

S07 Od ‘uojdurysepy

ABSTRACT

This document offers guidance to both NRC organiza-
tionsand NRC contractors in the development and main-
tenance of software for use by the NRC staff.

This document is based on various industry standards,

ii

shown under references, and therefore meets the current
industry standards for the operational levels of software
described herein. This document may provide guidance
but does not address the complex issue of software quality
for software used in nuclear plants.

CONTENTS

ADSIIACE . . .o e
ACKNOWIEAGEMENLSottt e e
1 Introduction e
11 PUIPOSE ..
1.2 Scope and AppPlCabilityoueueeniniiin e e e e
1.3 The NRC Software Development/Sustaining Engineering
Environment
1.4 Use of This DOCUMENtttt
1.5 Organization of This DOCUMENtotit it e
1.6 Maintenance of This DOCUMENtoouuii i e e
1.7 Style Used in This DOCUmENtonennun ittt
2 The Software Life CyCleo uenteet ittt ittt e e e e e e
2.1 Concepts and Definitionso.uiiiuiiiiiiini e,
2.2 Requirements Definition i e
2.3 DESIgN .o e
2.4 Implementationo it i e
2.5 Qualification TeStIEottt ettt e et
2.6 Installation and ACCEPLANCEonun ittt ettt e eee e
2.7 Operations and Sustaining Bngineeringouvneneneunreneenannnnnnnnin..
2.8 Retirement and Archivingoo oo
3 Verification and Validation ...ttt e e e e
3.1 Concepts and Definitionso, P,
3.2 Verification and Validation ACHVItIESvuuentniiiienn oo,
3.2.1 Verification and Validation Planning Activitiesovueenrnrennnnn.n.
3.22 Formal Life Cycle Reviews and AuGISo ovvvnenene e ereeaeeaannnnnnn,
323 Formal Peer INSPECHONS « .« v vvvnte ettt et e e e e ee e
-
3.3 Techniques and TOOISuuutnenenennte e et et e e
4 Documentation and Deliverablesouununiotontiniiiin et e e
4.1 Concepts and Definitionsooiiiiiiiiii it
4.2 Software Project Planc..unuiinininiin it
4.3 Software Requirements Documentationcuvu..... e,
4.4 Software Design DOCUMENtAtionuuuuetinern it eeeenarannannns
4.5 Software Implementation DOCUMENALIONvuiieenoneeneen s,
4.6 Software Verification and Validation Documentationoeueeuerernenn.nn.
4.7 User DOCRMENALION « . vt ettt ie ettt et e e e e e e e e e
4.8 Other DOoCUmeEntationunent ittt tet et ie ittt et ee e aeanns
4.9 Deliverables i
49.1 Documentation Delverablesouiuieee e,
4.9.2 Software Deliverablesoueuiinnen ettt e
4.10 Techniques and TOOIS uuuentntnet ittt e e e e e e

O ®W I VI N JAAAAULM UL G N NN N M

P e e b fed b b e Rl b ped el i b e e
PN N N S N FORRE YOI FORR FORR YR YOR rr G =

Project Managementveeeneenentenennseneae et aeeaaoate e
51 Concepts and Definitionscoouiiei i
5.2 Project Planning and Orgamizingcooitiiiiniiiiiiiiiiion ..
5.2.1 Required Inputs tothe Contractovuiiniiiiiiiiiiiiaiiiaiiinennen.
5.2.2 BSHMALING - ..viiuunteannienieeeenntenataneeeeaaueeeasssoannnnnneeaannns
5.2.3 Methodology, Standards, and Procedures. ...l
52.4 The Software Project Planoiveiiiiii i
5.3 Project Tracking and Oversight iiiiiiiiiiiiiiiienne
5.4 Supplier CONLIOl .. .vvt ettt ettt ia i iar e aaaaaaaens
5.5 1% (75 o 1ot JR P S PP
5.6 RT3 ' 1 R R R R R
5.7 Training et tee ettt et e e e
5.8 Risk Managementouuueuueneenuerenneneaneneeneatoaeestioiseearosmasnnns
59 Techniques and TOOLS . .vvviirienre e iierateasnineoseaatinnneaeenaenns
Configuration Managementcooeeennnennannns e
6.1 Concepts and Definitionsccocoiiiien.t. ety
6.2 3 7T b1+ U P
6.3 Change CONIoloinuriitiit ettt eeeeaee et eaaeeotnatenianeerannns
6.4 Status of Baselines and Changesoovuiirviiiirinrenreraaeananesnsersseeens
6.5 Software Development Libraryoeooueieeieonneiniinraaiiananaaess
6.6 Software, Access, and Media Controlooiiiiiiiiiiiiiiaieienniananaaan
6.7 Configuration AUGILS vurnnrti e ea e e et
6.8 Techniques and TOOISvvneninaran ettt e,
Nonconformance Reporting and Corrective ACHON ..ot
7.1 Concepts and Definitionscooiiiueiiiiianan, e
7.2 - £ L5 =3 S T
7.2.1 Nonconformance Detectionand Reportingccoiiiiiiiiiiai ot
7.2.2 Impact Assessment and Corrective ACHOM . oo vttt e e ee e e eeieeenens
7.2.3 Tracking and Management Reportsoooiiiiiiiiiiiiiiiinen.
7.3 Interrelationshipsol T
74 Techniques and TOOISouuiniine i e
Quality Assessment and IMPrOVEMeNtooutiiitn it tienn e ieatainieanans
8.1 Concepts and Definitionsoevneiieiieeriiiiniiiiiiiiotiatiienianaes
8.2 Responsibility for Quality Assessment and Improvementoooviiiiiiinnann
8.3 Documentation for Quality Assessment and Improvementt
8.4 Quality ASSESSIMENLS .+ .o vuueeenntenrenresonesnneosceneeesasaetaseannnenesosnnns
8.5 Quality Records Collection, Maintenance, and Retentionooo0vnntt
86 Quality IMprovementcovvuemirnernenanenenauann.s e
8.7 Techniquesand TOOISnerniniiieiiniiii ittt et ia e
Software Developed Before Issuance of ThisDocument ooiiiiiiiiiiiiienn
Appendix A Sample Software Project Management Planot
Appendix B 1 1571 e
Appendix C Reference DOCUMENES + v veereeneeeteeneeeeeenanennansossesassonsnasnes

vi

17
17
17
17
18
18
18
19
20
20
20
20
20
21
23
23
23
24
24
24
24
24
25
27
27
27
27
28
28
28
28
29
29
29
29
29
29
29
29
33
35
55

57

1-1
3-1
3-2

5-1

TABLES

Summary of Typical Life Cycle Activities and DOCUMENES oo vvveers s
Verification and Validation Activities by Major Life Cycle ACtIVILY .ot

Formal Life Cycle Reviews and Audits

..

...

vii

Page

30

19

ACKNOWLEDGEMENTS

The Office of Information Resources Management
wishes to acknowledge the contributions of NRC staff and
contractors in developing this document. The final tex-
tual content was organized and written by Frank J.
Douglas, SOFTRAN, Inc. NRC staff who participated in
reviews and discussion briefings during the development

process were: Emily Robinson, Wil Madison and John
Voglewede, IRM; Frank Coffman and Leo Beltracchi,
RES; Jack Spraul and John Buckley, NMSS; Jim Stewart,
Ralph Caruso, and Tony Mendiola, NRR; Steve Arndt,
AEOD; and Mark Stella, ACRS.

1 INTRODUCTION

1.1 Purpose

Itis the purpose and intent of this document to offer guid-
ance to both NRC organizations and NRC contractors in
the development and maintenance of software for use by
the NRC staff.

1.2 Scope and Applicability

Software quality assurance is the planned and systematic
pattern of all actions necessary to provide adequate confi-
dence that a software product conforms to established
technical requirements. Thus, the scope of software qual-
ity assurance includes both management and technical as-
pects of software development and maintenance. There-
fore, this document provides guidelines for: the software
life cycle; verification and validation activities; documen-
tation and deliverables; project management; configura-
tion management, nonconformance reporting and cor-
rective action; and quality assessment and improvement.

Three levels of software are defined to make clear the
wide variety of software used by the NRC. The three lev-
els are:

1. Level 1 Software—Technical application software
used in a safety decision by the NRC (an example
would be RELAPS)

2. Level 2 Software—Technical or non-technical ap-
plication software not used in a safety decision by the
NRC (an example would be an agency financial soft-
ware system)

3. Level 3 Software—Technical or non-technical ap-
plication software not used in a safety decision and
having local or limited use by the NRC (examples
would include a macro for Lotus 1-2-3)

The guidelines in this document apply to Level 1 and
Level 2 software only; they do not apply to Level 3 soft-
ware or any other software.

The degree of applicability of these guidelines will de-
pend on the level of software being developed, its pur-
pose and use, and a managerial judgment of the cost-
effectiveness of each software quality activity. Most
projects should incorporate verification and validation,
configuration management, and documentation control
activities.

1.3 The NRC Software Development/
Sustaining Engineering
Environment

There are three types of organizations involved with NRC
software: the regulated industry, NRC contractors, and
NRC staff. These guidelines do not apply to the regulated
industry. NRC contractors develop and maintain two gen-
eral types of application software: 1) technical/scientific
and 2) administrative/management information systems
(MIS). Minimal software development and maintenance
are done directly by the NRC staff.

The roles of NRC staff and NRC contractors in software
development and maintenance can be divided into three
categories: sponsors, developers, and users. A sponsor is
the NRC organization that sponsors and manages the
software development/maintenance effort. The sponsor
acts as the acquirer or buyer for the user. A developer is
the organization, usually a contractor, that develops or
maintains the software. A user is the organization who
utilizes the software product produced by the developer.
The user is involved in defining requirements and should
be made a partner during the development effort to help
ensure that the product being built will meet the user’s
needs.

The authority for categorizing the software to be devel-
oped (either Level 1, Level 2, or Level 3) resides with the
sponsor. The user’s concurrence with the categorization
should be sought. The Information Resources Manage-
ment (IRM) organization is available for consultation
during the categorization process.

The development and maintenance of software is a
project, i.e., it has definitive start and end dates and a
product(s) is delivered upon completion. Both the spon-
sor and the developer assign responsibility for the suc-
cessful completion of the project to a project manager.

The IRM Office is responsible for the coordination of the
NRC software quality assurance (SQA) initiative embod-
ied in this document. IRM is responsible for maintaining
this document.

The IRM organization is also responsible for the estab-
lishment and coordination of the NRC SQA Working
Group. The objectives of this working group are to:

1. Facilitate communications (e.g., successes, lessons
learned) about software development and mainte-
nance among the NRC organizations involved with
acquiring and using softwaie

2. Facilitate technology transfer of the best practicesin
the management and technical aspects of software
development and maintenance

3. Provide afocal point for improvements to the guide-
lines in this document

1.4 Use of This Document

The SQA Working Group is chaired by IRM/DISS and
has members from each major office involved with soft-
ware development and maintenance: ACRS, AEOD,
IRM, NRR, NMSS, and RES.

This document will be used by sponsor project managers
as a guide in developing inputs (e.g., the statement of
work) to the request for proposal for software to be devel-
oped, and by developer project managers as'a planning
tool. It can also be used as a software quality assurance
reference by sponsors and developers.

The guidelines in this document are not intended to be
applied rigidly. They should be used within the context of
NRC policy and Federal standards, as applicable to the
project at hand, as well as with cost-effective manage-
ment and engineering judgment based on past experi-
ence.

This document applies to all software currently in use, be-
ing developed, or planned for future development. Own-
ers of software developed prior to the publication of this
document should read Section 9 in particular. Future
software plans should implement all major elements of
this document, but the extent of implementation must be
decided as part of the planning process by the sponsor and
developer.

1.5 Organization of This Document
In addition to this introductory section,
e Section 2 defines the software life cycle.

e Section 3 discusses verification and validation activi-
ties.

e Section 4 identifies deliverables, including required
documentation.

® Section 5 addresses project management.
e Section 6 addresses configuration management.

e Section 7 discusses nonconformance reporting and
corrective action.

e Section 8 addresses quality assessment and improve-
ment

e Section 9 discusses application of the guidelines in
this document to software developed before issu-
ance of the document

Table 1-1 shows an overview of a typical software life cy-
cle. It is meant as a quick-look reference. It contains only
major activities performed and documentation produced.
It is not meant to be complete listing of all activities per-
formed or documents produced.

1.6 Maintenance of This Document

The maintenance of this document is the responsibility of
the IRM organization. Changes to the document will be
issued as change pages as required. When the number of
change pages is deemed to be excessive, a new version of
the document will be published.

Suggestions for improvement are solicited from the en-
tire NRC software community: sponsors, developers, and
users.

1.7 Style Used in This Document

Most of this document is written using verbs in the indica-
tive mood. The indicative mood is the standard mood of
verbs, for example:

The software life cycle defined in this section provides the
basis for planning and implementing a software develop-
ment or maintenance project.

The life cycle consists of the following major activities:
requirements definition, design, implementation, qualifi-
cation testing, installation and acceptance, operations
and sustaining engineering, and retirement and archiving.

When the intent is to communicate explicitly a suggestion
or guideline to the sponsor or developer, we have chosen
to use the imperative mood of the verb. Three examples
follow:

Define the requirements so that they are correct,
complete, verifiable, consistent, and technically fea-
sible.

Perform planning activities for verification and vali-
dation in parallel with requirements definition ac-
tivities.

Require the developer’s approach to quality assess-
ment and improvement to be documented.

