B 3.6 CONTAINMENT SYSTEMS

B 3.6.17 Divider Barrier Integrity (Ice Condenser)

BASES

BACKGROUND

The divider barrier consists of the operating deck and associated seals, personnel access doors, and equipment hatches that separate the upper and lower containment compartments. Divider barrier integrity is necessary to minimize bypassing of the ice condenser by the hot steam and air mixture released into the lower compartment during a Design Basis Accident (DBA). This ensures that most of the gases pass through the ice bed, which condenses the steam and limits pressure and temperature during the accident transient. Limiting the pressure and temperature reduces the release of fission product radioactivity from containment to the environment in the event of a DBA.

In the event of a DBA, the ice condenser inlet doors (located below the operating deck) open due to the pressure rise in the lower compartment. This allows air and steam to flow from the lower compartment into the ice condenser. The resulting pressure increase within the ice condenser causes the intermediate deck doors and the door panels at the top of the condenser to open, which allows the air to flow out of the ice condenser into the upper compartment. The ice condenses the steam as it enters, thus limiting the pressure and temperature buildup in containment. The divider barrier separates the upper and lower compartments and ensures that the steam is directed into the ice condenser. The ice, together with the containment spray, is adequate to absorb the initial blowdown of steam and water from a DBA as well as the additional heat loads that would enter containment over several hours following the initial blowdown. The additional heat loads would come from the residual heat in the reactor core, the hot piping and components, and the secondary system, including the steam generators. During the post blowdown period, the Air Return System (ARS) returns upper compartment air through the divider barrier to the lower compartment. This serves to equalize pressures in containment and to continue circulating heated air and steam from the lower compartment through the ice condenser, where the heat is removed by the remaining ice.

Divider barrier integrity ensures that the high energy fluids released during a DBA would be directed through the ice condenser and that the ice condenser would function as designed if called upon to act as a passive heat sink following a DBA.

APPLICABLE SAFETY ANALYSES

Divider barrier integrity ensures the functioning of the ice condenser to the limiting containment pressure and temperature that could be experienced following a DBA. The limiting DBAs considered relative to containment temperature and pressure are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are assumed not to occur simultaneously or consecutively.

Although the ice condenser is a passive system that requires no electrical power to perform its function, the Containment Spray System and the ARS also function to assist the ice bed in limiting pressures and temperatures. Therefore, the postulated DBAs are analyzed, with respect to containment Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in the inoperability of one train in both the Containment Spray System and the ARS.

The limiting DBA analyses (Ref. 1) show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. The maximum peak containment temperature results from the SLB analysis and is discussed in the Bases for LCO 3.6.5B, "Containment Air Temperature."

In addition to calculating the overall peak containment pressures, the DBA analyses include calculation of the transient differential pressures that occur across subcompartment walls during the initial blowdown phase of the accident transient. The internal containment walls and structures are designed to withstand these local transient pressure differentials for the limiting DBAs.

The divider barrier satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO establishes the minimum equipment requirements to ensure that the divider barrier performs its safety function of ensuring that bypass leakage, in the event of a DBA, does not exceed the bypass leakage assumed in the accident analysis. Included are the requirements that the personnel access doors and equipment hatches in the divider barrier are OPERABLE and closed and that the divider barrier seal is properly installed and has not degraded with time. An exception to the requirement that the doors be closed is made to allow personnel transit entry through the divider barrier. The basis of this exception is the assumption that, for personnel transit, the time during which a door is open will be short (i.e., shorter than the Completion Time of 1 hour for

LCO (continued)

Condition A). The divider barrier functions with the ice condenser to limit the pressure and temperature that could be expected following a DBA.

APPLICABILITY

In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature requiring the integrity of the divider barrier. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4.

The probability and consequences of these events in MODES 5 and 6 are low due to the pressure and temperature limitations of these MODES. As such, divider barrier integrity is not required in these MODES.

ACTIONS

<u>A.1</u>

If one or more personnel access doors or equipment hatches are inoperable or open, except for personnel transit entry, 1 hour is allowed to restore the door(s) and equipment hatches to OPERABLE status and the closed position. The 1 hour Completion Time is consistent with LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour.

Condition A has been modified by a Note to provide clarification that, for this LCO, separate Condition entry is allowed for each personnel access door or equipment hatch.

<u>B.1</u>

If the divider barrier seal is inoperable, 1 hour is allowed to restore the seal to OPERABLE status. The 1 hour Completion Time is consistent with LCO 3.6.1, which requires that containment be restored to OPERABLE status within 1 hour.

C.1 and C.2

If divider barrier integrity cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.17.1

Verification, by visual inspection, that all personnel access doors and equipment hatches between the upper and lower containment compartments are closed provides assurance that divider barrier integrity is maintained prior to the reactor being taken from MODE 5 to MODE 4. This SR is necessary because many of the doors and hatches may have been opened for maintenance during the shutdown.

SR 3.6.17.2

Verification, by visual inspection, that the personnel access door and equipment hatch seals, sealing surfaces, and alignments are acceptable provides assurance that divider barrier integrity is maintained. This inspection cannot be made when the door or hatch is closed. Therefore, SR 3.6.17.2 is required for each door or hatch that has been opened, prior to the final closure. Some doors and hatches may not be opened for long periods of time. Those that use resilient materials in the seals must be opened and inspected at least once every 10 years to provide assurance that the seal material has not aged to the point of degraded performance. The Frequency of 10 years is based on the known resiliency of the materials used for seals, the fact that the openings have not been opened (to cause wear), and operating experience that confirms that the seals inspected at this Frequency have been found to be acceptable.

SR 3.6.17.3

Verification, by visual inspection, after each opening of a personnel access door or equipment hatch that it has been closed makes the operator aware of the importance of closing it and thereby provides additional assurance that divider barrier integrity is maintained while in applicable MODES.

SR 3.6.17.4

Conducting periodic physical property tests on divider barrier seal test coupons provides assurance that the seal material has not degraded in the containment environment, including the effects of irradiation with the reactor at power. The required tests include a tensile strength test [and a test for elongation]. The Frequency of [18] months was developed considering such factors as the known resiliency of the seal material used, the inaccessibility of the seals and absence of traffic in their vicinity, and the unit conditions needed to perform the SR. Operating experience has shown that these components usually pass the Surveillance when

SURVEILLANCE REQUIREMENTS (continued)

performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

SR 3.6.17.5

Visual inspection of the seal around the perimeter provides assurance that the seal is properly secured in place. The Frequency of [18] months was developed considering such factors as the inaccessibility of the seals and absence of traffic in their vicinity, the strength of the bolts and mechanisms used to secure the seal, and the unit conditions needed to perform the SR. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

REFERENCES

FSAR, Section [6.2].

B 3.6 CONTAINMENT SYSTEMS

B 3.6.18 Containment Recirculation Drains (Ice Condenser)

BASES

BACKGROUND

The containment recirculation drains consist of the ice condenser drains and the refueling canal drains. The ice condenser is partitioned into 24 bays, each having a pair of inlet doors that open from the bottom plenum to allow the hot steam-air mixture from a Design Basis Accident (DBA) to enter the ice condenser. Twenty of the 24 bays have an ice condenser floor drain at the bottom to drain the melted ice into the lower compartment (in the 4 bays that do not have drains, the water drains through the floor drains in the adjacent bays). Each drain leads to a drain pipe that drops down several feet, then makes one or more 90° bends and exits into the lower compartment. A check (flapper) valve at the end of each pipe keeps warm air from entering during normal operation, but when the water exerts pressure, it opens to allow the water to spill into the lower compartment. This prevents water from backing up and interfering with the ice condenser inlet doors. The water delivered to the lower containment serves to cool the atmosphere as it falls through to the floor and provides a source of borated water at the containment sump for long term use by the Emergency Core Cooling System (ECCS) and the Containment Spray System during the recirculation mode of operation.

The two refueling canal drains are at low points in the refueling canal. During a refueling, plugs are installed in the drains and the canal is flooded to facilitate the refueling process. The water acts to shield and cool the spent fuel as it is transferred from the reactor vessel to storage. After refueling, the canal is drained and the plugs removed. In the event of a DBA, the refueling canal drains are the main return path to the lower compartment for Containment Spray System water sprayed into the upper compartment.

The ice condenser drains and the refueling canal drains function with the ice bed, the Containment Spray System, and the ECCS to limit the pressure and temperature that could be expected following a DBA.

APPLICABLE SAFETY ANALYSES

The limiting DBAs considered relative to containment temperature and pressure are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are assumed not to occur simultaneously or consecutively. Although the ice condenser is a passive system that requires no electrical power to perform its function, the Containment

APPLICABLE SAFETY ANALYSES (continued)

Spray System and the Air Return System (ARS) also function to assist the ice bed in limiting pressures and temperatures. Therefore, the analysis of the postulated DBAs, with respect to Engineered Safety Feature (ESF) systems, assumes the loss of one ESF bus, which is the worst case single active failure and results in one train of the Containment Spray System and one train of the ARS being rendered inoperable.

The limiting DBA analyses (Ref. 1) show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. The maximum peak containment atmosphere temperature results from the SLB analysis and is discussed in the Bases for LCO 3.6.5, "Containment Air Temperature." In addition to calculating the overall peak containment pressures, the DBA analyses include calculation of the transient differential pressures that occur across subcompartment walls during the initial blowdown phase of the accident transient. The internal containment walls and structures are designed to withstand these local transient pressure differentials for the limiting DBAs.

The containment recirculation drains satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO establishes the minimum requirements to ensure that the containment recirculation drains perform their safety functions. The ice condenser floor drain valve disks must be closed to minimize air leakage into and out of the ice condenser during normal operation and must open in the event of a DBA when water begins to drain out. The refueling canal drains must have their plugs removed and remain clear to ensure the return of Containment Spray System water to the lower containment in the event of a DBA. The containment recirculation drains function with the ice condenser, ECCS, and Containment Spray System to limit the pressure and temperature that could be expected following a DBA.

APPLICABILITY

In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature, which would require the operation of the containment recirculation drains. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4.

The probability and consequences of these events in MODES 5 and 6 are low due to the pressure and temperature limitations of these MODES.

APPLICABILITY (continued)

As such, the containment recirculation drains are not required to be OPERABLE in these MODES.

ACTIONS

A.1

If one ice condenser floor drain is inoperable, 1 hour is allowed to restore the drain to OPERABLE status. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour.

B.1

If one refueling canal drain is inoperable, 1 hour is allowed to restore the drain to OPERABLE status. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, which requires that containment be restored to OPERABLE status in 1 hour.

C.1 and C.2

If the affected drain(s) cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.18.1

Verifying the OPERABILITY of the refueling canal drains ensures that they will be able to perform their functions in the event of a DBA. This Surveillance confirms that the refueling canal drain plugs have been removed and that the drains are clear of any obstructions that could impair their functioning. In addition to debris near the drains, attention must be given to any debris that is located where it could be moved to the drains in the event that the Containment Spray System is in operation and water is flowing to the drains. SR 3.6.18.1 must be performed before entering MODE 4 from MODE 5 after every filling of the canal to ensure

SURVEILLANCE REQUIREMENTS (continued)

that the plugs have been removed and that no debris that could impair the drains was deposited during the time the canal was filled. The 92 day Frequency was developed considering such factors as the inaccessibility of the drains, the absence of traffic in the vicinity of the drains, and the redundancy of the drains.

SR 3.6.18.2

Verifying the OPERABILITY of the ice condenser floor drains ensures that they will be able to perform their functions in the event of a DBA. Inspecting the drain valve disk ensures that the valve is performing its function of sealing the drain line from warm air leakage into the ice condenser during normal operation, yet will open if melted ice fills the line following a DBA. Verifying that the drain lines are not obstructed ensures their readiness to drain water from the ice condenser. The [18] month Frequency was developed considering such factors as the inaccessibility of the drains during power operation; the design of the ice condenser, which precludes melting and refreezing of the ice; and operating experience that has confirmed that the drains are found to be acceptable when the Surveillance is performed at an [18] month Frequency. Because of high radiation in the vicinity of the drains during power operation, this Surveillance is normally done during a shutdown.

REFERENCES

1. FSAR, Section [6.2].

B 3.6 CONTAINMENT SYSTEMS

B 3.6.19 Shield Building (Dual and Ice Condenser)

BASES

BACKGROUND

The shield building is a concrete structure that surrounds the steel containment vessel. Between the containment vessel and the shield building inner wall is an annular space that collects containment leakage that may occur following a loss of coolant accident (LOCA). This space also allows for periodic inspection of the outer surface of the steel containment vessel.

The Shield Building Air Cleanup System (SBACS) establishes a negative pressure in the annulus between the shield building and the steel containment vessel. Filters in the system then control the release of radioactive contaminants to the environment. The shield building is required to be OPERABLE to ensure retention of containment leakage and proper operation of the SBACS.

APPLICABLE SAFETY ANALYSES

The design basis for shield building OPERABILITY is a LOCA. Maintaining shield building OPERABILITY ensures that the release of radioactive material from the containment atmosphere is restricted to those leakage paths and associated leakage rates assumed in the accident analyses.

The shield building satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Shield building OPERABILITY must be maintained to ensure proper operation of the SBACS and to limit radioactive leakage from the containment to those paths and leakage rates assumed in the accident analyses.

APPLICABILITY

WOG STS

Maintaining shield building OPERABILITY prevents leakage of radioactive material from the shield building. Radioactive material may enter the shield building from the containment following a LOCA. Therefore, shield building OPERABILITY is required in MODES 1, 2, 3, and 4 when a steam line break, LOCA, or rod ejection accident could release radioactive material to the containment atmosphere.

In MODES 5 and 6, the probability and consequences of these events are low due to the Reactor Coolant System temperature and pressure limitations in these MODES. Therefore, shield building OPERABILITY is not required in MODE 5 or 6.

ACTIONS

A.1

In the event shield building OPERABILITY is not maintained, shield building OPERABILITY must be restored within 24 hours. Twenty-four hours is a reasonable Completion Time considering the limited leakage design of containment and the low probability of a Design Basis Accident occurring during this time period.

B.1 and B.2

If the shield building cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

[SR 3.6.19.1

Verifying that shield building annulus negative pressure is within limit ensures that operation remains within the limit assumed in the containment analysis. The 12 hour Frequency of this SR was developed considering operating experience related to shield building annulus pressure variations and pressure instrument drift during the applicable MODES. 1

SR 3.6.19.2

Maintaining shield building OPERABILITY requires verifying one door in the access opening closed. [An access opening may contain one inner and one outer door, or in some cases, shield building access openings are shared such that a shield building barrier may have multiple inner or multiple outer doors. The intent is to not breach the shield building boundary at any time when the shield building boundary is required. This is achieved by maintaining the inner or outer portion of the barrier closed at all times.] However, all shield building access doors are normally kept closed, except when the access opening is being used for entry and exit or when maintenance is being performed on an access opening. The 31 day Frequency of this SR is based on engineering judgment and is considered adequate in view of the other indications of door status that are available to the operator.

SURVEILLANCE REQUIREMENTS (continued)

[SR 3.6.19.3

This SR would give advance indication of gross deterioration of the concrete structural integrity of the shield building. The Frequency of this SR is the same as that of SR 3.6.1.1. The verification is done during shutdown.]

SR 3.6.19.4

The Shield Building Air Cleanup System produces a negative pressure to prevent leakage from the building. SR 3.6.19.4 verifies that the shield building can be rapidly drawn down to [-0.5] inch water gauge in the annulus. This test is used to ensure shield building boundary integrity. Establishment of this pressure is confirmed by SR 3.6.19.4, which demonstrates that the shield building can be drawn down to ≤ [-0.5] inches of vacuum water gauge in the annulus ≤ [22] seconds using one Shield Building Air Cleanup System train. The time limit ensures that no significant quantity of radioactive material leaks from the shield building prior to developing the negative pressure. Since this SR is a shield building boundary integrity test, it does not need to be performed with each Shield Building Air Cleanup System train. The Shield Building Air Cleanup System train used for this Surveillance is staggered to ensure that in addition to the requirements of LCO 3.6.19.4, either train will perform this test. The primary purpose of this SR is to ensure shield building integrity. The secondary purpose of this SR is to ensure that the Shield Building Air Cleanup System being tested functions as designed. The inoperability of the Shield Building Air Cleanup System train does not necessarily constitute a failure of this Surveillance relative to the shield building OPERABILITY. The 18 month Frequency is based on the need to perform this Surveillance under conditions that apply during a plant outage.

REFERENCES	None.

B 3.7 PLANT SYSTEMS

B 3.7.1 Main Steam Safety Valves (MSSVs)

BASES

BACKGROUND

The primary purpose of the MSSVs is to provide overpressure protection for the secondary system. The MSSVs also provide protection against overpressurizing the reactor coolant pressure boundary (RCPB) by providing a heat sink for the removal of energy from the Reactor Coolant System (RCS) if the preferred heat sink, provided by the Condenser and Circulating Water System, is not available.

[Five] MSSVs are located on each main steam header, outside containment, upstream of the main steam isolation valves, as described in the FSAR, Section [10.3.1] (Ref. 1). The MSSVs must have sufficient capacity to limit the secondary system pressure to ≤ 110% of the steam generator design pressure in order to meet the requirements of the ASME Code, Section III (Ref. 2). The MSSV design includes staggered setpoints, according to Table 3.7.1-2 in the accompanying LCO, so that only the needed valves will actuate. Staggered setpoints reduce the potential for valve chattering that is due to steam pressure insufficient to fully open all valves following a turbine reactor trip.

APPLICABLE SAFETY ANALYSES

The design basis for the MSSVs comes from Reference 2 and its purpose is to limit the secondary system pressure to ≤ 110% of design pressure for any anticipated operational occurrence (AOO) or accident considered in the Design Basis Accident (DBA) and transient analysis.

The events that challenge the relieving capacity of the MSSVs, and thus RCS pressure, are those characterized as decreased heat removal events, which are presented in the FSAR, Section [15.2] (Ref. 3). Of these, the full power turbine trip without steam dump is typically the limiting AOO. This event also terminates normal feedwater flow to the steam generators.

The safety analysis demonstrates that the transient response for turbine trip occurring from full power without a direct reactor trip presents no hazard to the integrity of the RCS or the Main Steam System. One turbine trip analysis is performed assuming primary system pressure control via operation of the pressurizer relief valves and spray. This analysis demonstrates that the DNB design basis is met. Another analysis is performed assuming no primary system pressure control, but crediting reactor trip on high pressurizer pressure and operation of the pressurizer safety valves. This analysis demonstrates that RCS integrity

APPLICABLE SAFETY ANALYSES (continued)

is maintained by showing that the maximum RCS pressure does not exceed 110% of the design pressure. All cases analyzed demonstrate that the MSSVs maintain Main Steam System integrity by limiting the maximum steam pressure to less than 110% of the steam generator design pressure.

In addition to the decreased heat removal events, reactivity insertion events may also challenge the relieving capacity of the MSSVs. The uncontrolled rod cluster control assembly (RCCA) bank withdrawal at power event is characterized by an increase in core power and steam generation rate until reactor trip occurs when either the Overtemperature ΔT or Power Range Neutron Flux-High setpoint is reached. Steam flow to the turbine will not increase from its initial value for this event. The increased heat transfer to the secondary side causes an increase in steam pressure and may result in opening of the MSSVs prior to reactor trip, assuming no credit for operation of the atmospheric or condenser steam dump valves. The FSAR Section [15.4] safety analysis of the RCCA bank withdrawal at power event for a range of initial core power levels demonstrates that the MSSVs are capable of preventing secondary side overpressurization for this AOO.

The FSAR safety analyses discussed above assume that all of the MSSVs for each steam generator are OPERABLE. If there are inoperable MSSV(s), it is necessary to limit the primary system power during steady-state operation and AOOs to a value that does not result in exceeding the combined steam flow capacity of the turbine (if available) and the remaining OPERABLE MSSVs. The required limitation on primary system power necessary to prevent secondary system overpressurization may be determined by system transient analyses or conservatively arrived at by a simple heat balance calculation. In some circumstances it is necessary to limit the primary side heat generation that can be achieved during an AOO by reducing the setpoint of the Power Range Neutron Flux-High reactor trip function. For example, if more than one MSSV on a single steam generator is inoperable, an uncontrolled RCCA bank withdrawal at power event occurring from a partial power level may result in an increase in reactor power that exceeds the combined steam flow capacity of the turbine and the remaining OPERABLE MSSVs. Thus, for multiple inoperable MSSVs on the same steam generator it is necessary to prevent this power increase by lowering the Power Range Neutron Flux-High setpoint to an appropriate value. [When the Moderator Temperature Coefficient (MTC) is positive, the reactor power may increase above the initial value during an RCS heatup event (e.g., turbine trip). Thus, for any number of

APPLICABLE SAFETY ANALYSES (continued)

inoperable MSSVs, it is necessary to reduce the trip setpoint if a positive MTC may exist at partial power conditions, unless it is demonstrated by analysis that a specified reactor power reduction alone is sufficient to prevent overpressurization of the steam system.]

The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening, and failure to reclose once opened. The passive failure mode is failure to open upon demand.

The MSSVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The accident analysis requires that [five] MSSVs per steam generator be OPERABLE to provide overpressure protection for design basis transients occurring at 102% RTP. The LCO requires that [five] MSSVs per steam generator be OPERABLE in compliance with Reference 2, and the DBA analysis.

The OPERABILITY of the MSSVs is defined as the ability to open upon demand within the setpoint tolerances, to relieve steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program.

This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB, or Main Steam System integrity.

APPLICABILITY

In MODES 1, 2, and 3, [five] MSSVs are required to be OPERABLE to prevent Main Steam System overpressurization.

In MODES 4 and 5, there are no credible transients requiring the MSSVs. The steam generators are not normally used for heat removal in MODES 5 and 6, and thus cannot be overpressurized; there is no requirement for the MSSVs to be OPERABLE in these MODES.

ACTIONS

The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each MSSV.

With one or more MSSVs inoperable, action must be taken so that the available MSSV relieving capacity meets Reference 2 requirements.

Operation with less than all [five] MSSVs OPERABLE for each steam generator is permissible, if THERMAL POWER is limited to the relief capacity of the remaining MSSVs. This is accomplished by restricting THERMAL POWER so that the energy transfer to the most limiting steam generator is not greater than the available relief capacity in that steam generator.

<u>A.1</u>

In the case of only a single inoperable MSSV on one or more steam generators [when the Moderator Temperature Coefficient is not positive], a reactor power reduction alone is sufficient to limit primary side heat generation such that overpressurization of the secondary side is precluded for any RCS heatup event. Furthermore, for this case there is sufficient total steam flow capacity provided by the turbine and remaining OPERABLE MSSVs to preclude overpressurization in the event of an increased reactor power due to reactivity insertion, such as in the event of an uncontrolled RCCA bank withdrawal at power. Therefore, Required Action A.1 requires an appropriate reduction in reactor power within 4 hours.

The maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs is determined via a conservative heat balance calculation as described in the attachment to Reference 6, with an appropriate allowance for calorimetric power uncertainty.

- REVIEWER'S NOTE -

To determine the maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs, the governing heat transfer relationship is the equation $q = \hat{m}\Delta h$, where q is the heat input from the primary side, \hat{m} is the mass flow rate of the steam, and Δh is the increase in enthalpy that occurs in converting the secondary side water to steam. If it is conservatively assumed that the secondary side water is all saturated liquid (i.e., no subcooled feedwater), then the Δh is the heat of vaporization (h_{fg}) at the steam relief pressure. The following equation is used to determine the maximum allowable power level for continued operation with inoperable MSSV(s):

Maximum NSSS Power \leq (100/Q) ($w_sh_{fq}N$) / K

where:

- Q = Nominal NSSS power rating of the plant (including reactor coolant pump heat), MWt
- K = Conversion factor, 947.82 (Btu/sec)/MWt
- w_s = Minimum total steam flow rate capability of the OPERABLE MSSVs on any one steam generator at the highest OPERABLE MSSV opening pressure, including tolerance and accumulation, as appropriate, lbm/sec.
- h_{fg} = Heat of vaporization at the highest MSSV opening pressure, including tolerance and accumulation as appropriate, Btu/lbm.
- N = Number of steam generators in the plant.

For use in determining the %RTP in the Required Action statement A.1, the Maximum NSSS Power calculated above is reduced by [2]% RTP to account for calorimetric power uncertainty.

B.1 and B.2

In the case of multiple inoperable MSSVs on one or more steam generators, with a reactor power reduction alone there may be insufficient total steam flow capacity provided by the turbine and remaining OPERABLE MSSVs to preclude overpressurization in the event of an increased reactor power due to reactivity insertion, such as in the event of an uncontrolled RCCA bank withdrawal at power. [Furthermore, for a single inoperable MSSV on one or more steam generators when the Moderator Temperature Coefficient is positive the reactor power may increase as a result of an RCS heatup event such that flow capacity of the remaining OPERABLE MSSVs is insufficient.] The 4 hour Completion Time for Required Action B.1 is consistent with A.1. An additional 32 hours is allowed in Required Action B.2 to reduce the setpoints. The Completion Time of 36 hours is based on a reasonable time to correct the MSSV inoperability, the time required to perform the power reduction, operating experience in resetting all channels of a protective function, and on the low probability of the occurrence of a transient that could result in steam generator overpressure during this period.

The maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs is determined via a conservative heat balance calculation as described in the attachment to Reference 6, with an appropriate allowance for Nuclear Instrumentation System trip channel uncertainties.

- REVIEWER'S NOTE -

To determine the Table 3.7.1-1 Maximum Allowable Power for Required Actions B.1 and B.2 (%RTP), the Maximum NSSS Power calculated using the equation in the Reviewer's Note above is reduced by [9]% RTP to account for Nuclear Instrumentation System trip channel uncertainties.

Required Action B.2 is modified by a Note, indicating that the Power Range Neutron Flux-High reactor trip setpoint reduction is only required in MODE 1. In MODES 2 and 3 the reactor protection system trips specified in LCO 3.3.1, "Reactor Trip System Instrumentation," provide sufficient protection.

The allowed Completion Times are reasonable based on operating experience to accomplish the Required Actions in an orderly manner without challenging unit systems.

C.1 and C.2

If the Required Actions are not completed within the associated Completion Time, or if one or more steam generators have ≥ [4] inoperable MSSVs, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.1.1

This SR verifies the OPERABILITY of the MSSVs by the verification of each MSSV lift setpoint in accordance with the Inservice Testing Program. The ASME Code, Section XI (Ref. 4), requires that safety and relief valve tests be performed in accordance with ANSI/ASME OM-1-1987 (Ref. 5). According to Reference 5, the following tests are required:

SURVEILLANCE REQUIREMENTS (continued)

- a. Visual examination,
- b. Seat tightness determination,
- c. Setpoint pressure determination (lift setting),
- d. Compliance with owner's seat tightness criteria, and
- e. Verification of the balancing device integrity on balanced valves.

The ANSI/ASME Standard requires that all valves be tested every 5 years, and a minimum of 20% of the valves be tested every 24 months. The ASME Code specifies the activities and frequencies necessary to satisfy the requirements. Table 3.7.1-2 allows a \pm [3]% setpoint tolerance for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift. The lift settings, according to Table 3.7.1-2, correspond to ambient conditions of the valve at nominal operating temperature and pressure.

This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. The MSSVs may be either bench tested or tested in situ at hot conditions using an assist device to simulate lift pressure. If the MSSVs are not tested at hot conditions, the lift setting pressure shall be corrected to ambient conditions of the valve at operating temperature and pressure.

REFERENCES

- 1. FSAR, Section [10.3.1].
- 2. ASME, Boiler and Pressure Vessel Code, Section III, Article NC-7000, Class 2 Components.
- FSAR, Section [15.2].
- 4. ASME, Boiler and Pressure Vessel Code, Section XI.
- 5. ANSI/ASME OM-1-1987.
- 6. NRC Information Notice 94-60, "Potential Overpressurization of the Main Steam System," August 22, 1994.

B 3.7 PLANT SYSTEMS

B 3.7.2 Main Steam Isolation Valves (MSIVs)

BASES

BACKGROUND

The MSIVs isolate steam flow from the secondary side of the steam generators following a high energy line break (HELB). MSIV closure terminates flow from the unaffected (intact) steam generators.

One MSIV is located in each main steam line outside, but close to, containment. The MSIVs are downstream from the main steam safety valves (MSSVs) and auxiliary feedwater (AFW) pump turbine steam supply, to prevent MSSV and AFW isolation from the steam generators by MSIV closure. Closing the MSIVs isolates each steam generator from the others, and isolates the turbine, Steam Bypass System, and other auxiliary steam supplies from the steam generators.

The MSIVs close on a main steam isolation signal generated by either low steam generator pressure or high containment pressure. The MSIVs fail closed on loss of control or actuation power.

Each MSIV has an MSIV bypass valve. Although these bypass valves are normally closed, they receive the same emergency closure signal as do their associated MSIVs. The MSIVs may also be actuated manually.

A description of the MSIVs is found in the FSAR, Section [10.3] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The design basis of the MSIVs is established by the containment analysis for the large steam line break (SLB) inside containment, discussed in the FSAR, Section [6.2] (Ref. 2). It is also affected by the accident analysis of the SLB events presented in the FSAR, Section [15.1.5] (Ref. 3). The design precludes the blowdown of more than one steam generator, assuming a single active component failure (e.g., the failure of one MSIV to close on demand).

The limiting case for the containment analysis is the SLB inside containment, with a loss of offsite power following turbine trip, and failure of the MSIV on the affected steam generator to close. At lower powers, the steam generator inventory and temperature are at their maximum, maximizing the analyzed mass and energy release to the containment. Due to reverse flow and failure of the MSIV to close, the additional mass and energy in the steam headers downstream from the other MSIV contribute to the total release. With the most reactive rod cluster control assembly assumed stuck in the fully withdrawn position, there is an

APPLICABLE SAFETY ANALYSES (continued)

increased possibility that the core will become critical and return to power. The core is ultimately shut down by the boric acid injection delivered by the Emergency Core Cooling System.

The accident analysis compares several different SLB events against different acceptance criteria. The large SLB outside containment upstream of the MSIV is limiting for offsite dose, although a break in this short section of main steam header has a very low probability. The large SLB inside containment at hot zero power is the limiting case for a post trip return to power. The analysis includes scenarios with offsite power available, and with a loss of offsite power following turbine trip. With offsite power available, the reactor coolant pumps continue to circulate coolant through the steam generators, maximizing the Reactor Coolant System cooldown. With a loss of offsite power, the response of mitigating systems is delayed. Significant single failures considered include failure of an MSIV to close.

The MSIVs serve only a safety function and remain open during power operation. These valves operate under the following situations:

- a. An HELB inside containment. In order to maximize the mass and energy release into containment, the analysis assumes that the MSIV in the affected steam generator remains open. For this accident scenario, steam is discharged into containment from all steam generators until the remaining MSIVs close. After MSIV closure, steam is discharged into containment only from the affected steam generator and from the residual steam in the main steam header downstream of the closed MSIVs in the unaffected loops. Closure of the MSIVs isolates the break from the unaffected steam generators.
- b. A break outside of containment and upstream from the MSIVs is not a containment pressurization concern. The uncontrolled blowdown of more than one steam generator must be prevented to limit the potential for uncontrolled RCS cooldown and positive reactivity addition. Closure of the MSIVs isolates the break and limits the blowdown to a single steam generator.
- A break downstream of the MSIVs will be isolated by the closure of the MSIVs.

APPLICABLE SAFETY ANALYSES (continued)

- d. Following a steam generator tube rupture, closure of the MSIVs isolates the ruptured steam generator from the intact steam generators to minimize radiological releases.
- e. The MSIVs are also utilized during other events such as a feedwater line break. This event is less limiting so far as MSIV OPERABILITY is concerned.

The MSIVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO requires that [four] MSIVs in the steam lines be OPERABLE. The MSIVs are considered OPERABLE when the isolation times are within limits, and they close on an isolation actuation signal.

This LCO provides assurance that the MSIVs will perform their design safety function to mitigate the consequences of accidents that could result in offsite exposures comparable to the 10 CFR 100 (Ref. 4) limits or the NRC staff approved licensing basis.

APPLICABILITY

The MSIVs must be OPERABLE in MODE 1, and in MODES 2 and 3 except when closed and de-activated, when there is significant mass and energy in the RCS and steam generators. When the MSIVs are closed, they are already performing the safety function.

In MODE 4, normally most of the MSIVs are closed, and the steam generator energy is low.

