AGENDA
WORKSHOP 2
ALTERNATIVE INTERPRETATIONS
CENTRAL AND EASTERN UNITED STATES (CEUS)
SEISMIC SOURCE CHARACTERIZATION (SSC) PROJECT

February 18-20, 2009
Electric Power Research Institute
3420 Hillview Ave.
STARR Auditorium
Palo Alto, California 94304

GOALS OF THE WORKSHOP: The goals of Workshop #2 are:

= To review the project SSHAC Level 3 methodology, ground rules, expert roles,
and peer review processes

» To provide an opportunity for the Tl team to understand proponent views
regarding important technical issues

*= To discuss the range of alternative views and uncertainties within the larger
technical community

» To discuss the path forward for the CEUS SSC project

APPROACH: The goals of the workshop will be accomplished by a series of
presentations and discussions designed to provide the Tl team with information they
need in order to develop a preliminary seismic source characterization model. Resource
experts have been asked to provide their views regarding certain key technical issues,
including a discussion of the uncertainties associated with those views. The Tl team is
charged with developing a seismic source model that captures the knowledge and
uncertainties within the larger informed technical community. Accordingly, this workshop
is an important opportunity for the Tl team to gain a better understanding of the
community’s views and to directly probe the experts regarding the technical bases for
their interpretations. To the extent practical, presentations have been arranged topically
to encourage focus on pertinent issues. Ample time has been provided for discussion.

Time | Topic | Presenter
WEDNESDAY FEBRUARY 18, 2009
9:00 -9:15 Welcome Hamel, Jeffrey
Opening Remarks Salomone, Larry
9:15-9:30 Purpose of workshop and ground rules Coppersmith, Kevin
9:30 - 10:00 Geodetic observations in St. Lawrence and Mazzotti, Stephane

implications to Mmax; tectonic framework; limits
of glacial rebound

10:00 — 10:30 | Size of 1663 Charlevoix earthquake; treating St. | Ebel, John
Lawrence seismicity zones as aftershocks

10:30 — 11:00 | Break

11:00 — 11:30 | Use of seismicity to define seismic sources, Kafka, Alan
application in the eastern North America region.

11:30 — 12:00 | Discussion

12:00 - 1:30 Lunch




1:30-2:00 Use of tectonic structures and assessing Mmax Adams ,John
for Canadian national hazard maps

2:00 —2:30 Seismicity and potentially active faults in NYC, Seeber, Leonardo
Pennsylvania, Ohio, New England (Nano)

2:30 —3:00 Ouachita, sub-detachment structures Thomas, Bill

3:00 —3:30 Break

3:30 - 4:00 Rift structures in the mid-continent (Rough Creek | Drahovzal, James
Graben, Rome Trough, East Continent rifts)

4:00 —4:30 Integration of seismic reflection, geopotential McBride, John
field, and subsurface information in southern
Illinois Basin

4:30 — 5:00 Discussion

5:00 Adjourn

THURSDAY FEBRUARY 19, 2009

8:30 - 9:00 Quaternary Deformation within the Reelfoot Rift, Van Arsdale, Roy
Rome Trough, and Wabash Valley Fault System

9:00 —9:30 Commerce lineament and northwest boundary of | Baldwin, John
New Madrid

9:30 - 10:00 Saline River and Reelfoot Rift Cox, Randy

10:00 — 10:30 | Break

10:30 — 11:00 | Geotechnical evaluation of the Vincennes event | Green, Russell
in southern lllinois

11:00 — 11:30 | Magnitude bound relation for the Wabash Valley | Olson, Scott
seismic zone; Geotechnical analysis of
paleoseismic shaking using liguefaction effects

11:30 - 12:00 | Discussion

12:00 - 1:30 Lunch

1:30 - 2:00 Geodetic interpretations of New Madrid rates Calais, Eric

2:00 —2:30 Rates and recurrence in New Madrid Stein, Seth

2:30—3:00 Geodetic interpretations of New Madrid rates Smalley, Bob

3:00—3:30 Break

3:30-4:00 Update of stress map, strain localization, New Zoback, Mark
Madrid rates

4:00 - 5:00 Discussion

5:00 Adjourn

FRIDAY FEBRUARY 20, 2008

8:30 — 9:00 Clustered model for New Madrid events Tuttle, Tish

9:00-9:30 New Madrid model for repeated events; geodetic | Kenner, Shelley
signature along the southeast margin and
elsewhere

9:30 — 10:00 Physical processes occurring in the mantle under | Forte, Alessandro
the Eastern US and their implications for surface
stress and deformation

10:00 — 10:30 | Break

10:30 — 11:00 | Update on eastern TN and Charleston; fault Chapman, Martin
model for these sources

11:00 — 11:30 | The source and magnitude of the Charleston Talwani, Pradeep




earthquakes

11:30 — 12:00 | Discussion
12:00 -1:30 Lunch
1:30 — 2:00 Approaches Used to Identify and Evaluate Pazzaglia, Frank
Neotectonic Features in Appalachian
Piedmont/Coastal Plain Setting
2:00 —2:30 Gulf coast faulting and seismicity Angell, Mike
2:30 - 3:00 Seismic source model for the US National Peterson, Mark
Hazard maps
3:00 — 3:45 Path Forward on CEUS SSC Coppersmith, Kevin
3:45 — 4:00 Closing Remarks Salomone, Larry
4:00 Adjourn
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Project Goals

 Replace the EPRI (1989) and LLNL (1993) seismic source
characterization models for the CEUS.

 Capture the knowledge and uncertainties of the informed
scientific community using the SSHAC process.

* Present New CEUS Seismic Source Characterization Model
to NRC, DOE and DNFSB for Review .

es Savannah River
SRNS-E0000-2009-00008



Organization Chart

International Observers

EPRI

TECHNICAL PROGRAM MANAGER

Robert P. Kassawara

EPRI ANT PROJECT MANAGER
Jeffrey F. Hamel

TECHNICAL PROJECT MANAGER
Lawrence A. Salomone

DATABASE MANAGER
David L. Slayter

PARTICIPATORY PEER REVIEW PANEL
J. Carl Stepp (Co-Chairman)
Walter J. Arabasz (Co-Chairman)
John P. Ake
Ann Marie Kammerer
Jeffrey K. Kimball
William J. Hinze
Mark D. Petersen

TI TEAM
Kevin J. Coppersmith
Robin K. McGuire
Willliam R. Lettis
Robert R. Youngs
Technical Resource
Gerry L. Stirewalt

SPONSOR REVIEWERS
(FINANCIAL)
Martha E. Shields (DOE)

(TECHNICAL)
Brent J.Gutierrez (DOE)
Clifford G. Munson (NRC)

RESOURCE EXPERTS
Martin C. Chapman
Jeffrey W. Munsey
Russell L. Wheeler

Average about 12 professionals

Stephen M.McDuffie
Donald P. Moore
| ]

TI STAFF SPECIALTY CONTRACTORS

WLA Geomatrix (Seismicity Catalogue)
(S. Lindvall; F. Syms; R. Cumbest) WLA (Database/GIS)
Geomatrix REI (Haz Calcs/Sensitivity Anal)
(K. Hanson; D. Wells) Geomatrix (Haz Input Doc)
REI (G. Toro)
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CEUS Seismic Source Characterization Study Area

Savannah River
Muclear Solutions, LLC SRNS-E0000-2009-00008

A Fluor Darard Fornenip,




Sample Datasets from CEUS Study

Gravity and Areromag Data

Savannah River
Muclear Solutions LLC SRNS-E0000-2009-00008

A Rluor Doman Forsnendsp,




Sel

smic Source Characterization (SSC) Model -

Project Milestones

Project Plan as EPRI Technical Update — June, 2008 (Completed)

Workshop #1: Significant Issues and Databases — July 21-23, 2008 (Completed)

Workshop #2: Alternative Interpretations — February 18-20, 2009

Complete Database and Seismicity Catalog Development — June 30, 2009

Workshop #3: Feedback on Preliminary CEUS SSC Model — August 25-26, 2009

Construct Final CEUS SSC Model and Prepare Draft Technical Report — February 2010 to December

31,2

010

Review of Draft Report by PPRP

Incorporate Review Comments

Review project documentation for transparency

Prepare internal documentation package to document computer codes and archive hazard
calculations

Obtain copyright releases for GIS database as required

Present New SSC Model to Industry, NRC, DOE and DNFSB

Publish Final Technical Report — December 31, 2010

é Savannah River
! SRNS-E0000-2009-00008

| T



Preliminary SSC Model Validation

 Use Preliminary SSC Model to Develop Sensitivity Studies on
Seismic Hazard at Seven (7) Generic Test Sites With Different
Soll Profiles and Hazard Environments

« Compare With USGS SSC Model at Seven (7) Generic Test
Sites

« Make Adjustments As Required

e Savannah River
& SRNS-E0000-2009-00008



Status

« Completed tasks
— Project plan
— Initial funding
— Workshop #1

*On Track to Meet Target Completion Date (2010)

e Savannah River
SRNS-E0000-2009-00008



Goals of Workshop and
Ground Rules

Kevin J. Coppersmith

CEUS SSC Workshop #2 Alternative Interpretations
EPRI, Palo Alto, CA

18-20 February 2009
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Probabilistic Seismic Hazard
Analysis: Guidance on
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Prepared by
Senior Seismic Hazard Analysis Committee (SSHAC)
R. J. Budnitz (Chairman), G. Apostolakis, D. M. Boore, L. S. Cluff, K. J. Coppersmith, C. A. Cornell, P. A. Morris

Lawrence Livermore Mational Laboratory
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SSHAC Objective

» Develop methodology for obtaining
reproducible, stable estimates of
probabilistic seismic hazard at a site,
including explicit quantification of
uncertainty

- Assumed basic PSHA computational model is
established

- Focused on methods for assessing uncertainty in
the PSHA model input assessments and for
quantifying the uncertainty in PSHA results




SSHAC Basic Principles for a PSHA

» Principle 1: The goal of a PSHA is “to represent the
center, the body, and the range of technical
interpretations that the larger technical community

would have if they were to conduct the study”

- Focuses experts on the larger purpose of the PSHA and on
the critical importance of their role as scientific evaluators
of processes and models, given available data

- Experts must abandon all proponent bias - personal and
peer

» Termed the “informed technical community” (ITC)




SSHAC Basic Principles for a PSHA

(continued)

» Principle 2: ‘It is absolutely necessary that there be
a clear definition of ownership of the inputs into

the PSHA, and hence ownership of the results of
the PSHA”

- Ownership means intellectual responsibility

> For SSHAC Level 3, Technical Integrator (Tl)
assumes ownership




Key SSHAC Attributes:
Any PSHA Must

» Define specific roles of all participants
» Develop and disseminate complete database

» Consider views of larger informed technical
community in evaluating uncertainties

» Encourage interactive debate and learning
- Workshops for Levels 3 and 4

» Provide feedback to understand implications
of preliminary models and uncertainties

» Conduct peer review

» Develop complete documentation




Expert Roles

» Evaluator. an expert capable of evaluating the relative
credibility of multiple alternative hypotheses to explain the
observations

» To evaluate the alternatives, the evaluator:

o]

o}

(o]

o}

>

Considers the available data

Listens to proponents and other evaluators

Questions the technical basis for their conclusions

Challenges the proponents’ position

Interacts with other experts in workshops, to understand
basis for their assessments

Considers feedback regarding the implications of
assessments

Interacts with hazard analyst to ensure assessments are
properly modeled for the PSHA computations

Documents the basis for assessments




Expert Roles (continued)

» Proponent. an expert who advocates a
particular hypothesis or technical position

» Common role in science

» Peer review in professional debates and
iterature

» ldeas either gain support or fade with time




Expert Roles woninues

» Technical Integrator [Level 3]: small team
that serves as an evaluator for the technical
assessments

» Structures and documents information
exchanges

» Stages effective debates and interactions in
critical areas

» Responsible for capturing views of larger
technical community and considering them in
the evaluation process

» Responsible for documentation




CEUS SSC Task Schedule

Task Schedule
Retain Participatory Peer Review Panel April — May 2008
Database Development April 2008 — May 2009
Seismicity Catalog April 2008 — May 2009
Assessment of Hazard-Significant Issues April - July 2008
Workshop 1 Significant Issues and Databases July 2008
Workshop 2 Alternative Interpretations February 2009
Construct Preliminary SSC Model December 2008 — Aug 2009
Develop Hazard Input Document and SSC Sensitivity May — June 2009
Analyses
Perform Preliminary Hazard Calculations and Sensitivity June - July 2009
Analyses
Workshop 3 Feedback July 2009
Finalize SSC Model August —November 2009
Document CEUS SSC Project in Draft Report Oct 2009 — February 2010

Review of Draft Report by PPRP and Others Feb — March 2010

| Finalize and Issue CEUS SSC report April = July 2010

Meeting with NRC and DNFSB August 2010

DI



Ground Rules for Workshop

» Workshops are an opportunity for the Ti
Team to:
- Exchange data
> Understand viewpoints of technical community
- Challenge and defend technical hypotheses
- Gain information on the project
> Interact and ask questions

» Therefore, the focus of this workshop is the
Tl Team.




Ground Rules for Workshops

(continued)

» Conduct of the technical discussions at the
workshops will be at the highest professional
level.

» Discussions will be among the Tl team and
the presenters; all others will be considered
observers

» Observers will be provided with opportunities
for comments at the end of each day

» The Tl team runs the workshop and is
responsible for keeping to the schedule,
logistics, etc.




