March 15, 2004

MEMORANDUM TO: Douglas H. Coe, Section Chief

Reactor Inspection Section Inspection Program Branch

Division of Inspection Program Management, NRR

FROM: Mary Ann M. Ashley, Team Leader /RA/

Construction Inspection Program Reactor Inspection Section Inspection Program Branch

Division of Inspection Program Management, NRR

SUBJECT: FORTHCOMING MEETING WITH THE NUCLEAR ENERGY

INSTITUTE TO DISCUSS 10 CFR PART 52 CONSTRUCTION

INSPECTION PROGRAM INFORMATION MANAGEMENT SYSTEM

(CIPIMS) ISSUES

DATE & TIME: Thursday, April 1, 2004

8:30 a.m. to 12:00 p.m.

LOCATION: U.S. Nuclear Regulatory Commission

One White Flint North 11545 Rockville Pike,

OWFN 13B4

Rockville, Maryland 20852

PURPOSE: To discuss topics related to the Construction Inspection Program

Information Management System (CIPIMS). Workstreams TGS1 and STR2, as described in the attached project plan, will be discussed at the

meeting. An agenda is attached.

CATEGORY 2:* The public is invited to participate in this meeting by discussing

regulatory issues with the NRC at designated points on the agenda.

PARTICIPANTS: Participants from the NRC include members from the Office of Nuclear

Reactor Regulation (NRR).

NRC Nuclear Energy Institute

M. Ashley, NRR R. Bell, et al.

J. Sebrosky, NRR

cc: See next page

CONTACT: Mary Ann M. Ashley, NRR

301-415-1073, mab@nrc.gov

*Commission's Policy Statement on "Enhancing Public Participation in NRC Meetings," 67 Federal Register 36920, May 28, 2002

March 15, 2004

MEMORANDUM TO: Douglas H. Coe, Section Chief

Reactor Inspection Section Inspection Program Branch

Division of Inspection Program Management, NRR

FROM: Mary Ann M. Ashley, Team Leader

Construction Inspection Program Development

Reactor Inspection Section /RA/

Inspection Program Branch

Division of Inspection Program Management, NRR

SUBJECT: FORTHCOMING MEETING WITH THE NUCLEAR ENERGY

INSTITUTE TO DISCUSS 10 CFR PART 52 CONSTRUCTION INSPECTION PROGRAM INFORMATION MANAGEMENT SYSTEM

(CIPIMS) ISSUES

DATE & TIME: Thursday, April 1, 2004

8:30 a.m. to 12:00 p.m.

LOCATION: U.S. Nuclear Regulatory Commission

One White Flint North 11545 Rockville Pike,

OWFN 13B4

Rockville, Maryland 20852

PURPOSE: To discuss topics related to the Construction Inspection Program

Information Management System (CIPIMS). Workstreams TGS1 and STR2, as described in the attached project plan, will be discussed at the

meeting. An agenda is attached.

CATEGORY 2:* The public is invited to participate in this meeting by discussing

regulatory issues with the NRC at designated points on the agenda.

PARTICIPANTS: Participants from the NRC include members from the Office of Nuclear

Reactor Regulation (NRR).

NRC Nuclear Energy Institute

M. Ashley, NRR R. Bell, et al.

J. Sebrosky, NRR

cc: See next page

CONTACT: Mary Ann M. Ashley, NRR

301-415-1073, mab@nrc.gov

*Commission's Policy Statement on "Enhancing Public Participation in NRC Meetings," 67 Federal Register 36920, May 28, 2002

Accession Number: ML040770004

OFFICE	DIPM/IIPB
NAME	MAshley
DATE	03/15/04

OFFICIAL RECORD COPY

April 1 Meeting with NEI on the CIPIMS

8:10 a.m. Discussion of Work Streams selected for CIPIMS test project NEI/NRC

11:30 a.m. Public Comment

11:45 a.m. Summary

12:00 p.m. Adjourn

NOTE: Specific topics and associated discussion times may change without notice

Contact:

Mary Ann M. Ashley, NRR 301-415-1073, mab@nrc.gov

CIPIMS/ITAAC Verification Demonstration Program Workstreams for Study

Introduction

The NRC issued a Draft 10 CFR Part 52 Construction Inspection framework document in May 2003 to be used as the guiding document for the creation of construction inspection manual chapters and inspection procedures to support the 10 CFR Part 52 licensing process. Many of the issues and assumptions described in the framework document are recommendations rather than final staff positions. The staff published this document for comment and discussed it with stakeholders in an August 27 public workshop. After evaluating stakeholder comments, the staff intends to revise and reissue the framework document in calendar year 2004.

