-			Uranium-				
ERA	2014	11/25/14	21	Water	pCi/L	238	42	43.50	33.2-53.4	Acceptable
	3rd /		MRAD-			Uranium-				
ERA	2014	11/25/14	21	Water	pCi/L	Total	93	89	65.5-115	Acceptable
EDA .	3rd /	44/05/44	MRAD-	10/-4		Uranium-	400	400	104.457	A
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	ug/L	Total(mass)	126	130	104-157	Acceptable
ERA	2014	11/25/14	21 NRAD-	Water	ug/L	Uranium-	144	130	104-157	Acceptable
LIVA	3rd /	11/20/14	MRAD-	vvalei	ug/L	Total(mass)	144	130	104-137	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Gross Alpha	96.2	98	34.8-152	Acceptable
	3rd /		MRAD-		P0"E	2.000 / lipita	00.2	"	0 1.0 102	, .500010010
ERA	2014	11/25/14	21	Water	pCi/L	Gross Beta	86.1	77.5	44.4-115	Acceptable
	3rd /		MRAD-							
ERA	2014	11/25/14	21	Water	pCi/L	Tritium	5490	5500	3680-7840	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 29 of 64

TABLE 2
2014 ECKERT & ZIEGLER ANALYTICS PERFORMANCE EVALUATION RESULTS

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
EZA	1st/2014	05/16/14	E10846	Cartridge	pCi	lodine-131	7.83E+01	7.52E+01	1.04	Acceptable
EZA	1st/2014	05/16/14	E10847	Milk	pCi/L	Strontium- 89	9.14E+01	9.17E+01	1	Acceptable
EZA	1st/2014	05/16/14	E10847	Milk	pCi/L	Strontium- 90	1.27E+01	1.51E+01	0.84	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	lodine-131	9.84E+01	9.85E+01	1	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cerium-141	1.21E+02	1.19E+02	1.02	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cr-51	5.19E+02	4.91E+02	1.06	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cesium-134	1.79E+02	2.10E+02	0.85	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cesium-137	2.55E+02	2.53E+02	1.01	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cobalt-58	2.58E+02	2.68E+02	0.96	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Mn-54	3.01E+02	2.97E+02	1.01	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Iron-59	2.24E+02	2.19E+02	1.02	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Zinc-65	3.45E+02	3.23E+02	1.07	Acceptable
EZA	1st/2014	05/16/14	E10848	Milk	pCi/L	Cobalt-60	3.39E+02	3.37E+02	1.00	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	lodine-131	9.24E+01	8.99E+01	1.03	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cerium-141	8.19E+01	7.71E+01	1.06	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cr-51	3.32E+02	3.19E+02	1.04	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cesium-134	1.27E+02	1.36E+02	0.93	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cesium-137	1.69E+02	1.64E+02	1.03	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cobalt-58	1.75E+02	1.74E+02	1.01	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Mn-54	2.08E+02	1.93E+02	1.08	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Iron-59	1.68E+02	1.42E+02	1.18	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Zinc-65	2.25E+02	2.10E+02	1.07	Acceptable
EZA	1st/2014	05/16/14	E10849	Water	pCi/L	Cobalt-60	2.31E+02	2.19E+02	1.02	Acceptable
EZA	2nd/2014	08/08/14	E10897	Cartridge	pCi	lodine-131	8.73E+01	8.54E+01	1.02	Acceptable
EZA	2nd/2014	08/08/14	E10898	Milk	pCi/L	Strontium- 89	9.84E+01	9.13E+01	1.08	Acceptable
EZA	2nd/2014	08/08/14	E10898	Milk	pCi/L	Strontium- 90	1.44E+01	1.45E+01	0.99	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	lodine-131	9.89E+01	9.09E+01	1.09	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cerium-141	1.38E+02	1.24E+02	1.12	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Chromium- 51	2.68E+02	2.53E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cesium-134	1.58E+02	1.62E+02	0.97	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cesium-137	1.27E+02	1.20E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Cobalt-58	1.20E+02	1.12E+02	1.07	Acceptable
EZA	2nd/2014	08/08/14	E10899	Milk	pCi/L	Manganese- 54	1.67E+02	1.56E+02	1.07	Acceptable
	2nd/2014 2nd/2014	08/08/14	E10899	Milk	pCi/L	1ron-59	1.02E+02	1.02E+02	1.00	Acceptable
EZA EZA	2nd/2014 2nd/2014	08/08/14	E10899	Milk	pCi/L	Zinc-65	2.68E+02	2.52E+02	1.06	Acceptable
	2nd/2014 2nd/2014	08/08/14	E10899	Milk	pCi/L	Cobalt-60	2.42E+02	2.52E+02 2.24E+02	1.08	Acceptable
EZA						lodine-131				Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Tourne-131	1.13E+02	9.83E+01	1.15	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 30 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cerium-141	1.52E+02	1.43E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Chromium- 51	3.62E+02	2.94E+02	1.23	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cesium-134	1.69E+02	1.88E+02	0.90	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cesium-137	1.48E+02	1.39E+02	1.06	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cobalt-58	1.34E+02	1.30E+02	1.03	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Manganese- 54	1.88E+02	1.80E+02	1.04	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Iron-59	1.29E+02	1.19E+02	1.09	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Zinc-65	3.29E+02	2.93E+02	1.12	Acceptable
EZA	2nd/2014	08/08/14	E10900	Water	pCi/L	Cobalt-60	2.74E+02	2.60E+02	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10993	Cartridge	pCi	lodine-131	9.47E+01	8.99E+01	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10994	Milk	pCi/L	Strontium- 89	9.73E+01	9.69E+01	1.00	Acceptable
EZA	3rd/2014	11/22/14	E10994	Milk	pCi/L	Strontium- 90	1.31E+01	1.64E+01	0.80	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	lodine-131	1.04E+02	9.76E+01	1.07	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cerium-141	1.28E+02	1.26E+02	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Chromium- 51	3.12E+02	2.88E+02	1.08	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cesium-134	1.51E+02	1.58E+02	0.96	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cesium-137	2.03E+02	1.93E+02	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cobalt-58	1.44E+02	1.43E+02	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Manganese- 54	1.49E+02	1.42E+02	1.05	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Iron-59	1.82E+02	1.58E+02	1.15	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Zinc-65	7.41E+01	7.30E+01	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10995	Milk	pCi/L	Cobalt-60	3.14E+02	2.94E+02	1.06	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	lodine-131	1.02E+02	9.88E+01	103	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cerium-141	1.30E+02	1.25E+02	104	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Chromium- 51	2.75E+02	2.86E+02	0.96	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cesium-134	1.45E+02	1.56E+02	0.93	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cesium-137	1.94E+02	1.92E+02	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cobalt-58	1.43E+02	1.42E+02	1.01	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Manganese- 54	1.46E+02	1.41E+02	1.04	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Iron-59	1.66E+02	1.57E+02	1.06	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Zinc-65	7.55E+01	7.24E+01	1.04	Acceptable
EZA	3rd/2014	11/22/14	E10996	Water	pCi/L	Cobalt-60	3.09E+02	2.95E+02	1.05	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 31 of 64

TABLE 3
2014 DEPARTMENT OF ENERGY MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) RESULTS