Table 1-1. Summary of Typical Life-Cycle Activities and Documents

Requirements Design Iimplementation Qualification Installation and Operations and
Definltion Testing Acceptance Sustalning
Engineering
Prlnclpal * Analyze Develop o Develop unit Conduct ® Inatail the softwere Perform sil the
Technical requirements prefiminary design designs and unit quadification on the target actvities of
Activities Develop detalied code testing In computer development, as
design sccordance with o Conduct appropriste
Performed Davelop the qualification scceptance Perform sustaining
prefiminary user's fest plan and testing In sngineering activities
documentation qualification test accordance with 10 ensure that the
procedures the acceplance original capabilities
tes! plan and and design remain
acceplance test intact
. procedurss
Verification ¢ Conduct Conduct design * Develop unitand Witness * Whness Perform all verificstion
and Validation requirements Inspections integration test qualification tests acceplance Wests and validstion
Activities inspections Pian quatification plans and activities, 23
e Conduct Software and sacceptance procedures appropriste
Performed Requirements tosts s Conduct unit and
Review Conduct integration testing
Prefiminary Design | © Develop
Review Qualification and
Conduct Critical scceptance lesi
Design Review procedures
Documentation | ® Software Softwaredesign | ® Qualification test Qualification fest | ® Acceptance lest Updats all
and requirements documentation procedures report report documentation, ss
Deliverables documentation Quslification test ¢ Acceptance test Nonconformance | @ Nonconformance required
¢ Overall vetificstion plan procedures reports based on teports based on Develop new
Developed and validation plan Acceptancetest [Unitand tost results tost results documentation, se
o Softwars Project plan Integration test Final user's sppropriate
Plan Preliminary uset’s results documentation
docymantation
Project ¢ Develop Software Conducttracking | ® Conduct tracking Conducttracking | ® Conduct tracking Conduct tracking and
Management Project Plan and oversight and oversight and oversight and oversight oversight activities
Activitl e Ensure users activities activities activities activites Re-plan as requited
vities participate in Re-plan 2e * Replasnas Re-pian ss ¢ Replanms
Performed requirements required required required required
definition
¢ Conduct tracking
and oversight

sctivities

Table 1-1. Summary of Typical Life-Cycle Activities and Documents

(continued)

Requirements Design implementation Qualification Installation and Operations and
Definition Testing Acceptance Sustalning
Engineering
Contiguration Develop orupdate | ® Place software Place code snd Place lested * Place ested Maintaln the
_mmgemem configurstion design qualification test software and software and requirements
Activities management documentation documentation associzted sssociated baseline and
prooedures under internal under internal documantation documentation developmental
Performed Place softwere developer developer under under configurstion
requirements configurstion configuration configuration configurstion Establish new
documentation control control control {l.e., control (Le., product baseline
wnder configurstion sstablish the oatablish the snd new
control (i.e., product bassiine) operational operational
establish the baseline) besetine
requirements
) baseline)
Nonconformance Developor updste | Document design Document design Document code o Document code Document s
Reponing and nonconformance and requirements and requirements and qualification and scceptance nonconformances,
Corrective Action reporting and documentstion documentation tost tost as spplicable
corrective action nonconformances nonconformances nonconformances documentation
Activities procedures Document design nonconformances
Performed Document andrequirements | @ Document design
requirements documentation and requirements
documentation nonconformances documentation
nonhconformances nonconformances
Quality Assess software o Assess software Assess unit Assess o Assess acceplance Assess all
Assessment and requirements design designs, unit code, queiification test testing aciivities products and
nt documentationand | @ Assesathe unit test plans, resvis o ASSe88 SCONLINCS processes
Improveme software project qusiification test intagration test Assens test process Initists product
Actlvities plan plan snd plans, and quelificationtest | © Initiete product and process
Performed Assess sceeptance test tntegration test process and process improvement
requirements plan procedures Initinte product improvement sctivities, a8
definition process | ® Assess design Assess snd process activities, 88 required
Initiste product and process impiementation Improvement required
process s Initiste product process activities, as
Improvement and process Assess required
activities, ss fmprovement qualification test
required activities, a8 procedures sivd
required acceptance test
procedures
initiste product
snd process
improvement
activities, as

2 THE SOFTWARE LIFE CYCLE

2.1 Concepts and Definitions

The software life cycle defined in this section provides the
basis for planning and implementing a software develop-
ment or maintenance project. The life cycle consists of
the following major activities:

1. Requirements definition

2. Design

3. Implementation

4. Qualification testing

5. Installation and acceptance

6. Opera_t‘ions and sustaining engineering
7. Retirement and archiving

Each major activity leads to specific products that can be
measured, evaluated, approved, and controlled. No strict
chronological constraints exist between major activities.
The major activities may overlap in time and may be ap-
plied iteratively or recursively.

Each major activity is accompanied by verification actions
that ensure that the products and processes of the major
activity meet the requirements for those products and
processes. Verification actions are discussed in Section 3,
and the documentation and software deliverables of the
software life cycle are discussed in Section 4.

The software life cycle presented heré must be:

1. Tailored to fit the scope of each development/main-
tenance effort

2. Used within the context of NRC policy and Federal
standards, as applicable to the project at hand, as
well as with cost-effective management and engi-
neering judgment based on past experience

Some projects will not encounter all major activities.

2.2 Requirements Definition

The requirements definition process is the set of activities
that results in the specification, documentation, and re-
view of the requirements that the software product must
satisfy, including functionality, performance, design con-

straints, attributes, and external interfaces. The require-
ments form the basis for the software plans, products, and
activities.

Ensure that the documented requirements define the re-
sponse of the software to anticipated classes of input data
(including erroneous data) and provide the information
and detail necessary to design the software (e.g., mathe-
matical models, equations, data requirements).

Definé the requirements so that they are correct, com-
plete, verifiable, consistent, and technically feasible. Per-
form planning activities for verification and validation in
parallel with requirements definition activities.

Because requirements inevitably change as a project
evolves, manage the requirements throughout the devel-
opment and maintenance efforts in accordance with well-
defined change control procedures (See Section 6).

2.3 Design

The design process is the set of activities that results in
the development, documentation, and review of a soft-
ware design that meets the requirements defined in the
software requirements documentation.

As the design evolves, events (e.g., additional insight into
problem areas) may necessitate the modification of the
requirements documentation. Manage changes to re-
quirements documentation in accordance with well-
defined change control procedures.

2.4 Implementation

The implementation process is the set of activities that re-
sults in software that has:

1. Been constructed in accordance with the design
documentation and coding standards

2. Undergone informal unit and integration testing

As the software is implemented, events (e.g., additional
insight into data flow patterns) may necessitate the modi-
fication of the design, requirements, and/or verification
and validation documentation. Manage changes to docu-
mentation in accordance with well-defined change con-
trol procedures.

2.5 Qualification Testing

The qualification testing process is the set of activities as-
sociated with:

1. Formally testing the implemented software, using
test cases defined in the verification and validation
documentation, against the baselined requirements
defined in the software requirements documenta-
tion

2. Reviewing and analyzing the test results to ensure
that the implemented software meets requirements

and that the software produces correct results for all
test cases executed

To evaluate technical adequacy, the software test results
can be compared to results from alternative methods,
such as:

1. Analysis without computer assistance

2. Other validated computer programs

3. Experiments and tests

4. Standard problems with known solutions

5. Confirmed published data and correlations

2.6 Installation and Acceptance

Section 3.2.4 discusses qualification testing in more de-
tail.

Instaliation activities include one or more of the follow-
ing:

1. Installing hardware

2. Installing the developed/maintained software

3. Integrating the developed/maintained software with
other components (e.g., other software components,
hardware, data)

4. Reformatting or creating data bases
5. Verifying that all components have been included
Acceptance activities include:

1. Execution of acceptance tests (which typically con-
sist of some of the qualification test cases plus addi-
tional test cases)

2. Documentation of the acceptance of the software by
the sponsor

This stage of the life cycle usually concludes with the user
accepting the software for operational use. The responsi-
bility for the sustaining engineering and maintenance of
the software may be assigned to an organization different
from the sponsor and/or the developer of the software.

2.7 Operations and Sustaining
Engineering

Operation of the software is conducted by the user in ac-
cordance with the operation and usage instructions in the
user’s documentation. Sustaining engineering is set of
software engineering and software maintenance activities
needed to

1. Retain the software’s initial functionality and design
integrity (software engineering)

2. Remove latent errors (corrective maintenance)

3. Respond to new or revised requirements (perfective
maintenance)

4. Adapt the software to changes in the operating envi-
ronment (adaptive maintenance)

Perform sustaining engineering activities in a traceable,
planned, and orderly manner based on;

1. The major life-cycle activities described in Sections
2.1 through 2.6

2. The verification and validation activities described
in Section 3

3. Updating the required documentation and software
deliverables as described in Section 4

4. The project management activities described in Sec-
tion 5

5. The configuration management activities described
in Section 6

6. The nonconformance reporting and corrective ac-
tion activities described in Section 7

7. The software quality assessment and improvement
activities described in Section 8

2.8 Retirement and Archiving

Retirement means the support for a software product is
terminated, and the routine use of the software is
prevented. The software and its documentation are ar-
chived.

3 VERIFICATION AND VALIDATION

3.1 Concepts and Definitions

Verification is the process of ensuring that the products
and processes of each major activity of the life cycle meet
the standards for the products and the objectives of that
major activity. Validation is the process of demonstrating
that the as-built software meets its requirements. Testing
is the process of detecting errors and verifying perform-
ance. Testing typically includes unit, integration, qualifi-
cation, and acceptance testing.

Independent verification and validation (IV&V) is verifi-
cation and validation by an organization that is both tech-
nically and managerially separate from the organization
responsible for developing the software. Sponsors and us-
ers of Level 1 software should together decide if the ex-
pense of a separate IV&V contractor is warranted for
their project.

Examples of verification activities include:

1. Formal major life cycle reviews and audits (e.g., Pre-
liminary Design Review)

2. Formal peer inspections (e.g., code inspections,
documentation reviews)

3. Informal tests (e.g., unit and integration testing)

Testing is the primary method of software validation.
Qualification and acceptance testing, which are formal
tests, are validation activities. Validation is accomplished
by review and demonstration in a live or simulated envi-
ronment. The objectives of validation activities are to en-
sure that:

1. The as-built software correctly and adequately per-
forms all intended functions

2. The software does not perform any unintended
function that either by itself or in combination with
other functions can degrade the entire system

3. All non-functional requirements (e.g., perform-
ance, design constraints, attributes, and external in-
terfaces) are met

Software validation activities include the development of
test plans, test procedures, and test reports.

Subject the validation of modifications to previously vali-
dated software to selective regression testing. The objec-
tives of regression testing are to:

1. Detect possible errors introduced during the modifi-
cation process

2. Ensure that the modifications have not caused unin-
tended adverse effects

3. Validate that the modified software still meets
specified requirements

3.2 Verification and Validation Activi-
ties

This section discusses verification and validation planning
activities (Section 3.2.1); formal life cycle reviews and
audits (Section 3.2.2); peer inspections (Section 3.2.3);
and testing (Section 3.2.4). Table 3-1 shows verification
and validation activities by major life-cycle activity. This
table is intended to show the approximate time in the life
cycle that these activities are performed. It is not in-
tended to be applied rigidly. Like all of the guidelines in
this document, management and engineering judgment,
in conjunction with cost-effectiveness decisions, must be
used in the application of these guidelines to the project
at hand.

3.2.1 Verification and Validation Planning
Activities

Planning for verification and validation takes place during
the sponsor’sinitial planning for the project (e.g., the pro-
posal stage) as well as during the requirements definition,
design, and implementation major activities of the life cy-
cle. Planning activities include:

1. Development or tailoring of procedures for con-
ducting formal life cycle reviews

2. Development or tailoring of procedures for review-
ing documentation and other deliverables

3. Development or tailoring of procedures for con-
ducting inspections

Table 3-1. Verification and Validation Activities by Major Life Cycle Activity

Major Life Cycle Activity

Verification and Validation Activities

Requirements Definition

Inspect requirements
Develop overall verification and validation plan
Conduct the Software Requirements Review

Design

Inspect design

Develop qualification test plan

Develop acceptance test plan

Conduct the Preliminary Design Review
Conduct the Critical Design Review

Implementation

Develop unit test plans

Inspect unit designs, unit code, and unit test plans
Perform unit testing

Inspect unit test results

Develop integration test plans

Inspect integration test plans

Perform integration testing

Inspect integration test results

Develop qualification test procedures

Qualification Testing

Perform qualification testing
Write qualification test report
Develop acceptance test procedures

Installation and Acceptance

Perform acceptance testing
Write acceptance test report

Sustaining Engineering and
Operations

Perform, as appropriate, the verification and
validation activities defined above for requirements
definition, design, implementation, qualification
testing, and installation and acceptance

Perform regression testing as well as new tests for all
levels of testing, as appropriate

Definition of a detailed test methodology, including 3.2.2 Formal Life Cycle Reviews and Audits
standards for test documentation, specifically for

test plans, test procedures, and test reports for both

qualification and acceptance testing

Preparation of a validation matrix showing the rela-
tionship of software requirements to the software

A formal review, with sponsor and developer manage-
ment and technical personnel participating, is held at or
near the end of a major activity of the life cycle. The ob-

architecture down to the unit level and to the tests jective of the formal reviews is to evaluate the deliverable

used to verify the requirements

products, the progress, and to a lesser degree, the
processes of the most recent life-cycle phase. Table 3-2

Identifying the need for development and test tools, summarizes the formal major life cycle reviews and audits

equipment, and data

by major life-cycle activities.

"Fable 3-2. Formal Life Cycle Reviews and Audits.

Major Life Cycle Activity

Formal Reviews and Audits

Requirements Definition

Software Requirements Review

Design Preliminary Design Review
Critical Design Review
Implementation Qualification Test Readiness

Review

Qualification Testing

Software Configuration Audit

Installation and Acceptance

Software Configuration Audit
Post Mortem Review

Operations and Sustaining
Engineering

The formal reviews and audits
above, as applicable

The products associated with each formal review are:

1. The documents {0 be reviewed (e.g., the software
requirements documentation for the Software
Requirements Review)

2. 'The agenda for the review

3. The hardcopy presentation materials

4. The minutesthat document the activities and results
of the review

5. The updated documents that were reviewed

Allow sufficient time for sponsor review participants to
review the documents prior to the review (2 to 3 weeks,
say). Identify in the agenda the review participants and
their specific responsibilities during the review. Assign a
person to capture key discussion items and actions items,
especially those related to specific assignments for updat-
ing the documentation that is the object of the review.
Document in the review minutes all proposed revisions to
the reviewed documents and all actual changes to the re-
viewed documents, and place the updated documents un-
der configuration control after approval by the sponsor.