Workshop 2 Alternative Interpretations
Goals of the Workshop

» To review the project SSHAC Level 3
methodology

» To provide an opportunity for the Tl team to
understand proponent views regarding
important technical issues

» To discuss the range of alternative views and
uncertainties within the larger technical
community

» To discuss the path forward for the CEUS SSC
project




Workshop #2 Alternative Interpretations
Workshop Process

» Tl team has begun to develop a preliminary seismic
source model; this workshop will provide valuable
information on views of technical community

» Resource experts have been asked to provide their
views regarding certain key technical issues,
including a discussion of the uncertainties
associated with those views

- Key questions/issues have been posed to each presenter

> Tl team is charged with capturing the knowledge and
uncertainties within the larger informed technical community

> This workshop is an important opportunity to directly probe the
experts regarding the technical bases for their interpretations




Workshop #2 Alternative Interpretations
Workshop Process (continued)

» To the extent practical, presentations have
been arranged topically to encourage focus
on pertinent issues

» Ample time has been provided for discussion

» P
T

» P

PRP members are observers; will meet with
team leads on Friday after the workshop

PRP written comments to follow




Strain (and Stress) Constraints on
Seismicity in the St. Lawrence Valley

Stephane Mazzotti

Geological Survey of Canada, Natural Resources Canada,
Sidney BC, Canada

EPRI CEUS Seismic Source Characterization Project
Palo Alto, Feb. 18 2009

I * I Natural Resources Ressources naturelles
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Strain (and Stress) Constraints on Seismicity in the
St. Lawrence Valley

Outline

1) Distribution of earthquakes & definition of seismic zones
2) GPS observations: coverage, uncertainties, rates

3) Relationship between GPS, seismicity, and “long-term”
strain rates

4) Potential role of GIA processes

5) Issues & limitations with using GPS for seismicity rates
and source zones



1) Seismicity & Seismic Source Zones
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1) Seismicity & Seismic Source Zones

Relationship to geology

Concentrations along
lapetus rifted margin
and grabens (~600 Ma)

Eastern Canada M>6.5
frequency:

~1/200 years in
lapetus Rift

~1/5000 years In
Canadian Shield




1) Seismicity & Seismic Source Zones

Seismic moment and deformation rates
based on earthguake statistics In
historical vs. geological source zones

Historical source zones:
very heterogeneous - )

- . elative motion (mm/yr) 75"

few high strain zones ey

0.1-1.0

O . O - 2 . 5 M m/yr 84% < 0.5 P 0.0-05 (%

16% = 0.0 |0.0-03
84% =<

Geological source zones:
homogeneous
no high strain zone
0.0 — 0.5 mm/yr

Mazzotti & Adams, JRG 2005



2) GPS Observations

GPS Networks

Regional:

- Backbone of ~50
continuous stations
(since 2001 / 2008)

- Densification of ~45
campaign stations
(since 1994 / 1999)

Upper St. Lawrence:
- Network of 55
campaign stations
(since 2005)




2) GPS Observations

Vertical velocities

Continuous and
campaign regional
networks

ITRF2000

- NW-SE gradient of
7-8 mm/yr

- Hinge line close to
Quebec/Maine border

- Consistent with GIA
models




2) GPS Observations

Vertical velocities

Continuous and
campaign regional
networks

ITRF2000

- Good agreement
between continuous
(3-6 yrs) and
campaign (7-9 yrs)

- Uncertainties 1.0-2.0 M |
mm/yr standard error



2) GPS Observations

Horizontal velocities

Continuous and
campaign regional
networks

ITRF2000 — North
America

- Eastward velocity
NW-SE gradient of ~1

- Consistent with GIA
models




2) GPS Observations

Horizontal velocities

Continuous and
campaign regional
networks

ITRF2000 — North
America

- Good agreement
between continuous

1 +/-1 mmlyr \

—

campaign (7-9 yrs)

- Uncertainties 0.5-1.0
mm/yr standard error



2) GPS Observations

High-resolution Upper St.
Lawrence campaign
network

- In progress, first survey
In 2005

- Spans high and low
seismicity zones from
Charlevoix to Montreal

- 55 campaign GPS sites | A --=Mor#rea¢0 G
surveyed every 2 years -!n o

A

- Results expected by
2010-2015



3) GPS, Seismicity & Long-Term Strain Rates

Lower St. Lawrence

16 campaign sites
(Canadian Base
Network)

4-5 occupations
between 1994-1996
and 2003

Subnets around
Charlevoix (CHV) and
Lower St. Lawrence
(BSL) seismic zones

Mazzotti et al., JRG 2005



3) GPS, Seismicity & Long-Term Strain Rates

Horizontal strain rates
from 1994-2003 CBN

E-W shortening (10
)

Regional: 1.4 £ 1.3
CHV: 3.8+ 2.3

BSL: 4.3 +4.2

Suqggestion of higher
strain rates in high
seismicity zones

Mazzotti et al., JRG 2005



3) GPS, Seismicity & Long-Term Strain Rates

Charlevoix GPS vs. £ Sl
. . . T 1 PN\ | . ]
seismicity rates = o\ GPSbased
o ﬁ .~ statistics ]
3.8+ 2.3x109yr! ol
' % | E lth k &
0.7 £ 0.4 mm/yr s0 I 42 081G sitistes -+ <1
» 8 =E

- GPS-based and
catalog statistics
agree for M>6

Mazzotti et al., JRG 2005



3) GPS, Seismicity & Long-Term Strain Rates

. 52 - : i ] i =
Charlevoix GPS vs. |l x 0 ‘%i% , Charlevoix
— . . ) 10~ yr- VE i
seismicity rates / : o
38 1 23 X 10-9 yr-l / f / %}ﬁ% E" 0.1 :/ | M\ﬁéﬂ GPS-based

= - R
+ % o] cotistes . Lk
0.7 £ 0.4 mml/yr 50 £ g S
o & ‘
- GPS-based and |
catalog statistics

agree for M>6

- Assuming catalog §
statistics, GPS
strain constrains

Mx=7.8+0.6

Mazzotti et al., JRG 2005



3) GPS, Seismicity & Long-Term Strain Rates

BSL GPS vs.
seismicity rates

4.3+4.2x10°yrl
0.2 £ 0.6 mml/yr

- GPS-based and
catalog statistics
agree for M<4.5

52

50

0.1

0.01

Cumulative frequency (/yr)

0.001

0.0001

Earthquake °

L s

statistics

%
ALY
Y

St Lawrence |

- ! GPS-based

tatistics

. | -

3

3

4

5 6 7 8
Magnitude (my 4)

9

Mazzotti et al., JRG 2005




3) GPS, Seismicity & Long-Term Strain Rates

52

BSL GPS vs.
seismicity rates

43+42x10°yr! WE ¥

50

"a
.y
.
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0.2 £ 0.6 mml/yr
- GPS-based and

catalog statistics il
St Lawrence | e

agree for M<4.5 s =17
- Assuming catalog ER% = GPS-based
statistics, GPS E —
strain constrains  E
Mx=7.3%x17 o1 | artnauake
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Magnitude (M, g) Mazzotti et al., JRG 2005



3) GPS, Seismicity & Long-Term Strain Rates

Charlevoix GPS vs.
“long-term” rates

0.7 £ 0.4 mm/yr
300 — 1100 m / Myr

No offset (< 2-5 m) of
Appalachian or
Mesozoic units in
seismic reflection lines

Current strain rates
and seismicity are not
steady-state on Myr
timescale

Lamontagne, 1999



3) GPS, Seismicity & Long-Term Strain Rates

Within a resolution of ~1 mm/yr at
95%, we cannot discriminate
between various models

- No strain (no seismicity)




3) GPS, Seismicity & Long-Term Strain Rates

Within a resolution of ~1 mm/yr at
95%, we cannot discriminate
between strain/earthquake models
- No strain (no seismicity)

- Elastic GIA strain (no seismicity)




3) GPS, Seismicity & Long-Term Strain Rates

Within a resolution of ~1 mm/yr at
95%, we cannot discriminate
between strain/earthquake models

- No strain (no seismicity)

- Elastic GIA strain (no seismicity)

- “Plate-boundary type” strain
loading of seismic faults from
far-field (steady-state)




3) GPS, Seismicity & Long-Term Strain Rates

Within a resolution of ~1 mm/yr at
95%, we cannot discriminate
between strain/earthquake models

- No strain (no seismicity)

- Elastic GIA strain (no seismicity)

- “Plate-boundary type” strain
loading of seismic faults from
far-field (steady-state)

- Elastic GIA strain and
loading of seismic fault from
“local strain concentrators”



4) Potential Role of GIA Processes

Reference GIA __ GIA stress
model - 1D rheology

- High elastic strain
rates (10°=10-8 yr?)

- Small stress (few
Mpa max.)

- o Sub-parallel to
tectonic stress (NE-
SW)

Wu and Mazzotti, GSA 2007



4) Potential Role of GIA Processes

Impact of “weak
zone” on GIA stress
& strain

Introduction of low
viscosity (10%° Pas)
lower lithosphere
(25-125 km) along
the lapetus Rift

Wu and Mazzotti, GSA 2007



4) Potential Role of GIA Processes

Impact of “weak
zone” on GIA stress
& strain

- Stress & strain
concentration

- Rotation of o,
~50° ckw.

Wu and Mazzotti, GSA 2007



4) Potential Role of GIA Processes

Impact of “weak
zone” on GIA stress
& strain

- Increase of stress
magnitude by x 2-5

- Rotation of o, ~50°
ckw., perpendicular
to lapetus Faults

Wu and Mazzotti, GSA 2007



4) Potential Role of GIA Processes

Impact of “weak
zone” on GIA stress SUPTLLAL LT
& strain I, ny

- Rotation of o, ~50°
ckw., perpendicular
to lapetus Faults

- Compatible with \ Il 7
NW-SE shortening s

from large
earthquakes (1925
M=6.2 Charlevoix)

Wu and Mazzotti, GSA 2007



4) Potential Role of GIA Processes

Most seismic zones:
seismological G, sub-
parallel to borehole oy,

E. Charlevoix & Low.
St. Lawrence: 40-50°
ckw. rotation

Similar to “weak zone”
GIA model & ;
GPS strain rates N 7 T 5T 2 ot

Points to significant role of GIA & local weak rheology
IN seismicity in some seismic zones?

Mazzotti and Townend, 2008



5) Issues and Limitations with GPS Constraints

Resolution of GPS measurements

- Seismic strain signal (< 1 mm/yr) at the limit of GPS precision
AND

- High spatial resolution required to discriminate between
models




5) Issues and Limitations with GPS Constraints

Interpretation of GPS strain rates based on a geodynamic
model

- Role of local weak zones in strain (& seismicity) concentration

- Percentage of elastic vs. plastic vs. seismic deformation




5) Issues and Limitations with GPS Constraints

Interpretation of GPS strain rates based on a geodynamic
model

E.g., St. Lawrence Valley
strain model

- High GIA elastic strain

- Converted to seismic
strain In “weak” zones

IS It Steady_State (Iocal Weak Montreal Charlevoix Lower St
70N eS) > - Lawrence
|s there migration over Elastic bending o O

1000-10,000 year timescale — defori'ruafi_cfrjn
(regional weak zones) ?

Mazzotti et al., JRG 2005



Strain and stress constraints on seismicity in the St.
Lawrence Valley

- GPS strain rates & seismicity are in good agreement in
Charlevoix (and Lower St. Lawrence) seismic zone

- Suggestion of higher GPS strain rates in high seismic zones

However, GPS data cannot yet resolve whether 100-300 years
of seismicity represent earthquake hazard over the next 500-
5000 years (steady-state vs. migration models)

GPS strain rates should be used in conjunction with rheology,
structure and historical seismicity to define seismic source
zones (and rates) once a robust integrative geodynamic model
IS developed







Charlevoix Seismic Zone
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Mmax for Eastern North America:
An Examination of the 1663
Charlevoix Earthquake

Prof. John E. Ebel
Director, Weston Observatory of Boston College

Department of Geology and Geophysics, Boston
College



“There Is something fascinating about
science. One gets such wholesome
returns of conjecture out of such a
trifling investment of fact.”

Mark Twalin



Many of the small earthquakes in
our region may be very late
aftershocks of strong earthquakes
that took place hundreds or
thousands of years ago. Under this
“paleoseismicity” hypothesis, the
spatial extents and activity rates of
clusters of earthquakes can be used
to estimate the magnitudes and
times before present of past strong
earthquakes (from Ebel, Bonjer
and Oncescu, Seism. Res. Lett.,
2000). Documenting persistent
earthquake clusters throughout the
historic record may help identify
the locations of past strong
earthquakes.
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How Long Do Aftershocks Last?

Caltech-USGS Southern California Seismic Network

37 4 X

3z

31u 5 e -
217 41200 1197 118" 17 116 115" 114

In California, aftershock zones can be active for decades after
a main shock.



Estimating the Magnitude of the 1663
Earthquake at Charlevoix, Quebec

Magnitude from the MMI at Boston, MA

Magnitude from comparisons with the
Isoseismal maps of the 1811-1812 New
Madrid earthquakes

Magnitude from the length of the
“aftershock” zone

Magnitude from the observation of
chimney damage at Roxbury, MA



The 1663 Earthquake at Charlevoix, Quebec

This earthquake was felt strongly in Canada, and caused major
ground deformations (landslides, sandblows, etc.) in what is
today the Charlevoix seismic zone. Aftershocks were reported
for many months after the mainshock.



Felt Effects at Roxbury and Boston, MA



Felt Report at Boston of the 1663 Earthquake

This earthquake caused some minor chimney damage In
Boston at a distance of about 600 km. Several aftershocks
were also were felt in Boston. Rev. Danforth in Roxbury,
Massachusetts wrote:

"1662 Jan. 26 (O.S.) about 6 o'clock at night there happened
an earthquake, wch shook mens houses and caused many to
run out of their houses into the streets, and ye tops of 2 or 3
chimnyes fell off, or some part ym.” (Danforth, 1880).

This appears to be MMI V to VII shaking (See Ebel, Seism.

Res. Lett., 1996). Sue Hough would probably rate this report
MMI VI to VII.



Possible Damage Report at Boston Due to the
1663 Earthquake

The “Ship Tavern” at Ship (North) and Clark Streets In
Boston, was originally built as a private residence. It was torn
down about 1867. A description in Rambles in Old Boston by
Edward G. Porter (1887) reads:

“It was originally two stories high, and built of English brick,
laid with shell and clay mortar. There was an old crack in the
front wall, said to have been caused by an earthquake in 1663,
“which made all New England tremble.””

This appears to be MMI V to VII shaking. Sue Hough would
probably rate this report MMI V to VI.



Estimating the Magnitude of the 1663
Earthquake at Charlevoix, Quebec

 Magnitude from the MMI at Boston, MA



Magnitude Estimate of the 1663 Earthquake
due to the MMI Value at Boston

Assuming an epicentral distance of 560 km:

MMI V at [ MMI VI at | MMI VI.5

Boston |Boston at Boston
Klimkiewicz and Pulli (1983) [ 7.0 (mb) | 7.5 (mb) |7.8 (mb)
Bakun et al. (2003) 6.7 (Mw) | 7.3 (Mw) |7.6 (Mw)
Assuming an epicentral distance of 600 km:

MMIV at [ MMI VI at | MMI VI.5

Boston |Boston at Boston
Klimkiewicz and Pulli (1983) [ 7.0 (mb) | 7.5 (mb) |7.9 (mb)
Bakun et al. (2003) 6.8 (Mw) | 7.3 (Mw) |7.7 (Mw)




Estimating the Magnitude of the 1663
Earthquake at Charlevoix, Quebec

 Magnitude from comparisons with the
Isoseismal maps of the 1811-1812 New
Madrid earthquakes



Comparison of the Mw 7.5 February 7, 1812

Isoseismal Map with the 1663 Damage Report at
Boston (MMI VI at 600 km)
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Comparison of the Mw 7.3 December 16, 1811
Isoseismal Map with the 1663 Damage Report at
Boston (MMI VI at 600 km)
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LEAST SQUARES
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Locations with chimney damage are circled in red.



Comparison of the Mw 7.0 January 23, 1812
Isoseismal Map with the 1663 Damage Report at
Boston (MMI VI at 600 km)
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Estimating the Magnitude of the 1663
Earthquake at Charlevoix, Quebec

e Magnitude from the length of the
“aftershock” zone



1663 Charlevoix vs. 1812 New Madrid

Charlevoix Seismic Zone
Seismicity, 01/01/80 to 3/31/06
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Both were probably reverse faulting earthquakes.



The 1663 Earthquake at Charlevoix, Quebec

If the modern seismicity at
Charlevoix is aftershocks of  [craievai seismic zone
the 1663 event, then its rupture [~ "
length must have been about
70 km. Using Wells and
Coppersmith (1994), a fault
length of 73 km, and a fault
width of 25 km, the moment
magnitude (Mw) estimates are: |
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Estimating the Magnitude of the 1663
Earthquake at Charlevoix, Quebec

 Magnitude from the observation of
chimney damage at Roxbury, MA



Estimated 1663 Ground Motions at Roxbury,
Massachusetts Based on Chimney Damage

SA at 0.3 sec (g)
Soil Site Conditions
Magnitude (Mw) 7 7.3 7.6
Atkinson and Boore (2006) 0.020 0.026 0.033
Campbell (2003) 0.008 0.011 0.015
Somerville et al. (2001) Rift 0.006 0.011 0.019
Tavakoli and Pezeshk (2005) 0.019 0.027 0.037

Threshold for Chimney Damage = .03g

pga (9)
Soil Site Conditions
Magnitude (Mw) 7 7.3 7.6
Atkinson and Boore (2006) 0.008 0.011 0.015
Campbell (2003) 0.008 0.011 0.014
Somerville et al. (2001) Rift 0.006 \ 0.009 0.014
Tavakoli and Pezeshk (2005) 0.010 0.014 0.019

\Threshold for Chimney Damage = .01g

The chimney damage at Roxbury in 1663 suggests that this
earthquake was ~ M 7.0-7.6. SA, 5 favors the larger values
of this range.




