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QUANTIFYING UNCERTAINTY IN
GROUNDWATER MODELS

Stephen J. Cohen, Hydrogeologist
Uranium Recovery Licensing Branch
U.S. Nuclear Regulatory Commission

WHY AM I TALKING ABOUT THIS?

TO DEMONSTRATE THAT UNCERTAINTY IN ANY TYPE 
OF MODEL COULD BE QUANTIFIED AND QUANTIFYING 
UNCERTAINTY CAN BE USEFUL TO BOTH THE 
REGULATORS AND THE REGULATED.

CONVEY AN UNDERSTANDING OF ONE METHOD OF 
QUANTIFYING MODEL UNCERTAINTY.

DISCUSSION TOPICS

• REASONS FOR QUANTIFYING MODEL UNCERTAINTY

• DESCRIPTION OF THE MAXIMUM LIKELIHOOD 
BAYESIAN MODEL AVERAGING (MLBMA) 
METHODOLOGY

• RESULTS OF MLBMA

• EXAMPLE OF MLBMA
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WHY QUANTIFY MODEL UNCERTAINTY

• A THEORY HAS ONLY THE ALTERNATIVE OF BEING 
RIGHT OR WRONG.  A MODEL HAS A THIRD 
POSSIBILITY; IT MAY RIGHT, BUT IRRELEVANT 
(Manfred Eigen, 1973).

• A MODEL BASED ON THE PRACTITIONER’S BEST 
GUEST IS INHERENTLY BIASED (Shlomo Neuman, 
2006).

• QUANTIFYING UNCERTAINTY PROVIDES 
INFORMATION REGARDING THE DEGREE OF 
IRRELEVANCE, AND IT MINIMIZES BIAS.

• THIS DOES NOT REPRESENT A NEW 
REQUIREMENT!!!!

UNCERTAINTY ESTIMATION METHOD
• MAXIMUM LIKELIHOOD BAYESIAN MODEL 

AVERAGING (MLBMA).

• BASED ON PROCEDURES BY PNL, DRI-LAS VEGAS, 
UNIVERSITY OF ARIZONA (MEYER, P., YE, M., 
ROCKHOLD, M., CANTRELL, K., NEUMAN, S.)

• INCORPORATES MODEL, PARAMETER, AND 
SCENARIO UNCERTAINTY.

• CURRENT PAPERS AND GUIDANCE:
• NUREG/CR – 6805
• NUREG/CR – 6843
• “ON EVALUATION OF RECHARGE MODEL 

UNCERTAINTY (MING YE, 2006)
• “INFORMATION MATRIX” (JAY MYUNG AND 

DANIEL NAVARRO, 2004).

MLBMA METHOD

• BRIEF DISCUSSION OF BAYESIAN STATISTICS

( ) ( ) ( )
( ) ( )

( )
( )
( ) yprobabilitprior  

 model of likelihood |
yprobabilitposterior |

:

|

||

1

=
=
=

=

∑
=

k

kk

k

K

l
ll

kk
k

Mp
MMDp

DMp
where

MpMDp

MpMDpDMp

BAYES’ THEOREM



3

MLBMA METHOD (cont’d.)

• DEVELOP MODELS BASED ON REASONABLE 
ALTERNATIVES.

• JOINT CALIBRATION USING PEST.
• DETERMINE PRIOR PROBABILITIES.
• CALCULATE INFORMATION CRITERION AND RANK 

MODELS.
• CALCULATE POSTERIOR PROBABILITIES
• PERFORM MONTE CARLO SIMULATIONS FOR 

PARAMETER UNCERTAINTY FOR EACH MODEL.
• COMPUTE PROBABILITY DENSITY FUNCTIONS 

(PDFs) FOR EACH MODEL.
• COMPUTE EXPECTATION (MEAN OF DISTRIBUTION), 

VARIANCE, AND MODEL AVERAGED PDF.

