Holtec International®

NRC - Metamic[™] Neutron Absorbers for Spent Fuel Applications March 14, 2013

Outline

- Corporate Overview
- Nanotec
- MetamicTM
- Fabrication
- Quality Control & Testing
- Operating Experience

Holtec International Vertical Integration

a generation ahead by design

Design Engineering/ Licensing Raw Materials Manufacturing Assembly/ Supply Field Services **End User**

- Holtec's nuclear mission and vision are met by maintaining in-house:
 - Design
 - Engineering
 - Licensing
 - Fabrication
 - Critical Material Supply
 - Site Installation
 - Construction
 - Deployment / Installation
- This allows for:
 - Integrated solutions for customers
 - Control over quality, delivery, and costs
 - Coupling of design, fabrication, deployment

Divisions of Holtec

a generation ahead by design

Holtec Manufacturing Division Pittsburgh, Pennsylvania

 Heavy manufacturing of heat exchanger components and spent fuel casks and canisters for the international power generation market

Orrvilon Manufacturing Division

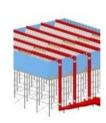
Orrville, Ohio

 Aluminum Extrusion and Systems Fabrication, including Metamic and Metamic-HT

Nuclear Power Division Marlton, New Jersey

 Supplier of equipment and services to the international nuclear market to support waste and used fuel management

Nanotec Metals Division Lakeland, Florida


 Development and fabrication of special materials, including neutron absorbing materials for the nuclear power industry

Power Plant Components Division

Marlton, New Jersey

 Design and construction of heat transfer equipment and related ancillaries to support nuclear, fossil, and renewable power generation industries

Air Cooled Condensing Division

San Diego, California

Design of advanced air cooling technologies, including stainless tubes to stainless tube sheet ACC fin designs

Divisions of Holtec

a generation ahead by design

Holtec Ukraine Kiev, Ukraine

 Nuclear plant decommissioning and development, licensing, and supply of equipment for management of waste and used fuel generated from (Sovietdesigned) nuclear reactors

Sizelon Sizewell, England

 Project management for business development for nuclear projects in the United Kingdom

Holtec India

Pune, India

 Technical services to support nuclear, fossil, and renewable power generation industries

SMR

Marlton, New Jersey

 Technical services team developing the SMR-160 (160 MWe) Small Modular Reactor

Technology Leadership

a generation ahead by design

Holtec senior staff has authored over 300 technical papers and books.

- Mechanical Design of Heat Exchangers and Pressure Vessel Components K.P. Singh, A.I. Soler
 1984 Arcturus Publishers
- An Elastic Plastic Analysis of the Integral Tubesheet in U-tube HX K.P. Singh, A.I. Soler Int. J. Pres. Ves. & Piping 27 (1987) 37-384
- Transient Response of Large Inertia Cross Flow Heat Exchangers K.P. Singh, Yu Wang, K.Lulianetti ASME Papers: 91-JPGC-NE-27
- Thermal Expansion Induced Stresses in U-Bends of Shell-and Tube Heat Exchangers
 K.P. Singh
 Engineering For Power, vol. 101, No. 4 Oct. '79
- Tubesheet Analysis A Proposed ASME Design Procedure
 A.I. Soler, S.M. Caldwell, K.P. Singh
- Predicting Flow Induced Vibration in U-Bend Regions K.P. Singh
- An Analysis of the Improvement in the Thermal Performance of a Surface Condenser Equipped with Tweener Supports
 K.P. Singh, R. Nadig, A.I. Soler

Applied Patents

a generation ahead by design

Holtec has received over 30 patents....

this number continues to grow

Designs and Equipment

[21] Appl. No.: 09/239,085

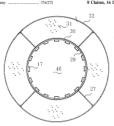
Related U.S. Application Data

[22] Filed: Jan. 27, 1999

[54] APPARATUS SUITABLE FOR TRANSPORTING AND STORING NUCLEAR FUEL RODS AND METHODS FOR USING THE APPARATUS

United States Patent [19]

[62]	Division of application No. 08/858,114, May 19, 1997, Pat. No. 5,898,747.
[51] [52]	Int. CL ^T
[58]	Field of Search