Conclusion: Estimated Magnitude of the 1663
Earthquake

The best estimate of the magnitude of the 1663 Charlevoix
earthquake from this study is Mw ~ 7.3-7.5.

Area of estimated
MMI Il or greater
shaking from an Mw
7.5 earthquake at
Charlevoix.
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Speculation on Large Events at the Ends
of the Aftershock Zones of Large
Ruptures
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Speculation: Late, larger “aftershocks” concentrate at the edges of an earlier
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“aftershocks” can help delineate where past ruptures took place.



New Madrid Seismic Zone
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Speculation: Perhaps the larger events in these two seismic zones show the ends
of the ruptures associated with the 1811-1812 and 1663 earthquakes.



Speculation on How Many Intraplate
Earthquakes May Be Aftershocks of Past
Large Earthquakes



From Alan Kafka’s “cellular seismology” work, most recent
earthguakes occur near locations where past earthquakes
were located. If this is indicative of repetitive aftershock
activity, then most earthquakes in eastern North America
may be aftershocks of past strong earthquakes.

a 20 40 B0 an 100

100 e

: %

1l

al

L 20
m = 3.0 (1924-1987) | SCA _ RANDOM
m= 4.5 (1 988-200 1) 0 20 41 =i &0 100 o 20 40 fil B0 100

9 1% Hits % arca 9% area




Speculation on the Rates of M=7
Earthquakes in the CEUS



For the CEUS and

for ENA, the S

observed rate of FEc v et o cowid F ST Ty

M>~7 earthquakes is
greater than expected
from extrapolations

of the Gutenberg-
Richter curves from
the smaller
earthquake activity
In these regions
(Nishenko and
Bollinger, Science,
1990).

CEUS - Central and Eastern U.S.
ENA - Eastern North America



Building on the
paleoseismicity idea
that localized clusters
of earthquakes In the
CEUS delimit
aftershock zones of
past strong
earthquakes, we can
take the smaller
earthquake activity = p®
and postulate locations
where M>~7
earthquakes may have
taken place in the past

The red arrows show areas of enhanced, localized
seismicity rates where the estimated rate of M=0
few thousand years. earthquakes per 60 years is greater than 8
(modified from Frankel, Seism. Res. Lett., 1995).



M>~7 Seismicity Rates Underestimated for the

If all of the CEUS
modern seismicity
clusters show
locations of M>~7
during the past 2000
or so years, then the
rate of M>~7
earthquakes is
approximately 2 to 3
times greater than
that found from
extrapolations of the
smaller seismicity to
larger magnitudes.

CEUS?

Paleaseismicity C luster Analy sis Results

Mainshock s between M7.0and M75H aveEqu alRates

Rateof Timeof Nishenko& | Nishenko& | Nishenko& | Nishenko&
M=0 Analysis Bolling er Bolling er Bolling er Bolling er
Earthqua kes (years) (1990) (1990) (1990) (1990)
in60 Years Relation1 Relation?2 Relation1 Relation2
Recurrence | Recurrence Cluster Cluster
Curwe Curwe Analysis Analysis
Prediction Prediction Prediction Prediction
16or more 1118 3.0 1.7 8 8
8or more 2124 5.7 3.1 15 15
Table2b

Paleaseismicity C luster Analy sis Results
Mainshock s between M7.0and M75H ave Gutenb erg-Rich ter Distribu tion

Rateof Timeof Nishenko& | Nishenko& | Nishenko& | Nishenko&
M=0 Ana lysis Bolling er Bolling er Bolling er Bolling er
Earthqua kes (years) (1990) (1990) (1990) (1990)
in60 Years Relation1 Relation2 Relation1 Relation?2
Recurrence | Recurrence Cluster Cluster
Curve Curwve Ana lysis Ana lysis
Prediction Prediction Prediction Prediction
16or more 1118 3.0 1.7 6 4
8or more 2124 5.7 3.1 13 I
Gutenberg-Richter Paleoseismicity
Extrapolation Extrapolation




USE OF SEISMICITY TO DEFINE SEISMIC SOURCES:
APPLICATION TO EASTERN NORTH AMERICA
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“Cellular Seismology”

Alan L. Kafka
Weston Observatory
Boston College



Peak Acceleration {%g) with 10% Probability of Exceedance in 50 Years

o1y o USGS Map, Oct. 2002 o QuesTions .

w | (1) Is the “tendency for
1. | future earthquakes to occur
B . | near past earthquakes” a

= | real, measurable, physical

~ | phenomenon?

(2) Do we have samples that
are representative of this
phenomenon?

o = M o Bk 0 & - o

(3) Can we measure it?

USGS National Seismic Hazard Maps
Past Seismicity - Future Earthquakes

"If you can't measure it, it isn't science.”
- Lord Kelvin




“Cellular Seismology”
(analogous to a cellular phone system)

Choose a radius such that
circles fill P percentage of map
area.

b = 6/8 = 75% = sample of
binomial random variable, p.

p = Probability(*“success”)

success = red circle occurs
within one of the green circles.

From Kafka (2002, 2007)
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Central and Eastern United States Kafka (2002, 2007)



Central and Eastern United States

M 2 3.0 (1924-1987)
M 2 4.0 (1988-2003)

)

green zones = 33% map area

Future large earthquakes in
the CEUS have about 86%
probability of occurring
within 36 km of past

earthquakes.
- Kafka (2007)

95% Confidence Interval

79% +— 86% — 93%




“Cellular Seismology”

N\

p = sample of binomial random
variable, p.

p = Probability(“success”)

success = red circle occurs
within one of the green circles.

95% Confidence Interval
past future (given n “after” earthquakes)

. (before) ¢ (after)

From Kafka (2002, 2007)



Central and Eastern United States

green zones = 33% map area

M = 3.0 (1924-1987)
M = 4.0 (2004-2008)

95% Confidence Interval
(from previous slide)

79% +— 86% — 93%




Central and Eastern United States

green zones = 33% map area —>

M = 3.0 (1924-1987)
M = 4.0 (2004-2008)

95% Confidence Interval
(from previous slide)

79% +— 86% — 93%

“Market gurus predict
stock rebound but won't
rule out extreme move
up - or down.”

- USA Today, January 2, 2009

67% hits




Central and Eastern United States

95% Confidence Interval

(4% <+— 81% — 88%

Updated Forecast

M 2 3.0 (1924-1987)

® o) M=40(1988-2008)

)

25

green zones = 33% map area



Smoothed
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Cellular Seismology: 6/8 Hits

Rates: 5/8 Hits

Cellular Seismology: 2/8 Hits

Rates: 1/8 Hits
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Cellular Seismology (CS)
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Australia

95% Confidence Interval

54% <+— 68% —> 83%

105 160

M 2 4.5 (1964-1999)
M 2 4.5 (2000-2008)

-55

green zones = 33% map area



Cellular Seismology Forecast for the
Northeast Corridor of the United States

M 2 3.0 (1924-1990)

O M 2 3.0 (1991-2007)

Forecast Issued on October 2, 2008

Based on this forecast:

Future earthquakes inside this
polygon have a 67% probability
of occurring within the green
zones shown here. Those green
zones cover 33% of the area
enclosed by the polygon.

95% Confidence Interval
43% <+«— 67% — 91%




Tectonic Regions Studied
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CONCLUSIONS

1. | have yet to find any other method of forecasting
locations of future earthquakes that performs better
than Cellular Seismology. Still searching...

2. CS forecast for CEUS:
81x7% probability that
future earthquakes will occur
within these CS zones
covering 33% of map area.

M = 3.0 (1924-1987)
M = 4.0 (1988-2008)

25

3. CS forecast probabilities lower for intraplate regions
than for plate boundary regions?



Eastern Canadian experience
with Geological Source Zones
and Mmax

John Adams
Presentation for EPRI meeting Palo Alto 2009 02 18
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3rd Generation  Basham and Berry

seismic hazard  Developed ~1979-1982
mode| Implemented in 1985 code

4th Generation  peveloped ~1994-1997

seismic hazard  Finalized 2003
model Implemented in 2005 code

Documentation http://earthquakescanada.nrcan.gc.ca/hazard/OF4459/index_e.php



Smoothed seismicity is interesting, but not enough

o Counter-Example: Saguenay earthquake M5.9, had
no prior activity my>3 for more than 50 years prior;
would not have shown up

« Counter-Hypothesis: Contemporary earthquake
clusters represent locations of past large earthquakes;
activity rate Is for aftershocks, not the large initiator.



Smoothed seismicity is interesting, but not enough

CEUS 5Hz SA_Ratio 2%/50yr. Dec 2007/ 2002

Estimates are not
very stable, anyway
(USGS difference
map: Mark Petersen,
NGA meeting May
2008)




Geological sources were proposed in Canada in 1983
for the passive continental margin (Adams/Basham)

Geological sources were established for US (early
nineties, Rus Wheeler) but not used by USGS for

s 500 km & g
"’J': s 0w ¥ “‘ﬁ .
e f
. % o
- D
e 0
5 'g. H‘“n g
: 4 i
=r——- + Northwestern boundary of Iapetan normal faults —vy— Appalachian thrust front
= Morthwestern edge of FPhanerozoic cover, exposed Precambrian
basement to northwest and in Adirondack Mountaine (A) Coastal plain

Figure 2. Northwestern boundary of lapetan normal faults. Circled numbers locate known and probable lapetan faults, keyed to entries in Ta-
ble 1. Local seismograph networks are installed at localities 2, 3, 7,12, and 13 (Table 1). Faults at localities 1, 4, 8, 9, 11, and 15 are large enough
to show selected individual faults here. Northwestern boundary is dashed where inferred between known faults; two speculative extremes are
dotted in eastern Quebec and Labrador, where geoclogic mapping Is sparse (C. F. Gower, P. 5. Kumarapeli, 1982, oral and written commun.}, and
in lower 5t. Lawrence River {SLR). For reasons discussed, northwestern boundary is drawn to ignore lapetan faults of Saguenay aulacogen (SA;
DuBerger et al., 1991), Ottawa aulacogen (OA; Forsyth, 1981}, Rome trough in Kentucky (RT; Harris, 1978; Webhb, 19680; Cable and Beardsley, 1983},
and Southern Oklahoma and Reelfoot aulacogens west of map area.

They did feed into the Mmax



EPRI- SCR
Phanerozoic rift zones generate more (& larger
earthquakes than unrifted continental crust.

The Canadian Shield is one of
the stable continental regions

Stable continental crust

Extended crust

Unstable continental crust

Oceanic crust

Examples from Canada

What are the appropriate analogs?



Assoclation

Of Iarge 1933 Baffin
earthquake Bay M7.4
with rifted

margins

1663
Charlevoix
M7 -
/ T—_1929 Grand

Banks M7.1



Ancient Modern rifted
rifted margin margin

Shiela Appalachians l
B | ARM

aw GO

SCC M ‘ NAZ | MR l
North Sh
Quebec =~ . St New Brunswick Bay of Atlantic

Lawrence Fundy Nova Scotia  Scotian Shelf Ocean

GRENVILLE APPALACHIAN OCEANIC

Legend of representative earthquakes

U- 1989, 6.3, Ungava Peninsula, Quebec

S - 1988, 5.9, Saguenay, Quebec

C - 1925, 6.2, Charlevoix-Kamouraska region, Quebec

M - 1982, 5.7 and 5.4, Miramichi region, New Brunswick

GB - 1929, 7.2, Grand Banks, Atlantic Ocean, south of Newfoundland
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Geological structures/source zones form a way of
“filling In” between historical clusters

Hypothesis being supported by smaller earthquakes
2000-2006
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]
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eastern Canada
100 T T

Mx=7.5
BETA=2.09 +/-0.09
B=0.906 +/-0.04

; N5 = 0.855 +/- 0.039
My

N = 475 Earthquakes
ﬁ Including all earthquakes to the end of 2003

! NO BETA B Mx
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Eastern Canadian experience
with Mmax



Probabilistic seismic hazard is computed by integration
over a range of magnitudes

from Mmin, the minimum considered event,
to Mmax, the largest considered

Mmax cannot be smaller than the largest observed event,
but otherwise there are few universally-agreed rules

Often there Is a conflict between those approaching the
problem from below and those approaching the problem
from above
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SO ..... Mmax for the 4th Generation
e chosen to be larger
e based on continent-scale and global analogs

e methods similar to the early 1990's EPRI study of
stable continental regions

 used some geophysical constraints (e.g. thin
seismogenic crust) in a few regions.

The smallest Mmax were taken to be the largest
events from the most stable cores of the continents

(7.0£0.2) - could be larger given recent paleoseismic
work from Australia (& South Africa- Kango Fault?).



Stable Craton Core (SCC) rates and Mmax
Fenton and Adams, 1997; Fenton et al 2006
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http://earthquakescanada.nrcan.gc.ca/hazard/2006/2006FentonAdamsHalchukGEGE. pdf



Reconciling neotectonic and seismic recurrence rates in
SW Western Australia.

Mark Leonard and Dan Clark
Australian Earthquake Engineering Society 2006
http://www.aees.org.au/Proceedings/2006_Papers/019 Leonard_Clark.pdf

Précised by John Adams for EPRI workshop, Palo Alto 2009 Feb 18

In all the recurrence analyses an Mmax of 7.6 has
been used. Several of the fault scarps identified on
the DEMs in SW WA consistent with M7.4-7.5
earthquakes. The long period of time (100ka or
more) for which it is likely that the neotectonic
catalogue is complete for earthquakes >M7 make it
likely that there has been several earthquakes close

to Mmax.
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32°0 31°55' 31°50'S

32°5

Conclusions of Leonard and Clark

At present only about % of the features of have
had field investigation. All those inferred scarps
that were checked in the field were verified to be
actual earthquake scarps. This suggests the
method of identifying scarps from DEMs is valid.

1. Under the right geological and
climatological conditions fault scarps can be
preserved for 100ka or more for scarps from
=M7.3 earthquakes.

