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WHY AM | TALKING ABOUT THIS?

TO DEMONSTRATE THAT UNCERTAINTY IN ANY TYPE
OF MODEL COULD BE QUANTIFIED AND QUANTIFYING
UNCERTAINTY CAN BE USEFUL TO BOTH THE
REGULATORS AND THE REGULATED.

CONVEY AN UNDERSTANDING OF ONE METHOD OF
QUANTIFYING MODEL UNCERTAINTY.

DISCUSSION TOPICS

+ REASONS FOR QUANTIFYING MODEL UNCERTAINTY

+ DESCRIPTION OF THE MAXIMUM LIKELIHOOD
BAYESIAN MODEL AVERAGING (MLBMA)
METHODOLOGY

* RESULTS OF MLBMA

+« EXAMPLE OF MLBMA




WHY QUANTIFY MODEL UNCERTAINTY

+ A THEORY HAS ONLY THE ALTERNATIVE OF BEING
RIGHT OR WRONG. A MODEL HAS A THIRD
POSSIBILITY; IT MAY RIGHT, BUT IRRELEVANT
(Manfred Eigen, 1973).

+ A MODEL BASED ON THE PRACTITIONER’S BEST
GUEST IS INHERENTLY BIASED (Shlomo Neuman,
2006).

* QUANTIFYING UNCERTAINTY PROVIDES
INFORMATION REGARDING THE DEGREE OF
IRRELEVANCE, AND IT MINIMIZES BIAS.

« THIS DOES NOT REPRESENT A NEW
REQUIREMENT!!!

UNCERTAINTY ESTIMATION METHOD

«  MAXIMUM LIKELIHOOD BAYESIAN MODEL
AVERAGING (MLBMA).

« BASED ON PROCEDURES BY PNL, DRI-LAS VEGAS,
UNIVERSITY OF ARIZONA (MEYER, P., YE, M.,
ROCKHOLD, M., CANTRELL, K., NEUMAN, S.)

* INCORPORATES MODEL, PARAMETER, AND
SCENARIO UNCERTAINTY.

*« CURRENT PAPERS AND GUIDANCE:
* NUREG/CR - 6805
* NUREG/CR - 6843
* “ON EVALUATION OF RECHARGE MODEL
UNCERTAINTY (MING YE, 2006)
*  “INFORMATION MATRIX” (JAY MYUNG AND
DANIEL NAVARRO, 2004).

SNRCE & T

MLBMA METHOD

* BRIEF DISCUSSION OF BAYESIAN STATISTICS

BAYES’ THEOREM
p(D[M,)p(M,)

3 p(D M, )p(M,)

=1

p(M, |D)=

where :

p(M, | D)= posterior probability
p(D|M, )= likelihood of model M,
p(M, )= prior probability




MLBMA METHOD (cont’d.)

+ DEVELOP MODELS BASED ON REASONABLE
ALTERNATIVES.

* JOINT CALIBRATION USING PEST.
« DETERMINE PRIOR PROBABILITIES.

¢ CALCULATE INFORMATION CRITERION AND RANK
MODELS.

¢ CALCULATE POSTERIOR PROBABILITIES

+« PERFORM MONTE CARLO SIMULATIONS FOR
PARAMETER UNCERTAINTY FOR EACH MODEL.

< COMPUTE PROBABILITY DENSITY FUNCTIONS
(PDFs) FOR EACH MODEL.

< COMPUTE EXPECTATION (MEAN OF DISTRIBUTION),
VARIANCE, AND MODEL AVERAGED PDF.

MLBMA METHOD

.« END RESULTS
K
EXPECTATION E[a|D]=) E[o|D,M,]Jp(M, D)

VARIANCE var[A|D]= ivar[A |D,M,Jp(M, |D)
i=1

+ 3 (€lalD,m,]-Ea D] p(M, D)

MODEL-AVERAGED  p(A|D)=>"p(A[M,,D)p(M, |D)
PDF g
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MLBMA METHOD
-+ END RESULTS

Figure 1.5, Model aversged predabiliry denziry funstion for the tred
model probabilities (ses begend) uted 2t

0.1*0.5 + 0*0.25 + 0*0.25 = 0.05
.009%0.5 +.0270%0.25 + .005*0.25 = 0.0125

1 example of Figure 14 with
ight

(Meyer, P.D., etal.)