	U.S. PK	HENT DOCUMENTS
4,770,844		
5,063,299	11/1991	Efferding
5,232,657	8/1993	Kovacik et al
5,373,540	12/1994	DeCourses, Sr. et al
5,406,601	4/1995	Hinderer et al
5.438,597	8/1995	Lehnert et al
5.513,232	4/1996	
5,546,436	8/1996	Jones et al
5.612.543	3/1997	Wenner et al
5.641.970		Taniuchi et al
5,646,971		
5,668,843	9/1997	Wasinger
5.848,111		Wells et al 376/27
5 898 747		Singh

FOREIGN PATENT DOCUMENTS

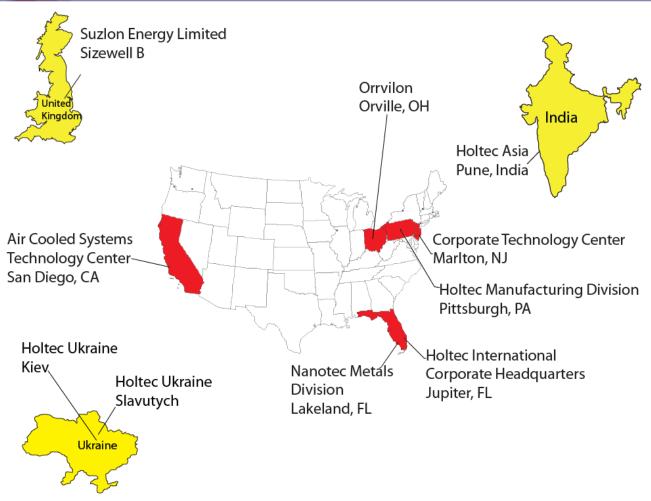
[45	Da	ate of I	atent:	May 16, 2000
	403599	8/1985		376/272
	515871	11/1986		
3	933530	4/1991	Germany	
- 61	-16098	7/1986	Japan	
05	209990	B/1993	Japan	
	855420	11/1960	United Ki	ngdom 376/272
2	104435	3/1983		ngdom 376/272

tomey, Agent, or Firm-Dilworth Paxson LLP; Michael

- Method of making an apparatus suitable for transporting and sorting nuclear fair food comprising an providing metal plates having alone and having neutron and providing metal plates having alone and having neutron between the plates and the plates and the plates and the bosey-comb gridwork of soccape cells having configuous concerns and having the national sheeting material or converse and having the national sheeting material or city welding the plates to each other at their intersections so city welding the plates to each other at their intersections of the gridwork are completely connected on as to allow conductates that underlied and to provide a rigid sections.

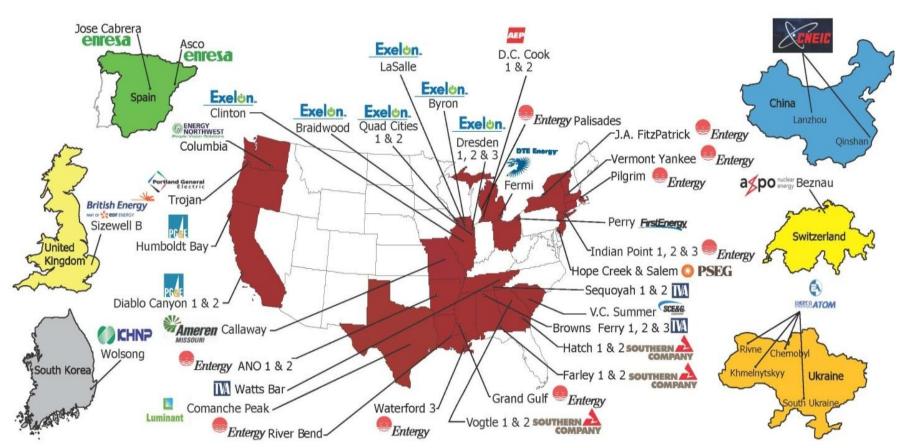
- Racks
- Casks
- Heat Exchanger Tech.
- **Ancillary Equipment**
- Reactors

