

US-APWR

6th Pre-Application Review Meeting Containment Response Analysis Methodology

March 22, 2007
Mitsubishi Heavy Industries, Ltd.

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07034

Meeting Attendees

Makoto Toyama (Responsible for Safety Analysis for US-APWR)

General Manager

Reactor Safety Engineering Department Nuclear Energy Systems Engineering Center Mitsubishi Heavy Industries, LTD.

Shigemitsu Umezawa (Responsible for LOCA Methodology Development)

Engineering Manager

Reactor Safety Engineering Department Nuclear Energy Systems Engineering Center Mitsubishi Heavy Industries, LTD.

Michitaka Kikuta (Responsible for LOCA Analysis for US-APWR)

Engineering Manager

Safeguard System Engineering Section Nuclear Energy Systems Engineering Center Mitsubishi Heavy Industries, LTD.

Tom George - Presenter -

Technical Consultant

MITSUBISHI HEAVY INDUSTRIES, LTD.

Objectives of Meeting

- > The purpose of the meeting is to:
 - ✓ Present information to the NRC on US-APWR Containment Response Analysis Methodology and ensure NRC's expectations are met
 - ✓ Provide an opportunity for the NRC to explain its process, schedule, expectations, and provide feedback to MHI

MITSUBISHI-HEAVY-INDUSTRIES, LTD.

UAP-HF-07034-2

Presentation Summary (1)

- 1. GOTHIC 7.2a Code will be used for US-APWR Containment Response Analysis
 - Containment Design Function Evaluation
 Assuming Loss of Coolant Accident (LOCA) and
 Main Steam Line Break (MSLB) for
 - ✓ Peak pressure
 - ✓ Peak temperature
 - ✓ Pressure at 24 hours

MITSUBISHI HEAVY INDUSTRIES, LTD.

Presentation Summary (2)

- 2. New Features for US-APWR
 - ➤ Refueling Water Storage Pit (RWSP) inside Containment
 - ✓ No recirculation switchover procedure is required
 - > Improved Safeguard System
 - √ 4 advanced accumulators
 - √ 4 safety injection pumps
 - √ 4 containment spray pumps
- 3. US-APWR Containment Design Evaluation will be Performed Based on SRP Guidance and Previously Accepted GOTHIC Methodology
- 4. Methodology and Results will be Reported in Chapter 6 of Design Control Document
 - > Topical Report is not Planned at This Stage

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07034-4

Contents

- 1. GOTHIC Code
- 2. US-APWR Plant Parameter Summary
- 3. Containment Functional Design Evaluation
 - 3.1 Containment Evaluation Model for LOCA
 - 3.2 Containment Evaluation Model for MSLB
- 4. Summary

MITSUBISHI HEAVY INDUSTRIES, LTD.

GOTHIC Code (1)

- ➤ GOTHIC 7.2a will be used for US-APWR Containment Response Analysis
- **≻** Validation
 - **✓ CVTR**
 - ✓ Battelle Model Containment
 - ✓ HDR
 - ✓ Marviken
- ➤ Used for U.S. Licensing and Technical Specification Analyses Approved by NRC
 - ✓ Kewaunee, Surry, Fort Calhoun and Others

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07034-6

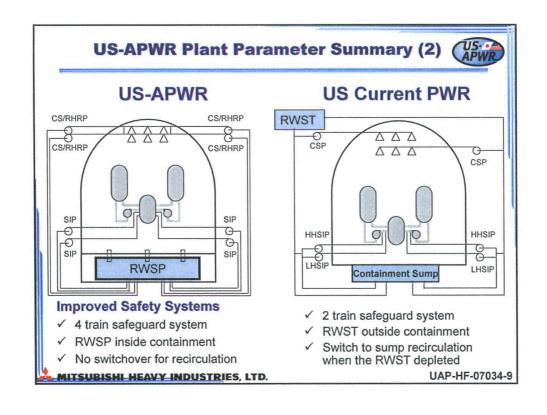
GOTHIC Code (2)

