

Office of Federal and State Materials and Environmental Management Programs

Safety and Security in the Beneficial Applications of Nuclear Materials

Effective Dose and Numerical Values

What is Total Effective Dose?

- Total Effective Dose Equivalent is:
 - External exposure reported as Deep Dose Equivalent
 - Internal exposure reported as Committed Effective Dose Equivalent
- NRC definition amended to allow Effective Dose from external exposures using approved calculations
- Total Effective Dose is:
 - External exposure reported as Effective Dose
 - Internal exposure reported as Committee Effective Dose

Effective Dose

$$E = \sum_{\mathbf{T}} w_{\mathbf{T}} \left[\frac{H_{\mathbf{T}}^{\mathbf{M}} + H_{\mathbf{T}}^{\mathbf{F}}}{2} \right]$$

Radiation Weighting

Table 1. Radiation weighting factors

Type and energy range ²	Radiation weighting factor, w _R	
Photons, all energies	1	
Electrons and muons, all energies3	1	
Neutrons, energy < 10 keV	5	
10 keV to 100 keV	10	
> 100 keV to 2 MeV	20	
> 2 MeV to 20 MeV	10	
> 20 MeV	5 T	
(See also Figure 1)	_	
Protons, other than recoil protons, energy > 2 MeV	5	
Alpha particles, fission fragments, heavy nuclei	20 R	

All values relate to the radiation incident on the body or, for internal so emitted from the source.

² The choice of values for other radiations is discussed in Annex A.

3 Excluding Auger electrons emitted from nuclei bound to DNA (see paragraph

ICRP Publication 103

Table 2. Recommended radiation weighting factors.

Radiation type	Radiation weighting factor, w_R
Photons	1
Electrons ^a and muons	1
Protons and charged pions	2
Alpha particles, fission frag- ments, heavy ions	20
Neutrons	A continuous function of neutron energy (see Fig. 1 and Eq. 4.3)

All values relate to the radiation incident on the body or, for internal radiation sources, emitted from the incorporated radionuclide(s).

^a Note the special issue of Auger electrons discussed in paragraph 116 and in Section B.3.3 of Annex B.

Tissue Weighting

1990 RECOMMENDATIONS OF THE ICRP

Table 2. Tissue weighting factors

Tissue or organ	Tissue weighting factor, 1	w _T
Gonads Bone marrow (red) Colon Lung Stomach Bladder Breast Liver Oesophagus Thyroid Skin	0.20 0.12 0.12 0.12 0.12 0.05 0.05 0.05 0.05 0.05 0.05 0.05	T T B B
Bone surface Remainder	$0.01 \\ 0.05^{2.3}$	В

ICRP Publication 103

Table 3. Recommended tissue weighting factors.

Tissue	w_{T}	$\sum w_{\mathrm{T}}$
Bone-marrow (red), Colon, Lung, Stomach,	0.12	0.72
Breast, Remainder tissues*		
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04
	Total	1.00

^{*} Remainder tissues: Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate (♂), Small intestine, Spleen, Thymus, Uterus/cervix (♀).

Dose Coefficients

Represents the Effective Dose from a unit exposure

- Based on:
 - Tissue Weighting
 - Radiation Weighting
 - Types of radiation
- ALI's and DAC's
 - Calculated using the dose coefficient
 - Values used to help demonstrate compliance

Updates to Dose Coefficients

- ICRP currently preparing new dose coefficients based on world cancer incidence
- EPA using BEIR VII and U.S. specific cancer incidence to develop revised values for the United States
- Values will be different because:
 - US and World cancer rates are different
 - Changes to effectiveness of some radionuclides

Effective Dose Options

- Options:
 - 1.1a: No change in the current terminology (terminology remains TEDE)
 - 1.1b: Change the current regulation to align with the current ICRP Publication 103: Express as Total Effective Dose
 - -1.1c: Allow use of either term

Effective Dose Questions

Q1.1-1: Are there any potential impacts on the ability to comply with the options for dose limits (DDE vs. TED)?

– What are the impacts and implications of using updated terminology?

Effective Dose Questions

Q1.1-2: What are the anticipated impacts on records and reports?

Numerical Values Options

- 1.2a: No change
- 1.2b: Change the current regulation to align with the current ICRP Publication 103: Update to new values, models, and radionuclide decay data

Numerical Values Questions

Q1.2-1: Are there any foreseen impacts of the timing (2014) of making changes to the current numerical values and weighting factors?

Should NRC consider moving forward with a more limited set of radionuclides that would be available more quickly, and make subsequent amendments to add additional values as they are published by the ICRP?

Numerical Values Questions

Q1.2-2: Should the NRC use the values developed by the EPA, which will be based on a US population, instead of the ICRP values, which are based on a more diverse world population?

Other Questions?