Materials and Fabrication Processes

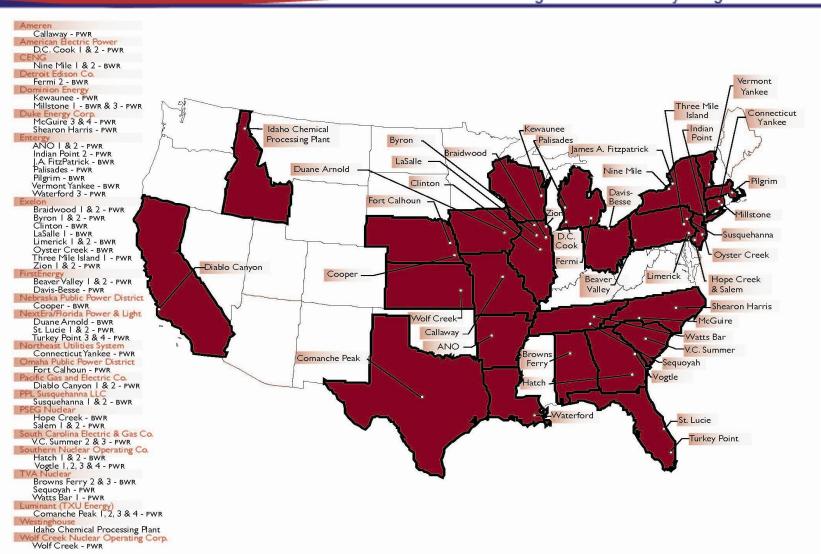


- Metamic
- Metamic-HT
- Holtite A
- Holtite B
- Friction Stir Welding (pending)

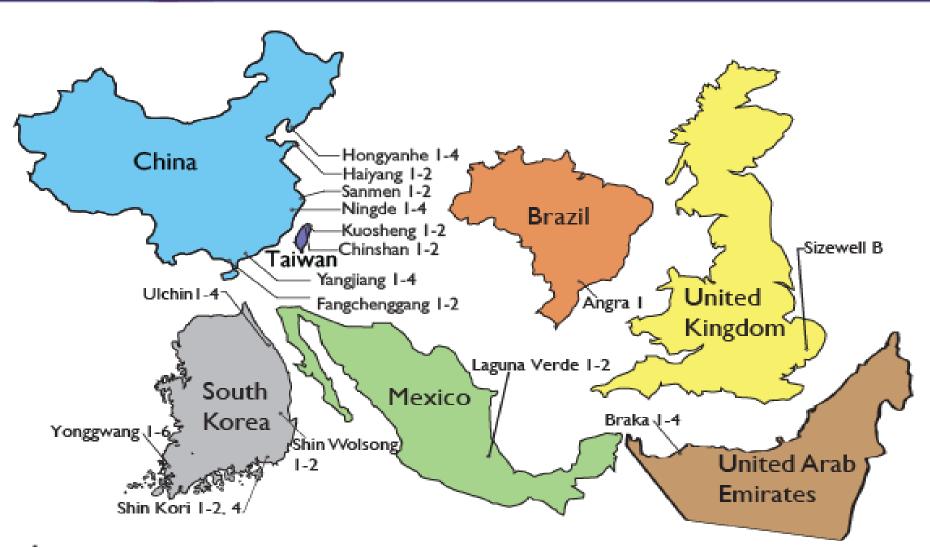
Holtec International Offices


Holtec's Worldwide Business Centers

Worldwide Dry Storage Clients

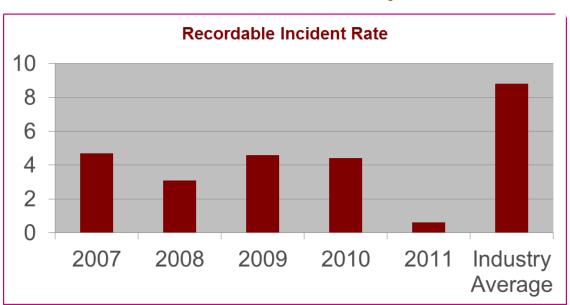

a generation ahead by design

 More than 500 Holtec HI-STORM Systems are currently loaded at more than 65 nuclear plant sites


Domestic Wet Storage Projects

International Wet Fuel Storage Projects

Safety Commitment



a generation ahead by design

- Holtec's commitment to safety has led to zero lost time accidents in the field during our eighteen years of field services activities involving both wet and dry storage projects
 - Zero Recordable Injuries Goal
 - Safety record among best in industry
 - State certified safety committee

ALWAYS ALERT, ACCIDE

Recordable Incident Rate - 0.6 - Industry Rate - 8.8 Lost Time Incident Rate - 0.0 - Industry Rate - 5.0

