B 3.6.2.4 Residual Heat Removal (RHR) Suppression Pool Spray

#### **BASES**

#### **BACKGROUND**

Following a Design Basis Accident (DBA), the RHR Suppression Pool Spray System removes heat from the suppression chamber airspace. The suppression pool is designed to absorb the sudden input of heat from the primary system from a DBA or a rapid depressurization of the reactor pressure vessel (RPV) through safety/relief valves. The heat addition to the suppression pool results in increased steam in the suppression chamber, which increases primary containment pressure. Steam blowdown from a DBA can also bypass the suppression pool and end up in the suppression chamber airspace. Some means must be provided to remove heat from the suppression chamber so that the pressure and temperature inside primary containment remain within analyzed design limits. This function is provided by two redundant RHR suppression pool spray subsystems. The purpose of this LCO is to ensure that both subsystems are OPERABLE in applicable MODES.

Each of the two RHR suppression pool spray subsystems contains two pumps and one heat exchanger, which are manually initiated and independently controlled. The two subsystems perform the suppression pool spray function by circulating water from the suppression pool through the RHR heat exchangers and returning it to the suppression pool spray spargers. The spargers only accommodate a small portion of the total RHR pump flow; the remainder of the flow returns to the suppression pool through the suppression pool cooling return line. Thus, both suppression pool cooling and suppression pool spray functions are performed when the Suppression Pool Spray System is initiated. RHR service water, circulating through the tube side of the heat exchangers, exchanges heat with the suppression pool water and discharges this heat to the external heat sink. Either RHR suppression pool spray subsystem is sufficient to condense the steam from small bypass leaks from the drywell to the suppression chamber airspace during the postulated DBA.

# APPLICABLE SAFETY ANALYSES

Reference 1 contains the results of analyses used to predict primary containment pressure and temperature following large and small break loss of coolant accidents. The intent of the analyses is to demonstrate that the pressure reduction capacity of the RHR Suppression Pool Spray System is adequate to maintain the primary containment conditions within design limits. The time history for primary containment pressure is calculated to demonstrate that the maximum pressure remains below the design limit.

# APPLICABLE SAFETY ANALYSES (continued)

The RHR Suppression Pool Spray System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

In the event of a DBA, a minimum of one RHR suppression pool spray subsystem is required to mitigate potential bypass leakage paths and maintain the primary containment peak pressure below the design limits (Ref. 1). To ensure that these requirements are met, two RHR suppression pool spray subsystems must be OPERABLE with power from two safety related independent power supplies. Therefore, in the event of an accident, at least one subsystem is OPERABLE assuming the worst case single active failure. An RHR suppression pool spray subsystem is OPERABLE when one of the pumps, the heat exchanger, and associated piping, valves, instrumentation, and controls are OPERABLE.

#### **APPLICABILITY**

In MODES 1, 2, and 3, a DBA could cause pressurization of primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining RHR suppression pool spray subsystems OPERABLE is not required in MODE 4 or 5.

#### **ACTIONS**

## <u>A.1</u>

With one RHR suppression pool spray subsystem inoperable, the inoperable subsystem must be restored to OPERABLE status within 7 days. In this Condition, the remaining OPERABLE RHR suppression pool spray subsystem is adequate to perform the primary containment bypass leakage mitigation function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced primary containment bypass mitigation capability. The 7 day Completion Time was chosen in light of the redundant RHR suppression pool spray capabilities afforded by the OPERABLE subsystem and the low probability of a DBA occurring during this period.

#### B.1

With both RHR suppression pool spray subsystems inoperable, at least one subsystem must be restored to OPERABLE status within 8 hours. In this Condition, there is a substantial loss of the primary containment bypass leakage mitigation function. The 8 hour Completion Time is based on this loss of function and is considered acceptable due to the

## **ACTIONS** (continued)

low probability of a DBA and because alternative methods to remove heat from primary containment are available.

## C.1 and C.2

If the inoperable RHR suppression pool spray subsystem cannot be restored to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

## SURVEILLANCE REQUIREMENTS

## SR 3.6.2.4.1

Verifying the correct alignment for manual, power operated, and automatic valves in the RHR suppression pool spray mode flow path provides assurance that the proper flow paths will exist for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The Frequency of 31 days is justified because the valves are operated under procedural control, improper valve position would affect only a single subsystem, the probability of an event requiring initiation of the system is low, and the subsystem is a manually initiated system. This Frequency has been shown to be acceptable based on operating experience.

#### SR 3.6.2.4.2

Verifying each RHR pump develops a flow rate ≥ [400] gpm while operating in the suppression pool spray mode with flow through the heat exchanger ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by

# SURVEILLANCE REQUIREMENTS (continued)

Section XI of the ASME Code (Ref. 2). This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is [in accordance with the Inservice Testing Program, but the Frequency must not exceed 92 days].

## **REFERENCES**

- 1. FSAR, Section [6.2].
- 2. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.6.2.5 Drywell-to-Suppression Chamber Differential Pressure

## **BASES**

#### **BACKGROUND**

The toroidal shaped suppression chamber, which contains the suppression pool, is connected to the drywell (part of the primary containment) by [eight] main vent pipes. The main vent pipes exhaust into a continuous vent header, from which [96] downcomer pipes extend into the suppression pool. The pipe exit is [4] ft below the minimum suppression pool water level required by LCO 3.6.2.2, "Suppression Pool Water Level." During a loss of coolant accident (LOCA), the increasing drywell pressure will force the waterleg in the downcomer pipes into the suppression pool at substantial velocities as the "blowdown" phase of the event begins. The length of the waterleg has a significant effect on the resultant primary containment pressures and loads.

## APPLICABLE SAFETY ANALYSES

The purpose of maintaining the drywell at a slightly higher pressure with respect to the suppression chamber is to minimize the drywell pressure increase necessary to clear the downcomer pipes to commence condensation of steam in the suppression pool and to minimize the mass of the accelerated water leg. This reduces the hydrodynamic loads on the torus during the LOCA blowdown. The required differential pressure results in a downcomer waterleg of [3.06 to 3.58] ft.

Initial drywell-to-suppression chamber differential pressure affects both the dynamic pool loads on the suppression chamber and the peak drywell pressure during downcomer pipe clearing during a Design Basis Accident LOCA. Drywell-to-suppression chamber differential pressure must be maintained within the specified limits so that the safety analysis remains valid.

Drywell-to-suppression chamber differential pressure satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

## **LCO**

A drywell-to-suppression chamber differential pressure limit of [1.5] psid is required to ensure that the containment conditions assumed in the safety analyses are met. A drywell-to-suppression chamber differential pressure of < [1.5] psid corresponds to a downcomer water leg of > [3.58] ft. Failure to maintain the required differential pressure could result in excessive forces on the suppression chamber due to higher water clearing loads from downcomer vents and higher pressure buildup in the drywell.

## **APPLICABILITY**

Drywell-to-suppression chamber differential pressure must be controlled when the primary containment is inert. The primary containment must be inert in MODE 1, since this is the condition with the highest probability for an event that could produce hydrogen. It is also the condition with the highest probability of an event that could impose large loads on the primary containment.

Inerting primary containment is an operational problem because it prevents primary containment access without an appropriate breathing apparatus. Therefore, the primary containment is inerted as late as possible in the unit startup and is de-inerted as soon as possible in the unit shutdown. As long as reactor power is < [15]% RTP, the probability of an event that generates hydrogen or excessive loads on primary containment occurring within the first [24] hours following a startup or within the last [24] hours prior to a shutdown is low enough that these "windows," with the primary containment not inerted, are also justified. The [24] hour time period is a reasonable amount time to allow plant personnel to perform inerting or de-inerting.

## **ACTIONS**

## A.1

If drywell-to-suppression chamber differential pressure is not within the limit, the conditions assumed in the safety analyses are not met and the differential pressure must be restored to within the limit within 8 hours. The 8 hour Completion Time provides sufficient time to restore differential pressure to within limit and takes into account the low probability of an event that would create excessive suppression chamber loads occurring during this time period.

#### **B.1**

If the differential pressure cannot be restored to within limits within the associated Completion Time, the plant must be placed in a MODE in which the LCO does not apply. This is done by reducing power to ≤ [15]% RTP within 12 hours. The 12 hour Completion Time is reasonable, based on operating experience, to reduce reactor power from full power conditions in an orderly manner and without challenging plant systems.

## SURVEILLANCE REQUIREMENTS

## SR 3.6.2.5.1

The drywell-to-suppression chamber differential pressure is regularly monitored to ensure that the required limits are satisfied. The 12 hour Frequency of this SR was developed based on operating experience relative to differential pressure variations and pressure instrument drift during applicable MODES and by assessing the proximity to the specified LCO differential pressure limit. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal pressure condition.

## **REFERENCES**

None.

B 3.6.3.1 Primary Containment Hydrogen Recombiners

#### **BASES**

#### **BACKGROUND**

The primary containment hydrogen recombiner eliminates the potential breach of primary containment due to a hydrogen oxygen reaction and is part of combustible gas control required by 10 CFR 50.44, "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and GDC 41, "Containment Atmosphere Cleanup" (Ref. 2). The primary containment hydrogen recombiner is required to reduce the hydrogen concentration in the primary containment following a loss of coolant accident (LOCA). The primary containment hydrogen recombiner accomplishes this by recombining hydrogen and oxygen to form water vapor. The vapor remains in the primary containment, thus eliminating any discharge to the environment. The primary containment hydrogen recombiner is manually initiated since flammability limits would not be reached until several days after a Design Basis Accident (DBA).

The primary containment hydrogen recombiner functions to maintain the hydrogen gas concentration within the containment at or below the flammability limit of 4.0 volume percent (v/o) following a postulated LOCA. It is fully redundant and consists of two 100% capacity subsystems. Each primary containment hydrogen recombiner consists of an enclosed blower assembly, heater section, reaction chamber, direct contact water spray gas cooler, water separator, and associated piping, valves, and instruments. The primary containment hydrogen recombiner will be manually initiated from the main control room when the hydrogen gas concentration in the primary containment reaches [3.3] v/o. When the primary containment is inerted (oxygen concentration < 4.0 v/o), the primary containment hydrogen recombiner will only function until the oxygen is used up (2.0 v/o hydrogen combines with 1.0 v/o oxygen). Two recombiners are provided to meet the requirement for redundancy and independence. Each recombiner is powered from a separate Engineered Safety Feature bus and is provided with separate power panel and control panel.

The process gas circulating through the heater, the reaction chamber, and the cooler is automatically regulated to [150] scfm by the use of an orifice plate installed in the cooler. The process gas is heated to [1200]°F. The hydrogen and oxygen gases are recombined into water vapor, which is then condensed in the water spray gas cooler by the associated residual heat removal subsystem and discharged with some of the effluent process gas to the suppression chamber. The majority of

# **BACKGROUND** (continued)

the cooled, effluent process gas is mixed with the incoming process gas to dilute the incoming gas prior to the mixture entering the heater section.

# APPLICABLE SAFETY ANALYSES

The primary containment hydrogen recombiner provides the capability of controlling the bulk hydrogen concentration in primary containment to less than the lower flammable concentration of 4.0 v/o following a DBA. This control would prevent a primary containment wide hydrogen burn, thus ensuring that pressure and temperature conditions assumed in the analysis are not exceeded. The limiting DBA relative to hydrogen generation is a LOCA.

Hydrogen may accumulate in primary containment following a LOCA as a result of either:

- a. A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant or
- b. Radiolytic decomposition of water in the Reactor Coolant System.

To evaluate the potential for hydrogen accumulation in primary containment following a LOCA, the hydrogen generation is calculated as a function of time following the initiation of the accident. Assumptions recommended by Reference 3 are used to maximize the amount of hydrogen calculated.

The calculation confirms that when the mitigating systems are actuated in accordance with emergency procedures, the peak hydrogen concentration in the primary containment is < 4.0 v/o (Ref. 4).

The primary containment hydrogen recombiners satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

Two primary containment hydrogen recombiners must be OPERABLE. This ensures operation of at least one primary containment hydrogen recombiner subsystem in the event of a worst case single active failure.

Operation with at least one primary containment hydrogen recombiner subsystem ensures that the post-LOCA hydrogen concentration can be prevented from exceeding the flammability limit.

## **APPLICABILITY**

In MODES 1 and 2, the two primary containment hydrogen recombiners are required to control the hydrogen concentration within primary containment below its flammability limit of 4.0 v/o following a LOCA, assuming a worst case single failure.

In MODE 3, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in this MODE, the probability of an accident requiring the primary containment hydrogen recombiner is low. Therefore, the primary containment hydrogen recombiner is not required in MODE 3.

In MODES 4 and 5, the probability and consequences of a LOCA are low due to the pressure and temperature limitations in these MODES. Therefore, the primary containment hydrogen recombiner is not required in these MODES.

## **ACTIONS**

## **A.1**

With one primary containment hydrogen recombiner inoperable, the inoperable recombiner must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE recombiner is adequate to perform the hydrogen control function. However, the overall reliability is reduced because a single failure in the OPERABLE recombiner could result in reduced hydrogen control capability. The 30 day Completion Time is based on the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit, the amount of time available after the event for operator action to prevent exceeding this limit, and the low probability of failure of the OPERABLE primary containment hydrogen recombiner.

Required Action A.1 has been modified by a Note indicating that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one recombiner is inoperable. This allowance is provided because of the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit, the low probability of the failure of the OPERABLE subsystem, and the amount of time available after a postulated LOCA for operator action to prevent exceeding the flammability limit.

| В | Α | Е | S |
|---|---|---|---|
|   |   |   |   |

## **ACTIONS** (continued)

#### B.1 and B.2

#### - REVIEWER'S NOTE -

This Condition is only allowed for units with an alternate hydrogen control system acceptable to the technical staff.

With two primary containment hydrogen recombiners inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control capabilities are provided by the [Primary Containment Inerting System or one subsystem of the Containment Atmosphere Dilution System]. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist.

#### - REVIEWER'S NOTE -

The following is to be used if a non-Technical Specification alternate hydrogen control function is used to justify this Condition. In addition, the alternate hydrogen control system capability must be verified once per 12 hours thereafter to ensure its continued availability.

[Both] the [initial] verification [and all subsequent verifications] may be performed as an administrative check by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two hydrogen recombiners inoperable for up to 7 days. Seven days is a reasonable time to allow two hydrogen recombiners to be inoperable because the hydrogen control function is maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit.

## <u>C.1</u>

If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable.

## **ACTIONS** (continued)

based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

## SURVEILLANCE REQUIREMENTS

## SR 3.6.3.1.1

Performance of a system functional test for each primary containment hydrogen recombiner ensures that the recombiners are OPERABLE and can attain and sustain the temperature necessary for hydrogen recombination. In particular, this SR verifies that the minimum heater sheath temperature increases to  $\geq$  [1200]°F in  $\leq$  [1.5] hours and that it is maintained > [1150]°F and < [1300]°F for  $\geq$  [4] hours thereafter to check the ability of the recombiner to function properly (and to make sure that significant heater elements are not burned out). Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

## SR 3.6.3.1.2

This SR ensures there are no physical problems that could affect recombiner operation. Since the recombiners are mechanically passive, except for the blower assemblies, they are subject to only minimal mechanical failure. The only credible failures involve loss of power or blower function, blockage of the internal flow path, missile impact, etc.

A visual inspection is sufficient to determine abnormal conditions that could cause such failures. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

#### SR 3.6.3.1.3

This SR requires performance of a resistance to ground test of each heater phase to make sure that there are no detectable grounds in any heater phase. This is accomplished by verifying that the resistance to ground for any heater phase is  $\geq [10,000]$  ohms.

Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

## **REFERENCES**

- 1. 10 CFR 50.44.
- 2. 10 CFR 50, Appendix A, GDC 41.
- 3. Regulatory Guide 1.7, Revision [1].
- 4. FSAR, Section [6.2.5].

B 3.6.3.2 [Drywell Cooling System Fans]

#### **BASES**

## **BACKGROUND**

The [Drywell Cooling System fans] ensure a uniformly mixed post accident primary containment atmosphere, thereby minimizing the potential for local hydrogen burns due to a pocket of hydrogen above the flammable concentration.

The [Drywell Cooling System fans] are an Engineered Safety Feature and are designed to withstand a loss of coolant accident (LOCA) in post accident environments without loss of function. The system has two independent subsystems consisting of fans, fan coil units, motors, controls, and ducting. Each subsystem is sized to circulate [500] scfm. The [Drywell Cooling System fans] employ both forced circulation and natural circulation to ensure the proper mixing of hydrogen in primary containment. The recirculation fans provide the forced circulation to mix hydrogen while the fan coils provide the natural circulation by increasing the density through the cooling of the hot gases at the top of the drywell causing the cooled gases to gravitate to the bottom of the drywell. The two subsystems are initiated manually since flammability limits would not be reached until several days after a LOCA. Each subsystem is powered from a separate emergency power supply. Since each subsystem can provide 100% of the mixing requirements, the system will provide its design function with a worst case single active failure.

The [Drywell Cooling System fans] use the Drywell Cooling System recirculating fans to mix the drywell atmosphere. The fan coil units and recirculation fans are automatically disengaged during a LOCA but may be restored to service manually by the operator. In the event of a loss of offsite power, all fan coil units, recirculating fans, and primary containment water chillers are transferred to the emergency diesels. The fan coil units and recirculating fans are started automatically from diesel power upon loss of offsite power.

# APPLICABLE SAFETY ANALYSES

The [Drywell Cooling System fans] provide the capability for reducing the local hydrogen concentration to approximately the bulk average concentration following a Design Basis Accident (DBA). The limiting DBA relative to hydrogen generation is a LOCA.

Hydrogen may accumulate in primary containment following a LOCA as a result of either:

# APPLICABLE SAFETY ANALYSES (continued)

- A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant or
- b. Radiolytic decomposition of water in the Reactor Coolant System.

To evaluate the potential for hydrogen accumulation in primary containment following a LOCA, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Reference 1 are used to maximize the amount of hydrogen calculated.

The Reference 2 calculations show that hydrogen assumed to be released to the drywell within 2 minutes following a DBA LOCA raises drywell hydrogen concentration to over 2.5 volume percent (v/o). Natural circulation phenomena result in a gradient concentration difference of less then 0.5 v/o in the drywell and less than 0.1 v/o in the suppression chamber. Even though this gradient is acceptably small and no credit for mechanical mixing was assumed in the analysis, two [Drywell Cooling System fans] are [required] to be OPERABLE (typically four to six fans are required to keep the drywell cool during operation in MODE 1 or 2) by this LCO.

The [Drywell Cooling System fans] satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

**LCO** 

Two [Drywell Cooling System fans] must be OPERABLE to ensure operation of at least one fan in the event of a worst case single active failure. Each of these fans must be powered from an independent safety related bus.

Operation with at least one fan provides the capability of controlling the bulk hydrogen concentration in primary containment without exceeding the flammability limit.

## **APPLICABILITY**

In MODES 1 and 2, the two [Drywell Cooling System fans] ensure the capability to prevent localized hydrogen concentrations above the flammability limit of 4.0 v/o in drywell, assuming a worst case single active failure.