The paragraphs below discuss each formal life cycle re-
view and audit.

3.2.2.1 Software Requirements Review

Conduct the Software Requirements Review at the end
of requirements definition. The primary objective of this
review is to assure that the sponsor and the developer un-
derstand and agree on the intent, completeness, verifi-
ability (through testing or other means), consistency, and
technical feasibility of the requirements. Secondary ob-
jectives are to review other documentation products
available at this time, including, for example, the Soft-
ware Project Plan and the overall verification and valida-
tion plan.

3.2.2.2 Preliminary Design Review

Conduct the Preliminary Design Review when the pre-
liminary design (software architecture) has been de-
signed. The primary objective of this review is to assure
that the preliminary design is complete (meets all the
requirements), verifiable (through testing or other
means), consistent, and technically feasible.

3.22.3 Critical Design Review

Conduct the Critical Design Review when the design is

omplete Design completion criteria should be defined
clearly in the Software Project Plan. Suggested design
completion criteria are:

1. All software units have been identified and all inter-
faces between and among the units have defined

2. All elements of the database have been defined
down to the data item level.

The primary objective of this review is to assure that the
design is complete (meets all the requirements and meets
design completion criteria), verifiable (through testing or
other means), consistent, and technically feasible.

3.22.4 Qualification Test Readiness Review

Conduct the Qualification Test Readiness Review when
integration testing and the qualification test procedures
are complete. The primary objective of this review is to
assure that the as-built software; the software documen-
tation; and qualification test data, test tools, test configu-
ration, and test team are ready for formal qualification
testing.

3.22.5 Software Configuration Audit

Conduct the Software Configuration Audit twice, first at
the completion of qualification testing and second at the
completion of acceptance testing. The primary objective
of this audit is to ensure that the as-built software:

1. Meets its requirements as documented in the soft-
ware requirements documentation

2. Conforms to its technical documentation

3. Does not contain any unauthorized changes

3.2.2.6 Post Mortem Review

Conduct the Post Mortem Review after the software has
been accepted. The objective of this audit is to capture
the lessons learned from the project for use by future
projects.

3.2.3 Formal Peer Inspections

A formal peer inspection is a detailed examination of a
product on a step-by-step or line-by-line basis. The pur-
pose of conducting formal peer inspections is to find er-
rors. The group that performs a peer inspection is com-
posed of peers of the person who developed the product
to be imspected. Peer inspections are objective
approaches that have been proved very effective in verify-
ing that products meet requirements.

For Level 1 software, require the developer to

1. Subject each intermediate product and final product
of development and maintenance (i.e., all documen-
tation, all code) to an internal peer inspection

2. Makeavailable to the sponsor the written procedure
and the product standards that govern peer inspec-
tions

10

3. Make available, if requested by the sponsor, records
that document the results of all peer inspections

For Level 2 software, encourage the developer to work
toward subjecting each intermediate product and final
product of development and maintenance to an internal
peer inspection.

See Section 3.3 for more discussion of formal peer inspec-
tions.

3.2.4 Testing

Testing is the process of exercising or evaluating a soft-
ware product or part of a software product by manual or
automated means to verify that it satisfies specified
requirements or to identify differences between expected
and actual results. Testing approaches depend on the
number of levels of testing. For most cases, four levels of
testing are sufficient:

1. Unit testing

2. Integration testing
3. Qualification testing
4. Acceptance testing

A unit of software is an element of the software design
that can be compiled or assembled and is relatively small
(e-g., 100 lines of high-order language code). Require that
each software unit be separately tested.

Integration testing focuses on a collection of related units
that performs an identifiable functional requirement. Re-
quire that integration testing be carried out. Both unit
testing and integration testing are classified as informal
testing because a formal test plan is not required.

-Qualification testing is the process that allows the spon-

sor to determine whether a software product complies
with its requirements. Acceptance testing is the process
that allows the sponsor to determine whether a software
product complies with its requirements after it has been
installed in its operational environment.

In many cases, acceptance tests will, to a large degree, co-
incide with qualification tests. In some cases, qualification
tests and acceptance tests are the same in all respects, in
which case the test hierarchy telescopes down to three
levels of testing. Both qualification testing and
accepiance testing are classified as formal testing because
a formal test plan is required.

Testing may be either requirements-driven or design-
driven. Informal testing may be either requirements-
driven or design-driven.

3.2.4.1 Design-Driven and Requirements-Driven
Testing

Design-driven or white-box testing is the process where
the tester examines the internal workings of the code.
Design-driven testing is accomplished by selécting input
data and other parameters based on the internal logic
paths to be checked. The goals of design-driven testing in-
clude ascertaining correctness of:

1. All paths through the code. For most software prod-
ucts, this can be feasibly done only at the unit test
level

2. Interfaces between units
3. Size and timing of critical elements of code

Requirements-driven or black-box testing is done by se-
lecting input data and other parameters based on the soft-
ware requirements and observing the outputs and reac-
tion of the software. In addition to testing for satisfaction
of requirements, some of the objectives of requirements-
driven testing are to ascertain:

1. Computational correctness

2. Proper handling of boundary conditions, including
extreme inputs and conditions that cause extreme
outputs

3. State transitioning as expected
4. Proper behavior under stress or high load
5. Adequate error detection, handling, and recovery

Sometimes the term “operational testing” is used. Opera-
tional testing is either the random or statistically-
controlled application of the software in its actual envi-
ronment or in a simulated version of the operational
environment. An example of such testing is the so-called
beta test use of an applications software package by indi-
viduals typical of the intended user population. In the
terminology used above, such operational testing and
beta testing would be qualification testing and are
requirements-driven.

3.2.42 Informal Testing
Require the developer to perform informal tests to:

1. Ensure software units and combinations of software
units are correct

11

2. Measure progress

“Informal” in this case does not mean the tests are con-
ducted in a casual manner, just that no deliverable test
plan is required, the sponsor is not formally involved, the
witnessing of the testing is not required, and that the
prime purpose of the test is to find errors.

3243 Formal Testing

For Level 1 and Level 2 software defined in this docu-
ment, formal testing is always requirements-driven and
its purpose is to demonstrate that the software meets its
requirements. The reader is cautioned not to confuse for-
mal testing with formal proof-of-correctness methods,
which are formal techniques used to prove mathemati-
cally that a computer program satisfies its specifications.

Require that formal tests include:

1. A sponsor-approved test plan and procedures
2. Test witnesses

3. Arecord of all nonconformance

4. A test report

If the software is to be developed and delivered in incre-
ments or builds, there may be incremental qualification
and acceptance tests. As a practical matter, any contrac-
tually required test is usually considered a formal test;
others are “informal.”

After acceptance of a software product, all changes to the
product should be accepted only as a result of a formal
test. Include regression testing in all post-acceptance
testing. Regression testing involves rerunning previously
used acceptance test cases to ensure that the change did
not introduce error into previously accepted software.

3.3 Techniques and Tools

Perhaps more tools have been developed to aid verifica-
tion and validation of software (especially testing) than
any other software activity. The tools available include
code tracers, special-purpose memory dumpers and for-
matters, data generators, simulations, and emulations.
Some tools are essential for testing any significant set of
software, and, if they have to be developed, may turn out
to be a significant cost and schedule driver. Ensure that
the need for test tools is examined during software design.

An especially useful technique for finding errors is the
formal peer inspection. The formal peer inspection is

performed by a team, each member of which has a
well-defined role. The team is led by a moderator, who is
formally trained in the inspection process. The team in-
cludes a reader, who leads the team through the item to
be inspected; one or more reviewers, who look for errors
in the product; a recorder, who notes the fautlts; and the
author, who helps explain the product.

12

This formal, highly .structured inspection process has
been extremely effective in finding and eliminating er-
rors. It can be applied to any product of the software de-
velopment process, including documents, design, and
code. One of its important side benefits is the direct feed-
back to the developer/author, often resulting in signifi-
cant improvement in product quality.

4 DOCUMENTATION AND DELIVERABLES

4.1 Concepts and Definitions

This section identifies the documentation and software
deliverables essential to a successful software develop-
ment project. This section should be used as a starting
point to help determine a realistic set of documentation
requirements and deliverables for the project at hand. A
realistic set of documentation requirements will resuli
from tailoring the information in this section in light of
past experience with similar projects, the size of the soft-
ware, and sponsor requirements. Small and short-
duration projects will normally produce fewer documents
or combine related documents.

4.2 Software Project Plan

A result of the developer’s planning process, a Software
Project Plan is written by the developer and details how
the developer will manage the software project. The Soft-
ware Project Plan is discussed in detail in Section 5.2.4.

4.3 Software Requirements
Documentation

Software requirements documentation specifies the
requirements that the software to be developed/main-
tained must meet. Include in this documentation the fol-
lowing, as applicable:

1. Functionality—the functions that the software is to
perform

2. Performance—the time-related requirements of
software operation such as speed, response time,
etc.

3. Design constraints imposed on implementation ac-
tivities—any elements that will restrict design op-
tions (e.g., specifying the hardware platform or the
programming language)

4. Attributes—characteristics of the software, its ac-
ceptance, or use (e.g., portability, acceptance crite-
ria, access control, availability, maintainability, etc.)

5. External interfaces—interactions with people, hard-
ware, and other software

An item can be called a software requirement only if its
achievement can be verified and validated. It is important
that each software requirement be traceable throughout
the stages of the software life cycle.

13

4.4 Software Design Documentation

In software design documentation, specify the overall
structure of the software so that it can be translated into
code. Include in this documentation:

1. Adescription of the major elements of the software
as they relate to the requirements

2. A description of the theoretical basis, physical
model, mathematical model, control flow, data flow,
control logic, and data structure

3. Anidentification and detailed definition of the soft-
ware units and data elements of the software archi-
tecture.

4.5 Software Implementation
Documentation

Software implementation documentation includes unit
designs (usually presented as a commentary prologue to
the unit’s source code) and the unit code itself.

4.6 Software Verification and Valida-
tion Documentation

Software verification and validation documentation in-
cludes:

1. An overall verification and validation plan that in-
cludes a description of:

a. ‘The objectives and processes for each review
and inspection

b The test methodology including the objectives
of each level of testing (e.g., unit, integration,
qualification, acceptance)

¢. Contents of each level of formal test documen-
tation (test plans, procedures, reports)

d. Howverification and validation documentation
will be organized so that traceability of reviews,
inspections, and tests to requirements and de-
sign will be apparent

2. Agenda, presentation materials, and minutes for

formal life-cycle reviews and audits
3. Results of formal peer inspections

4. Informal test plans for unit and integration testing

5. Informal test procedures for unit and integration
testing

6. Informal test reports for unit and integration testing

7. Formal test plans for qualification and acceptance
testing

8. Formal test procedures for qualification and accep-
tance testing

9. Formal test reports for qualification and acceptance
testing

4.7 User Documentation

In user documentation, include:

1. Adescription of the user’s interaction with the soft-
ware, and a description of any required training nec-
essary to use the software

2. Input and output specifications and formats, includ-
ing sample cases

3. A description of the limitations of the software

4. Adescription of anticipated errors and how the user
can respond

5. Foreach error message, provide the message, an ex-
planation of the message, how the message may
have come about, and actions that may or should be
taken

6. Information about obtaining user and sustaining en-
gineering support

4.8 Other Documentation

Other documentation may include the following:

1. Software Operations Concept
2. Standards and Procedures Manual
3. Software Maintenance Manual

4. Software Engineering Notebooks

14

4.9 Deliverables

Documentation deliverables are discussed in Section
4.9.1, and software deliverables are discussed in Sec-
tion 4.9.2.

4.9.1 Documentation Deliverables

The sponsor must decide what the contract deliverables
should be. For large projects, the following documenta-
tion deliverables are suggested:

1. Software Project Plan
2. Requirements documentation
3. Overall verification and validation plan

4. Design documentation (delivered three times: in-
itially at the Preliminary Design Review; updated at
the Critical Design Review; and updated after ac-
ceptance testing)

5. Qualification test plan

6. Qualification test procedures
7. Qualification test report

8. Acceptance test plan

9. Acceptance test procedures
10. Acceptance report

11. User documentation

For smaller projects, documents can be combined. For
example:

1. The requirements documentation can be combined
with the design documentation

2. The overall verification and validation plan can be
combined with the Software Project Plan

3. Test plans and test procedure documents can be
combined

4.9.2 Software Deliverables

The decision about what software deliverables to require
depends on numerous considerations, including

1. Whether the software will be implemented and de-
livered in segments or builds (for large software
products, builds have been proved to be a very effec-
tive risk-reduction technique)

2. What organization will perform maintenance and
the environment needed to perform maintenance.

If the maintainer is different from the developer, a maxi-
mal subset of the following list of possible software
deliverables should be chosen:

1. Source code
2. Object code
3. Executable code

4. Test cases for formal testing, including machine-
readable test procedures

5. Requiredjob control language, e.g., to compile, link,
load, and execute the software

15

6. Software and job control language necessary to es-
tablish and maintain the software development li-
brary

7. Software engineering environment
8. Software test environment

9. Non-developmental software

4.10 Techniques and Tools

Numerous tools exist for generating documentation:
word processing programs, desktop publishing programs,
graphics programs, spelling checkers, grammar checkers,
etc.

There are numerous standards for documentation that
should be consulted before deciding on the documenta-
tion requirements to be levied on the developer.

Consult an experienced project manager for his/her expe-
riences when deciding what deliverables to choose.