In MODE 5 or 6, the steam generators do not contain much energy because their temperature is below the boiling point of water; therefore, the MSIVs are not required for isolation of potential high energy secondary system pipe breaks in these MODES.

ACTIONS

A.1

With one MSIV inoperable in MODE 1, action must be taken to restore OPERABLE status within [8] hours. Some repairs to the MSIV can be made with the unit hot. The [8] hour Completion Time is reasonable, considering the low probability of an accident occurring during this time period that would require a closure of the MSIVs.

The [8] hour Completion Time is greater than that normally allowed for containment isolation valves because the MSIVs are valves that isolate a

closed system penetrating containment. These valves differ from other containment isolation valves in that the closed system provides an additional means for containment isolation.

B.1

If the MSIV cannot be restored to OPERABLE status within [8] hours, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in MODE 2 within 6 hours and Condition C would be entered. The Completion Times are reasonable, based on operating experience, to reach MODE 2 and to close the MSIVs in an orderly manner and without challenging unit systems.

C.1 and C.2

Condition C is modified by a Note indicating that separate Condition entry is allowed for each MSIV.

Since the MSIVs are required to be OPERABLE in MODES 2 and 3, the inoperable MSIVs may either be restored to OPERABLE status or closed. When closed, the MSIVs are already in the position required by the assumptions in the safety analysis.

The [8] hour Completion Time is consistent with that allowed in Condition A.

For inoperable MSIVs that cannot be restored to OPERABLE status within the specified Completion Time, but are closed, the inoperable MSIVs must be verified on a periodic basis to be closed. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of MSIV status indications available in the control room, and other administrative controls, to ensure that these valves are in the closed position.

D.1 and D.2

If the MSIVs cannot be restored to OPERABLE status or are not closed within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed at least in MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on

ACTIONS (continued)

operating experience, to reach the required unit conditions from MODE 2 conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.2.1

This SR verifies that MSIV closure time is \leq [4.6] seconds. The MSIV isolation time is assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The MSIVs should not be tested at power, since even a part stroke exercise increases the risk of a valve closure when the unit is generating power. As the MSIVs are not tested at power, they are exempt from the ASME Code, Section XI (Ref. 5), requirements during operation in MODE 1 or 2.

The Frequency is in accordance with the Inservice Testing Program.

This test is conducted in MODE 3 with the unit at operating temperature and pressure. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.

SR 3.7.2.2

This SR verifies that each MSIV can close on an actual or simulated actuation signal. This Surveillance is normally performed upon returning the plant to operation following a refueling outage. The Frequency of MSIV testing is every [18] months. The [18] month Frequency for testing is based on the refueling cycle. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, this Frequency is acceptable from a reliability standpoint.

REFERENCES

- 1. FSAR, Section [10.3].
- 2. FSAR, Section [6.2].
- 3. FSAR, Section [15.1.5].
- 4. 10 CFR 100.11.

REFERENCES (continued)

5. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.7 PLANT SYSTEMS

B 3.7.3 Main Feedwater Isolation Valves (MFIVs) and Main Feedwater Regulation Valves (MFRVs) [and Associated Bypass Valves]

BASES

BACKGROUND

The MFIVs isolate main feedwater (MFW) flow to the secondary side of the steam generators following a high energy line break (HELB). The safety related function of the MFRVs is to provide the second isolation of MFW flow to the secondary side of the steam generators following an HELB. Closure of the MFIVs and associated bypass valves or MFRVs and associated bypass valves terminates flow to the steam generators, terminating the event for feedwater line breaks (FWLBs) occurring upstream of the MFIVs or MFRVs. The consequences of events occurring in the main steam lines or in the MFW lines downstream from the MFIVs will be mitigated by their closure. Closure of the MFIVs and associated bypass valves, or MFRVs and associated bypass valves, effectively terminates the addition of feedwater to an affected steam generator, limiting the mass and energy release for steam line breaks (SLBs) or FWLBs inside containment, and reducing the cooldown effects for SLBs.

The MFIVs and associated bypass valves, or MFRVs and associated bypass valves, isolate the nonsafety related portions from the safety related portions of the system. In the event of a secondary side pipe rupture inside containment, the valves limit the quantity of high energy fluid that enters containment through the break, and provide a pressure boundary for the controlled addition of auxiliary feedwater (AFW) to the intact loops.

One MFIV and associated bypass valve, and one MFRV and its associated bypass valve, are located on each MFW line, outside but close to containment. The MFIVs and MFRVs are located upstream of the AFW injection point so that AFW may be supplied to the steam generators following MFIV or MFRV closure. The piping volume from these valves to the steam generators must be accounted for in calculating mass and energy releases, and refilled prior to AFW reaching the steam generator following either an SLB or FWLB.

The MFIVs and associated bypass valves, and MFRVs and associated bypass valves, close on receipt of a T_{avg} - Low coincident with reactor trip (P-4) or steam generator water level - high high signal. They may also be actuated manually. In addition to the MFIVs and associated bypass valves, and the MFRVs and associated bypass valves, a check valve inside containment is available. The check valve isolates the feedwater

BACKGROUND (continued)

line, penetrating containment, and ensures that the consequences of events do not exceed the capacity of the containment heat removal systems.

A description of the MFIVs and MFRVs is found in the FSAR, Section [10.4.7] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The design basis of the MFIVs and MFRVs is established by the analyses for the large SLB. It is also influenced by the accident analysis for the large FWLB. Closure of the MFIVs and associated bypass valves, or MFRVs and associated bypass valves, may also be relied on to terminate an SLB for core response analysis and excess feedwater event upon the receipt of a steam generator water level - high high signal or a feedwater isolation signal on high steam generator level.

Failure of an MFIV, MFRV, or the associated bypass valves to close following an SLB or FWLB can result in additional mass and energy being delivered to the steam generators, contributing to cooldown. This failure also results in additional mass and energy releases following an SLB or FWLB event.

The MFIVs and MFRVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO ensures that the MFIVs, MFRVs, and their associated bypass valves will isolate MFW flow to the steam generators, following an FWLB or main steam line break. These valves will also isolate the nonsafety related portions from the safety related portions of the system.

This LCO requires that [four] MFIVs and associated bypass valves and [four] MFRVs [and associated bypass valves] be OPERABLE. The MFIVs and MFRVs and the associated bypass valves are considered OPERABLE when isolation times are within limits and they close on an isolation actuation signal.

Failure to meet the LCO requirements can result in additional mass and energy being released to containment following an SLB or FWLB inside containment. If a feedwater isolation signal on high steam generator level is relied on to terminate an excess feedwater flow event, failure to meet the LCO may result in the introduction of water into the main steam lines.

APPLICABILITY

The MFIVs and MFRVs and the associated bypass valves must be OPERABLE whenever there is significant mass and energy in the Reactor Coolant System and steam generators. This ensures that, in the event of an HELB, a single failure cannot result in the blowdown of more than one steam generator. In MODES 1, 2, [and 3], the MFIVs and MFRVs and the associated bypass valves are required to be OPERABLE to limit the amount of available fluid that could be added to containment in the case of a secondary system pipe break inside containment. When the valves are closed and de-activated or isolated by a closed manual valve, they are already performing their safety function.

In MODES 4, 5, and 6, steam generator energy is low. Therefore, the MFIVs, MFRVs, and the associated bypass valves are normally closed since MFW is not required.

ACTIONS

The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each valve.

A.1 and A.2

With one MFIV in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within [72] hours. When these valves are closed or isolated, they are performing their required safety function.

The [72] hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The [72] hour Completion Time is reasonable, based on operating experience.

Inoperable MFIVs that are closed or isolated must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated.

B.1 and B.2

With one MFRV in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within [72] hours. When these valves are closed or isolated, they are performing their required safety function.

The [72] hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The [72] hour Completion Time is reasonable, based on operating experience.

Inoperable MFRVs, that are closed or isolated, must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls to ensure that the valves are closed or isolated.

C.1 and C.2

With one associated bypass valve in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within [72] hours. When these valves are closed or isolated, they are performing their required safety function.

The [72] hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The [72] hour Completion Time is reasonable, based on operating experience.

Inoperable associated bypass valves that are closed or isolated must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated.

D.1

With two inoperable valves in the same flow path, there may be no redundant system to operate automatically and perform the required safety function. Although the containment can be isolated with the failure of two valves in parallel in the same flow path, the double failure can be an indication of a common mode failure in the valves of this flow path, and as such, is treated the same as a loss of the isolation capability of

this flow path. Under these conditions, affected valves in each flow path must be restored to OPERABLE status, or the affected flow path isolated within 8 hours. This action returns the system to the condition where at least one valve in each flow path is performing the required safety function. The 8 hour Completion Time is reasonable, based on operating experience, to complete the actions required to close the MFIV or MFRV, or otherwise isolate the affected flow path.

E.1 and E.2

If the MFIV(s) and MFRV(s) and the associated bypass valve(s) cannot be restored to OPERABLE status, or closed, or isolated within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours[, and in MODE 4 within 12 hours]. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.3.1

This SR verifies that the closure time of each MFIV, MFRV, and [associated bypass valve] is ≤ 7 seconds. The MFIV and MFRV isolation times are assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. These valves should not be tested at power since even a part stroke exercise increases the risk of a valve closure with the unit generating power. This is consistent with the ASME Code, Section XI (Ref. 2), quarterly stroke requirements during operation in MODES 1 and 2.

The Frequency for this SR is in accordance with the Inservice Testing Program.

SR 3.7.3.2

This SR verifies that each MFIV, MFRV, and [associated bypass valve] can close on an actual or simulated actuation signal. This Surveillance is normally performed upon returning the plant to operation following a refueling outage.

The Frequency for this SR is every [18] months. The [18] month Frequency for testing is based on the refueling cycle. Operating

SURVEILLANCE REQUIREMENTS (continued)

experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, this Frequency is acceptable from a reliability standpoint.

REFERENCES

- 1. FSAR, Section [10.4.7].
- 2. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.7 PLANT SYSTEMS

B 3.7.4 Atmospheric Dump Valves (ADVs)

BASES

BACKGROUND

The ADVs provide a method for cooling the unit to residual heat removal (RHR) entry conditions should the preferred heat sink via the Steam Bypass System to the condenser not be available, as discussed in the FSAR, Section [10.3] (Ref. 1). This is done in conjunction with the Auxiliary Feedwater System providing cooling water from the condensate storage tank (CST). The ADVs may also be required to meet the design cooldown rate during a normal cooldown when steam pressure drops too low for maintenance of a vacuum in the condenser to permit use of the Steam Dump System.

One ADV line for each of the [four] steam generators is provided. Each ADV line consists of one ADV and an associated block valve.

The ADVs are provided with upstream block valves to permit their being tested at power, and to provide an alternate means of isolation. The ADVs are equipped with pneumatic controllers to permit control of the cooldown rate.

The ADVs are usually provided with a pressurized gas supply of bottled nitrogen that, on a loss of pressure in the normal instrument air supply, automatically supplies nitrogen to operate the ADVs. The nitrogen supply is sized to provide the sufficient pressurized gas to operate the ADVs for the time required for Reactor Coolant System cooldown to RHR entry conditions.

A description of the ADVs is found in Reference 1. The ADVs are OPERABLE with only a DC power source available. In addition, handwheels are provided for local manual operation.

APPLICABLE SAFETY ANALYSES

The design basis of the ADVs is established by the capability to cool the unit to RHR entry conditions. The design rate of [75]°F per hour is applicable for two steam generators, each with one ADV. This rate is adequate to cool the unit to RHR entry conditions with only one steam generator and one ADV, utilizing the cooling water supply available in the CST.

In the accident analysis presented in Reference 1, the ADVs are assumed to be used by the operator to cool down the unit to RHR entry conditions for accidents accompanied by a loss of offsite power. Prior to

APPLICABLE SAFETY ANALYSES (continued)

operator actions to cool down the unit, the ADVs and main steam safety valves (MSSVs) are assumed to operate automatically to relieve steam and maintain the steam generator pressure below the design value. For the recovery from a steam generator tube rupture (SGTR) event, the operator is also required to perform a limited cooldown to establish adequate subcooling as a necessary step to terminate the primary to secondary break flow into the ruptured steam generator. The time required to terminate the primary to secondary break flow for an SGTR is more critical than the time required to cool down to RHR conditions for this event and also for other accidents. Thus, the SGTR is the limiting event for the ADVs. The number of ADVs required to be OPERABLE to satisfy the SGTR accident analysis requirements depends upon the number of unit loops and consideration of any single failure assumptions regarding the failure of one ADV to open on demand.

The ADVs are equipped with block valves in the event an ADV spuriously fails to open or fails to close during use.

The ADVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

[Three] ADV lines are required to be OPERABLE. One ADV line is required from each of [three] steam generators to ensure that at least one ADV line is available to conduct a unit cooldown following an SGTR, in which one steam generator becomes unavailable, accompanied by a single, active failure of a second ADV line on an unaffected steam generator. The block valves must be OPERABLE to isolate a failed open ADV line. A closed block valve does not render it or its ADV line inoperable if operator action time to open the block valve is supported in the accident analysis.

Failure to meet the LCO can result in the inability to cool the unit to RHR entry conditions following an event in which the condenser is unavailable for use with the Steam Bypass System.

An ADV is considered OPERABLE when it is capable of providing controlled relief of the main steam flow and capable of fully opening and closing on demand.

APPLICABILITY

In MODES 1, 2, and 3, and in MODE 4, when a steam generator is being relied upon for heat removal, the ADVs are required to be OPERABLE.

In MODE 5 or 6, an SGTR is not a credible event.

ACTIONS

A.1

With one required ADV line inoperable, action must be taken to restore OPERABLE status within 7 days. The 7 day Completion Time allows for the redundant capability afforded by the remaining OPERABLE ADV lines, a nonsafety grade backup in the Steam Bypass System, and MSSVs. Required Action A.1 is modified by a Note indicating that LCO 3.0.4 does not apply.

B.1

With two or more ADV lines inoperable, action must be taken to restore all but one ADV line to OPERABLE status. Since the block valve can be closed to isolate an ADV, some repairs may be possible with the unit at power. The 24 hour Completion Time is reasonable to repair inoperable ADV lines, based on the availability of the Steam Bypass System and MSSVs, and the low probability of an event occurring during this period that would require the ADV lines.

C.1 and C.2

If the ADV lines cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4, without reliance upon steam generator for heat removal, within [24] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.4.1

To perform a controlled cooldown of the RCS, the ADVs must be able to be opened either remotely or locally and throttled through their full range. This SR ensures that the ADVs are tested through a full control cycle at least once per fuel cycle. Performance of inservice testing or use of an ADV during a unit cooldown may satisfy this requirement. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. The Frequency is acceptable from a reliability standpoint.

SURVEILLANCE REQUIREMENTS (continued)

[SR 3.7.4.2

The function of the block valve is to isolate a failed open ADV. Cycling the block valve both closed and open demonstrates its capability to perform this function. Performance of inservice testing or use of the block valve during unit cooldown may satisfy this requirement. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. The Frequency is acceptable from a reliability standpoint.

REFERENCES

1. FSAR, Section [10.3].

B 3.7 PLANT SYSTEMS

B 3.7.5 Auxiliary Feedwater (AFW) System

BASES

BACKGROUND

The AFW System automatically supplies feedwater to the steam generators to remove decay heat from the Reactor Coolant System upon the loss of normal feedwater supply. The AFW pumps take suction through separate and independent suction lines from the condensate storage tank (CST) (LCO 3.7.6) and pump to the steam generator secondary side via separate and independent connections to the main feedwater (MFW) piping outside containment. The steam generators function as a heat sink for core decay heat. The heat load is dissipated by releasing steam to the atmosphere from the steam generators via the main steam safety valves (MSSVs) (LCO 3.7.1) or atmospheric dump valves (LCO 3.7.4). If the main condenser is available, steam may be released via the steam bypass valves and recirculated to the CST.

The AFW System consists of [two] motor driven AFW pumps and one steam turbine driven pump configured into [three] trains. Each motor driven pump provides [100]% of AFW flow capacity, and the turbine driven pump provides [200]% of the required capacity to the steam generators, as assumed in the accident analysis. The pumps are equipped with independent recirculation lines to prevent pump operation against a closed system. Each motor driven AFW pump is powered from an independent Class 1E power supply and feeds [two] steam generators, although each pump has the capability to be realigned from the control room to feed other steam generators. The steam turbine driven AFW pump receives steam from two main steam lines upstream of the main steam isolation valves. Each of the steam feed lines will supply 100% of the requirements of the turbine driven AFW pump.

The AFW System is capable of supplying feedwater to the steam generators during normal unit startup, shutdown, and hot standby conditions.

The turbine driven AFW pump supplies a common header capable of feeding all steam generators with DC powered control valves actuated to the appropriate steam generator by the Engineered Safety Feature Actuation System (ESFAS). One pump at full flow is sufficient to remove decay heat and cool the unit to residual heat removal (RHR) entry conditions. Thus, the requirement for diversity in motive power sources for the AFW System is met.

BACKGROUND (continued)

The AFW System is designed to supply sufficient water to the steam generator(s) to remove decay heat with steam generator pressure at the setpoint of the MSSVs. Subsequently, the AFW System supplies sufficient water to cool the unit to RHR entry conditions, with steam released through the ADVs.

The AFW System actuates automatically on steam generator water level - low-low by the ESFAS (LCO 3.3.2). The system also actuates on loss of offsite power, safety injection, and trip of all MFW pumps.

The AFW System is discussed in the FSAR, Section [10.4.9] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The AFW System mitigates the consequences of any event with loss of normal feedwater.

The design basis of the AFW System is to supply water to the steam generator to remove decay heat and other residual heat by delivering at least the minimum required flow rate to the steam generators at pressures corresponding to the lowest steam generator safety valve set pressure plus 3%.

In addition, the AFW System must supply enough makeup water to replace steam generator secondary inventory lost as the unit cools to MODE 4 conditions. Sufficient AFW flow must also be available to account for flow losses such as pump recirculation and line breaks.

The limiting Design Basis Accidents (DBAs) and transients for the AFW System are as follows:

- a. Feedwater Line Break (FWLB) and
- b. Loss of MFW.

In addition, the minimum available AFW flow and system characteristics are serious considerations in the analysis of a small break loss of coolant accident (LOCA).

The AFW System design is such that it can perform its function following an FWLB between the MFW isolation valves and containment, combined with a loss of offsite power following turbine trip, and a single active failure of the steam turbine driven AFW pump. In such a case, the ESFAS logic may not detect the affected steam generator if the backflow check valve to the affected MFW header worked properly. One motor

APPLICABLE SAFETY ANALYSES (continued)

driven AFW pump would deliver to the broken MFW header at the pump runout flow until the problem was detected, and flow terminated by the operator. Sufficient flow would be delivered to the intact steam generator by the redundant AFW pump.

The ESFAS automatically actuates the AFW turbine driven pump and associated power operated valves and controls when required to ensure an adequate feedwater supply to the steam generators during loss of power. DC power operated valves are provided for each AFW line to control the AFW flow to each steam generator.

The AFW System satisfies the requirements of Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO provides assurance that the AFW System will perform its design safety function to mitigate the consequences of accidents that could result in overpressurization of the reactor coolant pressure boundary. [Three] independent AFW pumps in [three] diverse trains are required to be OPERABLE to ensure the availability of RHR capability for all events accompanied by a loss of offsite power and a single failure. This is accomplished by powering two of the pumps from independent emergency buses. The third AFW pump is powered by a different means, a steam driven turbine supplied with steam from a source that is not isolated by closure of the MSIVs.

The AFW System is configured into [three] trains. The AFW System is considered OPERABLE when the components and flow paths required to provide redundant AFW flow to the steam generators are OPERABLE. This requires that the two motor driven AFW pumps be OPERABLE in [two] diverse paths, each supplying AFW to separate steam generators. The turbine driven AFW pump is required to be OPERABLE with redundant steam supplies from each of [two] main steam lines upstream of the MSIVs, and shall be capable of supplying AFW to any of the steam generators. The piping, valves, instrumentation, and controls in the required flow paths also are required to be OPERABLE.

The LCO is modified by a Note indicating that one AFW train, which includes a motor driven pump, is required to be OPERABLE in MODE 4. This is because of the reduced heat removal requirements and short period of time in MODE 4 during which the AFW is required and the insufficient steam available in MODE 4 to power the turbine driven AFW pump.

APPLICABILITY

In MODES 1, 2, and 3, the AFW System is required to be OPERABLE in the event that it is called upon to function when the MFW is lost. In addition, the AFW System is required to supply enough makeup water to replace the steam generator secondary inventory, lost as the unit cools to MODE 4 conditions.

In MODE 4 the AFW System may be used for heat removal via the steam generators.

In MODE 5 or 6, the steam generators are not normally used for heat removal, and the AFW System is not required.

ACTIONS

[<u>A.1</u>

If one of the two steam supplies to the turbine driven AFW train is inoperable, or if a turbine driven pump is inoperable while in MODE 3 immediately following refueling, action must be taken to restore the inoperable equipment to an OPERABLE status within 7 days. The 7 day Completion Time is reasonable, based on the following reasons:

- a. For the inoperability of a steam supply to the turbine driven AFW pump, the 7 day Completion Time is reasonable since there is a redundant steam supply line for the turbine driven pump.
- b. For the inoperability of a turbine driven AFW pump while in MODE 3 immediately subsequent to a refueling, the 7 day Completion Time is reasonable due to the minimal decay heat levels in this situation.
- c. For both the inoperability of a steam supply line to the turbine driven pump and an inoperable turbine driven AFW pump while in MODE 3 immediately following a refueling outage, the 7 day Completion Time is reasonable due to the availability of redundant OPERABLE motor driven AFW pumps, and due to the low probability of an event requiring the use of the turbine driven AFW pump.

The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of Conditions to be inoperable during any continuous failure to meet this LCO.

The 10 day Completion Time provides a limitation time allowed in this specified Condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The <u>AND</u> connector between 7 days and 10 days

ACTIONS (continued)

dictates that both Completion Times apply simultaneously, and the more restrictive must be met.

Condition A is modified by a Note which limits the applicability of the Condition to when the unit has not entered MODE 2 following a refueling. Condition A allows one AFW train to be inoperable for 7 days vice the 72 hour Completion Time in Condition B. This longer Completion Time is based on the reduced decay heat following refueling and prior to the reactor being critical.

B.1

With one of the required AFW trains (pump or flow path) inoperable in MODE 1, 2, or 3 [for reasons other than Condition A], action must be taken to restore OPERABLE status within 72 hours. This Condition includes the loss of two steam supply lines to the turbine driven AFW pump. The 72 hour Completion Time is reasonable, based on redundant capabilities afforded by the AFW System, time needed for repairs, and the low probability of a DBA occurring during this time period.

The second Completion Time for Required Action B.1 establishes a limit on the maximum time allowed for any combination of Conditions to be inoperable during any continuous failure to meet this LCO.

The 10 day Completion Time provides a limitation time allowed in this specified Condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The <u>AND</u> connector between 72 hours and 10 days dictates that both Completion Times apply simultaneously, and the more restrictive must be met.

C.1 and C.2

When Required Action A.1 [or B.1] cannot be completed within the required Completion Time, or if two AFW trains are inoperable in MODE 1, 2, or 3, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within [18] hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

ACTIONS (continued)

In MODE 4 with two AFW trains inoperable, operation is allowed to continue because only one motor driven pump AFW train is required in accordance with the Note that modifies the LCO. Although not required, the unit may continue to cool down and initiate RHR.

<u>D.1</u>

If all [three] AFW trains are inoperable in MODE 1, 2, or 3, the unit is in a seriously degraded condition with no safety related means for conducting a cooldown, and only limited means for conducting a cooldown with nonsafety related equipment. In such a condition, the unit should not be perturbed by any action, including a power change, that might result in a trip. The seriousness of this condition requires that action be started immediately to restore one AFW train to OPERABLE status.

Required Action D.1 is modified by a Note indicating that all required MODE changes or power reductions are suspended until one AFW train is restored to OPERABLE status. In this case, LCO 3.0.3 is not applicable because it could force the unit into a less safe condition.

E.1

In MODE 4, either the reactor coolant pumps or the RHR loops can be used to provide forced circulation. This is addressed in LCO 3.4.6, "RCS Loops - MODE 4." With one required AFW train inoperable, action must be taken to immediately restore the inoperable train to OPERABLE status. The immediate Completion Time is consistent with LCO 3.4.6.

SURVEILLANCE REQUIREMENTS

SR 3.7.5.1

Verifying the correct alignment for manual, power operated, and automatic valves in the AFW System water and steam supply flow paths provides assurance that the proper flow paths will exist for AFW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position.

The SR is modified by a Note that states one or more AFW trains may be considered OPERABLE during alignment and operation for steam

SURVEILLANCE REQUIREMENTS (continued)

generator level control, if it is capable of being manually (i.e., remotely or locally, as appropriate) realigned to the AFW mode of operation, provided it is not otherwise inoperable. This exception allows the system to be out of its normal standby alignment and temporarily incapable of automatic initiation without declaring the train(s) inoperable. Since AFW may be used during startup, shutdown, hot standby operations, and hot shutdown operations for steam generator level control, and these manual operations are an accepted function of the AFW System, OPERABILITY (i.e., the intended safety function) continues to be maintained.

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

SR 3.7.5.2

Verifying that each AFW pump's developed head at the flow test point is greater than or equal to the required developed head ensures that AFW pump performance has not degraded during the cycle. Flow and differential head are normal tests of centrigufal pump performance required by Section XI of the ASME Code (Ref 2). Because it is undesirable to introduce cold AFW into the steam generators while they are operating, this testing is performed on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. Performance of inservice testing discussed in the ASME Code, Section XI (Ref. 2) (only required at 3 month intervals) satisfies this requirement.

[This SR is modified by a Note indicating that the SR should be deferred until suitable test conditions are established. This deferral is required because there is insufficient steam pressure to perform the test.]

SR 3.7.5.3

This SR verifies that AFW can be delivered to the appropriate steam generator in the event of any accident or transient that generates an ESFAS, by demonstrating that each automatic valve in the flow path actuates to its correct position on an actual or simulated actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this

SURVEILLANCE REQUIREMENTS (continued)

Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. The [18] month Frequency is acceptable based on operating experience and the design reliability of the equipment.

[The SR is modified by a Note that states one or more AFW trains may be considered OPERABLE during alignment and operation for steam generator level control, if it is capable of being manually (i.e., remotely or locally, as appropriate) realigned to the AFW mode of operation, provided it is not otherwise inoperable. This exception allows the system to be out of its normal standby alignment and temporarily incapable of automatic initiation without declaring the train(s) inoperable. Since AFW may be used during startup, shutdown, hot standby operations, and hot shutdown operations for steam generator level control, and these manual operations are an accepted function of the AFW System, OPERABILITY (i.e., the intended safety function) continues to be maintained. 1

This SR is modified by a Note that states the SR is not required in MODE 4. In MODE 4, the required AFW train is already aligned and operating.

SR 3.7.5.4

This SR verifies that the AFW pumps will start in the event of any accident or transient that generates an ESFAS by demonstrating that each AFW pump starts automatically on an actual or simulated actuation signal in MODES 1, 2, and 3. In MODE 4, the required pump is already operating and the autostart function is not required. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

This SR is modified by [a] [two] Note[s]. [Note 1 indicates that the SR be deferred until suitable test conditions are established. This deferral is required because there is insufficient steam pressure to perform the test.] [The Note [2] states that one or more AFW trains may be considered OPERABLE during alignment and operation for steam generator level control, if it is capable of being manually (i.e., remotely or locally, as appropriate) realigned to the AFW mode of operation, provided it is not otherwise inoperable. This exception allow the system to be out of its normal standby alignment and temporarily incapable of automatic initiation without declaring the train(s) inoperable. Since AFW may be

SURVEILLANCE REQUIREMENTS (continued)

used during startup, shutdown, hot standby operations, and hot shutdown operations for steam generator level control, and these manual operations are an accepted function of the AFW System. OPERABILITY (i.e., the intended safety function) continues to be maintained.]

[SR 3.7.5.5

This SR verifies that the AFW is properly aligned by verifying the flow paths from the CST to each steam generator prior to entering MODE 2 after more than 30 days in any combination of MODE 5 or 6 or defueled. OPERABILITY of AFW flow paths must be verified before sufficient core heat is generated that would require the operation of the AFW System during a subsequent shutdown. The Frequency is reasonable, based on engineering judgement and other administrative controls that ensure that flow paths remain OPERABLE. To further ensure AFW System alignment, flow path OPERABILITY is verified following extended outages to determine no misalignment of valves has occurred. This SR ensures that the flow path from the CST to the steam generators is properly aligned. 1

- REVIEWER'S NOTE -

This SR is not required by those units that use AFW for normal startup and shutdown.

REFERENCES

- 1. FSAR, Section [10.4.9].
- 2. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.7 PLANT SYSTEMS

B 3.7.6 Condensate Storage Tank (CST)

BASES

BACKGROUND

The CST provides a safety grade source of water to the steam generators for removing decay and sensible heat from the Reactor Coolant System (RCS). The CST provides a passive flow of water, by gravity, to the Auxiliary Feedwater (AFW) System (LCO 3.7.5). The steam produced is released to the atmosphere by the main steam safety valves or the atmospheric dump valves. The AFW pumps operate with a continuous recirculation to the CST.

When the main steam isolation valves are open, the preferred means of heat removal is to discharge steam to the condenser by the nonsafety grade path of the steam bypass valves. The condensed steam is returned to the CST by the condensate transfer pump. This has the advantage of conserving condensate while minimizing releases to the environment.

Because the CST is a principal component in removing residual heat from the RCS, it is designed to withstand earthquakes and other natural phenomena, including missiles that might be generated by natural phenomena. The CST is designed to Seismic Category I to ensure availability of the feedwater supply. Feedwater is also available from alternate sources.

A description of the CST is found in the FSAR, Section [9.2.6] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The CST provides cooling water to remove decay heat and to cool down the unit following all events in the accident analysis as discussed in the FSAR, Chapters [6] and [15] (Refs. 2 and 3, respectively). For anticipated operational occurrences and accidents that do not affect the OPERABILITY of the steam generators, the analysis assumption is generally 30 minutes at MODE 3, steaming through the MSSVs, followed by a cooldown to residual heat removal (RHR) entry conditions at the design cooldown rate.

The limiting event for the condensate volume is the large feedwater line break coincident with a loss of offsite power. Single failures that also affect this event include the following:

a. Failure of the diesel generator powering the motor driven AFW pump to the unaffected steam generator (requiring additional steam to drive the remaining AFW pump turbine) and

APPLICABLE SAFETY ANALYSES (continued)

 Failure of the steam driven AFW pump (requiring a longer time for cooldown using only one motor driven AFW pump).

These are not usually the limiting failures in terms of consequences for these events.

A nonlimiting event considered in CST inventory determinations is a break in either the main feedwater or AFW line near where the two join. This break has the potential for dumping condensate until terminated by operator action, since the Emergency Feedwater Actuation System would not detect a difference in pressure between the steam generators for this break location. This loss of condensate inventory is partially compensated for by the retention of steam generator inventory.

The CST satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

LCO

To satisfy accident analysis assumptions, the CST must contain sufficient cooling water to remove decay heat for [30 minutes] following a reactor trip from 102% RTP, and then to cool down the RCS to RHR entry conditions, assuming a coincident loss of offsite power and the most adverse single failure. In doing this, it must retain sufficient water to ensure adequate net positive suction head for the AFW pumps during cooldown, as well as account for any losses from the steam driven AFW pump turbine, or before isolating AFW to a broken line.

The CST level required is equivalent to a usable volume of ≥ [110,000 gallons], which is based on holding the unit in MODE 3 for [2] hours, followed by a cooldown to RHR entry conditions at [75]°F/hour. This basis is established in Reference 4 and exceeds the volume required by the accident analysis.

The OPERABILITY of the CST is determined by maintaining the tank level at or above the minimum required level.

APPLICABILITY

In MODES 1, 2, and 3, and in MODE 4, when steam generator is being relied upon for heat removal, the CST is required to be OPERABLE.

In MODE 5 or 6, the CST is not required because the AFW System is not required.

ACTIONS

A.1 and A.2

If the CST is not OPERABLE, the OPERABILITY of the backup supply should be verified by administrative means within 4 hours and once every 12 hours thereafter. OPERABILITY of the backup feedwater supply must include verification that the flow paths from the backup water supply to the AFW pumps are OPERABLE, and that the backup supply has the required volume of water available. The CST must be restored to OPERABLE status within 7 days, because the backup supply may be performing this function in addition to its normal functions. The 4 hour Completion Time is reasonable, based on operating experience, to verify the OPERABILITY of the backup water supply. Additionally, verifying the backup water supply every 12 hours is adequate to ensure the backup water supply continues to be available. The 7 day Completion Time is reasonable, based on an OPERABLE backup water supply being available, and the low probability of an event occurring during this time period requiring the CST.