In MODE 3, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in this MODE, the probability of

## APPLICABILITY (continued)

an accident requiring the [Drywell Cooling System fans] is low. Therefore, the [Drywell Cooling System fans] are not required in MODE 3.

In MODES 4 and 5, the probability and consequences of a LOCA are reduced due to the pressure and temperature limitations in these MODES. Therefore, the [Drywell Cooling System fans] are not required in these MODES.

#### **ACTIONS**

#### **A.1**

With one [required] [Drywell Cooling System fan] inoperable, the inoperable fan must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE fan is adequate to perform the hydrogen mixing function. However, the overall reliability is reduced because a single failure in the OPERABLE fan could result in reduced hydrogen mixing capability. The 30 day Completion Time is based on the availability of the second fan, the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit, the amount of time available after the event for operator action to prevent exceeding this limit, and the availability of the Primary Containment Hydrogen Recombiner System and the Containment Atmosphere Dilution System.

Required Action A.1 has been modified by a Note indicating that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one [Drywell Cooling System fan] is inoperable. This allowance is provided because of the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit, the low probability of the failure of the OPERABLE fan, and the amount of time available after a postulated LOCA for operator action to prevent exceeding the flammability limit.

#### **B.1** and **B.2**

#### - REVIEWER'S NOTE -

This Condition is only allowed for units with an alternate hydrogen control system acceptable to the technical staff.

With two [Drywell Cooling System fans] inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control

# **ACTIONS** (continued)

capabilities are provided by the [Primary Containment Inerting System or one subsystem of the Containment Atmosphere Dilution System]. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist.

#### - REVIEWER'S NOTE -

The following is to be used if a non-Technical Specification alternate hydrogen control function is used to justify this Condition: In addition, the alternate hydrogen control system capability must be verified once per 12 hours thereafter to ensure its continued availability.

[Both] the [initial] verification [and all subsequent verifications] may be performed as an administrative check by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two [Drywell Cooling System fans] inoperable for up to 7 days. Seven days is a reasonable time to allow two [Drywell Cooling System fans] to be inoperable because the hydrogen control function is maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit.

## **C.1**

If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

# SURVEILLANCE REQUIREMENTS

#### SR 3.6.3.2.1

Operating each [required] [Drywell Cooling System fan] for ≥ 15 minutes ensures that each subsystem is OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. The 92 day Frequency is consistent with the Inservice Testing Program Frequencies, operating experience, the known reliability of the fan motors and controls, and the two redundant fans available.

# SURVEILLANCE REQUIREMENTS (continued)

## [SR 3.6.3.2.2

Verifying that each [required] [Drywell Cooling System fan] flow rate is ≥ [500] scfm ensures that each fan is capable of maintaining localized hydrogen concentrations below the flammability limit. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.]

#### REFERENCES

- 1. Regulatory Guide 1.7, Revision [1].
- 2. FSAR, Section [6.2.5].

B 3.6.3.3 Primary Containment Oxygen Concentration

#### **BASES**

#### **BACKGROUND**

All nuclear reactors must be designed to withstand events that generate hydrogen either due to the zirconium metal water reaction in the core or due to radiolysis. The primary method to control hydrogen is to inert the primary containment. With the primary containment inert, that is, oxygen concentration < 4.0 volume percent (v/o), a combustible mixture cannot be present in the primary containment for any hydrogen concentration. The capability to inert the primary containment and maintain oxygen < 4.0 v/o works together with the Hydrogen Recombiner System (LCO 3.6.3.1, "Primary Containment Hydrogen Recombiners") and the [Drywell Cooling System fans] (LCO 3.6.3.2, "[Drywell Cooling System Fans]") to provide redundant and diverse methods to mitigate events that produce hydrogen. For example, an event that rapidly generates hydrogen from zirconium metal water reaction will result in excessive hydrogen in primary containment, but oxygen concentration will remain < 4.0 v/o and no combustion can occur. Long term generation of both hydrogen and oxygen from radiolytic decomposition of water may eventually result in a combustible mixture in primary containment, except that the hydrogen recombiners remove hydrogen and oxygen gases faster than they can be produced from radiolysis and again no combustion can occur. This LCO ensures that oxygen concentration does not exceed 4.0 v/o during operation in the applicable conditions.

## APPLICABLE SAFETY ANALYSES

The Reference 1 calculations assume that the primary containment is inerted when a Design Basis Accident loss of coolant accident occurs. Thus, the hydrogen assumed to be released to the primary containment as a result of metal water reaction in the reactor core will not produce combustible gas mixtures in the primary containment. Oxygen, which is subsequently generated by radiolytic decomposition of water, is recombined by the hydrogen recombiners (LCO 3.6.3.1) more rapidly than it is produced.

Primary containment oxygen concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

## LCO

The primary containment oxygen concentration is maintained < 4.0 v/o to ensure that an event that produces any amount of hydrogen does not result in a combustible mixture inside primary containment.

## **APPLICABILITY**

The primary containment oxygen concentration must be within the specified limit when primary containment is inerted, except as allowed by the relaxations during startup and shutdown addressed below. The primary containment must be inert in MODE 1, since this is the condition with the highest probability of an event that could produce hydrogen.

Inerting the primary containment is an operational problem because it prevents containment access without an appropriate breathing apparatus. Therefore, the primary containment is inerted as late as possible in the plant startup and de-inerted as soon as possible in the plant shutdown. As long as reactor power is < 15% RTP, the potential for an event that generates significant hydrogen is low and the primary containment need not be inert. Furthermore, the probability of an event that generates hydrogen occurring within the first [24] hours of a startup, or within the last [24] hours before a shutdown, is low enough that these "windows," when the primary containment is not inerted, are also justified. The [24] hour time period is a reasonable amount of time to allow plant personnel to perform inerting or de-inerting.

## **ACTIONS**

## **A.1**

If oxygen concentration is  $\geq 4.0$  v/o at any time while operating in MODE 1, with the exception of the relaxations allowed during startup and shutdown, oxygen concentration must be restored to < 4.0 v/o within 24 hours. The 24 hour Completion Time is allowed when oxygen concentration is  $\geq 4.0$  v/o because of the availability of other hydrogen mitigating systems (e.g., hydrogen recombiners) and the low probability and long duration of an event that would generate significant amounts of hydrogen occurring during this period.

#### **B.1**

If oxygen concentration cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, power must be reduced to  $\leq [15]\%$  RTP within 8 hours. The 8 hour Completion Time is reasonable, based on operating experience, to reduce reactor power from full power conditions in an orderly manner and without challenging plant systems.

## SURVEILLANCE REQUIREMENTS

## SR 3.6.3.3.1

The primary containment must be determined to be inert by verifying that oxygen concentration is < 4.0 v/o. The 7 day Frequency is based on the slow rate at which oxygen concentration can change and on other indications of abnormal conditions (which would lead to more frequent checking by operators in accordance with plant procedures). Also, this Frequency has been shown to be acceptable through operating experience.

## **REFERENCES**

1. FSAR, Section [6.2.5].

B 3.6.3.4 Containment Atmosphere Dilution (CAD) System

#### **BASES**

#### **BACKGROUND**

The CAD System functions to maintain combustible gas concentrations within the primary containment at or below the flammability limits following a postulated loss of coolant accident (LOCA) by diluting hydrogen and oxygen with nitrogen. To ensure that a combustible gas mixture does not occur, oxygen concentration is kept < [5.0] volume percent (v/o), or hydrogen concentration is kept < 4.0 v/o.

The CAD System is manually initiated and consists of two independent, 100% capacity subsystems. Each subsystem includes a liquid nitrogen supply tank, ambient vaporizer, electric heater, and connected piping to supply the drywell and suppression chamber volumes. The nitrogen storage tanks each contain ≥ [4350] gal, which is adequate for [7] days of CAD subsystem operation.

The CAD System operates in conjunction with emergency operating procedures that are used to reduce primary containment pressure periodically during CAD System operation. This combination results in a feed and bleed approach to maintaining hydrogen and oxygen concentrations below combustible levels.

# APPLICABLE SAFETY ANALYSES

To evaluate the potential for hydrogen and oxygen accumulation in primary containment following a LOCA, hydrogen and oxygen generation is calculated (as a function of time following the initiation of the accident). The assumptions stated in Reference 1 are used to maximize the amount of hydrogen and oxygen generated. The calculation confirms that when the mitigating systems are actuated in accordance with emergency operating procedures, the peak oxygen concentration in primary containment is < [5.0] v/o (Ref. 2).

Hydrogen and oxygen may accumulate within primary containment following a LOCA as a result of either:

- a. A metal water reaction between the zirconium fuel rod cladding and the reactor coolant or
- b. Radiolytic decomposition of water in the Reactor Coolant System.

The CAD System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

## **LCO**

Two CAD subsystems must be OPERABLE. This ensures operation of at least one CAD subsystem in the event of a worst case single active failure. Operation of at least one CAD subsystem is designed to maintain primary containment post-LOCA oxygen concentration < 5.0 v/o for 7 days.

## APPLICABILITY

In MODES 1 and 2, the CAD System is required to maintain the oxygen concentration within primary containment below the flammability limit of 5.0 v/o following a LOCA. This ensures that the relative leak tightness of primary containment is adequate and prevents damage to safety related equipment and instruments located within primary containment.

In MODE 3, both the hydrogen and oxygen production rates and the total amounts produced after a LOCA would be less than those calculated for the Design Basis Accident LOCA. Thus, if the analysis were to be performed starting with a LOCA in MODE 3, the time to reach a flammable concentration would be extended beyond the time conservatively calculated for MODES 1 and 2. The extended time would allow hydrogen removal from the primary containment atmosphere by other means and also allow repair of an inoperable CAD subsystem, if CAD were not available. Therefore, the CAD System is not required to be OPERABLE in MODE 3.

In MODES 4 and 5, the probability and consequences of a LOCA are reduced due to the pressure and temperature limitations of these MODES. Therefore, the CAD System is not required to be OPERABLE in MODES 4 and 5.

#### **ACTIONS**

## **A.1**

If one CAD subsystem is inoperable, it must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE CAD subsystem is adequate to perform the oxygen control function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced oxygen control capability. The 30 day Completion Time is based on the low probability of the occurrence of a LOCA that would generate hydrogen and oxygen in amounts capable of exceeding the flammability limit, the amount of time available after the event for operator action to prevent exceeding this limit, and the availability of the OPERABLE CAD subsystem and other hydrogen mitigating systems.

Required Action A.1 has been modified by a Note that indicates that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change

## ACTIONS (continued)

is allowed when one CAD subsystem is inoperable. This allowance is provided because of the low probability of the occurrence of a LOCA that would generate hydrogen and oxygen in amounts capable of exceeding the flammability limit, the low probability of the failure of the OPERABLE subsystem, the amount of time available after a postulated LOCA for operator action to prevent exceeding the flammability limit, and the availability of other hydrogen mitigating systems.

### **B.1 and B.2**

#### - REVIEWER'S NOTE -

This Condition is only allowed for plants with an alternate hydrogen control system acceptable to the technical staff.

With two CAD subsystems inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control capabilities are provided by the [Primary Containment Inerting System or one hydrogen recombiner and one Drywell Cooling System fan]. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist.

## - REVIEWER'S NOTE -

The following is to be used if a non-Technical Specification alternate hydrogen control function is used to justify this Condition: In addition, the alternate hydrogen control system capability must be verified once per 12 hours thereafter to ensure its continued availability.

[Both] the [initial] verification [and all subsequent verifications] may be performed as an administrative check by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two CAD subsystems inoperable for up to 7 days. Seven days is a reasonable time to allow two CAD subsystems to be inoperable because the hydrogen control function is maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in amounts capable of exceeding the flammability limit.

# **ACTIONS** (continued)

With two CAD subsystems inoperable, one CAD subsystem must be restored to OPERABLE status within 7 days. The 7 day Completion Time is based on the low probability of the occurrence of a LOCA that would generate hydrogen in the amounts capable of exceeding the flammability limit, the amount of time available after the event for operator action to prevent exceeding this limit, and the availability of other hydrogen mitigating systems.

## **C.1**

If any Required Action cannot be met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

# SURVEILLANCE REQUIREMENTS

## SR 3.6.3.4.1

Verifying that there is ≥ [4350] gal of liquid nitrogen supply in the CAD System will ensure at least [7] days of post-LOCA CAD operation. This minimum volume of liquid nitrogen allows sufficient time after an accident to replenish the nitrogen supply for long term inerting. This is verified every 31 days to ensure that the system is capable of performing its intended function when required. The 31 day Frequency is based on operating experience, which has shown 31 days to be an acceptable period to verify the liquid nitrogen supply and on the availability of other hydrogen mitigating systems.

## SR 3.6.3.4.2

Verifying the correct alignment for manual, power operated, and automatic valves in each of the CAD subsystem flow paths provides assurance that the proper flow paths exist for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves were verified to be in the correct position prior to locking, sealing, or securing.

A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable because the CAD System is manually initiated. This SR does not apply to valves that cannot be

# SURVEILLANCE REQUIREMENTS (continued)

inadvertently misaligned, such as check valves. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position.

The 31 day Frequency is appropriate because the valves are operated under procedural control, improper valve position would only affect a single subsystem, the probability of an event requiring initiation of the system is low, and the system is a manually initiated system.

## **REFERENCES**

- 1. Regulatory Guide 1.7, Revision [2].
- 2. FSAR, Section [].

B 3.6.4.1 [Secondary] Containment

#### **BASES**

#### **BACKGROUND**

The function of the [secondary] containment is to contain, dilute, and hold up fission products that may leak from primary containment following a Design Basis Accident (DBA). In conjunction with operation of the Standby Gas Treatment (SGT) System and closure of certain valves whose lines penetrate the [secondary] containment, the [secondary] containment is designed to reduce the activity level of the fission products prior to release to the environment and to isolate and contain fission products that are released during certain operations that take place inside primary containment, when primary containment is not required to be OPERABLE, or that take place outside primary containment.

The [secondary] containment is a structure that completely encloses the primary containment and those components that may be postulated to contain primary system fluid. This structure forms a control volume that serves to hold up and dilute the fission products. It is possible for the pressure in the control volume to rise relative to the environmental pressure (e.g., due to pump and motor heat load additions). To prevent ground level exfiltration while allowing the [secondary] containment to be designed as a conventional structure, the [secondary] containment requires support systems to maintain the control volume pressure at less than the external pressure. Requirements for these systems are specified separately in LCO 3.6.4.2, "Secondary Containment Isolation Valves (SCIVs)," and LCO 3.6.4.3, "Standby Gas Treatment (SGT) System."

## APPLICABLE SAFETY ANALYSES

There are two principal accidents for which credit is taken for [secondary] containment OPERABILITY. These are a loss of coolant accident (LOCA) (Ref. 1) and a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] inside [secondary] containment (Ref. 2). The [secondary] containment performs no active function in response to each of these limiting events; however, its leak tightness is required to ensure that the release of radioactive materials from the primary containment is restricted to those leakage paths and associated leakage rates assumed in the accident analysis and that fission products entrapped within the [secondary] containment structure will be treated by the SGT System prior to discharge to the environment.

[Secondary] containment satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

## **LCO**

An OPERABLE [secondary] containment provides a control volume into which fission products that bypass or leak from primary containment, or are released from the reactor coolant pressure boundary components located in [secondary] containment, can be diluted and processed prior to release to the environment. For the [secondary] containment to be considered OPERABLE, it must have adequate leak tightness to ensure that the required vacuum can be established and maintained.

## **APPLICABILITY**

In MODES 1, 2, and 3, a LOCA could lead to a fission product release to primary containment that leaks to [secondary] containment. Therefore, [secondary] containment OPERABILITY is required during the same operating conditions that require primary containment OPERABILITY.

In MODES 4 and 5, the probability and consequences of the LOCA are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining [secondary] containment OPERABLE is not required in MODE 4 or 5 to ensure a control volume, except for other situations for which significant releases of radioactive material can be postulated, such as during operations with a potential for draining the reactor vessel (OPDRVs) or during movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, secondary containment is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days).]

#### - REVIEWER'S NOTE -

The addition of the term "recently" associated with handling irradiated fuel in all of the containment function Technical Specification requirements is only applicable to those licensees who have demonstrated by analysis that after sufficient radioactive decay has occurred, off-site doses resulting from a fuel handling accident remain below the Standard Review Plan limits (well within 10CFR100).

Additionally, licensees adding the term "recently" must make the following commitment which is consistent with draft NUMARC 93-01, Revision 3, Section 11.2.6 "Safety Assessment for Removal of Equipment from Service During Shutdown Conditions", subheading "Containment - Primary (PWR)/Secondary(BWR)".

"The following guidelines are included in the assessment of systems removed from service during movement of irradiated fuel:

## APPLICABILITY (continued)

-During fuel handling/core alterations, ventilation system and radiation monitor availability (as defined in NUMARC 91-06) should be assessed, with respect to filtration and monitoring of releases from the fuel. Following shutdown, radioactivity in the fuel decays away fairly rapidly. The basis of the Technical Specification operability amendment is the reduction in doses due to such decay. The goal of maintaining ventilation system and radiation monitor availability is to reduce doses even further below that provided by the natural decay.

-A single normal or contingency method to promptly close primary or secondary containment penetrations should be developed. Such prompt methods need not completely block the penetration or be capable of resisting pressure.

The purpose of the "prompt methods" mentioned above are to enable ventilation systems to draw the release from a postulated fuel handling accident in the proper direction such that it can be treated and monitored."

#### **ACTIONS**

#### A.1

If [secondary] containment is inoperable, it must be restored to OPERABLE status within 4 hours. The 4 hour Completion Time provides a period of time to correct the problem that is commensurate with the importance of maintaining [secondary] containment during MODES 1, 2, and 3. This time period also ensures that the probability of an accident (requiring [secondary] containment OPERABILITY) occurring during periods where [secondary] containment is inoperable is minimal.

#### B.1 and B.2

If [secondary] containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

## **ACTIONS** (continued)

## C.1 and C.2

Movement of [recently] irradiated fuel assemblies in the [secondary] containment and OPDRVs can be postulated to cause significant fission product release to the [secondary] containment. In such cases, the [secondary] containment is the only barrier to release of fission products to the environment. Therefore, movement of [recently] irradiated fuel assemblies must be immediately suspended if the [secondary] containment is inoperable.

Suspension of these activities shall not preclude completing an action that involves moving a component to a safe position. Also, action must be immediately initiated to suspend OPDRVs to minimize the probability of a vessel draindown and subsequent potential for fission product release. Actions must continue until OPDRVs are suspended.

Required Action C.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

# SURVEILLANCE REQUIREMENTS

## [SR 3.6.4.1.1

This SR ensures that the [secondary] containment boundary is sufficiently leak tight to preclude exfiltration under expected wind conditions. The 24 hour Frequency of this SR was developed based on operating experience related to [secondary] containment vacuum variations during the applicable MODES and the low probability of a DBA occurring between surveillances.

Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal [secondary] containment vacuum condition.]

