CHAPTER 17 QUALITY ASSURANCE AND RELIABILITY ASSURANCE

TABLE OF CONTENTS

Section	<u>Title</u>	<u>Page</u>
17.0	QUALITY ASSURANCE AND RELIABILITY ASSURANCE	17.1-1
17.1	QUALITY ASSURANCE DURING THE DESIGN PHASE	17.1-1
17.2	QUALITY ASSURANCE DURING THE CONSTRUCTION AND OPERATION PHASES	17.2-1
17.3	QUALITY ASSURANCE PROGRAM	17.3-1
17.3.1	Reference	17.3-2
17.4	RELIABILITY ASSURANCE PROGRAM	17.4-1
17.4.3	Scope	17.4-1
17.4.4	Quality Controls	17.4-1
17.4.5	Integration into Existing Operational Programs	17.4-2
17.4.7	D-RAP	17.4-3
17.4.7	.4 Phase II D-RAP Implementation and SSCs included	17.4-3
17.4.8	ITAAC for the D-RAP	17.4-4
17.4.9	Combined License Information	17.4-4
17.5	QUALITY ASSURANCE PROGRAM DESCRIPTION	17.5-1
17.5.1	Combined License Information	17.5-1
17.5.2	References	17.5-1
17.5.3	Evaluation of QAPD Against the SRP and QAPD Submitta Guidance	
17.6	DESCRIPTION OF THE APPLICANT'S PROGRAM FOR IMPLEMENTATION OF 10 CFR 50.65, THE MAINTENANCE	
	RULE	17.6-1
17.6.1	Combined License Information	17.6-1
17.6.2	Maintenance Rule Program	17.6-1
17.6.3	Reference	17.6-1

LIST OF TABLES

<u>NumberTitle</u>

17.4-201 Risk-significant SSCs (Phase II D-RAP)

17-ii Revision 1

ACRONYMS AND ABBREVIATIONS

	,
ANSI	American National Standards Institute
ASME	American Society of Mechanical Engineers
CCF	common cause failure
CCW	component cooling water
CCWS	component cooling water system
CFR	Code of Federal Regulations
COL	Combined License
COLA	Combined License Application
CPNPP	Comanche Peak Nuclear Power Plant
DCD	Design Control Document
D-RAP	design reliability assurance program
EFW	emergency feedwater
ESWS	essential service water system
FSAR	Final Safety Analysis Report
HSS	high safety significance
ITAAC	inspections, tests, analyses, and acceptance criteria
LPSD	low power and shut down operation
MHI	Mitsubishi Heavy Industries, Ltd.
MNES	Mitsubishi Nuclear Energy Systems, Inc.
NEI	Nuclear Energy Institute
NQA	Nuclear Quality Assurance
NRC	U.S. Nuclear Regulatory Commission
O-RAP	operational reliability assurance program
QA	quality assurance
QAP	quality assurance program

17-iii Revision 1

ACRONYMS AND ABBREVIATIONS

QAPD	quality assurance program description
QAPP	quality assurance project plan
RAP	reliability assurance program
RAW	risk achievement worth
RG	Regulatory Guide
SECY	Secretary of the Commission, Office of the (NRC)
SRP	Standard Review Plan
SSC	structure, system, and component
UHS	ultimate heat sink

17-iv Revision 1

17.0 QUALITY ASSURANCE AND RELIABILITY ASSURANCE

This section of the referenced Design Control Document (DCD) is incorporated by reference with the following departures and/or supplements.

CP COL 17.5(1) Add the following paragraph after the paragraph in DCD Section 17.0.

The Quality Assurance Program (QAP) described in Sections 17.1, 17.2, 17.3 and 17.5 is applicable for the site-specific design, construction and operation.

17.1 QUALITY ASSURANCE DURING THE DESIGN PHASE

This section of the referenced DCD is incorporated by reference with the following departures and/or supplements.

CP COL 17.5(1) Replace the last paragraph in DCD Section 17.1 with the following.

Quality Assurance (QA) for the site-specific design is described in Sections 17.3 and 17.5.

17.2 QUALITY ASSURANCE DURING THE CONSTRUCTION AND OPERATION PHASES

This section of the referenced DCD is incorporated by reference with the following departures and/or supplements.

CP COL 17.5(1) Replace the paragraph in DCD Section 17.2 with the following.

QA for construction and operation is described in Sections 17.3 and 17.5.

17.3 QUALITY ASSURANCE PROGRAM

This section of the referenced DCD is incorporated by reference with the following departures and/or supplements.

CP COL 17.5(1) Replace the last paragraph in DCD Section 17.3 with the following.