B.1 and B.2

If the CST cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4, without reliance on the steam generator for heat removal, within [24] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.6.1

This SR verifies that the CST contains the required volume of cooling water. (The required CST volume may be single value or a function of RCS conditions.) The 12 hour Frequency is based on operating experience and the need for operator awareness of unit evolutions that may affect the CST inventory between checks. Also, the 12 hour Frequency is considered adequate in view of other indications in the control room, including alarms, to alert the operator to abnormal deviations in the CST level.

REFERENCES

- 1. FSAR, Section [9.2.6].
- 2. FSAR, Chapter [6].

REFERENCES (continued)

3. FSAR, Chapter [15].

B 3.7 PLANT SYSTEMS

B 3.7.7 Component Cooling Water (CCW) System

BASES

BACKGROUND

The CCW System provides a heat sink for the removal of process and operating heat from safety related components during a Design Basis Accident (DBA) or transient. During normal operation, the CCW System also provides this function for various nonessential components, as well as the spent fuel storage pool. The CCW System serves as a barrier to the release of radioactive byproducts between potentially radioactive systems and the Service Water System, and thus to the environment.

A typical CCW System is arranged as two independent, full capacity cooling loops, and has isolatable nonsafety related components. Each safety related train includes a full capacity pump, surge tank, heat exchanger, piping, valves, and instrumentation. Each safety related train is powered from a separate bus. An open surge tank in the system provides pump trip protective functions to ensure that sufficient net positive suction head is available. The pump in each train is automatically started on receipt of a safety injection signal, and all nonessential components are isolated.

Additional information on the design and operation of the system, along with a list of the components served, is presented in the FSAR, Section [9.2.2] (Ref. 1). The principal safety related function of the CCW System is the removal of decay heat from the reactor via the Residual Heat Removal (RHR) System. This may be during a normal or post accident cooldown and shutdown.

APPLICABLE SAFETY ANALYSES

The design basis of the CCW System is for one CCW train to remove the post loss of coolant accident (LOCA) heat load from the containment sump during the recirculation phase, with a maximum CCW temperature of [120]°F (Ref. 2). The Emergency Core Cooling System (ECCS) LOCA and containment OPERABILITY LOCA each model the maximum and minimum performance of the CCW System, respectively. The normal temperature of the CCW is [80]°F, and, during unit cooldown to MODE 5 ($T_{cold} < [200]$ °F), a maximum temperature of 95°F is assumed. This prevents the containment sump fluid from increasing in temperature during the recirculation phase following a LOCA, and provides a gradual reduction in the temperature of this fluid as it is supplied to the Reactor Coolant System (RCS) by the ECCS pumps.

APPLICABLE SAFETY ANALYSES (continued)

The CCW System is designed to perform its function with a single failure of any active component, assuming a loss of offsite power.

The CCW System also functions to cool the unit from RHR entry conditions ($T_{cold} < [350]^{\circ}F$), to MODE 5 ($T_{cold} < [200]^{\circ}F$), during normal and post accident operations. The time required to cool from [350]°F to [200]°F is a function of the number of CCW and RHR trains operating. One CCW train is sufficient to remove decay heat during subsequent operations with $T_{cold} < [200]^{\circ}F$. This assumes a maximum service water temperature of [95]°F occurring simultaneously with the maximum heat loads on the system.

The CCW System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The CCW trains are independent of each other to the degree that each has separate controls and power supplies and the operation of one does not depend on the other. In the event of a DBA, one CCW train is required to provide the minimum heat removal capability assumed in the safety analysis for the systems to which it supplies cooling water. To ensure this requirement is met, two trains of CCW must be OPERABLE. At least one CCW train will operate assuming the worst case single active failure occurs coincident with a loss of offsite power.

A CCW train is considered OPERABLE when:

- a. The pump and associated surge tank are OPERABLE and
- The associated piping, valves, heat exchanger, and instrumentation and controls required to perform the safety related function are OPERABLE.

The isolation of CCW from other components or systems not required for safety may render those components or systems inoperable but does not affect the OPERABILITY of the CCW System.

APPLICABILITY

In MODES 1, 2, 3, and 4, the CCW System is a normally operating system, which must be prepared to perform its post accident safety functions, primarily RCS heat removal, which is achieved by cooling the RHR heat exchanger.

In MODE 5 or 6, the OPERABILITY requirements of the CCW System are determined by the systems it supports.

ACTIONS

A.1

Required Action A.1 is modified by a Note indicating that the applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops - MODE 4," be entered if an inoperable CCW train results in an inoperable RHR loop. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components.

If one CCW train is inoperable, action must be taken to restore OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE CCW train is adequate to perform the heat removal function. The 72 hour Completion Time is reasonable, based on the redundant capabilities afforded by the OPERABLE train, and the low probability of a DBA occurring during this period.

B.1 and B.2

If the CCW train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.7.1

This SR is modified by a Note indicating that the isolation of the CCW flow to individual components may render those components inoperable but does not affect the OPERABILITY of the CCW System.

Verifying the correct alignment for manual, power operated, and automatic valves in the CCW flow path provides assurance that the proper flow paths exist for CCW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position.

SURVEILLANCE REQUIREMENTS (continued)

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

SR 3.7.7.2

This SR verifies proper automatic operation of the CCW valves on an actual or simulated actuation signal. The CCW System is a normally operating system that cannot be fully actuated as part of routine testing during normal operation. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

SR 3.7.7.3

This SR verifies proper automatic operation of the CCW pumps on an actual or simulated actuation signal. The CCW System is a normally operating system that cannot be fully actuated as part of routine testing during normal operation. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

REFERENCES

- 1. FSAR, Section [9.2.2].
- 2. FSAR, Section [6.2].

B 3.7 PLANT SYSTEMS

B 3.7.8 Service Water System (SWS)

BASES

BACKGROUND

The SWS provides a heat sink for the removal of process and operating heat from safety related components during a Design Basis Accident (DBA) or transient. During normal operation, and a normal shutdown, the SWS also provides this function for various safety related and nonsafety related components. The safety related function is covered by this LCO.

The SWS consists of two separate, 100% capacity, safety related, cooling water trains. Each train consists of two 100% capacity pumps, one component cooling water (CCW) heat exchanger, piping, valving, instrumentation, and two cyclone separators. The pumps and valves are remote and manually aligned, except in the unlikely event of a loss of coolant accident (LOCA). The pumps aligned to the critical loops are automatically started upon receipt of a safety injection signal, and all essential valves are aligned to their post accident positions. The SWS also provides emergency makeup to the spent fuel pool and CCW System [and is the backup water supply to the Auxiliary Feedwater System].

Additional information about the design and operation of the SWS, along with a list of the components served, is presented in the FSAR, Section [9.2.1] (Ref. 1). The principal safety related function of the SWS is the removal of decay heat from the reactor via the CCW System.

APPLICABLE SAFETY ANALYSES

The design basis of the SWS is for one SWS train, in conjunction with the CCW System and a 100% capacity containment cooling system, to remove core decay heat following a design basis LOCA as discussed in the FSAR, Section [6.2] (Ref. 2). This prevents the containment sump fluid from increasing in temperature during the recirculation phase following a LOCA and provides for a gradual reduction in the temperature of this fluid as it is supplied to the Reactor Coolant System by the ECCS pumps. The SWS is designed to perform its function with a single failure of any active component, assuming the loss of offsite power.

The SWS, in conjunction with the CCW System, also cools the unit from residual heat removal (RHR), as discussed in the FSAR, Section [5.4.7], (Ref. 3) entry conditions to MODE 5 during normal and post accident operations. The time required for this evolution is a function of the number of CCW and RHR System trains that are operating. One SWS train is sufficient to remove decay heat during subsequent operations in

APPLICABLE SAFETY ANALYSES (continued)

MODES 5 and 6. This assumes a maximum SWS temperature of [95]°F occurring simultaneously with maximum heat loads on the system.

The SWS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two SWS trains are required to be OPERABLE to provide the required redundancy to ensure that the system functions to remove post accident heat loads, assuming that the worst case single active failure occurs coincident with the loss of offsite power.

An SWS train is considered OPERABLE during MODES 1, 2, 3, and 4 when:

- a. The pump is OPERABLE and
- The associated piping, valves, heat exchanger, and instrumentation and controls required to perform the safety related function are OPERABLE.

APPLICABILITY

In MODES 1, 2, 3, and 4, the SWS is a normally operating system that is required to support the OPERABILITY of the equipment serviced by the SWS and required to be OPERABLE in these MODES.

In MODES 5 and 6, the OPERABILITY requirements of the SWS are determined by the systems it supports.

ACTIONS

<u>A.1</u>

If one SWS train is inoperable, action must be taken to restore OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE SWS train is adequate to perform the heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE SWS train could result in loss of SWS function. Required Action A.1 is modified by two Notes. The first Note indicates that the applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources - Operating," should be entered if an inoperable SWS train results in an inoperable emergency diesel generator. The second Note indicates that the applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops - MODE 4," should be entered if an inoperable SWS train results in an inoperable decay heat removal train. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. The 72 hour Completion Time is based on the redundant

ACTIONS (continued)

capabilities afforded by the OPERABLE train, and the low probability of a DBA occurring during this time period.

B.1 and B.2

If the SWS train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.8.1

This SR is modified by a Note indicating that the isolation of the SWS components or systems may render those components inoperable, but does not affect the OPERABILITY of the SWS.

Verifying the correct alignment for manual, power operated, and automatic valves in the SWS flow path provides assurance that the proper flow paths exist for SWS operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they are verified to be in the correct position prior to being locked, sealed, or secured. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

SR 3.7.8.2

This SR verifies proper automatic operation of the SWS valves on an actual or simulated actuation signal. The SWS is a normally operating system that cannot be fully actuated as part of normal testing. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the

SURVEILLANCE REQUIREMENTS (continued)

potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

SR 3.7.8.3

This SR verifies proper automatic operation of the SWS pumps on an actual or simulated actuation signal. The SWS is a normally operating system that cannot be fully actuated as part of normal testing during normal operation. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

REFERENCES

- 1. FSAR, Section [9.2.1].
- 2. FSAR, Section [6.2].
- 3. FSAR, Section [5.4.7].

B 3.7 PLANT SYSTEMS

B 3.7.9 Ultimate Heat Sink (UHS)

BASES

BACKGROUND

The UHS provides a heat sink for processing and operating heat from safety related components during a transient or accident, as well as during normal operation. This is done by utilizing the Service Water System (SWS) and the Component Cooling Water (CCW) System.

The UHS has been defined as that complex of water sources, including necessary retaining structures (e.g., a pond with its dam, or a river with its dam), and the canals or conduits connecting the sources with, but not including, the cooling water system intake structures as discussed in the FSAR, Section [9.2.5] (Ref. 1). If cooling towers or portions thereof are required to accomplish the UHS safety functions, they should meet the same requirements as the sink. The two principal functions of the UHS are the dissipation of residual heat after reactor shutdown, and dissipation of residual heat after an accident.

A variety of complexes is used to meet the requirements for a UHS. A lake or an ocean may qualify as a single source. If the complex includes a water source contained by a structure, it is likely that a second source will be required.

The basic performance requirements are that a 30 day supply of water be available, and that the design basis temperatures of safety related equipment not be exceeded. Basins of cooling towers generally include less than a 30 day supply of water, typically 7 days or less. A 30 day supply would be dependent on other source(s) and makeup system(s) for replenishing the source in the cooling tower basin. For smaller basin sources, which may be as small as a 1 day supply, the systems for replenishing the basin and the backup source(s) become of sufficient importance that the makeup system itself may be required to meet the same design criteria as an Engineered Safety Feature (e.g., single failure considerations), and multiple makeup water sources may be required.

Additional information on the design and operation of the system, along with a list of components served, can be found in Reference 1.

APPLICABLE SAFETY ANALYSES

The UHS is the sink for heat removed from the reactor core following all accidents and anticipated operational occurrences in which the unit is cooled down and placed on residual heat removal (RHR) operation. For units that use UHS as the normal heat sink for condenser cooling via the Circulating Water System, unit operation at full power is its maximum heat load. Its maximum post accident heat load occurs 20 minutes after a design basis loss of coolant accident (LOCA). Near this time, the unit switches from injection to recirculation and the containment cooling systems and RHR are required to remove the core decay heat.

The operating limits are based on conservative heat transfer analyses for the worst case LOCA. Reference 1 provides the details of the assumptions used in the analysis, which include worst expected meteorological conditions, conservative uncertainties when calculating decay heat, and worst case single active failure (e.g., single failure of a manmade structure). The UHS is designed in accordance with Regulatory Guide 1.27 (Ref. 2), which requires a 30 day supply of cooling water in the UHS.

The UHS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The UHS is required to be OPERABLE and is considered OPERABLE if it contains a sufficient volume of water at or below the maximum temperature that would allow the SWS to operate for at least 30 days following the design basis LOCA without the loss of net positive suction head (NPSH), and without exceeding the maximum design temperature of the equipment served by the SWS. To meet this condition, the UHS temperature should not exceed [90°F] and the level should not fall below [562 ft mean sea level] during normal unit operation.

APPLICABILITY

In MODES 1, 2, 3, and 4, the UHS is required to support the OPERABILITY of the equipment serviced by the UHS and required to be OPERABLE in these MODES.

In MODE 5 or 6, the OPERABILITY requirements of the UHS are determined by the systems it supports.

ACTIONS

[<u>A.1</u>

If one or more cooling towers have one fan inoperable (i.e., up to one fan per cooling tower inoperable), action must be taken to restore the inoperable cooling tower fan(s) to OPERABLE status within 7 days.

ACTIONS (continued)

The 7 day Completion Time is reasonable based on the low probability of an accident occurring during the 7 days that one cooling tower fan is inoperable (in one or more cooling towers), the number of available systems, and the time required to reasonably complete the Required Action.]

[<u>B.1</u>

- REVIEWER'S NOTE -

The []°F is the maximum allowed UHS temperature value and is based on temperature limitations of the equipment that is relied upon for accident mitigation and safe shutdown of the unit.

With water temperature of the UHS > [90]°F, the design basis assumption associated with initial UHS temperature are bounded provided the temperature of the UHS averaged over the previous 24 hour period is ≤ [90]°F. With the water temperature of the UHS > [90]°F, long term cooling capability of the ECCS loads and DGs may be affected. Therefore, to ensure long term cooling capability is provided to the ECCS loads when water temperature of the UHS is > [90]°F, Required Action B.1 is provided to more frequently monitor the water temperature of the UHS and verify the temperature is ≤ [90]°F when averaged over the previous 24 hour period. The once per hour Completion Time takes into consideration UHS temperature variations and the increased monitoring frequency needed to ensure design basis assumptions and equipment limitations are not exceeded in this condition. If the water temperature of the UHS exceeds [90]°F when averaged over the previous 24 hour period or the water temperature of the UHS exceeds []°F, Condition C must be entered immediately.]

[C.1 and C.2

If the Required Actions and Completion Times of Condition [A or B] are not met, or the UHS is inoperable for reasons other than Condition A, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

[SR 3.7.9.1

This SR verifies that adequate long term (30 day) cooling can be maintained. The specified level also ensures that sufficient NPSH is available to operate the SWS pumps. The [24] hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. This SR verifies that the UHS water level is \geq [562] ft [mean sea level].

[SR 3.7.9.2

This SR verifies that the SWS is available to cool the CCW System to at least its maximum design temperature with the maximum accident or normal design heat loads for 30 days following a Design Basis Accident. The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. This SR verifies that the average water temperature of the UHS is \leq [90°F].

[SR 3.7.9.3

Operating each cooling tower fan for ≥ [15] minutes ensures that all fans are OPERABLE and that all associated controls are functioning properly. It also ensures that fan or motor failure, or excessive vibration, can be detected for corrective action. The 31 day Frequency is based on operating experience, the known reliability of the fan units, the redundancy available, and the low probability of significant degradation of the UHS cooling tower fans occurring between surveillances. 1

[SR 3.7.9.4

This SR verifies that each cooling tower fan starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with the typical refueling cycle. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

REFERENCES

- 1. FSAR, Section [9.2.5].
- 2. Regulatory Guide 1.27.

B 3.7 PLANT SYSTEMS

B 3.7.10 Control Room Emergency Filtration System (CREFS)

BASES

BACKGROUND

The CREFS provides a protected environment from which operators can control the unit following an uncontrolled release of radioactivity[, chemicals, or toxic gas].

The CREFS consists of two independent, redundant trains that recirculate and filter the control room air. Each train consists of a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation also form part of the system, as well as demisters to remove water droplets from the air stream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case of failure of the main HEPA filter bank.

The CREFS is an emergency system, parts of which may also operate during normal unit operations in the standby mode of operation. Upon receipt of the actuating signal(s), normal air supply to the control room is isolated, and the stream of ventilation air is recirculated through the system filter trains. The prefilters or demisters remove any large particles in the air, and any entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal adsorbers. Continuous operation of each train for at least 10 hours per month, with the heaters on, reduces moisture buildup on the HEPA filters and adsorbers. Both the demister and heater are important to the effectiveness of the charcoal adsorbers.

Actuation of the CREFS places the system in either of two separate states (emergency radiation state or toxic gas isolation state) of the emergency mode of operation, depending on the initiation signal. Actuation of the system to the emergency radiation state of the emergency mode of operation, closes the unfiltered outside air intake and unfiltered exhaust dampers, and aligns the system for recirculation of the control room air through the redundant trains of HEPA and the charcoal filters. The emergency radiation state also initiates pressurization and filtered ventilation of the air supply to the control room.

Outside air is filtered, diluted with building air from the electrical equipment and cable spreading rooms, and added to the air being recirculated from the control room. Pressurization of the control room prevents infiltration of unfiltered air from the surrounding areas of the

BACKGROUND (continued)

building. The actions taken in the toxic gas isolation state are the same, except that the signal switches control room ventilation to an isolation alignment to prevent outside air from entering the control room.

The air entering the control room is continuously monitored by radiation and toxic gas detectors. One detector output above the setpoint will cause actuation of the emergency radiation state or toxic gas isolation state, as required. The actions of the toxic gas isolation state are more restrictive, and will override the actions of the emergency radiation state.

A single train will pressurize the control room to about [0.125] inches water gauge. The CREFS operation in maintaining the control room habitable is discussed in the FSAR, Section [6.4] (Ref. 1).

Redundant supply and recirculation trains provide the required filtration should an excessive pressure drop develop across the other filter train. Normally open isolation dampers are arranged in series pairs so that the failure of one damper to shut will not result in a breach of isolation. The CREFS is designed in accordance with Seismic Category I requirements.

The CREFS is designed to maintain the control room environment for 30 days of continuous occupancy after a Design Basis Accident (DBA) without exceeding a 5 rem whole body dose or its equivalent to any part of the body.

APPLICABLE SAFETY ANALYSES

The CREFS components are arranged in redundant, safety related ventilation trains. The location of components and ducting within the control room envelope ensures an adequate supply of filtered air to all areas requiring access. The CREFS provides airborne radiological protection for the control room operators, as demonstrated by the control room accident dose analyses for the most limiting design basis loss of coolant accident, fission product release presented in the FSAR, Chapter [15] (Ref. 2).

The analysis of toxic gas releases demonstrates that the toxicity limits are not exceeded in the control room following a toxic chemical release, as presented in Reference 1.

The worst case single active failure of a component of the CREFS, assuming a loss of offsite power, does not impair the ability of the system to perform its design function.

APPLICABLE SAFETY ANALYSES (continued)

The CREFS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two independent and redundant CREFS trains are required to be OPERABLE to ensure that at least one is available assuming a single failure disables the other train. Total system failure could result in exceeding a dose of 5 rem to the control room operator in the event of a large radioactive release.

The CREFS is considered OPERABLE when the individual components necessary to limit operator exposure are OPERABLE in both trains. A CREFS train is OPERABLE when the associated:

- a. Fan is OPERABLE,
- b. HEPA filters and charcoal adsorbers are not excessively restricting flow, and are capable of performing their filtration functions, and
- c. Heater, demister, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained.

In addition, the control room boundary must be maintained, including the integrity of the walls, floors, ceilings, ductwork, and access doors.

The LCO is modified by a Note allowing the control room boundary to be opened intermittently under administrative controls. For entry and exit through doors, the administrative control of the opening is performed by the person(s) entering or exiting the area. For other openings, these controls consist of stationing a dedicated individual at the opening who is in continuous communication with the control room. This individual will have a method to rapidly close the opening when a need for control room isolation is indicated.

APPLICABILITY

In MODES 1, 2, 3, 4, [5, and 6,] and during movement of [recently] irradiated fuel assemblies, CREFS must be OPERABLE to control operator exposure during and following a DBA.

In [MODE 5 or 6], the CREFS is required to cope with the release from the rupture of an outside waste gas tank.

During movement of [recently] irradiated fuel assemblies, the CREFS must be OPERABLE to cope with the release from a fuel handling accident [involving handling recently irradiated fuel]. [The CREFS is only

APPLICABILITY (continued)

required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days), due to radioactive decay.]

ACTIONS

A.1

When one CREFS train is inoperable, action must be taken to restore OPERABLE status within 7 days. In this Condition, the remaining OPERABLE CREFS train is adequate to perform the control room protection function. However, the overall reliability is reduced because a single failure in the OPERABLE CREFS train could result in loss of CREFS function. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and ability of the remaining train to provide the required capability.

B.1

- REVIEWER'S NOTE -

Adoption of Condition B is dependent on a commitment from the licensee to have written procedures available describing compensatory measures to be taken in the event of an intentional or unintentional entry into Condition B.

If the control room boundary is inoperable in MODE 1, 2, 3, or 4, the CREFS trains cannot perform their intended functions. Actions must be taken to restore an OPERABLE control room boundary within 24 hours. During the period that the control room boundary is inoperable, appropriate compensatory measures (consistent with the intent of GDC 19) should be utilized to protect control room operators from potential hazards such as radioactive contamination, toxic chemicals, smoke, temperature and relative humidity, and physical security. Preplanned measures should be available to address these concerns for intentional and unintentional entry into the condition. The 24 hour Completion Time is reasonable based on the low probability of a DBA occurring during this time period, and the use of compensatory measures. The 24 hour Completion time is a typically reasonable time to diagnose, plan and possibly repair, and test most problems with the control room boundary.

ACTIONS (continued)

C.1 and C.2

In MODE 1, 2, 3, or 4, if the inoperable CREFS train or control room boundary cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes accident risk. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

D.1 and D.2

[In MODE 5 or 6, or] during movement of [recently] irradiated fuel assemblies, if the inoperable CREFS train cannot be restored to OPERABLE status within the required Completion Time, action must be taken to immediately place the OPERABLE CREFS train in the emergency mode. This action ensures that the remaining train is OPERABLE, that no failures preventing automatic actuation will occur, and that any active failure would be readily detected.

An alternative to Required Action D.1 is to immediately suspend activities that could result in a release of radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position.

Required Action D.1 is modified by a Note indicating to place the system in the toxic gas protection mode if automatic transfer to toxic gas protection mode is inoperable.

E.1

[In MODE 5 or 6, or] during movement of [recently] irradiated fuel assemblies, with two CREFS trains inoperable, action must be taken immediately to suspend activities that could result in a release of radioactivity that might enter the control room. This places the unit in a condition that minimizes accident risk. This does not preclude the movement of fuel to a safe position.

<u>F.1</u>

If both CREFS trains are inoperable in MODE 1, 2, 3, or 4 for reasons other than an inoperable control room boundary (i.e., Condition B), the

ACTIONS (continued)

CREFS may not be capable of performing the intended function and the unit is in a condition outside the accident analyses. Therefore, LCO 3.0.3 must be entered immediately.

SURVEILLANCE REQUIREMENTS

SR 3.7.10.1

Standby systems should be checked periodically to ensure that they function properly. As the environment and normal operating conditions on this system are not too severe, testing each train once every month provides an adequate check of this system. Monthly heater operations dry out any moisture accumulated in the charcoal from humidity in the ambient air. [Systems with heaters must be operated for \geq 10 continuous hours with the heaters energized. Systems without heaters need only be operated for \geq 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the reliability of the equipment and the two train redundancy availability.

SR 3.7.10.2

This SR verifies that the required CREFS testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The [VFTP] includes testing the performance of the HEPA filter, charcoal adsorber efficiency, minimum flow rate, and the physical properties of the activated charcoal. Specific test Frequencies and additional information are discussed in detail in the [VFTP].

SR 3.7.10.3

This SR verifies that each CREFS train starts and operates on an actual or simulated actuation signal. The Frequency of [18] months is specified in Regulatory Guide 1.52 (Ref. 3).

SR 3.7.10.4

This SR verifies the integrity of the control room enclosure, and the assumed inleakage rates of the potentially contaminated air. The control room positive pressure, with respect to potentially contaminated adjacent areas, is periodically tested to verify proper functioning of the CREFS. During the emergency mode of operation, the CREFS is designed to pressurize the control room \geq [0.125] inches water gauge positive pressure with respect to adjacent areas in order to prevent unfiltered inleakage. The CREFS is designed to maintain this positive pressure with one train at a makeup flow rate of [3000] cfm. The

SURVEILLANCE REQUIREMENTS (continued)

Frequency of [18] months on a STAGGERED TEST BASIS is consistent with the guidance provided in NUREG-0800 (Ref. 4).

REFERENCES

- 1. FSAR, Section [6.4].
- 2. FSAR, Chapter [15].
- 3. Regulatory Guide 1.52, Rev. [2].
- 4. NUREG-0800, Section 6.4, Rev. 2, July 1981.

B 3.7 PLANT SYSTEMS

B 3.7.11 Control Room Emergency Air Temperature Control System (CREATCS)

BASES

BACKGROUND

The CREATCS provides temperature control for the control room following isolation of the control room.

The CREATCS consists of two independent and redundant trains that provide cooling and heating of recirculated control room air. Each train consists of heating coils, cooling coils, instrumentation, and controls to provide for control room temperature control. The CREATCS is a subsystem providing air temperature control for the control room.

The CREATCS is an emergency system, parts of which may also operate during normal unit operations. A single train will provide the required temperature control to maintain the control room between [70]°F and [85]°F. The CREATCS operation in maintaining the control room temperature is discussed in the FSAR, Section [6.4] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The design basis of the CREATCS is to maintain the control room temperature for 30 days of continuous occupancy.

The CREATCS components are arranged in redundant, safety related trains. During emergency operation, the CREATCS maintains the temperature between [70]°F and [85]°F. A single active failure of a component of the CREATCS, with a loss of offsite power, does not impair the ability of the system to perform its design function. Redundant detectors and controls are provided for control room temperature control. The CREATCS is designed in accordance with Seismic Category I requirements. The CREATCS is capable of removing sensible and latent heat loads from the control room, which include consideration of equipment heat loads and personnel occupancy requirements, to ensure equipment OPERABILITY.

The CREATCS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two independent and redundant trains of the CREATCS are required to be OPERABLE to ensure that at least one is available, assuming a single failure disabling the other train. Total system failure could result in the equipment operating temperature exceeding limits in the event of an accident.

LCO (continued)

The CREATCS is considered to be OPERABLE when the individual components necessary to maintain the control room temperature are OPERABLE in both trains. These components include the heating and cooling coils and associated temperature control instrumentation. In addition, the CREATCS must be operable to the extent that air circulation can be maintained.

APPLICABILITY

In MODES 1, 2, 3, 4, [5, and 6,] and during movement of [recently] irradiated fuel assemblies, the CREATCS must be OPERABLE to ensure that the control room temperature will not exceed equipment operational requirements following isolation of the control room. [The CREATCS is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days), due to radioactive decay.]

[In MODE 5 or 6,] CREATCS may not be required for those facilities that do not require automatic control room isolation.

ACTIONS

A.1

With one CREATCS train inoperable, action must be taken to restore OPERABLE status within 30 days. In this Condition, the remaining OPERABLE CREATCS train is adequate to maintain the control room temperature within limits. However, the overall reliability is reduced because a single failure in the OPERABLE CREATCS train could result in loss of CREATCS function. The 30 day Completion Time is based on the low probability of an event requiring control room isolation, the consideration that the remaining train can provide the required protection, and that alternate safety or nonsafety related cooling means are available.

B.1 and B.2

In MODE 1, 2, 3, or 4, if the inoperable CREATCS train cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes the risk. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

ACTIONS (continued)

C.1 and C.2

[In MODE 5 or 6, or] during movement of [recently] irradiated fuel, if the inoperable CREATCS train cannot be restored to OPERABLE status within the required Completion Time, the OPERABLE CREATCS train must be placed in operation immediately. This action ensures that the remaining train is OPERABLE, that no failures preventing automatic actuation will occur, and that active failures will be readily detected.

An alternative to Required Action C.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes accident risk. This does not preclude the movement of fuel to a safe position.

D.1

[In MODE 5 or 6, or] during movement of [recently] irradiated fuel assemblies, with two CREATCS trains inoperable, action must be taken immediately to suspend activities that could result in a release of radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position.

<u>E.1</u>

If both CREATCS trains are inoperable in MODE 1, 2, 3, or 4, the control room CREATCS may not be capable of performing its intended function. Therefore, LCO 3.0.3 must be entered immediately.

SURVEILLANCE REQUIREMENTS

SR 3.7.11.1

This SR verifies that the heat removal capability of the system is sufficient to remove the heat load assumed in the [safety analyses] in the control room. This SR consists of a combination of testing and calculations. The [18] month Frequency is appropriate since significant degradation of the CREATCS is slow and is not expected over this time period.

REFERENCES

1. FSAR, Section [6.4].

B 3.7 PLANT SYSTEMS

B 3.7.12 Emergency Core Cooling System (ECCS) Pump Room Exhaust Air Cleanup System (PREACS)

BASES

BACKGROUND

The ECCS PREACS filters air from the area of the active ECCS components during the recirculation phase of a loss of coolant accident (LOCA). The ECCS PREACS, in conjunction with other normally operating systems, also provides environmental control of temperature and humidity in the ECCS pump room area and the lower reaches of the auxiliary building.

The ECCS PREACS consists of two independent and redundant trains. Each train consists of a heater, a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation also form part of the system, as well as demisters functioning to reduce the relative humidity of the air stream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case the main HEPA filter bank fails. The downstream HEPA filter is not credited in the accident analysis, but serves to collect charcoal fines, and to back up the upstream HEPA filter should it develop a leak. The system initiates filtered ventilation of the pump room following receipt of a safety injection (SI) signal.

The ECCS PREACS is a standby system, aligned to bypass the system HEPA filters and charcoal adsorbers. During emergency operations, the ECCS PREACS dampers are realigned, and fans are started to begin filtration. Upon receipt of the actuating Engineered Safety Feature Actuation System signal(s), normal air discharges from the ECCS pump room isolate, and the stream of ventilation air discharges through the system filter trains. The prefilters remove any large particles in the air, and any entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal adsorbers.

The ECCS PREACS is discussed in the FSAR, Sections [6.5.1], [9.4.5], and [15.6.5] (Refs. 1, 2, and 3, respectively) since it may be used for normal, as well as post accident, atmospheric cleanup functions. The primary purpose of the heaters is to maintain the relative humidity at an acceptable level, consistent with iodine removal efficiencies per Regulatory Guide 1.52 (Ref. 4).

APPLICABLE SAFETY ANALYSES

The design basis of the ECCS PREACS is established by the large break LOCA. The system evaluation assumes a passive failure of the ECCS outside containment, such as an SI pump seal failure, during the recirculation mode. In such a case, the system limits radioactive release to within the 10 CFR 100 (Ref. 5) limits, or the NRC staff approved licensing basis (e.g., a specified fraction of Reference 5 limits). The analysis of the effects and consequences of a large break LOCA is presented in Reference 3. The ECCS PREACS also actuates following a small break LOCA, in those cases where the ECCS goes into the recirculation mode of long term cooling, to clean up releases of smaller leaks, such as from valve stem packing.

Two types of system failures are considered in the accident analysis: complete loss of function, and excessive LEAKAGE. Either type of failure may result in a lower efficiency of removal for any gaseous and particulate activity released to the ECCS pump rooms following a LOCA.

The ECCS PREACS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two independent and redundant trains of the ECCS PREACS are required to be OPERABLE to ensure that at least one is available, assuming that a single failure disables the other train coincident with loss of offsite power. Total system failure could result in the atmospheric release from the ECCS pump room exceeding 10 CFR 100 limits in the event of a Design Basis Accident (DBA).