#### SR 3.6.4.1.2 and SR 3.6.4.1.3

Verifying that [secondary] containment equipment hatches and one access door in each access opening are closed ensures that the infiltration of outside air of such a magnitude as to prevent maintaining

# SURVEILLANCE REQUIREMENTS (continued)

the desired negative pressure does not occur. Verifying that all such openings are closed provides adequate assurance that exfiltration from the [secondary] containment will not occur. In this application, the term "sealed" has no connotation of leak tightness. Maintaining [secondary] containment OPERABILITY requires verifying one door in the access opening is closed. [An access opening contains one inner and one outer door. In some cases, [secondary] containment access openings are shared such that a [secondary containment barrier may have multiple inner or multiple outer doors. The intent is to not breach the [secondary] containment at any time when [secondary] containment is required. This is achieved by maintaining the inner or outer portion of the barrier closed at all times.] However, all [secondary] containment access doors are normally kept closed, except when the access opening is being used for entry and exit or when maintenance is being performed on an access opening. The 31 day Frequency for these SRs has been shown to be adequate, based on operating experience, and is considered adequate in view of the other indications of door and hatch status that are available to the operator.

## [SR 3.6.4.1.4 and] SR 3.6.4.1.5

The SGT System exhausts the [secondary] containment atmosphere to the environment through appropriate treatment equipment. Each SGT subsystem is designed to draw down pressure in the [secondary] containment to ≥[0.25] inches of vacuum water gauge in ≤ [120] seconds and maintain pressure in the [secondary] containment at ≥ [0.266] inches of vacuum water gauge for 1 hour at a flow rate < [4000] CFM. To ensure that all fission products released to the [secondary] containment are treated, SR 3.6.4.1.4 and SR 3.6.4.1.5 verify that a pressure in the [secondary] containment that is less than the lowest postulated pressure external to the [secondary] containment boundary can rapidly be established and maintained. When the SGT System is operating as designed, the establishment and maintenance of [secondary] containment pressure cannot be accomplished if the [secondary] containment boundary is not intact. Establishment of this pressure is confirmed by SR 3.6.4.1.4, which demonstrates that the [secondary] containment can be drawn down to ≥ [0.25] inches of vacuum water gauge in ≤ [120] seconds using one SGT subsystem.] SR 3.6.4.1.5 demonstrates that the pressure in the [secondary] containment can be maintained ≥ [0.266] inches of vacuum water gauge for 1 hour using one SGT subsystem at a flow rate < [4000] cfm. The 1 hour test period allows [secondary] containment to be in thermal equilibrium at steady state conditions. The primary purpose of these SR[s] is to ensure

# SURVEILLANCE REQUIREMENTS (continued)

[secondary] containment boundary integrity. The secondary purpose of these SR[s] is to ensure that the SGT subsystem being tested functions as designed. There is a separate LCO with Surveillance Requirements which serves the primary purpose of ensuring OPERABILITY of the SGT System. These SR[s] need not be performed with each SGT subsystem. The SGT subsystem used for these Surveillance[s] is staggered to ensure that in addition to the requirements of LCO 3.6.4.3, either SGT subsystem will perform this test. The inoperability of the SGT System does not necessarily constitute a failure of these Surveillance[s] relative to the [secondary] containment OPERABILITY. Operating experience has shown the [secondary] containment boundary usually passes these Surveillance[s] when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

## **REFERENCES**

- 1. FSAR, Section [15.1.39].
- 2. FSAR, Section [15.1.41].

B 3.6.4.2 Secondary Containment Isolation Valves (SCIVs)

#### **BASES**

#### **BACKGROUND**

The function of the SCIVs, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs) (Ref. 1). Secondary containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that fission products that leak from primary containment following a DBA, or that are released during certain operations when primary containment is not required to be OPERABLE or take place outside primary containment, are maintained within the secondary containment boundary.

The OPERABILITY requirements for SCIVs help ensure that an adequate [secondary] containment boundary is maintained during and after an accident by minimizing potential paths to the environment. These isolation devices consist of either passive devices or active (automatic) devices. Manual valves, de-activated automatic valves secured in their closed position (including check valves with flow through the valve secured), and blind flanges are considered passive devices.

Automatic SCIVs close on a [secondary] containment isolation signal to establish a boundary for untreated radioactive material within [secondary] containment following a DBA or other accidents.

Other penetrations are isolated by the use of valves in the closed position or blind flanges.

## APPLICABLE SAFETY ANALYSES

The SCIVs must be OPERABLE to ensure the [secondary] containment barrier to fission product releases is established. The principal accidents for which the [secondary] containment boundary is required are a loss of coolant accident (Ref. 1) and a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] inside [secondary] containment (Ref. 2). The [secondary] containment performs no active function in response to either of these limiting events, but the boundary established by SCIVs is required to ensure that leakage from the primary containment is processed by the Standby Gas Treatment (SGT) System before being released to the environment.

Maintaining SCIVs OPERABLE with isolation times within limits ensures that fission products will remain trapped inside [secondary] containment

# APPLICABLE SAFETY ANALYSES (continued)

so that they can be treated by the SGT System prior to discharge to the environment.

SCIVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

## **LCO**

SCIVs form a part of the [secondary] containment boundary. The SCIV safety function is related to control of offsite radiation releases resulting from DBAs.

The power operated, automatic isolation valves are considered OPERABLE when their isolation times are within limits and the valves actuate on an automatic isolation signal. The valves covered by this LCO, along with their associated stroke times, are listed in Reference 3.

The normally closed isolation valves or blind flanges are considered OPERABLE when manual valves are closed or open in accordance with appropriate administrative controls, automatic SCIVs are de-activated and secured in their closed position, and blind flanges are in place. These passive isolation valves or devices are listed in Reference 3.

# **APPLICABILITY**

In MODES 1, 2, and 3, a DBA could lead to a fission product release to the primary containment that leaks to the [secondary] containment. Therefore, the OPERABILITY of SCIVs is required.

In MODES 4 and 5, the probability and consequences of these events are reduced due to pressure and temperature limitations in these MODES. Therefore, maintaining SCIVs OPERABLE is not required in MODE 4 or 5, except for other situations under which significant radioactive releases can be postulated, such as during operations with a potential for draining the reactor vessel (OPDRVs) or during movement of [recently] irradiated fuel assemblies in the [secondary] containment. Moving [recently] irradiated fuel assemblies in the [secondary] containment may also occur in MODES 1, 2, and 3. [Due to radioactive decay, SCIVs are only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days).]

## **ACTIONS**

The ACTIONS are modified by three Notes. The first Note allows penetration flow paths to be unisolated intermittently under administrative controls. These controls consist of stationing a dedicated operator, who is in continuous communication with the control room, at the controls of the isolation device. In this way, the penetration can be rapidly isolated when a need for [secondary] containment isolation is indicated.

The second Note provides clarification that for the purpose of this LCO separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable SCIV. Complying with the Required Actions may allow for continued operation, and subsequent inoperable SCIVs are governed by subsequent Condition entry and application of associated Required Actions.

The third Note ensures appropriate remedial actions are taken, if necessary, if the affected system(s) are rendered inoperable by an inoperable SCIV.

## A.1 and A.2

In the event that there are one or more penetration flow paths with one SCIV inoperable, the affected penetration flow path(s) must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic SCIV, a closed manual valve, and a blind flange. For penetrations isolated in accordance with Required Action A.1, the device used to isolate the penetration should be the closest available device to [secondary] containment. The Required Action must be completed within the 8 hour Completion Time. The specified time period is reasonable considering the time required to isolate the penetration, and the probability of a DBA, which requires the SCIVs to close, occurring during this short time is very low.

For affected penetrations that have been isolated in accordance with Required Action A.1, the affected penetration must be verified to be isolated on a periodic basis. This is necessary to ensure that [secondary] containment penetrations required to be isolated following an accident, but no longer capable of being automatically isolated, will be in the isolation position should an event occur. The Completion Time of once per 31 days is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low. This Required Action does not require any testing or device

## **ACTIONS** (continued)

manipulation. Rather, it involves verification that the affected penetration remains isolated.

Required Action A.2 is modified by two Notes. Note 1 applies to devices located in high radiation areas and allows them to be verified closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned. Therefore, the probability of misalignment, once they have been verified to be in the proper position, is low.

## <u>B.1</u>

With two SCIVs in one or more penetration flow paths inoperable, the affected penetration flow path must be isolated within 4 hours. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. The 4 hour Completion Time is reasonable considering the time required to isolate the penetration and the probability of a DBA, which requires the SCIVs to close, occurring during this short time, is very low.

The Condition has been modified by a Note stating that Condition B is only applicable to penetration flow paths with two isolation valves. This clarifies that only Condition A is entered if one SCIV is inoperable in each of two penetrations.

#### C.1 and C.2

If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

# **ACTIONS** (continued)

### D.1 and D.2

If any Required Action and associated Completion Time are not met, the plant must be placed in a condition in which the LCO does not apply. If applicable, the movement of [recently] irradiated fuel assemblies in the [secondary] containment must be immediately suspended. Suspension of these activities shall not preclude completion of movement of a component to a safe position. Also, if applicable, actions must be immediately initiated to suspend OPDRVs in order to minimize the probability of a vessel draindown and the subsequent potential for fission product release. Actions must continue until OPDRVs are suspended.

Required Action D.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving fuel while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

## SURVEILLANCE REQUIREMENTS

### SR 3.6.4.2.1

This SR verifies that each secondary containment manual isolation valve and blind flange that is not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the [secondary] containment boundary is within design limits. This SR does not require any testing or valve manipulation. Rather, it involves verification that those SCIVs in [secondary] containment that are capable of being mispositioned are in the correct position.

Since these SCIVs are readily accessible to personnel during normal operation and verification of their position is relatively easy, the 31 day Frequency was chosen to provide added assurance that the SCIVs are in the correct positions. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

Two Notes have been added to this SR. The first Note applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA

# SURVEILLANCE REQUIREMENTS (continued)

reasons. Therefore, the probability of misalignment of these SCIVs, once they have been verified to be in the proper position, is low.

A second Note has been included to clarify that SCIVs that are open under administrative controls are not required to meet the SR during the time the SCIVs are open.

## SR 3.6.4.2.2

Verifying that the isolation time of each power operated, automatic SCIV is within limits is required to demonstrate OPERABILITY. The isolation time test ensures that the SCIV will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time and Frequency of this SR are [in accordance with the Inservice Testing Program or 92 days].

## SR 3.6.4.2.3

Verifying that each automatic SCIV closes on a secondary containment isolation signal is required to prevent leakage of radioactive material from [secondary] containment following a DBA or other accidents. This SR ensures that each automatic SCIV will actuate to the isolation position on a [secondary] containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.2.6 overlaps this SR to provide complete testing of the safety function. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

#### REFERENCES

- 1. FSAR, Section [15.1.39].
- 2. FSAR, Section [15.1.41].
- 3. FSAR, Section [ ].

#### **B 3.6 CONTAINMENT SYSTEMS**

# B 3.6.4.3 Standby Gas Treatment (SGT) System

#### **BASES**

#### **BACKGROUND**

The SGT System is required by 10 CFR 50, Appendix A, GDC 41, "Containment Atmosphere Cleanup" (Ref. 1). The function of the SGT System is to ensure that radioactive materials that leak from the primary containment into the [secondary] containment following a Design Basis Accident (DBA) are filtered and adsorbed prior to exhausting to the environment.

The SGT System consists of two fully redundant subsystems, each with its own set of ductwork, dampers, charcoal filter train, and controls.

Each charcoal filter train consists of (components listed in order of the direction of the air flow):

- a. A demister or moisture separator,
- b. An electric heater,
- c. A prefilter,
- d. A high efficiency particulate air (HEPA) filter,
- e. A charcoal adsorber.
- f. A second HEPA filter, and
- g. A centrifugal fan.

The sizing of the SGT System equipment and components is based on the results of an infiltration analysis, as well as an exfiltration analysis of the [secondary] containment. The internal pressure of the SGT System boundary region is maintained at a negative pressure of [0.25] inches water gauge when the system is in operation, which represents the internal pressure required to ensure zero exfiltration of air from the building when exposed to a [10] mph wind blowing at an angle of [45]° to the building.

The demister is provided to remove entrained water in the air, while the electric heater reduces the relative humidity of the airstream to less than [70]% (Ref. 2). The prefilter removes large particulate matter, while the HEPA filter removes fine particulate matter and protects the charcoal

## **BACKGROUND** (continued)

from fouling. The charcoal adsorber removes gaseous elemental iodine and organic iodides, and the final HEPA filter collects any carbon fines exhausted from the charcoal adsorber.

The SGT System automatically starts and operates in response to actuation signals indicative of conditions or an accident that could require operation of the system. Following initiation, both charcoal filter train fans start. Upon verification that both subsystems are operating, the redundant subsystem is normally shut down.

# APPLICABLE SAFETY ANALYSES

The design basis for the SGT System is to mitigate the consequences of a loss of coolant accident and fuel handling accidents [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] (Ref. 2). For all events analyzed, the SGT System is shown to be automatically initiated to reduce, via filtration and adsorption, the radioactive material released to the environment.

The SGT System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

Following a DBA, a minimum of one SGT subsystem is required to maintain the [secondary] containment at a negative pressure with respect to the environment and to process gaseous releases. Meeting the LCO requirements for two OPERABLE subsystems ensures operation of at least one SGT subsystem in the event of a single active failure.

#### **APPLICABILITY**

In MODES 1, 2, and 3, a DBA could lead to a fission product release to primary containment that leaks to secondary containment. Therefore, SGT System OPERABILITY is required during these MODES.

In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining the SGT System in OPERABLE status is not required in MODE 4 or 5, except for other situations under which significant releases of radioactive material can be postulated, such as during operations with a potential for draining the reactor vessel (OPDRVs) or during movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, the SGT System is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days).]

### **ACTIONS**

### <u>A.1</u>

With one SGT subsystem inoperable, the inoperable subsystem must be restored to OPERABLE status in 7 days. In this Condition, the remaining OPERABLE SGT subsystem is adequate to perform the required radioactivity release control function. However, the overall system reliability is reduced because a single failure in the OPERABLE subsystem could result in the radioactivity release control function not being adequately performed. The 7 day Completion Time is based on consideration of such factors as the availability of the OPERABLE redundant SGT System and the low probability of a DBA occurring during this period.

#### B.1 and B.2

If the SGT subsystem cannot be restored to OPERABLE status within the required Completion Time in MODE 1, 2, or 3, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

### C.1, C.2.1, and C.2.2

During movement of [recently] irradiated fuel assemblies, in the [secondary] containment or during OPDRVs, when Required Action A.1 cannot be completed within the required Completion Time, the OPERABLE SGT subsystem should immediately be placed in operation. This action ensures that the remaining subsystem is OPERABLE, that no failures that could prevent automatic actuation have occurred, and that any other failure would be readily detected.

An alternative to Required Action C.1 is to immediately suspend activities that represent a potential for releasing a significant amount of radioactive material to the [secondary] containment, thus placing the plant in a condition that minimizes risk. If applicable, movement of [recently] irradiated fuel assemblies must immediately be suspended. Suspension of these activities must not preclude completion of movement of a component to a safe position. Also, if applicable, actions must immediately be initiated to suspend OPDRVs in order to minimize the probability of a vessel draindown and subsequent potential for fission product release. Actions must continue until OPDRVs are suspended.

# ACTIONS (continued)

The Required Actions of Condition C have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

### D.1

If both SGTS subsystems are inoperable in MODE 1, 2, or 3, the SGT system may not be capable of supporting the required radioactivity release control function. Therefore, actions are required to enter LCO 3.0.3 immediately.

# E.1 and E.2

When two SGT subsystems are inoperable, if applicable, movement of [recently] irradiated fuel assemblies in [secondary] containment must immediately be suspended. Suspension of these activities shall not preclude completion of movement of a component to a safe position. Also, if applicable, actions must immediately be initiated to suspend OPDRVs in order to minimize the probability of a vessel draindown and subsequent potential for fission product release. Actions must continue until OPDRVs are suspended.

Required Action E.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

# SURVEILLANCE REQUIREMENTS

### SR 3.6.4.3.1

Operating each SGT subsystem for  $\geq$  [10] continuous hours ensures that [both] subsystems are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. Operation [with the heaters on (automatic heater cycling to maintain temperature)]

## SURVEILLANCE REQUIREMENTS (continued)

for  $\geq$  [10] continuous hours every 31 days eliminates moisture on the adsorbers and HEPA filters. The 31 day Frequency was developed in consideration of the known reliability of fan motors and controls and the redundancy available in the system.

### SR 3.6.4.3.2

This SR verifies that the required SGT filter testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The VFTP includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the VFTP.

### SR 3.6.4.3.3

This SR verifies that each SGT subsystem starts on receipt of an actual or simulated initiation signal. While this Surveillance can be performed with the reactor at power, operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.2.6 overlaps this SR to provide complete testing of the safety function. Therefore, the Frequency was found to be acceptable from a reliability standpoint.

### [SR 3.6.4.3.4

This SR verifies that the filter cooler bypass damper can be opened and the fan started. This ensures that the ventilation mode of SGT System operation is available. While this Surveillance can be performed with the reactor at power, operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency, which is based on the refueling cycle. Therefore, the Frequency was found to be acceptable from a reliability standpoint.]

### **REFERENCES**

- 1. 10 CFR 50, Appendix A, GDC 41.
- 2. FSAR, Section [6.2.3].

# **B 3.7 PLANT SYSTEMS**

B 3.7.1 Residual Heat Removal Service Water (RHRSW) System

#### **BASES**

### **BACKGROUND**

The RHRSW System is designed to provide cooling water for the Residual Heat Removal (RHR) System heat exchangers, required for a safe reactor shutdown following a Design Basis Accident (DBA) or transient. The RHRSW System is operated whenever the RHR heat exchangers are required to operate in the shutdown cooling mode or in the suppression pool cooling or spray mode of the RHR System.

The RHRSW System consists of two independent and redundant subsystems. Each subsystem is made up of a header, two [4000] gpm pumps, a suction source, valves, piping, heat exchanger, and associated instrumentation. Either of the two subsystems is capable of providing the required cooling capacity with one pump operating to maintain safe shutdown conditions. The two subsystems are separated from each other by normally closed motor operated cross tie valves, so that failure of one subsystem will not affect the OPERABILITY of the other subsystem. The RHRSW System is designed with sufficient redundancy so that no single active component failure can prevent it from achieving its design function. The RHRSW System is described in the FSAR, Section [9.2.7], Reference 1.

Cooling water is pumped by the RHRSW pumps from the [Altamaha River] through the tube side of the RHR heat exchangers, and discharges to the [circulating water flume]. A minimum flow line from the pump discharge to the intake structure prevents the pump from overheating when pumping against a closed discharge valve.

The system is initiated manually from the control room. If operating during a loss of coolant accident (LOCA), the system is automatically tripped to allow the diesel generators to automatically power only that equipment necessary to reflood the core. The system can be manually started any time 10 minutes after the LOCA, or manually started any time the LOCA signal is manually overridden or clears.