5 PROJECT MANAGEMENT

5.1 Concepts and Definitions

Assign the responsibility for each software development
or maintenance effort within an NRC sponsor organiza-
tion to a project manager. This sponsor project manager
should be an experienced NRC employee trained in man-
aging the technical and personnel aspects of the project.
He or she is assigned by sponsor management the respon-
sibility for the successful completion of the project, i.e.,
for meeting technical objectives within cost and schedule
constraints. Delegate to the sponsor project manager the
authority to negotiate, via the Government’s Contracting
Officer, commitments with the developer.

Similarly, the developer is expected to assign a project
manager who will be responsible for meeting the devel-
eper’s contractual commitments.

The two basic project management activities, discussed in
Sections 5.2 and 5.3, respectively, are: 1) project planning
and organizing and 2) project tracking and oversight.

5.2 Project Planning and Organizing

Project planning and organizing involves:

1. Development, by the sponsor project manager, of
required inputs to the contract, e.g., the statement
of work, schedule, list of deliverables, identification
of applicable standards, and software specification

2. The definition, by the sponsor project manager, of
work elements necessary to develop or maintain the
required software. The work elements are defined in
a statement of work that will be a part of the contract
with the developer

3. The establishment, by the developer and approval
by the sponsor, of budgets and schedules for each
defined work element

4. The establishment, by the developer, of a project or-
ganization for implementing the project; and assign-
ment of work elements, budgets, and schedules to
each organizational entity

5. Documentation of the overall plan for approval by
the sponsor project manager

Consider requiring that the developer’s organization as-
signed to plan for and perform formal testing be different
from and independent of the organization(s) that de-
signed and implemented the software.

17

5.2.1 Required Inputs to the Contract

Hold the sponsor project manager responsible for devel-
oping the following inputs to the contract: the statement
of work, top-level schedule, list of deliverables,
identification of applicable standards, and software speci-
fication.

The statement of work defines the activities required of
the developer. The statement of work should:

1. Define what the developer must do, not what the
software must do (the software specification defines
what the software must do)

2. Contain explicit tasks modeled after the life cycle ac-
tivities defined in Section 2 and the verification and
validation activities defined in Section 3

3. Identify the deliverable documentation and soft-
ware required of the developer (See Section 4)

4. Require the developer to perform project planning
and organization activities resulting in the Software
Project Plan (See Section 5.2.4)

5. Require the developer to perform project tracking
and oversight activities and deliver periodic progress
reports as indicated in Section 5.3

6. Require the developer to perform configuration
management activities as indicated in Section 6

7. Require the developer to establish and maintain a
nonconformance reporting and corrective action
system as indicated in Section 7

8. Require the developer to establish and maintain a
quality assessment and improvement program as in-
dicated in Section 8

Develop the top-level schedule around the:
1. Formal life-cycle reviews and audits discussed in

Section 3.2.2 (e.g., Software Requirements Review,
Preliminary Design Review, etc.)

2. Deliverables

The list of deliverables should contain:

1. The software end products

2. Required documentation

3. Agenda, presentation materials, and minutes for
formal reviews

4. Progress reports

The identification of applicable standards may include:

1. Programming language standards (e.g., FORTRAN
77)

2. Coding standards
3. Documentation standards

4. Defacto standards embedded in software and docu-
mentation to be maintained

The software specification documents the requirements
the software is to satisfy. The software specification is
often preliminary and subject to analysis and expansion by
the developer during the requirements definition proc-
ess. The software specification should contain:

1. Technical goals and objectives

2. Identification of users and their interaction with,
and use of the software

3. The characteristics presented in Section 4.3

5.2.2 Estimating

Both the sponsor and developer should derive estimates
for the size of the software products and documentation,
software development resources and costs, and critical
target computer resources. These estimates should be de-
rived from in-house experience-based data using docu-
mented procedures. Discuss overall projected software
size (estimated combined with actuals) at each formal re-
view.

5.2.3 Methodology, Standards, and
Procedures

Developers should work toward basing software planning
(and monitoring) activities on documented methodolo-
gies, standards, and procedures.

18

5.2.4 The Software Project Plan

Require the developer to submit, for sponsor project
manager approval, a Software Project Plan that appropri-
ately and realistically documents the required sofiware
activities and contractual commitments. When approved
by the sponsor project manager, the Software Project
Plan becomes the baseline management plan. Figure 5-1
shows a supgested table of contents for the Software
Project Plan.

Section 1 of the Software Project Plan should be kept
brief. Because the plan should be kept up to date, con-
sider requiring the developer to submit any changes to the
plan with the monthly progress reports.

Section 2 documents the developer’s management ap-
proach. The following paragraphs provide guidance to
the developer for the contents of each subsection:

1. 2.1—Planning Approach. Briefly describe the ap-
proach used to plan the project.

2. 2.2—Tracking and Oversight Approach. Briefly
describe the approach used to track: technical
progress, conformance to the planned schedule, and
costs as related to actual work performed. Include
approach to: supplier control; metrics; security;
training; and risk management

3. 2.3—Organization, Tasks, and Responsibilities.
Describe the project organization. Show how the
tasks of the statement of work are assigned to re-
sponsible elements of the project organization.

4. 2.4—Scheduling. Provide the initial, top-level
project schedule and the rationale for arriving at this
schedule.

5. 2.5—Resources. Identify project resources,
including staffing, software engineering facilities
and environment, and support tools. Identify Gov-
ernment Furnished Equipment (GFE) and Govern-
ment Furnished Information (GFT) required by the
developer.

6. 2.6—Configuration Management. Identify and
define project baselines. Include or reference
procedures for: change control; determining status
of baselines, proposed changes, and implemented
changes; release control; the software development
library; and code, access, and media control.

SECTION 1 — INTRODUCTION

1.1 Project Background and Objectives
1.2 Plan Scope and Organization

1.3 Plan Maintenance

SECTION 2 —— MANAGEMENT
APPROACH

2.1 Planning Approach

2.2 Tracking and Oversight Approach

23 Organization, Tasks, and Responsibilities
24 Scheduling

2.5 Resources

2.6 Configuration Management

SECTION 3 — TECHNICAL APPROACH

3.1 Implementing the Life Cycle Tasks of the
Statement of Work

32 Verification And Validation Approach

3.3 Nonconformance Reporting and
Corrective Action

3.4 Quality Assessment and Improvement
Approach

3.5 Deliverables

Figure 5-1
Table of Contents for a Software Project Plan

Section 3 documents the developer’s technical approach.
The following paragraphs provide guidance to the devel-
oper for the contents of each subsection:

1. 3.1—Implementing the Life Cycle Tasks of the
Statement of Work. Describe briefly how each ma-
jor life-cycle task of the statement of work will be im-
plemented.

2. 3.2—Verification and Validation Approach. De-
scribe the verification and validation approach. In-
clude the elements addressed in Section 3.

3. 3.3—Nonconformance Reporting and Corrective
Action Approach. Describe the nonconformance re-
porting and corrective action process, including
nonconformance detection and reporting, impact
assessment and corrective action, and tracking and
management reports. Identify the interrelation-
ships, if applicable, with the status accounting func-
tion of configuration management. Identify any
techniques and tools used (e.g., use of a data base
management system).

4. 3.4—Quality Assessment and Improvement
Approach. Describe the quality assessment and
improvement approach. Include the elements ad-
dressed in Section 8.

5. 3.3—Deliverables. Identify all deliverables and the
dates they are due.

6. 3.4—Standards, Procedures, Conventions, and
Metrics. Identify all standards, procedures, conven-
tions, and metrics to be used. Identify both product
standards (e.g., documentation standards, coding
standards) and process procedures (e.g., inspection
and review procedures).

5.3 Project Tracking and Oversight

Project tracking and oversight involves:

1. Monitoring, assessing, and reporting technical
progress

2. Determining and reporting schedule and cost status

3. Developing and implementing corrective action
plans as required

Monitoring, assessing, and reporting technical progress
requires tracking actual results and performance of the
software project against the Software Project Plan. Im-
plementation of planned verification and validation, con-
figuration management, and quality assessment and im-
provement activities are part of the ordinary tracking and
oversight functions. The key to monitoring progress on an
ongoing basis is to maintain communications at all levels
of the developer and sponsor organizations. Use formal
mechanisms such as reviews and reports and informal
mechanisms such as meetings and brainstorming sessions
to keep project members and the project manager in-

. formed. Track technical progress, costs, critical target

19

computer resources, the schedule, estimates for lines of
code, and risks in as quantitative way as possibie.

Hold the developer project manager responsible for de-
termining and reporting schedule and cost status in terms

of variances from the baseline plan. Require the devel-
oper to report the reasons for schedule and cost vari-
ances, e.g., unexpected problem complexity and changes
in requirements.

Take corrective actions when the actual results and per-
formance of the software project deviate significantly
from the Software Project Plan and current schedule. Ba-
sic corrective actions may include adding staff, extending
the work week, and/or upgrading (or downgrading) the
skill mix.

5.4 Supplier Control

If the developer plans to use subcontractors or vendors,
the sponsor and developer project managers should en-
sure that:

1. The developer selects qualified subcontractors and
vendors

2. The software standards, procedures, and product
requirements for the subcontract comply with the
prime contractor’s contractual commitments

3. ASoftware Project Plan as outlined in Section 5.2.4
is required of the major subcontractors

3. Commitments between the prime contractor and
subcontractor are understood and agreed to by both
parties

4. The prime contractor tracks the subcontractor’s ac-
tual results and performance against the commit-
ments

5. Potential technical and business risks are identified
and managed

5.5 Metrics

Plan to measure both the products being developed (the
software and its documentation) and the processes being

‘used. Process-related metrics (e.g., number of errors
found in the requirements or design) are often useful in
evaluating the programmatic risks involved in software
development.

Establish a technical performance measurement pro-
gram, using the following steps:

1. Develop a comprehensive list of key technical per-
formance parameters, associated with both products
and processes, that can be predicted and estimated

20

(e.g., accuracy, data access times, response time,
number of errors found in requirements).

2. For each parameter, specify the requirement and
develop a time-phased profile with tolerance bands
that depict the acceptable range of performance as
the project progresses.

3. Plan for periodic analysis and predictions of these
parameters, especially in conjunction with formal
life-cycle reviews

4. Keep the sponsor project manager informed of all
unfavorable trends and the corrective action plans

being initiated to resolve them .

5.6 Security

"The Computer Security Act of 1987 requires Federal

agencies to identify each computer system that contains
sensitive information and to prepare and implement a
plan for the security and privacy of these systems. OMB
Bulletin No. 90-08 provides guidance for preparing such
plans, but does not address the unique security require-
ments of local area networks. NUREG/BR-0166, In-
structions for Preparing Security Plans for Local Area Net-
works in Compliance With OMB Bulletin No 90-08,
provides guidelines for preparing security plans for local
area networks and contains OMB Bulletin No. 90-08 as
anappendix. If the proposed project will be a sensitive ap-
plication, IRM/DISS should be notified on the sensitive
system survey form.

5.7 Training

The right people properly trained are necessary for a suc-
cessful project. Required training includes both manage-
ment and technical training in the knowledge and skills of
a varietyof disciplines. Sponsor and developer project
managers need to evaluate training needs for:

1. Sponsor management and technical personnel

2. Developer management and technical personnel
3. Maintainer management and technical personnel
4. Operations management and technical personnel

When the evaluation is complete, invest in the required
training.

5.8 Risk Management

Initiate the risk management program while the techni-
cal, schedule, and budget planning efforts are under way.

The following activities are typical of a risk management
program:

1.

Identify, assess, document, and rank technical, cost,
resource, and schedule risks

Develop a risk mitigation plan
Formalize the risk management program

Review the risk management program regularly

21

5.9 Techniques and Tools

Numerous commercially available tools exist for:

1. Project management support
2. Estimating software costs and schedules
3. Earned-value reporting

Many organizations have made the commitment to pro-
vide in-depth training to software project managers.

6 CONFIGURATION MANAGEMENT

6.1 Concepts and Definitions

For a project to be successful, the developer and sponsor
must establish and maintain integrity of the software and
its documentation as they evolve throughout the life cy-
cle. Because requirements, the design, the code, and the
test environment can change significantly and often, it is
essential that change be managed successfully. Briefly
stated, configuration management is change manage-
ment.

Fundamental to configuration management are the con-
cepts of a baseline and change control. A baseline is a
document or software that has been formally reviewed
and agreed upon by the developer and sponsor, that
thereafter serves as the basis for further development
and that can be changed only through formal change con-
trol procedures. Change control is the process by which a
change to a baseline is proposed, evaluated, approved or
rejected, scheduled, and tracked.

There are four major functions of configuration manage-
ment:

1. The identification and establishment of baselines

2. Controlling both changes to baselines and the re-
lease of baselines

3. Recording and reporting the status of baselines,
change requests, and implemented changes

4. Verifying, through auditing, the correctness and
completeness of baselines prior to release

For a software configuration management program {o be
successful, experience has shown that most of the follow-
ing conditions exist:

1. The content and status of the software and docu-
mentation baselines are known at all times

2. The developerfollows a written configuration man-
agement policy that has the following characteris-
tics:

a Responsibility for configuration management
for each project is explicitly assigned

-b. Configuration management is implemented on
products throughout the product’s life cycle

c¢. Configuration management is implemented
for externally-deliverable products and for ap-
propriate products used inside the organization

d. All projects have a repository for storing key
software engineering elements and associated
configuration management records

e. Thesoftware baselines and configuration man-
agement activities are audited on a regular
basis

3. Agroup that is responsible for coordinating and im-
plementing configuration management for the
project exists or is established

4. Adequate resources and budget for performing con-
figuration management activities are provided

5. Members of the configuration management group
are trained in the objectives, procedures, and meth-
ods for performing their assigned activities

6. The configuration management activities are re-
viewed with the project manager on a regular basis

6.2 Baselines

Establish controlled and stable baselines for planning,
managing, and building the system. Explicitly identify as
project baselines software products (e.g., source code, ob-
ject code, test cases) and software process specifications
(e.g., standards and procedures) that are needed to estab-
lish and maintain stability of the software activities.