ECCS PREACS is considered OPERABLE when the individual components necessary to maintain the ECCS pump room filtration are OPERABLE in both trains.

An ECCS PREACS train is considered OPERABLE when its associated:

- a. Fan is OPERABLE,
- b. HEPA filter and charcoal adsorbers are not excessively restricting flow, and are capable of performing their filtration functions, and
- c. Heater, demister, ductwork, valves, and dampers are OPERABLE and air circulation can be maintained.

The LCO is modified by a Note allowing the ECCS pump room boundary to be opened intermittently under administrative controls. For entry and exit through doors, the administrative control of the opening is performed by the person(s) entering or exiting the area. For other openings, these

LCO (continued)

controls consist of stationing a dedicated individual at the opening who is in continuous communication with the control room. This individual will have a method to rapidly close the opening when a need for ECCS pump room isolation is indicated.

APPLICABILITY

In MODES 1, 2, 3, and 4, the ECCS PREACS is required to be OPERABLE consistent with the OPERABILITY requirements of the ECCS.

In MODE 5 or 6, the ECCS PREACS is not required to be OPERABLE since the ECCS is not required to be OPERABLE.

ACTIONS

WOG STS

A.1

With one ECCS PREACS train inoperable, action must be taken to restore OPERABLE status within 7 days. During this time, the remaining OPERABLE train is adequate to perform the ECCS PREACS function.

The 7 day Completion Time is appropriate because the risk contribution is less than that for the ECCS (72 hour Completion Time), and this system is not a direct support system for the ECCS. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and ability of the remaining train to provide the required capability.

Concurrent failure of two ECCS PREACS trains would result in the loss of functional capability; therefore, LCO 3.0.3 must be entered immediately.

B.1

- REVIEWER'S NOTE -

Adoption of Condition B is dependent on a commitment from the licensee to have written procedures available describing compensatory measures to be taken in the event of an intentional or unintentional entry into Condition B.

If the ECCS pump room boundary is inoperable, the ECCS PREACS trains cannot perform their intended functions. Actions must be taken to restore an OPERABLE ECCS pump room boundary within 24 hours. During the period that the ECCS pump room boundary is inoperable, appropriate compensatory measures [consistent with the intent, as

ACTIONS (continued)

applicable, of GDC 19, 60, 64 and 10 CFR Part 100] should be utilized to protect plant personnel from potential hazards such as radioactive contamination, toxic chemicals, smoke, temperature and relative humidity, and physical security. Preplanned measures should be available to address these concerns for intentional and unintentional entry into the condition. The 24 hour Completion Time is reasonable based on the low probability of a DBA occurring during this time period, and the use of compensatory measures. The 24 hour Completion Time is a typically reasonable time to diagnose, plan and possibly repair, and test most problems with the ECCS pump room boundary.

C.1 and C.2

If the ECCS PREACS train or ECCS pump room boundary cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.12.1

Standby systems should be checked periodically to ensure that they function properly. As the environment and normal operating conditions on this system are not severe, testing each train once a month provides an adequate check on this system. Monthly heater operations dry out any moisture that may have accumulated in the charcoal from humidity in the ambient air. [Systems with heaters must be operated ≥ 10 continuous hours with the heaters energized. Systems without heaters need only be operated for ≥ 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the known reliability of equipment and the two train redundancy available.

SR 3.7.12.2

This SR verifies that the required ECCS PREACS testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The [VFTP] includes testing HEPA filter performance, charcoal adsorbers efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations).

SURVEILLANCE REQUIREMENTS (continued)

Specific test Frequencies and additional information are discussed in detail in the [VFTP].

SR 3.7.12.3

This SR verifies that each ECCS PREACS train starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with that specified in Reference 4.

SR 3.7.12.4

This SR verifies the integrity of the ECCS pump room enclosure. The ability of the ECCS pump room to maintain a negative pressure, with respect to potentially uncontaminated adjacent areas, is periodically tested to verify proper functioning of the ECCS PREACS. During the [post accident] mode of operation, the ECCS PREACS is designed to maintain a slight negative pressure in the ECCS pump room, with respect to adjacent areas, to prevent unfiltered LEAKAGE. The ECCS PREACS is designed to maintain a \leq [-0.125] inches water gauge relative to atmospheric pressure at a flow rate of [3000] cfm from the ECCS pump room. The Frequency of [18] months is consistent with the guidance provided in NUREG-0800, Section 6.5.1 (Ref. 6).

This test is conducted with the tests for filter penetration; thus, an [18] month Frequency on a STAGGERED TEST BASIS is consistent with that specified in Reference 4.

[SR 3.7.12.5

Operating the ECCS PREACS bypass damper is necessary to ensure that the system functions properly. The OPERABILITY of the ECCS PREACS bypass damper is verified if it can be specified in Reference 4.]

REFERENCES

- 1. FSAR, Section [6.5.1].
- 2. FSAR, Section [9.4.5].
- 3. FSAR, Section [15.6.5].
- 4. Regulatory Guide 1.52 (Rev. 2).
- 5. 10 CFR 100.11.

REFERENCES (continued)

6. NUREG-0800, Section 6.5.1, Rev. 2, July 1981.

B 3.7 PLANT SYSTEMS

B 3.7.13 Fuel Building Air Cleanup System (FBACS)

BASES

BACKGROUND

The FBACS filters airborne radioactive particulates from the area of the fuel pool following a fuel handling accident or loss of coolant accident (LOCA). The FBACS, in conjunction with other normally operating systems, also provides environmental control of temperature and humidity in the fuel pool area.

The FBACS consists of two independent and redundant trains. Each train consists of a heater, a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation also form part of the system, as well as demisters, functioning to reduce the relative humidity of the airstream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case the main HEPA filter bank fails. The downstream HEPA filter is not credited in the analysis, but serves to collect charcoal fines, and to back up the upstream HEPA filter should it develop a leak. The system initiates filtered ventilation of the fuel handling building following receipt of a high radiation signal.

The FBACS is a standby system, parts of which may also be operated during normal plant operations. Upon receipt of the actuating signal, normal air discharges from the building, the fuel handling building is isolated, and the stream of ventilation air discharges through the system filter trains. The prefilters or demisters remove any large particles in the air, and any entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal adsorbers.

The FBACS is discussed in the FSAR, Sections [6.5.1], [9.4.5], and [15.7.4] (Refs. 1, 2, and 3, respectively) because it may be used for normal, as well as post accident, atmospheric cleanup functions.

APPLICABLE SAFETY ANALYSES

The FBACS design basis is established by the consequences of the limiting Design Basis Accident (DBA), which is a fuel handling accident [involving handling recently irradiated fuel]. The analysis of the fuel handling accident, given in Reference 3, assumes that all fuel rods in an assembly are damaged. The analysis of the LOCA assumes that radioactive materials leaked from the Emergency Core Cooling System (ECCS) are filtered and adsorbed by the FBACS. The DBA analysis of the fuel handling accident assumes that only one train of the FBACS is

APPLICABLE SAFETY ANALYSES (continued)

functional due to a single failure that disables the other train. The accident analysis accounts for the reduction in airborne radioactive material provided by the one remaining train of this filtration system. The amount of fission products available for release from the fuel handling building is determined for a fuel handling accident and for a LOCA. [Due to radioactive decay, FBACS is only required to isolate during fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days).] These assumptions and the analysis follow the guidance provided in Regulatory Guide 1.25 (Ref. 4).

The FBACS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two independent and redundant trains of the FBACS are required to be OPERABLE to ensure that at least one train is available, assuming a single failure that disables the other train, coincident with a loss of offsite power. Total system failure could result in the atmospheric release from the fuel handling building exceeding the 10 CFR 100 (Ref. 5) limits in the event of a fuel handling accident [involving handling recently irradiated fuel].

The FBACS is considered OPERABLE when the individual components necessary to control exposure in the fuel handling building are OPERABLE in both trains. An FBACS train is considered OPERABLE when its associated:

- a. Fan is OPERABLE,
- b. HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration function, and
- c. Heater, demister, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained.

The LCO is modified by a Note allowing the fuel building boundary to be opened intermittently under administrative controls. For entry and exit through doors the administrative control of the opening is performed by the person(s) entering or exiting the area. For other openings, these controls consist of stationing a dedicated individual at the opening who is in continuous communication with the control room. This individual will have a method to rapidly close the opening when a need for fuel building isolation is indicated.

APPLICABILITY

In MODE 1, 2, 3, or 4, the FBACS is required to be OPERABLE to provide fission product removal associated with ECCS leaks due to a LOCA and leakage from containment and annulus.

In MODE 5 or 6, the FBACS is not required to be OPERABLE since the ECCS is not required to be OPERABLE.

During movement of [recently] irradiated fuel in the fuel handling area, the FBACS is required to be OPERABLE to alleviate the consequences of a fuel handling accident.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.

<u>A.1</u>

With one FBACS train inoperable, action must be taken to restore OPERABLE status within 7 days. During this period, the remaining OPERABLE train is adequate to perform the FBACS function. The 7 day Completion Time is based on the risk from an event occurring requiring the inoperable FBACS train, and the remaining FBACS train providing the required protection.

B.1

- REVIEWER'S NOTE -

Adoption of Condition B is dependent on a commitment from the licensee to have guidance available describing compensatory measures to be taken in the event of an intentional and unintentional entry into Condition B.

If the fuel building boundary is inoperable in MODE 1, 2, 3, or 4, the FBACS trains cannot perform their intended functions. Actions must be taken to restore an OPERABLE fuel building boundary within 24 hours. During the period that the fuel building boundary is inoperable, appropriate compensatory measures [consistent with the intent, as applicable, of GDC 19, 60, 61, 63, 64 and 10 CFR Part 100] should be

ACTIONS (continued)

utilized to protect plant personnel from potential hazards such as radioactive contamination, toxic chemicals, smoke, temperature and relative humidity, and physical security. Preplanned measures should be available to address these concerns for intentional and unintentional entry into the condition. The 24 hour Completion Time is reasonable based on the low probability of a DBA occurring during this time period, and the use of compensatory measures. The 24 hour Completion Time is a typically reasonable time to diagnose, plan and possibly repair, and test most problems with the fuel building boundary.

[C.1 and C.2

In MODE 1, 2, 3, or 4, when Required Action A.1 or B.1 cannot be completed within the associated Completion Time, or when both FBACS trains are inoperable for reasons other than an inoperable fuel building boundary (i.e., Condition B), the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in MODE 3 within 6 hours, and in MODE 5 within 36 hours. The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.]

D.1 and D.2

When Required Action A.1 cannot be completed within the required Completion Time, during movement of [recently] irradiated fuel assemblies in the fuel building, the OPERABLE FBACS train must be started immediately or [recently] irradiated fuel movement suspended. This action ensures that the remaining train is OPERABLE, that no undetected failures preventing system operation will occur, and that any active failure will be readily detected.

If the system is not placed in operation, this action requires suspension of [recently] irradiated fuel movement, which precludes a fuel handling accident [involving handling recently irradiated fuel]. This does not preclude the movement of fuel assemblies to a safe position.

E.1

When two trains of the FBACS are inoperable during movement of [recently] irradiated fuel assemblies in the fuel building, action must be taken to place the unit in a condition in which the LCO does not apply. Action must be taken immediately to suspend movement of

ACTIONS (continued)

[recently] irradiated fuel assemblies in the fuel building. This does not preclude the movement of fuel to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.7.13.1

Standby systems should be checked periodically to ensure that they function properly. As the environmental and normal operating conditions on this system are not severe, testing each train once every month provides an adequate check on this system.

Monthly heater operation dries out any moisture accumulated in the charcoal from humidity in the ambient air. [Systems with heaters must be operated for \geq 10 continuous hours with the heaters energized. Systems without heaters need only be operated for \geq 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the known reliability of the equipment and the two train redundancy available.

SR 3.7.13.2

This SR verifies that the required FBACS testing is performed in accordance with the [Ventilation Filter Testing [Program (VFTP)]. The [VFTP] includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the [VFTP].

[SR 3.7.13.3

This SR verifies that each FBACS train starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with Reference 6.]

SR 3.7.13.4

This SR verifies the integrity of the fuel building enclosure. The ability of the fuel building to maintain negative pressure with respect to potentially uncontaminated adjacent areas is periodically tested to verify proper function of the FBACS. During the [post accident] mode of operation, the FBACS is designed to maintain a slight negative pressure in the fuel building, to prevent unfiltered LEAKAGE. The FBACS is designed to maintain a \leq [-0.125] inches water gauge with respect to atmospheric pressure at a flow rate of [20,000] cfm to the fuel building. The

SURVEILLANCE REQUIREMENTS (continued)

Frequency of [18] months is consistent with the guidance provided in NUREG-0800, Section 6.5.1 (Ref. 7).

An [18] month Frequency (on a STAGGERED TEST BASIS) is consistent with Reference 6.

[SR 3.7.13.5

Operating the FBACS filter bypass damper is necessary to ensure that the system functions properly. The OPERABILITY of the FBACS filter bypass damper is verified if it can be closed. An [18] month Frequency is consistent with Reference 6.]

REFERENCES

- 1. FSAR, Section [6.5.1].
- 2. FSAR, Section [9.4.5].
- 3. FSAR, Section [15.7.4].
- 4. Regulatory Guide 1.25.
- 5. 10 CFR 100.
- 6. Regulatory Guide 1.52, Rev. [2].
- 7. NUREG-0800, Section 6.5.1, Rev. 2, July 1981.

B 3.7 PLANT SYSTEMS

B 3.7.14 Penetration Room Exhaust Air Cleanup System (PREACS)

BASES

BACKGROUND

The PREACS filters air from the penetration area between containment and the auxiliary building.

The PREACS consists of two independent and redundant trains. Each train consists of a heater, a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation, as well as demisters, functioning to reduce the relative humidity of the air stream, also form part of the system. A second bank of HEPA filters, which follows the adsorber section, collects carbon fines and provides backup in case of failure of the main HEPA filter bank. The downstream HEPA filter, although not credited in the accident analysis, collects charcoal fines and serves as a backup should the upstream HEPA filter develop a leak. The system initiates filtered ventilation following receipt of a safety injection signal.

The PREACS is a standby system, parts of which may also operate during normal unit operations. During emergency operations, the PREACS dampers are realigned and fans are started to initiate filtration. Upon receipt of the actuating signal(s), normal air discharges from the penetration room, the penetration room is isolated, and the stream of ventilation air discharges through the system filter trains. The prefilters remove any large particles in the air, as well as any entrained water droplets, to prevent excessive loading of the HEPA filters and charcoal adsorbers.

The PREACS is discussed in the FSAR, Sections [6.5.1], [9.4.5], and [15.6.5] (Refs. 1, 2, and 3, respectively) since it may be used for normal, as well as post accident, atmospheric cleanup functions. Heaters may be included for moisture removal on systems operating in high humidity conditions. The primary purpose of the heaters is to maintain the relative humidity at an acceptable level consistent with iodine removal efficiencies per Regulatory Guide 1.52 (Ref. 4).

APPLICABLE SAFETY ANALYSES

The PREACS design basis is established by the large break loss of coolant accident (LOCA). The system evaluation assumes a passive failure outside containment, such as valve packing leakage during a Design Basis Accident (DBA). In such a case, the system restricts the radioactive release to within the 10 CFR 100 (Ref. 4) limits, or the NRC

APPLICABLE SAFETY ANALYSES (continued)

staff approved licensing basis (e.g., a specified fraction of 10 CFR 100 limits). The analysis of the effects and consequences of a large break LOCA are presented in Reference 3.

Two types of system failures are considered in the accident analysis: a complete loss of function, and excessive LEAKAGE. Either type of failure may result in less efficient removal of any gaseous or particulate material released to the penetration room following a LOCA.

The PREACS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two independent and redundant trains of the PREACS are required to be OPERABLE to ensure that at least one train is available, assuming there is a single failure disabling the other train coincident with a loss of offsite power.

The PREACS is considered OPERABLE when the individual components necessary to control radioactive releases are OPERABLE in both trains. A PREACS train is considered OPERABLE when its associated:

- a. Fan is OPERABLE,
- b. HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration functions, and
- c. Heater, demister, ductwork, valves, and dampers are OPERABLE and air circulation can be maintained.

The LCO is modified by a Note allowing the penetration room boundary to be opened intermittently under administrative controls. For entry and exit through doors, the administrative control of the opening is performed by the person(s) entering or exiting the area. For other openings, these controls consist of stationing a dedicated individual at the opening who is in continuous communication with the control room. This individual will have a method to rapidly close the opening when a need for penetration room isolation is indicated.

APPLICABILITY

In MODES 1, 2, 3, and 4, the PREACS is required to be OPERABLE, consistent with the OPERABILITY requirements of the Emergency Core Cooling System (ECCS).

APPLICABILITY (continued)

In MODE 5 or 6, the PREACS is not required to be OPERABLE since the ECCS is not required to be OPERABLE.

ACTIONS

A.1

With one PREACS train inoperable, the action must be taken to restore OPERABLE status within 7 days. During this period, the remaining OPERABLE train is adequate to perform the PREACS function. The 7 day Completion Time is appropriate because the risk contribution of the PREACS is less than that of the ECCS (72 hour Completion Time), and this system is not a direct support system for the ECCS. The 7 day Completion Time is based on the low probability of a DBA occurring during this period, and the remaining train providing the required capability.

B.1

- REVIEWER'S NOTE -

Adoption of Condition B is dependent on a commitment from the licensee to have guidance available describing compensatory measures to be taken in the event of an intentional and unintentional entry into Condition B.

If the penetration room boundary is inoperable, the PREACS trains cannot perform their intended functions. Actions must be taken to restore an OPERABLE penetration room boundary within 24 hours. During the period that the penetration room boundary is inoperable, appropriate compensatory measures [consistent with the intent, as applicable, of GDC 19, 60, 64 and 10 CFR Part 100] should be utilized to protect plant personnel from potential hazards such as radioactive contamination, toxic chemicals, smoke, temperature and relative humidity, and physical security. Preplanned measures should be available to address these concerns for intentional and unintentional entry into the condition. The 24 hour Completion Time is reasonable based on the low probability of a DBA occurring during this time period, and the use of compensatory measures. The 24 hour Completion Time is a typically reasonable time to diagnose, plan and possibly repair, and test most problems with the penetration room boundary.

ACTIONS (continued)

C.1 and C.2

If the inoperable train or penetration room boundary cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.14.1

Standby systems should be checked periodically to ensure that they function properly. As the environmental and normal operating conditions on this system are not severe, testing each train once every month provides an adequate check on this system. Monthly heater operation dries out any moisture that may have accumulated in the charcoal as a result of humidity in the ambient air. [Systems with heaters must be operated for \geq 10 continuous hours with the heaters energized. Systems without heaters need only be operated for \geq 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the known reliability of equipment and the two train redundancy available.

SR 3.7.14.2

This SR verifies that the required PREACS testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The [VFTP] includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the [VFTP].

SR 3.7.14.3

This SR verifies that each PREACS starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with that specified in Reference 5.]

SURVEILLANCE REQUIREMENTS (continued)

[SR 3.7.14.4

This SR verifies the integrity of the penetration room enclosure. The ability of the penetration room to maintain a negative pressure, with respect to potentially uncontaminated adjacent areas, is periodically tested to verify proper function of PREACS. During the [post accident] mode of operation, the PREACS is designed to maintain a ≤ [-0.125] inches water gauge relative to atmospheric pressure at a flow rate of [3000] cfm in the penetration room, with respect to adjacent areas, to prevent unfiltered LEAKAGE. The Frequency of [18] months is consistent with the guidance provided in NUREG-0800 (Ref. 6).

The minimum system flow rate maintains a slight negative pressure in the penetration room area, and provides sufficient air velocity to transport particulate contaminants, assuming only one filter train is operating. The number of filter elements is selected to limit the flow rate through any individual element to about [3000] cfm. This may vary based on filter housing geometry. The maximum limit ensures that the flow through, and pressure drop across, each filter element are not excessive.

The number and depth of the adsorber elements ensure that, at the maximum flow rate, the residence time of the air stream in the charcoal bed achieves the desired adsorption rate. At least a [0.125] second residence time is necessary for an assumed [99]% efficiency.

The filters have a certain pressure drop at the design flow rate when clean. The magnitude of the pressure drop indicates acceptable performance, and is based on manufacturers' recommendations for the filter and adsorber elements at the design flow rate. An increase in pressure drop or a decrease in flow indicates that the filter is being loaded or that there are other problems with the system.

This test is conducted along with the tests for filter penetration; thus, the [18] month Frequency is consistent with that specified in Reference 5.]

[SR 3.7.14.5

It is necessary to operate the PREACS filter bypass damper to ensure that the system functions properly. The OPERABILITY of the PREACS filter bypass damper is verified if it can be closed. An [18] month Frequency is consistent with that specified in Reference 5.]

REFERENCES

- 1. FSAR, Section [6.5.1].
- 2. FSAR, Section [9.4.5].
- 3. FSAR, Section [15.6.5].
- 4. 10 CFR 100.
- 5. Regulatory Guide 1.52, Rev. [2].
- 6. NUREG-0800, Section 6.5.1, Rev. 2, July 1981.

B 3.7 PLANT SYSTEMS

B 3.7.15 Fuel Storage Pool Water Level

BASES

BACKGROUND

The minimum water level in the fuel storage pool meets the assumptions of iodine decontamination factors following a fuel handling accident. The specified water level shields and minimizes the general area dose when the storage racks are filled to their maximum capacity. The water also provides shielding during the movement of spent fuel.

A general description of the fuel storage pool design is given in the FSAR, Section [9.1.2] (Ref. 1). A description of the Spent Fuel Pool Cooling and Cleanup System is given in the FSAR, Section [9.1.3] (Ref. 2). The assumptions of the fuel handling accident are given in the FSAR, Section [15.7.4] (Ref. 3).

APPLICABLE SAFETY ANALYSES

The minimum water level in the fuel storage pool meets the assumptions of the fuel handling accident described in Regulatory Guide 1.25 (Ref. 4). The resultant 2 hour thyroid dose per person at the exclusion area boundary is a small fraction of the 10 CFR 100 (Ref. 5) limits.

According to Reference 4, there is 23 ft of water between the top of the damaged fuel bundle and the fuel pool surface during a fuel handling accident. With 23 ft of water, the assumptions of Reference 4 can be used directly. In practice, this LCO preserves this assumption for the bulk of the fuel in the storage racks. In the case of a single bundle dropped and lying horizontally on top of the spent fuel racks, however, there may be < 23 ft of water above the top of the fuel bundle and the surface, indicated by the width of the bundle. To offset this small nonconservatism, the analysis assumes that all fuel rods fail, although analysis shows that only the first few rows fail from a hypothetical maximum drop.

The fuel storage pool water level satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The fuel storage pool water level is required to be ≥ 23 ft over the top of irradiated fuel assemblies seated in the storage racks. The specified water level preserves the assumptions of the fuel handling accident analysis (Ref. 3). As such, it is the minimum required for fuel storage and movement within the fuel storage pool.

APPLICABILITY

This LCO applies during movement of irradiated fuel assemblies in the fuel storage pool, since the potential for a release of fission products exists.

ACTIONS

A.1

Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply.

When the initial conditions for prevention of an accident cannot be met, steps should be taken to preclude the accident from occurring. When the fuel storage pool water level is lower than the required level, the movement of irradiated fuel assemblies in the fuel storage pool is immediately suspended to a safe position. This action effectively precludes the occurrence of a fuel handling accident. This does not preclude movement of a fuel assembly to a safe position.

If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODES 1, 2, 3, and 4, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.

SURVEILLANCE REQUIREMENTS

SR 3.7.15.1

This SR verifies sufficient fuel storage pool water is available in the event of a fuel handling accident. The water level in the fuel storage pool must be checked periodically. The 7 day Frequency is appropriate because the volume in the pool is normally stable. Water level changes are controlled by plant procedures and are acceptable based on operating experience.

During refueling operations, the level in the fuel storage pool is in equilibrium with the refueling canal, and the level in the refueling canal is checked daily in accordance with SR 3.9.6.1.

REFERENCES

- 1. FSAR, Section [9.1.2].
- 2. FSAR, Section [9.1.3].
- FSAR, Section [15.7.4].
- Regulatory Guide 1.25, [Rev. 0].

REFERENCES (continued)

5. 10 CFR 100.11.

B 3.7 PLANT SYSTEMS

B 3.7.16 [Fuel Storage Pool Boron Concentration]

BASES

BACKGROUND

In the Maximum Density Rack (MDR) [(Refs. 1 and 2)] design, the spent fuel storage pool is divided into two separate and distinct regions which, for the purpose of criticality considerations, are considered as separate pools. [Region 1], with [336] storage positions, is designed to accommodate new fuel with a maximum enrichment of [4.65] wt% U-235, or spent fuel regardless of the discharge fuel burnup. [Region 2], with [2670] storage positions, is designed to accommodate fuel of various initial enrichments which have accumulated minimum burnups within the acceptable domain according to Figure [3.7.17-1], in the accompanying LCO. Fuel assemblies not meeting the criteria of Figure [3.7.17-1] shall be stored in accordance with paragraph 4.3.1.1 in Section 4.3, Fuel Storage.

The water in the spent fuel storage pool normally contains soluble boron, which results in large subcriticality margins under actual operating conditions. However, the NRC guidelines, based upon the accident condition in which all soluble poison is assumed to have been lost, specify that the limiting $k_{\mbox{\scriptsize eff}}$ of 0.95 be evaluated in the absence of soluble boron. Hence, the design of both regions is based on the use of unborated water, which maintains each region in a subcritical condition during normal operation with the regions fully loaded. The double contingency principle discussed in ANSI N-16.1-1975 and the April 1978 NRC letter (Ref. 3) allows credit for soluble boron under other abnormal or accident conditions, since only a single accident need be considered at one time. For example, the most severe accident scenario is associated with the movement of fuel from [Region 1 to Region 2], and accidental misloading of a fuel assembly in [Region 2]. This could potentially increase the criticality of [Region 2]. To mitigate these postulated criticality related accidents, boron is dissolved in the pool water. Safe operation of the MDR with no movement of assemblies may therefore be achieved by controlling the location of each assembly in accordance with LCO 3.7.17, "Spent Fuel Assembly Storage." Prior to movement of an assembly, it is necessary to perform SR 3.7.16.1.

APPLICABLE SAFETY ANALYSES

Most accident conditions do not result in an increase in the activity of either of the two regions. Examples of these accident conditions are the loss of cooling (reactivity increase with decreasing water density) and the dropping of a fuel assembly on the top of the rack. However, accidents can be postulated that could increase the reactivity. This increase in

APPLICABLE SAFETY ANALYSES (continued)

reactivity is unacceptable with unborated water in the storage pool. Thus, for these accident occurrences, the presence of soluble boron in the storage pool prevents criticality in both regions. The postulated accidents are basically of two types. A fuel assembly could be incorrectly transferred from [Region 1 to Region 2] (e.g., an unirradiated fuel assembly or an insufficiently depleted fuel assembly). The second type of postulated accidents is associated with a fuel assembly which is dropped adjacent to the fully loaded [Region 2] storage rack. This could have a small positive reactivity effect on [Region 2]. However, the negative reactivity effect of the soluble boron compensates for the increased reactivity caused by either one of the two postulated accident scenarios. The accident analyses is provided in the FSAR, Section [15.7.4] (Ref. 4).

The concentration of dissolved boron in the fuel storage pool satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

The fuel storage pool boron concentration is required to be \geq [2300] ppm. The specified concentration of dissolved boron in the fuel storage pool preserves the assumptions used in the analyses of the potential critical accident scenarios as described in Reference 4. This concentration of dissolved boron is the minimum required concentration for fuel assembly storage and movement within the fuel storage pool.

APPLICABILITY

This LCO applies whenever fuel assemblies are stored in the spent fuel storage pool, until a complete spent fuel storage pool verification has been performed following the last movement of fuel assemblies in the spent fuel storage pool. This LCO does not apply following the verification, since the verification would confirm that there are no misloaded fuel assemblies. With no further fuel assembly movements in progress, there is no potential for a misloaded fuel assembly or a dropped fuel assembly.

ACTIONS

A.1, A.2.1, and A.2.2

The Required Actions are modified by a Note indicating that LCO 3.0.3 does not apply.

When the concentration of boron in the fuel storage pool is less than required, immediate action must be taken to preclude the occurrence of an accident or to mitigate the consequences of an accident in progress. This is most efficiently achieved by immediately suspending the

ACTIONS (continued)

movement of fuel assemblies. The concentration of boron is restored simultaneously with suspending movement of fuel assemblies.

Alternatively, beginning a verification of the fuel storage pool fuel locations, to ensure proper locations of the fuel, can be performed. However, prior to resuming movement of fuel assemblies, the concentration of boron must be restored. This does not preclude movement of a fuel assembly to a safe position.

If the LCO is not met while moving irradiated fuel assemblies in MODE 5 or 6, LCO 3.0.3 would not be applicable. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operation. Therefore, inability to suspend movement of fuel assemblies is not sufficient reason to require a reactor shutdown.

SURVEILLANCE REQUIREMENTS

SR 3.7.16.1

This SR verifies that the concentration of boron in the fuel storage pool is within the required limit. As long as this SR is met, the analyzed accidents are fully addressed. The 7 day Frequency is appropriate because no major replenishment of pool water is expected to take place over such a short period of time.

REFERENCES

- [1. Callaway FSAR, Appendix 9.1A, "The Maximum Density Rack (MDR) Design Concept."
 - Description and Evaluation for Proposed Changes to Facility
 Operating Licenses DPR-39 and DPR-48 (Zion Power Station).]
 - Double contingency principle of ANSI N16.1-1975, as specified in the April 14, 1978 NRC letter (Section 1.2) and implied in the proposed revision to Regulatory Guide 1.13 (Section 1.4, Appendix A).
- 4. FSAR, Section [15.7.4].

B 3.7 Plant Systems

B 3.7.17 [Spent Fuel Pool Storage]

BASES

BACKGROUND

In the Maximum Density Rack (MDR) [(Refs. 1 and 2)] design, the spent fuel storage pool is divided into two separate and distinct regions which, for the purpose of criticality considerations, are considered as separate pools. [Region 1], with [336] storage positions, is designed to accommodate new fuel with a maximum enrichment of [4.65] wt% U-235, or spent fuel regardless of the discharge fuel burnup. [Region 2], with [2670] storage positions, is designed to accommodate fuel of various initial enrichments which have accumulated minimum burnups within the acceptable domain according to Figure 3.7.17-1, in the accompanying LCO. Fuel assemblies not meeting the criteria of Figure [3.7.17-1] shall be stored in accordance with paragraph 4.3.1.1 in Section 4.3, Fuel Storage.

The water in the spent fuel storage pool normally contains soluble boron, which results in large subcriticality margins under actual operating conditions. However, the NRC guidelines, based upon the accident condition in which all soluble poison is assumed to have been lost, specify that the limiting $k_{\mbox{\scriptsize eff}}$ of 0.95 be evaluated in the absence of soluble boron. Hence, the design of both regions is based on the use of unborated water, which maintains each region in a subcritical condition during normal operation with the regions fully loaded. The double contingency principle discussed in ANSI N-16.1-1975 and the April 1978 NRC letter (Ref. 3) allows credit for soluble boron under other abnormal or accident conditions, since only a single accident need be considered at one time. For example, the most severe accident scenario is associated with the movement of fuel from [Region 1 to Region 2], and accidental misloading of a fuel assembly in [Region 2]. This could potentially increase the criticality of [Region 2]. To mitigate these postulated criticality related accidents, boron is dissolved in the pool water. Safe operation of the MDR with no movement of assemblies may therefore be achieved by controlling the location of each assembly in accordance with the accompanying LCO. Prior to movement of an assembly, it is necessary to perform SR 3.7.16.1.

APPLICABLE SAFETY ANALYSES The hypothetical accidents can only take place during or as a result of the movement of an assembly (Ref. 4). For these accident occurrences, the presence of soluble boron in the spent fuel storage pool (controlled by LCO 3.7.16, "Fuel Storage Pool Boron Concentration") prevents criticality in both regions. By closely controlling the movement of each assembly

APPLICABLE SAFETY ANALYSES (continued)

and by checking the location of each assembly after movement, the time period for potential accidents may be limited to a small fraction of the total operating time. During the remaining time period with no potential for accidents, the operation may be under the auspices of the accompanying LCO.