Luminant is responsible for the establishment and implementation of the QAP for the design, construction, and operation of Comanche Peak Nuclear Power Plant (CPNPP) Units 3 and 4. Luminant may delegate, and has delegated to others, the work of establishing and executing the QAP, or any parts thereof, but retains responsibility for the QAP.

QA for the preparation and review of the Combined License (COL) application (COLA) and for CPNPP Units 3 and 4 activities, up through issuance of the COL, is governed by the Luminant "NuBuild Quality Assurance Project Plan" (NuBuild QAPP). The NuBuild QAPP describes the processes and procedures to be used in the implementation, control, and oversight of activities related to CPNPP Units 3 and 4 by invoking elements of the existing U.S. Nuclear Regulatory Commission (NRC) approved QAP for CPNPP Units 1 and 2. Utilizing established procedures and manuals from the CPNPP Units 1 and 2 QAP, the NuBuild QAPP provides for the application of 10 CFR 50 Appendix B criteria to CPNPP Units 3 and 4 activities.

Luminant contracted with Mitsubishi Nuclear Energy Systems, Inc. (MNES) to develop the COLA, including conducting site characterization activities. The process for collecting, reviewing and analyzing the necessary data for site characterization was performed under the MNES QAP and is described in the MNES Quality Assurance Program Description(QAPD), SQ-QD-070001. Although the NuBuild QAPP and the NRC approved QAP for CPNPP Units 1 and 2 are based on the guidance of American National Standards Institute/American Society of Mechanical Engineers(ANSI/ASME) N45.2-1971, "Quality Assurance Program Requirements for Nuclear Facilities" and its applicable daughter standards, Luminant has imposed on MNES, a QAP based on ASME NQA-1-1994, "Quality Assurance Requirements for Nuclear Facility Applications" and Nuclear Energy Institute (NEI) 06-14A "Quality Assurance Program Description" (Reference 17.3-201). Luminant oversight of COLA development, engineering, procurement, and construction activities by MNES is provided through reviewing the MNES QAPD, conducting QA audits and surveilliances, and participating in project management activities.

Upon issuance of the COL and as the project progresses, the QAP will transition from the NuBuild QAPP to implementation by the "Comanche Peak Nuclear Power Plant Units 3 and 4 Quality Assurance Program Description" described in Section 17.5.

17.3-1 Revision 1

17.3.1 Reference

17.3-201 <u>Quality Assurance Program Description,</u> NEI 06-14A, Revision 5, NEI, May 2008.

17.3-2 Revision 1

17.4 RELIABILITY ASSURANCE PROGRAM

This section of the referenced DCD is incorporated by reference with the following departures and/or supplements.

17.4.3 Scope

CP COL 17.4(1) CP COL 17.4(2) Add the following paragraph after the last paragraph in DCD Subsection 17.4.3.

The site-specific phase, Phase II design reliability assurance program (D-RAP), introduces the site-specific design to the D-RAP process. Phase III, the last phase of the D-RAP, implements the procurement, fabrication, construction, and pre-operational testing in accordance with the site-specific D-RAP. The operational reliability assurance program (O-RAP) addresses the site-specific plant operation and maintenance activities.

17.4.4 Quality Controls

CP COL 17.4(1) CP COL 17.4(2) Add the following paragraphs after the last paragraph of "a. Organization" in DCD Subsection 17.4.4.

Phases II and III of the D-RAP and the O-RAP are the responsibility of Luminant.

Phases II and III of the D-RAP occur before initial fuel load. The startup organization is created to perform the initial test program including pre-operational and startup tests. This temporary group administratively reports to the plant Operation organization and includes members from on-site organizations such as Luminant Engineering, Operations, QA representatives, Mitsubishi Heavy Industries, Ltd. (MHI), and participants from the initial test program. Initial test program experience attained by the startup members is applied to the commercial operation of the plant. This experience includes integrating reliability assurance program (RAP) activities into programs established to meet existing requirements (i.e., maintenance rule, surveillance testing, inservice inspection, inservice testing, and QA). MHI and other contractors may be responsible for detailed design and development of engineering and procurement specifications.

During plant operations, the O-RAP will transition to the System Engineering and Maintenance Engineering organizations. At this stage, all operational phase/site-specific RAP structures, systems, and components (SSCs) must be included in the high safety significance (HSS) category within the scope of the Maintenance Rule Program. These organizations will ensure that the objectives of site O-RAP are incorporated into existing programs. In addition, these organizations

17.4-1 Revision 1

periodically evaluate the reliability assumptions based on actual equipment, train, system performance, and operational experience and take into account considerations such as changes in individual component reliability throughout the course of plant life due to aging and changes in suppliers and technology.