Establish a naming or labeling system that:

1. Uniquely identifies all project entities (e.g., docu-
ments, software elements, test cases)

2. Identifies changes by revision or version

3. Uniquely identifies each configuration/version of
‘revised software for use :

Establish the following baselines that will be controlled
by the sponsor’s configuration control board (CCB) (See
Section 6.3):

1. The project managemént baseline cons'isting of the
Software Project Plan, documented standards and
procedures, and up-to-date budgets and schedules

2. The requircments baseline consisting of the soft-
ware requirements documentation plus approved
changes

3. The product baseline consisting of software and
documentation resulting from the qualification test-
ing activity

4. The operational baseline consisting of software and
documentation resulting from the installation and
acceptance activity that is placed into operation

The developmental configuration is the developer’s soft-
ware and associated technical documentation that defines
the evolving software products during development. It
contains the software design and implementation prod-
ucts (software design documentation, code, test cases,
and related information). Require the developer to apply
internal configuration control procedures to the develop-
mental configuration as it evolves. See Sections 6.3 and
6.

6.3 Change Control

Once a baseline has been established, changes to the
baseline can be made only in accordance with formal
change contro! procedures. To manage changes to
baselines:

1. Establish a board (i.e., a configuration control board
(CCB)) controlled by the sponsor project manager
that has the authority for managing the software
baselines and approving or rejecting proposed
changes to them

2. Establish and follow a documented procedure forin-
itiating, recording, reviewing, approving or reject-
ing, and tracking change requests for baselines

3. Establish and follow a documented procedure for
ensuring that all changes, especially those to the
requirements and design, are appropriately re-
viewed for “ripple” effects and incorporated into all
related activities

4. Establish and follow a documented procedure to
create and control the release of software baseline
products

6.4 Status of Baselines and Changes

Track accurately the current status of baselines and
changes throughout development and maintenance. To
track status accurately:

24

1. Establish and follow a documented procedure 1o re-
cord the status of baselines and change requests

2. Create and distribute to affected groups and indi-
viduals standard reports documenting the configura-
tion management activities

6.5 Software Development Library

Require the developer to establish and maintain a soft-
ware development library (SDL). An SDL is a controlled
collection of software, documentation, and associated
tools and procedures used to facilitate the orderly devel-
opment and subsequent maintenance of software. The
SDL contains the developmental configuration as part of
its contents. An SDL provides storage of and controlled
aceess to software and documentation in human-readable
form, machine readable form, or both. The SDL may also
contain management data pertinent to the software de-
velopment project. The SDL becomes the repository for
the software baselines when the product baseline and the
operational baseline are established.

6.6 Software, Access, and Media
Control

Require the developer to establish and maintain the fa-
cilities and procedures used to

1. Maintain, store, secure, and document controlled
versions of the software throughout the life cycle.
This may be implemented with the SDL (See Sec-
tion 6.5)

2. Permit authorized and prevent unauthorized access
to the software and documentation

3. Identify the media for each software product and the
documentation required to store the media, includ-
ing the copy and restore process

4. Protect software physical media from unauthorized
access on inadvertent damage or degradation
throughout the life cycle.

6.7 Configuration Audits

Require the developer to plan and execute documenta-
tion audits, software configuration audits, and in-process
audits. Require the developer to establish and follow a
documented procedure to prepare for, conduct, report
results from, and track action from configuration audits.

A documentation audit is a line-by-line comparison of re-
vised documentation against the previous version of the
documentation to ensure that only approved changes

have been incorporated. A documentation audit is typi-
cally performed after a formal life-cycle review (e.g., after
the Critical Design Review to ensure only CCB-approved
changes to the software requirements documentation and
software design documentation have been incorporated).

As indicated in Section 3.2.2.6, the Software Configura-
tion Audit is executed twice, first at the completion of
qualification testing and second at the completion of ac-
ceptance testing.

Periodic in-process audits are performed to assess how
well the configuration management standards and pro-

25

cedures are being followed and how effective they are in
managing the software baselines.

6.8 Techniques and Tools

Use a data base management System as a tool in tracking
and reporting on proposed and actual changes to
baselines. Often the data base of proposed and actual
changes is integrated with the data base used to track and
report on nonconformances and associated corrective ac-
tion (see Section 8).

In addition, choose a software tool, often a part of the op-
erating system utilities, to help manage the SDL.

7 NONCONFORMANCE REPORTING AND CORRECTIVE ACTION

7.1 Concepts and Definitions

A nonconformance, often called a problem, discrepancy,
fault, or error, is any failure of any document, code, data
structure, or process to meet its requirements or stan-
dards. Corrective action is a general name for the process
by which nonconformances are corrected, verified, and
controlled.

Require the developer to establish and maintain a
nonconformance reporting and corrective action system
and associated procedures. The purpose of a noncon-
formance reporting and corrective action system is to re-
port, analyze, correct, and verify nonconformances and
collect information from which reports on the overall
status of nonconformances can be made.

The need for a nonconformance reporting and corrective
action system arises early in the software life cycle, as
soon as the first documents and other products are devel-
oped. A nonconformance reporting and corrective action
system should:

1. Define a nonconformance report form
2. Identify the organization(s) and procedures for:

a. Analyzing the nonconformance
b. Assigning priorities

c. Communicating with the person who reporte
the nonconformance '

d. Correcting the nonconformance

e. Verifying the correction and/or the corrective
action

3. Track the status of the nonconformance and correc-
tive action

4. Produce management reports

7.2 Activities

There are three basic activities associated with a noncon-
formance and corrective action system:

1. Nonconformance detection and reporting (Section
7.2.1)

27

2. Impact assessment and corrective action (Section
7.2.2)

3. Tracking and management reports (Section 7.2.3)

7.2.1 Nonconformance Detection and
Reporting

Allow nonconformance reports to be filed against any
product in any part of the software life cycle by anyone
associated with the project. Normally a nonconformance
reporting and corrective action system is used after a
product is first approved or baselined by its developer and
released for wider use. For example, while a developer is
unit testing and integration testing the code, errors found
may be tracked only locally and not in the noncon-
formance reporting and corrective action system. After
the code is declared correct and released for gualification
testing by the implementation group, the noncon-
formance reporting and corrective action system is used
toinform the users of the code and the designer/program-
mer about nonconformances and to assure that the non-
conformances are corrected, verified, and not over-
looked.

Examples of the information that a nonconformance re-
port form might contain are:

1. Date and time of the detection of the noncon-
formance

2. Nonconformance identification (report number)
3. Reporting individual and organization

4. Reporting individual’s determination of the critical-
ity of the nonconformance

5. Statement of the nonconformance

6. Organization responsible for analysis of the
nonconformance

7. Result of the analysis of the nonconformance

8. The project’s determination of the criticality of the
nonconformance

9. Organization(s) responsible for designing, imple-
menting, and verifying the corrective action or “fix”

10. Identification of the unit(s) of code, data, or docu-

mentation in which corrective action must be taken

11. Summary of the test case results (or other verifica-
tion activity) indicating that the corrective action was

successfully implemented

12. Identification of the date or version of the product(s)

or baseline in which the correction will be included

13. Date on which the nonconformance is closed

7.2.2 Impact Assessment and Corrective
Action

Evaluate all nonconformances for criticality and level of
importance. Consider the following factors:

1. The impact of not correcting the nonconformance

2. The resources required for correcting the noncon-
formance

3. The impact on other baselined items if the noncon-
formance is corrected

Ensure that a written procedure exists to control the cor-
rective action process. Include in this procedure a follow-
up activity to ensure the nonconformance has been docu-
mented and corrected in the appropriate version of
software and to assure that adequate testing, including re-
gression testing, has been done.

7.2.3 Tracking and Management Reports

After the nonconformance report is prepared by the indi-
vidual who found the nonconformance, enter the report
data into a controlling system. Data base management
systems are often used to increase productivity in the

28

tracking of nonconformances and providing management
reports. Entering the nonconformance report electroni-
cally can increase productivity further.

Provide in the nonconformance tracking and reporting
system management reports containing such information
as nonconformance and correction status, the number of
nonconformance found per product, and the criticality of
open problems. The data enable the impact of the
nonconformance to be evaluated so that the use of re-
sources may be prioritized.

7.3 Interrelationships

The nonconformance reporting and corrective action sys-
tem is a basic and fundamental tool for project manage-
ment and for assuring quality products. As such it impacts
and interacts with many software management, verifica-
tion and validation, and quality assessment and improve-
ment activities. For example, it interacts with:

1. Configuration management activities that deal with
product changes and versions that result from cor-
recting nonconformances

2. Requirements management activities because some
nonconformance reports will contain requirements
changes disguised as nonconformances. These re-
ports should result in the opening of a change re-
quest

3. Quality improvement activities that study trends in
nonconformances in specific products or processes

7.4 Techniques and Tools

Consider using an automated tracking system for
nonconformance reports and an automatic capability to
identify and record changes that occur as a result of the
resolution of the nonconformances.

8 QUALITY ASSESSMENT AND IMPROVEMENT

8.1 Concepts and Definitions

Require the developer to institute a quality assessment
and improvement program. The objective of this program
is assess and improve the quality of:

1. Deliverable software and documentation
2. The processes used to produce deliverable software

3. Non-deliverable software (software not required to
be delivered by the contract)

8.2 Responsibility For Quality Assess-
ment and Improvement

Allow the developer the freedom in assigning responsibil-
ity for meeting the objectives of the quality ‘assessment
and improvement program. However, for Level 1 soft-
ware development and maintenance efforts, require that
the persons responsible for the assessments of a product
* or activity be independent of the persons who developed
the product, performed the activity, or are responsible for
the product or activity. This restriction does not preclude
members of the development team from participating in
these assessments.

8.3 Documentation For Quality
Assessment and Improvement

The developer’s approach to quality assessment and im-
provement will be documented in the Software Project
Plan. This approach will be implemented throughout the
development or maintenance effort. Developers should
work toward defining in detail their methodology for
quality assessment and improvement in written proce-
dures.

8.4 Quality Assessments

Require the developer to assess:

1. Software
2. Software documentation
3. Processes used in software development

A prerequisite to‘any assessment is a yardstick or standard
against which a product or process can be measured or as-
sessed. A key yardstick is the developer’s “software

29

plans”. This is a collective term used to describe the de-
veloper’s plans, methodologies, standards, and proce-
dures for software management, software engineering,
software verification and validation, software documenta-
tion, software product evaluation, and software configu-
ration management.

Table 8-1 identifies the products and processes to be as-
sessed and the objectives of the assessments.

8.5 Quality Records Collection,
Maintenance, and Retention

Require the developer to prepare and maintain records
of the quality assessment and improvement activities.

Require the developer to prepare a software quality as-
sessment record for each assessment required by the con-
tract. Require these records to contain as a minimum:

1. Assessment date
2. Assessment participants
3. Assessment criteria

4. Assessment results including detected problems,
with reference to the appropriate nonconformance
reports, as applicable |

5. Recommended corrective action

Include in these required records the nonconformance
reports that are the basis of the nonconformance report-
ing and corrective action system outlined in Section 7. Re-
quire the developer to make quality records available for
sponsor review and to maintain them for the life of the
contract.

8.6 Quality Improvement

Encourage the developer to integrate quality assessment
activities with quality improvement activities (which may
be part of the developer’s approach to total quality man-
agement).

8.7 Techniques and Tools

Checklists for quality audits and inspections and auto-
mated code standards analyzers are examples of tools
used in quality assessment activities.

Table 8.1

Assessments of Products and Processes Used in Software Development

Product or Process
-To Be Assessed

Assurance Objectives

Software

Compliance with the contract and adherence to the
software plans

Software plans

e All software plans required by the contract have been
documented

e The software plans comply with the contract
¢ Each software plan is consistent with other software plans

Deliverable software

e FEach document adheres to the required format
documentation

o Each document complies to the contract

Software management

Compliance with the contract and adherence to the software
plans

Software engineering

Compliance with the contract and adherence to the software
plans

Software qualification

¢ The qualification plans and procedures include provisions
for all requirements

o Software qualification is conducted as required by the
contract and as specified in the software plans

e The version number of each item being qualified and each
item used in qualification is documented

e The results of required qualifications are accurately
recorded and analyzed to determine whether the software
meets its specified requirements

e All required facilities for qualification are available

Software configuration

Compliance with the contract and adherence to the software
plans management

Software corrective actions

Compliance with the contract and adherence to the software
plans and:

e All nonconformances detected in processes and in products
that are under developer or sponsor control are promptly
reported and entered into the software corrective action
process

e Each nonconformance is classified, as required by the
contract, and analysis is performed to identify trends in the
nonconformances reported

e Action is initiated on the nonconformances and adverse
trends, resolution is achieved, status is tracked and reported,
and records are maintained for the life of the contract

¢ Corrective actions are evaluated to: 1) verify that problems
have been resolved, 2) verify that adverse trends have been
reversed, 3) verify that changes have been correctly
implemented in the appropriate processes and products, and
4) determine whether additional problems have been
introduced

30

Table 8.1 (continued)

Product or Process
To Be Assessed

Assurance Objectives

Documentation and media
distribution

Compliance with the contract and adherence to the
software plans

Evaluation of the controls exercised on the internal
distribution of deliverable media and documentation

Storage, handling, and
delivery

Compliance with the contract and adherence to the
software plans

Evaluation of the storage, handling, packaging, shipping, and
external distribution of deliverable software and associated
documentation

Software development
library

The.library and its operation comply with the
contract and adhere to the software plans

The most recent authorized version of the materials
under configuration control are clearly identified
and are the ones routinely available from the library

Previous versions of materials under configuration
control are clearly identified and controlled to
provide an audit trail that permits reconstruction of
all changes made to each baseline