MODEL DEVELOPMENT

*« MODELS DEVELOPED USING GROUNDWATER
MODELING SYSTEM (GMS).

* MODEL 2: AVERAGE VALUES FOR HYDRAULIC
CONDUCTIVITY (HC), RECHARGE, AND
EVAPOTRANSPIRATION (ET).

+ MODEL 3: AVERAGE VALUES FOR HC AND ET,
ZONE VALUES FOR RECHARGE.

+ MODEL 4: AVERAGE VALUE FOR HC, ZONE VALUES
FOR RECHARGE AND ET.

*« MODEL 5: SAME AS MODEL 4 WITH A GENERAL
HEAD BOUNDARY, RECHARGE, AND ET.

MODEL DEVELOPMENT (cont’d.)

MODEL 2 MODEL 3

MODEL 5

MODEL DEVELOPMENT (cont’d.)

+« BOUND MODEL SELECTION FROM THE SIMPLEST
TO THE MOST REASONABLY COMPLEX.

* MODEL ABSTRACTION — PROCESS OF MAKING
COMPLICATED MODELS SIMPLE.

* SIMPLE MODELS MORE EASILY CALIBRATED
AND TEND TO BE MORE ACCURATE.

+ COMPLEXITY DOES NOT NECESSARILY
TRANSLATE TO MORE ACCURACY, BUT WILL
CERTAINLY INCREASE RUN TIMES.

+ MLBMA PENALIZES COMPLEX MODELS.




JOINT CALIBRATION (cont’d.)

+ CALIBRATE MODELS TO FIND OPTIMAL
PARAMETERS.

* USE PEST WITH LOG TRANSFORMATION FOR
HYDRAULIC CONDUCTIVITY.

* AFTERWARDS, IN “PARAMETERS” DIALOG BOX,
INSERT OPTIMAL PARAMETERS AND UNCHECK
“LOG TRANSFORM”.

¢« SET NOPTMAX TO -1. THIS WILL GIVE YOU THE
MATRICES YOU NEED FOR RANKING
COMPUTATIONS.

JOINT CALIBRATION (cont’d.)

T R x

NOPTMAX—1Hw —

PRIOR PROBABILITY

« ESTIMATE BY MODELER OF THE CONFIDENCE
HE/SHE HAS IN EACH MODEL (SUBJECTIVE).

« COMMON METHOD IS EXPERT ELICITATION

+ PRIOR PROBABILITY BECOMES LESS IMPORTANT
WITH MORE DATA

p(M Al D):M
K

2. p(DIM,)p(M,)

=1
Where:
p(M, | D)= posterior probability
p(D|M, )= likelihood of model M,
p(M, )= prior probability




PRIOR PROBABILITY (cont’d.)

PRIOR PROBABILITIES FOR THIS EXAMPLE
« MODEL 2-0.35
¢ MODEL3-0.3

« MODEL 4-0.2

« MODEL5-0.15

LIKELIHOOD

* USE DATA FROM JOINT CALIBRATION TO
CALCULATE LIKELIHOOD

+ NEED TO OBTAIN THE MAXIMUM LIKELIHOOD
PARAMETER ESTIMATES TO CALCULATE NEGATIVE
LOG LIKELIHOOD (NLL) AND FISHER INFORMATION
MATRIX.

+ DATA FOR NLL AND FISHER INFORMATION
MATRIX IS FOUND IN THE .REC FILE THAT IS
WRITTEN AFTER PEST RUNS.

* NLL = OBJECTIVE FUNCTION = WSSR

MODEL RANKING WITH KIC

*  RANKING ACCOMPLISHED BY CALCULATING
KASHYAP’S INFORMATION CRITERION (KIC)

+ INFORMATION CRITERION PROVIDES AN INSIGHT
INTO THE AMOUNT OF INFORMATION ONE CAN
OBTAIN FROM A SET OF DATA.

+ FISHER INFORMATION DEFINED AS THE
COVARIANCE OF THE FIRST PARTIAL DERIVATIVES
OF THE LOG-LIKELIHOOD.