# APPLICABLE SAFETY ANALYSES

The RHRSW System removes heat from the suppression pool to limit the suppression pool temperature and primary containment pressure following a LOCA. This ensures that the primary containment can perform its function of limiting the release of radioactive materials to the environment following a LOCA. The ability of the RHRSW System to support long term cooling of the reactor or primary containment is

# APPLICABLE SAFETY ANALYSES (continued)

discussed in the FSAR, Chapters [6] and [15] (Refs. 2 and 3, respectively). These analyses explicitly assume that the RHRSW System will provide adequate cooling support to the equipment required for safe shutdown. These analyses include the evaluation of the long term primary containment response after a design basis LOCA.

The safety analyses for long term cooling were performed for various combinations of RHR System failures. The worst case single failure that would affect the performance of the RHRSW System is any failure that would disable one subsystem of the RHRSW System. As discussed in the FSAR, Section [6.2.1.4.3] (Ref. 4) for these analyses, manual initiation of the OPERABLE RHRSW subsystem and the associated RHR System is assumed to occur [10] minutes after a DBA. The RHRSW flow assumed in the analyses is [4000] gpm per pump with two pumps operating in one loop. In this case, the maximum suppression chamber water temperature and pressure are [206.4]°F and [36.59] psig, respectively, well below the design temperature of [340]°F and maximum allowable pressure of [62] psig.

The RHRSW System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two RHRSW subsystems are required to be OPERABLE to provide the required redundancy to ensure that the system functions to remove post accident heat loads, assuming the worst case single active failure occurs coincident with the loss of offsite power.

An RHRSW subsystem is considered OPERABLE when:

- a. Two pumps are OPERABLE and
- b. An OPERABLE flow path is capable of taking suction from the intake structure and transferring the water to the RHR heat exchangers at the assumed flow rate. Additionally, the RHRSW cross tie valves (which allow the two RHRSW loops to be connected) must be closed so that failure of one subsystem will not affect the OPERABILITY of the other subsystems."

An adequate suction source is not addressed in this LCO since the minimum net positive suction head ([59] ft mean sea level in the pump well) is bounded by the plant service water pump requirements (LCO 3.7.2, "[Plant Service Water (PSW)] System and [Ultimate Heat Sink (UHS)]").

### **APPLICABILITY**

In MODES 1, 2, and 3, the RHRSW System is required to be OPERABLE to support the OPERABILITY of the RHR System for primary containment cooling (LCO 3.6.2.3, "Residual Heat Removal (RHR) Suppression Pool Cooling," and LCO 3.6.2.4, "Residual Heat Removal (RHR) Suppression Pool Spray") and decay heat removal (LCO 3.4.8, "Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown"). The Applicability is therefore consistent with the requirements of these systems.

In MODES 4 and 5, the OPERABILITY requirements of the RHRSW System are determined by the systems it supports.

#### **ACTIONS**

### **A.1**

With one RHRSW pump inoperable, the inoperable pump must be restored to OPERABLE status within 30 days. With the unit in this condition, the remaining OPERABLE RHRSW pumps are adequate to perform the RHRSW heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced RHRSW capability. The 30 day Completion Time is based on the remaining RHRSW heat removal capability, including enhanced reliability afforded by manual cross connect capability, and the low probability of a DBA with concurrent worst case single failure.

### <u>B.1</u>

With one RHRSW pump inoperable in each subsystem, if no additional failures occur in the RHRSW System, and the two OPERABLE pumps are aligned by opening the normally closed cross tie valves, then the remaining OPERABLE pumps and flow paths provide adequate heat removal capacity following a design basis LOCA. However, capability for this alignment is not assumed in long term containment response analysis and an additional single failure in the RHRSW System could reduce the system capacity below that assumed in the safety analysis. Therefore, continued operation is permitted only for a limited time. One inoperable pump is required to be restored to OPERABLE status within 7 days. The 7 day Completion Time for restoring one inoperable RHRSW pump to OPERABLE status is based on engineering judgment, considering the level of redundancy provided.

## **ACTIONS** (continued)

### <u>C.1</u>

Required Action C.1 is intended to handle the inoperability of one RHRSW subsystem for reasons other than Condition A. The Completion Time of 7 days is allowed to restore the RHRSW subsystem to OPERABLE status. With the unit in this condition, the remaining OPERABLE RHRSW subsystem is adequate to perform the RHRSW heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE RHRSW subsystem could result in loss of RHRSW function. The Completion Time is based on the redundant RHRSW capabilities afforded by the OPERABLE subsystem and the low probability of an event occurring requiring RHRSW during this period.

The Required Action is modified by a Note indicating that the applicable Conditions of LCO 3.4.8, be entered and Required Actions taken if the inoperable RHRSW subsystem results in inoperable [RHR shutdown cooling]. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components.

### <u>D.1</u>

With both RHRSW subsystems inoperable for reasons other than Condition B (e.g., both subsystems with inoperable flow paths, or one subsystem with an inoperable pump and one subsystem with an inoperable flow path), the RHRSW System is not capable of performing its intended function. At least one subsystem must be restored to OPERABLE status within 8 hours. The 8 hour Completion Time for restoring one RHRSW subsystem to OPERABLE status, is based on the Completion Times provided for the RHR suppression pool cooling and spray functions.

The Required Action is modified by a Note indicating that the applicable Conditions of LCO 3.4.8, be entered and Required Actions taken if the inoperable RHRSW subsystem results in inoperable [RHR shutdown cooling]. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components.

#### E.1 and E.2

If the RHRSW subsystems cannot be not restored to OPERABLE status within the associated Completion Times, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within

## **ACTIONS** (continued)

36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

# SURVEILLANCE REQUIREMENTS

### SR 3.7.1.1

Verifying the correct alignment for each manual, power operated, and automatic valve in each RHRSW subsystem flow path provides assurance that the proper flow paths will exist for RHRSW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position, and yet considered in the correct position, provided it can be realigned to its accident position. This is acceptable because the RHRSW System is a manually initiated system. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

#### REFERENCES

- 1. FSAR, Section [9.2.7].
- 2. FSAR, Chapter [6].
- 3. FSAR, Chapter [15].
- 4. FSAR, Section [6.2.1.4.3].

### **B 3.7 PLANT SYSTEMS**

B 3.7.2 [Plant Service Water (PSW)] System and [Ultimate Heat Sink [UHS]]

# **BASES**

#### **BACKGROUND**

The [PSW] System is designed to provide cooling water for the removal of heat from equipment, such as the diesel generators (DGs), residual heat removal (RHR) pump coolers, and room coolers for Emergency Core Cooling System equipment, required for a safe reactor shutdown following a Design Basis Accident (DBA) or transient. The [PSW] System also provides cooling to unit components, as required, during normal operation. Upon receipt of a loss of offsite power or loss of coolant accident (LOCA) signal, nonessential loads are automatically isolated, the essential loads are automatically divided between [PSW] Divisions 1 and 2, and one [PSW] pump is automatically started in each division.

The [PSW] System consists of the [UHS] and two independent and redundant subsystems. Each of the two [PSW] subsystems is made up of a header, two [8500] gpm pumps, a suction source, valves, piping and associated instrumentation. Either of the two subsystems is capable of providing the required cooling capacity to support the required systems with one pump operating. The two subsystems are separated from each other so failure of one subsystem will not affect the OPERABILITY of the other system.

Cooling water is pumped from the [Altamaha River] by the [PSW] pumps to the essential components through the two main headers. After removing heat from the components, the water is discharged to the circulating water flume to replace evaporation losses from the circulating water system, or directly to the river via a bypass valve.

# APPLICABLE SAFETY ANALYSES

Sufficient water inventory is available for all [PSW] System post LOCA cooling requirements for a 30 day period with no additional makeup water source available. The ability of the [PSW] System to support long term cooling of the reactor containment is assumed in evaluations of the equipment required for safe reactor shutdown presented in the FSAR, Chapters [4] and [6] (Refs. 1 and 2, respectively). These analyses include the evaluation of the long term primary containment response after a design basis LOCA.

The ability of the [PSW] System to provide adequate cooling to the identified safety equipment is an implicit assumption for the safety analyses evaluated in References 1 and 2. The ability to provide onsite emergency AC power is dependent on the ability of the [PSW] System to

# APPLICABLE SAFETY ANALYSES (continued)

cool the DGs. The long term cooling capability of the RHR, core spray, and RHR service water pumps is also dependent on the cooling provided by the [PSW] System.

The [PSW] System, together with the [UHS], satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

# LCO

The [PSW] subsystems are independent of each other to the degree that each has separate controls, power supplies, and the operation of one does not depend on the other. In the event of a DBA, one subsystem of [PSW] is required to provide the minimum heat removal capability assumed in the safety analysis for the system to which it supplies cooling water. To ensure this requirement is met, two subsystems of [PSW] must be OPERABLE. At least one subsystem will operate, if the worst single active failure occurs coincident with the loss of offsite power.

A subsystem is considered OPERABLE when it has an OPERABLE [UHS], two OPERABLE pumps, and an OPERABLE flow path capable of taking suction from the intake structure and transferring the water to the appropriate equipment.

The OPERABILITY of the [UHS] is based on having a minimum water level in the pump well of the intake structure of [60.7] ft mean sea level and a maximum water temperature of [90]°F.

The isolation of the [PSW] System to components or systems may render those components or systems inoperable, but does not affect the OPERABILITY of the [PSW] System.

#### **APPLICABILITY**

In MODES 1, 2, and 3, the [PSW] System and [UHS] are required to be OPERABLE to support OPERABILITY of the equipment serviced by the [PSW] System. Therefore, the [PSW] System and [UHS] are required to be OPERABLE in these MODES.

In MODES 4 and 5, the OPERABILITY requirements of the [PSW] System and [UHS] are determined by the systems they support.

#### **ACTIONS**

### A.1

With one [PSW] pump inoperable in each subsystem, the inoperable pump must be restored to OPERABLE status within 7 days. With the unit in this condition, the remaining OPERABLE [PSW] pumps (even allowing for an additional single failure) are adequate to perform the [PSW] heat removal function; however, the overall reliability is reduced. The 30 day Completion Time is based on the remaining [PSW] heat removal capability to accommodate additional single failures, and the low probability of an event occurring during this time period.

### **B.1**

With one [PSW] pump inoperable in each subsystem, one inoperable pump must be restored to OPERABLE status within 7 days. With the unit in this condition, the remaining OPERABLE [PSW] pumps are adequate to perform the [PSW] heat removal function; however, the overall reliability is reduced. The 7 day Completion Time is based on the remaining [PSW] heat removal capability to accommodate an additional single failure and the low probability of an event occurring during this time period.

### [ <u>C.1</u>

If one or more cooling towers have one fan inoperable (i.e., up to one fan per cooling tower inoperable), action must be taken to restore the inoperable cooling tower fan(s) to OPERABLE status within 7 days. The 7 day Completion Time is based on the low probability of an accident occurring during the 7 days that one cooling tower fan is inoperable in one or more cooling towers, the number of available systems, and the time required to reasonably complete the Required Action.

### [ D.1

### - REVIEWER'S NOTE -

The [ ]°F is the maximum allowed UHS temperature value and is based on temperature limitations of the equipment that is relied upon for accident mitigation and safe shutdown of the unit.

With water temperature of the UHS > [90]°F, the design basis assumption associated with initial UHS temperature are bounded provided the temperature of the UHS averaged over the previous 24 hour period is ≤ [90]°F. With the water temperature of the UHS > [90]°F, long term cooling capability of the ECCS loads and DGs may be affected.

# **ACTIONS** (continued)

Therefore, to ensure long term cooling capability is provided to the ECCS loads when water temperature of the UHS is > [90]°F, Required Action D.1 is provided to more frequently monitor the water temperature of the UHS and verify the temperature is  $\leq$  [90]°F when averaged over the previous 24 hour period. The once per hour Completion Time takes into consideration UHS temperature variations and the increased monitoring frequency needed to ensure design basis assumptions and equipment limitations are not exceeded in this condition. If the water temperature of the UHS exceeds [90]°F when averaged over the previous 24 hour period or the water temperature of the UHS exceeds [ ]°F, Condition F must be entered immediately.]

### <u>E.1</u>

With one [PSW] subsystem inoperable for reasons other than Condition A and [Condition C] (e.g., inoperable flow path or both pumps inoperable in a loop), the [PSW] subsystem must be restored to OPERABLE status within 72 hours. With the unit in this condition, the remaining OPERABLE [PSW] subsystem is adequate to perform the heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE [PSW] subsystem could result in loss of [PSW] function.

The 72 hour Completion Time is based on the redundant [PSW] System capabilities afforded by the OPERABLE subsystem, the low probability of an accident occurring during this time period, and is consistent with the allowed Completion Time for restoring an inoperable DG.

Required Action E.1 is modified by two Notes indicating that the applicable Conditions of LCO 3.8.1, "AC Sources - Operating," LCO 3.4.8, "Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown," be entered and Required Actions taken if the inoperable [PSW] subsystem results in an inoperable DG or RHR shutdown cooling subsystem, respectively. This is in accordance with LCO 3.0.6 and ensures the proper actions are taken for these components.

## F.1 and F.2

If the [PSW] subsystem cannot be restored to OPERABLE status within the associated Completion Time, or both [PSW] subsystems are inoperable for reasons other than Condition B and [Condition C], [or the [UHS] is determined inoperable for reasons other than Condition C or D] the unit must be placed in a MODE in which the LCO does not apply. To

## **ACTIONS** (continued)

achieve this status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

## SURVEILLANCE REQUIREMENTS

## [SR 3.7.2.1

This SR ensures adequate long term (30 days) cooling can be maintained. With the [UHS] water source below the minimum level, the affected [PSW] subsystem must be declared inoperable. The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. ]

### [SR 3.7.2.2

This SR verifies the water level [in each pump well of the intake structure] to be sufficient for the proper operation of the [PSW] pumps (net positive suction head and pump vortexing are considered in determining this limit). The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES.]

### [SR 3.7.2.3

Verification of the [UHS] temperature ensures that the heat removal capability of the [PSW] System is within the assumptions of the DBA analysis. The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. 1

### [SR 3.7.2.4

Operating each cooling tower fan for  $\geq 15$  minutes ensures that all fans are OPERABLE and that all associated controls are functioning properly. It also ensures that fan or motorfailure, or excessive vibration, can be detected for corrective action. The 31 day Frequency is based on operating experience, the known reliability of the fan units, the redundancy available, and the low probability of significant degradation of the cooling tower fans occurring between surveillances. ]

# SURVEILLANCE REQUIREMENTS (continued)

### SR 3.7.2.5

Verifying the correct alignment for each manual, power operated, and automatic valve in each [PSW] subsystem flow path provides assurance that the proper flow paths will exist for [PSW] operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position, and yet considered in the correct position, provided it can be automatically realigned to its accident position within the required time. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

This SR is modified by a Note indicating that isolation of the [PSW] System to components or systems may render those components or systems inoperable, but does not affect the OPERABILITY of the [PSW] System. As such, when all [PSW] pumps, valves, and piping are OPERABLE, but a branch connection off the main header is isolated, the [PSW] System is still OPERABLE.

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

## SR 3.7.2.6

This SR verifies that the automatic isolation valves of the [PSW] System will automatically switch to the safety or emergency position to provide cooling water exclusively to the safety related equipment during an accident event. This is demonstrated by the use of an actual or simulated initiation signal. This SR also verifies the automatic start capability of one of the two [PSW] pumps in each subsystem.

Operating experience has shown that these components usually pass the SR when performed at the [18] month Frequency. Therefore, this Frequency is concluded to be acceptable from a reliability standpoint.

#### REFERENCES

- 1. FSAR, Chapter [4].
- 2. FSAR, Chapter [6].

# **B 3.7 PLANT SYSTEMS**

B 3.7.3 Diesel Generator (DG) [1B] Standby Service Water (SSW) System

### **BASES**

### **BACKGROUND**

The DG [1B] SSW System is designed to provide cooling water for the removal of heat from the DG [1B]. DG [1B] is the only component served by the DG [1B] SSW System.

The DG [1B] SSW pump autostarts upon receipt of a diesel generator (DG) start signal when power is available to the pump's electrical bus. Cooling water is pumped from the [Altamaha River] by the DG [1B] SSW pump to the essential DG components through the SSW supply header. After removing heat from the components, the water is discharged to the unit service water (PSW) discharge header. The capability exists to manually cross connect the PSW System to supply cooling to the DG [1B] during times when the SSW pump is inoperable. A complete description of the DG [1B] SSW System is presented in the FSAR, Section [9.5.5] (Ref. 1).

# APPLICABLE SAFETY ANALYSES

The ability of the DG [1B] SSW System to provide adequate cooling to the DG [1B] is an implicit assumption for the safety analyses presented in the FSAR, Chapters [6] and [15] (Refs. 2 and 3, respectively). The ability to provide onsite emergency AC power is dependent on the ability of the DG [1B] SSW System to cool the DG [1B].

The DG [1B] SSW System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

The OPERABILITY of the DG [1B] SSW System is required to provide a coolant source to ensure effective operation of the DG [1B] in the event of an accident or transient. The OPERABILITY of the DG [1B] SSW System is based on having an OPERABLE pump and an OPERABLE flow path.

An adequate suction source is not addressed in this LCO since the minimum net positive suction head of the DG [1B] SSW pump is bounded by the PSW requirements (LCO 3.7.2, "[Unit Service Water (PSW)] System and [Ultimate Heat Sink (UHS)]").

#### **APPLICABILITY**

The requirements for OPERABILITY of the DG [1B] SSW System are governed by the required OPERABILITY of the DG [1B] (LCO 3.8.1, "AC Sources - Operating," and LCO 3.8.2, "AC Sources - Shutdown").

### **ACTIONS**

### A.1, A.2, and A.3

The Required Actions are modified by a Note indicating that the LCO 3.0.4 does not apply. As a result, a MODE change is allowed when the DG [1B] SSW System is inoperable, provided the DG [1B] has an adequate cooling water supply from the Unit [1] PSW.

If the DG [1B] SSW System is inoperable, the OPERABILITY of the DG [1B] is affected due to loss of its cooling source; however, the capability exists to provide cooling to DG [1B] from the PSW System of Unit [1]. Continued operation is allowed for 60 days if the OPERABILITY of a Unit 1 PSW System, with respect to its capability to provide cooling to the DG [1B], can be verified. This is accomplished by aligning cooling water to DG [1B] from the Unit 1 PSW System within 8 hours and verifying this lineup once every 31 days. The 8 hour Completion Time is based on the time required to reasonably complete the Required Action, and the low probability of an event occurring requiring DG [1B] during this period. The 31 day verification of the Unit [1] PSW lineup to the DG [1B] is consistent with the PSW valve lineup SRs. The 60 day Completion Time to restore the DG [1B] SSW System to OPERABLE status allows sufficient time to repair the system, yet prevents indefinite operation with cooling water provided from the Unit [1] PSW System.

#### **B**.1

If cooling water cannot be made available to the DG [1B] within the 8 hour Completion Time, or if cooling water cannot be verified to be aligned to DG [1B] from a Unit [1] PSW subsystem as required by the 31 day verification Required Action, the DG [1B] cannot perform its intended function and must be immediately declared inoperable. In accordance with LCO 3.0.6, this also requires entering into the Applicable Conditions and Required Actions for LCO 3.8.1 or LCO 3.8.2. Additionally, if the DG [1B] SSW System is not restored to OPERABLE status within 60 days, DG [1B] must be immediately declared inoperable.