MLBMA METHOD

• END RESULTS
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MLBMA METHOD
• END RESULTS

0.1*0.5 + 0*0.25 + 0*0.25 = 0.05
.009*0.5 + .0270*0.25 + .005*0.25 = 0.0125

(Meyer, P.D., et al.)
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MODEL DEVELOPMENT

• MODELS DEVELOPED USING GROUNDWATER 
MODELING SYSTEM (GMS).

• MODEL 2: AVERAGE VALUES FOR HYDRAULIC 
CONDUCTIVITY (HC), RECHARGE, AND 
EVAPOTRANSPIRATION (ET).

• MODEL 3:  AVERAGE VALUES FOR HC AND ET, 
ZONE VALUES FOR RECHARGE.

• MODEL 4:  AVERAGE VALUE FOR HC, ZONE VALUES 
FOR RECHARGE AND ET.

• MODEL 5: SAME AS MODEL 4 WITH A GENERAL 
HEAD BOUNDARY, RECHARGE, AND ET.

MODEL DEVELOPMENT (cont’d.)

MODEL 2 MODEL 3

MODEL 4 MODEL 5

MODEL DEVELOPMENT (cont’d.)

• BOUND MODEL SELECTION FROM THE SIMPLEST 
TO THE MOST REASONABLY COMPLEX.

• MODEL ABSTRACTION – PROCESS OF MAKING 
COMPLICATED MODELS SIMPLE.

• SIMPLE MODELS MORE EASILY CALIBRATED 
AND TEND TO BE MORE ACCURATE.

• COMPLEXITY DOES NOT NECESSARILY 
TRANSLATE TO MORE ACCURACY, BUT WILL 
CERTAINLY INCREASE RUN TIMES.

• MLBMA PENALIZES COMPLEX MODELS.
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JOINT CALIBRATION (cont’d.)

• CALIBRATE MODELS TO FIND OPTIMAL 
PARAMETERS.

• USE PEST WITH LOG TRANSFORMATION FOR 
HYDRAULIC CONDUCTIVITY.

• AFTERWARDS, IN “PARAMETERS” DIALOG BOX, 
INSERT OPTIMAL PARAMETERS AND UNCHECK 
“LOG TRANSFORM”.

• SET NOPTMAX TO -1.  THIS WILL GIVE YOU THE 
MATRICES YOU NEED FOR RANKING 
COMPUTATIONS.

JOINT CALIBRATION (cont’d.)

NOPTMAX

LOG TRANSFORM

PRIOR PROBABILITY

• ESTIMATE BY MODELER OF THE CONFIDENCE 
HE/SHE HAS IN EACH MODEL (SUBJECTIVE).

• COMMON METHOD IS EXPERT ELICITATION

• PRIOR PROBABILITY BECOMES LESS IMPORTANT 
WITH MORE DATA 
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PRIOR PROBABILITY (cont’d.)

PRIOR PROBABILITIES FOR THIS EXAMPLE

• MODEL 2 – 0.35

• MODEL 3 – 0.3

• MODEL 4 – 0.2

• MODEL 5 – 0.15

LIKELIHOOD
• USE DATA FROM JOINT CALIBRATION TO 

CALCULATE LIKELIHOOD

• NEED TO OBTAIN THE MAXIMUM LIKELIHOOD 
PARAMETER ESTIMATES TO CALCULATE NEGATIVE 
LOG LIKELIHOOD (NLL) AND FISHER INFORMATION 
MATRIX.

• DATA FOR NLL AND FISHER INFORMATION 
MATRIX IS FOUND IN THE .REC FILE THAT IS 
WRITTEN AFTER PEST RUNS.

• NLL = OBJECTIVE FUNCTION = WSSR

MODEL RANKING WITH KIC

• RANKING ACCOMPLISHED BY CALCULATING 
KASHYAP’S INFORMATION CRITERION (KIC)

• INFORMATION CRITERION PROVIDES AN INSIGHT 
INTO THE AMOUNT OF INFORMATION ONE CAN 
OBTAIN FROM A SET OF DATA. 