The U.S. Power Companies recognize that a well-understood and streamlined Construction Inspection Program is a critical item to ensure successful project implementation for new nuclear build. The untried processes of 10 CFR Part 52 related to ITAAC verification, combined with the advancements in construction techniques whereby 60-70% of a new nuclear plant will be fabricated in modules in factories throughout the world complicate the task of NRC oversight of construction. To facilitate a common understanding of the ITAAC verification process the Nuclear Energy Institute (NEI) prepared a draft White Paper: ITAAC Implementation and Transition to Full Power Operations Under Part 52.

To facilitate development of the Construction Inspection Program (CIP), the associated Information Management System (CIPIMS) and their framework document, the NRC has agreed to work with the industry in a "virtual" construction inspection / ITAAC program. This pilot program will assess aspects of ITAAC verification within the framework of the overall construction inspection program, including the NRC's information management system (CIPIMS). Westinghouse believes that this initiative will provide the NRC and its licensees with an excellent forum to work out some of the issues associated with Construction Inspection management and ITAAC verification under the framework of the Construction Inspection Program and the NEI White Paper.

NRC and NEI have each hosted meetings to develop the overall working relationships for this pilot program. Under NEI direction, EPRI has contracted with Westinghouse to lead the industry's detailed input to the program. The first phase of the pilot project will be to develop a detailed ITAAC verification plan for a number of sample ITAAC. These sample ITAAC will be used to demonstrate the entire process of their scheduling, performance, inspection planning and management, and their verification and completion. These sample ITAAC will be placed into virtual plant construction workstreams that cover the time from plant order by the COL licensee to ITAAC verification by NRC. They will be used, in the next phase of this pilot program to "practice" information transfer between a COL applicant and holder and the NRC. NRC will use the information to optimize the development and use of CIPIMS and determine appropriate inspection management methods for a new plant build.

Following selection of appropriate example workstreams ending in example ITAAC, a prototypic "virtual" construction schedule will be loaded with activities and milestones for the construction and inspection tasks leading to successful verification of the ITAAC. The basic starting place will be the AP1000 Level 3 Standard Schedule on Primavera 3.1. A CIPIMS/.ITAAC version of this schedule will be crated by copying the current AP1000 schedule. Activities will be added to

reflect the workstreams selected, including procurement and construction activities necessary to reflect the ABWR ITAAC workstreams. As this program continues, activities may be added to reflect the level of detail necessary to implement the connection between the virtual licensee/constructor and the NRC construction inspection program. Within the overall schedule, including its logic and constraints, the subset of activities that directly relate to workstreams will be "tagged" with an appropriate Activity Code.

Paper and electronic reports of these subsets will then be shared with the NRC. A determination will be made between NRC and the industry on the level of detail to be used for interactions with NRC during a real plant build based upon these virtual examples. The examples will also be evaluated against the guidance identified in the Construction Inspection Framework document and the NEI White Paper. An industry interaction with NRC to review the integration of construction and construction inspection activities will be part of a public workshop and will include representatives from power companies and industry as appropriate. Westinghouse will then document the results of the workshop as a lessons-learned industry report and submit it to EPRI and NEI. It is expected that NEI will provide the report to the NRC as part of interactions related to the Construction Inspection Program Framework Document.

Workstream Selection

A "workstream", for the purpose of this pilot project, is the set of scheduled activities leading to satisfaction of an ITAAC. Workstreams start with plant or long lead item order and end with a given ITAAC. Activities in a workstream are those that contribute directly to the ITAAC even though there may be many more activities related to proper procurement, fabrication, erection, test and operation of a plant item.