The configuration of fuel assemblies in the fuel storage pool satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

The restrictions on the placement of fuel assemblies within the spent fuel pool, in accordance with Figure 3.7.17-1, in the accompanying LCO, ensures the k_{eff} of the spent fuel storage pool will always remain < 0.95, assuming the pool to be flooded with unborated water. Fuel assemblies not meeting the criteria of Figure [3.7.17-1] shall be stored in accordance with Specification 4.3.1.1 in Section 4.3.

APPLICABILITY

This LCO applies whenever any fuel assembly is stored in [Region 2] of the fuel storage pool.

ACTIONS

A.1

Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply.

When the configuration of fuel assemblies stored in [Region 2] the spent fuel storage pool is not in accordance with Figure 3.7.17-1, or paragraph 4.3.1.1, the immediate action is to initiate action to make the necessary fuel assembly movement(s) to bring the configuration into compliance with Figure 3.7.17-1 or Specification 4.3.1.1.

If unable to move irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not be applicable. If unable to move irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the action is independent of reactor operation. Therefore, inability to move fuel assemblies is not sufficient reason to require a reactor shutdown.

SURVEILLANCE REQUIREMENTS

SR 3.7.17.1

This SR verifies by administrative means that the initial enrichment and burnup of the fuel assembly is in accordance with Figure [3.7.17-1] in the accompanying LCO. For fuel assemblies in the unacceptable range of

SURVEILLANCE REQUIREMENTS (continued)

Figure 3.7.17-1, performance of this SR will ensure compliance with Specification 4.3.1.1.

REFERENCES

- [1. Callaway FSAR, Appendix 9.1A, "The Maximum Density Rack (MDR) Design Concept."
- 2. Description and Evaluation for Proposed Changes to Facility Operating Licenses DPR-39 and DPR-48 (Zion Power Station).
- Double contingency principle of ANSI N16.1-1975, as specified in the April 14, 1978 NRC letter (Section 1.2) and implied in the proposed revision to Regulatory Guide 1.13 (Section 1.4, Appendix A).
- 4. FSAR, Section [15.7.4].

B 3.7 PLANT SYSTEMS

B 3.7.18 Secondary Specific Activity

BASES

BACKGROUND

Activity in the secondary coolant results from steam generator tube outleakage from the Reactor Coolant System (RCS). Under steady state conditions, the activity is primarily iodines with relatively short half lives and, thus, indicates current conditions. During transients, I-131 spikes have been observed as well as increased releases of some noble gases. Other fission product isotopes, as well as activated corrosion products in lesser amounts, may also be found in the secondary coolant.

A limit on secondary coolant specific activity during power operation minimizes releases to the environment because of normal operation, anticipated operational occurrences, and accidents.

This limit is lower than the activity value that might be expected from a 1 gpm tube leak (LCO 3.4.13, "RCS Operational LEAKAGE") of primary coolant at the limit of [1.0] μ Ci/gm (LCO 3.4.16, "RCS Specific Activity"). The steam line failure is assumed to result in the release of the noble gas and iodine activity contained in the steam generator inventory, the feedwater, and the reactor coolant LEAKAGE. Most of the iodine isotopes have short half lives (i.e., < 20 hours).

With the specified activity limit, the resultant 2 hour thyroid dose to a person at the exclusion area boundary (EAB) would be about 0.58 rem if the main steam safety valves (MSSVs) open for 2 hours following a trip from full power.

Operating a unit at the allowable limits could result in a 2 hour EAB exposure of a small fraction of the 10 CFR 100 (Ref. 1) limits, or the limits established as the NRC staff approved licensing basis.

APPLICABLE SAFETY ANALYSES

The accident analysis of the main steam line break (MSLB), as discussed in the FSAR, Chapter [15] (Ref. 2) assumes the initial secondary coolant specific activity to have a radioactive isotope concentration of [0.10] μ Ci/gm DOSE EQUIVALENT I-131. This assumption is used in the analysis for determining the radiological consequences of the postulated accident. The accident analysis, based on this and other assumptions, shows that the radiological consequences of an MSLB do not exceed a small fraction of the unit EAB limits (Ref. 1) for whole body and thyroid dose rates.

APPLICABLE SAFETY ANALYSES (continued)

With the loss of offsite power, the remaining steam generators are available for core decay heat dissipation by venting steam to the atmosphere through the MSSVs and steam generator atmospheric dump valves (ADVs). The Auxiliary Feedwater System supplies the necessary makeup to the steam generators. Venting continues until the reactor coolant temperature and pressure have decreased sufficiently for the Residual Heat Removal System to complete the cooldown.

In the evaluation of the radiological consequences of this accident, the activity released from the steam generator connected to the failed steam line is assumed to be released directly to the environment. The unaffected steam generator is assumed to discharge steam and any entrained activity through the MSSVs and ADVs during the event. Since no credit is taken in the analysis for activity plateout or retention, the resultant radiological consequences represent a conservative estimate of the potential integrated dose due to the postulated steam line failure.

Secondary specific activity limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

As indicated in the Applicable Safety Analyses, the specific activity of the secondary coolant is required to be \leq [0.10] μ Ci/gm DOSE EQUIVALENT I-131 to limit the radiological consequences of a Design Basis Accident (DBA) to a small fraction of the required limit (Ref. 1).

Monitoring the specific activity of the secondary coolant ensures that when secondary specific activity limits are exceeded, appropriate actions are taken in a timely manner to place the unit in an operational MODE that would minimize the radiological consequences of a DBA.

APPLICABILITY

In MODES 1, 2, 3, and 4, the limits on secondary specific activity apply due to the potential for secondary steam releases to the atmosphere.

In MODES 5 and 6, the steam generators are not being used for heat removal. Both the RCS and steam generators are depressurized, and primary to secondary LEAKAGE is minimal. Therefore, monitoring of secondary specific activity is not required.

ACTIONS

A.1 and A.2

DOSE EQUIVALENT I-131 exceeding the allowable value in the secondary coolant, is an indication of a problem in the RCS and contributes to increased post accident doses. If the secondary specific activity cannot be restored to within limits within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.18.1

This SR verifies that the secondary specific activity is within the limits of the accident analysis. A gamma isotopic analysis of the secondary coolant, which determines DOSE EQUIVALENT I-131, confirms the validity of the safety analysis assumptions as to the source terms in post accident releases. It also serves to identify and trend any unusual isotopic concentrations that might indicate changes in reactor coolant activity or LEAKAGE. The 31 day Frequency is based on the detection of increasing trends of the level of DOSE EQUIVALENT I-131, and allows for appropriate action to be taken to maintain levels below the LCO limit.

REFERENCES

- 1. 10 CFR 100.11.
- 2. FSAR, Chapter [15].

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.1 AC Sources - Operating

BASES

BACKGROUND

The unit Class 1E AC Electrical Power Distribution System AC sources consist of the offsite power sources (preferred power sources, normal and alternate(s)), and the onsite standby power sources (Train A and Train B diesel generators (DGs)). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems.

The onsite Class 1E AC Distribution System is divided into redundant load groups (trains) so that the loss of any one group does not prevent the minimum safety functions from being performed. Each train has connections to two preferred offsite power sources and a single DG.

Offsite power is supplied to the unit switchyard(s) from the transmission network by [two] transmission lines. From the switchyard(s), two electrically and physically separated circuits provide AC power, through [step down station auxiliary transformers], to the 4.16 kV ESF buses. A detailed description of the offsite power network and the circuits to the Class 1E ESF buses is found in the FSAR, Chapter [8] (Ref. 2).

An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network to the onsite Class 1E ESF bus(es).

Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the transformer supplying offsite power to the onsite Class 1E Distribution System. Within [1] minute after the initiating signal is received, all automatic and permanently connected loads needed to recover the unit or maintain it in a safe condition are returned to service via the load sequencer.

The onsite standby power source for each 4.16 kV ESF bus is a dedicated DG. DGs [11] and [12] are dedicated to ESF buses [11] and [12], respectively. A DG starts automatically on a safety injection (SI) signal (i.e., low pressurizer pressure or high containment pressure signals) or on an [ESF bus degraded voltage or undervoltage signal] (refer to LCO 3.3.5, "Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation"). After the DG has started, it will automatically tie to its respective bus after offsite power is tripped as a consequence of ESF bus undervoltage or degraded voltage, independent of or coincident with

BACKGROUND (continued)

an SI signal. The DGs will also start and operate in the standby mode without tying to the ESF bus on an SI signal alone. Following the trip of offsite power, [a sequencer/an undervoltage signal] strips nonpermanent loads from the ESF bus. When the DG is tied to the ESF bus, loads are then sequentially connected to its respective ESF bus by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG by automatic load application.

In the event of a loss of preferred power, the ESF electrical loads are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a loss of coolant accident (LOCA).

Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the DG in the process. Within [1] minute after the initiating signal is received, all loads needed to recover the unit or maintain it in a safe condition are returned to service.

Ratings for Train A and Train B DGs satisfy the requirements of Regulatory Guide 1.9 (Ref. 3). The continuous service rating of each DG is [7000] kW with [10]% overload permissible for up to 2 hours in any 24 hour period. The ESF loads that are powered from the 4.16 kV ESF buses are listed in Reference 2.

APPLICABLE SAFETY ANALYSES

The initial conditions of DBA and transient analyses in the FSAR, Chapter [6] (Ref. 4) and Chapter [15] (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the AC electrical power sources is consistent with the initial assumptions of the Accident analyses and is based upon meeting the design basis of the unit. This results in maintaining at least one train of the onsite or offsite AC sources OPERABLE during Accident conditions in the event of:

a. An assumed loss of all offsite power or all onsite AC power and

APPLICABLE SAFETY ANALYSES (continued)

b. A worst case single failure.

The AC sources satisfy Criterion 3 of NRC Policy Statement.

LCO

Two qualified circuits between the offsite transmission network and the onsite Class 1E Electrical Power System and separate and independent DGs for each train ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit.

[In addition, one required automatic load sequencer per train must be OPERABLE.]

Each offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the ESF buses.

[Offsite circuit #1 consists of Safeguards Transformer B, which is supplied from Switchyard Bus B, and is fed through breaker 52-3 powering the ESF transformer XNB01, which, in turn, powers the #1 ESF bus through its normal feeder breaker. Offsite circuit #2 consists of the Startup Transformer, which is normally fed from the Switchyard Bus A, and is fed through breaker PA 0201, powering the ESF transformer, which, in turn, powers the #2 ESF bus through its normal feeder breaker.]

Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This will be accomplished within [10] seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby with the engine at ambient conditions. Additional DG capabilities must be demonstrated to meet required Surveillance, e.g., capability of the DG to revert to standby status on an ECCS signal while operating in parallel test mode.

Proper sequencing of loads, [including tripping of nonessential loads,] is a required function for DG OPERABILITY.

LCO (continued)

The AC sources in one train must be separate and independent (to the extent possible) of the AC sources in the other train. For the DGs, separation and independence are complete.

For the offsite AC sources, separation and independence are to the extent practical. A circuit may be connected to more than one ESF bus, with fast transfer capability to the other circuit OPERABLE, and not violate separation criteria. A circuit that is not connected to an ESF bus is required to have OPERABLE fast transfer interlock mechanisms to at least two ESF buses to support OPERABILITY of that circuit.

APPLICABILITY

The AC sources [and sequencers] are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

The AC power requirements for MODES 5 and 6 are covered in LCO 3.8.2, "AC Sources - Shutdown."

ACTIONS

A.1

To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the OPERABILITY of the remaining required offsite circuit on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered.

- REVIEWER'S NOTE -

The turbine driven auxiliary feedwater pump is only required to be considered a redundant required feature, and, therefore, required to be determined OPERABLE by this Required Action, if the design is such that the remaining OPERABLE motor or turbine driven auxiliary feedwater pump(s) is not by itself capable (without any reliance on the motor driven

ACTIONS (continued)

auxiliary feedwater pump powered by the emergency bus associated with the inoperable diesel generator) of providing 100% of the auxiliary feedwater flow assumed in the safety analysis.

A.2

Required Action A.2, which only applies if the train cannot be powered from an offsite source, is intended to provide assurance that an event coincident with a single failure of the associated DG will not result in a complete loss of safety function of critical redundant required features. These features are powered from the redundant AC electrical power train. This includes motor driven auxiliary feedwater pumps. Single train systems, such as turbine driven auxiliary feedwater pumps, may not be included.

The Completion Time for Required Action A.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

- a. The train has no offsite power supplying it loads and
- b. A required feature on the other train is inoperable.

If at any time during the existence of Condition A (one offsite circuit inoperable) a redundant required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

Discovering no offsite power to one train of the onsite Class 1E Electrical Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with the other train that has offsite power, results in starting the Completion Times for the Required Action. Twenty-four hours is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown.

The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to Train A and Train B of the onsite Class 1E Distribution System. The 24 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a

ACTIONS (continued)

reasonable time for repairs, and the low probability of a DBA occurring during this period.

A.3

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the potential for a loss of offsite power is increased, with attendant potential for a challenge to the unit safety systems. In this Condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System.

The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action A.3 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DG is inoperable and that DG is subsequently returned OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead to a total of 144 hours, since initial failure to meet the LCO, to restore the offsite circuit. At this time, a DG could again become inoperable, the circuit restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on the time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met.

As in Required Action A.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition A was entered.

<u>B.1</u>

To ensure a highly reliable power source remains with an inoperable DG, it is necessary to verify the availability of the offsite circuits on a more

ACTIONS (continued)

frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if a circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions and Required Actions must then be entered.

- REVIEWER'S NOTE -

The turbine driven auxiliary feedwater pump is only required to be considered a redundant required feature, and, therefore, required to be determined OPERABLE by this Required Action, if the design is such that the remaining OPERABLE motor or turbine driven auxiliary feedwater pump(s) is not by itself capable (without any reliance on the motor driven auxiliary feedwater pump powered by the emergency bus associated with the inoperable diesel generator) of providing 100% of the auxiliary feedwater flow assumed in the safety analysis.

B.2

Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG is inoperable, does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related trains. This includes motor driven auxiliary feedwater pumps. Single train systems, such as turbine driven auxiliary feedwater pumps, are not included. Redundant required feature failures consist of inoperable features associated with a train, redundant to the train that has an inoperable DG.

The Completion Time for Required Action B.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

- a. An inoperable DG exists and
- b. A required feature on the other train (Train A or Train B) is inoperable.

If at any time during the existence of this Condition (one DG inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked.

ACTIONS (continued)

Discovering one required DG inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with the OPERABLE DG, results in starting the Completion Time for the Required Action. Four hours from the discovery of these events existing concurrently is Acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown.

In this Condition, the remaining OPERABLE DG and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

B.3.1 and B.3.2

Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DG(s). If it can be determined that the cause of the inoperable DG does not exist on the OPERABLE DG, SR 3.8.1.2 does not have to be performed. If the cause of inoperability exists on other DG(s), the other DG(s) would be declared inoperable upon discovery and Condition E of LCO 3.8.1 would be entered. Once the failure is repaired, the common cause failure no longer exists, and Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG cannot be confirmed not to exist on the remaining DG(s), performance of SR 3.8.1.2 suffices to provide assurance of continued OPERABILITY of that DG.

In the event the inoperable DG is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the [plant corrective action program] will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B.

According to Generic Letter 84-15 (Ref. 7), [24] hours is reasonable to confirm that the OPERABLE DG(s) is not affected by the same problem as the inoperable DG.

ACTIONS (continued)

B.4

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition B for a period that should not exceed 72 hours.

In Condition B, the remaining OPERABLE DG and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action B.4 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an offsite circuit is inoperable and that circuit is subsequently restored OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead to a total of 144 hours, since initial failure to meet the LCO, to restore the DG. At this time, an offsite circuit could again become inoperable, the DG restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met.

As in Required Action B.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition B was entered.

C.1 and C.2

Required Action C.1, which applies when two offsite circuits are inoperable, is intended to provide assurance that an event with a coincident single failure will not result in a complete loss of redundant required safety functions. The Completion Time for this failure of redundant required features is reduced to 12 hours from that allowed for one train without offsite power (Required Action A.2). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable,

ACTIONS (continued)

based upon the assumption that two complete safety trains are OPERABLE. When a concurrent redundant required feature failure exists, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are powered from redundant AC safety trains. This includes motor driven auxiliary feedwater pumps. Single train features, such as turbine driven auxiliary pumps, are not included in the list.

The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

- a. All required offsite circuits are inoperable and
- b. A required feature is inoperable.

If at any time during the existence of Condition C (two offsite circuits inoperable) a required feature becomes inoperable, this Completion Time begins to be tracked.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources.

Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable that involve one or more DGs inoperable. However, two factors tend to decrease the severity of this level of degradation:

- The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure and
- b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source.

ACTIONS (continued)

With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the unit in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria.

According to Reference 6, with the available offsite AC sources, two less than required by the LCO, operation may continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A.

D.1 and D.2

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC source to any train, the Conditions and Required Actions for LCO 3.8.9, "Distribution Systems - Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of one offsite circuit and one DG, without regard to whether a train is de-energized. LCO 3.8.9 provides the appropriate restrictions for a de-energized train.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition D for a period that should not exceed 12 hours.

In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 12 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

ACTIONS (continued)

<u>E.1</u>

With Train A and Train B DGs inoperable, there are no remaining standby AC sources. Thus, with an assumed loss of offsite electrical power, insufficient standby AC sources are available to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown (the immediate shutdown could cause grid instability, which could result in a total loss of AC power). Since any inadvertent generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation.

According to Reference 6, with both DGs inoperable, operation may continue for a period that should not exceed 2 hours.

[F.1

The sequencer(s) is an essential support system to [both the offsite circuit and the DG associated with a given ESF bus]. [Furthermore, the sequencer is on the primary success path for most major AC electrically powered safety systems powered from the associated ESF bus.] Therefore, loss of an [ESF bus sequencer] affects every major ESF system in the [division]. The [12] hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining sequencer OPERABILITY. This time period also ensures that the probability of an accident (requiring sequencer OPERABILITY) occurring during periods when the sequencer is inoperable is minimal.

This Condition is preceded by a Note that allows the Condition to be deleted if the unit design is such that any sequencer failure mode will only affect the ability of the associated DG to power its respective safety loads under any conditions. Implicit in this Note is the concept that the Condition must be retained if any sequencer failure mode results in the inability to start all or part of the safety loads when required, regardless of power availability, or results in overloading the offsite power circuit to a safety bus during an event and thereby causes its failure. Also implicit in the Note, is that the Condition is not applicable to any train that does not have a sequencer. I

ACTIONS (continued)

G.1 and G.2

If the inoperable AC electric power sources cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>H.1</u>

Condition H corresponds to a level of degradation in which all redundancy in the AC electrical power supplies has been lost. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown.

SURVEILLANCE REQUIREMENTS

The AC sources are designed to permit inspection andtesting of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, Appendix A, GDC 18 (Ref. 8). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.9 (Ref. 3), Regulatory Guide 1.108 (Ref. 9), and Regulatory Guide 1.137 (Ref. 10), as addressed in the FSAR.

Where the SRs discussed herein specify voltage and frequency tolerances, the following is applicable. The minimum steady state output voltage of [3740] V is 90% of the nominal 4160 V output voltage. This value, which is specified in ANSI C84.1 (Ref. 11), allows for voltage drop to the terminals of 4000 V motors whose minimum operating voltage is specified as 90% or 3600 V. It also allows for voltage drops to motors and other equipment down through the 120 V level where minimum operating voltage is also usually specified as 90% of name plate rating. The specified maximum steady state output voltage of [4756] V is equal to the maximum operating voltage specified for 4000 V motors. It ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the maximum rated operating voltages. The specified minimum and maximum frequencies of the DG

are 58.8 Hz and 61.2 Hz, respectively. These values are equal to \pm 2% of the 60 Hz nominal frequency and are derived from the recommendations given in Regulatory Guide 1.9 (Ref. 3).

SR 3.8.1.1

This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source, and that appropriate independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room.

SR 3.8.1.2 and SR 3.8.1.7

These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and to maintain the unit in a safe shutdown condition.

To minimize the wear on moving parts that do not get lubricated when the engine is not running, these SRs are modified by a Note (Note 1 for SR 3.8.1.2 and Note for SR 3.8.1.7) to indicate that all DG starts for these Surveillances may be preceded by an engine prelube period and followed by a warmup period prior to loading.

For the purposes of SR 3.8.1.2 and SR 3.8.1.7 testing, the DGs are started from standby conditions. Standby conditions for a DG mean that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations.

[In order to reduce stress and wear on diesel engines, some manufacturers recommend a modified start in which the starting speed of DGs is limited, warmup is limited to this lower speed, and the DGs are gradually accelerated to synchronous speed prior to loading. These start procedures are the intent of Note 2, which is only applicable when such modified start procedures are recommended by the manufacturer.]

SR 3.8.1.7 requires that, at a 184 day Frequency, the DG starts from standby conditions and achieves required voltage and frequency within

10 seconds. The 10 second start requirement supports the assumptions of the design basis LOCA analysis in the FSAR, Chapter [15] (Ref. 5).

The 10 second start requirement is not applicable to SR 3.8.1.2 (see Note 2) when a modified start procedure as described above is used. If a modified start is not used, the 10 second start requirement of SR 3.8.1.7 applies.

Since SR 3.8.1.7 requires a 10 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2.

In addition to the SR requirements, the time for the DG to reach steady state operation, unless the modified DG start method is employed, is periodically monitored and the trend evaluated to identify degradation of governor and voltage regulator performance.

The 31 day Frequency for SR 3.8.1.2 is consistent with Regulatory Guide 1.9 (Ref. 3). The 184 day Frequency for SR 3.8.1.7 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing.

SR 3.8.1.3

This Surveillance verifies that the DGs are capable of synchronizing with the offsite electrical system and accepting loads greater than or equal to the equivalent of the maximum expected accident loads. A minimum run time of 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source.

Although no power factor requirements are established by this SR, the DG is normally operated at a power factor between [0.8 lagging] and [1.0]. The [0.8] value is the design rating of the machine, while the [1.0] is an operational limitation [to ensure circulating currents are minimized]. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

The 31 day Frequency for this Surveillance is consistent with Regulatory Guide 1.9 (Ref. 3).

This SR is modified by four Notes. Note 1 indicates that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized. Note 2 states that momentary transients, because of changing bus loads, do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test. Note 3 indicates that this Surveillance should be conducted on only one DG at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations. Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start must precede this test to credit satisfactory performance.

SR 3.8.1.4

This SR provides verification that the level of fuel oil in the day tank [and engine mounted tank] is at or above the level at which fuel oil is automatically added. The level is expressed as an equivalent volume in gallons, and is selected to ensure adequate fuel oil for a minimum of 1 hour of DG operation at full load plus 10%.

The 31 day Frequency is adequate to assure that a sufficient supply of fuel oil is available, since low level alarms are provided and facility operators would be aware of any large uses of fuel oil during this period.

SR 3.8.1.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel oil day [and engine mounted] tanks once every [31] days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 10). This SR is for preventative maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during the performance of this Surveillance.

SR 3.8.1.6

This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated day tank. This is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact, the fuel delivery piping is not obstructed, and the controls and control systems for automatic fuel transfer systems are OPERABLE.

[The Frequency for this SR is variable, depending on individual system design, with up to a [92] day interval. The [92] day Frequency corresponds to the testing requirements for pumps as contained in the ASME Code, Section XI (Ref. 11); however, the design of fuel transfer systems is such that pumps operate automatically or must be started manually in order to maintain an adequate volume of fuel oil in the day [and engine mounted] tanks during or following DG testing. In such a case, a 31 day Frequency is appropriate. Since proper operation of fuel transfer systems is an inherent part of DG OPERABILITY, the Frequency of this SR should be modified to reflect individual designs.]

SR 3.8.1.7

See SR 3.8.1.2.

[SR 3.8.1.8

Transfer of each [4.16 kV ESF bus] power supply from the normal offsite circuit to the alternate offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads. The [18 month] Frequency of the Surveillance is based on engineering judgment, taking into consideration the unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. This restriction from normally performing the Surveillance in

MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.]

SR 3.8.1.9

Each DG is provided with an engine overspeed trip to prevent damage to the engine. Recovery from the transient caused by the loss of a large load could cause diesel engine overspeed, which, if excessive, might result in a trip of the engine. This Surveillance demonstrates the DG load response characteristics and capability to reject the largest single load without exceeding predetermined voltage and frequency and while maintaining a specified margin to the overspeed trip. [For this unit, the single load for each DG and its horsepower rating is as follows:] This Surveillance may be accomplished by either:

- Tripping the DG output breaker with the DG carrying greater than or equal to its associated single largest post-accident load while paralleled to offsite power, or while solely supplying the bus or
- b. Tripping its associated single largest post-accident load with the DG solely supplying the bus.

As required by IEEE-308 (Ref. 12), the load rejection test is acceptable if the increase in diesel speed does not exceed 75% of the difference between synchronous speed and the overspeed trip setpoint, or 15% above synchronous speed, whichever is lower.

The time, voltage, and frequency tolerances specified in this SR are derived from Regulatory Guide 1.9 (Ref. 3) recommendations for response during load sequence intervals. The 3 seconds specified is

equal to 60% of a typical 5 second load sequence interval associated with sequencing of the largest load. The voltage and frequency specified are consistent with the design range of the equipment powered by the DG. SR 3.8.1.9.a corresponds to the maximum frequency excursion, while SR 3.8.1.9.b and SR 3.8.1.9.c are steady state voltage and frequency values to which the system must recover following load rejection. The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9).

This SR is modified by two Notes. The reason for Note 1 is that during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

Note 2 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of \leq [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 2 allows the surveillance to be conducted at a power factor other than \leq [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to \leq [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency

busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits.

- REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

- a. Performance of the SR will not render any safety system or component inoperable,
- b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.10

This Surveillance demonstrates the DG capability to reject a full load without overspeed tripping or exceeding the predetermined voltage limits. The DG full load rejection may occur because of a system fault or inadvertent breaker tripping. This Surveillance ensures proper engine generator load response under the simulated test conditions. This test simulates the loss of the total connected load that the DG experiences following a full load rejection and verifies that the DG does not trip upon loss of the load. These acceptance criteria provide for DG damage protection. While the DG is not expected to experience this transient during an event and continues to be available, this response ensures that the DG is not degraded for future application, including reconnection to the bus if the trip initiator can be corrected or isolated.

The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9) and is intended to be consistent with expected fuel cycle lengths.

This SR has been modified by two Notes. The reason for Note 1 is that during operation with the reactor critical, performance of this SR could cause perturbation to the electrical distribution systems that could

challenge continued steady state operation and, as a result, unit safety systems. Note 2 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of ≤ [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 2 allows the surveillance to be conducted at a power factor other than ≤ [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to ≤ [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

- REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

a. Performance of the SR will not render any safety system or component inoperable,

- Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.11

As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), this Surveillance demonstrates the as designed operation of the standby power sources during loss of the offsite source. This test verifies all actions encountered from the loss of offsite power, including shedding of the nonessential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time.

The DG autostart time of [10] seconds is derived from requirements of the accident analysis to respond to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability is achieved.

The requirement to verify the connection and power supply of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or residual heat removal (RHR) systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG systems to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

[SR 3.8.1.12

This Surveillance demonstrates that the DG automatically starts and achieves the required voltage and frequency within the specified time ([10] seconds) from the design basis actuation signal (LOCA signal) and operates for ≥ 5 minutes. The 5 minute period provides sufficient time to demonstrate stability. SR 3.8.1.12.d and SR 3.8.1.12.e ensure that permanently connected loads and emergency loads are energized from the offsite electrical power system on an ESF signal without loss of offsite power.

The requirement to verify the connection of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, ECCS injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or RHR

SURVEILLANCE REQUIREMENTS (continued)

systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of [18 months] takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance. corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. 1

SR 3.8.1.13

This Surveillance demonstrates that DG noncritical protective functions (e.g., high jacket water temperature) are bypassed on a loss of voltage signal concurrent with an ESF actuation test signal, and critical protective functions (engine overspeed, generator differential current, [low lube oil pressure, high crankcase pressure, and start failure relay]) trip the DG to avert substantial damage to the DG unit. The noncritical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG.

The [18 month] Frequency is based on engineering judgment, taking into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

The SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DG from service. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

- REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

- a. Performance of the SR will not render any safety system or component inoperable,
- Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.14

Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3), requires demonstration once per 18 months that the DGs can start and run continuously at full load capability for an interval of not less than 24 hours, ≥ [2] hours of which is at a load equivalent to 110% of the continuous duty rating and the remainder of the time at a load equivalent to the continuous duty rating of the DG. The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelubricating and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR.

The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This Surveillance is modified by three Notes. Note 1 states that momentary transients due to changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the power factor limit will not invalidate the test. The reason for Note 2 is that during

SURVEILLANCE REQUIREMENTS (continued)

operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. Note 3 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of ≤ [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 3 allows the surveillance to be conducted as a power factor other than \leq [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to ≤ [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained close as practicable to [0.9] without exceeding the DG excitation limits. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

SR 3.8.1.15

This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency within [10] seconds. The [10] second time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA.

The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(5).

This SR is modified by two Notes. Note 1 ensures that the test is performed with the diesel sufficiently hot. The load band is provided to avoid routine overloading of the DG. Routine overloads may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. The requirement that the diesel has operated for at least [2] hours at full load conditions prior to performance of this Surveillance is based on manufacturer recommendations for achieving hot conditions. Momentary transients due to changing bus loads do not invalidate this test. Note 2 allows all DG starts to be preceded by an engine prelube period to minimize wear and tear on the diesel during testing.

SR 3.8.1.16

As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), this Surveillance ensures that the manual synchronization and automatic load transfer from the DG to the offsite source can be made and the DG can be returned to ready to load status when offsite power is restored. It also ensures that the autostart logic is reset to allow the DG to reload if a subsequent loss of offsite power occurs. The DG is considered to be in ready to load status when the DG is at rated speed and voltage, the output breaker is open and can receive an autoclose signal on bus undervoltage, and the load sequence timers are reset.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), and takes into consideration unit conditions required to perform the Surveillance.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite

or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

[SR 3.8.1.17

Demonstration of the test mode override ensures that the DG availability under accident conditions will not be compromised as the result of testing and the DG will automatically reset to ready to load operation if a LOCA actuation signal is received during operation in the test mode. Ready to load operation is defined as the DG running at rated speed and voltage with the DG output breaker open. These provisions for automatic switchover are required by IEEE-308 (Ref. 13), paragraph 6.2.6(2).

The requirement to automatically energize the emergency loads with offsite power is essentially identical to that of SR 3.8.1.12. The intent in the requirement associated with SR 3.8.1.17.b is to show that the emergency loading was not affected by the DG operation in test mode. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the emergency loads to perform these functions is acceptable.

This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(8), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant

safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

SR 3.8.1.18

Under accident [and loss of offsite power] conditions loads are sequentially connected to the bus by the [automatic load sequencer]. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading of the DGs due to high motor starting currents. The [10]% load sequence time interval tolerance ensures that sufficient time exists for the DG to restore frequency and voltage prior to applying the next load and that safety analysis assumptions regarding ESF equipment time delays are not violated. Reference 2 provides a summary of the automatic loading of ESF buses.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(2), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems.

- REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

 Performance of the SR will not render any safety system or component inoperable,

- Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.19

In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded.

This Surveillance demonstrates the DG operation, as discussed in the Bases for SR 3.8.1.11, during a loss of offsite power actuation test signal in conjunction with an ESF actuation signal. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of [18 months] takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of [18 months].

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations for DGs. The reason for Note 2 is that the performance of the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system

when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

SR 3.8.1.20

This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously.

The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9).

This SR is modified by a Note. The reason for the Note is to minimize wear on the DG during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations.

REFERENCES

- 1. 10 CFR 50, Appendix A, GDC 17.
- 2. FSAR, Chapter [8].
- 3. Regulatory Guide 1.9, Rev. 3.
- 4. FSAR, Chapter [6].
- 5. FSAR, Chapter [15].
- 6. Regulatory Guide 1.93, Rev. 0, December 1974.
- 7. Generic Letter 84-15, "Proposed Staff Actions to Improve and Maintain Diesel Generator Reliability," July 2, 1984.
- 8. 10 CFR 50, Appendix A, GDC 18.
- 9. Regulatory Guide 1.108, Rev. 1, August 1977.