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MADED	0 1/0044	00/05/44	MAPEP-14-	E-111	D /	0 41.1	4.000	4 77	0.50.0.04	A
MAPEP	2nd/2014	06/05/14	GrF30 MAPEP-14-	Filter	Bq/sample	Gross Alpha	1.980	1.77	0.53-3.01	Acceptable
MAPEP	2nd/2014	06/05/14	GrF30	Filter	Bq/sample	Gross Beta	0.823	0.77	0.39-1.16	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaS30	Soil	Bq/kg	Americium- 241	65	68	47.6-88.4	Acceptable
IVIAI LI	ZHUZUT	00/00/14	MAPEP-14-	Ooli	Bq/rtg	271	00	00	False Pos	7100001141010
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	Cesium-134	5.44	0	Test	Acceptable
MADED	0	00/05/44	MAPEP-14-	0-11	Dayller.	Onnium 407	4070	4000	007.4000	Assentable
MAPEP	2nd/2014	06/05/14	MaS30 MAPEP-14-	Soil	Bq/kg	Cesium-137	1270	1238	867-1609	Acceptable
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	Cobalt-57	947	966	676-1256	Acceptable
			MAPEP-14-							
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	Cobalt-60	0.581	1.220	Sens. Eval.	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaS30	Soil	Bq/kg	Iron-55	580	643	444-824	Acceptable
IVI/ (I LI	ZHUZUTT	00/00/11	MAPEP-14-	0011	Bq/rtg	Manganese-	000	0.10	111021	71000010010
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	54	1470	1430	1001-1859	Acceptable
MADED	0~4/0044	00/05/44	MAPEP-14-	Call	Da/lea	Niekal Co	6.05		False Pos	Assentable
MAPEP	2nd/2014	06/05/14	MaS30 MAPEP-14-	Soil	Bq/kg	Nickel-63 Plutonium-	6.95	0	Test	Acceptable
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	238	89.7	96.0	67-125	Acceptable
			MAPEP-14-			Plutonium-				
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	239/240	69.80	76.8	53.8-99.8	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaS30	Soil	Bq/kg	Potassium- 40	703	622	435-809	Acceptable
IVI) (I L.I	LIIGILOTT	00/00/11	MAPEP-14-	0011	Dqritg	Strontium-	100	022	False Pos	71000010010
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	90	1.48	0	Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaS30	Soil	Da/ka	Technetium- 99	37.1	0	False Pos Test	Acceptable
WAPEP	2110/2014	00/05/14	MAPEP-14-	3011	Bq/kg	99	37.1	0	Test	Not
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	U-234/233	30.5	81.0	57-105	Accept.
			MAPEP-14-			Uranium-				Not
MAPEP	2nd/2014	06/05/14	MaS30 MAPEP-14-	Soil	Bq/kg	238	35	83	58-108	Accept.
MAPEP	2nd/2014	06/05/14	MaS30	Soil	Bq/kg	Zinc-65	766	695	487-904	Acceptable
			MAPEP-14-		-49					
MAPEP	2nd/2014	06/05/14	MaW30	Water	Bq/L	Am-241	0.759	0.720	0.504-0.936	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Cesium-134	21.4	23.1	16.2-30.0	Acceptable
MVI LI	2110/2014	00/03/14	MAPEP-14-	VVator	Dq/L	Ocsidiii-104	21.7	20.1	10.2-30.0	Acceptable
MAPEP	2nd/2014	06/05/14	MaW30	Water	Bq/L	Cesium-137	29.70	28.9	20.2-37.6	Acceptable
MADED	0 1/0044	00/05/44	MAPEP-14-	10/-1	D - //	0-1-11.57	00.0	07.5	40.005.0	A 4 - 1-1 -
MAPEP	2nd/2014	06/05/14	MaW30 MAPEP-14-	Water	Bq/L	Cobalt-57	28.0	27.5	19.3-35.8	Acceptable
MAPEP	2nd/2014	06/05/14	MaW30	Water	Bq/L	Cobalt-60	16.6	16.0	11.2-20.8	Acceptable
			MAPEP-14-							
MAPEP	2nd/2014	06/05/14	MaW30	Water	Bq/L	Hydrogen-3	308	321	225-417	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Iron-55	0.3	0.0	False Pos Test	Acceptable
IVIAI LI	2110/2014	00/00/14	MAPEP-14-	vvaloi	DYL	Manganese-	0.0	0.0	1631	/ toocptable
MAPEP	2nd/2014	06/05/14	MaW30	Water	Bq/L	54	14.4	13.9	9.7-18.1	Acceptable
MADED	01/004 1	00/05/4	MAPEP-14-	10/-1	D"	Nieles LOO	04.4	24.0	00.0.44.0	A ====+=!=!=
MAPEP	2nd/2014	06/05/14	MaW30 MAPEP-14-	Water	Bq/L	Nickel-63 Plutonium-	31.4	34.0	23.8-44.2	Acceptable
MAPEP	2nd/2014	06/05/14	MaW30	Water	Bq/L	238	0.764	0.828	0.580-1.076	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 32 of 64

PT	Quarter /	Report	Sample	Sample		Analyte /	GEL	Known	Acceptance	
Provider	Year	Date	Number	Media	Unit	Nuclide	Value	value	Range/ Ratio	Evaluation
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Pu-239/240	0.6590	0.6760	0.473-0.879	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Potassium- 40	0.460	0	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Strontium- 90	8.32	8.51	5.96-11.06	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Technetium- 99	9.5	10.3	7.2-13.4	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	U-234/233	0.210	0.225	0.158-0.293	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Uranium- 238	1.41	1.45	1.02-1.89	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Zinc-65	-0.126	0.0	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Gross Alpha	0.96	0.85	0.255-1.443	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	Gross Beta	4.7	4.2	2.10-6.29	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- MaW30	Water	Bq/L	lodine-129	0.0227	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	ug/sample	Uranium- 235	0.018	0.020	0.014-0.026	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	ug/sample	Uranium- 238	8.77	10.4	7.3-13.5	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	ug/sample	Uranium- Total	8.80	10.4	7.3-13.5	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	ug/sample	Americium- 241	0.086	0.090	0.063-0.117	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Cesium-134	1.85	1.91	1.34-2.48	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Cesium-137	1.81	1.76	1.23-2.29	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Cobalt-57	0.0757	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Cobalt-60	1.490	1.39	0.97-1.81	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Manganese- 54	0.0138	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Plutonium- 238	0.000819	0.00090	Sens. Eval.	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Pu-239/240	0.071	0.7720	0.054- 0.1004	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Strontium- 90	1.19	1.18	0.83-1.53	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	U-234/233	0.0159	0.0195	0.0137- 0.0254	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Uranium- 238	0.118	0.129	0.090-0.168	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Zinc-65	0.246	0.00	False Pos Test	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Gross Alpha	1.980	1.77	0.53-3.01	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Gross Beta	0.83	0.77	0.39-1.16	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdF30	Filter	Bq/sample	Americium- 241	0.106	0.104	0.073-0.135	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	ug/sample	Uranium- 235	0.261	0.0268	0.0188- 0.0348	Not Accept.
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	ug/sample	Uranium- 238	12.7	13.3	9.3-17.3	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	ug/sample	Uranium- Total	12.7	13.3	9.3-17.3	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	ug/sample	Americium- 241	0.1100	0.108	0.076-0.140	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 33 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Cesium-134	5.65	6.04	4.23-7.85	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Cesium-137	4.98	4.74	3.32-6.16	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Cobalt-57	11.1	10.1	7.1-13.1	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Cobalt-60	7.21	6.93	4.85-9.01	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Manganese- 54	9.24	8.62	6.03-11.21	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Plutonium- 238	0.116	0.121	0.085-0.157	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bg/sample	Pu-239/240	0.134	0.154	0.108- 0.0200	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bg/sample	Strontium- 90	1.580	1.46	1.02-1.90	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	U-234/233	0.2640	0.2530	0.0177- 0.0329	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bg/sample	Uranium- 238	0.174	0.165	0.116-0.215	Acceptable
MAPEP	2nd/2014	06/05/14	MAPEP-14- RdV30	Vegetation	Bq/sample	Zinc-65	8.87	7.00	4.38-8.13	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- GrF31	Filter	Bq/sample	Gross Alpha	0.433	0.530	0.16-0.09	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- GrF31	Filter	Bg/sample	Gross Beta	1.060	1.060	0.53-1.59	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaS31	Soil	Bq/Kg	Americium- 241	88.4	85.5	59.9-111.2	Acceptable
			MAPEP-14-							
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	Cesium-134	588	622	435-809 False Pos	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	Cesium-137	1.67		Test	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	Cobalt-57	1160	1116	781-1451	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	Cobalt-60	821	779	545-1013	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	Iron-55 Manganese-	796	680	476-884	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	54	1060	1009	706-1312	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	Nickel-63 Plutonium-	924	980	686-1274	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	238 Plutonium-	0.92	0.48	Sens. Eval.	Acceptable
MAPEP	4th /2014	01/09/15	MaS31 MAPEP-14-	Soil	Bq/Kg	239/240 Potassium-	61.5	58.6	41.0-76.2	Acceptable
MAPEP	4th /2014	01/09/15	MaS31	Soil	Bq/Kg	40	879	824	577-1071	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaS31	Soil	Bq/Kg	Strontium- 90	891	858	601-1115	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaS31	Soil	Bq/Kg	Technetium- 99	466	589	412-766	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaS31	Soil	Bq/Kg	U-234/233	905	89	62-116	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaS31	Soil	Bq/Kg	Uranium- 238	257	259	181-337	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaS31	Soil	Bq/Kg	Zinc-65	605.0	541	379-703	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Americium- 241	0.915	0.880	0.62-1.14	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Cesium-134	-0.06		False Pos Test	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Cesium-137	18.4	18.4	12.9-23.9	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 34 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
Provider	rear		MAPEP-14-	ivieuia	OIIIL	Nucliue		value		Evaluation
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	Cobalt-57	25	24.7	17.3-32.1	Acceptable
MAPEP	4th /2014	01/09/15	MaW31	Water	Bq/L	Cobalt-60	12.5	12.4	8.7-16.1	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Hydrogen-3	216	208	146-270	Acceptable
			MAPEP-14-		,	, ,		24.5	20.4.44.0	Assentable
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	Iron-55 Manganese-	34.0	31.5	22.1-41.0	Acceptable
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	54	14.2	14.0	9.8-18.2	Acceptable
MAPEP	4th /2014	01/09/15	MaW31	Water	Bq/L	Nickel-63	23.6	24.6	17.2-32.0	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Plutonium- 238	0.547	0.618	0.433-0.803	Acceptable
			MAPEP-14-			Plutonium-				
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	239/240 Potassium-	0.015	0.005	Sens. Eval.	Acceptable
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	40 Strontium-	174	161	113-209 False Pos	Acceptable
MAPEP	4th /2014	01/09/15	MaW31	Water	Bq/L	90	0.03		Test	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Technetium- 99	6.92	6.99	4.89-9.09	Acceptable
			MAPEP-14-			Uranium-				
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	234/233 Uranium-	0.206	0.205	0.144-0.267	Acceptable
MAPEP	4th /2014	01/09/15	MaW31	Water	Bq/L	238	1.280	1.420	0.99-1.85	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Zinc-65	11.900	10.90	7.6-14.2	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- MaW31	Water	Bq/L	Gross Alpha	0.793	0.701	0.201-1.192	Acceptable
			MAPEP-14-							•
MAPEP	4th /2014	01/09/15	MaW31 MAPEP-14-	Water	Bq/L	Gross Beta Uranium-	6.220	5.94	2.97-8.91 0.0278-	Acceptable
MAPEP	4th /2014	01/09/15	RdF31	Filter	ug/sample	235	0.040	0.040	0.0516	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- RdF31	Filter	ug/sample	Uranium- 238	19.3	20.3	14.2-26.4	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- RdF31	Filter	ug/sample	Uranium- Total	19.00	20.4	14.3-26.5	Acceptable
			MAPEP-14-			Americium-			0.0472-	·
MAPEP	4th /2014	01/09/15	RdF31 MAPEP-14-	Filter	ug/sample	241	0.0561	0.067	0.0876	Acceptable
MAPEP	4th /2014	01/09/15	RdF31	Filter	Bq/sample	Cesium-134	0.8640	0.96	0.67-1.25	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- RdF31	Filter	Bg/sample	Cesium-137	1.190	1.20	0.84-1.56	Acceptable
MADED	4th /2014	01/09/15	MAPEP-14-	Filter	Bq/sample	Cobalt-57	1.540	1.43	1.00-1.86	Acceptable
MAPEP			MAPEP-14-							
MAPEP	4th /2014	01/09/15	RdF31 MAPEP-14-	Filter	Bq/sample	Cobalt-60 Manganese-	1.200	1.10	0.77-1.43	Acceptable
MAPEP	4th /2014	01/09/15	RdF31	Filter	Bq/sample	54	0.808	0.75	0.53-0.98	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- RdF31	Filter	Bg/sample	Plutonium- 238	0.115	0.107	0.075-0.139	Acceptable
			MAPEP-14-			Plutonium-			0.0328-	
MAPEP	4th /2014	01/09/15	RdF31 MAPEP-14-	Filter	Bq/sample	239/240 Strontium-	0.048	0.0468	0.0608	Acceptable
MAPEP	4th /2014	01/09/15	RdF31 MAPEP-14-	Filter	Bq/sample	90 Uranium-	0.762	0.70	0.492-0.914 0.0251-	Acceptable
MAPEP	4th /2014	01/09/15	RdF31	Filter	Bq/sample	234/233	0.037	0.0358	0.0251-	Acceptable
MAPEP	4th /2014	01/09/15	MAPEP-14- RdF31	Filter	Bg/sample	Uranium- 238	0.227	0.253	0.177-0.329	Acceptable
			MAPEP-14-							
MAPEP	4th /2014	01/09/15	RdF31 MAPEP-14-	Filter	Bq/sample	Zinc-65 Americium-	0.779	0.76	0.53-0.99	Acceptable
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	241	0.226	0.19	0.135-0.251	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 35 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
			MAPEP-14-							
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	Cesium-134	4.750	5.20	3.64-6.67	Acceptable
			MAPEP-14-							
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	Cesium-137	6.910	6.60	4.62-8.58	Acceptable
			MAPEP-14-						False Pos	
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	Cobalt-57	-0.002	0.00	Test	Acceptable
			MAPEP-14-						False Pos	
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	Cobalt-60	0.008	0.00	Test	Acceptable
			MAPEP-14-			Manganese-				
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	54	7.980	7.88	5.52-10.24	Acceptable
			MAPEP-14-			Plutonium-				
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	238	0.001	0.001	Sens. Eval.	Acceptable
			MAPEP-14-			Plutonium-				
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	239/240	0.1510	0.171	0.120-0.222	Acceptable
			MAPEP-14-			Strontium-				
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	90	2.330	2.32	1.62-3.02	Acceptable
			MAPEP-14-			Uranium-			0.0326-	
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	234/233	0.046	0.047	0.0606	Acceptable
			MAPEP-14-			Uranium-				
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	238	0.332	0.324	0.227-0.421	Acceptable
			MAPEP-14-							
MAPEP	4th /2014	01/09/15	RdV31	Vegetation	Bq/sample	Zinc-65	2.850	2.63	1.84-3.42	Acceptable
			MAPEP-14-			Strontium-				
MAPEP	4th /2014	01/09/15	SrF-31	Filter	Bq/sample	89	3.62	3.79	2.65-4.93	Acceptable
			MAPEP-14-			Strontium-				
MAPEP	4th /2014	01/09/15	SrF-31	Filter	Bq/sample	90	3.62	3.79	2.65-4.93	Acceptable
			MAPEP-14-							
MAPEP	4th /2014	01/09/15	XaW-31	Water	Bq/L	lodine-129	4.56	4.55	3.19-5.92	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 36 of 64