• FISHER INFORMATION DEFINED AS THE 
COVARIANCE OF THE FIRST PARTIAL DERIVATIVES 
OF THE LOG-LIKELIHOOD.

• OTHER CRITERION AVAILABLE – AIC, BIC.  KIC 
CONSIDERED BEST FOR GROUNDWATER 
APPLICATIONS.
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MODEL RANKING WITH KIC (cont’d.)
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Sum of the squared weighted residuals (WSSR) = NLL = objective function

Number of calibration data

Number of calibration parameters

Eigenvalues from .rec file

• VIEW .REC FILE

Eigenvalues

Objective Function

MODEL RANKING WITH KIC (cont’d.)

Model 4

Eigenvalues (Gamma) ln Gamma Nk = 9
2.96E-04 -8.12441 N = 44
3.18E-03 -5.75245
1.35E-02 -4.30425
1.36E-01 -1.99584
1.90E-01 -1.66284
2.34E-01 -1.45115
5.57E-01 -0.58537

1.15E+00 0.1415
1.10E+02 4.695925

-19.0389

Log of Fisher Determ 21.09845
KIC 249.7247

• EXAMPLE KIC CALCULATION

MODEL RANKING WITH KIC (cont’d.)
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• MODEL RANKS

MODEL RANKING WITH KIC (cont’d.)

273.3997143249.7247327236.4910302198.4575558KIC

-59.2109742421.098454114.7839037514.19146623ln|I|

1497.340426262.9545455182.3409091238.6Sigma Square

7.0375E+041.16E+0480238351WSSR

6.0000E+00944Nk

4.7000E+01444435N

Model 5Model 4Model 3Model 2Data

MOST LIKELY MODEL

POSTERIOR PROBABILITY
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Data Model 2 Model 3 Model 4 Model 5
N 35 44 44 4.7000E+01
Nk 4 4 9 6.0000E+00
WSSR 8351 8023 1.16E+04 7.0375E+04
Sigma Square 238.6 182.3409091 262.9545455 1497.340426
ln|I| 14.19146623 14.78390375 21.0984541 -59.21097424
KIC 198.4575558 236.4910302 249.7247327 273.3997143
p(Mk) (Prior Probability) 0.35 0.3 0.2 0.15 1
p(Mk|D) (Posterior Prob) 0.999999995 4.72269E-09 4.21149E-12 2.28318E-17 1

ΔKIC = lowest KIC subtracted from KICs for other individual
models. ΔKIC for lowest model = 0.0

PARAMETER UNCERTAINTY

• MONTE CARLO SIMULATIONS

• GENERATE RANDOM PARAMETERS AND COMPUTE 
SOLUTIONS FOR EACH MODEL BEING CONSIDERED

• USE STOCHASTIC SIMULATION MODE IN GMS.
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PARAMETER UNCERTAINTY (cont’d.)

• FOR Δ (i.e. HEAD AT A WELL, CONCENTRATION AT A 
WELL) OF CONCERN, TABULATE RESULTS AND 
COMPUTE PROBABILITY DISTRIBUTION FUNCTION 
(PDF).

• COMPUTE MODEL EXPECTATION (MEAN OF PDF) 
AND VARIANCE.

• COMPUTE MODEL-AVERAGED PDF.

• THESE ARE YOUR FINAL ANSWERS.

PARAMETER UNCERTAINTY (cont’d.)