REFERENCES (continued)

- 10. Regulatory Guide 1.137, Rev. [], [date].
- 11. ASME, Boiler and Pressure Vessel Code, Section XI.
- 12. IEEE Standard 308-1978.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.2 AC Sources - Shutdown

BASES

BACKGROUND

A description of the AC sources is provided in the Bases for LCO 3.8.1, "AC Sources - Operating."

APPLICABLE SAFETY ANALYSES

The OPERABILITY of the minimum AC sources during MODES 5 and 6 and during movement of [recently] irradiated fuel assemblies ensures that:

- a. The unit can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate AC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, AC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)].

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, 3, and 4 have no specific analyses in MODES 5 and 6. Worst case bounding events are deemed not credible in MODES 5 and 6 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

During MODES 1, 2, 3, and 4, various deviations from the analysis assumptions and design requirements are allowed within the Required Actions. This allowance is in recognition that certain testing and

APPLICABLE SAFETY ANALYSES (continued)

maintenance activities must be conducted provided an acceptable level of risk is not exceeded. During MODES 5 and 6, performance of a significant number of required testing and maintenance activities is also required. In MODES 5 and 6, the activities are generally planned and administratively controlled. Relaxations from MODE 1, 2, 3, and 4 LCO requirements are acceptable during shutdown modes based on:

- The fact that time in an outage is limited. This is a risk prudent goal as well as a utility economic consideration.
- b. Requiring appropriate compensatory measures for certain conditions. These may include administrative controls, reliance on systems that do not necessarily meet typical design requirements applied to systems credited in operating MODE analyses, or both.
- c. Prudent utility consideration of the risk associated with multiple activities that could affect multiple systems.
- d. Maintaining, to the extent practical, the ability to perform required functions (even if not meeting MODE 1, 2, 3, and 4 OPERABILITY requirements) with systems assumed to function during an event.

In the event of an accident during shutdown, this LCO ensures the capability to support systems necessary to avoid immediate difficulty, assuming either a loss of all offsite power or a loss of all onsite diesel generator (DG) power.

The AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

One offsite circuit capable of supplying the onsite Class 1E power distribution subsystem(s) of LCO 3.8.10, "Distribution Systems - Shutdown," ensures that all required loads are powered from offsite power. An OPERABLE DG, associated with the distribution system train required to be OPERABLE by LCO 3.8.10, ensures a diverse power source is available to provide electrical power support, assuming a loss of the offsite circuit. Together, OPERABILITY of the required offsite circuit and DG ensures the availability of sufficient AC sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

The qualified offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident,

LCO (continued)

while connected to the Engineered Safety Feature (ESF) bus(es). Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit.

[Offsite circuit #1 consists of Safeguards Transformer B, which is supplied from Switchyard Bus B, and is fed through breaker 52-3 powering the ESF transformer XNB01, which, in turn, powers the #1 ESF bus through its normal feeder breaker. The second offsite circuit consists of the Startup Transformer, which is normally fed from the Switchyard Bus A, and is fed through breaker PA 0201 powering the ESF transformer, which, in turn, powers the #2 ESF bus through its normal feeder breaker.]

The DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This sequence must be accomplished within [10] seconds. The DG must be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby at ambient conditions.

Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY.

[In addition, proper sequencer operation is an integral part of offsite circuit OPERABILITY since its inoperability impacts on the ability to start and maintain energized loads required OPERABLE by LCO 3.8.10.]

It is acceptable for trains to be cross tied during shutdown conditions, allowing a single offsite power circuit to supply all required trains.

APPLICABILITY

The AC sources required to be OPERABLE in MODES 5 and 6 and during movement of [recently] irradiated fuel assemblies provide assurance that:

- a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core,
- Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)] are available,

APPLICABILITY (continued)

- c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The AC power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.1.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.

A.1

An offsite circuit would be considered inoperable if it were not available to one required ESF train. Although two trains are required by LCO 3.8.10, the one train with offsite power available may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and [recently] irradiated fuel movement. By the allowance of the option to declare required features inoperable, with no offsite power available, appropriate restrictions will be implemented in accordance with the affected required features LCO's ACTIONS.

A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4

With the offsite circuit not available to all required trains, the option would still exist to declare all required features inoperable. Since this option may involve undesired administrative efforts, the allowance for sufficiently conservative actions is made. With the required DG inoperable, the minimum required diversity of AC power sources is not available. It is, therefore, required to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies, and operations involving positive reactivity additions that could result in loss of required SDM (Mode 5) or boron concentration (Mode 6). Suspending positive reactivity additions that could result in failure to meet the minimum SDM or boron concentration limit is required to assure continued safe operation.

ACTIONS (continued)

Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum SDM or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive MTC must also be evaluated to ensure they do not result in a loss of required SDM.

Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability or the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC sources and to continue this action until restoration is accomplished in order to provide the necessary AC power to the unit safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required AC electrical power sources should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power.

Pursuant to LCO 3.0.6, the Distribution System's ACTIONS would not be entered even if all AC sources to it are inoperable, resulting in de-energization. Therefore, the Required Actions of Condition A are modified by a Note to indicate that when Condition A is entered with no AC power to any required ESF bus, the ACTIONS for LCO 3.8.10 must be immediately entered. This Note allows Condition A to provide requirements for the loss of the offsite circuit, whether or not a train is de-energized. LCO 3.8.10 would provide the appropriate restrictions for the situation involving a de-energized train.

SURVEILLANCE REQUIREMENTS

SR 3.8.2.1

SR 3.8.2.1 requires the SRs from LCO 3.8.1 that are necessary for ensuring the OPERABILITY of the AC sources in other than MODES 1, 2, 3, and 4. SR 3.8.1.8 is not required to be met since only one offsite circuit is required to be OPERABLE. SR 3.8.1.17 is not required to be met because the required OPERABLE DG(s) is not required to undergo periods of being synchronized to the offsite circuit. SR 3.8.1.20 is excepted because starting independence is not required with the DG(s) that is not required to be operable.

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by two Notes. The reason for Note 1 is to preclude requiring the OPERABLE DG(s) from being paralleled with the offsite power network or otherwise rendered inoperable during performance of SRs, and to preclude deenergizing a required 4160 V ESF bus or disconnecting a required offsite circuit during performance of SRs. With limited AC sources available, a single event could compromise both the required circuit and the DG. It is the intent that these SRs must still be capable of being met, but actual performance is not required during periods when the DG and offsite circuit is required to be OPERABLE. Refer to the corresponding Bases for LCO 3.8.1 for a discussion of each SR. Note 2 states that SRs 3.8.1.12 and 3.8.1.19 are not required to be met when its associated ECCS subsystem(s) are not required to be OPERABLE. These SRs demonstrate the DG response to an ECCS signal (either alone or in conjunction with a loss-of-power signal). This is consistent with the ECCS instrumentation requirements that do not require the ECCS signals when the ECCS System is not required to be OPERABLE per LCO 3.5.3, "ECCS-Shutdown."

REFERENCES

None.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air

BASES

BACKGROUND

Each diesel generator (DG) is provided with a storage tank having a fuel oil capacity sufficient to operate that diesel for a period of 7 days while the DG is supplying maximum post loss of coolant accident load demand discussed in the FSAR, Section [9.5.4.2] (Ref. 1). The maximum load demand is calculated using the assumption that a minimum of any two DGs is available. This onsite fuel oil capacity is sufficient to operate the DGs for longer than the time to replenish the onsite supply from outside sources.

Fuel oil is transferred from storage tank to day tank by either of two transfer pumps associated with each storage tank. Redundancy of pumps and piping precludes the failure of one pump, or the rupture of any pipe, valve or tank to result in the loss of more than one DG. All outside tanks, pumps, and piping are located underground.

For proper operation of the standby DGs, it is necessary to ensure the proper quality of the fuel oil. Regulatory Guide 1.137 (Ref. 2) addresses the recommended fuel oil practices as supplemented by ANSI N195 (Ref. 3). The fuel oil properties governed by these SRs are the water and sediment content, the kinematic viscosity, specific gravity (or API gravity), and impurity level.

The DG lubrication system is designed to provide sufficient lubrication to permit proper operation of its associated DG under all loading conditions. The system is required to circulate the lube oil to the diesel engine working surfaces and to remove excess heat generated by friction during operation. Each engine oil sump contains an inventory capable of supporting a minimum of [7] days of operation. [The onsite storage in addition to the engine oil sump is sufficient to ensure 7 days of continuous operation.] This supply is sufficient to allow the operator to replenish lube oil from outside sources.

Each DG has an air start system with adequate capacity for five successive start attempts on the DG without recharging the air start receiver(s).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 4), and in the FSAR, Chapter [15] (Ref. 5), assume Engineered Safety Feature (ESF) systems are OPERABLE. The DGs are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that fuel, Reactor Coolant System and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

Since diesel fuel oil, lube oil, and the air start subsystem support the operation of the standby AC power sources, they satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Stored diesel fuel oil is required to have sufficient supply for 7 days of full load operation. It is also required to meet specific standards for quality. Additionally, sufficient lubricating oil supply must be available to ensure the capability to operate at full load for 7 days. This requirement, in conjunction with an ability to obtain replacement supplies within 7 days, supports the availability of DGs required to shut down the reactor and to maintain it in a safe condition for an anticipated operational occurrence (AOO) or a postulated DBA with loss of offsite power. DG day tank fuel requirements, as well as transfer capability from the storage tank to the day tank, are addressed in LCO 3.8.1, "AC Sources - Operating," and LCO 3.8.2, "AC Sources - Shutdown."

The starting air system is required to have a minimum capacity for five successive DG start attempts without recharging the air start receivers.

APPLICABILITY

The AC sources (LCO 3.8.1 and LCO 3.8.2) are required to ensure the availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an AOO or a postulated DBA. Since stored diesel fuel oil, lube oil, and the starting air subsystem support LCO 3.8.1 and LCO 3.8.2, stored diesel fuel oil, lube oil, and starting air are required to be within limits when the associated DG is required to be OPERABLE.

ACTIONS

The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each DG. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable DG subsystem. Complying with the Required Actions for one inoperable DG subsystem may allow for continued

ACTIONS (continued)

operation, and subsequent inoperable DG subsystem(s) are governed by separate Condition entry and application of associated Required Actions.

A.1

In this Condition, the 7 day fuel oil supply for a DG is not available. However, the Condition is restricted to fuel oil level reductions that maintain at least a 6 day supply. These circumstances may be caused by events, such as full load operation required after an inadvertent start while at minimum required level, or feed and bleed operations, which may be necessitated by increasing particulate levels or any number of other oil quality degradations. This restriction allows sufficient time for obtaining the requisite replacement volume and performing the analyses required prior to addition of fuel oil to the tank. A period of 48 hours is considered sufficient to complete restoration of the required level prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

<u>B.1</u>

With lube oil inventory < 500 gal, sufficient lubricating oil to support 7 days of continuous DG operation at full load conditions may not be available. However, the Condition is restricted to lube oil volume reductions that maintain at least a 6 day supply. This restriction allows sufficient time to obtain the requisite replacement volume. A period of 48 hours is considered sufficient to complete restoration of the required volume prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the low rate of usage, the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

<u>C.1</u>

This Condition is entered as a result of a failure to meet the acceptance criterion of SR 3.8.3.5. Normally, trending of particulate levels allows sufficient time to correct high particulate levels prior to reaching the limit of acceptability. Poor sample procedures (bottom sampling), contaminated sampling equipment, and errors in laboratory analysis can produce failures that do not follow a trend. Since the presence of particulates does not mean failure of the fuel oil to burn properly in the diesel engine, and particulate concentration is unlikely to change significantly between Surveillance Frequency intervals, and proper engine

ACTIONS (continued)

performance has been recently demonstrated (within 31 days), it is prudent to allow a brief period prior to declaring the associated DG inoperable. The 7 day Completion Time allows for further evaluation, resampling and re-analysis of the DG fuel oil.

<u>D.1</u>

With the new fuel oil properties defined in the Bases for SR 3.8.3.4 not within the required limits, a period of 30 days is allowed for restoring the stored fuel oil properties. This period provides sufficient time to test the stored fuel oil to determine that the new fuel oil, when mixed with previously stored fuel oil, remains acceptable, or to restore the stored fuel oil properties. This restoration may involve feed and bleed procedures, filtering, or combinations of these procedures. Even if a DG start and load was required during this time interval and the fuel oil properties were outside limits, there is a high likelihood that the DG would still be capable of performing its intended function.

<u>E.1</u>

With starting air receiver pressure < [225] psig, sufficient capacity for five successive DG start attempts does not exist. However, as long as the receiver pressure is > [125] psig, there is adequate capacity for at least one start attempt, and the DG can be considered OPERABLE while the air receiver pressure is restored to the required limit. A period of 48 hours is considered sufficient to complete restoration to the required pressure prior to declaring the DG inoperable. This period is acceptable based on the remaining air start capacity, the fact that most DG starts are accomplished on the first attempt, and the low probability of an event during this brief period.

<u>F.1</u>

With a Required Action and associated Completion Time not met, or one or more DG's fuel oil, lube oil, or starting air subsystem not within limits for reasons other than addressed by Conditions A through D, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable.

SURVEILLANCE REQUIREMENTS

SR 3.8.3.1

This SR provides verification that there is an adequate inventory of fuel oil in the storage tanks to support each DG's operation for 7 days at full load. The 7 day period is sufficient time to place the unit in a safe shutdown condition and to bring in replenishment fuel from an offsite location.

The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and unit operators would be aware of any large uses of fuel oil during this period.

SR 3.8.3.2

This Surveillance ensures that sufficient lube oil inventory is available to support at least 7 days of full load operation for each DG. The [500] gal requirement is based on the DG manufacturer consumption values for the run time of the DG. Implicit in this SR is the requirement to verify the capability to transfer the lube oil from its storage location to the DG, when the DG lube oil sump does not hold adequate inventory for 7 days of full load operation without the level reaching the manufacturer recommended minimum level.

A 31 day Frequency is adequate to ensure that a sufficient lube oil supply is onsite, since DG starts and run time are closely monitored by the unit staff.

SR 3.8.3.3

The tests listed below are a means of determining whether new fuel oil is of the appropriate grade and has not been contaminated with substances that would have an immediate, detrimental impact on diesel engine combustion. If results from these tests are within acceptable limits, the fuel oil may be added to the storage tanks without concern for contaminating the entire volume of fuel oil in the storage tanks. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days. The tests, limits, and applicable ASTM Standards are as follows:

- a. Sample the new fuel oil in accordance with ASTM D4057-[] (Ref. 6),
- b. Verify in accordance with the tests specified in ASTM D975-[] (Ref. 6) that the sample has an absolute specific gravity at 60/60°F

SURVEILLANCE REQUIREMENTS (continued)

of \geq 0.83 and \leq 0.89 or an API gravity at 60°F of \geq 27° and \leq 39°, a kinematic viscosity at 40°C of \geq 1.9 centistokes and \leq 4.1 centistokes, and a flash point of \geq 125°F, and

c. Verify that the new fuel oil has a clear and bright appearance with proper color when tested in accordance with ASTM D4176-[] (Ref. 6).

Failure to meet any of the above limits is cause for rejecting the new fuel oil, but does not represent a failure to meet the LCO concern since the fuel oil is not added to the storage tanks.

Within 31 days following the initial new fuel oil sample, the fuel oil is analyzed to establish that the other properties specified in Table 1 of ASTM D975-[] (Ref. 7) are met for new fuel oil when tested in accordance with ASTM D975-[] (Ref. 6), except that the analysis for sulfur may be performed in accordance with ASTM D1552-[] (Ref. 6) or ASTM D2622-[] (Ref. 6). The 31 day period is acceptable because the fuel oil properties of interest, even if they were not within stated limits, would not have an immediate effect on DG operation. This Surveillance ensures the availability of high quality fuel oil for the DGs.

Fuel oil degradation during long term storage shows up as an increase in particulate, due mostly to oxidation. The presence of particulate does not mean the fuel oil will not burn properly in a diesel engine. The particulate can cause fouling of filters and fuel oil injection equipment, however, which can cause engine failure.

Particulate concentrations should be determined in accordance with ASTM D2276-[], Method A (Ref. 6). This method involves a gravimetric determination of total particulate concentration in the fuel oil and has a limit of 10 mg/l. It is acceptable to obtain a field sample for subsequent laboratory testing in lieu of field testing. [For those designs in which the total stored fuel oil volume is contained in two or more interconnected tanks, each tank must be considered and tested separately.]

The Frequency of this test takes into consideration fuel oil degradation trends that indicate that particulate concentration is unlikely to change significantly between Frequency intervals.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.3.4

This Surveillance ensures that, without the aid of the refill compressor, sufficient air start capacity for each DG is available. The system design requirements provide for a minimum of [five] engine start cycles without recharging. [A start cycle is defined by the DG vendor, but usually is measured in terms of time (seconds of cranking) or engine cranking speed.] The pressure specified in this SR is intended to reflect the lowest value at which the [five] starts can be accomplished.

The 31 day Frequency takes into account the capacity, capability, redundancy, and diversity of the AC sources and other indications available in the control room, including alarms, to alert the operator to below normal air start pressure.

SR 3.8.3.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel storage tanks once every [31] days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, and contaminated fuel oil, and from breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 2). This SR is for preventive maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during performance of the Surveillance.

REFERENCES

- 1. FSAR, Section [9.5.4.2].
- 2. Regulatory Guide 1.137.
- 3. ANSI N195-1976, Appendix B.
- 4. FSAR, Chapter [6].
- 5. FSAR, Chapter [15].

REFERENCES (continued)

- 6. ASTM Standards: D4057-[], D975-[], D4176-[], D1552-[], D2622-[], and D2276-[], Method A.
- 7. ASTM Standards, D975-[], Table 1.

B38 ELECTRICAL POWER SYSTEMS

B 3.8.4 DC Sources - Operating

BASES

BACKGROUND

The station DC electrical power system provides the AC emergency power system with control power. It also provides both motive and control power to selected safety related equipment and preferred AC vital bus power (via inverters). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The DC electrical power system also conforms to the recommendations of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3).

The [125/250] VDC electrical power system consists of two independent and redundant safety related Class 1E DC electrical power subsystems ([Train A and Train B]). Each subsystem consists of [two] 125 VDC batteries [(each battery [50]% capacity)], the associated battery charger(s) for each battery, and all the associated control equipment and interconnecting cabling.

[The 250 VDC source is obtained by use of the two 125 VDC batteries connected in series. Additionally there is [one] spare battery charger per subsystem, which provides backup service in the event that the preferred battery charger is out of service. If the spare battery charger is substituted for one of the preferred battery chargers, then the requirements of independence and redundancy between subsystems are maintained.]

During normal operation, the [125/250] VDC load is powered from the battery chargers with the batteries floating on the system. In case of loss of normal power to the battery charger, the DC load is automatically powered from the station batteries.

The [Train A and Train B] DC electrical power subsystems provide the control power for its associated Class 1E AC power load group, [4.16] kV switchgear, and [480] V load centers. The DC electrical power subsystems also provide DC electrical power to the inverters, which in turn power the AC vital buses.

The DC power distribution system is described in more detail in Bases for LCO 3.8.9, "Distribution System - Operating," and LCO 3.8.10, "Distribution Systems - Shutdown."

BACKGROUND (continued)

Each 125/250 VDC battery is separately housed in a ventilated room apart from its charger and distribution centers. Each subsystem is located in an area separated physically and electrically from the other subsystem to ensure that a single failure in one subsystem does not cause a failure in a redundant subsystem. There is no sharing between redundant Class 1E subsystems, such as batteries, battery chargers, or distribution panels.

Each battery has adequate storage capacity to meet the duty cycle(s) discussed in the FSAR, Chapter [8] (Ref 4). The battery is designed with additional capacity above that required by the design duty cycle to allow for temperature variations and other factors.

The batteries for Train A and Train B DC electrical power subsystems are sized to produce required capacity at 80% of nameplate rating, corresponding to warranted capacity at end of life cycles and the 100% design demand. The minimum design voltage limit is 105/210 V.

The battery cells are of flooded lead acid construction with a nominal specific gravity of [1.215]. This specific gravity corresponds to an open circuit battery voltage of approximately 120 V for a [58] cell battery (i.e., cell voltage of [2.065] volts per cell (Vpc)). The open circuit voltage is the voltage maintained when there is no charging or discharging. Once fully charged with its open circuit voltage ≥ [2.0654] Vpc, the battery cell will maintain its capacity for [30] days without further charging per manufacturer's instructions. Optimal long term performance however, is obtained by maintaining a float voltage [2.20 to 2.25] Vpc. This provides adequate over-potential, which limits the formation of lead sulfate and self discharge. The nominal float voltage of [2.22] Vpc corresponds to a total float voltage output of [128.8] V for a [58] cell battery as discussed in the FSAR, Chapter [8] (Ref. 4).

Each Train A and Train B DC electrical power subsystem battery charger has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each battery charger also has sufficient excess capacity to restore the battery from the design minimum charge to its fully charged state within 24 hours while supplying normal steady state loads discussed in the FSAR, Chapter [8] (Ref. 4).

The batter charger is normally in the float-charge mode. Float-charge is the condition in which the charger is supplying the connected loads and the battery cells are receiving adequate current to optimally charge the

BACKGROUND (continued)

battery. This assures the internal losses of a battery are overcome and the battery is maintained in a fully charged state.

When desired, the charger can be placed in the equalize mode. The equalize mode is at a higher voltage than the float mode and charging current is correspondingly higher. The battery charger is operated in the equalize mode after a battery discharge or for routine maintenance. Following a battery discharge, the battery recharge characteristic accepts current at the current limit of the battery charger (if the discharge was significant, e.g., following a battery service test) until the battery terminal voltage approaches the charger voltage setpoint. Charging current then reduces exponentially during the remainder of the recharge cycle. Lead-calcium batteries have recharge efficiencies of greater than 95%, so once at least 105% of the ampere-hours discharged have been returned, the battery capacity would be restored to the same condition as it was prior to the discharge. This can be monitored by direct observation of the exponentially decaying charging current or by evaluating the amp-hours discharged from the battery and amp-hours returned to the battery.

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 5) and Chapter [15] (Ref. 6), assume that Engineered Safety Feature (ESF) systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the DGs, emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining the DC sources OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite AC power or all onsite AC power and
- b. A worst-case single failure.

The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The DC electrical power subsystems, each subsystem consisting of [two] batteries, battery charger [for each battery] and the corresponding control equipment and interconnecting cabling supplying power to the associated bus within the train are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it

LCO (continued)

in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Loss of any train DC electrical power subsystem does not prevent the minimum safety function from being performed (Ref. 4).

An OPERABLE DC electrical power subsystem requires all required batteries and respective chargers to be operating and connected to the associated DC bus(es).

APPLICABILITY

The DC electrical power sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure safe unit operation and to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA.

The DC electrical power requirements for MODES 5 and 6 are addressed in the Bases for LCO 3.8.5, "DC Sources - Shutdown."

ACTIONS

A.1, A.2, and A.3

Condition A represents one train with one [or two] battery chargers inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

ACTIONS (continued)

- REVIEWER'S NOTE -

A plant that cannot meet the 12-hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.

If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 2 hours, and the charger is not operating in the current-limiting mode, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit mode that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action A.2).

Required Action A.2 requires that the battery float current be verified as less than or equal to [2] amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial [12] hour period the battery float current is not less than or equal to [2] amps this indicates there may be additional battery problems and the battery must be declared inoperable.

ACTIONS (continued)

Required Action A.3 limits the restoration time for the inoperable battery charger to 7 days. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g., balance of plant non-Class 1E battery charger). The 7 day Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

B.1

- REVIEWER'S NOTE -

The 2 hour Completion Times of Required Actions B.1 and C.1 are in brackets. Any licensee wishing to request a longer Completion Time will need to demonstrate that the longer Completion Time is appropriate for the plant in accordance with the guidance in Regulatory Guide (RG) 1.177, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications."

Condition B represents one train with one [or two] batter[v][ies] inoperable. With one [or two] batter[y][ies] inoperable, the DC bus is being supplied by the OPERABLE battery charger[s]. Any event that results in a loss of the AC bus supporting the battery charger[s] will also result in loss of DC to that train. Recovery of the AC bus, especially if it is due to a loss of offsite power, will be hampered by the fact that many of the components necessary for the recovery (e.g., diesel generator control and field flash, AC load shed and diesel generator output circuit breakers, etc.) likely rely upon the batter[y][ies]. In addition the energization transients of any DC loads that are beyond the capability of the battery charger[s] and normally require the assistance of the batter[y][ies] will not be able to be brought online. The [2] hour limit allows sufficient time to effect restoration of an inoperable battery given that the majority of the conditions that lead to battery inoperability (e.g., loss of battery charger. battery cell voltage less than [2.07] V, etc.) are identified in Specifications 3.8.4, 3.8.5, and 3.8.6 together with additional specific completion times.

C.1

Condition C represents one train with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for complete loss of DC power to the affected train. The 2 hour limit is

ACTIONS (continued)

consistent with the allowed time for an inoperable DC distribution system

If one of the required DC electrical power subsystems is inoperable for reasons other than Condition A or B (e.g., inoperable battery charger and associated inoperable battery), the remaining DC electrical power subsystem has the capacity to support a safe shutdown and to mitigate an accident condition. Since a subsequent worst- case single failure could, however, result in the loss of minimum necessary DC electrical subsystems to mitigate a worst case accident, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 7) and reflects a reasonable time to assess unit status as a function of the inoperable DC electrical power subsystem and, if the DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe unit shutdown.

D.1 and D.2

If the inoperable DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. The Completion Time to bring the unit to MODE 5 is consistent with the time required in Regulatory Guide 1.93 (Ref. 8).

SURVEILLANCE REQUIREMENTS

SR 3.8.4.1

Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the battery chargers, which support the ability of the batteries to perform their intended function. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a fully charged state while supplying the continuous steady state loads of the associated DC subsystem. On float charge, battery cells will receive adequate current to optimally charge the battery. The voltage requirements are based on the nominal design voltage of the battery and are consistent with the minimum float voltage established by the battery manufacturer ([2.20] Vpc or [127.6] V at the battery terminals). This voltage maintains the battery plates in a condition that supports maintaining the grid life (expected to be approximately 20 years). The

SURVEILLANCE REQUIREMENTS (continued)

7 day Frequency is consistent with manufacturer recommendations and IEEE-450 (Ref. 8).

SR 3.8.4.2

This SR verifies the design capacity of the battery chargers. According to Regulatory Guide 1.32 (Ref. 9), the battery charger supply is recommended to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the unit during these demand occurrences. The minimum required amperes and duration ensure that these requirements can be satisfied.

This SR provides two options. One option requires that each battery charger be capable of supplying [400] amps at the minimum established float voltage for [8] hours. The ampere requirements are based on the output rating of the chargers. The voltage requirements are based on the charger voltage level after a response to a loss of AC power. The time period if sufficient for the charger temperature to have stabilized and to have been maintained for at lease [2] hours.

The other option requires that each battery charger be capable of recharging the battery after a service test coincident with supplying the largest coincident demands of the various continuous steady state loads (irrespective of the status of the plant during which these demands occur). This level of loading may not normally be available following the battery service test and will need to be supplemented with additional loads. The duration for this test may be longer than the charger sizing criteria since the battery recharge is affected by float voltage, temperature, an the exponential decay in charging current. The battery is recharged when the measured charging current is \leq [2] amps.

The Surveillance Frequency is acceptable, given the unit conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these [18 month] intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths.

SR 3.8.4.3

A battery service test is a special test of the battery capability, as found, to satisfy the design requirements (battery duty cycle) of the DC electrical

SURVEILLANCE REQUIREMENTS (continued)

power system. The discharge rate and test length should correspond to the design duty cycle requirements as specified in Reference 4.

The Surveillance Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 9) and Regulatory Guide 1.129 (Ref. 10), which state that the battery service test should be performed during refueling operations, or at some other outage, with intervals between tests not to exceed [18 months].

This SR is modified by two Notes. Note 1 allows the performance of a modified performance discharge test in lieu of a service test.

The reason for Note 2 is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

REFERENCES

- 1. 10 CFR.50, Appendix A, GDC 17.
- 2. Regulatory Guide 1.6, March 10, 1971.
- 3. IEEE-308-[1978].
- 4. FSAR, Chapter [8].
- 5. FSAR, Chapter [6].
- 6. FSAR, Chapter [15].

REFERENCES (continued)

- 7. Regulatory Guide 1.93, December 1974.
- 8. IEEE-450-[1995].
- 9. Regulatory Guide 1.32, February 1977.
- 10. Regulatory Guide 1.129, December 1974.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.5 DC Sources - Shutdown

BASES

BACKGROUND

A description of the DC sources is provided in the Bases for LCO 3.8.4, "DC Sources - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume that Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators, emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum DC electrical power sources during MODES 5 and 6 and during movement of [recently] irradiated fuel assemblies ensures that:

- a. The unit can be maintained in the shutdown or refueling condition for extended periods,
- Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate DC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, DC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)].

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES [1,2,3, and 4] have no specific analyses in MODES [5 and 6] because the energy contained

APPLICABLE SAFETY ANALYSES (continued)

within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case Design Basis Accidents which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result. in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The DC electrical power subsystems, [each required] [the required] [subsystem consisting of two batteries, one battery charger per battery, and the corresponding control equipment and interconnecting cabling within [one] the train, [are] [is] required to be OPERABLE to support [required] [one] train[s] of the distribution systems required OPERABLE by LCO 3.8.10, "Distribution Systems - Shutdown."] This ensures the availability of sufficient DC electrical power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

APPLICABILITY

The DC electrical power sources required to be OPERABLE in MODES 5 and 6, and during movement of [recently] irradiated fuel assemblies, provide assurance that:

APPLICABILITY (continued)

- a. Required features to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core,
- Required features needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)] are available,
- c. Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The DC electrical power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.4.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.

A.1, A.2, and A.3

- REVIEWER'S NOTE -

ACTION A is included only when plant-specific implementation of LCO 3.8.5 includes the potential to require both trains of the DC System to be OPERABLE. If plant-specific implementation results in LCO 3.8.5 requiring only one trains of the DC System to be OPERABLE, then ACTION A is omitted and ACTION B is renumbered as ACTION A.

Condition A represents one train with one [or two] battery chargers inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or

ACTIONS (continued)

equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

- REVIEWER'S NOTE -

A plant that cannot meet the 12-hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours.

If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 2 hours, and the charger is not operating in the current-limiting modes, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit modes that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action A.2).

ACTIONS (continued)

Required Action A.2 requires that the battery float current be verified as less than or equal to [2] amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial [12] hour period the battery float current is not less than or equal to [2] amps this indicates there may be additional battery problems and the battery must be declared inoperable.

Required Action A.3 limits the restoration time for the inoperable battery charger to 7 days. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g. balance of plant non-Class 1E battery charger). The 7 day Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

B.1, B.2.1, B.2.2, B.2.3, and B.2.4

[If two trains are required by LCO 3.8.10, the remaining train with DC power available may be capable of supporting sufficient systems to allow continuation of CORE ALTERATIONS and fuel movement] [involving handling recently irradiated fuel]. By allowing the option to declare required features inoperable with the associated DC power source(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCO ACTIONS. In many instances this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies, and operations involving positive reactivity additions) that could result in failure to meet the minimum SDM or boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum SDM or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive MTC must also be evaluated to ensure they do not result in a loss of required SDM.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required DC electrical power

ACTIONS (continued)

subsystem[s] and to continue this action until restoration is accomplished in order to provide the necessary DC electrical power to the unit safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power.

SURVEILLANCE REQUIREMENTS

SR 3.8.5.1

SR 3.8.5.1 requires performance of all Surveillances required by SR 3.8.4.1 through SR 3.8.4.3. Therefore, see the corresponding Bases for LCO 3.8.4 for a discussion of each SR.

This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required.

REFERENCES

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.6 Battery Parameters

BASES

BACKGROUND

This LCO delineates the limits on battery float current as well as electrolyte temperature, level, and float voltage for the DC power subsystem batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.4, "DC Sources - Operating," and LCO 3.8.5, "DC Sources - Shutdown." In addition to the limitations of this Specification, the [licensee controlled program] also implements a program specified in Specification 5.5.17 for monitoring various battery parameters that is based on the recommendations of IEEE Standard 450-1995, "IEEE Recommended Practice For Maintenance, Testing, And Replacement Of Vented Lead-Acid Batteries For Stationary Applications" (Ref. 1).