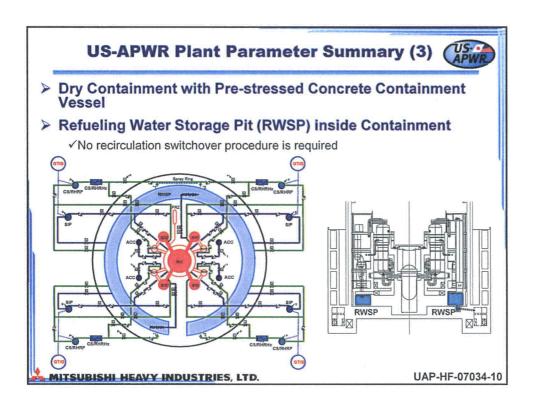
> GOTHIC Features for US-APWR

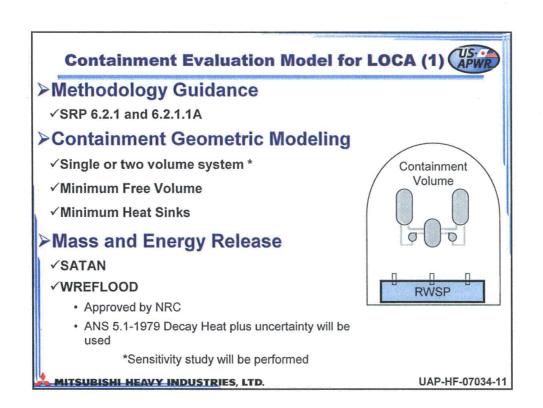
Modeling Approach	Lumped Parameter Model
Flow Fields	Vapor/Liquid/Drop (Thermal Non-Equilibrium)
Governing Equations	Conservation of Mass, Energy, Momentum and Drop Surface Area
Heat and Mass Transfer Model	Convection/Conduction/Radiation Diffusion Layer Model (Heat and Mass Transfer Analogy)
Safety Features	Spray, Heat Exchanger, Pump, etc.

MITSUBISHI HEAVY INDUSTRIES, LTD.

US-APWR Plant Parameter Summary (1)


> Plant Class of US-APWR

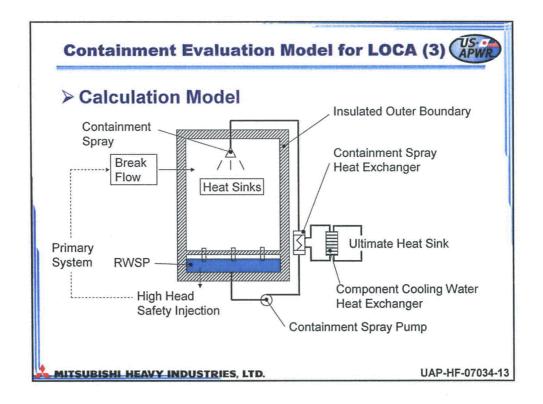

Features	US-APWR	US Current 4 Loop Plant 3,565		
Core thermal output (MWt)	4,451			
Number of loops, SGs and RCPs	4	4		
Containment Vessel Type	Pre-stressed Concrete Containment Vessel With Steel Liner	Pre-stressed Concrete Containment Vessel With Steel Liner		
Refueling Water Storage location	Inside CV	Outside CV		


> Improved Safeguard System

- √ 4 advanced accumulators
- √ 4 safety injection pumps
- √ 4 containment spray pumps

MITSUBISHI HEAVY INDUSTRIES, LTD.

Containment Evaluation Model for LOCA (2)


> Heat and Mass Transfer Between Containment Atmosphere and Heat Sinks

- ✓ Diffusion Layer Model (DLM) as used in previous NRC approved licensing submittals
- ✓ DLM validated against separate effects test data

> Heat Sink Modeling

- √ Structures below are modeled as containment internal heat sinks
 - · Containment shell (Liner + Concrete)
 - · Internal concrete
 - · Heavy components
 - · Uninsulated Pipes and supports
 - · Other metals
 - Aluminum / Copper

MITSUBISHI HEAVY INDUSTRIES, LTD.

Containment Evaluation Model for LOCA (4)

>Assumptions

- ✓ Low energy removal capability will be assumed with limiting conditions
 - · Available safety features
 - Loss of offsite power will be assumed
 - Limiting single failure will be assumed
 - Online maintenance condition One train assumed out for maintenance
- √ Minimum containment spray flow will be used

MITSUBISHI-HEAVY INDUSTRIES, LTD.

UAP-HF-07034-14

Containment Evaluation Model for LOCA (5)

> Initial Conditions

- ✓ Conservative Initial Conditions for Peak Pressure and Peak Temperature Analysis will be Used
 - · Initial containment pressure
 - · Initial atmosphere temperature
 - Relative humidity
 - · Initial heat sink temperature
 - RWSP water volume and temperature

MITSUBISHI-HEAVY INDUSTRIES, LTD.

Containment Evaluation Model for MSLB (US.G)

≻Methodology Guidance

✓ SRP 6.2.1, 6.2.1.1A and NUREG-0588

>Evaluation Codes

- ✓ Mass and energy release MARVEL
 - Assumes steam phase break flow (100% Quality)
 - · Limiting initial power level will be assumed

√ Containment response - GOTHIC

- · Same as for LOCA
- · Revaporization allowed in superheat conditions

>Assumptions

- √ Same as LOCA
- √ Low energy removal capability will be assumed with limiting conditions
- ✓ Minimum containment spray flow will be used
- >Conservative Initial Conditions will be Used

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07034-16

Summary

- ➤ GOTHIC will be used for Containment Response Evaluation for US-APWR Analysis
- ➤ Containment Functional Design Evaluation will be Performed Based on SRP 6.2.1, SRP 6.2.1.1A and NUREG-0588
- ➤ Containment Design Evaluation Methodology and Analysis Results will be Reported in Design Control Document

MITSURISHI HEAVY INDUSTRIES, LTD.

	•		