Non-developmental
software

Evaluate each item of non-developmental software to
be incorporated into deliverable software to assure that:

Objective evidence exists, prior to its incorporation,
that it performs required functions

It was placed under configuration control prior to
its incorporation

The data rights provisions are consistent with the contract

Non-deliverable software

Evaluate each item of non-deliverable software used in the
qualification or acceptance of deliverable software to assure
that:

Objective evidence exists, prior to its intended use,
that it performs required functions

It was placed under configuration control prior to its use

Deliverable elements of the
software engineering and test
environments

Evaluate each deliverable element of the software
engineering and test environments to assure that:

It complies with the contract and adheres to the
software plans

Objective evidence exists, prior to its use, that it
performs required functions

It was placed under configuration control prior to its use
The data rights provisions are consistent with the contract

31

Table 8.1 (continued)

Product or Process
To Be Assessed

Assurance Objectives

Subcontractor management

Evaluate all subcontractor activity to assure that:

All subcontractor-developed software and related
documentation deliverable to the sponsor satisfies the
requirements of the prime contract

A set of baselined requirements is established and
maintained for the software to be developed by the
subcontractor

Applicable software quality assessment and improvement
requirements are included or referenced in the subcontract
or purchase documents

Access is available for developer reviews at subcontractor and
vendor facilities

The sponsor has the right to review all software products and
activities required by the subcontract, at subcontractor
facilities, to determine compliance with the contract. Sponsor
review does not constitute acceptance, nor does it in any way
replace assessment by the developer or otherwise relieve the
developer of his responsibility to furnish acceptable software
and associated documentation

Acceptance inspection and
preparation for delivery

Compliance with the contract and adherence to the software
plans

Evaluation of the controls exercised on the internal
distribution of deliverable media and documentation

Participation in formal reviews
and audits

Prior to each formal review and audit, assure that 1) all
required products will be available and ready in sufficient
time for sponsor review before the review meeting and 2) all
required preparations have been made

At each formal review and audit, require the developer to
present an assessment of the status and quality of each of the
development products reviewed

Following each formal review and audit, require the
developer to assure that all software-related action items
assigned to the developer have been performed

32

9 SOFTWARE DEVELOPED BEFORE ISSUANCE OF THIS DOCUMENT

All the detailed guidelines in this document obviously
cannot be applied in a cost-effective manner to software
developed before this document was issued.

However, Level 1 software developed before this docu-
ment was issued should receive as-is verification and vali-
dation or certification based on its length of service and
error profile. In addition, the software should be placed
under configuration control in accordance with the guid-
ance in ASME Standard NQA 2, Part 2.7, Section 10.2.

Level 1 and Level 2 software developed before this docu-
ment was issued can benefit from selected application of
the software quality assurance principles presented in
this document. The following list provides, in relative pri-
ority order, suggested actions that can be taken on a step-
by-step basis to enhance existing software cost-
effectively:

33

1. Establish and maintain a software development
library

2. Institute a nonconformance and corrective action
system

3. Develop a set of acceptance test cases
4. Institute a clearly defined test program

5. Institute a well-defined configuration management
system, especially a software release system

6. Begin code inspections

Ultimately, however, the extent to which new techniques
can or should be introduced into ongoing maintenance ef-
fortsisa matter of managerial and engineering judgment.

APPENDIX A

Sample Software Project Plan

Appendix A consists of a sample Software Project Plan.
Although the project and the sample plan are fictitious,
the sample plan is provided to indicate an acceptable
level of detail.

The statement of work for the project is divided into ten
tasks as follows:

1.

2.

Task 1—Requirements Definition
Task 2—Design
Task 3—Implementation

Task 4—Qualification Testing

35

5.

10.

Task S—Installation and Acceptance
Task 6 —Verification and Validation
Task 7—Project Management

Task 8—Configuration Management

Task 9—Nonconformance Reporting and Correc-
tive Action

Task 10—Quality Assessment and Improvement

The sample software project plan follows.

SAMPLE SOFTWARE PROJECT PLAN

SECTION 1 ——-INTRODUCTION

1.1 Project Objectives

The ABC Corporation has been developing, enhancing,
and maintaining the X'YZ analysis tool for NRC in-house
use for the past 8 years. The current contract requires the
ABC Corporation to update Version 3.4 of XYZ by:

1. Adding two new major capabilities, C1 and C2

2. Analyzing and implementing corrective action for 30
known nonconformances in Version 3.4 of XYZ

3. Analyzing and implementing a corrective action for
as many as 20 yet-to-be-determined nonconfor-
mances in Version 3.4 of XYZ.

The contract period of performance is 2 years from the
contract start date.

1.2 Plan Scope and Organization

This software project plan defines ABC’s management
and technical approach to meet the requirements of the
contract. It also identifies the standards, procedures, con-
ventions, and metrics that will be applied throughout the
project.

37

Section 2, Management Approach, summarizes ABC’s
planning approach (Section 2.1); tracking and oversight
approach (Section 2.2); project organization, including
tasks and responsibilities (Section 2.3); the top-level
schedule (Section 2.4); the resources required (Section
2.5); and configuration management approach (Sec-
tion 2.6).

Section 3, Technical Approach, summarizes ABC’s ap-
proach to implementing the life-cycle tasks of the state-
ment of work (Section 3.1); verification and validation ap-
proach (Section 3.2); nonconformance reporting and
corrective action approach (Section 3.3); quality assess-
ment and improvement approach (Section 3.4). The con-
tractually required deliverables are listed in Section 3.5.

Section 4 lists all the standards, procedures, conventions,
and metrics that will be applied on the contract.

1.3 Plan Maintenance

This document is intended to be an up-to-date statement
of ABC’s plan for managing the contract. Therefore,
changes to the document will be issued as change pages as
required. In accordance with the contract, change pages
will be submitted to the NRC sponsor monthly as an at-
tachment to the monthly progress report.

SECTION 2--MANAGEMENT APPROACH

ABC’s management approach responds to Task 7,
Project Management, and Task 8, Configuration Man-
agement, of the statement of work.

2.1 Planning Approach

ABC’s planning approach, which was used to generate
this plan, consists of the following steps performed in an
iterative process:

1. Defining the work

2. Estimating the schedule and staffing

3. Planning for technical performance measurement
4. Planning risk management

5. Performing detailed planning

The work elements were derived from an analysis of the
statement of work. Then, based on the analysis results
and ABC’s past experience, the work elements were
structured into a work breakdown structure. In develop-
ing the master schedule, ABC took into consideration the
technical complexities, the NRC’s required milestones,
task interdependencies, the estimated number of lines of
source code, and t he expected staff skill mix.

Analysis of the C1 and C2 capabilities resulted in the
identification of the following three key technical per-
formance measures: (1) the estimated source lines of
code; (2) the time needed to perform the Monte Carlo
analysis for the C1 capability; and (3) the rate of conver-
gence of the new eigenvalue algorithm in the C2 capabil-

ity.

Two major risks have been identified: (1) meeting the re-
quirement to incorporate an undetermined number of
new nonconformances into the new release, Version 4.0,
within schedule and cost constraints and (2) the ability to
meet the required rate of convergence of the new eigen-
value algorithm in the C2 capability.

Cost accounts were planned in detail to create a sound ba-
sis for setting the project budget and for controlling pro-
ject work activities. A detailed outline for each deliver-
able document, in conjunction with ABC’s past
experience providing high-quality documentation, was
used to determine the cost and schedule for each deliver-
able.

39

The above-discussed planning activities will be repeated
if re-planning becomes necessary during the life of the
project.

2.2 Tracking and Oversight Approach

Project tracking and oversight involves:

1. Monitoring, assessing, and reporting technical
progress

2. Determining and reporting schedule and cost
progress

3. Developing and implementing corrective action
plans, as required

ABC will track actual technical results and performance
against this baseline project plan. Implementation of
planned verification and validation, configuration man-
agement, and quality assessment and improvement activi-
ties will be part of the day-to-day tracking and oversight
responsibilities of the ABC management team.

Each ABC manager will be a hands-on manager, i.e., he/
she will monitor technical, schedule, and cost status
progress on an ongoing basis through: daily person-to-
person and telephone contact with their assigned people,
weekly staff meetings, the monthly progress meeting with
their sponsor counterparts, and internal ABC informa-
tion systems.

The ABC Project Manager will keep in close contact with
the NRC Project Manager by telephone. The ABC
Project Manager will plan for and lead the monthly pro-
gress meeting where

1. Technical, schedule, and cost status
2. Work performed during the reporting period
3. Work planned for the next month

4. Risks, problems, and concerns and recommended
solutions will be discussed.

Within ABC, weekly progress reports from ABC manag-
ers and lead technical personnel and informal mecha-
nisms, such as meetings and brainstorming sessions, will
keep the Project Manager and the project members in-
formed. ABC’s earned-value cost and schedule reporting
system will provide a quantitative relationship between
technical, schedule, and cost progress. The two major

risks identified above will be reviewed at a minimum
monthly and more frequently if required.

If tracking and oversight activities uncover variances from
the baseline plan, the ABC management team will take
appropriate corrective action. Corrective actions may in-
clude one or more of the following:

1. Add staff or extend work week
2. Upgrade or downgrade skill mix
3. Implement specific workarounds

4. Offset an unfavorable variance in one area with fa-
vorable variances in other areas

5. Improve productivity through training, process im-
provement, new tools or techniques, etc.

6. Combine previously separated activities or products

2.2.1 Supplier Control

ABC does not plan to have subcontractors on the con-
tract.

2.2.2 Metrics

ABC will track four key metrics and keep the NRC spon-
sor apprised of any major changes from anticipated val-
ues. The three metrics are:

1. Estimated source lines of code

2. The time needed to perform the Monte Carlo analy-
sis for the C1 capability

3. The rate of convergence of the new eigenvalue
algorithm in the C2 capability

4. Thenumber and types of errors uncovered by formal
peer inspections

2.2.3 Security

There are no security requirements or implications on the
contract.

40

2.2.4 Training

Prior to the start of the coniract:

1. The ABC Project Manager will participate in the
l-week, case-study-oriented project manager’s
workshop instituted at ABC in 1991

2. All project members, both technical and manage-
ment, will attend the 24-hour ABC-sponsored
course on continuous improvement

2.3 Organization, Tasks, and
Responsibilities

The ABC XYZ System Upgrade Project consists of the
following organizational elements:

1. Project Management Office
2. Analysis and User Support Group
3. Design and Implementation Group

4. Qualification Test and Configuration Management
Group

Each of the three groups reports to the Project Manager
and are led by senior technical personnel who have an av-
erage of Syears experience in the design and implementa-
tion of the X'YZ software. All members of the Qualifica-
tion Test and Configuration Management Group are and
will be independent of the software design and imple-
mentation efforts to ensure their freedom of action.

In addition, the Quality Evaluation and Improvement
Group, which is a non-project group reporting to the
ABC Vice President for Quality Evaluation and Improve-
ment, will work in partnership with the ABC XYZ Sys-
tem Upgrade Project management to meet the require-
ments of Task 9, Quality Assessment and Improvement,
of the statement of work. Table 2-1 shows how the major
tasks of the statement of work are assigned to the project
organizational elements. The letter “P” implies that the
group or Project Manager has primary responsibility and
the letter “S” implies that the group or Project Manager
has secondary responsibility. Note that for verification
and validation activities all organizations are marked with
a “P” to indicate that each organizational element is re-
sponsible for verifying its own products.

Table 2.1
Responsibilities for the Tasks of the Statement of Work

Responsibilities Qualification
Test and
Project Analysis and Design and Configuration
Management User Support Implementation | Management
Tasks Office Group Group Group
Planning and Organizing P S S S
Tracking and Monitoring P P P p
Requirements Analysis
and Definition P
Design S P
Implementation S | 4
Qualification Testing S S P
Instaliation and Acceptance S S P
User Support P S S
Verification and Validation P P P P
Configuration Management S S P
Nonconformance Reporting
and Corrective Action S S S P
Quality Assessment and
Improvement P S S S

2.4 Scheduling

The project master schedule is presented in Figure 2-1.
This schedule was arrived by analyzing the work to be
done in light of ABC’s past experience and historical data
on previous XYZ projects.and other projects of similar
size and scope. The analysis showed tlrat NRC’s mile-
stones are realistic and can be met if the risks are man-
aged properly. Each group of the project organization will
be responsible for developing detailed schedules for théir
assigned products and activities.

2.5 Resources

The project staffing profile for the 24-month period of
performance of the contract is shown in Figure 2-2. This

41

staffing profile was developed after detailed analysis of
the work to be accomplished and of the requirements of
the master schedule. The software engineering environ-
ment, which has been successfully used for XYZ mainte-
nance for the past 2 years and includes the local area net-
work of 14 QRS Series 7000 Workstations supported by
the Super Groupware CASE tool set, is under control of
the ABC Project Manager. Thus ABC is confident that
this hardware and software suite will be adequate for all
tasks through qualification testing. ABC will require 8
hours per day, 6 days a week, of exclusive use of the NRC-
furnished DED computer at NRC’s Rockville, Maryland,
headquarters to support acceptance testing. ABC will re-
view these requirements with the NRC at each formal
review.