Quality Standards Compliance

- The Holtec Quality Assurance Program is structured to assure the quality of the products and services offered are the finest available anywhere
- The Holtec Quality Assurance (QA) Program seeks to assure absolute compliance with the applicable ASME Boiler and Pressure Vessel Code and regulatory requirements for design, procurement, fabrication and delivery of quality equipment, parts and components furnished to the nuclear industry. This program complies with the ASME Boiler and Pressure Vessel Code Section III, Divisions 1 and 3, 10CFR50 Appendix B, and contractual requirements.
 - 10CFR50 Appendix B Certified QA Program
 - 10CFR71 Subpart H (Approval Number 0784) Certified QA Program
 - 10CFR72 Subpart G Certified QA Program
 - NQA-1 Certified QA Program
 - Triennially inspected by the U.S. NRC, NUPIC, and other organizations

Quality Assurance

- Holtec has a proven Quality Assurance Program (10CFR 50 certified QA Program, ISO 9001)
- Holtec Design centers and fabrication facilities operate under the same QA Program
- Holtec holds all ASME Code stamps actively used in the industry (nuclear and non-nuclear)
- Regular industry and regulatory audits

Nanotec Facility

- Nanotec Metals, located in Lakeland, Florida is a 28,000 ft² fabrication and testing facility
- Production of MetamicTM
- Production of products that utilize MetamicTM
- Other Capabilities
 - Material Development and Testing
 - Powder Blending and Billet Manufacturing
 - Product Rolling and Shearing
 - Passivation/Anodizing
 - Neutron Attention Testing
 - Extrusion of Special Form Products

MetamicTM Overview

- METAMICTM is a Metal Matrix Composite (MMC)
- Porosity-Free MMC fabricated with Aluminum-6061 alloy powder and nuclear-grade Boron Carbide Powder
- Fully dense material (100% theoretical density)
- Homogeneous distribution of boron carbide particulate can be obtained in the composite microstructure
- Fabricated under USNRC 10CFR50 QA Program as Safety Related (SR)

MetamicTM Material Properties

- Materials qualification program was carried out to qualify MetamicTM
 - EPRI Report details the results
- Homogeneous
- B4C Loading 10% 33%
- The physical and neutronic properties of Metamic[™] are essentially unaltered under exposure to elevated temperatures (750°F 900°F, 400°C 480°C) and high radiation levels (1E+11 rads gamma).
- No detectable change in the neutron attenuation characteristics under accelerated corrosion tests (Boric Acid, 2500 ppm Boron, 90 day soak at 200°F/90°C, ~20yrs SFP T)
- YS = 20-33 ksi, UTS = 33 40 ksi
- Excellent stability in all chemical and thermal environments

Metamic[™] Fabrication

- Quality raw aluminum 6061 powder purchased
- Quality raw Boron Carbide powder purchased
- Mixed and blended in required ratios
- Cold Isostatic Pressed to make "Green" billets
- Billets Sintered

MetamicTM Fabrication

- Billets are extruded into panels
- Panels undergo successive rolling at temperature to reduce cross section
 - This is done in multiple passes
 - Multiple pieces as the original shape increases in size
- Once desired thickness is achieved the panels are cut to dimension

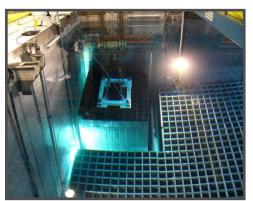
Metamic[™] Insert

Metamic[™] **Fabrication**

- MetamicTM Panels are sandwiched between the MPC Basket and a sheath of metal
- Sheath of metal and basket are welded to hold MetamicTM in place.

Spent Fuel Storage Rack

Quality Control and Testing


- Quality suppliers of raw materials
- Mixture content confirmed through wet chemistry
- Visual inspection throughout the fabrication process
- Dimensional inspection according to the desired product
- Neutron attenuation testing according to sampling plan to verify B4C content
- Record keeping for traceability



Operational Experience

- Used in over 40 spent fuel pools and numerous dry storage casks no incidents of degradation
 - 12 Reactors in China
 - 8 Reactors in Korea
 - 20+ Reactors in USA
 - Progress Energy, Exelon, PG&E, etc.
 - Started in 2003
- Coupon Surveillance Services
- Wet Rack installation
- Dream Inserts
 - Reactivity Mitigation
 - Boraflex Remedy
- Dry Storage Applications

Wet Storage Rack Installation