* OTHER CRITERION AVAILABLE - AIC, BIC. KIC
CONSIDERED BEST FOR GROUNDWATER
APPLICATIONS.




MODEL RANKING WITH KIC (cont’d.)

KIC = NInG7, =N, In 21T+ In]l|
where:
In\ l\ =natural log of the determinant of the Fisher Information Matrix

Ny
Infl| =-N, In(ﬂj—zml1
N i=1

~2 WSSR
Om =
N—-N,
WSSR = Sum of the squared weighted residuals (WSSR) = NLL = objective function
N = Number of calibration data
N, = Number of calibration parameters
j1 =  Eigenvalues from .rec file

MODEL RANKING WITH KIC (cont’d.)
*  VIEW .REC FILE

Objective Function

Eigenvalues

MODEL RANKING WITH KIC (cont’d.)
+  EXAMPLE KIC CALCULATION

Model 4

Eigenvalues (Gamma) In Gammal Nk =
2.96E-04 -8.12441 N = a4
3.18E-03 5.75245
1.356-02 -4.30425
1.36E-01 -1.99584
1.90E-01 -1.66284
2.34E-01 -1.45115
5.57E-01 -0.58537
L15E+00  0.1415
110E+02 4.695925

-19.0389

Log of Fisher Determ | 21.09845
KIC 249.7247




MODEL RANKING WITH KIC (cont’d.)

+ MODEL RANKS

Dt Model 2 Model 3 Model 4 Model 5
N S “ 4 47000E+01
N 4 4 5 600002400
wSSR a1 8023 1166404 703758404
Sigma Square 2386 | 1823408001 2629545455 1497340426
Inji| 14.19146623 14,78390375 21.0984541 -59.21097424
Kic 1084575558 | 2364910802 2497247327 2733007143
MOST LIKELY MODEL

POSTERIOR PROBABILITY

ik
exp| - ZAKIC, |p(M, )
p(Mk‘D): K [ 2 J

IZl:exp(—%AKIC‘)p(M,)

AKIC = lowest KIC subtracted from KICs for other individual
models. AKIC for lowest model = 0.0

08 4575558] __ 236.4910302] 2407247321 273.3997143]

0.35) 03 02 015
0.999999995] 772269E-09) 421149612 2.28318E-11] 1]

PARAMETER UNCERTAINTY
+  MONTE CARLO SIMULATIONS

* GENERATE RANDOM PARAMETERS AND COMPUTE
SOLUTIONS FOR EACH MODEL BEING CONSIDERED

* USE STOCHASTIC SIMULATION MODE IN GMS.




PARAMETER UNCERTAINTY (cont’d.)

«  FORA (i.e. HEAD AT A WELL, CONCENTRATION AT A
WELL) OF CONCERN, TABULATE RESULTS AND
COMPUTE PROBABILITY DISTRIBUTION FUNCTION
(PDF).

« COMPUTE MODEL EXPECTATION (MEAN OF PDF)
AND VARIANCE.

+ COMPUTE MODEL-AVERAGED PDF.

* THESE ARE YOUR FINAL ANSWERS.

PARAMETER UNCERTAINTY (cont’d.)
+ A =HEAD AT A PARTICULAR WELL
+  PDF COMPUTED USING HISTOGRAM ANALYSIS

+ EXPECTATION AND VARIANCE COMPUTED FOR
EACH MODEL

+ MODEL EXPECTATION AND VARIANCE (PREDICTIVE
UNCERTAINTY COMPUTED FOR OVERALL MODEL

+ MODEL-AVERAGED PDF CALCULATED

PARAMETER UNCERTAINTY (cont’d.)