[44

XYZ Version 4.0 Project

10__|Name

1993

1994

1996

1907

1995
ari|orz2|or3ard arijovz]avs]ovd |avijovz]av3fave

arilar2lar3jor4

orijor2

1 | Requirements Dofinition

Sottware Requirements Reviow

Design

Design Raview

Implementation

Qualification Test Readiness Review

Qualification Teeting

@f{ ~| o] »| »| W N

Installation and Acceptance Testng

Master Schedule
1171592

Progress NS SuTTErY P

Noncritcal [N Viosone @

e

e 1

VV7 Varcinn 4 0 Praiect Master Schedule

Paf01g (P UOISIIA ZAX U1 10§ Ao Buyyers ~g-z 2ndyg

Jan 93
Feb '33
Mar "93
Apr "93
May .\‘93
Jun '93
Jul 93
Aug93
Sep'd3
Oct 93
Nov '93
Dec '93
Jon '94
Feb ‘94
Mar '94
Apr 'S4
May 94
Jun %4
Jul "94
Aug'94
Sep'94
Oct 94
Nov '94
Dec '94

94

full Time Personnel

2.6 Configuration Management

2.6.1 Overview

ABC will support the NRC in the four major functions of
configuration management:

1. The identification and establishment of baselines

2. Controlling both changes to baselines and the re-
lease of baselines

3. Recording and reporting the status of baselines,
change requests, and implemented changes

4. Verifying, through auditing, the correctness and
completeness of baselines prior their release

ABC will ensure that:

1. The content and status of the software and docu-
mentation baselines are known at all times

2. Configuration management is implemented for
externally-deliverable products and for appropriate
products used inside the ABC Project

3. There will be a repository for storing key software
engineering elements and associated configuration
management records

4. The software baselines and configuration manage-
ment activities are audited on a regular basis

5. The Qualification Testing and Configuration Man-
agement Group will be responsible for coordinating
configuration management for the project

6. Adequate resources and budget for performing con-
figuration management activities have been allo-
cated

7. Staff members responsible for coordination of con-
figuration management activities have been trained
in the objectives, procedures, and methods of per-
forming their duties

2.6.2 Baselines

ABC will establish controlled and stable baselines for
planning, managing, and building Version 4.0 of XYZ.

ABC will establish a naming or labeling system that:

44

1. Uniquely identifies all project entities (e.g., docu-
ments, software elements, test cases)

2. Identifies changes by revision or version

3. Uniquely identifies each configuration/version of
revised software for use

We will support NRC in the establishment of the follow-
ing baselines that will be controlled by the NRC XYZ
configuration control board (CCB):

1. The project management baseline consisting of the
Software Project Plan, documented standards and
procedures, and up-to-date budgets and schedules

2. 'The requirements baseline consisting of the soft-
ware requirements documentation plus approved
changes

3. The product baseline consisting of software and
documentation resulting from the qualification test-
ing major activity

4. The operational baseline consisting of software and
documentation, resulting from the installation and
acceptance activity, that is placed into operation

The XYZ CCB is controlled by the NRC.

ABC will establish and control the developmental con-
figuration, which will contain the software design and im-
plementation products (software design documentation,
code, test cases, and related information) of the evolving
Version 4.0 of XYZ. We will apply proven ABC internal
configuration control procedures and automated tools,
used in previous XYZ work, to the developmental con-
figuration as it evolves.

2.6.3 Change Control

ABC will support the NRC in the implementation of con-
figuration control procedures established on previous
XYZ upgrade projects. Specifically we will support the
NRC in the management of changes to baselines as fol-
lows:

1. Implement the directives of the NRC XYZ CCB
(XYZ Procedure CM-03)

2. Follow XYZ Procedure CM-02 for initiating, re-
cording, reviewing, approving or rejecting, and
tracking requests for changes to baselines

3. Follow XYZ Procedure CM-04 for ensuring that all
changes, especially those to the requirements and

the top-level design, are appropriately reviewed for
“ripple” effects and incorporated into all related ac-
tivities

4. Update, gain approval, and follow XYZ Procedure
CM-05, to create and control the release of software
baseline products

2.6.4 Status of Baselines and Changes

ABC will track the current status of baselines and
changes throughout development and maintenance by:

1. Following XYZ Procedure CM-06 to record and re-
port the status of baselines and change requests

2. Creating and distributing to affected groups and in-
dividuals standard reports, in accordance with XYZ
Procedure CM-06, documenting the configuration
management activities

2.6.5 Software Development Library

ABC will continue to maintain the XYZ software devel-
opmentlibrary (SDL) in accordance with XYZ Procedure
CM-01. This procedure will be updated if required.

2.6.6 Software, Media, and Access Control

ABC will maintain the facilities and the associated XYZ
Procedure CM-01 used to maintain, store, secure, and
document controlled versions of the software throughout
the life cycle.

ABC will establish and maintain the facilities and proce-
dures used to

45

1. Identify the media for each software product and the
documentation required to store the media

2. Protect software physical media from unauthorized
access and inadvertent damage or degradation
throughout the life cycle.

2.6.7 Configuration Audits

ABC will follow existing XYZ configuration manage-
ment procedures to prepare for, conduct, report results
from, and track action items based on results of documen-
tation audits, software configuration audits, and in-
process-audits.

ABC will conduct documentation audits on updates to all
documents in accordance with XYZ Procedure CM-07.

Software configuration audits will be performed at the
conclusion of both qualification testing and acceptance
testing in accordance with XYZ Procedure CM-(8.

ABC will conduct in-process audits at least once a year to
assess how well the configuration management standards
and procedures are being followed and how effective they
are in managing the software baselines. In-process audits
will be conducted in accordance with XYZ Procedure
CM-09.

2.6.8 Techniques and Tools

ABC will continue to use the dBASE III XYZ Noncon-
formance and Corrective Action System on an industry-
standard Personal Computer workstation to track non-
conformances, action items, and their resolutions. In
addition, the commercially available DDD software tool
will be used in the management of the software develop-
ment library.

SECTION 3 — TECHNICAL APPROACH

Section 3 responds to the following eight technical tasks
of the statement of work:

Task 1—Requirements Definition (Section 3.1.1)
Task 2—Design (Section 3.1.2)

Task 3—Implementation (Section 3.1.3)

Task 4—Qualification Testing (Section 3.1.4)

Task 5—Installation and Acceptance (Section 3.1.5)
Task 6—Verification and Validation (Section 3.2)

Task 9—Nonconformance Reporting And Corrective Ac-
tion (Section 3.3)

Task 10—Quality Assessment and Improvement Pro-
gram (Section 3.4)

Section 3.5 identifies the deliverables, their due dates,
and the standards that they will follow, and Section 3.6
identifies the standards and procedures that will be used..

3.1 Implementing the Life-Cycle Tasks
of the Statement of Work

The statement of work calls for the Contractor to perform
the following life-cycle major activities:

1. Requirements Definition

2. Design

3. Implementation
4. Qualification Testing

5. Installation and Acceptance

3.1.1 Task 1—Requirements Definition

ABC will analyze the CI and C2 Requirements Docu-
ment provided by NRC. We will use ABC’s structured
analysis approach (use of data flow diagrams, data, dic-
tionaries, and mini-specifications) to perform the
requirements analyses as documented in ABC Standards
SA-01, SA-02, and SA-03. ABC will provide suggested
changes to the CI and C2 Requirements Document and
will ensure that the requirements are correct, complete,
verifiable, consistent with XYZ Version 3.4 require-
ments, and technically feasible.

47

When NRC approves the requirements after the Soft-
ware Requirements Review, the approved requirements
will form the basis for the software plans, products, and
activities.

ABC will ensure that the documented requirements de-
fine the response of the software to anticipated classes of
input data (including erroneous data) and provide the in-
formation and detail necessary to design the software
(e.g., mathematical models, equations, data require-
ments).

ABC will perform verification and validation planning ac-
tivities in parallel with requirements analysis and defini-
tion activities. :

Requirements changes will be controlled throughout the
development and maintenance efforts in accordance with
the proven configuration management procedures cited
in Section 2.6 of this plan. :

3.1.2 Task 2—Design

ABC will use structured design technidues as docu-

mented in ABC Standard SD- 01 to analyze, both indi-

vidually and collectively:

1. The baselined requirements for the C1 and C2 capa-
bilities

2. The requirements of Version 3.4 of XYZ

3. Therequirements associated with nonconformances
to Version 3.4 of XYZ

This analysis will be conducted to determine the optimal
software design for Version 4.0 of XYZ such that:

1. Changes to the existing XYZ software architecture
are minimized
2. Existing XYZ capability remains operable

3. Changes to the design meet the requirements asso-
ciated with

a. The C1 and C2 capabilities
b. Corrective actions to all nonconformances

As the design evolves, events (e.g., identification of
additional nonconformances) will necessitate the modifi-
cation of the requirements and design documentation.
ABC will manage changes to formally baselined

(requirements) documentation and internally baselined
(design) documentation in accordance with the proced-
ures cited in Section 2.6 of this plan.

3.1.3 Task 3—Implementation

ABC will design and code all new software units and
make changes to existing software units in accordance
with XYZ Standard IM-01, which defines XYZ Project
coding standards. All new and modified units will un-
dergo three inspections:

1. Aninspection of the unit design and unit test plan in
accordance with ABC Procedure INS-01

2. An inspection of the unit code in accordance with
ABC Procedure INS-02

3. An inspection of the unit test resulis in accordance
with ABC Procedure INS-03

ABC will conduct integration tests to ensure that all in-
terfaces among the new and changed units perform cor-
rectly. ABC will inspect all integration test plans and
procedures in accordance with ABC Procedure INS-04
and integration test reports in accordance with ABC Pro-
cedure INS-05.

As the software is implemented, events (e.g., additional
insight into data flow patterns) may necessitate the modi-
fication of the design, requirements, and/or verification
and validation documentation. ABC will manage changes
to documentation in accordance with well-defined change
control procedures.

3.1.4 Task 4—Qualification Testing

ABC will perform formal qualification testing at ABC’s
Windy Canyon site using a set of test cases based on:

1. The existing baseline qualification test cases for
Version 3.4 of XYZ

2. New test cases that will qualify the new capabilities,
C1 and C2

48

3. New or modified test cases that will qualify the cor-
rective actions to the major nonconformances that
will be incorporated into Version 4.0

Qualification tests will be witnessed by a member of the
Quality Evaluation and Improvement Group. ABC will
review and analyze the qualification test results to assure
NRC that the implemented software meets requirements
and that the software produces correct results for all ap-
proved test cases.

3.1.5 Task 5—Installation And Acceptance

After qualification testing has been successfully con-
cluded, ABC will install Version 4.0 of XYZ at NRC’s
Rockville, Maryland, headquarters. Then, with an NRC
sponsor representative present, ABC will conduct the ac-
ceptance tests, which will be a subset of the qualification
tests.

3.2 Verification and Validation
Approach

This section:

1. Summarizes the verification and validation activities
that ABC plans to perform (Section 3.2.1)

Discusses the formal life cycle reviews and audits
that ABC will conduct (Section 3.2.2)

3. Discusses the formal peer inspections that ABC will
use (Section 3.2.3)

4. Identifies the levels of testing that ABC will conduct
(Section 3.2.4).

3.2.1 Summary of Verification and
Validation Activities

Table 3-1 summarizes the verification and validation ac-
tivities that ABC plans to perform on the XYZ System
Upgrade Project.

Table 3.1

Verification and Validation Activities by Major Life Cycle Activity

Major Life Cycle Activity

Verification and Validation Activities

Requirements Definition o Inspect requirements
¢ Conduct the Software Requirements Review

Design e Inspect design

e Develop qualification test plan
e Develop acceptance test plan
e Conduct the Design Review

Implementation e Develop unit test plans

e Inspect unit designs, unit code, and unit test plans
e Perform unit testing

e Inspect unit test results

e Develop integration test plans

e Inspect integration test plans and procedures

e Perform integration testing

e Inspect integration test results

* Develop qualification test procedures

Qualification Testing s Perform qualification testing

s Witness qualification testing (by independent group)
e Write qualification test report

e Develop acceptance test procedures

Installation and Acceptance e Perform acceptance testing

e Witness acceptance testing (by NRC sponsor)
e Write acceptance test report

e Participate in the Post Mortem Review

3.2.2 Formal Life Cycle Reviews and Audits

A formal review, with NRC and ABC management and
technical personnel participating, will be held at or near
the end of each major activity of the life cycle. The objec-
tive of the formal reviews is to evaluate the deliverable
products, the progress, and to a lesser degree, the proc-
esses of the most recent life-cycle phase. Table 3-2 sum-
marizes the formal major life cycle reviews and audits that
will performed on the contract.

ABC will deliver five classes of deliverables associated
with each formal review:

49

—

The documents to be reviewed
The agenda for the review.

The hardcopy presentation materials used at the re-
view

The minutes that document the activities and results
of the review

The updated documents that were reviewed

Table 3.2
Formal Life Cycle Reviews and Audits

Major Life Cycle Activity

Formal Reviews and Audits

Requirements Definition

Software Requirements Review

Design ¢ Design Review
Implementation e Qualification Test Readiness Review
Qualification Testing o Software Configuration Audit

Installation and Acceptance

Software Configuration Audit

Post Mortem Review

For each formal review, ABC will:

1. Deliver documents for NRC review 2 weeks prior to
the start date of the formal review

2. Identify in each review agenda the ABC review par-
ticipants and their specific responsibilities during
the review

3. Assign a person to capture key discussion items and
actions items, especially those related to specific as-
signments for updating the documentation that is
the object of the review.

4. Document in the review minutes all proposed revi-
sions to the reviewed documents and all actual
changes to the reviewed documents, and place the
updated documents under configuration controf af-
ter approval by the NRC

The paragraphs below discuss each formal life cycle re-
view and audit.