2. Mmax stable continental crust is perhaps
more like M7.5 than M7.0-7.2.

3. The recurrence rate for the neotectonic
catalogue and historical earthquakes in the
SCC of Australia are similar.



Mmax choices for E. Canada rifted crust

Paleozoic | Mesozoic_
rifted margin rifted margin
SCC IRM ‘ NAZ | MRB | ARM l

North Shore

. : of i
Guebec |, L o New Brunswick P&y Nova Scotia  Scofian Sheff  “dantic

GRENVILLE APPALACHIAN OCEANIC

Note: The following examples are intended to be
Illustrative, not definitive. Complications arise because
some magnitudes are Nuttli and others are Mw



Eastem Continental Margin (ECM)
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Paleozoic

rifted margin (1)

Mobs ~7.0

Weighted branches
best, upper, lower
75 7.7 7.2
0.68 0.16 0.16

Enough potential large
faults

Not large enough? (why
not >= New Madrid)
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Ontano Background (OBGR)

Interior
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Bas Saint - Laurent (BSL)

Mx=7.5

Paleozoic -
rifted margin (2) S

M =55 Eanthguakes

10 Including al sarhquakes 1o e snd of 1990
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|
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i
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75 1.7 6.0

S
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Mmax can matter

Hazard curves for low-seismicity source (Niagara)
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opectral Acceleration, (J)
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Mmax can matter

Hazard curves for high-seismicity source (Charlevoix)
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GPS & Seismic Hazard cps convergence rate: ~0.7 £ 0.4 mm/yr

10

0.1

0.01

Cumulative frequency (/yr)

0.001

0.0001

Mazzotti’s work using GPS
* Places uncertain upper limits on Mmax

» May provide additional constraints as longer
time series are evaluated

AN '

Il ‘ ‘ = = j\ : I = 10 ¢ ! | [|
A Charlevoix — ) Charlevoix —
Mx = 7.8 =Rl LY
(std. 7.2-8.5) 5
—[ASIy-270-9 Y -
A S 0.1 & AN——Characteristic
| : /X
| 2 / \ﬂ\‘ or
©
N S 0.01 ,/ .
N £ / VS
= 1 L 7N
O Catalogue statistics L 14/
\ N
\ \ or
\ 0.001 : =
\ : [ \\\
A 0.0001 — —_ W —e
5 6 7 8 9 3 4 5 6 7 8 9




Thoughts

Cannot rule out large earthquakes anywhere

Certainly Mmax ~7.0Mw everywhere,
probabilities will be very low in many SCR
areas

Phanerozoic rifted crust contains enough long
and deep faults (or fault systems) that Mmax
~8.0Mw seem plausible

Hazard Is sensitive to Mmayx, If the adopted
range of Mmax is large



What about the US?
Extending zones south
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Potential for future
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MAP SYMBOLS
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A. STRUCTURAL GEOLOGY
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OUACHITA THRUST BELT

10 km

Mississippian-Pennsylvanian Mississippian-Pennsylvanian

synorogenic turbidites synorogenic shallow-marine to deltaic clastic facies
Late Cambrian-early Mississippian Late Cambrian-early Mississippian

off-shelf passive-margin deposits carbonate shelf

N APPALACHIAN THRUST BELT

Upper Mississippian - Pennsylvanian synorogenic shallow-marine to deltaic clastic facies, Mississippian shelf carbonate

. Middle Ordovician - Lower Mississippian shelf carbonate and synorogenic clastic facies
Late Cambrian - Early Ordovician shelf carbonate

Early - Middle Cambrian late synrift deposits

Precambrian crystalline basement Appalachian Piedmont low-grade metamorphic rocks
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Rifts In the Midcontinent:

East Continent Rift Basin, Rough Creek
Graben and the Rome Trough

Central and Eastern United States
Seismic Source Characterization Project
Workshop 2
Wednesday, February 18, 2009

James A. Drahovzal
Kentucky Geological Survey
University of Kentucky

K&



Acknowledgements

Companies
— BP Exploration Company, Ltd. -- ConocoPhillips
— ChevronTexaco Corp. -- SEISCO, Inc.
— Seitel Inc.

Colleagues

— Mark Baranoski, Ohio Division of Geology

— Parker Gay, Applied Geophysics, Inc.

— Dave Harris, Kentucky Geological Survey

— John Hickman, Kentucky Geological Survey

— Jesse Kincheloe, Consultant

— John McBride, Brigham Young University

— Brandon Nuttall, Kentucky Geological Survey
— Collie Rulo, Kentucky Geological Survey

— John Rupp, Indiana Geological Survey

— Josh Stark, XTO Energy

— Carl Steffensen, BP Exploration Company, Ltd.
— Larry Wickstrom, Ohio Division of Geology

— Tina White, WV Dept. of Environmental Protection

K&



Outline

East Continent Rift Basin (ECRB)
— Grenville Thrust Belt (GTB)
— Hoosier Thrust Belt (HTB)

Fort Wayne Rift (FWR) and Anna Seismic
Zone

Rome Trough (RT)

— East Tennessee Seismic Zone (ETSZ)
— East Continent Gravity High (ECGH)

Rough Creek Graben (RCG)

Continuity of the RT and the RCG K&y



Classical “Basement” Geology

Crystalline Rock

i ) 'Y; ----- ::
Relatively Simple ng f
Geology T o

fE?::ﬁ::; i€
Eastern Granite- /<" Rhyolite g

Provinc

Rhyolite Province H\\//—\
— 1.45-1.48 Ga

Grenville Province
— Emplaced ~ 1.0 Ga




Proterozoic Drilling Data in the Eastern
Midcontinent Shows a Different Story

East Continent Rift Basin
— Largely sedimentary rocks

e : ) _ Lithologies and Ages
 Lithic arenite (Middle Run 4 : g ¢
Fm) 2) © Middle Run Fm
: , : @ Mafic Volcanic
* Interbedded with mafic 09 & Middle Run Fm and
VOICan|C I‘OCkS ' N Mafic Volcanic
— Also felsic intrusions e ® Felsic Volcanic
: : : @ Granite
— Thick sequence—rift basin U a @ Grenville Metamorphic

Granite-Rhyolite Province 1.08 RbISr age date (Ga)
to West is distinct and older

— Fort Wayne Rift Zone —an
early rift center

— Louisville basalt (also an

early rift center?) 0. “
— Younger granite intruSions | i mm S
in this area e e T
Grenville Province to EaSt  Soee 1950 drahovsal and sthore 1661 tame. 10015 10010

— Thrust over ECRB I@



Revised “Basement” /Proterozoic
Geology

Geology more complex

Eastern Granite-Rhyolite Province
— Classically 1.45 - 1.48 Ga N
— Includes the Ft. Wayne Rift 1.325 Ga ' B . | Lithologies and Ages

— Uplift_ed.basal_t at Louisville >1.5 Ga L R 55 | ' > Middle Run Fm

— Granite intrusions 1.08-1.171 Ga 1. TN :m?dﬂdﬁeVoRlL?:n;& ang
Sedimentary/Volcanic Province (East 4 Mafic Volcanic
Continent Rift Basin--ECRB) ' S Sy e

— 1.02-0.95 (?) Ga @ Grenville Metamorphic

— Late Foreland basin fill 0.6? Ga z | 1.08 RbiSr age date (Ga)

— Rift basin overprinted with
compressional structures

e Folds and thrust faults

— Evidence of later wrench and
extensional structures

Grenville Province
— Emplaced ~1.0 Gain OH, KY, TN

* Young metamorphic and thrusting ages
(0.89-0.98 Ga)

- Older petrolith ages in part (1.457 Ga) I@




Possible Areal Extent of the ECRB based

largely on seismic reflection data

Pemokean :
Province s Grenville
) Province

Rhyolite
Province

O

200 Miles

300 Km
Modified from Drahovzal, 1994a
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Southwest Ohio Drill and Seismic Data

W ® ODGS 2627W =

East Continent Rift Basin

= Line of section

Definition of Middle
Run Fm in well

— Mesoproterozoic
Seismic data:

— East dipping

« ~05Ga
— Pre-Middle Run
Folding and
thrusting

— Also extensional
faulting




Broader View Southwest Ohio

CONSORTIUM WRIGHT STATE
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Grenville foreland thrust belt model

Paleozoic strata

Grenville
i "rovince

From Hauser, 1993

» West-vergent Fold and Thrust Belt I@



Eastern Ft. Wayne Rift, W. Ohio

Post-Knox _

o A S sk

5 OW REPROCESSED DHID COCORP LINE

» Layered reflectors below unconformity
sLithic arenites, basalts, and rhyolites in
nearby wells

« Mesoproterozoic rocks are folded and

faulted
*West-vergent fold and thrust belt
(Grenville Thrust Belt)
sLater extensional faults

* Neoproterozoic (?) undeformed

*Onlaps onto rocks beneath I@

*Cut by extensional faults

from Dean and Baranoski, 2002



Layered Reflectors in North-Central Kentucky

 Angular unconformity
top of Mesoproterozoic

 Thrust- faulted E dipping
layered reflectors

— Six reflector packages
labeled 1- 6

— sequence boundary
indicators

e Truncations, onlap,
downlap & toplap

« 3and 4 drilled to
south—lithic arenite s
« Later Proterozoic
extensional faulting N @
rooted in the thrust faults

e Some Paleozoic wrench
faulting

Knox ane Ordevician Fms.

from data presented by Drahovzal, 2002a

East Continent Rift Basin




Layered Reflectors in Southwest Indiana

Angular unconformity
top of Mesoproterozoic

W dipping layered Western
r§flectors (Sequences 4- Group
6

Sequences in English
Basin ( Western Group)

— Five sequence
packages
labeled 1*-

— Sequence boundary
indicators

— Not drilled

— Much of Western
Group younger (?)
than Eastern Group
1* undeformed

Late (0.6 Ga) Uplift along
reverse faults*

Extensional faulting

Some Paleozoic wrench

faulting * Stark, 2002

Precambrian Unconformity

Paleozoic

Hoosier Thrust Belt
English Bas

X, i I 1

Eastern
Group

LOUISVILLE BLOCK
Grenville Thrust Belt




Cross Section: Northern Kentucky
and Southwestern Indiana

LOUISVILLE BLOCK

Hoosier Thrust Belt Grenville Thrust Belt
DuPont

English Basin #1 WAD Fee =

Seconds

from Drahovzal, 2002a

* Louisville Block uplifted 4-8 km 0.6 Ga (based on apatite
fission track data, Stark, 2002)
 West vergence to the East

— Grenville Thrust Belt
— Faults associated with Louisville Uplift

» East vergence to the West

— Hoosier Thrust Belt I@



Thrust Belt iIn Southern Indiana

Sequence 5* is deformed by a east- . Mmfl
vergent thrust belt . S e—

— Hoosier Thrust Belt
East-vergent Hoosier Thrust Belt
may be age equivalent to the west- Mes‘;g;‘;;;‘:jmic

vergent Grenville Thrust Belt
~12,000 ft to the top of the anticline

S

T Gl presaTEe by S from data presented by Drahovzal, 2002b I<
and others, 1999




Aeromagnetic Map of the
Southeast Midcontinent
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East Continent
Rift Basin

e Louisville High
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Proterozoic Geologic Map
Kentucky and Indiana

OH

N

from data presented by Drahovzal, 2002b
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Proterozoic Isopach of Map
Kentucky and Indiana
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from data presented by Drahovzal, 2002b



Regional Proterozoic Layered-Reflector

Isopach Map
|
N

i\ / MICHIGAN
Based on data from Drahovzal, 2002a; John Rupp, 2001, Indiana Geological

N—" INDIANA
Survey, McBride and Kolata, 1999; I
Mark Baranoski and Larry Wickstrom, 2001, Ohio S

Geological Survey

ILLINOIS

KENTUCKY

from data presented by Drahovzal, 2002a



Preliminary Proterozoic Chronology

Preliminary
Proterozoic Chronology

Modified from Drahovzal, 2000
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East Continent Rift Basin
Development Model

A. Emplacement of Granite-Rhyolite
Province

B. Extension and emplacement of
central mafic plug with attendant
basalt flows, felsic intrusions and
thick alluvial fan deposits (Middle
Run Fm) from eroded fault blocks

C. Emplacement of Grenville
allochthon, folding and faulting in
Middle Run Fm. and foreland
basin development

D. Deep erosion; extensional and
wrench faulting; uplift of
Louisville Block and deposition of
undeformed rocks (not shown)

E. Cambrian “inversion” to W,
extension and subsidence to E
(Rome Trough) and far W (Rough
Creek Graben; not shown)

from Drahovzal I@

and others, 1992




Proterozoic and Cambrian
Basins of Eastern US

Vo
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Modified from Drahovzal, 1994a
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Structure: Top of Proterozoic




Rome Trough: Eastern Kentucky

Symmetrical Cambrian rift basin

Three major Fault Zone
Boundaries

— N: Kentucky River FZ (KRFZ)

— S: by Rockcastle River FZ (RRFZ2)

— Medial: Irvine-Paint Creek FZ (IPCF2)
Thickening

— across the KRFZ is 2.5- 5x

— across the IPCFZ is 2- 4.5x

— Across the RRFZ is 0- 2x

Structural relief:
— ~12,000 ft across the KRFZ to the

deepest part of the basin

— Up tO Only = 7,000 feet aCross the from Drahovzal and Noger, 1995
RRFZ

Deepens from -5,000 to -7,000 ft
along W edge to -10,000 to
-17,000 depth at WV line ISQS}




Cross Section of the Rome Trough

e Focus on the eastern
part of the Rome
Trough

e And on the Irvine-
Paint Creek FZ

from data presented by Drahovzal and White, 2002
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Cross Section of the Rome Trough

s o &
< .
& & &
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%> Ppost Conasauga 1
"I)‘
1.0
Conasauga 180

Bamiayre e (N L

10 WSS
10 Km

Grenville Basement
from data presented byDrahovzal and White, 2002

Note thickening across KRFZ and IPCFZ; but little across RRFZ
Listric faults in the major fault zones; steeper in near surface

Note low angles of the faults at depth; suggests influence of a
compressional event; also apparent reverse faults in basement I@

Focus on Irvine-Paint Creek Fault Zone area



Is there evidence of Mesozoic reactivation
In the Rome Trough?

Rift Phase: Steep Cambrian
extension fault with major
Cambrian growth of >2 x

Later, lower-angle reverse faulting
folded basement through
Pennsylvanian rocks

— Note vertically stacked anticlines
— Likely Alleghanian transpression
Down-to-south normal faulting In

the Pennsylvanian reactivated the
original Cambrian normal fault
— Likely due to Triassic-Jurassic

regional extension (opening of the
Gulf of Mexico?)

S N

Pennsylvanian

Magoffin Mbr. —/\4/* 900
Four Corners Fm.

Post-Knox

Grenville
Basement

from data presented by Drahovzal and White,
K5




What is the relationship between East Continent
Gravity High (ECGH) and the Rome Trough (RT)?

Isostatic anomaly gravity from USGS

GF — Grenville Front

KRFZ- Kentucky River Fault Zone
IPCFZ- Irvine-Paint Creek Fault Zone
RRFZ—Rockcastle River Fault Zone

i . -] | .
/> R 3
1 = E -.E .‘r' 2 .
*I___.- = " - *

http://mrdata.usgs.gov/geophysics/graviti/.html

RRU—Rockcastle River Uplift
PeCU- Perry County Uplift
FCC—Floyd County Channel
PiCU—Pike County Uplift

ECGH lies within SSW
extension of RT

— Bounded on W by
Grenville Front;
on E by Rockcastle
River Fault Zone

— ECGH “sinker”?

— Remainder of RT in
gravity lows

N and S boundaries

controlled by gravity

highs

— Rockcastle River FZ —

Rockcastle River, Perry
Co., and Pike Co. Uplifts

— Kentucky River FZ—
high to N

Irvine-Paint Creek FZ
and the Floyd Co.
Channel in the Rome

Trough I@



Seismicity: Map of peak ground acceleration (PGA) for
2% probability of exceedance in 50 yrs in std. gravity

USGS 2008 I@



What is the relationship of the East Continent Gravity High
ee Seismic Zone (ETSZ)?