TABLE 4
2014 ERA PROGRAM PERFORMANCE EVALUATION RESULTS

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known	Acceptance Range/ Ratio	Evaluation
Tioridor	1st /	Duto	RAD -	modia	Onic	7 that year 1 to 1 to a late	Value	Value	ratio	Lvaidation
ERA	2014	02/24/14	96	Water	pCi/L	Barium-133	80.6	76.2	63.8-83.8	Acceptable
	1st /		RAD -							
ERA	2014	02/24/14	96	Water	pCi/L	Cesium-134	64.7	66.8	54.4-73.5	Acceptable
ED A	1st /	00/04/44	RAD -	X A 7 . 1	0:"	0 1 107	4400	400	00 / /00	
ERA	2014	02/24/14	96	Water	pCi/L	Cesium-137	112.0	109	98.1-122	Acceptable
ERA	1st / 2014	02/24/14	RAD - 96	Water	pCi/L	Cobalt-60	95.0	88.7	79.8-99.9	Acceptable
LIVA	1st /	UZIZHIT	RAD -	vvatci	POIL	Oobait-00	33.0	00.7	79.0-99.9	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Zinc-65	200	185	166-218	Acceptable
	1st /		RAD -							
ERA	2014	02/24/14	96	Water	pCi/L	Gross Alpha	34.8	36.1	18.6-46.4	Acceptable
	1st /	00/04/44	RAD -		0.111					
ERA	2014	02/24/14	96 RAD -	Water	pCi/L	Gross Beta	19.6	22.3	13.5-30.4	Acceptable
ERA	1st / 2014	02/24/14	96	Water	pCi/L	Gross Alpha	34.6	36.1	18.6-46.4	Acceptable
LIVA	1st /	02/24/14	RAD -	VValei	POIL	Oloss Alpha	34.0	30.1	10.0-40.4	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Radium-226	16.2	16.8	12.5-19.2	Acceptable
311 15	1st /		RAD -						2 2001 81 (800,000)	
ERA	2014	02/24/14	96	Water	pCi/L	Radium-228	4.62	5.04	3.01-6.67	Acceptable
	1st /		RAD -							
ERA	2014	02/24/14	96	Water	pCi/L	Uranium (Nat)	7.39	7.23	5.51-8.53	Acceptable
ERA	1st / 2014	02/24/14	RAD - 96	Water	ug/L	Uranium (Nat)	11.00	10.6	8.07-12.5	Accontable
ERA	1st /	02/24/14	RAD -	vvalei	ug/L	mass	11.00	10.6	0.07-12.5	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Radium-226	15.10	16.8	12.5-19.2	Acceptable
	1st /		RAD -		P.S.II.	/	10110	, , , ,	12.0 10.2	7.1000 7.1000
ERA	2014	02/24/14	96	Water	pCi/L	Radium-228	4.66	5.04	3.01-6.67	Acceptable
	1st /		RAD -							
ERA	2014	02/24/14	96	Water	pCi/L	Uranium (Nat)	7.47	7.23	5.51-8.53	Acceptable
ERA	1st / 2014	02/24/14	RAD - 96	Matar	//	Uranium (Nat)	11.1	10.6	0.07.40.5	Assentable
ERA	1st /	02/24/14	RAD -	Water	ug/L	mass	11.4	10.6	8.07-12.5	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Tritium	3320	3580	3030-3950	Acceptable
	1st /	02/21/11	RAD -	11410.	P02	11100111	0020	0000	0000 0000	710000710210
ERA	2014	02/24/14	96	Water	pCi/L	Strontium-89	44.1	44.4	34.4-51.6	Acceptable
	1st /		RAD -							
ERA	2014	02/24/14	96	Water	pCi/L	Strontium-90	34.2	30.3	22.1-35.2	Acceptable
ED.	1st /	00/04/44	RAD -	Matan	*C://	Ctrantium 00	20.0	44.4	24.4.54.0	At-bl-
ERA	2014 1st /	02/24/14	96 RAD -	Water	pCi/L	Strontium-89	38.9	44.4	34.4-51.6	Acceptable
ERA	2014	02/24/14	96	Water	pCi/L	Strontium-90	27.1	30.3	22.1-35.2	Acceptable
LIVI	1st /	OL/L I/ I	- 00	TTULO	POWE	Ou ontain oo	-/	00.0	22.1 00.2	710000110010
ERA	2014	02/06/14	011014L	Water	pCi/L	Strontium-89	42.3	38.7	29.3-45.7	Acceptable
	1st /							¥		
ERA	2014	02/06/14	011014L	Water	pCi/L	Strontium-89	42.2	38.7	29.3-45.7	Acceptable
-DA	1st /	00/04/44	RAD -	10/-1	0://	la dia a 404	05.0	04.4	00.0.00.0	A I - I- I -
ERA	2014	02/24/14	96 RAD -	Water	pCi/L	lodine-131	25.2	24.4	20.2-28.9	Acceptable
ERA	1st / 2014	02/24/14	96	Water	pCi/L	lodine-131	22.4	24.4	20.2-28.9	Acceptable
LIVI	3rd /	JEIETIIT	RAD -	vator	POIL	IOGING-101	<i>LL</i> .T	<u> </u>	20.2 20.0	, toocplable
ERA	2014	08/25/14	98	Water	pCi/L	Barium-133	67.8	68.7	57.3-75.6	Acceptable
	3rd /		RAD -							
ERA	2014	08/25/14	98	Water	pCi/L	Cesium-134	71	72.3	59.0-79.5	Acceptable
-DA	3rd /	00/0=//	RAD -	104	- 61"	0.1	464	465	447 303	A
ERA	2014	08/25/14	98	Water	pCi/L	Cesium-137	161	163	147-181	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Cobalt-60	76.7	75.5	68.0-85.5	Acceptable
LIVA	2014	00/20/14	30	vvalei	POI/L	Condit-00	10.1	10.0	00.0-00.0	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 37 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptance Range/ Ratio	Evaluation
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Zinc-65	92	82	73.8-98.5	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Gross Alpha	45.3	45.4	23.6-57.4	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Gross Beta	32.3	33.4	21.7-41.1	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Gross Alpha	48.6	45.4	23.6-57.4	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Radium-226	8.26	9.06	6.80-10.6	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Radium-226	8.54	9.06	6.80-10.6	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Radium-226	9.7	9.06	6.80-10.6	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Radium-228	5.07	5.07	3.03-6.79	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Radium-228	5.74	5.07	3.03-6.79	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Uranium (Nat)	13.9	13.5	10.7-15.4	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	ug/L	Uranium (Nat) mass	22.25	19.8	15.6-22.6	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Uranium (Nat)	13	13.5	10.7-15.4	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	ug/L	Uranium (Nat) mass	20.7	19.8	15.6-22.6	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Tritium	10200	11200	9750-12300	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Tritium	10400	11200	9750-12300	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Strontium-89	56.3	42.7	32.9-49.8	Not Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Strontium-90	14.3	31.7	23.1-36.7	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Strontium-89	56.5	42.7	32.9-49.8	Not Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	Strontium-90	26	31.7	23.1-36.7	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	lodine-131	28.6	26.1	21.7-30.8	Acceptable
ERA	3rd / 2014	08/25/14	RAD - 98	Water	pCi/L	lodine-131	22.3	26.1	21.7-30.8	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 38 of 64