An "ITAAC", for the purpose of this pilot project, is the specific selected table line item from Tier 1 material for ABWR or AP1000. It may not represent the entire set of ITAAC table line items necessary to verify 10CFR52 verification of a given component, system or structure. The "ITAAC" selected for this pilot program are those that can be used to generically answer questions of CIPIMS or inspection detail. They may also be used to demonstrate CIPIMS, CIP and ITAAC process and documentation. They are selected to represent broad classes of ITAAC.

Based upon the definitions above, worksteams selected for this pilot project can be identified by the ITAAC (table line item) that defines their end point. The number, nature and level of detail of the activities in each workstream will be the focus of the next step in this pilot project. For ease of reference, each workstream will be designated by a four-digit identifier. The first three digits represent their component, system or structure. The final digit is a simple sequence number.

Workstreams were selected to represent ITAAC table line items. At one point, workstreams were contemplated to also be selected to represent discrete components or commodities. We subsequently recognized that the order, procurement, fabrication, installation and test of a given component may feed a large number of ITAAC, as well as number of activities that do not correspond to ITAAC. In order to focus on specific ITAAC selected for demonstration purposes, and since the lessons learned from one workstream can be applied to all related ones, selected workstreams are identified by their ITAAC, not their component or commodity.

All of the workstreams selected fall into one or more of these broad groups: component, system, structure, safety-related, non-safety-related, radioactive fluid boundary, non-radioactive fluid boundary, single inspection verification, multiple inspection verification, on-site inspection, off-site inspection, pre-COL, post-COL, single vendor and multiple vendor. The full text of each selected ITAAC table line item is included in an attachment at the end of this report.

Selected Workstreams

TGS1 – Functional Arrangement of the ABWR Turbine Gland Seal System

This is line item 1. from Table 2.10.9 of ABWR Tier 1 Section 2.10.9 (Attachment 2). It is a system, non-safety-related, radioactive fluid boundary, single inspection, on-site, post-COL, single vendor inspection.

TGS2 – Turbine Gland Seal System Displays for the ABWR

This is line item 2. from Table 2.10.9 of ABWR Tier 1 Section 2.10.9 (Attachment 2). It is a system, non-safety-related, multiple inspection, on-site, post-COL, single vendor inspection.

CVS1 - Component ASME Code Status for the AP1000 Chemical and Volume Control System

This is line item 2.a). from Table 2.3.2-4 of AP1000 Tier 1 Section 2.3.2 (Attachment 3). It is a component, safety-related and non-safety-related, radioactive fluid boundary, multiple inspection, off-site, post-COL, multiple vendor inspection. For this pilot project, the scope of this workstream will be limited to 3 remotely operated valves (at least 1 installed at site and 1 installed in a module), 1 ion exchanger and 1 heat exchanger.

CVS2 - Pipe weld ASME Code Status for the AP1000 Chemical and Volume Control System

This is line item 3.b). from Table 2.3.2-4 of AP1000 Tier 1 Section 2.3.2 (Attachment 3). It is a piping, safety-related, radioactive fluid boundary, multiple inspection, off- and onsite, post-COL, multiple vendor inspection. For this pilot project, the scope of this workstream will be limited to the welds associated with the components in CVS1.

CVS3 - Seismic Qualification of AP1000 Chemical and Volume Control System Valves

This is line item 5) from Table 2.3.2-4 of AP1000 Tier 1 Section 2.3.2 (Attachment 3). It is a component, safety-related, radioactive fluid boundary, multiple inspection, on- and off-site, post-COL, multiple vendor inspection. For this pilot project, the scope of this workstream will be limited to the 3 remotely operated valves selected for Workstream CVS1.

CVS4 – Make-up capability of the AP1000 Chemical and Volume Control System

This is line item 8.a) from Table 2.3.2-4 of AP1000 Tier 1 Section 2.3.2 (Attachment 3). It is three system, non-safety-related, non-radioactive fluid boundary, single inspection each, on-site, post-COL, single vendor inspections.