(E

Isostatic anomaly gravity from USGS

CGH) and East

| ] 1 ;
1.7 YU

Tenness

-

B
*Atekwana, 1996 I@

http://mrdata.usgs.gov/geophysics/gravity.html

East Tennessee
Seismic Zone

— SE and parallel to
the ECGH

— Truncated to NE
— Spur of earthquake
activity in SE KY;
truncates at ECGH

» East edge parallel
to the Rocky Face
& Dorton Branch
FZs (black line)

The Sharpsburg (S)
M 5.2 event lies close
to the ECGH

Anna Seismic Zone
(A) is coincident with
the Ft. Wayne Rift
(FWR)

— FWR s older (1.2-

1.3 Ga) than ECGH,
cutting across it*

— ECGH is ECRSB rift
center




Seismicity In the Eastern
Midcontinent

All M 5 or less
earthquakes , except
for SW corner

Aseismic
— Rough Creek Graben
— Rome Trough
 East Continent Rift
Basin
— High-level seismicity in
southern IL
« Low seismicity on and
near ECGH and FWR

— Anna, Ohio
. e — Sharpsburg, KY
from Geological Society of America, 1988 - . - — southeastern KY
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Is the Rough Creek Graben and the
Rome Trough a continuous feature?
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Schematic Cross Section: Rough Creek

Graben to Rome Trough, Kentucky

Cambrian syntectonic

deposition (Pre-Knox)

in the Rome Trough

(RT) & the Rough

Creek Graben (RCG) RCG CZ

Based on available
data, cannot
demonstrate Cambrian
(Pre-Knox) rifting in
the central zone (C2)

— However, a lack of
well and available
guality seismic data
in south-central
Kentucky

Central zone is
coincident with the
thickest part of ECRB A 2 | Kft

— suggests Cambrian
inversion or at least
relative stability

— Conformity of Knox-
Pre-Knox boundary
suggests non-
deposition

Brooks
Spears
Edwards

" Proprietary seismic data
Well data

Mi

RT

Proterozoic
Grenville

10

Elkhorn Coal

K&



Structure: Top of Proterozoic




Rough Creek Graben,
Western Kentucky

Cambrian asymmetrical
half graben

Major bounding fault on
N side

— Rough Creek FZ

— Pennyrile FZ on S edge

Most deep wells along N

edge

— Known primarily from
seismic data

Changes polarity to SW:
more symmetrical
Reelfoot Rift (Mississippi
Valley Graben)

Terminates to East on
Inverted ECRB I@

Modified from data presented by Drahovzal 1994b



|s there evidence of Mesozoic
reactivation of the Rough Creek Graben?

Deep half-graben >
30,000’ depth at
deepest part

Shallows to S and E

Cambrian thickening g
on RCFZ up to 8 x

Up to 15,000’ of Pre-
Knox Cambrian rocks 10

Offset of the X
Precambrianis up to 20
17,000’

Several reactivations 5, Proterozoic

— Uplift on the S side of
RCFZ—transpression Modified from data presented by Drahovzal, 1994b
during Alleghany
Orogeny*

— subsidence along RCFZ * Bertagne and Leising, 1991; Kolata and Nelson, 1991
and PFZ-likely regional **Strunk, 1984; Bertagne and Leising, 1991;
extension during Triassic- Kolata and Nelson, 1991 I{GS)

Jurassic**
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INTRODUCTION

» Objectives
» Problem of fault reactivation

» General structural setting of lllinois basin, north of
the New Madrid seismic zone

» Limitations imposed by availability of data



Objectives

<

What are the dominant structural styles in the southern
lllinois basin at the basement-Paleozoic contact? And
how have these structures propagated from depth?

What is the expected degree of crustal (i.e., at

seismogenic depths) heterogeneity for the area north of
the NMSZ?

Evaluate idea of pre-existing geologic structures
governing seismicity (can we prove it)?

And, If so, what Is the potential for using structure-
hypocenter correlations for constraining seismic hazard
estimates (is it practical given the limited data for each)?

Can we identify specific “seismic source zones”
associated with particular structures, such as the
Commerce geophysical lineament, the Fluorspar Area
fault complex, the La Salle deformation belt, and the Du
Quoin monocline?



Fundamental question for the
“reactivationists”;

» Many of us subscribe to the notion that “once a fault,
always a fault”, i.e., that reactivation of pre-existing
structures by contemporary stress is a valid
paradigm.



I I Structural Setting of Illinois Basin
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rare to non-existent in the study area.

Photo by J. H. McBride.




Problem facing scientists
wanting to make an
association between

seismicity and specific
geologic structures in a
place like the central

Midcontinent (e.g., lllinois

basin)
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What are our sources of information for
the southern Illinois basin?



Excerpt of seismic reflection data base from the
lllinois State Geological Survey (courtesy, Dr. Hannes E. Leetaru)
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First Derivative
Changes in Slope of
the
Beach Creek Structure
(Mississippian) — a

response to hidden

B 9fault structure at depth

S | }&(l .e., at Cambrian and
| pC levels).

Linear slope % 7_--__'.4""“‘”4 grsx W W

anomalies are _TMMJ [ TLasalle deformation
interpreted as a JA AR A - Belt
responseto  § ‘,__; {; Du Quoin Monocline
deeper (pre- oyt . TN AT
Miss.) faulting at L J e ey Cottage Grove Fault
Mt Simon levels. %‘ N

Such structural trends can be compared (with caution) with earthquake epicenter patterns.

Hannes E. Leetaru
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Statistical studies
relating
earthquake
epicenter
patterns to
geologic
structures yield
mixed results. 38

“When using

the Blade

Method, the
Commerce
Geophysical 37
Lineament does

=11

not seem to be ° Ky
S|gn|f!cantly A Tenn.
seismic.” B km

O 00 50 A

3€

Amorese (2003) 36



Z

The nature of the
northern part of the
NMSZ and its possible (if
at all) northward
continuation remain
uncertain.

Mo.

Although seismicity x i
patterns are poorly = :
constrained in this

region, the southeastern Ark. !
lllinois area over the past N
half-century has hosted ) *
several instrumentally .
recorded events of - .

magnitude 3.0 or greater.




Assessment of Major Structures In
the Southern Illinois Basin

» La Salle deformation belt and vicinity

» Fairfield sub-basin (a locally deep portion of the
lllinois basin)

» Area near the Wabash Valley fault system
» Du Quoin monocline complex

» Fluorspar Area fault complex and Cottage Grove
fault system



La Salle deformation belt
and vicinity



lllinois basin Is
structurally
complex at
deeper
(Cambrian)
levels —

Laramide-style J&

fold and fault
Zones.
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Main Shock
7-11 km hypocentral depth

(*-2.3-3.7”5, TWTT)
from

Langer and
Bollinger
[1991]

10 June 1987 Events

Aftershock
Composite focal mechanism solutions
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/| Example of the results
of arelocation study by
the USGS for historical
earthquakes in the
lllinois Basin region
(Bakun and Hopper,
2004)
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Industry seismic reflection profile over area of 1987 epicenter
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Fairfield Sub-basin
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Note strong heterogeneity of crust over seismogenic depths (roughly, 2-8 s)

South-to-north deep seismic reflection profile through
Fairfield sub-basin
(locally, a deep part of the Illinois basin).
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Speculative cartoon diagram of
basement structure for the
Interpreted zone of rifting
beneath the Fairfield sub-basin



near the Wabash Valley fault system
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central Illinois Basin
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Interpretation of a reprocessed deep seismic reflection profile over the Wabash Valley seismic zone showing the reactivation
mechanism for the 1968.11.09 mb = 5.5 thrust-fault earthquake along a pre-existing crustal shear zone localized along an
infrusive complex inferred from potential field modeling. The profile also intersects the Commerce Geophysical lineament
(CGL), which is thought to represent a significant seismic hazard.



Du Quoin monocline complex



‘ LOUDEN ANTICLINE }— 0
Effingham

-89.0°

32Lgt C-FM
Taylor (1991)

Fayette

Clinton

entralia
Jefferson

‘ DU QUOIN MONOCLINE }~|\

Centralia fault zone

{ CENTRALIA FAULT ZONE

o/ BENTON FAULT ZONE|

\ eﬁ"fmwin.._

; (Washington »

Du Quoin monocline

' \ A { {REND fﬁmsr;AULT ZONE
- S 'J'l II\ 44._._
=== i [/ | DOWELL FAULT ZONEN §
Jackson " b

‘ COTTAGE GROVE FAULT SYSTEM ‘

North o ke

Carbondale "Marion /
| / % )
Il I N = N

50 mi

\\§/‘:\ \\
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Centralia Fault Zone. Composite focal mechanism solution.
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Some evidence for disruption of Precambrian basement, possibly
extending into seismogenic depths; however, evidence of post-Paleozoic

deformation is lacking.
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East flank of Du Quoin Monocline/Centralia Fault Zone E>»
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High-resolution migrated seismic profile provides some evidence for
reactivation along the older reverse fault.



Structure-contour map of the Beech Creek Limestone over the Centralia Fault Zone.

Structure contours indicate the
| strong deformation associated
o " | with reactivation at
Mississippian levels.




Interpretive cross-section based on borehole data across the Centralia Fault Zone
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Fluorspar Area fault complex and
Cottage Grove fault system
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Seismic reflection profile across the Cottage Grove fault system
showing a small “flower structure” associated with transpression
along the fault system.
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Migrated seismic ¢ Reflection profile ‘A-migrated’ £
reflection profile "
across master
fault of Cottage
Grove fault
system. This
seismic
reflection line
was vectorized
and migrated.
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Duchek et al., 2003




Structure contour map of top of Ste. Genevieve Limestone (Mississippian) based on borehole data.
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Three-dimensional contour of top of Ste. Genevieve Limestone
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Note the "stair-
step” pattern
of anomalies
following
curves and
bends of CGFS

2nd Vertical derivative RTP Magnetic Intensity (Up. Cont. 1000 m)
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Map of regional
seismicity: note the “quiet
zone” between CGFS
and northern tip of
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does this imply a suture
zone or some kind of
fundamental crustal
boundary as proposed
by previous workers?
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Petroleum production in the lllinois Basin (lllinois portion only)

| )

Does the abrupt
change in
production mimic
some effect of
structure or
deformation that is
also related to
seismicity?




A key area is at the
northern terminus of
the NMSZ and the
southern mapped
limit of the Fluorspar
Area fault complex,
both with a NE

trend.
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Structural cross sections in the uplands north of Mississippi Embayment (Pope
County, lll.) over portions of FAFC showing strong deformation in Mississippian-
Pennsylvanian strata, but no evidence of Cenozoic deformation.
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edge of edge of Mississippi Embayment
Reelfoot Rift 50 km
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Map of the Massac Creek site showing
seismic reflection profiles, drill holes,
creeks along which banks were
examined for geologic structures, and
Interpreted faults.
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Portion of northern seismic reflection profile at the Massac Creek
site (shown centered over Massac Creek deep central graben)




Generalized regional cross section of Massac Creek graben,
mainly based on available well data and limited outcrops.
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February 1984 Earthquake Swarm
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Conclusions

» Hypocenters near disrupted structure (e.g., fault offsets) on reflection profiles (e.g., 1974 event).

» Spatial correlation between blind-thrust mechanism events (e.g., 1968) and dipping reflector
structure in the middle crust.

» Slope maps based on stratal markers suggest possible influence of Paleozoic deformation by
Precambrian structures -- “pathways” for seismic reactivation.

» The area where the LSA and WVFS meet seems to have the highest expectation for fault
reactivation.

»  The Du Quoin monocline/Centralia fault zone may be an overlooked possible seismic source.

» Commerce geophysical lineament corresponds in places (from this study, most likely SE lllinois
area) to disrupted structure that may be seismogenic.

» The Cottage Grove fault system corresponds to a major crustal boundary, south of which seismicity
seems to abruptly cease before re-emerging as the NMSZ.

» Itis difficult to associate the Fluorspar Area fault complex with a seismicity pattern, but evidence
exists to suggest a relation to the NMSZ.



Acknowledgments

» The author gratefully acknowledges software grants
from the Landmark (Halliburton) University Grant
Program (GeoProbe™, SeisWorks3D™, and

ProMAX2D ™) and from Seismic Micro-Technology
(The Kingdom Suite™).



» The author has made every effort to ensure high-
guality results and interpretations as represented In
this report. The author makes no warranty,
expressed or implied, regarding the suitability of any
findings arising from the report for a particular
purpose. Brigham Young University and/or the
author shall not be liable under any circumstances
for any direct, indirect, incidental, or consequential
damages with respect to claims by users of any
findings arising from or contained in this report




Quaternary Deformation within the Reelfoot Rift, Rome Trough,
and Wabash Valley Fault System

Roy Van Arsdale
Department of Earth Sciences
The University of Memphis



The Mississippi embayment.
M = Memphis, LR = Little Rock,
J=Jonesboro, C = Cairo




New Madrid seismic
zone in northern
Mississippi
embayment . Stars
are large earthquakes
of 1811-1812 (from
Csontos and Van
Arsdale, 2008).
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section in following figure . The
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Cross section of the Reelfoot fault with its kink bands (back thrusts). K = top of Cretaceous;

Pz = top of Paleozoic, Pc = top of Precambrian, LCU = Lake County uplift western margin, TD =

Tiptonville dome western margin, RS = Reelfoot scarp (modified from Van Arsdale, 2000). N
vertical exaggeration.




Reelfoot fault scarp looking west at
the upthrown side and Reelfoot
scarp trench excavation to
determine faulting history (Kelson et
al., 1996).
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Table 1
Displacement history and slip rate on the Reelfoot fault of the New Madrid seismic zone

Geologic time Radiometric time Slip magnitude (m)

Late Cretaceous—present 80 my 73
Late Cretaceous 80—65 my 10
Paleocene 65-54 my 21
Late Paleocene-Eocene 54—45 my 11
Late Eocene-Holocene 45 my-9 ka 15
Holocene 9000—present 16
Late Holocene AD 900-1812 54




Elevation (m)
-400.

-800.
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-52040.
-5600.
-6000.
-6400.
-6800.
-7288.
-7600.
-80040.
-8400.
-8800.

180 KILOMETERS

Top of Precambrian crystalline basement rock in Reelfoot rift. Black lines are faults (from Csontos et al., 2008).



Caruthersvillr?

Faulting along eastern margin of the Reelfoot rift. Blue = basement faults, red =
shallow faults, green = seismic reflection lines (from Parrish and Van Arsdale, 2004).
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Shelby County

Memphis

MS
[]

i Restraining Bends

D Uplifted Block

Dropped Bock

]

-D-li- Possible Subsidence Axis
Earthquake

Right-lateral shear across the
Reelfoot rift is responsible for the
New Madrid seismic zone
earthquakes (dots) at the northern
end of the rift. Quaternary right
lateral shear across the rift is also
causing the southeast half of the rift
to rise, the northwest side to drop,
and uplift of the Lake County uplift
and its southern continuation
(adjacent to RF), Joiner Ridge (J), and
the southern half of Crowley’s Ridge,
NM = New Madrid, RF = Reelfoot
fault, WRFZ = White River fault zone,
BMTZ = Bolivar Mansfield tectonic
zone, OFZ = Osceola fault zone,
CMTZ = Central Missouri tectonic
zone, GRTZ = Grand River tectonic
zone, EM = Eastern Rift margin
faults, WM = Western Rift margin
fault, AF = Axial fault (from Csontos
et al., 2008).




New Madrid seismic zone, Shelby County,
and earthquake liguefaction deposits
along the Loosahatchie and Wolf Rivers
(from Broughton et al., 2001).
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Sand dike in bank of Wolf River in
Memphis formed during earthquake
liguefaction (from Broughton et al.,
2001).
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1=4000 +60 BP
2=2130+50 BP
3=1610 +60 BP

4 =1550 +40 BP

Unit 3 truncated by
unit 4 indicates
folding/faulting
occurred ~400 AD
(from Velasco et al.,
2005).
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Kentucky River terraces are ~400 feet above the Kentucky River.



Trench across a bedrock fault and overlying Kentucky River terrace alluvium.
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NE verging fold in Kentucky River terrace alluvium.