# SURVEILLANCE REQUIREMENTS

### SR 3.7.3.1

Verifying the correct alignment for manual, power operated, and automatic valves in the DG [1B] SSW System flow path provides assurance that the proper flow paths will exist for DG [1B] SSW System operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position, and yet be considered in the

# SURVEILLANCE REQUIREMENTS (continued)

correct position provided it can be automatically realigned to its accident position, within the required time. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

### SR 3.7.3.2

This SR ensures that the DG [1B] SSW System pump will automatically start to provide required cooling to the DG [1B] when the DG [1B] starts and the respective bus is energized.

Operating experience has shown that these components usually pass the SR when performed at the [18] month Frequency, which is based at the refueling cycle. Therefore, this Frequency is concluded to be acceptable from a reliability standpoint.

# **REFERENCES**

- 1. FSAR, Section [9.5.5].
- 2. FSAR, Chapter [6].
- 3. FSAR, Chapter [15].

#### **B 3.7 PLANT SYSTEMS**

B 3.7.4 [Main Control Room Environmental Control (MCREC)] System

### **BASES**

#### **BACKGROUND**

The [MCREC] System provides a radiologically controlled environment from which the unit can be safely operated following a Design Basis Accident (DBA).

The safety related function of [MCREC] System includes two independent and redundant high efficiency air filtration subsystems for emergency treatment of recirculated air or outside supply air. Each subsystem consists of a demister, an electric heater, a prefilter, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section, a second HEPA filter, a booster fan, an air handling unit (excluding the condensing unit), and the associated ductwork and dampers. Demisters remove water droplets from the airstream. Prefilters and HEPA filters remove particulate matter, which may be radioactive. The charcoal adsorbers provide a holdup period for gaseous iodine, allowing time for decay.

The [MCREC] System is a standby system, parts of which also operate during normal unit operations to maintain the control room environment. Upon receipt of the initiation signal(s) (indicative of conditions that could result in radiation exposure to control room personnel), the [MCREC] System automatically switches to the pressurization mode of operation to prevent infiltration of contaminated air into the control room. A system of dampers isolates the control room, and a part of the recirculated air is routed through either of the two filter subsystems. Outside air is taken in at the normal ventilation intake and is mixed with the recirculated air before being passed through one of the charcoal adsorber filter subsystems for removal of airborne radioactive particles.

The [MCREC] System is designed to maintain the control room environment for a 30 day continuous occupancy after a DBA without exceeding 5 rem whole body dose or its equivalent to any part of the body. A single [MCREC] subsystem will pressurize the control room to about [0.1] inches water gauge to prevent infiltration of air from surrounding buildings. [MCREC] System operation in maintaining control room habitability is discussed in the FSAR, Chapters [6] and [9], (Refs. 1 and 2, respectively).

# APPLICABLE SAFETY ANALYSES

The ability of the [MCREC] System to maintain the habitability of the control room is an explicit assumption for the safety analyses presented in the FSAR, Chapters [6] and [15] (Refs. 1 and 3, respectively). The pressurization mode of the [MCREC] System is assumed to operate following a loss of coolant accident, fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)], main steam line break, and control rod drop accident, as discussed in the FSAR, Section [6.4.1.2.2] (Ref. 4). The radiological doses to control room personnel as a result of the various DBAs are summarized in Reference 3. No single active or passive failure will cause the loss of outside or recirculated air from the control room.

The [MCREC] System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

## LCO

Two redundant subsystems of the [MCREC] System are required to be OPERABLE to ensure that at least one is available, assuming a single failure disables the other subsystem. Total system failure could result in exceeding a dose of 5 rem to the control room operators in the event of a DBA.

The [MCREC] System is considered OPERABLE when the individual components necessary to control operator exposure are OPERABLE in both subsystems. A subsystem is considered OPERABLE when its associated:

- a. Fan is OPERABLE,
- HEPA filter and charcoal adsorbers are not excessively restricting flow and are capable of performing their filtration functions, and
- c. Heater, demister, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained.

In addition, the control room boundary must be maintained, including the integrity of the walls, floors, ceilings, ductwork, and access doors.

The LCO is modified by a Note allowing the main control room boundary to be opened intermittently under administrative controls. For entry and exit through doors, the administrative control the opening is performed by the person(s) entering or exiting the area. For other openings, these controls consist of stationing a dedicated individual at the opening who is in continuous communication with the main control room. This individual

### LCO (continued)

will have a method to rapidly close the opening when a need for main control room isolation is indicated.

#### **APPLICABILITY**

In MODES 1, 2, and 3, the [MCREC] System must be OPERABLE to control operator exposure during and following a DBA, since the DBA could lead to a fission product release.

In MODES 4 and 5, the probability and consequences of a DBA are reduced because of the pressure and temperature limitations in these MODES. Therefore, maintaining the [MCREC] System OPERABLE is not required in MODE 4 or 5, except for the following situations under which significant radioactive releases can be postulated:

- a. During operations with potential for draining the reactor vessel (OPDRVs); and
- b. During movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, the MCREC System is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days).]

#### ACTIONS

### **A.1**

With one [MCREC] subsystem inoperable, the inoperable [MCREC] subsystem must be restored to OPERABLE status within 7 days. With the unit in this condition, the remaining OPERABLE [MCREC] subsystem is adequate to perform control room radiation protection. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced [MCREC] System capability. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and that the remaining subsystem can provide the required capabilities.

#### **B.1**

### - REVIEWER'S NOTE -

Adoption of Condition B is dependent on a commitment from the licensee to have written procedures available describing compensatory measures to be taken in the event of an intentional or unintentional entry into Condition B.

# **ACTIONS** (continued)

If the main control room boundary is inoperable in MODE 1, 2, or 3, the MCREC trains cannot perform their intended functions. Actions must be taken to restore an OPERABLE main control room boundary within 24 hours. During the period that the main control room boundary is inoperable, appropriate compensatory measures (consistent with the intent of GDC 19) should be utilized to protect control room operators from potential hazards such as radioactive contamination, toxic chemicals, smoke, temperature and relative humidity, and physical security. Preplanned measures should be available to address these concerns for intentional and unintentional entry into the condition. The 24 hour Completion Time is reasonable based on the low probability of a DBA occurring during this time period, and the use of compensatory measures. The 24 hour Completion Time is a typically reasonable time to diagnose, plan and possibly repair, and test most problems with the main control room boundary.

### C.1 and C.2

In MODE 1, 2, or 3, if the inoperable [MCREC] subsystem or control room boundary cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE that minimizes risk. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

### D.1, D.2.1 and D.2.2

The Required Actions of Condition D are modified by a Note indicating that LCO 3.0.3 does not apply. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.

During movement of [recently] irradiated fuel assemblies in the [secondary] containment or during OPDRVs, if the inoperable [MCREC] subsystem cannot be restored to OPERABLE status within the required Completion Time, the OPERABLE [MCREC] subsystem may be placed in the pressurization mode. This action ensures that the remaining subsystem is OPERABLE, that no failures that would prevent automatic actuation will occur, and that any active failure will be readily detected.

## **ACTIONS** (continued)

Required Action D.1 is modified by a Note alerting the operator to [place the system in the toxic gas protection mode if the toxic gas automatic transfer capability is inoperable].

An alternative to Required Action D.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk.

If applicable, movement of [recently] irradiated fuel assemblies in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position. Also, if applicable, actions must be initiated immediately to suspend OPDRVs to minimize the probability of a vessel draindown and the subsequent potential for fission product release. Actions must continue until the OPDRVs are suspended.

#### E.1

If both [MCREC] subsystems are inoperable in MODE 1, 2, or 3 for reasons other than an inoperable control room boundary (i.e., Condition B), the [MCREC] System may not be capable of performing the intended function and the unit is in a condition outside the accident analyses. Therefore, LCO 3.0.3 must be entered immediately.

### F.1 and F.2

The Required Actions of Condition F are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.

During movement of [recently] irradiated fuel assemblies in the [secondary] containment or during OPDRVs, with two [MCREC] subsystems inoperable, action must be taken immediately to suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk.

If applicable, movement of [recently] irradiated fuel assemblies in the [secondary] containment must be suspended immediately. Suspension

# **ACTIONS** (continued)

of these activities shall not preclude completion of movement of a component to a safe position. If applicable, actions must be initiated immediately to suspend OPDVRs to minimize the probability of a vessel draindown and subsequent potential for fission product release. Actions must continue until the OPDRVs are suspended.

# SURVEILLANCE REQUIREMENTS

### SR 3.7.4.1

This SR verifies that a subsystem in a standby mode starts on demand and continues to operate. Standby systems should be checked periodically to ensure that they start and function properly. As the environmental and normal operating conditions of this system are not severe, testing each subsystem once every month provides an adequate check on this system. Monthly heater operation dries out any moisture that has accumulated in the charcoal as a result of humidity in the ambient air. [Systems with heaters must be operated for  $\geq$  10 continuous hours with the heaters energized. Systems without heaters need only be operated for  $\geq$  15 minutes to demonstrate the function of the system.] Furthermore, the 31 day Frequency is based on the known reliability of the equipment and the two subsystem redundancy available.

### SR 3.7.4.2

This SR verifies that the required [MCREC] testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The [VFTP] includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the [VFTP].

#### SR 3.7.4.3

This SR verifies that on an actual or simulated initiation signal, each [MCREC] subsystem starts and operates. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.7.1.5 overlaps this SR to provide complete testing of the safety function. The [18] month Frequency is specified in Reference 5.

### [SR 3.7.4.4

This SR verifies the integrity of the control room enclosure and the assumed inleakage rates of potentially contaminated air. The control

# SURVEILLANCE REQUIREMENTS (continued)

room positive pressure, with respect to potentially contaminated adjacent areas (the turbine building), is periodically tested to verify proper function of the [MCREC] System. During the emergency mode of operation, the [MCREC] System is designed to slightly pressurize the control room  $\geq [0.1]$  inches water gauge positive pressure with respect to the turbine building to prevent unfiltered inleakage. The [MCREC] System is designed to maintain this positive pressure at a flow rate of  $\leq$  [400] cfm to the control room in the pressurization mode. The Frequency of [18] months on a STAGGERED TEST BASIS is consistent with industry practice and other filtration systems SRs. ]

# **REFERENCES**

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [9].
- 3. FSAR, Chapter [15].
- 4. FSAR, Section [6.4.1.2.2].
- 5. Regulatory Guide 1.52, Rev. [2].

#### **B 3.7 PLANT SYSTEMS**

B 3.7.5 [Control Room Air Conditioning (AC)] System

### **BASES**

### **BACKGROUND**

The [Control Room AC] System provides temperature control for the control room following isolation of the control room.

The [Control Room AC] System consists of two independent, redundant subsystems that provide cooling and heating of recirculated control room air. Each subsystem consists of heating coils, cooling coils, fans, chillers, compressors, ductwork, dampers, and instrumentation and controls to provide for control room temperature control.

The [Control Room AC] System is designed to provide a controlled environment under both normal and accident conditions. A single subsystem provides the required temperature control to maintain a suitable control room environment for a sustained occupancy of 12 persons. The design conditions for the control room environment are 76°F and 50% relative humidity. The [Control Room AC] System operation in maintaining the control room temperature is discussed in the FSAR, Section [6.4] (Ref. 1).

# APPLICABLE SAFETY ANALYSES

The design basis of the [Control Room AC] System is to maintain the control room temperature for a 30 day continuous occupancy.

The [Control Room AC] System components are arranged in redundant safety related subsystems. During emergency operation, the [Control Room AC] System maintains a habitable environment and ensures the OPERABILITY of components in the control room. A single failure of a component of the [Control Room AC] System, assuming a loss of offsite power, does not impair the ability of the system to perform its design function. Redundant detectors and controls are provided for control room temperature control. The [Control Room AC] System is designed in accordance with Seismic Category I requirements. The [Control Room AC] System is capable of removing sensible and latent heat loads from the control room, including consideration of equipment heat loads and personnel occupancy requirements to ensure equipment OPERABILITY.

The [Control Room AC] System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### **LCO**

Two independent and redundant subsystems of the [Control Room AC] System are required to be OPERABLE to ensure that at least one is available, assuming a single failure disables the other subsystem. Total system failure could result in the equipment operating temperature exceeding limits.

The [Control Room AC] System is considered OPERABLE when the individual components necessary to maintain the control room temperature are OPERABLE in both subsystems. These components include the cooling coils, fans, chillers, compressors, ductwork, dampers, and associated instrumentation and controls.

## **APPLICABILITY**

In MODE 1, 2, or 3, the [Control Room AC] System must be OPERABLE to ensure that the control room temperature will not exceed equipment OPERABILITY limits following control room isolation.

In MODES 4 and 5, the probability and consequences of a Design Basis Accident are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining the [Control Room AC] System OPERABLE is not required in MODE 4 or 5, except for the following situations under which significant radioactive releases can be postulated:

- a. During operations with a potential for draining the reactor vessel (OPDRVs); and
- b. During movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, the Control Room AC System is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days).]

### **ACTIONS**

### A.1

With one [control room AC] subsystem inoperable, the inoperable [control room AC] subsystem must be restored to OPERABLE status within 30 days. With the unit in this condition, the remaining OPERABLE [control room AC] subsystem is adequate to perform the control room air conditioning function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in loss of the control room air conditioning function. The 30 day Completion Time is based on the low probability of an event occurring requiring control room isolation, the consideration that the remaining subsystem can provide the required protection, and the availability of alternate safety and nonsafety cooling methods.

## **ACTIONS** (continued)

### **B.1** and **B.2**

In MODE 1, 2, or 3, if the inoperable [control room AC] subsystem cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE that minimizes risk. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

### C.1, C.2.1, and C.2.2

The Required Actions of Condition C are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.

During movement of [recently] irradiated fuel assemblies in the [secondary] containment or during OPDRVs, if Required Action A.1 cannot be completed within the required Completion Time, the OPERABLE [control room AC] subsystem may be placed immediately in operation. This action ensures that the remaining subsystem is OPERABLE, that no failures that would prevent actuation will occur, and that any active failure will be readily detected.

An alternative to Required Action C.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk.

If applicable, movement of [recently] irradiated fuel assemblies in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position. Also, if applicable, actions must be initiated immediately to suspend OPDRVs to minimize the probability of a vessel draindown and subsequent potential for fission product release. Actions must continue until the OPDRVs are suspended.

# **ACTIONS** (continued)

### <u>D.1</u>

If both [control room AC] subsystems are inoperable in MODE 1, 2, or 3, the [Control Room AC] System may not be capable of performing the intended function. Therefore, LCO 3.0.3 must be entered immediately.

### **E.1** and **E.2**

The Required Actions of Condition E are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not a sufficient reason to require a reactor shutdown.

During movement of [recently] irradiated fuel assemblies in the [secondary] containment or during OPDRVs, with two [control room AC] subsystems inoperable, action must be taken immediately to suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk.

If applicable, handling of [recently] irradiated fuel in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position. Also, if applicable, actions must be initiated immediately to suspend OPDRVs to minimize the probability of a vessel draindown and subsequent potential for fission product release. Actions must continue until the OPDRVs are suspended.

# SURVEILLANCE REQUIREMENTS

#### SR 3.7.5.1

This SR verifies that the heat removal capability of the system is sufficient to remove the control room heat load assumed in the [safety analyses]. The SR consists of a combination of testing and calculation. The [18] month Frequency is appropriate since significant degradation of the [Control Room AC] System is not expected over this time period.

### **REFERENCES**

1. FSAR, Section [6.4].

### **B 3.7 PLANT SYSTEMS**

# B 3.7.6 Main Condenser Offgas

### **BASES**

### **BACKGROUND**

During unit operation, steam from the low pressure turbine is exhausted directly into the condenser. Air and noncondensible gases are collected in the condenser, then exhausted through the steam jet air ejectors (SJAEs) to the Main Condenser Offgas System. The offgas from the main condenser normally includes radioactive gases.

The Main Condenser Offgas System has been incorporated into the unit design to reduce the gaseous radwaste emission. This system uses a catalytic recombiner to recombine radiolytically dissociated hydrogen and oxygen. The gaseous mixture is cooled by the offgas condenser; the water and condensibles are stripped out by the offgas condenser and moisture separator. The radioactivity of the remaining gaseous mixture (i.e., the offgas recombiner effluent) is monitored downstream of the moisture separator prior to entering the holdup line.

# APPLICABLE SAFETY ANALYSES

The main condenser offgas gross gamma activity rate is an initial condition of the Main Condenser Offgas System failure event, discussed in the FSAR, Section [15.1.35] (Ref. 1). The analysis assumes a gross failure in the Main Condenser Offgas System that results in the rupture of the Main Condenser Offgas System pressure boundary. The gross gamma activity rate is controlled to ensure that, during the event, the calculated offsite doses will be well within the limits of 10 CFR 100 (Ref. 2) or the NRC staff approved licensing basis.

The main condenser offgas limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

#### LCO

To ensure compliance with the assumptions of the Main Condenser Offgas System failure event (Ref. 1), the fission product release rate should be consistent with a noble gas release to the reactor coolant of 100  $\mu$ Ci/MWt-second after decay of 30 minutes. The LCO is established consistent with this requirement ([2436] MWt x 100  $\mu$ Ci/MWt-second = [240] mCi/second).

#### **APPLICABILITY**

The LCO is applicable when steam is being exhausted to the main condenser and the resulting noncondensibles are being processed via the Main Condenser Offgas System. This occurs during MODE 1, and during MODES 2 and 3 with any [main steam line not isolated and] the

## APPLICABILITY (continued)

SJAE in operation. In MODES 4 and 5, steam is not being exhausted to the main condenser and the requirements are not applicable.

#### **ACTIONS**

### A.1

If the offgas radioactivity rate limit is exceeded, 72 hours is allowed to restore the gross gamma activity rate to within the limit. The 72 hour Completion Time is reasonable, based on engineering judgment, the time required to complete the Required Action, the large margins associated with permissible dose and exposure limits, and the low probability of a Main Condenser Offgas System rupture.

## B.1, B.2, B.3.1, and B.3.2

If the gross gamma activity rate is not restored to within the limits in the associated Completion Time, [all main steam lines or] the SJAE must be isolated. This isolates the Main Condenser Offgas System from the source of the radioactive steam. The main steam lines are considered isolated if at least one main steam isolation valve in each main steam line is closed, and at least one main steam line drain valve in each drain line is closed. The 12 hour Completion Time is reasonable, based on operating experience, to perform the actions from full power conditions in an orderly manner and without challenging unit systems.

An alternative to Required Actions B.1 and B.2 is to place the unit in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

# SURVEILLANCE REQUIREMENTS

#### SR 3.7.6.1

This SR, on a 31 day Frequency, requires an isotopic analysis of an offgas sample to ensure that the required limits are satisfied. The noble gases to be sampled are Xe-133, Xe-135, Xe-138, Kr-85, Kr-87, and Kr-88. If the measured rate of radioactivity increases significantly (by ≥ 50% after correcting for expected increases due to changes in THERMAL POWER), an isotopic analysis is also performed within 4 hours after the increase is noted, to ensure that the increase is not indicative of a sustained increase in the radioactivity rate. The 31 day

# SURVEILLANCE REQUIREMENTS (continued)

Frequency is adequate in view of other instrumentation that continuously monitor the offgas, and is acceptable, based on operating experience.