TABLE 5
2014 ERA PROGRAM (MRAD) PERFORMANCE EVALUATION RESULTS

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptanc e Range/ Ratio	Evaluation
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Actinium-228	1140	1240	795-1720	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Americium-241	418	399	233-518	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Bismuth-212	976	1240	330-1820	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Bismuth-214	2290	1960	1180-2820	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Cesium-134	3080	3390	2220-4070	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Cesium-137	8310	8490	6510- 10900	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Cobalt-60	6570	6830	4620-9400	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Lead-212	1330	1240	812-1730	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Lead-214	2800	2070	1210-3090	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Manganese-54	<44.3	<1000	0-1000	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Plutonium-238	579	578	348-797	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Plutonium-239	488	471.00	308-651	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Potassium-40	10500	10500	7660- 14100	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Strontium-90	2500	2780	1060-4390	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Thorium-234	3420	3360	1060-6320	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Zinc-65	5700	5400	4300-7180	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Strontium-90	6730	8530	3250- 13500	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-234	2602	3390	2070-4350	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-238	2425	3360	2080-4260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-Total	5027	6910	3750-9120	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium-Total(mass)	7110	10100	5570- 12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-234	3440	3390	2070-4350	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-238	3680	3360	2080-4260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-Total	7310	6910	3750-9120	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium-Total(mass)	11000	10100	5570- 12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-234	3740	3390	2070-4350	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-238	3780	3360	2080-4260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	pCi/kg	Uranium-Total	7683	6910	3750-9120	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Soil	ug/kg	Uranium-Total(mass)	11300	10100	5570- 12700	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 39 of 64