NE verging thrust fault in Kentucky River terrace colluvium.
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Estimated timing of fault movement at Kentucky River fault sites B and C (from Van Arsdale, 1986).



Hovey Lake fault in Wabash Valley
fault system (from Woolery, 2005).
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Google Earth perspective illustrating west-facing scarp in Ohio River flood plain of western Kentucky
(from Counts et al., 2008).



North-trending Uniontown fault scarp with seismic
reflection line in red and trench location at head of
arrow (modified from Counts et al., 2008).
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Shaded Relief Map of Qulin Rdge
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Seismic Profile CGL-1 of Stephenson et al.

Approximate northern
margin of Qulin Ridge
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Qulin Ridge Summary

(1) Fluvial geomorphic anomalies associated with the
Black and St. Francis Rivers (Fischer-Boyd and
Schumm, 1995)

(2) Four prehistoric events occurred between about
23,000 to 17,000 yr BP, 13,400 to 9000 yr BP, A.D.
240 to 1020 and A.D. 1440 to 1540 (two latest
attributed to NMSZ) (Vaughn, 1994)

(3) Seismic reflection surveys image a 0.5-km wide
zone of thin of Quaternary deposits and Quaternary
faulting and warping
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Geology

s|dalia Hill Fault

*Northeast-trending NG
bluff line f_ =0

McManamy, 1937)
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«Geomorphology
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Seismic Reflection Profile IDAL-2

Ef Idalia Hill fault
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Tectonic
Model

Landslide
Model

Schematic Cross Section A - A’
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Bloomfield Hills - Idalia Summary

(1) Near-surface deformation coincides with
geomorphology and faults imaged in seismic
reflection profiles

(2) Deformation interpreted as predominantly tectonic-
related

(3) Quaternary faulting interpreted from several seismic
profiles and trenches

(4) Two poorly constrained events: (1) predates 23.6 to
18.9 ka; (2) between 18.5 and 7.6 ka



Studies along the CGL

) 9

Iinois ~ Vincannes|

Indiana |

: . v |
Mis s ouri k o) SRS

Tennessee

New Madrid
Seismic Zone
|

Explanation
Seismicity <5.0 M (ANSS 18598 - 2008) o
) Seismicity 25.0 M (ANSS 1898 - 2008)

N R

%

Liquefaction features (Maughn, 1994) (Harrison et al 1.:]?

Liguefaction features (Munson et al., 1997;
Tuttle and Chester, 2001) FPhat olmpamen..

|,F'a TIErs e1 al: 1'2]'3‘3]

37°0'0"N

'\,r
Steprn-‘-nsun etial., {19%1 3 -/ {_, '\/
2o 29"/ iAnderson el\al 1997)

Baldwin et al’, (2006
' BeLaton H|I°Is

ftr%
Mingo Ditch
(Maughn #1994

f 4 Ijudle-.r Pﬂam Ditch
Erark (Waughn,1994) _ Dt:n

Uplands) =t Francis River /" Anomolous deflectionief
1Vﬁ”9hn 1984) - 51 Frdnt i Rll.-{.r I:FI.H{ I'ra g

l:l-::u:lfe ter Ditch —pigy
(Maughn, .994|t‘

a0

='th
o
d

E::.

g

o
e TN L

A
o2

W

D*@‘G'G._-—-Gunm E'rdge" M " .:.‘ -":': . Scale

L4 LUE

» fSIEU-"‘EJ"E-D-"I‘ etal, 1999 Ve yisti sinsiistietionels

36°30'0"N

2 C-l Empiians) =t |
90*30'0"W 20*0'0"W 89730'0"W 89°0'0"W




Benton Hills: Commerce Fault
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Benton Hills Summary

(1) Faults are predominantly tectonic in origin

(2) Strike-slip sense of displacement

(3) Faulting is episodic throughout Cenozoic with
four events in late Quaternary

(a) pre- to early Roxana time (60 to 50 ka)

(b) pre-Peoria time (35 to 25 ka)

(c) Near or just after 4980 to 4740 yrs BP (C14)
(d) 1310 to 1210 yrs BP (C14)
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Cache Rlver VaIIey Southern lllinois
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Penitentiary
Fault

*Geomorphology

Earthquakes

*Geophysical Profile
«Odum et al. 2001
*\WLA (2008)

*Cross Section




SEE RV E
Seismic
Reflection
Survey

*Bedrock -Paleozoic Chert

*Buried east-facing
escarpment (100 ft)

*Bedrock unconformity

*Multiple faults disrupting
latest Pleistocene gravels

*Possible early Holocene
deformation
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Studies along the CGL
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CGL Summary

(1) Where overlain by NE-striking faults episodic activity is evident
(3) Weak alignment of historical microseismicity (strike-slip)

(4) Multiple trenching and geophysical profiles support Late
Quaternary activity

(5) From paleoliquefaction (western lowlands) and earthquake
timing data (Bloomfield and Benton Hills), appears to have
been active into at least the early Holocene.

(6) Evidence for Late Quaternary deformation along a 75- to 120-
km long section between southeastern Missouri and southern
lllinois

(7) Modeling suggests a structure extending to ~10 km in depth

(8) Earthquake timing data is sparse but suggests long recurrence
Intervals and possibly episodic behavior



Some Mississippi Valley Holocene
faulting and liguefaction beyond the
New Madrid seismic zone

Randy Cox
Dept of Earth Sciences
Univ of Memphis
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Porter Gap Trench 1

5m 10 15 20 25 30 3 40 45

11,190 to 11,005 yrBP & 10,915 to 10,815 yrBP | 21,320+170 yrBP

21,960 to 20,980 yBP 1m

Silt + minor gravel Brown silt Sand -Clay‘
Recent alluvium Light brown silt Sand + silt
Colluvium Gray loess "7.4Sand + gravel

Offset Eocene horizons in
shallow S-wave reflection profiles



West Wall Trench Log

19,900+1 ?\40 ka
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MEAMAN-SHELBY FOREST FAULT «— ~80 km —— PORTER GAP FAULT 1

PORTER GAP FAULT 2
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 Known

— 0.5to 0.8 mm/yr right-slip component since late
Wisconsinan on one of at least two principal fault
strands

— >0.3 mm/yr total dip-slip component for both of
the two principal fault strands

— Small (0.5 m vertical, <2 m right-slip) late
Holocene activity (~2500 yr BP)
 Unknown
— Total rate of slip across fault zone
— Number of faulting events
— Length of ruptures

e Uncertainties
— Great
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“Popcorn”
sand blows

Blows in New Madrid seismic zone Blows in southern Arkansas



Hydraulic fracturing of sub-blow clay
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Cone Penetration Tests
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LOUISIANA | ARKANSAS
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« Known
— Multiple events
— Hydraulic fracturing
— Minimum radii of fields suggests M>6
— Cone penetration tests indicate M>6

e Unknown
— True radii of fields

— Epicenters
— Recurrence (1000 to 2000 years?)

e Uncertainties
— Great
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MAPPED SALINE RIVER FAULT SYSTEM




Part of east seismic line showing triassic grabens
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Monticello, Arkansas roadcut



Monticello trench log
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Rison, Arkansas cutbank

Cal BP 720 to 550
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Saline River faulting events Sand blow fields

50km Lincoln- Lee County
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Known

Saline River fault system = reactivated Triassic graben
system following the craton margin (Alabama-Oklahoma
transform fault)

One or more late Holocene faulting events on 2 different
faults (Monticello fault & Horsehead fault) within Saline
River fault system

Left-lateral slip component (1.3 mm/yr on principal? strand)

The timing and location of faulting is consistent with
regional liquefaction timing

Unknown

Rate of slip across fault zone
Number of faulting events
Length of ruptures

Uncertainties
— Great



Reprints available at:

https://umdrive.memphis.edu/xythoswfs/webui/ xy-
10366681 docstorel

or

https://umdrive.memphis.edu/randycox/public/ CEUS%20neotectoni
cs%20papers



https://umdrive.memphis.edu/xythoswfs/webui/_xy-10366681_docstore1
https://umdrive.memphis.edu/xythoswfs/webui/_xy-10366681_docstore1
https://umdrive.memphis.edu/randycox/public/CEUS neotectonics papers
https://umdrive.memphis.edu/randycox/public/CEUS neotectonics papers




Paleoliguefaction Interpretation of the
Vincennes Earthquake, Wabash Valley
Seismic Zone

Russell A. Green

Charles E. Via, Jr. Department of Civil and Environmental Engineering
Virginia Tech
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Palo Alto, CA February 19, 2009
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Outline:

Review of Ligquefaction Phenomenon
Back-calculating Earthquake Magnitude
Wabash Valley — Vincennes Earthquake
Questions Asked to Address
® Paleoliquefaction data — seismic source constraints
® Large M, distant egk vs. Small M, regional egks
® Uncertainties
® Ground motion predictive relationships
® Field interpretations
® Back-analysis

Some Hazards of Paleoliquefaction Field Interpretations



Review of Liguefaction Phenomenon
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Review of Liguefaction Phenomenon
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Review of Liguefaction Phenomenon
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Review of Liguefaction Phenomenon
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Surfacial Evidence of Liquefaction

1964 Nuq ta apan
(Steinbrugge Collection)
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“Simplified” Liguefaction Evaluation Procedure
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Simplified Liquefaction Evaluation Procedure

MSF

MSF Pro

posed by Various Investigators
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(NCEER 1997)



Simplified Liquefaction Evaluation Procedure

0.60

0.50 | CRR

0.40 | Liquefaction

FS =
NO . CSR M7.5

Liquefaction |

0.30

CSRy75

0.20

0.10

0.00

N 1,60cs



Back Analyses (simplified procedure)
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Wabash Valley Seismic Zone

Wabash Valley
Seismic Zone




Wabash Valley Seismic Zone

Illlnnls _ Indiana .
‘f';f--f/ lllinois Indiana
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Wabash Valley N
Seismic Z Searched stream %9001 280 yr BF
Ll — State line @ 5,800 to 6,700 yr BP

EXTENT OF LIQUEFACTION FOR LARGER PREHISTORIC EARTHQUAKES
(Obermeier 1998)



Vincennes Earthquake (~6100 yrs BP)
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Magnitude of the Vincennes Earthquake

Severity of Liq.

) . T
intermediate Lg
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Green et al. (2005)




Questions Asked to Address

How can this analysis be used to constrain the
dimensions of the Vincennes earthguake seismic

source”?

Can you use similar approaches to evaluate smaller
energy centers that have been identified elsewhere In
southern IL and IN (i.e., what methods can be used to
assess the issue of local small events versus larger
more distant earthquake)?

What Is your uncertainty in using liquefaction to assess
M. .7

max



Constraints on Seismic Source?
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Local Small M vs. Distant Large M

Severity of Liq.
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Uncertainty in Back-Calculated M, .., ?

Sources of Uncertainty:
Ground motion predictive relationships

Epistemic (uncertainty) and aleatory (randomness) uncertainties of predicted
motions (seismologist)

Site amplification (geotech/seismologist)

Determination of site-to-source distance used in back-calculation
(geologist/geotech/seismologist)

Field interpretations

Was the feature earthquake induced? (geologist/geotech)

Does the absence of paleoliquefaction features in a deposit mean that it
never liquefied? (geologist/geotech/seismologist)

Linking of features to causative paleoearthquake (geologist/geotech)

Estimation of location of ground water table at the time of the earthquake
(geologist/geotech)

Estimation of the location of the ground surface at the time of the earthquake
(geologist)



Uncertainty in Back-Calculated M, .., ?

Sources of Uncertainty (continued):

Back analysis

" Proper determination of geotechnical parameters, e.g., selection of
appropriate penetration resistance, influence of aging (geotech/geologist)

" Appropriateness of simplified liquefaction evaluation procedure for use in the
CEUS, e.g., MSF, r, (geotech)

Over all Uncertainty:

Assessment of combined epistemic (uncertainty) and aleatory
(randomness) uncertainties using modern earthquake analog



CEUS Ground Motion Predictive Relationships

Region

Central - Eastern US

New York City

Tectonic
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Rifted zones:
Unknown faulting

Mid-continent:;
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Thrust faulting

Unknown faulting

Attenuation
Relation

Somerville et al.
(2001)

Campbell (2003)

Toro et al. (1997)

Atkinson and
Boore (1997)

Jacob et al. (1990)



Attenuation Relations for Rock Sites in CEUS

Campbell (2001, 2003)
Toro et al. (1997)
- Somerville et al. (2001)

Atkinson and Boore (1995)
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Acceleration on Soft Soil Sites - g

(Idriss 1990)
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Alternative Presentation of Site Amplification Data
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Site Amplification

Soft Soil Site
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v =100 pcf
Vs=295 fps | “ATPGA.__.

Old Bay (elastic, 5% damping)

Sediments | / _PGA,_ <0.1
— . g
y =105 pcf . * (mostly far field)

Sedim entS .;-:/A- PGArock > 0. 2g o Elastic PGA<0.1g

g =0 O Elastic PGA=0.1 -0.2g
Y =110 pCf - A (aII near fle|d) A Elastic PGA>0.2g

VS:1247 fpS O . 5 # Degraded PGA<0.1g

m Degraded PGA=0.1-0.2g
A Degraded PGA>0.2¢g

0.0 ‘ ‘ ‘ ‘ ‘ ‘
o0 01 02 03 04 05 06 0.7 08 0.9

TV/A/ Tn

Bedrock

v =140 pcf
V.=4000 fps




CEUS Magnitude Scaling Factors

Preliminary Correlations for n,, (WUS vs. CEUS)

View A ~ ViewB
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Assessment of Overall Uncertainty Using
Modern Earthquake Analog

® Use back-analysis procedure to estimate the M of
modern earthquakes.

® Vary the amount and quality of liguefaction data
used.

® Compare back-calculated and instrumental
magnitudes

® Develop relationship relating error of back-calculated
M as a function of amount and quality of liquefaction
data used.



Some Hazards of Paleoliquefaction Field Studies
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Fun with Deep Dynamic Compaction




Quantifying Uncertainties in
Paleoliguefaction Studies
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Outline

& Existing paleoliquefaction back-analysis methods
@ Developing a regional magnitude bound

& Quantifying some uncertainties in back-analysis
@ Benchmark case of Vincennes earthquake

& Specific questions
—> Limitations of magnitude bound approach
- Uncertainties in paleoliquefaction studies for Mmax
- Range of Mmax for New Madrid, Charleston, and Wabash
- Mmin required to generate liquefaction
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Existing Methods for Paleoliqguefaction Back-analysis

@ Cyclic stress method

& Magnitude bound method

& Cyclic strain method

@ Energy method

& Ishihara method

@ Regional method proposed by Olson et al. (2005a)
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Cyclic Stress Method

0.25 | I T T T
|‘h:'
. R
0.20 h FS,, =>—
range of a @
possible a  —M
- 015 combinations
ﬂE
10 "
0S5
bound a___-M
combination
(.00 L 1 1 f i
5.5 60 65 J0O TF.5 BO 8BS
et |
PeLLLINOTS AR ErrRI | s,




Magnitude Bound Method
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Various Magnitude Bounds — Regional and Worldwide
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Factors affecting Magnitude Bound

@ Source characteristics
& Transmission characteristics (attenuation & site effects)
@ Regional soil liquefaction susceptibility
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Developing a Regional Magnitude Bound
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CEUS Magnitude Bound
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w
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35

1Tennessee”

Historical earthquakes with
M > ~5 and and associated
liguefaction features in central
U.S. from 1812 - 2002.
Database of felt effects
maintained by M. Hopper
contained reports of
liguefaction features
associated only with 1895
Charleston, MO earthquake
as shown by open circles.