The interface between the Reliability organization and Design Engineering and Maintenance Engineering organizations ensures that Procurement Engineering and testing activities will be able to incorporate the significant RAP assumptions, such as equipment reliability, in their respective areas of responsibility.

CP COL 17.4(1) CP COL 17.4(2)

Add the following paragraph after the last paragraph of "b. Design Control" in DCD Subsection 17.4.4.

The design control of Phases II and III of the D-RAP and the O-RAP is accomplished within the framework of the QAPD described in Section 17.3 and 17.5.

CP COL 17.4(1) CP COL 17.4(2)

Add the following paragraph after the last paragraph of "c. Procedures and Instructions" in DCD Subsection 17.4.4.

The procedures and instructions of Phases II and III of the D-RAP and the O-RAP are accomplished within the framework of the QAPD described in Section 17.3 and 17.5.

CP COL 17.4(1) CP COL 17.4(2)

Add the following paragraph after the last paragraph of "d. Records" in DCD Subsection 17.4.4.

The records of Phases II and III of the D-RAP and the O-RAP are accomplished within the framework of the QAPD described in Subsection 17.3 and 17.5.

17.4.5 **Integration into Existing Operational Programs**

CP COL 17.4(2) Add the following paragraphs after the last paragraph in DCD Subsection 17.4.5.

The O-RAP is integrated into the Maintenance Rule Program (Section 17.6), and other operational programs. The O-RAP SSCs are included in the high-safety-significant category within the scope of the Maintenance Rule Program. The Maintenance Rule Program incorporates the evaluation process of risk-significant SSCs, the maintenance of the reliability of risk-significant SSCs, and monitoring of

the effectiveness of maintenance needed for reliability assurance. Industry operational experience will be used in the monitoring process to verify that reliability assumptions remain valid.

The scope of the Maintenance Rule Program includes safety-related SSCs and certain nonsafety-related SSCs, as determined using a Maintenance Rule scoping procedure, consistent with SECY 95-132. Procurement, fabrication, construction, and test specifications for safety-related and nonsafety-related SSCs within the scope of the RAP are prepared and implemented under QAP referenced in Sections 17.1, 17.2, 17.3, and 17.5. These elements of the QAPs provide adequate confidence that SSCs will perform satisfactorily in service and ensure that significant assumptions, such as equipment reliability, are realistic and achievable.

17.4.7 D-RAP

CP COL 17.4(1) CP COL 17.4(2) Add the following paragraphs after the paragraph in DCD Subsection 17.4.7.

Phases II and III of the D-RAP occur before initial fuel load.

Phase II, the site-specific phase, introduces the site-specific design information to the D-RAP process.

The program of Phase III, the last phase of the D-RAP, will be established prior to the procurement, fabrication, construction, and pre-operational testing.

The O-RAP, which addresses the specific plant operation and maintenance activities, will be developed and implemented prior to the initial fuel loading by integrating the RAP activities into the specific plant operational program (Maintenance Rule, surveillance testing, in-service inspection, in-service testing and QA, as appropriate).

CP COL 17.4(1) Add the following new Subsection after the last paragraph in DCD Subsection 17.4.7.3.

17.4.7.4 Phase II D-RAP Implementation and SSCs included

The implementation of the Phase II D-RAP, as it applies to the design process, is the responsibility of Luminant. The SSCs included in Phase II are listed in Table 17.4-201.

17.4.8 ITAAC for the D-RAP

CP COL 17.4(1) Add the following paragraph after the last paragraph in DCD Subsection 17.4.8.

A list of the risk-significant SSCs for the Phase II D-RAP is provided in Table 17.4-201.

17.4.9 Combined License Information

Replace the contents of DCD Subsection 17.4.9 with the following.

CP COL 17.4(1) Implementation of Phases II and III of the D-RAP

This COL item is addressed in Subsections 17.4.3, 17.4.4, 17.4.7, 17.4.8, and Table 17.4-201.

CP COL 17.4(2) Implementation of the O-RAP

This COL item is addressed in Subsections 17.4.3, 17.4.4, 17.4.5, and 17.4.7.