PT Provider	Quarter / Year	Report Date	Sample Number MRAD-	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptanc e Range/ Ratio 5570-	Evaluation
ERA	2nd/2014	05/16/14	20	Soil	ug/kg	Uranium-Total(mass)	11200	10100	12700	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Am-241	1670	1490	911-1980	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Cesium-134	657	646	415-839	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Cesium-137	861	880	638-1220	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Cobalt-60	997	926	639-1290	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Curium-244	514	516	253-804	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Manganese-54	<62.2	<300	0.00-300	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Plutonium-238	2230	2110	1260-2890	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Plutonium-239	3810	3740	2300-5150	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Potassium-40	30800	31900	23000- 44800	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Strontium-90	2330	2580	1470-3420	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium-234	1920	1760	1160-2260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium-238	1970	1750	1170-2220	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium-Total	4025	3580	2430-4460	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	ug/kg	Uranium-Total(mass)	5920	5240	3510-6650	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Zinc-65	1030	919	663-1290	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium-234	1730	1760	1160-2260	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium-238	2000	1750	1170-2220	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	pCi/kg	Uranium-Total	3817	3580	2430-4460	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	ug/kg	Uranium-Total(mass)	5990	5240	3510-6650	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Vegetation	ug/kg	Uranium-Total(mass)	5620	5240	3510-6650	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Americium-241	60.2	59.7	36.8-80.8	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Cesium-134	920	1010	643-1250	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Cesium-137	816	828	622-1090	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Cobalt-60	1130	1120	867-1400	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Iron-55	254	240	74.4-469	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Manganese-54	<6.64	<50.0	0-50.0	Acceptable
			MRAD-			-				
ERA	2nd/2014	05/16/14	MRAD-	Filter	pCi/Filter	Plutonium-238	51.3	56.3	38.6-74.0	Acceptable
ERA	2nd/2014	05/16/14	MRAD-	Filter	pCi/Filter	Plutonium-239	47.5	48.6	35.2-63.5	Acceptable
ERA	2nd/2014	05/16/14	MRAD-	Filter	pCi/Filter	Strontium-90	76.7	78.9	38.6-118	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Filter	pCi/Filter	Uranium-234	33.8	36.4	22.6-54	Acceptable
ERA	2nd/2014	05/16/14	20	Filter	pCi/Filter	Uranium-238	34.5	36.1	23.3-49.9	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 40 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptanc e Range/ Ratio	Evaluation
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium-Total	70.3	74.3	41.1-113	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	ug/Filter	Uranium-Total(mass)	104	108	69.1-152	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Zinc-65	737	667	478-921	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium-234	35.5	36.4	22.6-54	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium-238	35.3	36.1	23.3-49.9	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Filter	pCi/Filter	Uranium-Total	72.4	74.3	41.1-113	Acceptable
			MRAD-		,					
ERA	2nd/2014	05/16/14	MRAD-	Filter	ug/Filter	Uranium-Total(mass)	105	108	69.1-152	Acceptable
ERA	2nd/2014	05/16/14	MRAD-	Filter	ug/Filter	Uranium-Total(mass)	100	108	69.1-152	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Filter	pCi/Filter	Gross Alpha	60.9	46	15.4-71.4	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Filter	pCi/Filter	Gross Beta	58.9	53.8	34.0-78.4	Acceptable Not
ERA	2nd/2014	05/16/14	20 MRAD-	Water	pCi/L	Americium-241	186	114	76.8-153	Acceptable
ERA	2nd/2014	05/16/14	20	Water	pCi/L	Cesium-134	1540	1660	1220-1910	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Cesium-137	2760	2690	2280-3220	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Cobalt-60	1320	1270	1100-1490	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Iron-55	1230	1200	716-1630	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Manganese-54	<7.54	<100	0.00-100	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Plutonium-238	37	44	32.6-54.9	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Plutonium-239	124	160	124-202	Acceptable
			MRAD- 20							
ERA	2nd/2014	05/16/14	MRAD-	Water	pCi/L	Strontium-90	95	890	580-1180	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Water	pCi/L	Uranium-234	77.8	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Water	pCi/L	Uranium-238	50.8	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Water	pCi/L	Uranium-Total	156	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Water	ug/L	Uranium-Total(mass)	233	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	20 MRAD-	Water	pCi/L	Zinc-65	2030	1800	1500-2270	Acceptable
ERA	2nd/2014	05/16/14	20	Water	pCi/L	Uranium-234	82.1	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-238	84.6	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-Total	170	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium-Total(mass)	253	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-234	80.5	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-238	90.0	48.4	36.9-59.4	Acceptable
			MRAD-							
ERA	2nd/2014	05/16/14	MRAD-	Water	pCi/L	Uranium-Total	175	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	20	Water	ug/L	Uranium-Total(mass)	269	245	195-296	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 41 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptanc e Range/ Ratio	Evaluation
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-234	77.8	82.4	61.9-106	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-238	78.3	48.4	36.9-59.4	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Uranium-Total	156	168	123-217	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium-Total(mass)	233	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	ug/L	Uranium-Total(mass)	232	245	195-296	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Gross Alpha	141.0	133	47.2-206	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Gross Beta	172	174.0	99.6-258	Acceptable
ERA	2nd/2014	05/16/14	MRAD- 20	Water	pCi/L	Tritium	5280	5580	3740-7960	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Actinium-228	1280	1240	795-1720	Acceptable
ERA	3rd / 2014	11/25/14	MRAD-	Soil	pCi/kg	Americium-241	825	763	431-956	Acceptable
ERA	3rd / 2014	11/25/14	MRAD-	Soil		Bismuth-212	1620	1240	330-1820	Acceptable
	3rd /		MRAD-		pCi/kg					
ERA	2014 3rd /	11/25/14	MRAD-	Soil	pCi/kg	Bismuth-214	2900	2810	1690-4040	Acceptable
ERA	2014 3rd /	11/25/14	MRAD-	Soil	pCi/kg	Cesium-134	1960	2140	1400-2570	Acceptable
ERA	2014 3rd /	11/25/14	MRAD-	Soil	pCi/kg	Cesium-137	6760	6550	5020-8430	Acceptable
ERA	2014 3rd /	11/25/14	MRAD-	Soil	pCi/kg	Cobalt-60	4480	4260	2880-5860	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Lead-212	1260	1240	812-1730	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Lead-214	3480	2750	1610-4100	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Manganese-54	<30.0	<1000	0-1000	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Plutonium-238	732	739	444-1020	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Soil	pCi/kg	Plutonium-239	281	309	202-427 7810-	Acceptable
ERA	2014	11/25/14	21 MRAD-	Soil	pCi/kg	Potassium-40	11500	10700	14400 3210-	Acceptable
ERA	3rd / 2014	11/25/14	21	Soil	pCi/kg	Strontium-90	8790	8420	13300	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Thorium-234	2000	2350	743-4420	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Zinc-65	3910	3270	2600-4350	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Uranium-234	2280	2370	1450-3040	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Uranium-238	2340	2350	1450-2980	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	pCi/kg	Uranium-Total	4762	4540	2360-6390	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Soil	ug/kg	Uranium-Total(mass)	7020	7050	3890-8870	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Am-241	2260	2290	1400-3505	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Cesium-134	837	849	545-1100	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Cesium-137	729	644	467-896	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Cobalt-60	818	784	541-1100	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 42 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptanc e Range/ Ratio	Evaluation
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Curium-244	361	367	180-572	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Manganese-54	<25.3	<300	0-300	Acceptable
	3rd /		MRAD-							
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	Plutonium-238	886	862	514-1180	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	Plutonium-239	675	701	430-965 22300-	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	Potassium-40	35300	30900	43400	Acceptable
ERA	2014	11/25/14	21	Vegetation	pCi/kg	Strontium-90	1230	1710	975-2270	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Uranium-234	1980	1780	1170-2290	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Uranium-238	1970	1760	1170-2240	Acceptable
	3rd /		MRAD-							·
ERA	2014 3rd /	11/25/14	MRAD-	Vegetation	pCi/kg	Uranium-Total	4038	3620	2450-4510	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	ug/kg	Uranium-Total(mass)	5910	5280	3540-6710	Acceptable
ERA	2014	11/25/14	21	Vegetation	pCi/kg	Uranium-234	1670	1780	1170-2290	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Uranium-238	1800	1760	1170-2240	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation	pCi/kg	Uranium-Total	3556	3620	2450-4510	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Vegetation			5390	5280	3540-6710	Acceptable
	3rd /		MRAD-		ug/kg	Uranium-Total(mass)				,
ERA	2014 3rd /	11/25/14	MRAD-	Vegetation	ug/kg	Uranium-Total(mass)	5860	5280	3540-6710	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Vegetation	pCi/kg	Zinc-65	1930	1570	1130-2200	Acceptable
ERA	2014	11/25/14	21	Filter	pCi/Filter	Americium-241	41.4	38.6	23.8-52.2	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Cesium-134	742	765.0	487-949	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Cesium-137	677	647	486-850	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Cobalt-60	543	523	405-653	Acceptable
	3rd /		MRAD-							
ERA	2014 3rd /	11/25/14	MRAD-	Filter	pCi/Filter	Iron-55	117	120.0	37.2-234	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Filter	pCi/Filter	Manganese-54	<5.87	<50	0.00-50.0	Acceptable
ERA	2014	11/25/14	21	Filter	ug/Filter	Plutonium-238	32.9	35.7	24.5-46.9	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Plutonium-239	26.8	29.1	21.1-38.0	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Strontium-90	187	168	82.1-252	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Uranium-234	26	28	27.8-41.9	Acceptable
	3rd /		MRAD-							2
ERA	2014 3rd /	11/25/14	21 MRAD-	Filter	pCi/Filter	Uranium-238	28	27.60	17.8-38.2	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Filter	pCi/Filter	Uranium-Total	56	57	31.4-86.3	Acceptable
ERA	2014	11/25/14	21	Filter	ug/Filter	Uranium-Total(mass)	82.6	82.7	52.9-116	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Zinc-65	629	547	392-755	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Uranium-234	28	28	27.8-41.9	Acceptable
	3rd /		MRAD-							,
ERA	2014	11/25/14	21	Filter	pCi/Filter	Uranium-238	25	27.60	17.8-38.2	Acceptable

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 43 of 64

PT Provider	Quarter / Year	Report Date	Sample Number	Sample Media	Unit	Analyte / Nuclide	GEL Value	Known value	Acceptanc e Range/ Ratio	Evaluation
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Uranium-Total	55	57	31.4-86.3	Acceptable
	3rd /		MRAD-		,	Oranium-Totai				
ERA	2014 3rd /	11/25/14	MRAD-	Filter	ug/Filter	Uranium-Total(mass)	75.1	82.7	52.9-116	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Filter	ug/Filter	Uranium-Total(mass)	90.7	82.7	52.9-116	Acceptable
ERA	2014	11/25/14	21	Filter	pCi/Filter	Gross Alpha	47.4	36.9	12.4-57.3	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Filter	pCi/Filter	Gross Beta	27.2	21.1	13.3-30.8	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Americium-241	72.4	68.6	46.2-92.0	Acceptable
	3rd /		MRAD-		'					
ERA	2014 3rd /	11/25/14	MRAD-	Water	pCi/L	Cesium-134	816.0	850	624-977	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Cesium-137	1310	1240	1060-1490	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Cobalt-60	1130	1070	930-1250	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Iron-55	130	134	79.9-182	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Manganese-54	<6.34	<100	0.00-100	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Plutonium-238	35	33	24.6-41.4	Acceptable
	3rd /		MRAD-			,				
ERA	2014 3rd /	11/25/14	MRAD-	Water	pCi/L	Plutonium-239	46.4	51	39.7-64.4	Acceptable
ERA	2014 3rd /	11/25/14	MRAD-	Water	pCi/L	Strontium-90	300	254	165-336	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Uranium-234	42	44	32.9-56.5	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Uranium-238	50	43.50	33.2-53.4	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Uranium-Total	92	89	65.5-115	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	ug/L	Uranium-Total(mass)	137	130	104-157	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Zinc-65	1070	921	768-1160	
	3rd /		MRAD-							Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Uranium-234	43	44	32.9-56.5	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Uranium-238	45	43.50	33.2-53.4	Acceptable
ERA	2014	11/25/14	21	Water	pCi/L	Uranium-Total	90	89	65.5-115	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	ug/L	Uranium-Total(mass)	134	130	104-157	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Uranium-234	49	44	32.9-56.5	Acceptable
ERA	3rd / 2014	11/25/14	MRAD-	Water						•
	3rd /		MRAD-		pCi/L	Uranium-238	42	43.50	33.2-53.4	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	pCi/L	Uranium-Total	93	89	65.5-115	Acceptable
ERA	2014 3rd /	11/25/14	21 MRAD-	Water	ug/L	Uranium-Total(mass)	126	130	104-157	Acceptable
ERA	2014	11/25/14	21	Water	ug/L	Uranium-Total(mass)	144	130	104-157	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Gross Alpha	96.2	98	34.8-152	Acceptable
ERA	3rd / 2014	11/25/14	MRAD- 21	Water	pCi/L	Gross Beta	86.1	77.5	44.4-115	Acceptable
	3rd /		MRAD-							
ERA	2014	11/25/14	21	Water	pCi/L	Tritium	5490	5500	3680-7840	Acceptable