Olson et al. (2005b)
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CEUS Magnitude Bound

Estimated Location Estimated Plotted
of Epicenter Estimated Plotted rR™ R
Date Earthquake Latitude Longitude Reference M Reference M (km) Reference {km)
2/7/1812% New Madrid, Missouri 36.5°N 89.6°W Wheeler (2003) 76-77+05 Atkinson et al. (2000) 765+0.55 275 Obermeier (1988) 260+ 10
alternate location 36.3°N 89.4°W Bakun & Hopper (2004b) | 76-7.7+05 Wheeler & Perkins (2000) 250 Street & Nuttli (1984)
7.8 Bakun & Hopper (2004a)
74-75 Hough et al. (2000)
8.0x0.33 Johnston (1996)
7.8 Nuttli (1983)
8.3 Nuttli (1979): Johnston (1992)
6/9/1838 east of Centralia, lllinois ~ 38.5°N B9°W Wheeler (2003) 5.7 Wheeler (2003) 57 0 Hopper (2004) 0
38.59°N  90.22°W  Bakun & Hopper (2004b) 3.9 Bakun & Hopper (2004b)
1/5/1843 near Marked Tree, 35.5°N 90.5°W Wheeler (2003) 6.3 Wheeler (2003) 6.3 0 Hopper (2004) 0
Arkansas 35.9°N 89.9°W Bakun & Hopper (2004b) 6.2 Bakun & Hopper (2004b)
6.0 Bakun et al. (2003)
6.3 Johnston (1996)
10/8/1857 north of Centralia, lllinois  38.7°N 89.2°W Wheeler (2003) 5.3 Wheeler (2003) 5.3 0 Hopper (2004) 0
4.5 Bakun & Hopper (2004b)
8/17/1865 New Madrid, Missouri 38.5°N 80.5°W Wheeler (2003) 5.3 Wheeler (2003) 53 0 Hopper (2004) 0
35.54°N  90.40°W  Bakun & Hopper (2004b) 4.7 Bakun & Hopper (2004b)
8/31/1886 Charleston, 329°N  80.0°W SCSN (2004) 6.9 Bakun & Hopper (2004a) 71402 90 Youd et al. (1989); Johnston 100
South Carolina 73+026 Johnston (1996) (1998); Obermeier et al. (1989)
7.0 Nuttli et al. (1992) 100 Obermeier et al. (1989);
7.2 Campbell (1986) Amick et al. (1990).
6.9 Nuttli (1983)
7.5 Nuttli et al. (1979)
9/27/1891 near Fairfield, lllinois 38.3°N 88.5°W Wheeler (2003) 5.8 Wheeler (2003) 58 0 Hopper (2004) 0
38.34°N 89.27°W  Bakun & Hopper (2004b) 4.9 Bakun & Hopper (2004b)
10/31/1895 Charleston, Missouri 37°N 89.4°W Wheeler (2003) 5.7-6.3(6.0) Bakun et al. (2003) 6.0+0.3 16-20 Obermeier et al. (1993) 1842
alternate location 37.82°N  89.32°W  Bakun & Hopper (2004b) 6.2 Bakun & Hopper (2004b) 19 Hopper (2004)
6.6 Wheeler (2003) ~100 Bakun et al. (2003);
66029 Johnston (1996) Street et al. (2004)
58 Stover & Coffman (1993)
6.2 Street et al. (1986)
6.8 Hamilton & Johnston (1990)
6.2 Nuttli (1974)
4/9/1917 Monroe County, llincis ~ 38.1°N 90.2°W Wheeler (2003) 50 Wheeler (2003) 5.0 0 Hopper (2004) 0
38.84°N_ 89.38°W _ Bakun & Hopper (2004b) 5.2 Bakun & Hopper (2004b)
2/28/1925 Charlevoix-Kamouraska, 47.76°N  69.84°W NRC (2004); 6.2 NRC (2004)"% 8.3+05 45-50 This study 47 +2
Quebec, Canada Bakun et al. (2003) 6.3+05 Bakun et al. (2003) 148 Street et al. (2004)
11/9/1968 near Boughton, 37.91°N  88.48°W Wheeler (2003) 54 Wheeler (2003) 5.4 0 Hopper (2004); Heigold (1968) 0
southern lllinois 37.96°N  88.48°W Heigold (1968) 55 Heigold (1968)
5.3 Bakun & Hopper (2004b)
6/10/1987 east of Olney, lllinois 38.71°N  87.95°W Wheeler (2003); Taylor 5.0 Wheeler (2003); Taylor 0 Hopper (2004) 0
etal. (1989) et al. (1989)
11/25/1988 Saguenay, Quebec, 48.12°N  71.18°W NRC (2004)®; 59 NRC (2004)® 5.9 30+4  Law (1990); Tuttle etal. (1990) 30 +4
Canada Bakun et al. (2003) 58101 Somerville (1991) (5.8-6.5)
6.5" Somerville et al. (1990)
6.59 Boore & Atkinson (1992)
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CEUS Magnitude Bound
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Sources of Uncertainty

& Liguefaction susceptibility

@ Field observations, ground failure mechanism, and field
setting

@ Seismicity and seismic demand
& In situ testing techniques
& Magnitude bound method
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Liquefaction Susceptibility —Aging

@ Aging Is the process by
which soils develop a

structure over time that Mesri et al. (1990)

results in improved soil  *

. Hole 138, Zone |
properties (e.qg., shear sl Solymar, 1984
strength, stiffness, and
penetration resistance)

- mechanical sources

Depth 27-28m
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Liquefaction Susceptibility —Aging

@ Penetration tests for modern liquefaction database

collected some time after causative earthquake
& These data already include several log cycles of time for

secondary compression after reconsolidation

Time after earthquake
required for

reconsol idation; t95 telapsed,avg IOglo telapsed,max IOglo 1:elapsed,min Ioglo
(d ays) (days) (tela&i,avq/ t95) (d ays) (telapsed.max/ t95) (d ays) (telapsed, min/ t95)
1 1030 3.0 7050 3.8 45 1.7
I 2.2 3.0 0.8
14 1.9 2.7 0.5
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Liquefaction Susceptibility — FC & Overburden Stress

@ Increasing FC decreases penetration resistance
@ Increasing c',, Increases penetration resistance

UNIVERSITY OF ILLINOES AT UREAMNA-CHAMPAIGN

Factor Model Weight
FC adjustment Kayen and Mitchell (1997) 0.25
Youd et al. (2001) 0.25
Cetin et al. (2004) 0.25
Idriss and Boulanger (2006) 0.25
Overburden stress Seed and Harder (1990) 0.1
correction, K Harder and Boulanger (1997) | 0.1
Youd et al. (2001) 0.5
Idriss and Boulanger (2006) 0.3
[{LLLINOIS CEUS S5 Projct ErRI | Lo,



Liquefaction Severity

Moderate

Severe | - Marginal
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Liquefaction Severity

Olson et al. (2005)/Green et al. (2005) Bray et al. (2000)/Juang et al. (2005)
Category Description Category Description
No o No sand blows No observed o No settlement
liquefaction « No lateral spreading features ground o No building tilt
o No subvertical sand dikes damage o No lateral movement
o Possible subhorizontal sand sills o No sand boils
Marginal » Effects that are barely discernable | Minor to o Settlement <25 cm
liquefaction (e.g., cracking of cap at ground moderate o Building tilt < 3°
surface) or weakly developed damage o Lateral movement < 10 cm
(e.q., scattered small sand blows)
Moderate o Lateral spreads with dikes ~ 15
liquefaction cm in width Major ground | « Settlement > 25 cm
« Scattered large sand blows damage « Building tilt > 3°
Severe o Dikes~ 0.5 mwide or larger o Lateral movement > 10 cm
liquefaction  Numerous large sand blows « Building collapse
o Severe warping or distortion of
ground surface or of thick fine-
grained strata at depth
I ILLINOTIS CEUS SSC Project =S | e power
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Effect of Severity on FS,

@ Severe liguefaction

A Moderate liquefaction

@ Marginal liquefaction

ONo liquefaction -~

[ ®
0
O
o T N
l io
7777777777777 e SR G
@ |
0 1
|

20 25 30

(q cl)cs (M Pa)
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Effect of Severity on FS,

FSLig

02-04

0.4-08

0E-08

0G-1.0

1.0-12

1.2-14

1.4-18

16-18

1.8-20

20-212

22-24

24-28

No Liguefaction Cases

Marginal Lig. Cases

Moderate Lig. Cases

Severe Lig. Cases

s

CRR

0 m 15 20 25 0 5 10 15 20 25 0 o 10 15 20 25 1] 5 10 15 20 25
1
] mi 1 [
1 ] "_'_1
T 4‘_‘_‘ |
1
- ]
-
1
1
_:| Mean = 50.9 Mean =0.91 Mean = 0.67 Mean =0.43
Median = 1.74 hedian =0.90 hedian = 0.63 Median =0.45
] Stodev. = 3687 St.dev. =0.25 St.dew. =027 St.dev. =017
:l 71 cases 289 cases 55 cases 54 cases
N
i 27
I I I
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Liquefaction Potential Index (LPI)

CPT Tip Resistance (MPa)

UNIVERSITY OF ILLINOES AT UREAMNA-CHAMPAIGN

UU 5 10 15 20 25 30
® FS), Is effective, but doesn't —

. - . ] N _— 'p
consider stratigraphy (i.e., thick 21 §|mm rrtnersrarda
cap, very thin liguefiable sand) 4

. C____Gwr__
@ LPI considers the depth of 6
liquefiable layers, layer &} S,
- E
thickness, and FS;, =10 T'i
° 12 + I'-u
20 '\
LPI = fﬂ F(FS,z)W(z) dz 1a } \
16 ‘l
where F(FS,z)=1-FS=0 1 |
and  W(z) = 10 - 0.5z (m) ° }
20 LS— ' '
C 5 10 15 20
LPI
PgLLLINOTIS Earkahon o =AU | feserrcy mstirure



Using LPI to Assess Marginal Liguefaction Severity

Density

0.12 |
\ Marginal
N Exponential
010\ —<— Weibull i
N Gamma
- ~—— —  Lognormal

0.08

0.06

0.04

0.02 !

LPI

| 1
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Distributions for LPI and Severity

0.40
0.35
0.30
0.25

0.20

Probability

0.15

0.10

0.05

0.00

Mo liguefaction

10

20

Marginal
Moderate
Severe
| B
30 40 50
LPI
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Field Observations, Failure Mechanism, Field Setting

@ Does failure
mechanism
(hydraulic
fracturing,
lateral
spreading, or
surface
oscillations)
Influence
liguefaction
resistance?

CSR

0.7

05 -

0.4 -

01 -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

O Hydraulic fracturing (marginal)

,,,,,,,,,,,,,,,,

O Hydraulic fracturing (moderate) | |
@ Hydraulic fracturing (severe)

O Lateral spreading (marginal)

O Lateral spreading (moderate)
B Lateral spreading (severe)

A Indeterminate (marginal)

A Indeterminate (moderate)

A Indeterminate (severe)

******************************************

15 20 25 30
(q cl)cs (M Pa)
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Field Observations, Failure Mechanism, Field Setting

@ Field data quality (FDQ) index
—> Variablility of geologic setting (e.g., braid bar, point bar, etc.)
— Depth of potential source beds at time of earthquake
- Depth of GWT at time of earthquake
- Mechanism of ground failure
—> Liquefaction severity (as it relates to making field interpretations)
- Number, spacing, and locations of borings/in situ tests
—> Vertical and lateral variability of sediments
- Method of observation (plan view v. sectional view)
— Length and quality of bank exposure

@ Classifications: Low, Intermediate, High

I [ LLINOTIS CEUS SSC Project =R |
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Field Observations, Failure Mechanism, Field Setting

@ Using FDQ to estimate some uncertainties

Reported CQV assigned to FDQ ranking
Variable COV range High Intermediate | Low
(mean) References
Unit weight 3-20(9) Phoon and Kulhawy (1999) 5 10 15
(KN/m°) 3-7(-) Kulhawy (1992); Duncan (2000)
0-10 (-)® Lacasse and Nadim (1996)
Fines content 1-43 (20)¥ Baecher and Christian (2003) 15 25 35
(%) 970 (25)® Baecher and Christian (2003)
Measured N- 26 (--) Harr (1987) 25 35 45
value 14 - 100 (15— 45) | Kulhawy and Trautmann (1996)
19 - 62 (54)® Phoon and Kulhawy (1999)
25 -50 (--) Baecher and Christian (2003)
Measured g.- 37 (--) Harr (1987) 15 25 35
value 8-22 (5-15) Kulhawy and Trautmann (1996)
10 - 81 (38)™ Phoon and Kulhawy (1999)
20 -60 (--) Baecher and Christian (2003)

Notes: (1) Reported values for buoyant unit weight

(2) Reported values for sand content.
(3) Reported values for clay content.

(4) Reported values for tests performed in sand.
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Field Observations, Failure Mechanism, Field Setting

& 30 approximation for other uncertainties for random
variables that cannot be quantified readily

1 = Best estimate
~ Upper bound value - Lower bound value

O
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Seismicity and Seismic Demand

& Seismic demand factors

Factor Model Weight | Comment

MSF Seed and Idriss (1982) 0.20 Initial estimates of weight based on particular
Youd and Noble (1997) (P, = 50%) 0.10 model’s use in practice.
Andrus and Stokoe (1997) 0.35
Idriss (1999) 0.35

Iq Youd et al. (2001) 0.75 Initial estimates of weight based on particular
Iwasaki et al. (1978) 0.25 model’s use in practice.

Bedrock Atkinson and Boore (1995) 0.25 Attenuation relationships and weighting factors

attenuation | Frankel et al. (1996) 0.25 taken as identical to those used by the USGS in
Toro et al. (1997) 0.25 the 2001 U.S. seismic hazard maps. Aleatoric
Somerville et al. (2001) 0.125 uncertainties estimated by individual
Campbell (2003, 2004) 0.125 investigators.
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Probabilities for CEUS Magnitude Bound

1886
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Bayesian Updating Method

& Subjective judgments
based on intuition,
experience, or indirect 3
Information are incorporated
systematically with observed
data to obtained a balanced
estimation (conditional
probability)

& Prior distribution from
magnitude bound method
combined with likelihood ;
function from sites of
observed liguefaction (or no
liguefaction) to yield posterior
distribution

Pasterior -

L)
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Example for Vincennes Earthquake, Wabash Valley

= / f” ) } éﬁaﬁ&{aﬁ o !-
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Green et al. (2005)
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Energy Center and Source-to-Site Distance

Approach Reference Weight
Centroid of maximum dike widths (best estimate) This study 0.3
Centroid of maximum dike widths (upper bound) This study 0.1
Centroid of maximum dike widths (lower bound) This study 0.1
Deterministic energy center Obermeier (1998a) 0.5

| v S AF P& t PB YO === MA — WO — TH —&

BG —0— NP —v— PL |

Probability Density Function

Source-to-Site Distance, Recikm}
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Vincennes Earthquake, Wabash Valley

site=n

—d
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Vincennes Earthquake, Wabash Valley

1B , ,

Friar

el

Fosterior
--------- Fitted Marmal

Likelihood Function "o /3

Sy (m)y=x-L(m)- f,,(m)
Mw~75+~0.3

FDF
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New Madrid Seismic Zone
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Charleston, SC
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Amick et al. (1992)

Only a handful of
these sites have
reliable CPT, SPT,
and Vs data

(Hu et al. 2002)
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CEUS Minimum Magnitude
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Thanks for your attention!