CVS5 - Operation Check of AP1000 Chemical and Volume Control System Valves

This is line item 11.a) from Table 2.3.2-4 of AP1000 Tier 1 Section 2.3.2 (Attachment 3). It is a component, safety-related, radioactive fluid boundary, multiple inspection, on-site, post-COL, single vendor inspection. For this pilot project, the scope of this workstream will be limited to the 3 remotely operated valves selected for Workstream CVS1.

RVH1 – AP1000 Reactor Vessel Head Arrangement

This is line item 2.c). from Table 2.1.3-2 of AP1000 Tier 1 Section 2.1.3 (Attachment 4). It is a component, safety-related, radioactive fluid boundary, single inspection, on-site, post-COL, single vendor inspection.

RVH2 – ASME design and construction of AP1000 Reactor Vessel Head

This is line item 3.). from Table 2.1.3-2 of AP1000 Tier 1 Section 2.1.3 (Attachment 4) for the Reactor Vessel Head only. It is a component, safety-related, radioactive fluid boundary, multiple inspection, off- and on-site, pre- and post-COL, multiple vendor inspection.

RVH3 – Reactor Internals Vibration

This is line item 7.). from Table 2.1.1d of ABWR Tier 1 Section 2.1.1 (Attachment 1). It is a component, safety-related, non-radioactive fluid boundary, multiple inspection, off-and on-site, pre- and post-COL, multiple vendor inspection.

STR1 – Building Physical Arrangement

This is line item 1. from Table 2.15.10 of ABWR Tier 1 Section 2.15.10 (Attachment 5). It is a structure, multiple inspection, on-site, post-COL, single vendor inspection.

STR2 - Nuclear Island Critical Sections

This is line item 2.a) from Table 3.3-6 of AP1000 Tier 1 Section 3.3 (Attachment 6). It is a structure, multiple inspection, on-site, post-COL, multiple vendor inspection.

STR3 – Fire Area Boundaries

This is line item 3. from Table 2.15.10 of ABWR Tier 1 Section 2.15.10 (Attachment 5). It is a structure, multiple inspection, on-site, post-COL, single vendor inspection.

STR2 – Building Waterproofing

This includes line items 5.a), 5.b), and 5.c) from Table 3.3-6 of AP1000 Tier 1 Section 3.3 (Attachment 6). It is a structure, multiple inspection, on-site, post-COL, single vendor inspection.

Next Steps

These workstreams have received conceptual concurrence from NRC during a telephone conference on March 3, 2004. These workstreams may be modified or refined during the performance of this pilot project. The next activity for Westinghouse is to identify relevant activities from a virtual overall plant construction schedule in Primavera. Following identification, the activities will be tagged or added and tagged. A unique identifier (tag) will be added in Primavera to each selected activity's Activity Code database. Schedules and reports of the tagged activities will be used for discussions of level of detail, data transfer and veracity of the workstreams for use in the virtual CIPIMS and ITAC demonstration.

Distribution for April 1, 2004, Meeting Notice

Hard Copy RNRP R/F

JMSebrosky

E-Mail

PUBLIC

PMNS

RNRP Group

BBoger

CCarpenter

SRichards

DCoe

CCasto

RMcIntyre

TFoley

DThatcher

TMensah (NRR Communication Coord)

ACRS (RidsAcrsMailCenter)

MEI-Zeftway

MAshley

JBlake

RGardner

CPaulk

RWeisman

External e-mail

bhupinder.singh@hq.doe.gov tom.miller@hq.doe.gov

Combination List:

Combination List:

cc: Mr. Charles Brinkman
Westinghouse Electric Co.
Washington Operations
12300 Twinbrook Pkwy., Suite 330
Rockville, MD 20852

Mr. David Lochbaum, Nuclear Safety Engineer Union of Concerned Scientists 1707 H Street, NW, Suite 600 Washington, DC 20006-3919

Dr. Gail H. Marcus U.S. Department of Energy Office of Nuclear Energy, Science & Technology NE-1, Room 5A-143 1000 Independence Avenue, SW Washington, DC 20585

Mr. Paul Gunter Nuclear Information & Resource Service 1424 16th Street, NW, Suite 404 Washington, DC 20036