Page 44 of 64

FIGURE 1

COBALT-60 PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 45 of 64

FIGURE 2

CESIUM-137 PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 46 of 64

FIGURE 3

TRITIUM PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 47 of 64

FIGURE 4

STRONTIUM-90 PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 48 of 64

FIGURE 5

GROSS ALPHA PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 49 of 64

FIGURE 6

GROSS BETA PERFORMANCE EVALUATION RESULTS AND % BIAS

FIGURE 7

IODINE-131 PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 51 of 64

FIGURE 8

AMERICIUM-241 PERFORMANCE EVALUATION RESULTS AND % BIAS

Page 52 of 64

FIGURE 9

PLUTONIUM-238 PERFORMANCE EVALUATION RESULTS AND % BIAS

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 53 of 64

TABLE 6
REMP INTRA-LABORATORY DATA SUMMARY: BIAS AND PRECISION BY MATRIX

	Bias Criteria	4 (+ / - 25%	Precision Criteria (Note 1)		
	WITHIN	OUTSIDE	WITHIN	OUTSIDE	
REMP 2014	CRITERIA	CRITERIA	CRITERIA	CRITERIA	
MILK					
Gas Flow Sr 2nd count	36	0	36	0	
Gas Flow Total Strontium	23	0	23	0	
Gamma Spec Liquid RAD A-013 with Ba, La	48	0	109	0	
SOLID					
LSC Iron-55	3	0	3	0	
Gamma Spec Solid RAD A-013	30	0	43	0	
LSC Nickel 63	3	0	3	0	
Gas Flow Sr 2nd count	5	0	5	0	
Gas Flow Total Strontium	5	0	5	0	
Gamma Spec Solid RAD A-013 with Ba, La	2	0	8	0	
Gamma Spec Solid RAD A-013 with Iodine	6	0	7	0	
FILTER					
Gas Flow Sr 2nd Count	5	0	5	0	
Gross A & B	429	0	429	0	
Gas Flow Sr-90	1	0	1	0	
Gamma Spec Filter	45	0	47	0	
LIQUID					
Alpha Spec Uranium	1	0	2	0	
Tritium	206	0	205	0	
Plutonium	1	0	1	0	
LSC Iron-55	12	0	12	0	
LSC Nickel 63	13	0	13	0	
Gamma Spec Liquid RAD A-013	4	0	4	0	
Alpha Spec Am243	6	0	6	0	
Gamma Iodine-131	28	0	28	0	
Alpha Spec Plutonium	10	0	10	0	
Gas Flow Sr 2nd count	15	0	15	0	
Alpha Spec Am241 Curium	8	0	8	0	
Gas Flow Total Strontium	30	0	31	0	
Gross Alpha Non Vol Beta	45	0	45	0	
Gamma Spec Liquid RAD A-013 with Ba, La	84	0	159	0	
Gamma Spec Liquid RAD A-013 with Iodine	40	0	40	0	
TISSUE					
Gamma Spec Solid RAD A-013	48	0	46	0	
Gas Flow Sr 2nd count	8	0	8	0	
Gas Flow Total Strontium	17	0	17	0	
Gamma Spec Solid RAD A-013 with Ba, La	10	0	10	0	

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 54 of 64

Gamma Spec Solid RAD A-013 with Iodine	23	0	22	0	
SEA WATER					
LSC Iron-55	5	0	6	0	
LSC Nickel 63	5	0	6	0	
Gas Flow Total Strontium	6	0	6	0	
Gross Alpha Non Vol Beta	6	0	6	0	
Gamma Spec Liquid RAD A-013 with Iodine	7	0	11	0	
VEGETATION		e de la			
Gas Flow Sr 2nd count	10	0	10	0	
Gamma Spec Solid RAD A-013 with Iodine	86	0	96	0	
AIR CHARCOAL					
Gamma Iodine 131 RAD A-013	560	0	606	0	
Carbon-14 (Ascarite/Soda Lime Filter per Liter)	28	0	28	0	
DRINKING WATER					
Tritium	39	0	40	0	
LSC Iron-55	17	0	16	0	
LSC Nickel 63	16	0	15	0	
Gamma Iodine-131	27	0	26	0	
Gas Flow Sr 2nd count	12	0	12	0	
Gas Flow Total Strontium	19	0	18	0	
Gross Alpha Non Vol Beta	72	0	73	0	
				0	
Gamma Spec Liquid RAD A-013 with Ba, La	35	0	75		
Total	22	00	2456		

Note 1: The RPD must be 20 percent or less, if both samples are greater than 5 times the MDC. If both results are less than 5 times MDC, then the RPD must be equal to or less than 100%. If one result is above the MDC and the other is below the MDC, then the RPD can be calculated using the MDC for the result of the one below the MDC. The RPD must be 100% or less. In the situation where both results are above the MDC but one result is greater than 5 times the MDC and the other is less than 5 times the MDC, the RPD must be less than or equal to 20%. If both results are below MDC, then the limits on % RPD are not applicable.

Page 55 of 64

TABLE 7
ALL RADIOLOGICAL INTRA-LABORATORY DATA SUMMARY:
BIAS AND PRECISION BY MATRIX:

	Bias Criteria	(+ / - 25%	Precision Criteria (Note 1)		
	WITHIN	OUTSIDE	WITHIN	OUTSIDE	
Total Radiological 2014	CRITERIA	CRITERIA	CRITERIA	CRITERIA	
MILK					
Gamma Iodine-129	0	0	1	0	
Gamma Iodine-131	36	0	110	0	
Gas Flow Sr 2nd count	36	0	36	0	
Gas Flow Strontium 90	5	0	5	0	
Gas Flow Total Strontium	23	0	23	0	
Gamma Spec Liquid RAD A-013 with Ba, La	48	0	109	0	
Gamma Spec Liquid RAD A-013 with Iodine	3	0	4	0	
SOLID					
Gamma Percent Leach	5	0	0	0	
Gas Flow Radium 228	16	0	20	0	
Tritium	211	0	247	0	
Tritium by Combustion	1	0	1	0	
Carbon-14	130	0	181	0	
LSC Iron-55	103	0	121	0	
Alpha Spec Polonium Solid	52	0	54	0	
Gamma Nickel 59 RAD A-022	99	0	117	0	
LSC Chlorine-36 in Solids	4	0	4	0	
Gamma Spec Ra226 RAD A-013	21	0	24	0	
Gamma Spec Solid RAD A-013	649	0	812	0	
LSC Nickel 63	141	0	154	0	
LSC Plutonium	181	0	202	0	
Technetium-99	224	0	250	0	
Gamma Spec Liquid RAD A-013	2	0	2	0	
ICP-MS Technetium-99 in Soil	61	0	60	0	
LSC Selenium 79	11	0	11	0	
Total Activity,	4	0	4	0	
Tritium	16	0	17	0	
Alpha Spec Am243	23	0	37	0	
Gamma Iodine-129	100	0	120	0	
Gas Flow Lead 210	6	0	6	0	
Total Uranium KPA	7	. 0	10	0	
Alpha Spec Uranium	214	0	309	0	
LSC Promethium 147	2	0	2	0	
LSC, Rapid Strontium 89 and 90	42	0	61	0	
Alpha Spec Thorium	152	0	196	0	
ICP-MS Uranium-233, 234 in Solid	49	0	47	0	
Alpha Spec Plutonium	231	0	240	0	
ICP-MS Technetium-99 Prep in Soil	62	0	61	0	
Alpha Spec Neptunium	213	0	237	0	
Alpha Spec Plutonium	158	0	206	0	
Gamma Spec Solid with Ra226, Ra228	9	0	13	0	