This SR is modified by a Note indicating that the SR is not required to be performed until 31 days after any [main steam line is not isolated and] the SJAE is in operation. Only in this condition can radioactive fission gases be in the Main Condenser Offgas System at significant rates.

### **REFERENCES**

- 1. FSAR, Section [15.1.35].
- 2. 10 CFR 100.

### **B 3.7 PLANT SYSTEMS**

B 3.7.7 Main Turbine Bypass System

### **BASES**

### **BACKGROUND**

The Main Turbine Bypass System is designed to control steam pressure when reactor steam generation exceeds turbine requirements during unit startup, sudden load reduction, and cooldown. It allows excess steam flow from the reactor to the condenser without going through the turbine. The bypass capacity of the system is [25]% of the Nuclear Steam Supply System rated steam flow. Sudden load reductions within the capacity of the steam bypass can be accommodated without reactor scram. The Main Turbine Bypass System consists of three valves connected to the main steam lines between the main steam isolation valves and the turbine stop valve bypass valve chest. Each of these three valves is operated by hydraulic cylinders. The bypass valves are controlled by the pressure regulation function of the Turbine Electro Hydraulic Control System, as discussed in the FSAR, Section [7.7.4] (Ref. 1). The bypass valves are normally closed, and the pressure regulator controls the turbine control valves that direct all steam flow to the turbine. If the speed governor or the load limiter restricts steam flow to the turbine, the pressure regulator controls the system pressure by opening the bypass valves. When the bypass valves open, the steam flows from the bypass chest, through connecting piping, to the pressure breakdown assemblies, where a series of orifices are used to further reduce the steam pressure before the steam enters the condenser.

## APPLICABLE SAFETY ANALYSES

The Main Turbine Bypass System is assumed to function during the turbine generator load rejection transient, as discussed in the FSAR, Section [15.1.1] (Ref. 2). Opening the bypass valves during the pressurization event mitigates the increase in reactor vessel pressure, which affects the MCPR during the event. An inoperable Main Turbine Bypass System may result in APLHGR and MCPR penalties.

The Main Turbine Bypass System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

The Main Turbine Bypass System is required to be OPERABLE to limit peak pressure in the main steam lines and maintain reactor pressure within acceptable limits during events that cause rapid pressurization, so that the Safety Limit MCPR is not exceeded. [With the Main Turbine Bypass System inoperable, modifications to the APLHGR limits (LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)") and the MCPR limits (LCO 3.2.2, "MINIMUM CRITICAL")

## LCO (continued)

POWER RATIO (MCPR)") may be applied to allow this LCO to be met.] The APLHGR and MCPR limits for the inoperable Main Turbine Bypass System are specified in the COLR. An OPERABLE Main Turbine Bypass System requires the bypass valves to open in response to increasing main steam line pressure. This response is within the assumptions of the applicable analysis (Ref. 2).

### **APPLICABILITY**

The Main Turbine Bypass System is required to be OPERABLE at  $\geq 25\%$  RTP to ensure that the fuel cladding integrity Safety Limit and the cladding 1% plastic strain limit are not violated during the turbine generator load rejection transient. As discussed in the Bases for LCO 3.2.1 and LCO 3.2.2, sufficient margin to these limits exists at < 25% RTP. Therefore, these requirements are only necessary when operating at or above this power level.

## **ACTIONS**

### [ A.1

If the Main Turbine Bypass System is inoperable (one or more bypass valves inoperable), or the APLHGR and MCPR limits for an inoperable Main Turbine Bypass System, as specified in the COLR, are not applied, the assumptions of the design basis transient analysis may not be met. Under such circumstances, prompt action should be taken to restore the Main Turbine Bypass System to OPERABLE status or adjust the APLHGR and MCPR limits accordingly. The 2 hour Completion Time is reasonable, based on the time to complete the Required Action and the low probability of an event occurring during this period requiring the Main Turbine Bypass System. ]

#### B.1

If the Main Turbine Bypass System cannot be restored to OPERABLE status or the APLHGR and MCPR limits for an inoperable Main Turbine Bypass System are not applied, THERMAL POWER must be reduced to < 25% RTP. As discussed in the Applicability section, operation at < 25% RTP results in sufficient margin to the required limits, and the Main Turbine Bypass System is not required to protect fuel integrity during the turbine generator load rejection transient. The 4 hour Completion Time is reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

## SURVEILLANCE REQUIREMENTS

### SR 3.7.7.1

Cycling each main turbine bypass valve through one complete cycle of full travel demonstrates that the valves are mechanically OPERABLE and will function when required. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. Operating experience has shown that these components usually pass the SR when performed at the 31 day Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

### SR 3.7.7.2

The Main Turbine Bypass System is required to actuate automatically to perform its design function. This SR demonstrates that, with the required system initiation signals, the valves will actuate to their required position. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and because of the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown the [18] month Frequency, which is based on the refueling cycle, is acceptable from a reliability standpoint.

### SR 3.7.7.3

This SR ensures that the TURBINE BYPASS SYSTEM RESPONSE TIME is in compliance with the assumptions of the appropriate safety analysis. The response time limits are specified in [unit specific documentation]. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and because of the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown the [18] month Frequency, which is based on the refueling cycle, is acceptable from a reliability standpoint.

#### REFERENCES

- 1. FSAR, Section [7.7.4].
- 2. FSAR, Section [15.1.1].

## **B 3.7 PLANT SYSTEMS**

# B 3.7.8 Spent Fuel Storage Pool Water Level

### **BASES**

## **BACKGROUND**

The minimum water level in the spent fuel storage pool meets the assumptions of iodine decontamination factors following a fuel handling accident.

A general description of the spent fuel storage pool design is found in the FSAR, Section [ ] (Ref. 1). The assumptions of the fuel handling accident are found in the FSAR, Section [15.1.4] (Ref. 2).

## APPLICABLE SAFETY ANALYSES

The water level above the irradiated fuel assemblies is an explicit assumption of the fuel handling accident. A fuel handling accident is evaluated to ensure that the radiological consequences (calculated whole body and thyroid doses at the exclusion area and low population zone boundaries) are ≤ 25% of 10 CFR 100 (Ref. 3) exposure guidelines NUREG-0800 (Ref. 4). A fuel handling accident could release a fraction of the fission product inventory by breaching the fuel rod cladding as discussed in the Regulatory Guide 1.25 (Ref. 5).

The fuel handling accident is evaluated for the dropping of an irradiated fuel assembly onto the reactor core. The consequences of a fuel handling accident over the spent fuel storage pool are no more severe than those of the fuel handling accident over the reactor core, as discussed in the FSAR, Section [9.1.2.2.2] (Ref. 6). The water level in the spent fuel storage pool provides for absorption of water soluble fission product gases and transport delays of soluble and insoluble gases that must pass through the water before being released to the secondary containment atmosphere. This absorption and transport delay reduces the potential radioactivity of the release during a fuel handling accident.

The spent fuel storage pool water level satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

The specified water level preserves the assumptions of the fuel handling accident analysis (Ref. 2). As such, it is the minimum required for fuel movement within the spent fuel storage pool.

#### APPLICABILITY

This LCO applies during movement of irradiated fuel assemblies in the spent fuel storage pool since the potential for a release of fission products exists.

#### **ACTIONS**

### **A.1**

Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of irradiated fuel assemblies is not a sufficient reason to require a reactor shutdown.

When the initial conditions for an accident cannot be met, action must be taken to preclude the accident from occurring. If the spent fuel storage pool level is less than required, the movement of irradiated fuel assemblies in the spent fuel storage pool is suspended immediately. Suspension of this activity shall not preclude completion of movement of an irradiated fuel assembly to a safe position. This effectively precludes a spent fuel handling accident from occurring.

## SURVEILLANCE REQUIREMENTS

## SR 3.7.8.1

This SR verifies that sufficient water is available in the event of a fuel handling accident. The water level in the spent fuel storage pool must be checked periodically. The 7 day Frequency is acceptable, based on operating experience, considering that the water volume in the pool is normally stable, and all water level changes are controlled by unit procedures.

## **REFERENCES**

- 1. FSAR, Section [ ].
- 2. FSAR, Section [15.1.4].
- 3. NUREG-0800, Section 15.7.4, Revision 1, July 1981.
- 4. 10 CFR 100.
- 5. Regulatory Guide 1.25, March 1972.
- 6. FSAR, Section [9.1.2.2.2].

#### **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.1 AC Sources - Operating

### **BASES**

#### **BACKGROUND**

The unit Class 1E AC Electrical Power Distribution System AC sources consist of the offsite power sources (preferred power sources, normal and alternates), and the onsite standby power sources (diesel generators (DGs) 2A, 2C, and 1B). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems.

The Class 1E AC distribution system is divided into redundant load groups, so loss of any one group does not prevent the minimum safety functions from being performed. Each load group has connections to two preferred offsite power supplies and a single DG.

Offsite power is supplied to the 230 kV and 500 kV switchyards from the transmission network by eight transmission lines. From the 230 kV switchyards, two electrically and physically separated circuits provide AC power, through auxiliary transformers 2C and 2D, to 4.16 kV ESF buses 2E, 2F, and 2G. A detailed description of the offsite power network and circuits to the onsite Class 1E ESF buses is found in the FSAR, Section [8.2] (Ref. 2).

An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network to the onsite Class 1E ESF bus or buses.

Startup auxiliary transformer (SAT) 2D provides the normal source of power to the ESF buses 2E, 2F, and 2G. If any 4.16 kV ESF bus loses power, an automatic transfer from SAT 2D to SAT 2C occurs. At this time, 4.16 kV buses 2A and 2B and supply breakers from SAT 2C also trip open, disconnecting all nonessential loads from SAT 2C to preclude overloading of the transformer.

SATs 2C and 2D are sized to accommodate the simultaneous starting of all ESF loads on receipt of an accident signal without the need for load sequencing.

The onsite standby power source for 4.16 kV ESF buses 2E, 2F, and 2G consists of three DGs. DGs 2A and 2C are dedicated to ESF buses 2E and 2G, respectively. DG 1B is a shared power source and can supply

## BACKGROUND (continued)

either Unit 1 ESF bus 1F or Unit 2 ESF bus 2F. A DG starts automatically on a loss of coolant accident (LOCA) signal (i.e., low reactor water level signal or high drywell pressure signal) or on an ESF bus degraded voltage or undervoltage signal. After the DG has started, it automatically ties to its respective bus after offsite power is tripped as a consequence of ESF bus undervoltage or degraded voltage, independent of or coincident with a LOCA signal. The DGs also start and operate in the standby mode without tying to the ESF bus on a LOCA signal alone. Following the trip of offsite power, a sequencer strips nonpermanent loads from the ESF bus. When the DG is tied to the ESF bus, loads are then sequentially connected to its respective ESF bus by the automatic sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG.

In the event of a loss of preferred power, the ESF electrical loads are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a LOCA.

Certain required plant loads are returned to service in a predetermined sequence in order to prevent overloading of the DGs in the process. Within 46 seconds after the initiating signal is received, all automatic and permanently connected loads needed to recover the unit or maintain it in a safe condition are returned to service.

Ratings for the DGs satisfy the requirements of Regulatory Guide 1.9 (Ref. 3). DGs 2A and 2C have the following ratings:

- a. 2850 kW continuous,
- b. 3100 kW 2000 hours,
- c. 3250 kW 300 hours,
- d. 3500 kW 30 minutes.

DG 1B has the following ratings:

- a. 2850 kW continuous,
- b. 3250 kW 168 hours.

## APPLICABLE SAFETY ANALYSES

The initial conditions of DBA and transient analyses in the FSAR, Chapter [6] (Ref. 4) and Chapter [15] (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the AC electrical power sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining the onsite or offsite AC sources OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite power or all onsite AC power and
- b. A worst case single failure.

AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

Two qualified circuits between the offsite transmission network and the onsite Class 1E Distribution System and three separate and independent DGs (2A, 2C, and 1B) ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Qualified offsite circuits are those that are described in the FSAR, and are part of the licensing basis for the unit. [In addition, [one required automatic load sequencer per ESF bus] shall be OPERABLE.]

Each offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the ESF buses. Each offsite circuit consists of incoming breaker and disconnect to the respective 2C and 2D SATs, the 2C and 2D transformers, and the respective circuit path including feeder breakers to 4.16 kV ESF buses. Feeder breakers from each circuit are required to the 2F ESF bus; however, if 2C SAT is connected to ESF bus 2E (or 2G) and 2D SAT is connected to 2G (or 2E), the remaining breakers to 2E and 2G are not required.

Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus

## LCO (continued)

undervoltage. This sequence must be accomplished within 12 seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and must continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions, such as DG in standby with the engine hot and DG in standby with the engine at ambient condition. Additional DG capabilities must be demonstrated to meet required Surveillances, e.g., capability of the DG to revert to standby status on an ECCS signal while operating in parallel test mode.

Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY.

The AC sources must be separate and independent (to the extent possible) of other AC sources. For the DGs, the separation and independence are complete. For the offsite AC sources, the separation and independence are to the extent practical. A circuit may be connected to more than one ESF bus, with fast transfer capability to the other circuit OPERABLE, and not violate separation criteria. A circuit that is not connected to an ESF bus is required to have OPERABLE fast transfer interlock mechanisms to at least two ESF buses to support OPERABILITY of that circuit.

#### **APPLICABILITY**

The AC sources [and sequencers] are required to be OPERABLE in MODES 1, 2, and 3 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- b. Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

The AC power requirements for MODES 4 and 5 are covered in LCO 3.8.2, "AC Sources - Shutdown."

#### **ACTIONS**

### **A.1**

To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the availability of the remaining required offsite circuit on a more frequent basis. Since the Required

## **ACTIONS** (continued)

Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered.

#### **A.2**

Required Action A.2, which only applies if the division cannot be powered from an offsite source, is intended to provide assurance that an event with a coincident single failure of the associated DG does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related divisions (i.e., single division systems are not included). Redundant required features failures consist of inoperable features associated with a division redundant to the division that has no offsite power.

The Completion Time for Required Action A.2 is intended to allow time for the operator to evaluate and repair any discovered inoperabilities. This Completion Time also allows an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

- a. The division has no offsite power supplying its loads and
- b. A required feature on the other division is inoperable.

If, at any time during the existence of this Condition (one offsite circuit inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked.

Discovering no offsite power to one 4160 V ESF bus of the onsite Class 1E Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with any other ESF bus that has offsite power, results in starting the Completion Times for the Required Action. Twenty-four hours is acceptable because it minimizes risk while allowing time for restoration before the unit is subjected to transients associated with shutdown.

The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection may have been lost for the required feature's function; however, function is not lost. The 24 hour

## **ACTIONS** (continued)

Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

### <u>A.3</u>

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the potential for a loss of offsite power is increased, with attendant potential for a challenge to the plant safety systems. In this condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System.

The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action A.3 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DG is inoperable, and that DG is subsequently returned OPERABLE, the LCO may already have been not met for up to 72 hours. This situation could lead to a total of 144 hours, since initial failure to meet the LCO, to restore the offsite circuit. At this time, a DG could again become inoperable, the circuit restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on the time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hours and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met.

As in Required Action A.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This exception results in establishing the "time zero" at the time the LCO was initially not met, instead of at the time that Condition A was entered.

## **ACTIONS** (continued)

## <u>B.1</u>

To ensure a highly reliable power source remains with one DG inoperable, it is necessary to verify the availability of the required offsite circuits on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if a circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions must then be entered.

## <u>B.2</u>

Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG is inoperable, does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related divisions (i.e., single division systems are not included). Redundant required features failures consist of inoperable features associated with a division redundant to the division that has an inoperable DG.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

- a. An inoperable DG exists and
- b. A required feature on the other division (Division 1 or 2) is inoperable.

If, at any time during the existence of this Condition (one DG inoperable), a required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

Discovering one required DG inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with the OPERABLE DG[s] results in starting the Completion Time for the Required Action. Four hours from the discovery of these events existing concurrently is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown.

## **ACTIONS** (continued)

The remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and low probability of a DBA occurring during this period.

#### B.3.1 and B.3.2

Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DGs. If it can be determined that the cause of the inoperable DG does not exist on the OPERABLE DG, SR 3.8.1.2 does not have to be performed. If the cause of inoperability exists on other DG(s), they are declared inoperable upon discovery, and Condition E of LCO 3.8.1 is entered. Once the failure is repaired, and the common cause failure no longer exists, Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG cannot be confirmed not to exist on the remaining DG(s), performance of SR 3.8.1.2 suffices to provide assurance of continued OPERABILITY of those DGs.

In the event the inoperable DG is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the [plant corrective action program] will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B.

According to Generic Letter 84-15 (Ref. 7), [24] hours is a reasonable time to confirm that the OPERABLE DGs are not affected by the same problem as the inoperable DG.

#### **B.4**

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition B for a period that should not exceed 72 hours. In Condition B, the remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and low probability of a DBA occurring during this period.

## **ACTIONS** (continued)

The second Completion Time for Required Action B.4 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an offsite circuit is inoperable and that circuit is subsequently restored OPERABLE, the LCO may already have been not met for up to 72 hours. This situation could lead to a total of 144 hours, since initial failure of the LCO, to restore the DG. At this time, an offsite circuit could again become inoperable, the DG restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on the time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive must be met.

As in Required Action B.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This exception results in establishing the "time zero" at the time that the LCO was initially not met, instead of the time that Condition B was entered.

## C.1 and C.2

Required Action C.1 addresses actions to be taken in the event of inoperability of redundant required features concurrent with inoperability of two offsite circuits. Required Action C.1 reduces the vulnerability to a loss of function. The Completion Time for taking these actions is reduced to 12 hours from that allowed with one division without offsite power (Required Action A.2). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable, based upon the assumption that two complete safety divisions are OPERABLE. When a concurrent redundant required feature failure exists, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are designed with redundant safety related divisions, (i.e., single division systems are not included in the list). Redundant required features failures consist of any of these features that are inoperable because any inoperability is on a division redundant to a division with inoperable offsite circuits.

## ACTIONS (continued)

The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

- a. All required offsite circuits are inoperable and
- b. A required feature is inoperable.

If, at any time during the existence of this Condition (two offsite circuits inoperable), a required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources.

Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable that involve one or more DGs inoperable. However, two factors tend to decrease the severity of this degradation level:

- The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure and
- b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source.

With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the unit in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of

## **ACTIONS** (continued)

the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria.

According to Regulatory Guide 1.93 (Ref. 6), with the available offsite AC sources two less than required by the LCO, operation may continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A.

### D.1 and D.2

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC source to any ESF bus, ACTIONS for LCO 3.8.9, "Distribution Systems - Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of the offsite circuit and one DG without regard to whether a division is de-energized. LCO 3.8.9 provides the appropriate restrictions for a de-energized division.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition D for a period that should not exceed 12 hours. In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 12 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and the low probability of a DBA occurring during this period.