Mr. James Riccio Greenpeace 702 H Street, NW, Suite 300 Washington, DC 20001

Mr. Ron Simard Nuclear Energy Institute Suite 400 1776 I Street, NW Washington, DC 20006-3708

Mr. George Alan Zinke
Project Manager
Nuclear Business Development
Entergy Nuclear
M-ECH-683
1340 Echelon Parkway
Jackson, MS 39213

Mr. Thomas P. Miller U.S. Department of Energy NE-20, Rm. A286 Headquarters-Germantown 19901 Germantown Road Germantown, MD 20874-1290 Ms. Marilyn Kray Vice President, Special Projects Exelon Generation 200 Exelon Way, KSA3-E Kennett Square, PA 19348

Mr. Laurence Parme Manager, GT-MHR Safety & Licensing General Atomics Company P.O. Box 85608 San Diego, CA 92186-5608

Mr. Joseph D. Hegner Lead Engineer - Licensing Dominion Generation Early Site Permitting Project 5000 Dominion Boulevard Glen Allen, VA 23060

Mr. Edward L. Quinn MDM Services Corporations Utility Operations Division 28202 Cabot Road, Suite 205 Laguna Nigual, CA 92677

Lynn Connor Doc-Search Associates 2211 sw 1ST Ave - #1502 Portland, OR 97201

Mr. Paul Leventhal Nuclear Control Institute 1000 Connecticut Avenue, NW Suite 410 Washington, DC 20036

Mr. James F. Mallay, Director Regulatory Affairs FRAMATOME, ANP 3315 Old Forest Road Lynchburg, VA 24501

Patricia Campbell Winston & Strawn 1400 L St., NW Washington, DC 20005 Mr. W. Edward Cummins AP600 and AP1000 Projects Westinghouse Electric Company P.O. Box 355 Pittsburgh, PA 15230-0355

Dr. Robert E. Gamble
Engineering Manager, ESBWR
GE Nuclear Energy
175 Curtner Avenue, MC 365
San Jose, CA 95125

Mr. Jack W. Roe SCIENTECH, INC. 910 Clopper Road Gaithersburg, MD 20878

Mr. Stephen P. Frantz Morgan, Lewis, & Bockius, LLP 1111 Pennsylvania Avenue, NW Washington, DC 20004

Mr. Gary Wright, Manager Office of Nuclear Facility Safety Illinois Department of Nuclear Safety 1035 Outer Park Drive Springfield, IL 62704

Mr. David Ritter
Research Associate on Nuclear Energy
Public Citizens Critical Mass Energy
and Environmental Program
215 Pennsylvania Avenue, SE
Washington, DC 20003

Mr. Tom Clements 6703 Gude Avenue Takoma Park, MD 20912

Mr. Lionel Batty Nuclear Business Team Graftech 12300 Snow Road Parma, Ohio 44130

Mr. James Blyth
Canadian Nuclear Safety Commission
280 Slater Street, Station B
P.O. Box 1046
Ottawa, Ontario
K1P 5S9

Dr. Atambir S. Rao Project Manager, ESBWR GE Nuclear Energy 175 Curtner Avenue, MC 365 San Jose, CA 95125 USA

Mr. Edward F. Sproat, III Vice President - Int'l Projects Exelon Generation 200 Exelon Way Kennett Square, PA 19348

Mr. Vince Langman Licensing Manager Atomic Energy of Canada Limited 2251 Speakman Drive Mississauga, Ontario Canada L5K 1B2

Dr. Regis A. Matzie Senior Vice President and Chief Technology Officer Westinghouse Electric Company 2000 Day Hill Road Windsor, CT 06095-0500

Mr. Ed Wallace, General Manager Projects PBMR Pty LTD PO Box 9396 Centurion 0046 Republic of South Africa

Mr. Dobie McArthur Director, Washington Operations General Atomics 1899 Pennsylvania Avenue, NW Suite 300 Washington, DC 20006

Mr. Russell Bell Nuclear Energy Institute Suite 400 1776 I Street, NW Washington, DC 20006-3708