The battery cells are of flooded lead acid construction with a nominal specific gravity of [1.215]. This specific gravity corresponds to an open circuit battery voltage of approximately 120 V for [58] cell battery (i.e., cell voltage of [2.065] volts per cell (Vpc)). The open circuit voltage is the voltage maintained when there is no charging or discharging. Once fully charged with its open circuit voltage ≥ [2.065] Vpc, the battery cell will maintain its capacity for [30] days without further charging per manufacturer's instructions. Optimal long term performance however, is obtained by maintaining a float voltage [2.20 to 2.25] Vpc. This provides adequate over-potential which limits the formation of lead sulfate and self discharge. The nominal float voltage of [2.22] Vpc corresponds to a total float voltage output of [128.8] V for a [58] cell battery as discussed in the FSAR, Chapter [8] (Ref. 2).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the DGs, emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least one train of DC sources OPERABLE during accident conditions, in the event of:

a. An assumed loss of all offsite AC power or all onsite AC power and

APPLICABLE SAFETY ANALYSES (continued)

b. A worst-case single failure.

Battery parameters satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Battery parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Battery parameter limits are conservatively established, allowing continued DC electrical system function even with limits not met. Additional preventative maintenance, testing, and monitoring performed in accordance with the [licensee controlled program] is conducted as specified in Specification 5.5.17.

APPLICABILITY

The battery parameters are required solely for the support of the associated DC electrical power subsystems. Therefore, battery parameter limits are only required when the DC power source is required to be OPERABLE. Refer to the Applicability discussion in Bases for LCO 3.8.4 and LCO 3.8.5.

ACTIONS

A.1, A.2, and A.3

With one or more cells in one or more batteries in one train < [2.07] V, the battery cell is degraded. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage (SR 3.8.4.1) and of the overall battery state of charge by monitoring the battery float charge current (SR 3.8.6.1). This assures that there is still sufficient battery capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of one or more cells in one or more batteries < [2.07] V, and continued operation is permitted for a limited period up to 24 hours.

Since the Required Actions only specify "perform," a failure of SR 3.8.4.1 or SR 3.8.6.1 acceptance criteria does not result in this Required Action not met. However, if one of the SRs is failed the appropriate Condition(s), depending on the cause of the failures, is entered. If SR 3.8.6.1 is failed then there is not assurance that there is still sufficient battery capacity to perform the intended function and the battery must be declared inoperable immediately.

ACTIONS (continued)

B.1 and B.2

One or more batteries in one train with float > [2] amps indicates that a partial discharge of the battery capacity has occurred. This may be due to a temporary loss of a battery charger or possibly due to one or more battery cells in a low voltage condition reflecting some loss of capacity. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage. If the terminal voltage is found to be less than the minimum established float voltage there are two possibilities, the battery charger is inoperable or is operating in the current limit mode. Condition A addresses charger inoperability. If the charger is operating in the current limit mode after 2 hours that is an indication that the battery has been substantially discharged and likely cannot perform its required design functions. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action B.2). The battery must therefore be declared inoperable.

If the float voltage is found to be satisfactory but there are one or more battery cells with float voltage less than [2.07] V, the associated "OR" statement in Condition F is applicable and the battery must be declared inoperable immediately. If float voltage is satisfactory and there are no cells less than [2.07] V there is good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action B.2) from any discharge that might have occurred due to a temporary loss of the battery charger.

- REVIEWER'S NOTE -

A plant that cannot meet the 12-hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery with float voltage (the charger setpoint) across its terminals indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function

ACTIONS (continued)

of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.

If the condition is due to one or more cells in a low voltage condition but still greater than [2.07] V and float voltage is found to be satisfactory, this is not indication of a substantially discharged battery and [12] hours is a reasonable time prior to declaring the battery inoperable.

Since Required Action B.1 only specifies "perform," a failure of SR 3.8.4.1 acceptance criteria does not result in the Required Action not met. However, if SR 3.8.4.1 is failed, the appropriate Condition(s), depending on the cause of the failure, is entered.

C.1, C.2, and C.3

With one or more batteries in one train with one or more cells electrolyte level above the top of the plates, but below the minimum established design limits, the battery still retains sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of electrolyte level not met. Within 31 days the minimum established design limits for electrolyte level must be re-established.

With electrolyte level below the top of the plates there is a potential for dryout and plate degradation. Required Actions C.1 and C.2 address this potential (as well as provisions in Specification 5.5.17, Battery Monitoring and Maintenance Program). They are modified by a note that indicates they are only applicable if electrolyte level is below the top of the plates. Within 8 hours level is required to be restored to above the top of the plates. The Required Action C.2 requirement to verify that there is no leakage by visual inspection and the Specification 5.5.17.b item to initiate action to equalize and test in accordance with manufacturer's recommendation are taken from Annex D of IEEE Standard 450-1995. They are performed following the restoration of the electrolyte level to above the top of the plates. Based on the results of the manufacturer's recommended testing the batter[y][ies] may have to be declared inoperable and the affected cell[s] replaced.

ACTIONS (continued)

D.1

With one or more batteries in one train with pilot cell temperature less than the minimum established design limits, 12 hours is allowed to restore the temperature to within limits. A low electrolyte temperature limits the current and power available. Since the battery is sized with margin, while battery capacity is degraded, sufficient capacity exists to perform the intended function and the affected battery is not required to be considered inoperable solely as a result of the pilot cell temperature not met.

E.1

With one or more batteries in redundant trains with battery parameters not within limits there is not sufficient assurance that battery capacity has not been affected to the degree that the batteries can still perform their required function, given that redundant batteries are involved. With redundant batteries involved this potential could result in a total loss of function on multiple systems that rely upon the batteries. The longer Completion Times specified for battery parameters on non-redundant batteries not within limits are therefore not appropriate, and the parameters must be restored to within limits on at least one train within 2 hours.

<u>F.1</u>

With one or more batteries with any battery parameter outside the allowances of the Required Actions for Condition A, B, C, D, or E, sufficient capacity to supply the maximum expected load requirement is not assured and the corresponding battery must be declared inoperable. Additionally, discovering one or more batteries in one train with one or more battery cells float voltage less than [2.07] V and float current greater than [2] amps indicates that the battery capacity may not be sufficient to perform the intended functions. The battery must therefore be declared inoperable immediately.

SURVEILLANCE REQUIREMENTS

SR 3.8.6.1

Verifying battery float current while on float charge is used to determine the state of charge of the battery. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a charged state. The float current requirements are based on the float current indicative of

SURVEILLANCE REQUIREMENTS (continued)

a charged battery. Use of float current to determine the state of charge of the battery is consistent with IEEE-450 (Ref. 1). The 7 day Frequency is consistent with IEEE-450 (Ref. 1).

This SR is modified by a Note that states the float current requirement is not required to be met when battery terminal voltage is less than the minimum established float voltage of SR 3.8.4.1. When this float voltage is not maintained the Required Actions of LCO 3.8.4 ACTION A are being taken, which provide the necessary and appropriate verifications of the battery condition. Furthermore, the float current limit of [2] amps is established based on the nominal float voltage value and is not directly applicable when this voltage is not maintained.

SR 3.8.6.2 and SR 3.8.6.5

Optimal long term battery performance is obtained by maintaining a float voltage greater than or equal to the minimum established design limits provided by the battery manufacturer, which corresponds to [130.5] V at the battery terminals, or [2.25] Vpc. This provides adequate overpotential, which limits the formation of lead sulfate and self discharge, which could eventually render the battery inoperable. Float voltages in this range or less, but greater than [2.07] Vpc, are addressed in Specification 5.5.17. SRs 3.8.6.2 and 3.8.6.5 require verification that the cell float voltages are equal to or greater than the short term absolute minimum voltage of [2.07] V. The Frequency for cell voltage verification every 31 days for pilot cell and 92 days for each connected cell is consistent with IEEE-450 (Ref. 1).

SR 3.8.6.3

The limit specified for electrolyte level ensures that the plates suffer no physical damage and maintains adequate electron transfer capability. The Frequency is consistent with IEEE-450 (Ref. 1).

SR 3.8.6.4

This Surveillance verifies that the pilot cell temperature is greater than or equal to the minimum established design limit (i.e., [40]°F). Pilot cell electrolyte temperature is maintained above this temperature to assure the battery can provided the required current and voltage to meet the design requirements. Temperatures lower than assumed in battery sizing calculations act to inhibit or reduce battery capacity. The Frequency is consistent with IEEE-450 (Ref. 1).

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.6.6

A battery performance discharge test is a test of constant current capacity of a battery, normally done in the as found condition, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage.

Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.6.6; however, only the modified performance discharge test may be used to satisfy the battery service test requirements of SR 3.8.4.3.

A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test.

It may consist of just two rates; for instance the one minute rate for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a one minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test must remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test.

The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 3) and IEEE-485 (Ref. 4). These references recommend that the battery be replaced if its capacity is below 80% of the manufacturer's rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements. Furthermore, the battery is sized to meet the assumed duty cycle loads when the battery design capacity reaches this [80]% limit.

The Surveillance Frequency for this test is normally 60 months. If the battery shows degradation, or if the battery has reached 85% of its expected life and capacity is < 100% of the manufacturer's rating, the Surveillance Frequency is reduced to 12 months. However, if the battery

SURVEILLANCE REQUIREMENTS (continued)

shows no degradation but has reached 85% of its expected life, the Surveillance Frequency is only reduced to 24 months for batteries that retain capacity \geq 100% of the manufacturer's ratings. Degradation is indicated, according to IEEE-450 (Ref. 3), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is \geq [10%] below the manufacturer's rating. These Frequencies are consistent with the recommendations in IEEE-450 (Ref. 3).

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

REFERENCES

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].
- 3. IEEE-450-[1995].
- 4. IEEE-485-[1983], June 1983

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.7 Inverters - Operating

BASES

BACKGROUND

The inverters are the preferred source of power for the AC vital buses because of the stability and reliability they achieve. The function of the inverter is to provide AC electrical power to the vital buses. The inverters can be powered from an internal AC source/rectifier or from the station battery. The station battery provides an uninterruptible power source for the instrumentation and controls for the Reactor Protective System (RPS) and the Engineered Safety Feature Actuation System (ESFAS). Specific details on inverters and their operating characteristics are found in the FSAR, Chapter [8] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 2) and Chapter [15] (Ref. 3), assume Engineered Safety Feature systems are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the RPS and ESFAS instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the unit. This includes maintaining required AC vital buses OPERABLE during accident conditions in the event of:

- An assumed loss of all offsite AC electrical power or all onsite AC electrical power and
- b. A worst case single failure.

Inverters are a part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverters ensure the availability of AC electrical power for the systems instrumentation required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA.

LCO (continued)

Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the RPS and ESFAS instrumentation and controls is maintained. The four inverters [(two per train)] ensure an uninterruptible supply of AC electrical power to the AC vital buses even if the 4.16 kV safety buses are de-energized.

Operable inverters require the associated vital bus to be powered by the inverter with output voltage and frequency within tolerances, and power input to the inverter from a [125 VDC] station battery. Alternatively, power supply may be from an internal AC source via rectifier as long as the station battery is available as the uninterruptible power supply.

This LCO is modified by a Note that allows [one/two] inverters to be disconnected from a [common] battery for \leq 24 hours, if the vital bus(es) is powered from a [Class 1E constant voltage transformer or inverter using internal AC source] during the period and all other inverters are operable. This allows an equalizing charge to be placed on one battery. If the inverters were not disconnected, the resulting voltage condition might damage the inverter[s]. These provisions minimize the loss of equipment that would occur in the event of a loss of offsite power. The 24 hour time period for the allowance minimizes the time during which a loss of offsite power could result in the loss of equipment energized from the affected AC vital bus while taking into consideration the time required to perform an equalizing charge on the battery bank.

The intent of this Note is to limit the number of inverters that may be disconnected. Only those inverters associated with the single battery undergoing an equalizing charge may be disconnected. All other inverters must be aligned to their associated batteries, regardless of the number of inverters or unit design.

APPLICABILITY

The inverters are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:

- a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

APPLICABILITY (continued)

Inverter requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.8, "Inverters - Shutdown."

ACTIONS

A.1

With a required inverter inoperable, its associated AC vital bus becomes inoperable until it is [manually] re-energized from its [Class 1E constant voltage source transformer or inverter using internal AC source].

For this reason a Note has been included in Condition A requiring the entry into the Conditions and Required Actions of LCO 3.8.9, "Distribution Systems - Operating." This ensures that the vital bus is re-energized within 2 hours.

Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. The 24 hour limit is based upon engineering judgment, taking into consideration the time required to repair an inverter and the additional risk to which the unit is exposed because of the inverter inoperability. This has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems such a shutdown might entail. When the AC vital bus is powered from its constant voltage source, it is relying upon interruptible AC electrical power sources (offsite and onsite). The uninterruptible inverter source to the AC vital buses is the preferred source for powering instrumentation trip setpoint devices.

B.1 and B.2

If the inoperable devices or components cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.8.7.1

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures

SURVEILLANCE REQUIREMENTS (continued)

that the required power is readily available for the instrumentation of the RPS and ESFAS connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

REFERENCES

- 1. FSAR, Chapter [8].
- 2. FSAR, Chapter [6].
- FSAR, Chapter [15].

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.8 inverters - Shutdown

BASES

BACKGROUND

A description of the inverters is provided in the Bases for LCO 3.8.7, "Inverters - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Reactor Protective System and Engineered Safety Features Actuation System instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum inverters to each AC vital bus during MODES 5 and 6 ensures that:

- a. The unit can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate power is available to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, the AC and DC inverters are only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days).].

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES [1,2,3, and 4] have no specific analyses in MODES [5 and 6] because the energy contained

APPLICABLE SAFETY ANALYSES (continued)

within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case Design Basis Accidents which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The inverters were previously identified as part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverter[s] ensure the availability of electrical power for the instrumentation for systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. The battery powered inverter[s] provide[s] uninterruptible supply of AC electrical power to the AC vital bus[es] even if the 4.16 kV safety buses are de-energized. OPERABILITY of the inverter[s] requires that the AC vital bus be powered by the inverter. This ensures the availability of sufficient inverter power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

APPLICABILITY

The inverter[s] required to be OPERABLE in MODES 5 and 6 and during movement of [recently] irradiated fuel assemblies provide assurance that:

- a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core,
- b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)] are available,
- c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

Inverter requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.7.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.

A.1, A.2.1, A.2.2, A.2.3, and A.2.4

[If two trains are required by LCO 3.8.10, "Distribution Systems - Shutdown," the remaining OPERABLE Inverters may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, [recently] irradiated fuel movement, and operations with a potential for positive reactivity additions.] By the allowance of the option to declare required features inoperable with the associated inverter(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCOs' Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies, and operations involving positive reactivity additions) that could result in loss of required

ACTIONS (continued)

SDM (Mode 5) or boron concentration (Mode 6). Suspending positive reactivity additions that could result in failure to meet the minimum SDM or boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum SDM or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive MTC must also be evaluated to ensure they do not result in a loss of required SDM.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverter[s] and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the unit safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power or powered from a constant voltage source transformer.

SURVEILLANCE REQUIREMENTS

SR 3.8.8.1

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

REFERENCES

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.9 Distribution Systems - Operating

BASES

BACKGROUND

The onsite Class 1E AC, DC, and AC vital bus electrical power distribution systems are divided by train into [two] redundant and independent AC, DC, and AC vital bus electrical power distribution subsystems.

The AC electrical power subsystem for each train consists of a primary Engineered Safety Feature (ESF) 4.16 kV bus and secondary [480 and 120] V buses, distribution panels, motor control centers and load centers. Each [4.16 kV ESF bus] has at least [one separate and independent offsite source of power] as well as a dedicated onsite diesel generator (DG) source. Each [4.16 kV ESF bus] is normally connected to a preferred offsite source. After a loss of the preferred offsite power source to a 4.16 kV ESF bus, a transfer to the alternate offsite source is accomplished by utilizing a time delayed bus undervoltage relay. If all offsite sources are unavailable, the onsite emergency DG supplies power to the 4.16 kV ESF bus. Control power for the 4.16 kV breakers is supplied from the Class 1E batteries. Additional description of this system may be found in the Bases for LCO 3.8.1, "AC Sources - Operating," and the Bases for LCO 3.8.4, "DC Sources - Operating."

The secondary AC electrical power distribution subsystem for each train includes the safety related buses, load centers, motor control centers, and distribution panels shown in Table B 3.8.9-1.

The 120 VAC vital buses are arranged in two load groups per train and are normally powered from the inverters. The alternate power supply for the vital buses are Class 1E constant voltage source transformers powered from the same train as the associated inverter, and its use is governed by LCO 3.8.7, "Inverters - Operating." Each constant voltage source transformer is powered from a Class 1E AC bus.

The DC electrical power distribution subsystem consists of [125]v bus(es) and distribution panel(s).

The list of all required DC and vital AC distribution buses [and panels] is presented in Table B 3.8.9-1.

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1), and in the FSAR, Chapter [15] (Ref. 2), assume ESF systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution systems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining power distribution systems OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite power or all onsite AC electrical power and
- b. A worst case single failure.

The distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The required power distribution subsystems listed in Table B 3.8.9-1 ensure the availability of AC, DC, and AC vital bus electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The AC, DC, and AC vital bus electrical power distribution subsystems are required to be OPERABLE.

Maintaining the Train A and Train B AC, DC, and AC vital bus electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of ESF is not defeated. Therefore, a single failure within any system or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor.

OPERABLE AC electrical power distribution subsystems require the associated buses, load centers, motor control centers, and distribution panels to be energized to their proper voltages. OPERABLE DC electrical power distribution subsystems require the associated buses and distribution panels to be energized to their proper voltage from either the associated battery or charger. OPERABLE vital bus electrical power distribution subsystems require the associated buses to be energized to

LCO (continued)

their proper voltage from the associated [inverter via inverted DC voltage, inverter using internal AC source, or Class 1E constant voltage transformer].

In addition, tie breakers between redundant safety related AC, DC, and AC vital bus power distribution subsystems, if they exist, must be open. This prevents any electrical malfunction in any power distribution subsystem from propagating to the redundant subsystem, that could cause the failure of a redundant subsystem and a loss of essential safety function(s). If any tie breakers are closed, the affected redundant electrical power distribution subsystems are considered inoperable. This applies to the onsite, safety related redundant electrical power distribution subsystems. It does not, however, preclude redundant Class 1E 4.16 kV buses from being powered from the same offsite circuit.

APPLICABILITY

The electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

Electrical power distribution subsystem requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.10, "Distribution Systems - Shutdown."

ACTIONS

A.1

With one or more Train A and B required AC buses, load centers, motor control centers, or distribution panels (except AC vital buses), in one train inoperable and a loss of function has not occurred, the remaining AC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining power distribution subsystems could result in the minimum required ESF functions not being supported. Therefore, the required AC

ACTIONS (continued)

buses, load centers, motor control centers, and distribution panels must be restored to OPERABLE status within 8 hours.

Condition A worst scenario is one train without AC power (i.e., no offsite power to the train and the associated DG inoperable). In this Condition, the unit is more vulnerable to a complete loss of AC power. It is, therefore, imperative that the unit operator's attention be focused on minimizing the potential for loss of power to the remaining train by stabilizing the unit, and on restoring power to the affected train. The 8 hour time limit before requiring a unit shutdown in this Condition is acceptable because of:

- a. The potential for decreased safety if the unit operator's attention is diverted from the evaluations and actions necessary to restore power to the affected train, to the actions associated with taking the unit to shutdown within this time limit and
- b. The potential for an event in conjunction with a single failure of a redundant component in the train with AC power.

The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DC bus is inoperable and subsequently restored OPERABLE, the LCO may already have been not met for up to 2 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the AC distribution system. At this time, a DC circuit could again become inoperable, and AC distribution restored OPERABLE. This could continue indefinitely.

The Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition A was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

Required Action A.1 is modified by a Note that requires the applicable Conditions and Required Actions of LCO 3.8.4, "DC Sources - Operating," to be entered for DC trains made inoperable by inoperable power distribution subsystems. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. Inoperability

ACTIONS (continued)

of a distribution system can result in loss of charging power to batteries and eventual loss of DC power. This Note ensures that the appropriate attention is given to restoring charging power to batteries, if necessary, after loss of distribution systems.

<u>B.1</u>

With one or more AC vital buses inoperable, and a loss of function has not yet occurred, the remaining OPERABLE AC vital buses are capable of supporting the minimum safety functions necessary to shut down the unit and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum [required] ESF functions not being supported. Therefore, the required AC vital bus must be restored to OPERABLE status within 2 hours by powering the bus from the associated [inverter via inverted DC, inverter using internal AC source, or Class 1E constant voltage transformer].

Condition B represents one or more AC vital buses without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all noninterruptible power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining vital buses and restoring power to the affected vital bus.

This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that are without adequate vital AC power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, that would have the Required Action Completion Times shorter than 2 hours if declared inoperable, is acceptable because of:

- The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) and not allowing stable operations to continue,
- b. The potential for decreased safety by requiring entry into numerous Applicable Conditions and Required Actions for components without adequate vital AC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train, and

ACTIONS (continued)

c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time takes into account the importance to safety of restoring the AC vital bus to OPERABLE status, the redundant capability afforded by the other OPERABLE vital buses, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action B.1 establishes a limit on the maximum allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the vital bus distribution system. At this time, an AC train could again become inoperable, and vital bus distribution restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition B was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

<u>C.1</u>

With one or more DC buses or distribution panels inoperable, and a loss of function has not yet occurred, the remaining DC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the [required] DC buses and distribution panels must be restored to OPERABLE status within 2 hours by powering the bus from the associated battery or charger.

Condition C represents one or more DC buses or distribution panels without adequate DC power; potentially both with the battery significantly degraded and the associated charger nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all DC

ACTIONS (continued)

power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining trains and restoring power to the affected train.

This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of:

- The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) while allowing stable operations to continue,
- b. The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train, and
- c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 3). The second Completion Time for Required Action C.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition C is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC train could again become inoperable, and DC distribution restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition C was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

ACTIONS (continued)

D.1 and D.2

If the inoperable distribution subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>E.1</u>

Condition E corresponds to a level of degradation in the electrical power distribution system that causes a required safety function to be lost. When more than one inoperable electrical power distribution subsystem results in the loss of a required function, the plant is in a condition outside the accident analysis. Therefore, no additional time is justified for continued operation. LCO 3.0.3 must be entered immediately to commence a controlled shutdown.

SURVEILLANCE REQUIREMENTS

SR 3.8.9.1

This Surveillance verifies that the [required] AC, DC, and AC vital bus electrical power distribution systems are functioning properly, with the correct circuit breaker alignment. The correct breaker alignment ensures the appropriate separation and independence of the electrical divisions is maintained, and the appropriate voltage is available to each required bus. The verification of proper voltage availability on the buses ensures that the required voltage is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the AC, DC, and AC vital bus electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.

REFERENCES

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].
- 3. Regulatory Guide 1.93, December 1974.

Table B 3.8.9-1 (page 1 of 1) AC and DC Electrical Power Distribution Systems

TYPE	VOLTAGE	TRAIN A*	TRAIN B*
AC safety buses	[4160 V]	[ESF Bus] [NB01]	[ESF Bus] [NB02]
	[480 V]	Load Centers [NG01, NG03]	Load Centers [NG02, NG04]
·	[480 V]	Motor Control Centers [NG01A, NG01I, NG01B, NG03C, NG03I, NG03D]	Motor Control Centers [NG02A, NG02I, NG02B, NG04C, NG04I, NG04D]
	[120 V]	Distribution Panels [NP01, NP03]	Distribution Panels [NP02, NP04]
DC buses	[125 V]	Bus [NK01]	Bus [NK02]
		Bus [NK03]	Bus [NK04]
		Distribution Panels [NK41, NK43, NK51]	Distribution Panels [NK42, NK44, NK52]
AC vital buses	[120 V]	Bus [NN01]	Bus [NN02]
		Bus [NN03]	Bus [NN04]

^{*} Each train of the AC and DC electrical power distribution systems is a subsystem.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.10 Distribution Systems - Shutdown

BASES

BACKGROUND

A description of the AC, DC, and AC vital bus electrical power distribution systems is provided in the Bases for LCO 3.8.9, "Distribution Systems - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature (ESF) systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution system is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum AC, DC, and AC vital bus electrical power distribution subsystems during MODES 5 and 6, and during movement of [recently] irradiated fuel assemblies ensures that:

- a. The unit can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate power is provided to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, AC and DC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)].

The AC and DC electrical power distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of required systems, equipment, and components - all specifically addressed in each LCO and implicitly required via the definition of OPERABILITY.

Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the unit in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

APPLICABILITY

The AC and DC electrical power distribution subsystems required to be OPERABLE in MODES 5 and 6, and during movement of [recently] irradiated fuel assemblies, provide assurance that:

- Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core,
- b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days)] are available,
- c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition and refueling condition.

The AC, DC, and AC vital bus electrical power distribution subsystems requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.9.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.

ACTIONS (continued)

A.1, A.2.1, A.2.2, A.2.3, A.2.4, and A.2.5

Although redundant required features may require redundant trains of electrical power distribution subsystems to be OPERABLE, one OPERABLE distribution subsystem train may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and [recently] irradiated fuel movement. By allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions are implemented in accordance with the affected distribution subsystem LCO's Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies, and operations involving positive reactivity additions that could result in loss of required SDM (Mode 5) or boron concentration (Mode 6). Suspending positive reactivity additions that could result in failure to meet the minimum SDM or boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum SDM or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive MTC must also be evaluated to ensure they do not result in a loss of required SDM.

Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the unit safety systems.

Notwithstanding performance of the above conservative Required Actions, a required residual heat removal (RHR) subsystem may be inoperable. In this case, Required Actions A.2.1 through A.2.4 do not adequately address the concerns relating to coolant circulation and heat removal. Pursuant to LCO 3.0.6, the RHR ACTIONS would not be entered. Therefore, Required Action A.2.5 is provided to direct declaring RHR inoperable, which results in taking the appropriate RHR actions.

ACTIONS (continued)

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power.

SURVEILLANCE REQUIREMENTS

SR 3.8.10.1

This Surveillance verifies that the AC, DC, and AC vital bus electrical power distribution subsystems are functioning properly, with all the buses energized. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the capability of the electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.

REFERENCES

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].

B 3.9 REFUELING OPERATIONS

B 3.9.1 Boron Concentration

BASES

BACKGROUND

The limit on the boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity during refueling ensures that the reactor remains subcritical during MODE 6. Refueling boron concentration is the soluble boron concentration in the coolant in each of these volumes having direct access to the reactor core during refueling.

The soluble boron concentration offsets the core reactivity and is measured by chemical analysis of a representative sample of the coolant in each of the volumes. The refueling boron concentration limit is specified in the COLR. Plant procedures ensure the specified boron concentration in order to maintain an overall core reactivity of $k_{\text{eff}} \leq 0.95$ during fuel handling, with control rods and fuel assemblies assumed to be in the most adverse configuration (least negative reactivity) allowed by plant procedures.

GDC 26 of 10 CFR 50, Appendix A, requires that two independent reactivity control systems of different design principles be provided (Ref. 1). One of these systems must be capable of holding the reactor core subcritical under cold conditions. The Chemical and Volume Control System (CVCS) is the system capable of maintaining the reactor subcritical in cold conditions by maintaining the boron concentration.

The reactor is brought to shutdown conditions before beginning operations to open the reactor vessel for refueling. After the RCS is cooled and depressurized and the vessel head is unbolted, the head is slowly removed to form the refueling cavity. The refueling canal and the refueling cavity are then flooded with borated water from the refueling water storage tank through the open reactor vessel by gravity feeding or by the use of the Residual Heat Removal (RHR) System pumps.

The pumping action of the RHR System in the RCS and the natural circulation due to thermal driving heads in the reactor vessel and refueling cavity mix the added concentrated boric acid with the water in the refueling canal. The RHR System is in operation during refueling (see LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level," and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level") to provide forced circulation in the RCS and assist in maintaining the boron concentrations in the RCS, the refueling canal, and the refueling cavity above the COLR limit.

APPLICABLE SAFETY ANALYSES

During refueling operations, the reactivity condition of the core is consistent with the initial conditions assumed for the boron dilution accident in the accident analysis and is conservative for MODE 6. The boron concentration limit specified in the COLR is based on the core reactivity at the beginning of each fuel cycle (the end of refueling) and includes an uncertainty allowance.

The required boron concentration and the plant refueling procedures that verify the correct fuel loading plan (including full core mapping) ensure that the k_{eff} of the core will remain ≤ 0.95 during the refueling operation. Hence, at least a 5% $\Delta k/k$ margin of safety is established during refueling.

During refueling, the water volume in the spent fuel pool, the transfer canal, the refueling canal, the refueling cavity, and the reactor vessel form a single mass. As a result, the soluble boron concentration is relatively the same in each of these volumes.

The limiting boron dilution accident analyzed occurs in MODE 5 (Ref. 2). A detailed discussion of this event is provided in Bases B 3.1.1, "SHUTDOWN MARGIN (SDM)."

The RCS boron concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

The LCO requires that a minimum boron concentration be maintained in the RCS, the refueling canal, and the refueling cavity while in MODE 6. The boron concentration limit specified in the COLR ensures that a core k_{eff} of ≤ 0.95 is maintained during fuel handling operations. Violation of the LCO could lead to an inadvertent criticality during MODE 6.

APPLICABILITY

This LCO is applicable in MODE 6 to ensure that the fuel in the reactor vessel will remain subcritical. The required boron concentration ensures a $k_{\text{eff}} \leq 0.95$. Above MODE 6, LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," ensures that an adequate amount of negative reactivity is available to shut down the reactor and maintain it subcritical.

The Applicability is modified by a Note. The Note states that the limits on boron concentration are only applicable to the refueling canal and the refueling cavity when those volumes are connected to the Reactor Coolant System. When the refueling canal and the refueling cavity are isolated from the RCS, no potential path for boron dilution exists.

ACTIONS

A.1 and A.2

Continuation of CORE ALTERATIONS or positive reactivity additions (including actions to reduce boron concentration) is contingent upon maintaining the unit in compliance with the LCO. If the boron concentration of any coolant volume in the RCS, the refueling canal, or the refueling cavity is less than its limit, all operations involving CORE ALTERATIONS or positive reactivity additions must be suspended immediately.

Suspension of CORE ALTERATIONS and positive reactivity additions shall not preclude moving a component to a safe position. Operations that individually add limited positive reactivity (e.g. temperature fluctuations from inventory addition or temperature control fluctuations), but when combined with all other operations affecting core reactivity (e.g., intentional boration) result in overall net negative reactivity addition, are not precluded by this action.

<u>A.3</u>

In addition to immediately suspending CORE ALTERATIONS and positive reactivity additions, boration to restore the concentration must be initiated immediately.

In determining the required combination of boration flow rate and concentration, no unique Design Basis Event must be satisfied. The only requirement is to restore the boron concentration to its required value as soon as possible. In order to raise the boron concentration as soon as possible, the operator should begin boration with the best source available for unit conditions.

Once actions have been initiated, they must be continued until the boron concentration is restored. The restoration time depends on the amount of boron that must be injected to reach the required concentration.

SURVEILLANCE REQUIREMENTS

SR 3.9.1.1

This SR ensures that the coolant boron concentration in the RCS, and connected portions of the refueling canal and the refueling cavity, is within the COLR limits. The boron concentration of the coolant in each required volume is determined periodically by chemical analysis. Prior to re-connecting portions of the refueling canal or the refueling cavity to the RCS, this SR must be met per SR 3.0.4. If any dilution activity has occurred while the cavity or canal were disconnected from the RCS, this

SURVEILLANCE REQUIREMENTS (continued)

SR ensures the correct boron concentration prior to communication with the RCS.

A minimum Frequency of once every 72 hours is a reasonable amount of time to verify the boron concentration of representative samples. The Frequency is based on operating experience, which has shown 72 hours to be adequate.

REFERENCES

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. FSAR, Chapter [15].

B 3.9 REFUELING OPERATIONS

B 3.9.2 [Unborated Water Source Isolation Valves]

BASES

BACKGROUND

During MODE 6 operations, all isolation valves for reactor makeup water sources containing unborated water that are connected to the Reactor Coolant System (RCS) must be closed to prevent unplanned boron dilution of the reactor coolant. The isolation valves must be secured in the closed position.

The Chemical and Volume Control System is capable of supplying borated and unborated water to the RCS through various flow paths. Since a positive reactivity addition made by reducing the boron concentration is inappropriate during MODE 6, isolation of all unborated water sources prevents an unplanned boron dilution.