+ PDF, EXPECTATION, AND VARIANCE COMPUTED
FOR EACH MODEL

Probabilit | Expec
Bin Frequency y t| var

5200 4 008 | 416 | 359552 EXPECTATION FOR
5400 39 o078 | a22| 1232 MODEL 2

5600 7 014 | 784 | 494816
More o

e
Expectati E[a| D)= E[s) DM ol M, | D)
on =

Variance 8656

Posterior Mean E P(MKID) E*p(MKID)

Model 2 5412 0.999999995 5411.999974
TOTAL MODEL Model 3 5400 472269609 | 255025605
EXPECTATION Model 4 5636 4.21149E-12 2.3736E-08

Model § 5832 228318E-17 | 1331556-13

Sum - Total E 5412.0




PARAMETER UNCERTAINTY (cont’d.)
+  POSTERIOR VARIANCE

E-Total
Posterior Variance | VAR | p(MkID) VARDMKD) | E E2 | p(MKiD) Product
(aka Predictive

Uncertainty)
Model 2 8656 | 0999999995 | 8655999950 | 54120 0| 0999999905 o
Model 3 0| a72260E08 o| sa00 144 | 47227800 | 68007E07
Model 4 305104 | 421149612 |  128494E-06 | 5636 | 50176 | 42115E-12 | 21132607
Model 5 1200776 | 228318E17 | 296762611 | 5832 | 176400 | 22832617 |  40275E-12

865599996 8.9139E-07

Total Predictive

Uncertainty 8655.999961
Total Standard

Deviation 93.03762659

Var|a n|=$("l'ur[\ DM M, | D)

x
+ N (E[a DAL ]- Efa 1 DY pidr, | D)
. 1

MODEL-AVERAGED PDF

* PROBABILITY OF EACH RESPECTIVE BIN VALUE
MULTIPLIED BY THE RESPECTIVE POSTERIOR
PROBABILITY.

P(A1D)= 3" p(a |, D)p(M, D)

where :

p(A|M,, D)= probability of A givena particular model and data set (i.e., bin value)

¢+ SUM ALL THE PRODUCTS AND PLOT.

MODEL-AVERAGED PDF (cont’d.)

Welghed Probaiy
Bin Model 2| Model3 | Model4 | Model5 | Modgi2 | Model3 | Model4 | Model5 | Avegpgen
e N N () R A B I (G
5400 078 1 0.7 064 X 4.72E-09 | 2.95E-12 | 1.46E-17 078
600 | 014 o o1a| o1s|/ o o| soe13 | asseas 014
s o] o] oo| ooy o o | Lseets | owsen | teses
o] o] o] om| %[ o sae1s | asree | saets
PROBABILITY OF 5200 OCCURRING IN oo > g OF /ALL PRODUCTS FOR THE
MODEL 2 MULTIPLIED BY THE MODEL [~ ———¢
2 POSTERIOR PROBABILITY
0 0 0 [ 8.42E-14 0 | 8.42E-14
o] o o[ zesess o[ resets
7200 o 0 0.02 0.02 0 0 | B42E-14 | 457E-19 | 8.42E-14
o] o] o] o] o] o o o | ss7e0 | 4710
70| o] o] o] oo o o o[ asress | asteme
wo| o] o] o] o o o o o o
8000 o 0 0.02 0 0 0 | 8.42E-14 0| 8.42E-14
8200 o 0 0 0 0 o 0 o 0
w0 o] o] o] o] o o o o o
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MODEL-AVERAGED PDF (cont’d.)

Model Average Results
MODEL-AVERAGED
: PDF. NOTICE IT
OVERLIES MODEL 2
PDF BECAUSE OF
POSTERIOR
PROBABIITIES

r—p
i / [
Eos AREA UNDER CURVE Model 4
H REPRESENTS s
S PROBABILITY; MUST = 1. — = verge|
HIGH PROBABILITY
THAT WELL HEADS
\\\ WILL EXCEED THE

% A)%( MEASURED HEAD.

MODEL-AVERAGED PDF (cont’d.)

Model Average Resuts
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SUMMARY

* MLBMA PROVIDES A METHOD OF QUANTIFYING
UNCERTAINTY.

* VALUABLE IN ASSESSING RISKS.
« CAN EXPEDITE REVIEWS BECAUSE MULTIPLE
MODELS ARE EVALUATED.

* MLBMA CAN ALSO INCORPORATE SCENARIO
UNCERTAINTY — NOT ADDRESSED IN THIS
PRESENTATION.

* USEFUL IN OTHER TECHNICAL DISCIPLINES
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