3.2.2.1 Software Requirements Review

ABC will conduct the Software Requirements Review at
the end of requirements definition activity. The objec-
tives of this review are to:

1. Review the requirements associated with the new
capabilities C1 and C2 and the known nonconfor-
mances

2. Review ABC’s suggested changes to the draft
requirements specification supplied by NRC

50

3. Assure NRC that ABC understands and agrees on
the intent, completeness, verifiability (through test-
ing or other means), consistency, and technical feasi-
bility of the requirements

4. Review the Software Project Plan

3.222 Design Review

Because the architecture for XYZ is well understood by
both NRC and ABC, there will be only one design review.
The objectives of the Design Review are to ensure that:

1. The proposed design is complete (meets all the
requirements and design completion criteria), verifi-
able (through testing or other means), consistent,
and technically feasible

2. All newand modified software units have been iden-
tified and all interfaces between and among the
units have defined

3. All elements of the database have been defined
down to the data item level

4. Qualification and acceptance test plans are re-
viewed and the test environment is ready to meet
project needs

3.2.2.3 Qualification Test Readiness Review

ABC will conduct the Qualification Test Readiness
Review when integration testing has been successfully
completed and the qualification test procedures are ready
for NRC review. The objective of this review is to assure
that the as-built software; the software documentation;
and qualification test environment is ready for formal

qualification testing. In particular, the thoroughness of
informal (unit and integration) testing will be reviewed.
3224 Seftware Configuration Audits

ABC will conduct two Software Configuration Audits:
the first at the completion of qualification testing and sec-
ond at the comptletion of acceptance testing. The objec-
tive of this audit is to ensure that the as-built software:

1. Meets its requirements as baselined in the software
requirements documentation

2. Conforms to its technical documentation

3. Does not contain any unauthorized changes

32.25 Post Mortem Review

ABC will support the NRC in the Post Mortem Review
after the software is accepted. This review will capture
the lessons learned from the ABC XYZ System Upgrade
Project for use by future XYZ and other similar projects.
3.2.3 Formal Peer Inspections

Because XYZ is Level 1 software, ABC will:
1. Subject each intermediate product and-final product

of development and maintenance (i.e., all docu-
mentation, all code) to an internal peer inspection

2. Make available to the NRC the written procedure
and the product standards that govern peer inspec-
tions

3. Make available, if requested by the NRC, records
that document the results of all peer inspections

3.2.4 Testing

ABC will use four levels of testing:

1. Unit testing

2. Integration testing

51

3. Qualification testing
4. Acceptance testing

Each new and modified software unit will be separately
unit-tested. In unit testing, all pathsthrouglr the code will
be tested. Software components that eontain one or more
new or modified software units will be integration-
tested. Timing of critical elements of code will be tested
at the unit or integration level, as appropriate.

Qualification testing and acceptance testing were dis-
cussed in Sections 3.1.4 and 3.1.5, respectively.

3.2.5 Software Test Environment

The XYZ software test environment that was baselined
in July 1992 will be used on the project.

3.3 Nonconformance Reporting and
Corrective Action Approach

ABC will use the in-place XYZ Project nonconformance
reporting and corrective action system, baselined by the
XYZ CCB on April 12, 1992, and documented in XYZ
Procedure NRCA-01.

3.4 Quality Assessment and Improve-
ment Approach

ABC will use the quality assessment and improvement
approach documented in the ABC report Continuous
Improvement at the ABC Corporation, March 1991.

3.5 Deliverables

Contract deliverables are listed in Table 3-2. All docu-
mentation will be inspected in accordance with ABC Pro-
cedure INS~12

3.6 Standards and Procedures

Table 3-3 summarizes the standards and procedures that
will be used on the contract. Documentation standards
for the principal software documents are not listed; the de
facto documentation format standards of the existing
software documentation will be used.

Table 3.3
Contract Deliverables

Due Date
(Weeks after
ID Deliverable Contract Award)
1.1 Draft Suggested Changes to the XYZ Requirements 12 weeks
1.2 Agenda for the Software Requirements Review 12 weeks
1.3 Hardcopy Presentation Materials for the Software Requirements Review 12 weeks
1.4 Minutes for the Software Requirements Review 15 weeks
1.5 Final Suggested Changes to the XYZ Requirements Specification 16 weeks
2.1 Draft Suggested Changes to the XYZ Design Document 46 weeks
2.2 Draft Qualification Test Plan 46 weeks
23 Draft Acceptance Test Plan 46 weeks
24 Agenda for the Design Review 46 weeks
2.5 Hardcopy Presentation Materials for the Design Review 46 weeks
2.6 Minutes for the Design Review 49 weeks
2.7 Fingl Suggested Changes to the XYZ Design Document 50 weeks
2.8 Final Qualification Test Plan 50 weeks
29 Final Acceptance Test Plan 50 weeks
31 Draft Qualification Test Procedures 87 weeks
3.2 Draft Acceptance Test Procedures 87 weeks
32 Agenda for the Qualification Test Readiness Review 87 weeks
33 Hardcopy Presentation Materials for the Qualification Test 87 weeks
Readiness Review
34 Minutes for the Qualification Test Readiness Review 89 weeks
35 Final Qualification Test Procedures 90 weeks
3.6 Final Acceptance Test Procedures 90 weeks
4.1 Qualification Test Report 98 weeks
4.2 Software Configuration Audit Report 1 99 weeks
5.1 Acceptance Test Report 101 weeks
5.2 Software Configuration Audit Report 2 102 weeks
7.1 Monthly Progress Reports Monthly
9.1 Nonconformance Reporting And Corrective Action System Reports As generated

52

Table 3.4

Standards and Procedures

Identification

Title

XYZ Procedure CM-01

XYZ Software Development Library Procedures

XYZ Procedure CM-02

XYZ Change Request Procedure

XYZ Procedure CM-03

XYZ Configuration Control Board Procedures

XYZ Procedure CM-04

XYZ Change Request Ripple Effects Procedures

XYZ Procedure CM-05

XYZ Baseline Release Procedure

XYZ Procedure CM-06

XYZ Status Reporting Procedures

XYZ Procedure CM-~07

XYZ Documentation Auditing Procedure

XYZ Procedure CM-08

XYZ Software Configuration Audit Procedure

XYZ Procedure CM-09

XY7Z In-Process Configuration Management Auditing
Procedure

XYZ Standard IM-01

XYZ Coding Standard

XYZ Procedure NRCA-(1

XYZ Nonconformance Reporting and Corrective Action
Procedures

ABC Standard SA-01

ABC Data Flow Diagram Standard

ABC Standard SA-02

ABC Data Dictionary Standard

ABC Standard SA-03

ABC Minispecification Standard

ABC Standard SD-01

ABC Structured Design Standard

ABC Procedure INS-01

ABC Unit Design and Unit Test Plan Inspection Procedure

ABC Procedure INS-02

ABC Unit Code Inspection Procedure

ABC Procedure INS-03

ABC Unit Test Results Inspection Procedure

ABC Procedure INS-04 ABC Integration Test Plan and Test Procedure Inspection
Procedure
ABC Procedure INS-05 ABC Integration Test Results Inspection Procedure

ABC Procedure INS-12

ABC Documentation Inspection Procedure

53

APPENDIX B

Glossary

adaptive maintenance. Maintenance performed to make a
software product usable in a changed environment.

baseline. A product (software or documentation or both)
that has been formally reviewed and agreed upon by
the developer and sponsor, that thereafter serves as
the basis for further development, and that can be
changed only through formal change control proce-
dures.

requirements baseline. The baselined documentation
that specifies the requirements that a software
product must meet.

product baselinre. The software and documentation
that are baselined at the successful completion
of qualification testing.

operational baseline. The software and documentation
thatare 1) baselined at the successful completion
of installation and acceptance testing and 2) are
placed into an operational status as a production
product.

change control. The process of evaluating, approving or
disapproving, and coordinating changes to baselines.
Also called configuration control.

code. One or more computer programs or part of a com-
puter program.

configuration control. See change control.

configuration management. The process of 1) identifying
and defining the baselines associated with a software
product; 2) controlling the changes to baselines and
release of baselines throughout the life cycle; 3) re-
cording and reporting the status of baselines and the
proposed and actual changes to the baselines; and 4)
verifying the correctness and completeness of
baselines.

corrective action. General name for the process by which
nonconformances are corrected, verified, and con-
trolled.

corrective maintenance. Maintenance performed specifi-
cally to overcome existing faults.

developer. The organization, usually a contractor, that de-
velops or maintains the software.

55

developmental configuration. The developer’s software and
associated technical documentation that defines the
evolving software products during development. The
developmental configuration is under the develop-
er’s internal configuration control and contains the
software design and implementation products (soft-
ware design documentation, code, test cases, and re-
lated information).

error. A discrepancy between a computed, observed, or
measured value or condition and the true, specified,
or theoretically correct value or condition.

Jormal testing. The process of conducting testing activities
and reporting resuits in accordance with an approved
test plan.

independent verification and validation (IV&V). Verifica-
tion and validation by an organization that is both
technically and managerially separate from the or-
ganization responsible for developing the software.
See verification. See validation.

informal testing. The process of conducting testing activi-
ties without an approved test plan.

Level 1 soﬁvéare. Technical application software used in a
safety decision by the NRC.

Level 2 software. Technical or non-technical application
software not used in a safety decision by the NRC.

Level 3 software. Technical or non-technical application
software not used in a safety decision by the NRC and
having local er limited use by the NRC.

nonconformance. Any failure of any software document,
code, data structure, or process, to meet its require-
ments or standards. Often called a problem, discrep-
ancy, fault, or error.

non-developmental software. Deliverable software that is
not developed under the contract but is provided by
the developer, the Government, or a third party.
Non-developmental software may be referred to as
reusable software, Government-furnished software,
or commercially available software depending on its
source. : :

qualification testing. A process that allows the sponsor to
determine whether a software product complies with
its requirements. quality assurance. A planned and
systematic paitern of all actions necessary to provide
adequate confidence that a software product con-
forms to established technical requirements.

release. A configuration management action whereby a
particular version of software is made available for a
specific purpose (e.g., released for test, released to
operations)

reusable software. Software developed in response to the
requirements for one application that can be used, in
whole or in part, to satisfy the requirements of an-
other application.

software engineering environment. The set of automated
tools, firmware devices, and hardware necessary to
perform the software engineering effort, including
establishing and maintaining the software develop-
ment library. The automated tools may include but
are not limited to computer-aided software engineer-
ing (CASE) tools, compilers, assemblers, linkers,
loaders, operating system, debuggers, simulators,
emulators, test tools, documentation tools, and data
base management systems.

software development library. A controlled collection of
software, documentation, and associated tools and
procedures used to facilitate the orderly develop-
ment and subsequent mainténance of software. The
software development library contains the develop-
mental configuration as part of its contents. A soft-
ware development library provides storage of and
controlled access to software and documentation in
human-readable form, machine readable form, or
both. The software development library may also
contain management data pertinent to the software
development project.

software life cycle. The period of time that starts when a
software product is conceived and ends when the
product is retired from use.

software maintenance. Modification of a software product
after delivery to correct faults, to improve perform-
ance or other attributes, or to adapt the product to a
changed environment.

software plans, A collective term used to describe the de-
veloper’s plans, methodologies; standards, and pro-
cedures for software management, software engi-
neering, verification and validation, documentation,
product evaluation, and configuration management.
software test environment. The set of automated

56

tools, firmware devices, and hardware necessary to
test software. The automated tools may include but
are not limited to test tools such as simulation soft-
ware, code analyzers, etc. and may also include those
tools used in the software engineering environment.

software unit. An element of the software design that can
be compiled or assembled and is relatively small (e.g.,
100 tines of high-order language code).

sponsor. The NRC organization that sponsors and man-
ages the software development/maintenance effort.
“The sponsor acts as the acquirer or buyer for the user.

sustaining engineering. The process that includes software
maintenance and the software engineering activities
that ensure that the integrity of the software’s origi-
nal requirements set and design are retained.

testing. The process of exercising or evaluating a software
product or part of a software product by manual or
automated means to verify that it satisfies specified
requirements or to identify differences between ex-
pected and actual results.

test case. A specific set of test data and associated proce-
dures developed for a particular objective, such as to
exercise a particular program path or to verify com-
pliance with a specific requirement.

test plan. A document prescribing the approach to be
taken for intended testing activities. The plan typi-
cally identifies the items to be tested, the require-
ments being tested, the testing to be performed, test
schedules, personnel requirements, reporting re-
quirements, evaluation criteria, any risks requiring
contingency planning.

test procedure. Detailed instructions for the setup, opera-
tion, and evaluation of results for a given test. A set of
associated procedures is often combined to form a
test procedures document.

test report. A document describing the conduct and results
of the testing of a software product or a component of
a software product.

user. The organization or persons who will use the soft-
ware product being developed.

verification. The process of determining whether or not
the products of a given activity or phase of the soft-
ware development life cycle meets its requirements.

validation. The process of evaluating a software product at
the end of the software development process to en-
sure compliance with software requirements.

APPENDIX C

Reference Documents

ANSI/ASME NQA-1-1983, Quality Assurance
Program Requirements for Nuclear Facilities

ANSI/ASME NQA-2a-1990 Addenda (Part 2.7) to
ASME NQA-2a- 1989 Edition Quality Assurance
Requirements for Nuclear Facility Applications

ANSI/IEEE Std 730-1989, IEEE Standard for Soft-
ware Quality Assurance Plans

ANSVIEEE Std 983-1986, IEEE Guide for Soft-
ware Quality Assurance Planning

ANSI/IEEE Std 729-1983, IEEE Standard Glossary
of Software Engineering Terminology

ANSI/IEEE Std 828-1983, IEEE Standard for Soft-
ware Configuration Management Plans

57

7.

10.

11.

12.

ANSI/IEEE Std 829-1983, IEEE Standard for Soft-
ware Test Documentation

ANSI/IEEE Std 1012-1986, IEEE Standard for
Software Verification and Validation Plans

DOD-STD-2167A, Military Standard, Defense
System Software Development, 29 February 1988

DOD-STD-2168, Military Standard, Defense
System Software Quality Program, 29 April 1992.

DOD-STD-1521B, Military Standard, Technical
Reviews and Audits for Systems, Equipments, and
Computer Software, 4 June 1985.

Capability Maturity Model for Softwarec, CMU/
SEI-91-TR-24, Software Engincering Institute,
Carnegie Mellon University, August 1991

on recycled
paper

Federal Recycling Program

‘M

| UNITED STATES

| NUCLEAR REGULATORY COMMISSION o eSS A D
WASHINGTON, D.C. 20555-0001 , USNRC

PERMIT NO. G-67

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300