Questions?
olsons@illinois.edu
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M>6 - NEIC
catalog, historical
+ recorded

New Madrid
1811-1812

S
SN

%

Steady-state “elastic rebound” model: strain
accumulation rate = rate of seismic strain release (over A
a few 1,000 years) i

— Geodesy and paleoseismology should agree
— Works well at plate boundary faults

— Present-day strain accumulation has predictive
power

— Hope: this also applies to SCRs

Let us test this at NMSZ and plate-wide.



81 o Continent-wide
5 o New Madrid
m Significantly different from zero

S, 6- e Not significantly different from zero
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Publication Year

() Liu et al., 1992
_ . . (2) Snay et al., 1994
* Prediction at linear rate is 0.3 mm/yr att = (3) Argus and Gordon, 1996; Dixon et al., 1996

(4) Weber et al., 1998
2009 (5) Newman et al., 1999

_ . - (6) Gan and Prescott, 2001
m_easurement at 2009 = not significantly (7) Sella et al,, 2002
different from zero, upper bound = 0.2 (8) Marquez-Azua and DeMets, 2003
(9) Smalley et al., 2005
mm/yr (10) Calais et al., 2005

(11) Calais et al., 2006



East (mm) North (mm)

Up (mm)

Slope= —1.2+— 0.0 mm/yr — Wrms= 2.1 mm

~20 T T T T e

{ Slope= —0.0+— 0.0 mm/yr — Wrms= 2.3 mm

-20 L R R R e L L e AT B R R R EE L L S R A PSR RN E ] (R LR R R AR RE L SR e L A S

40 4 Slope= 3.5+-0.0 mm/yr — Wrms= 5.9 mm

2000.0 2002.0 2004.0 2006.0 2008.0

Time series of daily GPS positions, Algonquin
(ALGO). Note:

* Wrms scatter: 2 mm horizontal

e S-ward + up motion = GIA

« Seasonal on vertical snow loading

« Formal velocity uncertainties = 0.0 mm/yr?

3 C
10 %,
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$10° |
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0 2 4 6 8 10 12 14 16
Cycle per year

Spectral analysis of GPS time series:

» While + colored noise: origin unclear
but process can be accounted for in
precision estimates

« Amplitude is site dependent

» Realistic uncertainty estimates must
account for colored noise

» Uncertainties x 4 to 10 compared to
WN only



* Phase processing => one position per
day per site = vector of estimates + full
covariance matrix

 Reference frame:

— Daily solutions stacked for n days =>
combined solution (estimates + full
covariance)

— Helmert transformation (translation,
rotation, scale) estimated between
combined solution and a given frame

— Parameters of interest (position and
velocity) estimated simultaneously, with
their uncertainties, in that frame.

 Velocity analysis:

— Transformation to another frame
(e.g stable North America)

— Involves rotation + vector
subtraction

— Residual velocities w.r.t. stable
North America
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Calais et al., JGR, 20062,

Zooming in:
» Deformation west of Rocky Mountains
« East of RM: most velocities are NOT significant at 95% confidence
 WRMS of residual velocities = 0.6 mm/yr
* PGR signal stands out
» Other interesting patterns - but below data resolution



2 ppb/yr + 2 mm/yr = |

Calais et al., JGR, 2006

Compressional strain localizes around GIA uplift area
(forebulge)

Strain signal geometrically consistent with GIA effect
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40°

Velocities from Fages, 2008; Nocquet and Calais, 2003; Grenerczy et al., 2003
Seismicity 1000 to Present (Grunthal et al, 2009)

Central Europe =0 £ 0.2 mm/yr
Rhine graben = 0 = 0.4 mm/yr
Pyrenees WRMS =0 = 0.4 mml/yr

Western Alps = 0.5 mm/yr extension
Pannonian basin = 1 mm/yr east motion



CGPS measurements GIA model

(Nocquet et al., 2005) (Milne et al., 2001)

40
10 20 30 K

GPS detects with confidence:
Velocities > 0.5 mm/yr
Strain rates ~10-9 /yr

(Note that GPS velocities today are consistent
with 10,000 year time scale process)



lllinois
St Louis A I
Indiana
' O Continuous GPS site o ! l
° »
2 O .. L ]
38° e . &- 4o Oa 2 {
°’, MACC ®s ‘ ,
CNWM .
o @
y ®
[ ] .
Missouri . I
37’ g
” < Kentucky |
IO p * '
é siosgirs N U2 gl L RUAPT | NN A el
iy S RIS el
(W4
[ ] - ,
| S, |
[ ] § \J
36° 3 (s Nashville
| -‘\Q& f’, 1 I
Y Ly b
Arkansas 47 .
53 7 @ o e, Tennessee
I ,gf-”," i e CVMS I
@ ,, 7 @0""- -,/’ Magnitude
/ N R . T T
35° I o T o7 q.?»f’@‘@'. ;. Z.m Memphis 4 6
e / A e L N~ O 1811-1812 events

New Madrid: only “active” intraplate system where a local
continuous GPS network is available (GAMA + CORS)
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The “data”: daily position time series expressed with respect to Stable North America.
The good (most), the bad (PIGT, NWCC) and the ugly (RLAP)

Note additional data since last publications (Smalley et al., Calais et al., 2005)
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Smalley et al., 2005 Calais et al., 2005 This work

East (mm/yr) East (mm/yr) East (mm/yr)
WRMS = 0.2 mm/yr WRMS = 1.4 mml/yr WRMS = 0.2 mml/yr
Bias = 0.8 mm/yr Bias = 0.5 mmly Bias = 0.0 mm/yr

(95% confidence -- 2 sigmas)

e Velocity uncertainties have decreased by at least a
factor of 2 at all sites

 Residual velocities have decreased as well, WRMS =
0.2 mm/yr

o Sites with the worse quality position time series such
as RLAP also have the largest velocity residuals

Calais and Stein, Science, in press



» Synthetic position time series:

p(t)=0xt+ loading+WN + RWN

secular
=7€ero

~
from-actual

atmos+ . h
time-series

hydro
— Sample at time of actual data
— 1000 time series per site

» Colored noise + loading =
non-zero long term velocities

« Simulated velocity field

statistically equivalent to
observed

« Simulated time series:
fluctuations comparable to
observed (RLAP)

— Observations do not require
site motions different from
zero

Calais and Stein, Science, in press
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Strain rates

Whole network:

Strain rate tensor:
epsxx = -4.55 +- 5.39 ppb/yr
epsxy = 0.88 +- 3.64 ppb/yr
epsyy = 4.12 +- 4.40 ppblyr
Principal strains:
epsl = 4.20 +- 5.34 ppb/yr (most extensional)
eps2 = -4.64 +- 5.34 ppb/yr (most compressional)
Second invariant:
snd = 0.30 +- 1.30 ppb/yr

Delaunay triangulation:
For 6 data - 4 unknowns = 2 dof:
95% confidence = chi2=5.99
99% confidence = chi2 =9.21

Triangle Chi2 Signift. (%)
BLMM PIGT PTGV 2.56 72.2

HCES MAIR RLAP 1.60 55.
HCES MCTY NWCC 1.05 40.
MAIR NWCC PTGV 0.28 13.
BLMM MAIR PTGV 0.35 16.
MCTY NWCC PTGV 0.35 16.
HCES NWCC RLAP 1.74  58.
MAIR NWCC RLAP 0.87  35.
MCTY PTGV STLE 1.41  50.
PIGT PTGV STLE 1.59 54.

POWRRRREOR

= No significant strain rate
at 95% confidence.
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GPS 2009

«— GPS 2005
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Assuming steady-state strain accumulation and release:

* 500 yr average repeat time over ~2,000 yr => 2 mml/yr for low M7
* 900 yr average repeat time over ~5,000 yr => 1 mm/yr for low M7
e 0.2 mm/yr => minimum repeat time = 10,000 years for low M7

= Current strain accumulation rate in the NMSZ cannot sustain the ~5,000 yr seismicity rate
= NMSZ not in steady state at that time scale

Calais and Stein, Science, in press



jiasatch fault, Utah. GRS NN Wasatch fault, Chang et al. JGR 2006:

GPS 1.6+-0.4 mml/yr, geol 1.7+-0.5 mm/yr over 10 Ka
(Friedrich et al. 2003)
[note that 1992-1995 GPS = 2.7 +- 1.3 mml/yr...]

-113°
1

=111

42°
< 1 mmiyr
» Average repeat time for M>6.5 (on any single segment) a1e .
= 1,200 to 2,600 years " o4 6 nstrain/yr
» Topography: up to 3600 m
« Slip rate 1.6 mm/yr+-0.4 mm/yr (&
» Average repeat time for M>6.5 = 500 years
» Topography: up to 70 m
» Slip rate 0+-0.2 mm/yr
Reelfoot fault, Tennessee: GPS << Holocene 40° <
C}SMEL
{ * Hi (éi:j
39°

Figure 5. Horirontal velocity vectors, in a stable North America reference frame, derived from the
1997-2004 continuous and the University of Utah 1992-2003 campaign GPS observations. Weighted
error ellipses (see text) represent the 95% confident intervals. Gray lines are Quaternary faults, and black
lines highlight the Wasatch fault. Thick gray ammows represent the direction of the principal extension
assuming a homogeneous strain field in the dashed box.




Some slow faults are in
steady-state at the 10,000
yr time scale -- some are
not

NMSZ is not in steady
state:

— Loading (= stressing) rate
varies with time

and/or

— Fault strength varies with
time

It IS time to think outside
the “rebound model box”

Chéry and Vernant, EPSL, 2006
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Fig. 4. A) Stress slip rate evolution of the slip rate weakening system
for two loading velocities (2 and % cm/yr) and for 2 weakening
times (30 and 40 kyr). Velocity of § cm/vr always leads to constant
slip rate (a). A moderate loading velocity leads to a periodic
attractor (T,=30 kyr, curve b} or progressively damp (7,,=40 kyr,
curve c). B) Stress evolution for case (b) {total fanlt stress in solid
line and viscous stress in dashed line). C) Slip rate evolution of case
(b) displaying episodic faul behaviour.



 The more we measure, the
closer to zero we get...

 The more we look, the
more potential active faults
we seem to find...

— Could there still be local
strain accumulation at a level
< current geodetic resolution?

= Perhaps, we have not looked

everywhere with enough
detail

— Is local strain accumulation a
prerequisite for large
earthquakes?

= Perhaps not -- earthquakes

can “tap” into larger scale
“strain reservoirs”
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» Earthquakes are the result of stress changes rather than strain accumulation

» Let us assume that:
— Continental faults are near failure (cf. Zoback et al.)
— Small stress perturbations perturbations (~1 MPa) are sufficient to trigger earthquakes (if fast enough w.r.t. Maxwell
time of relaxing layers)
— Source of stress changes = sediment line load (50 m thick x 50 km wide, Gouw and Autin 2008) deposited 10,000
years ago
— Load acting on plate with layered rheology (CEUS geothermal parameters from McKenna et al 2007 + assumed rock

types)
=> pbending stresses between 15-20 km sufficient to trigger earthquakes



Conclusions

Q3. Do current data allow one to discern tectonic rates from
measurement uncertainties?
— Not in the NMSZ = 0+-0.2 mm/yr

— Together with seismic record over past ~5,000 years => time-dependent
deformation

» Bad news: past may not reflect the future
* Good news: beyond the elastic rebound model

Q1. What is your confidence that observed geodetic rates reflect
long-term tectonic deformation rates or short term seismicity
pattern and rates?

— Define long-term?

— Geodetic rates for NMSZ are different from Holocene - it is not a steady-
state system

Q2. Have you compared the geodetic signature of other zones of
seismicity in stable continental regions?

— Yes - the longer one measures, the lower the strain rates.

— Is local strain accumulation a prerequisite for earthquakes?



Compare geodetic and geologic rates elsewhere

Agreement:

Nuvell and Geodesy, 3.2 Ma
California
Dead Sea: Klinger, etc

New Zealand (Nicol and Wallace, EPSL 2007): deformation rates are consistent with the notion of
near-constant rates since 1.5 Ma

Wasatch - Chang et al JGR 2006: GPS 1.6+-0.4, geol 1.7+-0.5 over 10 Ka (Friedrich et al. 2003),
Bennet GJI 2007

Basin and Range: Pancha et al BSSA 2006
Red Sea, Reilinger and McClusky AGU 2008 - data agree within uncertainties over 11 Ma
Hispaniola (Prentice, Calais)

North Anatolias fault: Kozaci, Dolan. Finkel - AGU 2007 - geologic slip rates indistinguishable from
GPS at 25+-1mm/yr since 3500 Ma.

Eastern California Shear Zone: Frankel et al. JGR 2007, 8.5-10 mm/yr, identical to 9 mm/yr GPS
for past 70 Ka

But also lack of:

Dolan et al Geology 2007

Weldon et al GSA Today 2004, long-term slip rate on the San Andreas fault at Wrightwood is
considerably faster than the geodetic rate there, although the geodetic rate is in agreement with the
geologically determined rate for the past 1100 yr.

This study



GPS satellite

GPS satellites
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4 satellites => solve for latitude, longitude, elevation, time

D (1) = pX(t) x%+ (hk(t) - hi(t))x f +ion!(t) + tropf(t) - N* + &

Phase — S_at-rec. + Clock + lonospheric + Tropospheric Phgse; + S;?Seer
measurement distance errors delay delay ambiguity sources
Precision < 1% Satellite orbit Cancel out First order terms Estimated Estimated, Cannot be
wavelength => precision ~1 cm with double vanishes with (to better 95-98% corrected:

mm or better differences two frequencies than X mm) monument stability,
multipath



Plate Motions Are Steady

Richard G. Gordon

SLR Relative Rates (mm/yr)

-150 -100 -50 0 Ly 100 150 200
NUVEL 1 Relative Rates (mm/yr)

Fig. .11. Comparison of SLR determined geodesic rates with those
unphcd-by l.he‘ NUVEL ! geologic plate motion model for 54 lines
connecting stations on five plates that are well within plate interiors

am(i) gmgssing at least one plate boundary. The slope of the line is 0.949
* 0.01%. )

Wasatch fault, Chang et al. JGR 2006:
GPS 1.6+-0.4, geol 1.7+-0.5 over 10 Ka
(Friedrich et al. 2003)

Note that 1992-1995 GPS = 2.7 +- 1.3 mml/yr...

“111®

-113°
49° 1

41° =
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39°

km
o 50 100

Figure 5. Horirontal velocity vectors, in a stable North America reference frame, derived from the
1997-2004 continuous and the University of Utah 1992-2003 campaign GPS observations. Weighted
error ellipses (see text) represent the 95% confident intervals. Gray lines are Quaternary faults, and black
lines highlight the Wasatch fault. Thick gray ammows represent the direction of the principal extension
assuming a homogeneous strain field in the dashed box.



Velocity difference across fault
200 years after a M8 earthquake
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(Kenner and Segall, 2000)

350 km

Local loading models:

» Kenner and Segall (2000,
relaxing lower crust) =>
minimum predicted strain rate
= 5.5x107? /yr (for lower crust
viscosity = 10?1 Pa s)

» Pollitz et al. (2001, sinking
matfic body) => 2.4 mm/yr
(lower crust viscosity 10%° Pa

S).
Inconsistent with current GPS
(¢ <0.2x10° /yr,v<0.2
mm/yr), unless very low or
very large viscosity.
Other issues:

» Weakening mechanism: what
initiates the process?

* Rheology?
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