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 56 of 64

Gas Flow Sr 2nd count	21	0	25	l 0
Gas Flow Strontium 90	195	0	201	0
Gas Flow Total Radium	2	0	3	0
Lucas Cell Radium 226	38	0	47	0
Total Activity Screen	9	0	10	0
Alpha Spec Am241 Curium	304	0	339	0
Alpha Spec Total Uranium	4	0	8	0
Gas Flow Total Strontium	43	0	46	. 0
Gross Alpha Non Vol Beta	1	0	1	0
ICP-MS Uranium-233, 234 Prep in Solid	49	0	48	0
ICP-MS Uranium-235, 234 Prep in Solid	60	0	81	0
Gamma Spec Solid RAD A-013 with Ba, La	2	0	8	0
Gamma Spec Solid RAD A-013 with Iodine	6	0	7	0
GFC Chlorine-36 in Solids	3	0	3	0
Gamma Spec Solid RAD A-013 (pCi/Sample)	2	0	2	0
Tritium	8	0	8	0
Alpha Spec Am241 (pCi/Sample)	2	0	2	0
ICP-MS Uranium-234, 235, 236, 238 in Solid	148	0	132	0
ICP-MS Uranium-235, 236, 238 Prep in Solid	50	0	49	0
Alpha Spec Thorium	1	0	1	0
Alpha Spec Uranium	1	0	1	0
Gross Alpha/Beta	235	0	316	3
Alpha Spec Neptunium	1	0	1	0
Gas Flow Sr 2nd count	2	0	1	0
Gross Alpha/Beta (Americium Calibration) Solid	2	0	3	0
ICP-MS Uranium-234, 235, 236, 238 Prep in Solid	69	0	65	0
FILTER			The St. St. St.	1304 426
Alpha Spec Uranium	14	0	18	0
Alpha Spec Polonium	1	0	5	0
Gamma I-131, filter	4	0	4	0
LSC Plutonium Filter	84	0	102	0
Tritium	76	0	112	0
Carbon-14	35	0	66	0
Nickel-63	0	0	8	0
LSC Iron-55	69	0	84	0
Gamma Nickel 59 RAD A-022	55	0	68	0
LSC Nickel 63	60	0	78	0
Technetium-99	51	0	75	0
Gamma Spec Filter RAD A-013	143	0	174	6
Alphaspec Np Filter per Liter	8	0	13	0
Alphaspec Pu Filter per Liter	11	0	22	0
Gamma Iodine-125	5	0	0	0
Gamma Iodine-129	46	0	60	0
Gross Alpha/Beta	5	0	5	0
Alpha Spec Am243	10	0	28	0
Gas Flow Lead 210	0	0	4	0
LSC Plutonium Filter per Liter	9	0	15	0
Total Uranium KPA	9	0	14	0

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 57 of 64

I are a second	Ī	1 -	1	1
Alpha Spec Uranium	55	0	96	0
LSC Promethium 147	1	0	2	0
LSC, Rapid Strontium 89 and 90	72	0	94	0
Alpha Spec Thorium	42	0	66	0
Gas Flow Radium 228	1	0	1	0
Alpha Spec Plutonium	81	0	98	0
ICP-MS Uranium-233, 234 in Filter	0	0	3	0
Alpha Spec Neptunium	62	0	83	0
Alpha Spec Putonium	66	0	96	0
Alpha Spec Polonium,(Filter/Liter)	0	0	14	0
Alpha Spec Radium 226	72	0	2	0
Gas Flow Sr 2nd Count Gas Flow Strontium 90	61	0	81 68	1
Lucas Cell Radium-226	1	0	1	0
Alpha Spec Am241Curium	95	0	117	0
Gas Flow Total Strontium	5	0	5	0
		0	5	0
ICP-MS Uranium-233, 234 Prep in Filter	0	0	3	0
ICP-MS Uranium-235, 236, 238 in Filter	0	0	6	0
Total Activity in Filter,	1	0	10	0
Alphaspec Am241 Curium Filter per Liter	15	0	20	0
Tritium	86	0	89	0
Gamma Spec Filter RAD A-013 Direct Count	6	0	6	0
Carbon-14	12	0	12	0
GFC Chlorine-36 in Filters PL	1	0	1	0
Direct Count-Gross Alpha/Beta	48	0	1	0
Gross Alpha/Beta	48	0	60	0
ICP-MS Uranium-234, 235, 236, 238 in Filter	4	0	6	0
ICP-MS Uranium-235, 236, 238 Prep in Filter	0	0	3	0
Alpha Spec U	13	0	35	0
Gross A & B	497	0	473	0
LSC Iron-55	8	0	19	0 .
Technetium-99	7	0	13	0
Gas Flow Sr-90	6	0	13	0
LSC Nickel 63	14	0	19	0
Gas Flow Pb-210	8	0	22	0
Gas Flow Ra-228	5	0	10	0
Gamma Iodine 129	8	0	. 8	0
ICP-MS Uranium-234, 235, 236, 238 Prep in Filter	2	0	3	0
Gamma Spec Filter	97	0	117	0
Lucas Cell Ra-226	8	0	23	0
Alpha Spec Thorium	7	0	22	0
LIQUID				
Alpha Spec Uranium	390	0	553	0
Alpha Spec Polonium	4	0	7	0
Electrolytic Tritium	14	0	25	0
Tritium	1125	0	1177	0
Carbon-14	149	0	161	0

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 58 of 64

Plutonium	43	0	63	0
Iodine-131	3	0	4	0
LSC Iron-55	192	0	233	0
Gamma Nickel 59 RAD A-022	18	0	21	0
Gamma Iodine 131 RAD A-013	2	0	2	0
Gamma Radium 228 RAD A-013	3	0	3	0
LSC Nickel 63	209	0	236	0
LSC Radon 222	18	0	21	0
Technetium-99	377	0	425	0
Gamma Spec Liquid RAD A-013	702	0	732	0
Alpha Spec Total U RAD A-011	31	0	56	0
LSC Selenium 79	2	0	2	0
Alpha Spec Am243	17	0	18	0
Gamma Iodine-129	80	0	92	0
Gamma Iodine-131	28	0	28	0
ICP-MS Technetium-99 in Water	8	0	31	0
Gas Flow Lead 210	19	0	19	0
Total Uranium KPA	101	0	203	0
LSC Promethium 147	4	0	4	0
LSC, Rapid Strontium 89 and 90	7	0	8	0
Alpha Spec Thorium	145	0	186	0
Gas Flow Radium 228	171	0	206	0
Gas Flow Radium 228	40	0	37	0
Gas Flow Radium 228	1	0	1	0
Alpha Spec Plutonium	288	0	387	0
LSC Sulfur 35	1	0	1	0
Alpha Spec Neptunium	90	0	141	0
Alpha Spec Plutonium	21	0	49	0
Alpha Spec Radium 226	7	0	7	0
Gas Flow Sr 2nd count	191	0	199	0
Gas Flow Strontium 90	365	0	422	0
Gas Flow Strontium 90	1 70	0	1	0
Gas Flow Total Radium	78	0	103	0
ICP-MS Technetium-99 Prep in Water	8	0	32	0
ICP-MS Uranium-233, 234 in Liquid	6	0	11	0
LSC Calcuim 45 Lucas Cell Radium 226	1 210	0	1	0
	310	0	366	0
Lucas Cell Radium-226	10	0	10 7	0
Total Activity Screen Chlorine-36 in Liquids		0		0
Alpha Spec Am241 Curium	13 217	0	14 333	0
Gas Flow Total Strontium	112	0		0
Gross Alpha Non Vol Beta	980	0	116	0
LSC Phosphorus-32	2	0	1167 3	0
Lucas Cell Radium 226 by Method Ra-04	2	0	2	0
ICP-MS Uranium-233, 234 Prep in Liquid	6	0	11	0
Tritium in Drinking Water by EPA 906.0	9	0	12	0
Gamma Spec Liquid RAD A-013 with Ba, La	84	0	159	0
Gamma Spec Liquid RAD A-013 with Iodine	162	0	189	0

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 59 of 64

4				
Gas Flow Strontium 89 & 90	5	0	3	0
ICP-MS Uranium-235, 236, 238 in Liquid	10	0	18	0
Gas Flow Total Alpha Radium	6	0	7	0
N N	3	0	13	0
Gross Alpha Co-precipitation				
ICP-MS Uranium-235, 236, 238 Prep in Liquid	6	0	11	0
ICP-MS Uranium-234, 235, 236, 238 in Liquid	31	0	74	0
Gross Alpha Beta (Americium Calibration) Liquid	32	0	46	0
ICP-MS Uranium-234, 235, 236, 238 Prep in Liquid	15	0	38	0
Alpha/Beta (Americium Calibration) Drinking Water	23	0	18	0
TISSUE				6133038517
Carbon-14	3	0	3	0
Gamma Spec Solid RAD A-013	76	0	78	0
Technetium-99	4	0	4	0
Tritium	1	0	1	0
Alpha Spec Uranium	5	0	8	0
Alpha Spec Plutonium	5	0	10	0
Gas Flow Sr 2nd count	8	0	8	0
Gas Flow Strontium 90	11	0	12	0
Alpha Spec Am241 Curium	2		2	
		0		0
Gas Flow Total Strontium	17	0	17	0
Gamma Spec Solid RAD A-013 with Ba, La	10	0	10	0
Gamma Spec Solid RAD A-013 with Iodine	23	0	22	0
Gross Alpha/Beta	2	0	2	0
SEA WATER				
LSC Iron-55	5	0	6	0
LSC Nickel 63	5	0	6	0
Gas Flow Total Strontium	6	0	6	0
Gross Alpha Non Vol Beta	6	0	6	0
Gamma Spec Liquid RAD A-013 with Iodine	7	0	11	0
VEGETATION				
LSC Iron-55	2	0	2	0
Gamma Nickel 59 RAD A-022	1	0	0	0
Gamma Spec Solid RAD A-013	26	0	25	0
LSC Nickel 63	2	0	1	0
LSC Plutonium	1	0	1	0
Technetium-99	4	0	3	0
Tritium	11	0	11	0
Gamma Iodine-129	1	0	0	0
Gas Flow Lead 210	2	0	3	0
Total Uranium KPA	4	0	4	0
Alpha Spec Uranium	22	0	22	0
Alpha Spec Thorium	5	0	5	0
Alpha Spec Plutonium	13	0	11	0
Alpha Spec Neptunium	1	0	1	0
Alpha Spec Plutonium	1	0	1	0
Gas Flow Sr 2nd count	10	0	10	0
Gus Flow St Zilu Court	10		10	