• Δ = HEAD AT A PARTICULAR WELL

• PDF COMPUTED USING HISTOGRAM ANALYSIS

• EXPECTATION AND VARIANCE COMPUTED FOR 
EACH MODEL

• MODEL EXPECTATION AND VARIANCE (PREDICTIVE 
UNCERTAINTY COMPUTED FOR OVERALL MODEL

• MODEL-AVERAGED PDF CALCULATED

PARAMETER UNCERTAINTY (cont’d.)
• PDF, EXPECTATION,  AND VARIANCE COMPUTED 

FOR EACH MODEL

8656Variance

5412
Expectati

on

0More

4948.167840.1475600

112.3242120.78395400

3595.524160.0845200

Var
Expec

t
Probabilit

yFrequencyBin

5412.0Sum - Total E

1.33155E-132.28318E-175832Model 5

2.3736E-084.21149E-125636Model 4

2.55025E-054.72269E-095400Model 3

5411.9999740.9999999955412Model 2

E*p(Mk|D)p(Mk|D)EPosterior Mean

EXPECTATION FOR 
MODEL 2

TOTAL MODEL 
EXPECTATION
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PARAMETER UNCERTAINTY (cont’d.)
• POSTERIOR VARIANCE

93.03762659
Total Standard 

Deviation

8655.999961
Total Predictive 

Uncertainty

8.9139E-078655.99996

4.0275E-122.2832E-1717640058322.96762E-112.28318E-171299776Model 5

2.1132E-074.2115E-125017656361.28494E-064.21149E-12305104Model 4

6.8007E-074.7227E-09144540004.72269E-090Model 3

00.99999999505412.08655.9999590.9999999958656Model 2

(aka Predictive 
Uncertainty)

Productp(Mk|D)
E-Total
E ^2EVAR*p(Mk|D)p(Mk|D)VARPosterior Variance

MODEL-AVERAGED PDF
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• PROBABILITY OF EACH RESPECTIVE BIN VALUE 
MULTIPLIED BY THE RESPECTIVE POSTERIOR 
PROBABILITY.

• SUM ALL THE PRODUCTS AND PLOT.

MODEL-AVERAGED PDF (cont’d.)

0000000008400

0000000008200

8.42E-1408.42E-140000.02008000

0000000007800

4.57E-194.57E-190000.020007600

4.57E-194.57E-190000.020007400

8.42E-144.57E-198.42E-14000.020.02007200

1.68E-1301.68E-130000.04007000

8.42E-1408.42E-140000.02006800

0000000006600

4.57E-194.57E-190000.020006400

4.57E-194.57E-190000.020006200

8.42E-144.57E-198.42E-14000.020.02006000

1.68E-139.13E-191.68E-13000.040.04005800

0.143.65E-185.9E-1300.140.160.1400.145600

0.781.46E-172.95E-124.72E-090.780.640.710.785400

0.080000.080000.085200

AverageModel 5Model 4Model 3Model 2Model 5Model 4Model 3Model 2Bin

Weighted Probability

PROBABILITY OF 5200 OCCURRING IN 
MODEL 2 MULTIPLIED BY THE MODEL 
2 POSTERIOR PROBABILITY

SUM OF ALL PRODUCTS FOR THE 
5200 VALUE
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Model Average Results
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MODEL-AVERAGED PDF (cont’d.)

MEASURED WELL HEAD.

AREA UNDER CURVE 
REPRESENTS 
PROBABILITY; MUST = 1.  
HIGH PROBABILITY 
THAT WELL HEADS 
WILL EXCEED THE 
MEASURED HEAD.

MODEL-AVERAGED 
PDF.  NOTICE IT 
OVERLIES MODEL 2 
PDF BECAUSE OF 
POSTERIOR 
PROBABIITIES

Model Average Results
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MODEL-AVERAGED PDF (cont’d.)

SUMMARY

• MLBMA PROVIDES A METHOD OF QUANTIFYING 
UNCERTAINTY.

• VALUABLE IN ASSESSING RISKS.

• CAN EXPEDITE REVIEWS BECAUSE MULTIPLE 
MODELS ARE EVALUATED.

• MLBMA CAN ALSO INCORPORATE SCENARIO 
UNCERTAINTY – NOT ADDRESSED IN THIS 
PRESENTATION.

• USEFUL IN OTHER TECHNICAL DISCIPLINES
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