APPLICABLE SAFETY ANALYSES

The possibility of an inadvertent boron dilution event (Ref. 1) occurring during MODE 6 refueling operations is precluded by adherence to this LCO, which requires that potential dilution sources be isolated. Closing the required valves during refueling operations prevents the flow of unborated water to the filled portion of the RCS. The valves are used to isolate unborated water sources. These valves have the potential to indirectly allow dilution of the RCS boron concentration in MODE 6. By isolating unborated water sources, a safety analysis for an uncontrolled boron dilution accident in accordance with the Standard Review Plan (Ref. 2) is not required for MODE 6.

The RCS boron concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO requires that flow paths to the RCS from unborated water sources be isolated to prevent unplanned boron dilution during MODE 6 and thus avoid a reduction in SDM.

APPLICABILITY

In MODE 6, this LCO is applicable to prevent an inadvertent boron dilution event by ensuring isolation of all sources of unborated water to the RCS.

For all other MODES, the boron dilution accident was analyzed and was found to be capable of being mitigated.

ACTIONS

The ACTIONS Table has been modified by a Note that allows separate Condition entry for each unborated water source isolation valve.

<u>A.1</u>

Continuation of CORE ALTERATIONS is contingent upon maintaining the unit in compliance with this LCO. With any valve used to isolate unborated water sources not secured in the closed position, all operations involving CORE ALTERATIONS must be suspended immediately. The Completion Time of "immediately" for performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position.

Condition A has been modified by a Note to require that Required Action A.3 be completed whenever Condition A is entered.

A.2

Preventing inadvertent dilution of the reactor coolant boron concentration is dependent on maintaining the unborated water isolation valves secured closed. Securing the valves in the closed position ensures that the valves cannot be inadvertently opened. The Completion Time of "immediately" requires an operator to initiate actions to close an open valve and secure the isolation valve in the closed position immediately. Once actions are initiated, they must be continued until the valves are secured in the closed position.

<u>A.3</u>

Due to the potential of having diluted the boron concentration of the reactor coolant, SR 3.9.1.1 (verification of boron concentration) must be performed whenever Condition A is entered to demonstrate that the required boron concentration exists. The Completion Time of 4 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration.

SURVEILLANCE REQUIREMENTS

SR 3.9.2.1

These valves are to be secured closed to isolate possible dilution paths. The likelihood of a significant reduction in the boron concentration during MODE 6 operations is remote due to the large mass of borated water in the refueling cavity and the fact that all unborated water sources are isolated, precluding a dilution. The boron concentration is checked every 72 hours during MODE 6 under SR 3.9.1.1. This Surveillance

SURVEILLANCE REQUIREMENTS (continued)

demonstrates that the valves are closed through a system walkdown. The 31 day Frequency is based on engineering judgment and is considered reasonable in view of other administrative controls that will ensure that the valve opening is an unlikely possibility.

REFERENCES

- 1. FSAR, Section [15.2.4].
- 2. NUREG-0800, Section 15.4.6.

B 3.9 REFUELING OPERATIONS

B 3.9.3 Nuclear Instrumentation

BASES

BACKGROUND

- REVIEWER'S NOTE -

Bracketed options are provided for source range OPERABILITY requirements to include audible alarm or count rate function. These options apply to plants that assume a boron dilution event that is mitigated by operator response to an audible indication. For plants that isolate all boron dilution paths (per LCO 3.9.2), the source range OPERABILITY includes only a visual monitoring function.

The source range neutron flux monitors are used during refueling operations to monitor the core reactivity condition. The installed source range neutron flux monitors are part of the Nuclear Instrumentation System (NIS). These detectors are located external to the reactor vessel and detect neutrons leaking from the core.

The installed source range neutron flux monitors are BF3 detectors operating in the proportional region of the gas filled detector characteristic curve. The detectors monitor the neutron flux in counts per second. The instrument range covers six decades of neutron flux (1E+6 cps) with a [5]% instrument accuracy. The detectors also provide continuous visual indication in the control room [and an audible [alarm] [count rate] to alert operators to a possible dilution accident]. The NIS is designed in accordance with the criteria presented in Reference 1.

APPLICABLE SAFETY ANALYSES

Two OPERABLE source range neutron flux monitors are required to provide a signal to alert the operator to unexpected changes in core reactivity such as with a boron dilution accident (Ref. 2) or an improperly loaded fuel assembly. [The audible count rate from the source range neutron flux monitors provides prompt and definite indiction of any boron dilution. The count rate increase is proportional to the subcritical multiplication factor and allows operators to promptly recognize the initiation of a boron dilution event. Prompt recognition of the initiation of a boron dilution event is consistent with the assumptions of the safety analysis and is necessary to assure sufficient time is available for isolation of the primary water makeup source before SHUTDOWN MARGIN is lost (Ref. 2).]

APPLICABLE SAFETY ANALYSES (continued)

- REVIEWER'S NOTE -

The need for a safety analysis for an uncontrolled boron dilution accident is eliminated by isolating all unborated water sources as required by LCO 3.9.2, "Unborated Water Source Isolation Valves."

The source range neutron flux monitors satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO requires that two source range neutron flux monitors be OPERABLE to ensure that redundant monitoring capability is available to detect changes in core reactivity. To be OPERABLE, each monitor must provide visual indication [in the control room]. [In addition, at least one of the two monitors must provide an OPERABLE audible [alarm] [count rate] function to alert the operators to the initiation of a boron dilution event.]

APPLICABILITY

In MODE 6, the source range neutron flux monitors must be OPERABLE to determine changes in core reactivity. There are no other direct means available to check core reactivity levels. In MODES 2, 3, 4, and 5, these same installed source range detectors and circuitry are also required to be OPERABLE by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation [and LCO 3.3.9, "BDPS"].

ACTIONS

A.1 and A.2

With only one source range neutron flux monitor OPERABLE, redundancy has been lost. Since these instruments are the only direct means of monitoring core reactivity conditions, CORE ALTERATIONS and introduction of coolant into the RCS with boron concentration less than required to meet the minimum boron concentration of LCO 3.9.1 must be suspended immediately. Suspending positive reactivity additions that could result in failure to meet the minimum boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position.

ACTIONS (continued)

<u>B.1</u>

With no source range neutron flux monitor OPERABLE, action to restore a monitor to OPERABLE status shall be initiated immediately. Once initiated, action shall be continued until a source range neutron flux monitor is restored to OPERABLE status.

B.2

With no source range neutron flux monitor OPERABLE, there are no direct means of detecting changes in core reactivity. However, since CORE ALTERATIONS and positive reactivity additions are not to be made, the core reactivity condition is stabilized until the source range neutron flux monitors are OPERABLE. This stabilized condition is determined by performing SR 3.9.1.1 to ensure that the required boron concentration exists.

The Completion Time of once per 12 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration and ensures that unplanned changes in boron concentration would be identified. The 12 hour Frequency is reasonable, considering the low probability of a change in core reactivity during this time period.

[C.1

With no audible [alarm] [count rate] OPERABLE, prompt and definite indication of a boron dilution event, consistent with the assumptions of the safety analysis, is lost. In this situation, the boron dilution event may not be detected quickly enough to assure sufficient time is available for operators to manually isolate the unborated water source and stop the dilution prior to the loss of SHUTDOWN MARGIN. Therefore, action must be taken to prevent an inadvertent boron dilution event from occurring. This is accomplished by isolating all the unborated water flow paths to the Reactor Coolant System. Isolating these flow paths ensures that an inadvertent dilution of the reactor coolant boron concentration is prevented. The Completion Time of "Immediately" assures a prompt response by operations and requires an operator to initiate actions to isolate an affected flow path immediately. Once actions are initiated, they must be continued until all the necessary flow paths are isolated or the circuit is restored to OPERABLE status.]

SURVEILLANCE REQUIREMENTS

SR 3.9.3.1

SR 3.9.3.1 is the performance of a CHANNEL CHECK, which is a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that the two indication channels should be consistent with core conditions. Changes in fuel loading and core geometry can result in significant differences between source range channels, but each channel should be consistent with its local conditions.

The Frequency of 12 hours is consistent with the CHANNEL CHECK Frequency specified similarly for the same instruments in LCO 3.3.1.

SR 3.9.3.2

SR 3.9.3.2 is the performance of a CHANNEL CALIBRATION every 18 months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the source range neutron flux monitors consists of obtaining the detector plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. [The CHANNEL CALIBRATION also includes verification of the audible [alarm] [count rate] function.] The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

REFERENCES

- 1. 10 CFR 50, Appendix A, GDC 13, GDC 26, GDC 28, and GDC 29.
- 2. FSAR, Section [15.2.4].

B 3.9 REFUELING OPERATIONS

B 3.9.4 Containment Penetrations

BASES

BACKGROUND

During movement of [recently] irradiated fuel assemblies within containment, a release of fission product radioactivity within containment will be restricted from escaping to the environment when the LCO requirements are met. In MODES 1, 2, 3, and 4, this is accomplished by maintaining containment OPERABLE as described in LCO 3.6.1, "Containment." In MODE 6, the potential for containment pressurization as a result of an accident is not likely; therefore, requirements to isolate the containment from the outside atmosphere can be less stringent. The LCO requirements are referred to as "containment closure" rather than "containment OPERABILITY." Containment closure means that all potential escape paths are closed or capable of being closed. Since there is no potential for containment pressurization, the Appendix J leakage criteria and tests are not required.

The containment serves to contain fission product radioactivity that may be released from the reactor core following an accident, such that offsite radiation exposures are maintained well within the requirements of 10 CFR 100. Additionally, the containment provides radiation shielding from the fission products that may be present in the containment atmosphere following accident conditions.

The containment equipment hatch, which is part of the containment pressure boundary, provides a means for moving large equipment and components into and out of containment. During movement of [recently] irradiated fuel assemblies within containment, the equipment hatch must be held in place by at least four bolts. Good engineering practice dictates that the bolts required by this LCO be approximately equally spaced.

The containment air locks, which are also part of the containment pressure boundary, provide a means for personnel access during MODES 1, 2, 3, and 4 unit operation in accordance with LCO 3.6.2, "Containment Air Locks." Each air lock has a door at both ends. The doors are normally interlocked to prevent simultaneous opening when containment OPERABILITY is required. During periods of unit shutdown when containment closure is not required, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. During movement of [recently] irradiated fuel assemblies within containment, containment closure is required; therefore, the door

BACKGROUND (continued)

interlock mechanism may remain disabled, but one air lock door must always remain [capable of being] closed.

The requirements for containment penetration closure ensure that a release of fission product radioactivity within containment will be restricted to within regulatory limits.

The Containment Purge and Exhaust System includes two subsystems. The normal subsystem includes a 42 inch purge penetration and a 42 inch exhaust penetration. The second subsystem, a minipurge system, includes an 8 inch purge penetration and an 8 inch exhaust penetration. During MODES 1, 2, 3, and 4, the two valves in each of the normal purge and exhaust penetrations are secured in the closed position. The two valves in each of the two minipurge penetrations can be opened intermittently, but are closed automatically by the Engineered Safety Features Actuation System (ESFAS). Neither of the subsystems is subject to a Specification in MODE 5.

In MODE 6, large air exchangers are necessary to conduct refueling operations. The normal 42 inch purge system is used for this purpose, and all four valves are closed by the ESFAS in accordance with LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation."

[The minipurge system remains operational in MODE 6, and all four valves are also closed by the ESFAS.

[or]

The minipurge system is not used in MODE 6. All four 8 inch valves are secured in the closed position.]

The other containment penetrations that provide direct access from containment atmosphere to outside atmosphere must be isolated on at least one side. Isolation may be achieved by an OPERABLE automatic isolation valve, or by a manual isolation valve, blind flange, or equivalent. Equivalent isolation methods must be approved and may include use of a material that can provide a temporary, atmospheric pressure, ventilation barrier for the other containment penetrations during [recently] irradiated fuel movements (Ref. 1).

APPLICABLE SAFETY ANALYSES

During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, the most severe radiological consequences result from a fuel handling accident [involving handling recently irradiated fuel]. The fuel handling accident is a postulated event that involves damage to irradiated fuel (Ref. 2). Fuel handling accidents, analyzed in Reference 3, include dropping a single irradiated fuel assembly and handling tool or a heavy object onto other irradiated fuel assemblies. The requirements of LCO 3.9.7, "Refueling Cavity Water Level," in conjunction with a minimum decay time of 100 hours prior to [irradiated fuel movement with containment closure capability or a minimum decay time of [X] days without containment closure capability], ensures that the release of fission product radioactivity, subsequent to a fuel handling accident, results in doses that are well within the guideline values specified in 10 CFR 100. Standard Review Plan, Section 15.7.4, Rev. 1 (Ref. 3), defines "well within" 10 CFR 100 to be 25% or less of the 10 CFR 100 values. The acceptance limits for offsite radiation exposure will be 25% of 10 CFR 100 values or the NRC staff approved licensing basis (e.g., a specified fraction of 10 CFR 100 limits).

Containment penetrations satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

- REVIEWER'S NOTE -

The allowance to have containment personnel air lock doors open and penetration flow paths with direct access from the containment atmosphere to the outside atmosphere to be unisolated during fuel movement and CORE ALTERATIONS is based on (1) confirmatory dose calculations of a fuel handling accident as approved by the NRC staff which indicate acceptable radiological consequences and (2) commitments from the licensee to implement acceptable administrative procedures that ensure in the event of a refueling accident (even though the containment fission product control function is not required to meet acceptable dose consequences) that the open airlock can and will be promptly closed following containment evacuation and that the open penetration(s) can and will be promptly closed. The time to close such penetrations or combination of penetrations shall be included in the confirmatory dose calculations.

This LCO limits the consequences of a fuel handling accident [involving handling recently irradiated fuel] in containment by limiting the potential escape paths for fission product radioactivity released within containment. The LCO requires any penetration providing direct access from the containment atmosphere to the outside atmosphere to be closed except for the OPERABLE containment purge and exhaust penetrations

LCO (continued)

[and the containment personnel air locks]. For the OPERABLE containment purge and exhaust penetrations, this LCO ensures that these penetrations are isolable by the Containment Purge and Exhaust Isolation System. The OPERABILITY requirements for this LCO ensure that the automatic purge and exhaust valve closure times specified in the FSAR can be achieved and, therefore, meet the assumptions used in the safety analysis to ensure that releases through the valves are terminated, such that radiological doses are within the acceptance limit.

The LCO is modified by a Note allowing penetration flow paths with direct access from the containment atmosphere to the outside atmosphere to be unisolated under administrative controls. Administrative controls ensure that 1) appropriate personnel are aware of the open status of the penetration flow path during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, and 2) specified individuals are designated and readily available to isolate the flow path in the event of a fuel handling accident.

The containment personnel air lock doors many be open during movement of irradiated fuel in the containment and during CORE ALTERATIONS provided that one door is capable of being closed in the event of a fuel handling accident. Should a fuel handling accident occur inside containment, one personnel air lock door will be closed following an evacuation of containment.

APPLICABILITY

The containment penetration requirements are applicable during movement of [recently] irradiated fuel assemblies within containment because this is when there is a potential for the limiting fuel handling accident. In MODES 1, 2, 3, and 4, containment penetration requirements are addressed by LCO 3.6.1. In MODES 5 and 6, when movement of irradiated fuel assemblies within containment is not being conducted, the potential for a fuel handling accident does not exist. [Additionally, due to radioactive decay, a fuel handling accident involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days) will result in doses that are well within the guideline values specified in 10 CFR 100 even without containment closure capability.] Therefore, under these conditions no requirements are placed on containment penetration status.

APPLICABILITY (continued)

- REVIEWER'S NOTE -

The addition of the term "recently" associated with handling irradiated fuel in all of the containment function Technical Specification requirements is only applicable to those licensees who have demonstrated by analysis that after sufficient radioactive decay has occurred, off-site doses resulting from a fuel handling accident remain below the Standard Review Plan limits (well within 10CFR100).

Additionally, licensees adding the term "recently" must make the following commitment which is consistent with draft NUMARC 93-01, Revision 3, Section 11.2.6 "Safety Assessment for Removal of Equipment from Service During Shutdown Conditions," subheading "Containment - Primary (PWR)/Secondary (BWR)."

"The following guidelines are included in the assessment of systems removed from service during movement irradiated fuel:

- During fuel handling/core alterations, ventilation system and radiation monitor availability (as defined in NUMARC 91-06) should be assessed, with respect to filtration and monitoring of releases from the fuel. Following shutdown, radioactivity in the fuel decays away fairly rapidly. The basis of the Technical Specification OPERABILITY amendment is the reduction in doses due to such decay. The goal of maintaining ventilation system and radiation monitor availability is to reduce doses even further below that provided by the natural decay.
- A single normal or continency method to promptly close primary or secondary containment penetrations should be developed. Such prompt methods need not completely block the penetration or be capable of resisting pressure.

The purpose of the "prompt methods" mentioned above are to enable ventilation systems to draw the release from a postulated fuel handling accident in the proper direction such that it can be treated and monitored."

ACTIONS

<u>A.1</u>

If the containment equipment hatch, air locks, or any containment penetration that provides direct access from the containment atmosphere to the outside atmosphere is not in the required status, including the Containment Purge and Exhaust Isolation System not capable of automatic actuation when the purge and exhaust valves are open, the unit must be placed in a condition where the isolation function is not needed. This is accomplished by immediately suspending movement of [recently] irradiated fuel assemblies within containment. Performance of these actions shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.9.4.1

This Surveillance demonstrates that each of the containment penetrations required to be in its closed position is in that position. The Surveillance on the open purge and exhaust valves will demonstrate that the valves are not blocked from closing. Also the Surveillance will demonstrate that each valve operator has motive power, which will ensure that each valve is capable of being closed by an OPERABLE automatic containment purge and exhaust isolation signal.

The Surveillance is performed every 7 days during movement of [recently] irradiated fuel assemblies within containment. The Surveillance interval is selected to be commensurate with the normal duration of time to complete fuel handling operations. A surveillance before the start of refueling operations will provide two or three surveillance verifications during the applicable period for this LCO. As such, this Surveillance ensures that a postulated fuel handling accident [involving handling recently irradiated fuel] that releases fission product radioactivity within the containment will not result in a release of significant fission product radioactivity to the environment in excess of those recommended by Standard Review Plan Section 15.7.4 (Reference 3).

SR 3.9.4.2

This Surveillance demonstrates that each containment purge and exhaust valve actuates to its isolation position on manual initiation or on an actual or simulated high radiation signal. The 18 month Frequency maintains consistency with other similar ESFAS instrumentation and valve testing requirements. In LCO 3.3.6, the Containment Purge and Exhaust Isolation instrumentation requires a CHANNEL CHECK every 12 hours and a COT every 92 days to ensure the channel OPERABILITY

SURVEILLANCE REQUIREMENTS (continued)

during refueling operations. Every 18 months a CHANNEL CALIBRATION is performed. The system actuation response time is demonstrated every 18 months, during refueling, on a STAGGERED TEST BASIS. SR 3.6.3.5 demonstrates that the isolation time of each valve is in accordance with the Inservice Testing Program requirements. These Surveillances performed during MODE 6 will ensure that the valves are capable of closing after a postulated fuel handling accident [involving handling recently irradiated fuel] to limit a release of fission product radioactivity from the containment.

The SR is modified by a Note stating that this Surveillance is not required to be met for valves in isolated penetrations. The LCO provides the option to close penetrations in lieu of requiring automatic acutation capability.

REFERENCES

- 1. GPU Nuclear Safety Evaluation SE-0002000-001, Rev. 0, May 20, 1988.
- 2. FSAR, Section [15.4.5].
- 3. NUREG-0800, Section 15.7.4, Rev. 1, July 1981.

B 3.9 REFUELING OPERATIONS

B 3.9.5 Residual Heat Removal (RHR) and Coolant Circulation - High Water Level

BASES

BACKGROUND

The purpose of the RHR System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the RHR heat exchanger(s), where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown or decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the RHR heat exchanger(s) and the bypass. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System.

APPLICABLE SAFETY ANALYSES

If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant would eventually challenge the integrity of the fuel cladding, which is a fission product barrier. One train of the RHR System is required to be operational in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange, to prevent this challenge. The LCO does permit de-energizing the RHR pump for short durations, under the condition that the boron concentration is not diluted. This conditional de-energizing of the RHR pump does not result in a challenge to the fission product barrier.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

Only one RHR loop is required for decay heat removal in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange. Only one RHR loop is required to be OPERABLE, because the volume of water above the reactor vessel flange provides backup decay heat removal capability. At least one RHR loop must be OPERABLE and in operation to provide:

a. Removal of decay heat,

LCO (continued)

- b. Mixing of borated coolant to minimize the possibility of criticality, and
- c. Indication of reactor coolant temperature.

An OPERABLE RHR loop includes an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs.

The LCO is modified by a Note that allows the required operating RHR loop to not be in operation for up to 1 hour per 8 hour period, provided no operations are permitted that would dilute the RCS boron concentration introduction of coolant into the RCS with boron concentration less than required to meet the minimum boron concentration of LCO 3.9.1. Boron concentration reduction with coolant at boron concentrations less than required to assure the RCS boron concentration is maintained is prohibited because uniform concentration distribution cannot be ensured without forced circulation. This permits operations such as core mapping or alterations in the vicinity of the reactor vessel hot leg nozzles and RCS to RHR isolation valve testing. During this 1 hour period, decay heat is removed by natural convection to the large mass of water in the refueling cavity.

APPLICABILITY

One RHR loop must be OPERABLE and in operation in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange, to provide decay heat removal. The 23 ft water level was selected because it corresponds to the 23 ft requirement established for fuel movement in LCO 3.9.7, "Refueling Cavity Water Level." Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS), and Section 3.5, Emergency Core Cooling Systems (ECCS). RHR loop requirements in MODE 6 with the water level < 23 ft are located in LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level."

ACTIONS

RHR loop requirements are met by having one RHR loop OPERABLE and in operation, except as permitted in the Note to the LCO.

<u>A.1</u>

If RHR loop requirements are not met, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Suspending positive reactivity additions that could result in failure to meet the

ACTIONS (continued)

minimum boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation.

A.2

If RHR loop requirements are not met, actions shall be taken immediately to suspend loading of irradiated fuel assemblies in the core. With no forced circulation cooling, decay heat removal from the core occurs by natural convection to the heat sink provided by the water above the core. A minimum refueling water level of 23 ft above the reactor vessel flange provides an adequate available heat sink. Suspending any operation that would increase decay heat load, such as loading a fuel assembly, is a prudent action under this condition.

<u>A.3</u>

If RHR loop requirements are not met, actions shall be initiated and continued in order to satisfy RHR loop requirements. With the unit in MODE 6 and the refueling water level \geq 23 ft above the top of the reactor vessel flange, corrective actions shall be initiated immediately.

A.4, A.5, A.6.1, and A.6.2

If no RHR is in operation, the following actions must be taken:

- a. The equipment hatch must be closed and secured with [four] bolts,
- b. One door in each air lock must be closed, and
- c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere must be either closed by a manual or automatic isolation valve, blind flange, or equivalent, or verified to be capable of being closed by an OPERABLE Containment Purge and Exhaust Isolation System.

With RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Performing the actions described above ensures that all containment

ACTIONS (continued)

penetrations are either closed or can be closed so that the dose limits are not exceeded.

The Completion Time of 4 hours allows fixing of most RHR problems and is reasonable, based on the low probability of the coolant boiling in that time.

SURVEILLANCE REQUIREMENTS

SR 3.9.5.1

This Surveillance demonstrates that the RHR loop is in operation and circulating reactor coolant. The flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability and to prevent thermal and boron stratification in the core. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator in the control room for monitoring the RHR System.

REFERENCES

FSAR, Section [5.5.7].

B 3.9 REFUELING OPERATIONS

B 3.9.6 Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level

BASES

BACKGROUND

The purpose of the RHR System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant, and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the RHR heat exchangers where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the RHR heat exchanger(s) and the bypass lines. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System.

APPLICABLE SAFETY ANALYSES

If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to the boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant will eventually challenge the integrity of the fuel cladding, which is a fission product barrier. Two trains of the RHR System are required to be OPERABLE, and one train in operation, in order to prevent this challenge.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

In MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, both RHR loops must be OPERABLE. Additionally, one loop of RHR must be in operation in order to provide:

- a. Removal of decay heat,
- b. Mixing of borated coolant to minimize the possibility of criticality, and
- c. Indication of reactor coolant temperature.

This LCO is modified by a Note that permits the RHR pumps to be deenergized for \leq 15 minutes when switching from one train to another.

LCO (continued)

The circumstances for stopping both RHR pumps are to be limited to situations when the outage time is short [and the core outlet temperature is maintained > 10 degrees F below saturation temperature]. The Note prohibits boron dilution or draining operations when RHR forced flow is stopped.

This LCO is modified by a Note that allows one RHR loop to be inoperable for a period of 2 hours provided the other loop is OPERABLE and in operation. Prior to declaring the loop inoperable, consideration should be given to the existing plant configuration. This consideration should include that the core time to boil is short, there is no draining operation to further reduce RCS water level and that the capability exists to inject borated water into the reactor vessel. This permits surveillance tests to be performed on the inoperable loop during a time when these tests are safe and possible.

An OPERABLE RHR loop consists of an RHR pump, a heat exchanger, valves, piping, instruments and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs.

APPLICABILITY

Two RHR loops are required to be OPERABLE, and one RHR loop must be in operation in MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, to provide decay heat removal. Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS), and Section 3.5, Emergency Core Cooling Systems (ECCS). RHR loop requirements in MODE 6 with the water level ≥ 23 ft are located in LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level."

ACTIONS

A.1 and A.2

If less than the required number of RHR loops are OPERABLE, action shall be immediately initiated and continued until the RHR loop is restored to OPERABLE status and to operation or until \geq 23 ft of water level is established above the reactor vessel flange. When the water level is \geq 23 ft above the reactor vessel flange, the Applicability changes to that of LCO 3.9.5, and only one RHR loop is required to be OPERABLE and in operation. An immediate Completion Time is necessary for an operator to initiate corrective actions.

ACTIONS (continued)

<u>B.1</u>

If no RHR loop is in operation, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Suspending positive reactivity additions that could result in failure to meet the minimum boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation.

B.2

If no RHR loop is in operation, actions shall be initiated immediately, and continued, to restore one RHR loop to operation. Since the unit is in Conditions A and B concurrently, the restoration of two OPERABLE RHR loops and one operating RHR loop should be accomplished expeditiously.

B.3, B.4, B.5.1, and B.5.2

If no RHR is in operation, the following actions must be taken:

- a. The equipment hatch must be closed and secured with [four] bolts,
- b. One door in each air lock must be closed, and
- c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere must be either closed by a manual or automatic isolation valve, blind flange, or equivalent, or verified to be capable of being closed by an OPERABLE Containment Purge and Exhaust Isolation System.

With RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Performing the actions stated above ensures that all containment penetrations are either closed or can be closed so that the dose limits are not exceeded.

The Completion Time of 4 hours allows fixing of most RHR problems and is reasonable, based on the low probability of the coolant boiling in that time.

SURVEILLANCE REQUIREMENTS

SR 3.9.6.1

This Surveillance demonstrates that one RHR loop is in operation and circulating reactor coolant. The flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability and to prevent thermal and boron stratification in the core. In addition, during operation of the RHR loop with the water level in the vicinity of the reactor vessel nozzles, the RHR pump suction requirements must be met. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator for monitoring the RHR System in the control room.

Verification that the required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pump. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

REFERENCES

1. FSAR, Section [5.5.7].

B 3.9 REFUELING OPERATIONS

B 3.9.7 Refueling Cavity Water Level

BASES

BACKGROUND

The movement of irradiated fuel assemblies within containment requires a minimum water level of 23 ft above the top of the reactor vessel flange. During refueling, this maintains sufficient water level in the containment, refueling canal, fuel transfer canal, refueling cavity, and spent fuel pool. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to < 25% of 10 CFR 100 limits, as provided by the guidance of Reference 3.

APPLICABLE SAFETY ANALYSES

During movement of irradiated fuel assemblies, the water level in the refueling canal and the refueling cavity is an initial condition design parameter in the analysis of a fuel handling accident in containment, as postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of 23 ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the refueling cavity water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1).

The fuel handling accident analysis inside containment is described in Reference 2. With a minimum water level of 23 ft and a minimum decay time of [] hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and offsite doses are maintained within allowable limits (Refs. 4 and 5).

Refueling cavity water level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

A minimum refueling cavity water level of 23 ft above the reactor vessel flange is required to ensure that the radiological consequences of a postulated fuel handling accident inside containment are within acceptable limits, as provided by the guidance of Reference 3.

APPLICABILITY

LCO 3.9.7 is applicable when moving irradiated fuel assemblies within containment. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel assemblies are not present in containment, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel pool are covered by LCO 3.7.15, "Fuel Storage Pool Water Level."

ACTIONS

A.1

With a water level of < 23 ft above the top of the reactor vessel flange, all operations involving or movement of irradiated fuel assemblies within the containment shall be suspended immediately to ensure that a fuel handling accident cannot occur.

The suspension of fuel movement shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.9.7.1

Verification of a minimum water level of 23 ft above the top of the reactor vessel flange ensures that the design basis for the analysis of the postulated fuel handling accident during refueling operations is met. Water at the required level above the top of the reactor vessel flange limits the consequences of damaged fuel rods that are postulated to result from a fuel handling accident inside containment (Ref. 2).

The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls of valve positions, which make significant unplanned level changes unlikely.


REFERENCES

- 1. Regulatory Guide 1.25, March 23, 1972.
- 2. FSAR, Section [15.4.5].
- NUREG-0800, Section 15.7.4.
- 4. 10 CFR 100.10.

REFERENCES (continued)

5. Malinowski, D. D., Bell, M. J., Duhn, E., and Locante, J., WCAP-7828, Radiological Consequences of a Fuel Handling Accident, December 1971.

NRC FORM 335	U.S. NUCLEAR REGULATORY COMMISSION	REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev.,
(2-89) NRCM 1102,	BIBLIOGRAPHIC DATA SHEET	and Addendum Numbers, if any.)
3201, 3202	(See instructions on the reverse)	
O TITLE AND CURTITLE	(cooming the tree to the tree	NUREG-1431 Vol 2, Rev. 2
2. TITLE AND SUBTITLE		Voi 2, Nev. 2
Standard Technical Spe	ecifications	3. DATE REPORT PUBLISHED
Westinghouse Plants		MONTH YEAR
Bases		June 2001
		4. FIN OR GRANT NUMBER
5. AUTHOR(S)		6. TYPE OF REPORT
-		Final
		7. PERIOD COVERED (Inclusive Dates)
		7. FETHOD GOVERED (melasive bates)
		04/95-04/01
8. PERFORMING ORGANIZATIO provide name and mailing address.,	DN - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Com.)	nission, and mailing address; if contractor,
Division of Regulatory In	nprovement Programs	
Office of Nuclear Reacto	or Regulation	
U.S. Nuclear Regulatory		
Washington, DC 20555-		
SPONSORING ORGANIZATIO and mailing address.)	ON - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office	or Region, U.S. Nuclear Regulatory Commission,
Same as above		
		•
10. SUPPLEMENTARY NOTES		
11. ABSTRACT (200 words or less)		
incorporates the cumul resulted from the expe improvements to existi discussions among the Supply System (NSSS the criteria in the Final dated July 22, 1993 (5) Code of Federal Regul requests for complete	the improved Standard Technical Specifications (STS) for We stinghous lative changes to Revision 1, which was published in April 1995. The chrience gained from license amendment applications to convert to these ng technical specifications. This publication is the result of extensive pure Nuclear Regulatory Commission (NRC) staff and various nuclear power) Owners Groups, and the Nuclear Energy Institute (NEI). The improved Commission Policy Statement on Technical Specifications Improvement 8FR39132), which was subsequently codified by changes to Section 36 lations (10CFR50.36) (60 FR 36953). The Commission continues to place onversions to the improved STS. Licensees adopting portions of the instance of the ins	nanges reflected in Revision 2 improved STS or to adopt partial ablic technical meetings and ar plant licensees, Nuclear Steam at STS were developed based on attested to the Steam attention of Title 10 of the ace the highest priority on approved STS to existing
12. KEY WORDS/DESCRIPTOR Technical Specification	S (List words or phrases that will assist researchers in locating the report.)	13. AVAILABILITY STATEMENT unlimited 14. SECURITY CLASSIFICATION (This Page) unclassified
		(This Report) unclassified
		unclassified 15. NUMBER OF PAGES
		10. NOWIDER OF FACES
		16. PRICE

Federal Recycling Program