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 60 of 64

Gas Flow Strontium 90	12	0	11	0
Gas Flow Total Radium	2	0	2	0
Alpha Spec Am241 Curium	6	0	6	0
Gamma Spec Solid RAD A-013 with Iodine	86	0	96	0
Gamma Spec Solid RAD A-013 (pCi/Sample)	2	0	2	0
Alpha Spec Am241 (pCi/Sample)	1	0	2	0
	12	0	7	0
ICP-MS Uranium-234, 235, 236, 238 in Solid		0	2	0
Alpha Spec Uranium	7	0	9	0
Gross Alpha/Beta			2	0
Alpha Spec Plutonium Gas Flow Strontium 90	0	0	2	0
	4	U		U
ICP-MS Uranium-234, 235, 236, 238 Prep in Solid	7	0	4	0
AIR CHARCOAL	FCO	0	606	
Gamma Iodine 131 RAD A-013	560	0	606	0
Gamma Iodine-129	7	0	6	0
Carbon-14	7	0	7	0
Carbon-14 (Ascarite/Soda Lime Filter per Liter)	28	0	28	0
Gamma Iodine 129	7	0	7	0
Gamma Spec Filter	7	0	7	0
DRINKING WATER			西特的企业	
Alpha Spec Uranium	4	0	5	0
Alpha Spec Polonium	1	0	25	0
Tritium	39	0	40	0
Carbon-14	3	0	2	0
Iodine-131	2	0	2	0
LSC Iron-55	17	0	16	0
LSC Nickel 63	16	0	15	0
LSC Radon 222	13	0	13	0
Technetium-99	2	0	1	0
Gamma Spec Liquid RAD A-013	17	0	18	0
Gamma Iodine-129	2	0	4	0
Gamma Iodine-131	27	0	26	0
Gas Flow Lead 210	4	0	3	0
Total Uranium KPA	17	0	34	0
Alpha Spec Thorium	1	0	1	0
Gas Flow Radium 228	22	0	26	0
Alpha Spec Plutonium	3	0	3	0
Gas Flow Sr 2nd count	12	0	12	0
Gas Flow Strontium 90	20	0	22	0
LSC Calcuim 45	2	0	2	0
Lucas Cell Radium-226	23	0	49	0
Alpha Spec Am241 Curium	2	0	2	0
Gas Flow Total Strontium	19	0	18	0
Gross Alpha Non Vol Beta	247	0	214	0
Tritium in Drinking Water by EPA 906.0	28	0	26	0
Gamma Spec Liquid RAD A-013 with Ba, La	35	0	75	0
Gas Flow Strontium 89 & 90	17	0	11	0
Gas Flow Total Alpha Radium	1	0	1	0

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 61 of 64

ECLS-R-GA NJ 48 Hr Rapid Gross Alpha	7		7	0
	_		_	0
Alpha/Beta (Americium Calibration) Drinking Water	16	0	16	0
Gross Alpha Co-precipitation	99	0	91	0

Note 1: The RPD must be 20 percent or less, if both samples are greater than 5 times the MDC. If both results are less than 5 times MDC, then the RPD must be equal to or less than 100%. If one result is above the MDC and the other is below the MDC, then the RPD can be calculated using the MDC for the result of the one below the MDC. The RPD must be 100% or less. In the situation where both results are above the MDC but one result is greater than 5 times the MDC and the other is less than 5 times the MDC, the RPD must be less than or equal to 20%. If both results are below MDC, then the limits on % RPD are not applicable.

Page 62 of 64

TABLE 8 2014 CORRECTIVE ACTION REPORT SUMMARY

CORRECTIVE ACTION ID# & PE FAILURE	DISPOSITION
CARR140605-879 ISO Documentation of PT Failures in MAPEP-14-RdV30 for Uranium 235 in Vegetation by ICP/MS and 14-MaS30 Uranium-233/234 and Uranium 238 by Alpha Spec.	Root Cause Analysis of MAPEP-14-RdV28 in vegetation for Uranium-235 by ICP/MS The root cause of this failure was human error and inattention to detail. The QAO inadvertently entered the incorrect activity for this parameter when she was entering the results on the MAPEP website. 0.261 ug/sample instead of 0.0261 ug/sample was entered. The data entry error was not caught during the GL review process. MAPEP results only are peer reviewed by the GL of the applicable area to ensure that the data was entered correctly. A second PT was successfully analyzed for this matrix. Uranium-234/233, and Uranium-238 in soil by Alpha Spec: Following reviews of our process and data and conversations with personnel from the affected laboratories, it was determined that all failures were due to an incomplete sample digestion. A total digestion technique using Hydrofluoric Acid was performed on the sample. However, this digestion was not vigorous enough to extract all the U-234 and U-238 from the soil because the analytes were fused into the soil at an extremely high temperature. Due to the high number of labs that received a Not Acceptable rating for this analysis, MAPEP has posted an explanation on the preparation of the Uranium Soil standard on their website. Permanent Corrective/Preventive Actions or Improvements: Upon notification of the failure, the sample was re-digested using a Sodium Hydroxide fusion method prior to ion-exchange separation chemistry. The results for both the U-234 and U-238 fall within acceptable range. In the future, all MAPEP soil samples will be analyzed with a NaOH fusion dissolution technique. Our analytical procedures provide the flexibility to perform different extraction techniques (leaching,

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 63 of 64

HF dissolution) based on client requests. For our DOE clients, complete dissolution using HF has been the approved method for Uranium. Some clients also ask for the Uranium analysis using a leach procedure. In all cases, GEL performs the required contractual procedure for the analysis.

A second PT was successfully analyzed for this matrix.

CARR140520-874

ISO Documentation of PT Failures in –MRAD-20 for Americium-241 in water.

Root Cause Analysis

After a thorough review of all data, a definite reason for the failure could not be determined.

The following steps were taken to prove that this elevated bias was an isolated occurrence and that our overall process is within control.

- 1. The batch quality control samples were reviewed and found to be compliant. The recoveries in the Laboratory Control Sample (LCS) recovered at 98.2%. Two sample duplicates were also prepared in the batch. The RPDs were 4.8 and 8.6.
- 2. The sample was re-analyzed in duplicate after the report was received. One with our normal Am-243 tracer, and another with Cm-244 tracer. Both of the reanalysis confirm the original reported result (which is outside the range of acceptable results).

Control charts for all Am tracer recoveries were also reviewed to determine if there may be an issue with the tracers. While there is a slight bias in the average LCS recovery, it was not significant enough to consider abnormal, and did not come close to accounting for the high result on this analysis. Additionally, since the sample was reanalyzed using two different tracers and achieved the same result, a tracer issue was ruled out as the potential culprit

Permanent Corrective/Preventive Actions or Improvements :

The laboratory must assume unidentified random error caused the elevated bias because all quality control criteria were met for the batch. Additionally, a well characterized performance evaluation sample from another vendor was prepped and analyzed a few weeks after this sample. The Am-241 recovered at 105% for this sample and fell well within its acceptance range.

A second PT was successfully analyzed for this matrix.

2014 ANNUAL QUALITY ASSURANCE REPORT

Page 64 of 64

CARR140825-902

For Failures of RAD-98 for Strontium-89 in Water

Root Cause Analysis of Strontium-89 (Sr-89)

After a review of the data, an apparent reason for this discrepancy could not be determined. The following steps were taken to prove that this high bias was an isolated occurrence and that our overall process is within control.

- 1. The batch quality control samples were reviewed and found to be compliant. The LCS recovered at 103%.
- 2. Laboratory control data were also reviewed for trends. None was noted.
- 3. The instrument calibrations were reviewed for positive biases that could have attributed to this failure. None were noted.
- 4. Sample duplicates were also prepared and counted along with the reported result. All results fell within the method's acceptance range for duplicates.

Permanent Corrective/Preventive Actions or Improvements

The laboratory must assume an unidentified random error caused the high bias for this batch. While the LCS recovered outside to its acceptance range, the matrix spike (MS) recovery fell within both the acceptance range for the MS (80%-120%) and the acceptance range for the LCS (90%-110%). The result was also confirmed using Method LAB PBMS-A-004. The lab will continue to monitor the recoveries of this radionuclide to ensure that there are no issues.

A second PT was successfully analyzed for this matrix.