Revision 1

Comanche Peak Nuclear Power Plant, Units 3 & 4 COL Application Part 2, FSAR

CP COL 17.4(1)

Table 17.4-201

Risk-significant SSCs (Phase II D-RAP)

#	Systems, Structures and Components (SSCs)	Rationale ⁽¹⁾	Insights and Assumptions
_		Essential service	Essential service water system (ESWS)
_	Cooling tower fan	RAW /CCF/LPSD	The essential service water system (ESWS) transfers heat
	[Equipment Number - TBD]		from the component cooling water (CCW) system as ultimate heat sink (UHS), which is the cooling tower. This system supports the CCW system (CCWS), which supports various safety and non-safety mitigation systems. Accordingly, reliability of CCWS emergency feedwater
			(EFW) system has significant impact on risk.
			Since ESWS consists of four independent trains, failure of
			one train does not have significant impact on risk. However, failures of SSCs that impact multiple trains have risk
			significant impact on risk. Accordingly, SSCs that have
			potential to cause common cause failures among multiple
			trains are risk significant.

Notes:

1.Definition of Rationale Terms:

RAW = risk achievement worth

CCF = common cause failure

LPSD =low power and shut down operation

17.4-5

17.5 QUALITY ASSURANCE PROGRAM DESCRIPTION

This section of the referenced DCD is incorporated by reference with the following departures and/or supplements.

CP COL 17.5(1) Replace the last paragraph in DCD Section 17.5 with the following.

The implementation of the QAP for CPNPP Units 3 and 4 will transition, upon issuance of the COL and as project progresses, from the NuBuild QAPP to the "Comanche Peak Nuclear Power Plant Units 3 and 4 Quality Assurance Program Description." The QAPD is based on NEI 06-14A "Quality Assurance Program Description" (Reference 17.5-201) which was approved by the NRC.

17.5.1 Combined License Information

Replace the content of DCD Subsection 17.5.1 with the following.

CP COL 17.5(1) **17.5(1)** Development and implementation of the QAP for the site specific design activities (i.e., non-standard plant design) and for the construction and operation

This COL item is addressed in Sections 17.0, 17.1, 17.2, 17.3 and 17.5.

17.5.2 References

- CP COL 17.5(1) Add the following reference and Subsection 17.5.3 after the last reference in DCD Subsection 17.5.2.
 - 17.5-201 <u>Quality Assurance Program Description,</u> NEI 06-14A, Revision 5, NEI, May 2008.

17.5.3 Evaluation of QAPD Against the SRP and QAPD Submittal Guidance

As described in Section 17.3 of this Final Safety Analysis Report (FSAR), for design, construction and operation phases, Luminant will utilize the existing NRC approved QAP for CPNPP Units 1 and 2. The QAP for CPNPP Units 1 and 2 is based on the guidance of ANSI/ASME N45.2-1971, "Quality Assurance Program Requirements for Nuclear Facilities" and its daughter standards. This differs from Standard Review Plan (SRP) Section 17.5 which is based on ASME NQA-1-1994, Regulatory Guide (RG) 1.8, "Qualification and Training of Personnel for

Nuclear Power Plants," RG 1.28, "Quality Assurance Program Requirements (Design and Construction)," RG 1.33, "Quality Assurance Program Requirements (Operation)."

17.5-2 Revision 1

17.6 DESCRIPTION OF THE APPLICANT'S PROGRAM FOR IMPLEMENTATION OF 10 CFR 50.65, THE MAINTENANCE RULE

CP COL 17.6(1) Replace the contents of DCD Section 17.6 with the following.

17.6.1 Combined License Information

17.6(1) Implementation of the Maintenance Rule.

This COL item is addressed in Section 17.6

17.6.2 Maintenance Rule Program

This subsection incorporates by reference NEI 07-02A, "Generic FSAR Template Guidance for Maintenance Rule Program Description for Plants Licensed under 10 CFR Part 52," (Reference 17.6-201) which was approved by the NRC.

The text of the template provided in NEI 07-02A is generically numbered as "17.X" and "17.Y." When the template is incorporated by reference into this FSAR, section numbering is changed from "17.X" to "17.6.2" and from "17.Y" to 17.4."

Descriptions of the programs listed in Subsection 17.6.2.3 of NEI 07-02A are provided in the following Part 2 FSAR chapters/sections or Part 4:

- Maintenance Rule Program (Section 17.6)
- Quality Assurance Program (Chapter 17)
- Inservice Inspection Program (Sections 5.2 and 6.6)
- Inservice Testing Program (Sections 3.9 and 5.2)
- Technical Specifications Surveillance Test Program (Part 4)

17.6.3 Reference

17.6-201 <u>Generic FSAR Guidance for Maintenance Rule Program</u>
<u>Description for Plants Licensed Under 10 CFR Part 52,</u> NEI 07-02A, Revision 0, NEI, March 2008.