## <u>E.1</u>

With two DGs inoperable, there is [one] remaining standby AC source. Thus, with an assumed loss of offsite electrical power, insufficient standby AC sources are available to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for the majority of ESF equipment at this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown. (The

## **ACTIONS** (continued)

immediate shutdown could cause grid instability, which could result in a total loss of AC power.) Since any inadvertent unit generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation. According to Regulatory Guide 1.93 (Ref. 6), with both DGs inoperable, operation may continue for a period that should not exceed 2 hours.

### [ F.1

The sequencer(s) is an essential support system to [both the offsite circuit and the DG associated with a given ESF bus.] [Furthermore, the sequencer(s) is on the primary success path for most major AC electrically powered safety systems powered from the associated ESF bus.] Therefore, loss of an [ESF bus's sequencer] affects every major ESF System in the [division]. The [12] hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining sequencer OPERABILITY. This time period also ensures that the probability of an accident requiring sequencer OPERABILITY occurring during periods when the sequencer is inoperable is minimal.

This Condition is preceded by a Note that allows the Condition to be deleted if the unit design is such that any sequencer failure mode only affects the ability of the associated DG to power its respective safety loads under any conditions. Implicit in this Note is the concept that the Condition must be retained if any sequencer failure mode results in the inability to start all or part of the safety loads when required regardless of power availability, or results in overloading the offsite power circuit to a safety bus during an event thereby causing its failure. Also implicit in the Note is that the Condition is not applicable to any division that does not have a sequencer. ]

#### G.1 and G.2

If the inoperable AC electrical power sources cannot be restored to OPERABLE status within the associated Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

## **ACTIONS** (continued)

### <u>H.1</u>

Condition H corresponds to a level of degradation in which all redundancy in the AC electrical power supplies has been lost. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown.

## SURVEILLANCE REQUIREMENTS

The AC sources are designed to permit inspection andtesting of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, GDC 18 (Ref. 8). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.9 (Ref. 3), Regulatory Guide 1.108 (Ref. 9), and Regulatory Guide 1.137 (Ref. 10), as addressed in the FSAR.

Where the SRs discussed herein specify voltage and frequency tolerances, the following summary is applicable. The minimum steady state output voltage of [3740] V is 90% of the nominal 4160 V output voltage. This value, which is specified in ANSI C84.1 (Ref. 11), allows for voltage drop to the terminals of 4000 V motors whose minimum operating voltage is specified as 90% or 3600 V. It also allows for voltage drops to motors and other equipment down through the 120 V level where minimum operating voltage is also usually specified as 90% of name plate rating. The specified maximum steady state output voltage of [4756] V is equal to the maximum operating voltage specified for 4000 V motors. It ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the maximum rated operating voltages. The specified minimum and maximum frequencies of the DG are 58.8 Hz and 61.2 Hz, respectively. These values are equal to  $\pm 2\%$  of the 60 Hz nominal frequency and are derived from the recommendations found in Regulatory Guide 1.9 (Ref. 3).

### SR 3.8.1.1

This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source and that appropriate

independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room.

# SR 3.8.1.2 and SR 3.8.1.7

These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and maintain the unit in a safe shutdown condition.

To minimize the wear on moving parts that do not get lubricated when the engine is not running, these SRs have been modified by a Note (Note 1 for SR 3.8.1.2 and Note for SR 3.8.1.7) to indicate that all DG starts for these Surveillances may be preceded by an engine prelube period and followed by a warmup prior to loading.

For the purposes of this testing, the DGs are started from standby conditions. Standby conditions for a DG mean that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations.

[In order to reduce stress and wear on diesel engines, some manufacturers recommend a modified start in which the starting speed of DGs is limited, warmup is limited to this lower speed, and the DGs are gradually accelerated to synchronous speed prior to loading. These start procedures are the intent of Note 2, which is only applicable when such modified start procedures are recommended by the manufacturer.

SR 3.8.1.7 requires that, at a 184 day Frequency, the DG starts from standby conditions and achieves required voltage and frequency within 12 seconds. The 12 second start requirement supports the assumptions in the design basis LOCA analysis of FSAR, Section [6.3] (Ref. 12). The 12 second start requirement is not applicable to SR 3.8.1.2 (see Note 2 of SR 3.8.1.2), when a modified start procedure as described above is used. If a modified start is not used, the 12 second start requirement of SR 3.8.1.7 applies.

Since SR 3.8.1.7 does require a 12 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2.

In addition to the SR requirements, the time for the DG to reach steady state operation, unless the modified DG start method is employed, is

periodically monitored and the trend evaluated to identify degradation of governor and voltage regulator performance.

The 31 day Frequency for SR 3.8.1.2 is consistent with Regulatory Guide 1.9 (Ref. 3). The 184 day Frequency for SR 3.8.1.7 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing.

## SR 3.8.1.3

This Surveillance verifies that the DGs are capable of synchronizing and accepting greater than or equal to the equivalent of the maximum expected accident loads. A minimum run time of 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source.

Although no power factor requirements are established by this SR, the DG is normally operated at a power factor between [0.8 lagging] and [1.0]. The [0.8] value is the design rating of the machine, while [1.0] is an operational limitation [to ensure circulating currents are minimized]. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

The 31 day Frequency for this Surveillance is consistent with Regulatory Guide 1.9 (Ref. 3).

Note 1 modifies this Surveillance to indicate that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized.

Note 2 modifies this Surveillance by stating that momentary transients because of changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test.

Note 3 indicates that this Surveillance should be conducted on only one DG at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations.

## SURVEILLANCE REQUIREMENTS (continued)

Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start must precede this test to credit satisfactory performance.

### SR 3.8.1.4

This SR provides verification that the level of fuel oil in the day tank [and engine mounted tank] is at or above the level at which fuel oil is automatically added. The level is expressed as an equivalent volume in gallons, and is selected to ensure adequate fuel oil for a minimum of 1 hour of DG operation at full load plus 10%.

The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and facility operators would be aware of any large uses of fuel oil during this period.

### SR 3.8.1.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel oil day [and engine mounted] tanks once every [31] days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 10). This SR is for preventive maintenance. The presence of water does not necessarily represent a failure of this SR provided that accumulated water is removed during performance of this Surveillance.

#### SR 3.8.1.6

This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated day tank. It is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact,

the fuel delivery piping is not obstructed, and the controls and control systems for automatic fuel transfer systems are OPERABLE.

[The Frequency for this SR is variable, depending on individual system design, with up to a [92] day interval. The [92] day Frequency corresponds to the testing requirements for pumps as contained in the ASME Boiler and Pressure Vessel Code, Section XI (Ref. 13); however, the design of fuel transfer systems is such that pumps operate automatically or must be started manually in order to maintain an adequate volume of fuel oil in the day [and engine mounted] tanks during or following DG testing. In such a case, a 31 day Frequency is appropriate. Since proper operation of fuel transfer systems is an inherent part of DG OPERABILITY, the Frequency of this SR should be modified to reflect individual designs.]

SR 3.8.1.7

See SR 3.8.1.2.

### [SR 3.8.1.8

Transfer of each 4.16 kV ESF bus power supply from the normal offsite circuit to the alternate offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads. The [18 month] Frequency of the Surveillance is based on engineering judgment taking into consideration the plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed on the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential

outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

### SR 3.8.1.9

Each DG is provided with an engine overspeed trip to prevent damage to the engine. Recovery from the transient caused by the loss of a large load could cause diesel engine overspeed, which, if excessive, might result in a trip of the engine. This Surveillance demonstrates the DG load response characteristics and capability to reject the largest single load without exceeding predetermined voltage and frequency and while maintaining a specified margin to the overspeed trip. The largest single load for each DG is a residual heat removal service water pump (1225 bhp). This Surveillance may be accomplished by either:

- Tripping the DG output breaker with the DG carrying greater than or equal to its associated single largest post-accident load while paralleled to offsite power, or while solely supplying the bus or
- b. Tripping its associated single largest post-accident load with the DG solely supplying the bus.

As required by IEEE-308 (Ref. 14), the load rejection test is acceptable if the increase in diesel speed does not exceed 75% of the difference between synchronous speed and the overspeed trip setpoint, or 15% above synchronous speed, whichever is lower. For DGs 2A, 2C, and 1B, this represents 65.5 Hz, equivalent to 75% of the difference between nominal speed and the overspeed trip setpoint.

The time, voltage, and frequency tolerances specified in this SR are derived from Regulatory Guide 1.9 (Ref. 3) recommendations for response during load sequence intervals. The [6] seconds specified is equal to 60% of the 10 second load sequence interval associated with sequencing the residual heat removal (RHR) pumps during an undervoltage on the bus concurrent with a LOCA. The voltage and frequency specified are consistent with the design range of the equipment powered by the DG. SR 3.8.1.9.a corresponds to the

# SURVEILLANCE REQUIREMENTS (continued)

maximum frequency excursion, while SR 3.8.1.9.b and SR 3.8.1.9.c are steady state voltage and frequency values to which the system must recover following load rejection. The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9).

This SR is modified by two Notes. The reason for Note 1 is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. Note 2 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of  $\leq$  [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 2 allows the surveillance to be conducted at a power factor other than ≤ [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to  $\leq$  [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DC excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DC. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. In order to ensure that the DG is tested under load conditions that are as close to design basis conditions as possible, Note 2 requires that, if

synchronized to offsite power, testing must be performed using a power factor  $\leq$  [0.9]. This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience.

#### - REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

- a. Performance of the SR will not render any safety system or component inoperable,
- Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

#### SR 3.8.1.10

This Surveillance demonstrates the DG capability to reject a full load without overspeed tripping or exceeding the predetermined voltage limits. The DG full load rejection may occur because of a system fault or inadvertent breaker tripping. This Surveillance ensures proper engine generator load response under the simulated test conditions. This test simulates the loss of the total connected load that the DG experiences following a full load rejection and verifies that the DG does not trip upon loss of the load. These acceptance criteria provide DG damage protection. While the DG is not expected to experience this transient during an event, and continues to be available, this response ensures that the DG is not degraded for future application, including reconnection to the bus if the trip initiator can be corrected or isolated.

The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9) and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by two Notes. The reason for Note 1 is that during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that would challenge

## SURVEILLANCE REQUIREMENTS (continued)

continued steady state operation and, as a result, plant safety systems. Note 2 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of  $\leq$  [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 2 allows the surveillance to be conducted at a power factor other than ≤ [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to ≤ [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DC excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DC. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

#### - REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

a. Performance of the SR will not render any safety system or component inoperable,

- Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

### SR 3.8.1.11

As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), this Surveillance demonstrates the as designed operation of the standby power sources during loss of the offsite source. This test verifies all actions encountered from the loss of offsite power, including shedding of the nonessential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time.

The DG auto-start time of 12 seconds is derived from requirements of the accident analysis for responding to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability has been achieved.

The requirement to verify the connection and power supply of permanent and auto-connected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of the connection and loading of these loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

## SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs shall be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance. corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

### SR 3.8.1.12

[ This Surveillance demonstrates that the DG automatically starts and achieves the required voltage and frequency within the specified time ([12] seconds) from the design basis actuation signal (LOCA signal) and operates for ≥ [5] minutes. The [5] minute period provides sufficient time to demonstrate stability. SR 3.8.1.12.d and SR 3.8.1.12.e ensure that permanently connected loads and emergency loads are energized from the offsite electrical power system on a LOCA signal without loss of offsite power.

The requirement to verify the connection and power supply of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the loading logic for loading onto offsite power. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, ECCS injection valves are not desired to be stroked open, high pressure injection systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal

function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of the connection and loading of these loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of [18 months] takes into consideration plant conditions required to perform the Surveillance and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could potentially cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. 1

### SR 3.8.1.13

This Surveillance demonstrates that DG non-critical protective functions (e.g., high jacket water temperature) are bypassed on an ECCS initiation test signal and critical protective functions (engine overspeed, generator differential current, and low lubricating oil pressure) trip the DG to avert substantial damage to the DG unit. The non-critical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG.

The [18 month] Frequency is based on engineering judgment, takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

The SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DG from service. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

#### - REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor

in any of the restricted MODES can satisfy the following criteria, as applicable:

- a. Performance of the SR will not render any safety system or component inoperable,
- Performance of the SR will not cause perturbations to any of the b. electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

### SR 3.8.1.14

Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3), requires demonstration once per [18 months] that the DGs can start and run continuously at full load capability for an interval of not less than 24 hours - 22 hours of which is at a load equivalent to the continuous rating of the DG, and 2 hours of which is at a load equivalent to 110% of the continuous duty rating of the DG. Plant Hatch has taken an exception to this requirement and performs the 2 hour run at the 2000 hour rating (3100 kW). The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelube and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR.

# SURVEILLANCE REQUIREMENTS (continued)

A load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3); takes into consideration plant conditions required to perform the Surveillance; and is intended to be consistent with expected fuel cycle lengths.

This Surveillance has been modified by three Notes. Note 1 states that momentary transients due to changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that would challenge continued steady state operation and, as a result, plant safety systems. Note 3 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of  $\leq$  [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 3 allows the surveillance to be conducted at a power factor other than  $\leq$  [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to  $\leq$  [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system

## SURVEILLANCE REQUIREMENTS (continued)

when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

## SR 3.8.1.15

This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency within [12] seconds. The [12] second time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA. The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(5).

This SR is modified by two Notes. Note 1 ensures that the test is performed with the diesel sufficiently hot. The requirement that the diesel has operated for at least 2 hours at full load conditions prior to performance of this Surveillance is based on manufacturer recommendations for achieving hot conditions. The load band is provided to avoid routine overloading of the DG. Routine overloads may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. Momentary transients due to changing bus loads do not invalidate this test. Note 2 allows all DG starts to be preceded by an engine prelube period to minimize wear and tear on the diesel during testing.

### SR 3.8.1.16

As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), this Surveillance ensures that the manual synchronization and automatic load transfer from the DG to the offsite source can be made and that the DG can be returned to ready-to-load status when offsite power is restored. It also ensures that the auto-start logic is reset to allow the DG to reload if a subsequent loss of offsite power occurs. The DG is considered to be in ready-to-load status when the DG is at rated speed and voltage, the output breaker is open and can receive an auto-close signal on bus undervoltage, and the load sequence timers are reset.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), and takes into consideration plant conditions required to perform the Surveillance.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

### SR 3.8.1.17

Demonstration of the test mode override ensures that the DG availability under accident conditions is not compromised as the result of testing. Interlocks to the LOCA sensing circuits cause the DG to automatically reset to ready-to-load operation if an ECCS initiation signal is received during operation in the test mode. Ready-to-load operation is defined as the DG running at rated speed and voltage with the DG output breaker open. These provisions for automatic switchover are required by IEEE-308 (Ref. 14), paragraph 6.2.6(2).

The requirement to automatically energize the emergency loads with offsite power is essentially identical to that of SR 3.8.1.12. The intent in the requirements associated with SR 3.8.1.17.b is to show that the emergency loading is not affected by the DG operation in test mode. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the emergency loads to perform these functions is acceptable. This testing may include any series of

## SURVEILLANCE REQUIREMENTS (continued)

sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(8); takes into consideration plant conditions required to perform the Surveillance; and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

### SR 3.8.1.18

Under accident conditions [and loss of offsite power] loads are sequentially connected to the bus by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading of the DGs due to high motor starting currents. The [10]% load sequence time interval tolerance ensures that sufficient time exists for the DG to restore frequency and voltage prior to applying the next load and that safety analysis assumptions regarding ESF equipment time delays are not violated. Reference 2 provides a summary of the automatic loading of ESF buses.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(2); takes into

# SURVEILLANCE REQUIREMENTS (continued)

consideration plant conditions required to perform the Surveillance; and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum. consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

#### - REVIEWER'S NOTE -

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

- a. Performance of the SR will not render any safety system or component inoperable,
- b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and
- c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

### SR 3.8.1.19

In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded.

This Surveillance demonstrates DG operation, as discussed in the Bases for SR 3.8.1.11, during a loss of offsite power actuation test signal in conjunction with an ECCS initiation signal. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of [18 months] takes into consideration plant conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of [18 months].

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance. corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

## SURVEILLANCE REQUIREMENTS (continued)

#### SR 3.8.1.20

This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously.

The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9).

This SR is modified by a Note. The reason for the Note is to minimize wear on the DG during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations.

#### **REFERENCES**

- 1. 10 CFR 50, Appendix A, GDC 17.
- 2. FSAR, Section [8.2].
- 3. Regulatory Guide 1.9.
- 4. FSAR, Chapter [6].
- FSAR, Chapter [15].
- 6. Regulatory Guide 1.93.
- 7. Generic Letter 84-15.
- 8. 10 CFR 50, Appendix A, GDC 18.
- 9. Regulatory Guide 1.108.
- 10. Regulatory Guide 1.137.
- 11. ANSI C84.1, 1982.
- 12. FSAR, Section [6.3].
- 13. ASME Boiler and Pressure Vessel Code, Section XI.

REFERENCES (continued)

14. IEEE Standard 308.

#### **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.2 AC Sources - Shutdown

#### **BASES**

#### **BACKGROUND**

A description of the AC sources is provided in the Bases for LCO 3.8.1, "AC Sources - Operating."

## APPLICABLE SAFETY ANALYSES

The OPERABILITY of the minimum AC sources during MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies ensures that:

- a. The facility can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate AC electrical power is provided to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, AC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)].

In general, when the unit is shut down the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or loss of all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, and 3 have no specific analyses in MODES 4 and 5. Worst case bounding events are deemed not credible in MODES 4 and 5 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and corresponding stresses result in the probabilities of occurrences significantly reduced or eliminated, and minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

During MODES 1, 2, and 3, various deviations from the analysis assumptions and design requirements are allowed within the ACTIONS. This allowance is in recognition that certain testing and

# APPLICABLE SAFETY ANALYSES (continued)

maintenance activities must be conducted, provided an acceptable level of risk is not exceeded. During MODES 4 and 5, performance of a significant number of required testing and maintenance activities is also required. In MODES 4 and 5, the activities are generally planned and administratively controlled. Relaxations from typical MODES 1, 2, and 3 LCO requirements are acceptable during shutdown MODES, based on:

- a. The fact that time in an outage is limited. This is a risk prudent goal as well as a utility economic consideration.
- b. Requiring appropriate compensatory measures for certain conditions. These may include administrative controls, reliance on systems that do not necessarily meet typical design requirements applied to systems credited in operation MODE analyses, or both.
- Prudent utility consideration of the risk associated with multiple activities that could affect multiple systems.
- d. Maintaining, to the extent practical, the ability to perform required functions (even if not meeting MODES 1, 2, and 3 OPERABILITY requirements) with systems assumed to function during an event.

In the event of an accident during shutdown, this LCO ensures the capability of supporting systems necessary for avoiding immediate difficulty, assuming either a loss of all offsite power or a loss of all onsite (diesel generator (DG)) power.

The AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

One offsite circuit capable of supplying the onsite Class 1E power distribution subsystem(s) of LCO 3.8.10, "Distribution Systems - Shutdown," ensures that all required loads are powered from offsite power. An OPERABLE DG, associated with a Distribution System Engineered Safety Feature (ESF) bus required OPERABLE by LCO 3.8.10, ensures that a diverse power source is available for providing electrical power support assuming a loss of the offsite circuit. Together, OPERABILITY of the required offsite circuit and DG ensures the availability of sufficient AC sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel] and reactor vessel draindown). Automatic initiation of the required DG during shutdown conditions is specified in

## LCO (continued)

LCO 3.3.5.1, ECCS Instrumentation, and LCO 3.3.8.1, LOP Instrumentation.

The qualified offsite circuit(s) must be capable of maintaining rated frequency and voltage while connected to their respective ESF bus(es), and of accepting required loads during an accident. Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit. [The offsite circuit consists of incoming breaker and disconnect to the 2C or 2D startup auxiliary transformer (SAT), associated 2C or 2D SAT, and the respective circuit path including feeder breakers to all 4.16 kV ESF buses required by LCO 3.8.10.]

The required DG must be capable of starting, accelerating to rated speed and voltage, connecting to its respective ESF bus on detection of bus undervoltage, and accepting required loads. This sequence must be accomplished within [12] seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and must continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions such as DG in standby with engine hot and DG in standby with engine at ambient conditions. Additional DG capabilities must be demonstrated to meet required Surveillances, e.g., capability of the DG to revert to standby status on an ECCS signal while operating in parallel test mode.

Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY. [In addition, proper sequence operation is an integral part of offsite circuit OPERABILITY since its inoperability impacts the ability to start and maintain energized loads required OPERABLE by LCO 3.8.10.]

It is acceptable for divisions to be cross tied during shutdown conditions, permitting a single offsite power circuit to supply all required divisions. No fast transfer capability is required for offsite circuits to be considered OPERABLE.

#### APPLICABILITY

The AC sources are required to be OPERABLE in MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies in the secondary containment to provide assurance that:

 Systems providing adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core in case of an inadvertent draindown of the reactor vessel,

# APPLICABILITY (continued)

- Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] are available,
- c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

AC power requirements for MODES 1, 2, and 3 are covered in LCO 3.8.1.

#### **ACTIONS**

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.

#### **A.1**

An offsite circuit is considered inoperable if it is not available to one required ESF division. If two or more ESF 4.16 kV buses are required per LCO 3.8.10, one division with offsite power available may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, [recently] irradiated fuel movement, and operations with a potential for draining the reactor vessel. By the allowance of the option to declare required features inoperable with no offsite power available, appropriate restrictions can be implemented in accordance with the affected required feature(s) LCOs' ACTIONS.

# A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4

With the offsite circuit not available to all required divisions, the option still exists to declare all required features inoperable. Since this option may involve undesired administrative efforts, the allowance for sufficiently conservative actions is made. With the required DG inoperable, the minimum required diversity of AC power sources is not available. It is, therefore, required to suspend CORE ALTERATIONS, movement of

## **ACTIONS** (continued)

[recently] irradiated fuel assemblies in the [secondary] containment, and activities that could result in inadvertent draining of the reactor vessel.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC sources and to continue this action until restoration is accomplished in order to provide the necessary AC power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required AC electrical power sources should be completed as quickly as possible in order to minimize the time during which the plant safety systems may be without sufficient power.

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it are inoperable, resulting in de-energization. Therefore, the Required Actions of Condition A have been modified by a Note to indicate that when Condition A is entered with no AC power to any required ESF bus, ACTIONS for LCO 3.8.10 must be immediately entered. This Note allows Condition A to provide requirements for the loss of the offsite circuit whether or not a division is de-energized. LCO 3.8.10 provides the appropriate restrictions for the situation involving a de-energized division.

## SURVEILLANCE REQUIREMENTS

## SR 3.8.2.1

SR 3.8.2.1 requires the SRs from LCO 3.8.1 that are necessary for ensuring the OPERABILITY of the AC sources in other than MODES 1, 2, and 3. SR 3.8.1.8 is not required to be met since only one offsite circuit is required to be OPERABLE. SR 3.8.1.17 is not required to be met because the required OPERABLE DG(s) is not required to undergo periods of being synchronized to the offsite circuit. SR 3.8.1.20 is excepted because starting independence is not required with the DG(s) that is not required to be OPERABLE. Refer to the corresponding Bases for LCO 3.8.1 for a discussion of each SR.

This SR is modified by two Notes. The reason for Note 1 is to preclude requiring the OPERABLE DG(s) from being paralleled with the offsite power network or otherwise rendered inoperable during the performance of SRs, and to preclude deenergizing a required 4160 V ESF bus or disconnecting a required offsite circuit during performance of SRs. With

# SURVEILLANCE REQUIREMENTS (continued)

limited AC sources available, a single event could compromise both the required circuit and the DG. It is the intent that these SRs must still be capable of being met, but actual performance is not required during periods when the DG and offsite circuit is required to be OPERABLE. Note 2 states that SRs 3.8.1.12 and 3.8.1.19 are not required to be met when its associated ECCS subsystem(s) are not required to be OPERABLE. These SRs demonstrate the DG response to an ECCS signal (ether alone or in conjunction with a loss-of-power signal). This is consistent with the ECCS instrumentation requirements that do not require the ECCS signals when the ECCS System is not required to be OPERABLE per LCO 3.5.2, "ECCS-Shutdown."

## REFERENCES

None.

#### **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air

#### **BASES**

#### **BACKGROUND**

Each diesel generator (DG) is provided with a storage tank having a fuel oil capacity sufficient to operate that DG for a period of 7 days while the DG is supplying maximum post loss of coolant accident (LOCA) load demand discussed in FSAR, Section [9.5.2] (Ref. 1). The maximum load demand is calculated using the assumption that at least two DGs are available. This onsite fuel oil capacity is sufficient to operate the DGs for longer than the time to replenish the onsite supply from outside sources.

Fuel oil is transferred from storage tank to day tank by either of two transfer pumps associated with each storage tank. Redundancy of pumps and piping precludes the failure of one pump, or the rupture of any pipe, valve, or tank to result in the loss of more than one DG. All outside tanks, pumps, and piping are located underground.

For proper operation of the standby DGs, it is necessary to ensure the proper quality of the fuel oil. Regulatory Guide 1.137 (Ref. 2) addresses the recommended fuel oil practices as supplemented by ANSI N195 (Ref. 3). The fuel oil properties governed by these SRs are the water and sediment content, the kinematic viscosity, specific gravity (or API gravity), and impurity level.

The DG lubrication system is designed to provide sufficient lubrication to permit proper operation of its associated DG under all loading conditions. The system is required to circulate the lube oil to the diesel engine working surfaces and to remove excess heat generated by friction during operation. Each engine oil sump contains an inventory capable of supporting a minimum of [7] days of operation. [The onsite storage in addition to the engine oil sump is sufficient to ensure 7 days' continuous operation.] This supply is sufficient to allow the operator to replenish lube oil from outside sources.

Each DG has an air start system with adequate capacity for five successive start attempts on the DG without recharging the air start receiver(s).

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in FSAR, Chapter [6] (Ref. 4), and Chapter [15] (Ref. 5), assume Engineered Safety Feature (ESF) systems are OPERABLE. The DGs are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

Since diesel fuel oil, lube oil, and starting air subsystem support the operation of the standby AC power sources, they satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

## LCO

Stored diesel fuel oil is required to have sufficient supply for 7 days of full load operation. It is also required to meet specific standards for quality. Additionally, sufficient lube oil supply must be available to ensure the capability to operate at full load for 7 days. This requirement, in conjunction with an ability to obtain replacement supplies within 7 days, supports the availability of DGs required to shut down the reactor and to maintain it in a safe condition for an anticipated operational occurrence (AOO) or a postulated DBA with loss of offsite power. DG day tank fuel oil requirements, as well as transfer capability from the storage tank to the day tank, are addressed in LCO 3.8.1, "AC Sources - Operating," and LCO 3.8.2, "AC Sources - Shutdown."

The starting air system is required to have a minimum capacity for five successive DG start attempts without recharging the air start receivers.

## **APPLICABILITY**

The AC sources (LCO 3.8.1 and LCO 3.8.2) are required to ensure the availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an AOO or a postulated DBA. Because stored diesel fuel oil, lube oil, and starting air subsystem support LCO 3.8.1 and LCO 3.8.2, stored diesel fuel oil, lube oil, and starting air are required to be within limits when the associated DG is required to be OPERABLE.

#### **ACTIONS**

The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each DG. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable DG subsystem. Complying with the Required Actions for one inoperable DG subsystem may allow for continued

## **ACTIONS** (continued)

operation, and subsequent inoperable DG subsystem(s) governed by separate Condition entry and application of associated Required Actions.

#### A.1

In this Condition, the 7 day fuel oil supply for a DG is not available. However, the Condition is restricted to fuel oil level reductions that maintain at least a 6 day supply. These circumstances may be caused by events such as either:

- a. Full load operation required for an inadvertent start while at minimum required level or
- b. Feed and bleed operations that may be necessitated by increasing particulate levels or any number of other oil quality degradations.

This restriction allows sufficient time for obtaining the requisite replacement volume and performing the analyses required prior to addition of the fuel oil to the tank. A period of 48 hours is considered sufficient to complete restoration of the required level prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

#### **B.1**

With lube oil inventory < 500 gal, sufficient lube oil to support 7 days of continuous DG operation at full load conditions may not be available. However, the Condition is restricted to lube oil volume reductions that maintain at least a 6 day supply. This restriction allows sufficient time for obtaining the requisite replacement volume. A period of 48 hours is considered sufficient to complete restoration of the required volume prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the low rate of usage, the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

## <u>C.1</u>

This Condition is entered as a result of a failure to meet the acceptance criterion for particulates. Normally, trending of particulate levels allows sufficient time to correct high particulate levels prior to reaching the limit of acceptability. Poor sample procedures (bottom sampling),

## **ACTIONS** (continued)

contaminated sampling equipment, and errors in laboratory analysis can produce failures that do not follow a trend. Since the presence of particulates does not mean failure of the fuel oil to burn properly in the diesel engine, since particulate concentration is unlikely to change significantly between Surveillance Frequency intervals, and since proper engine performance has been recently demonstrated (within 31 days), it is prudent to allow a brief period prior to declaring the associated DG inoperable. The 7 day Completion Time allows for further evaluation, resampling, and re-analysis of the DG fuel oil.

#### <u>D.1</u>

With the new fuel oil properties defined in the Bases for SR 3.8.3.3 not within the required limits, a period of 30 days is allowed for restoring the stored fuel oil properties. This period provides sufficient time to test the stored fuel oil to determine that the new fuel oil, when mixed with previously stored fuel oil, remains acceptable, or to restore the stored fuel oil properties. This restoration may involve feed and bleed procedures, filtering, or combination of these procedures. Even if a DG start and load was required during this time interval and the fuel oil properties were outside limits, there is high likelihood that the DG would still be capable of performing its intended function.

#### <u>E.1</u>

With starting air receiver pressure < [225] psig, sufficient capacity for five successive DG start attempts does not exist. However, as long as the receiver pressure is > [125] psig, there is adequate capacity for at least one start attempt, and the DG can be considered OPERABLE while the air receiver pressure is restored to the required limit. A period of 48 hours is considered sufficient to complete restoration to the required pressure prior to declaring the DG inoperable. This period is acceptable based on the remaining air start capacity, the fact that most DG starts are accomplished on the first attempt, and the low probability of an event during this brief period.

#### F.1

With a Required Action and associated Completion Time not met, or the stored diesel fuel oil, lube oil, or starting air subsystem not within limits for reasons other than addressed by Conditions A through E, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable.

## SURVEILLANCE REQUIREMENTS

### SR 3.8.3.1

This SR provides verification that there is an adequate inventory of fuel oil in the storage tanks to support each DG's operation for 7 days at full load. The 7 day period is sufficient time to place the unit in a safe shutdown condition and to bring in replenishment fuel from an offsite location.

The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and unit operators would be aware of any large uses of fuel oil during this period.

#### SR 3.8.3.2

This Surveillance ensures that sufficient lubricating oil inventory is available to support at least 7 days of full load operation for each DG. The [500] gal requirement is based on the DG manufacturer's consumption values for the run time of the DG. Implicit in this SR is the requirement to verify the capability to transfer the lube oil from its storage location to the DG, when the DG lube oil sump does not hold adequate inventory for 7 days of full load operation without the level reaching the manufacturer's recommended minimum level.

A 31 day Frequency is adequate to ensure that a sufficient lube oil supply is onsite, since DG starts and run time are closely monitored by the plant staff.

#### SR 3.8.3.3

The tests listed below are a means of determining whether new fuel oil is of the appropriate grade and has not been contaminated with substances that would have an immediate detrimental impact on diesel engine combustion. If results from these tests are within acceptable limits, the fuel oil may be added to the storage tanks without concern for contaminating the entire volume of fuel oil in the storage tanks. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days. The tests, limits, and applicable ASTM Standards are as follows:

- a. Sample the new fuel oil in accordance with ASTM D4057-[ ] (Ref. 6),
- b. Verify in accordance with the tests specified in ASTM D975-[ ] (Ref. 6) that the sample has an absolute specific gravity at 60/60°F

# SURVEILLANCE REQUIREMENTS (continued)

of  $\geq$  0.83 and  $\leq$  0.89 or an API gravity at 60°F of  $\geq$  27° and  $\leq$  39°, a kinematic viscosity at 40°C of  $\geq$  1.9 centistokes and  $\leq$  4.1 centistokes, and a flash point of  $\geq$  125°F, and

c. Verify that the new fuel oil has a clear and bright appearance with proper color when tested in accordance with ASTM D4176-[ ] (Ref. 6).

Failure to meet any of the above limits is cause for rejecting the new fuel oil, but does not represent a failure to meet the LCO concern since the fuel oil is not added to the storage tanks.

Within [31] days following the initial new fuel oil sample, the fuel oil is analyzed to establish that the other properties specified in Table 1 of ASTM D975-[] (Ref. 6) are met for new fuel oil when tested in accordance with ASTM D975-[] (Ref. 6), except that the analysis for sulfur may be performed in accordance with ASTM D1552-[] (Ref. 6) or ASTM D2622-[] (Ref. 6). The [31] day period is acceptable because the fuel oil properties of interest, even if they were not within stated limits, would not have an immediate effect on DG operation. This Surveillance ensures the availability of high quality fuel oil for the DGs.

Fuel oil degradation during long term storage shows up as an increase in particulate, mostly due to oxidation. The presence of particulate does not mean that the fuel oil will not burn properly in a diesel engine. The particulate can cause fouling of filters and fuel oil injection equipment, however, which can cause engine failure.

Particulate concentrations should be determined in accordance with ASTM D2276-[ ] (Ref. 6), Method A. This method involves a gravimetric determination of total particulate concentration in the fuel oil and has a limit of 10 mg/l. It is acceptable to obtain a field sample for subsequent laboratory testing in lieu of field testing. [For those designs in which the total volume of stored fuel oil is contained in two or more interconnected tanks, each tank must be considered and tested separately.]

The Frequency of this test takes into consideration fuel oil degradation trends that indicate that particulate concentration is unlikely to change significantly between Frequency intervals.

# SURVEILLANCE REQUIREMENTS (continued)

#### SR 3.8.3.4

This Surveillance ensures that, without the aid of the refill compressor, sufficient air start capacity for each DG is available. The system design requirements provide for a minimum of [five] engine start cycles without recharging. [A start cycle is defined by the DG vendor, but usually is measured in terms of time (seconds of cranking) or engine cranking speed.] The pressure specified in this SR is intended to reflect the lowest value at which the [five] starts can be accomplished.

The [31] day Frequency takes into account the capacity, capability, redundancy, and diversity of the AC sources and other indications available in the control room, including alarms, to alert the operator to below normal air start pressure.

## SR 3.8.3.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel storage tanks once every [31] days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and from breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 2). This SR is for preventive maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during performance of the Surveillance.

#### REFERENCES

- 1. FSAR, Section [9.5.2].
- 2. Regulatory Guide 1.137.
- 3. ANSI N195, 1976.
- 4. FSAR, Chapter [6].
- 5. FSAR, Chapter [15].

# **REFERENCES** (continued)

6. ASTM Standards: D4057-[ ], D975-[ ], D4176-[ ], D1552-[ ], D2622-[ ], and D2276-[ ], Method A.

## **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.4 DC Sources - Operating

#### **BASES**

#### **BACKGROUND**

The DC electrical power system provides the AC emergency power system with control power. It also provides both motive and control power to selected safety related equipment. Also, these DC subsystems provide DC electrical power to inverters, which in turn power the AC vital buses. As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The DC electrical power system also conforms to the recommendations of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3).

The station service DC power sources provide both motive and control power to selected safety related equipment, as well as circuit breaker control power for the nonsafety related 4160 V, and all 600 V and lower, AC distribution systems. Each DC subsystem is energized by one 125/250 V station service battery and three 125 V battery chargers (two normally inservice chargers and one spare charger). Each battery is exclusively associated with a single 125/250 VDC bus. Each set of battery chargers exclusively associated with a 125/250 VDC subsystem cannot be interconnected with any other 125/250 VDC subsystem. The normal and backup chargers are supplied from the same AC load groups for which the associated DC subsystem supplies the control power. The loads between the redundant 125/250 VDC subsystem are not transferable except for the Automatic Depressurization System, the logic circuits and valves of which are normally fed from the Division 1 DC system.

The diesel generator (DG) DC power sources provide control and instrumentation power for their respective DG. In addition, DG 2A and 2C DC power sources provide circuit breaker control power for the loads on the 4160 V 2E, 2F, and 2G emergency buses. Each DG DC subsystem is energized by one 125 V battery and one 125 V battery charger. Provisions exist for connecting a portable alternate battery charger.

During normal operation, the DC loads are powered from the battery chargers with the batteries floating on the system. In case of loss of normal power to the battery charger, the DC loads are automatically powered from the station batteries.

# BACKGROUND (continued)

The DC power distribution system is described in more detail in Bases for LCO 3.8.9, "Distribution System - Operating," and LCO 3.8.10, "Distribution System - Shutdown."

Each DC battery subsystem is separately housed in a ventilated room apart from its charger and distribution centers. Each subsystem is located in an area separated physically and electrically from the other subsystems to ensure that a single failure in one subsystem does not cause a failure in a redundant subsystem. There is no sharing between redundant Class 1E subsystems such as batteries, battery chargers, or distribution panels.

Each battery has adequate storage capacity to meet the duty cycle(s) discussed in the FSAR, Chapter [8] (Ref 4). The battery is designed with additional capacity above that required by the design duty cycle to allow for temperature variations and other factors.

The batteries for DC electrical power subsystems are sized to produce required capacity at 80% of nameplate rating, corresponding to warranted capacity at end of life cycles and the 100% design demand. The minimum design voltage limit is 105/210 V.

The battery cells are of flooded lead acid construction with a nominal specific gravity of [1.215]. This specific gravity corresponds to an open circuit battery voltage of approximately 120 V for a [58] cell battery (i.e., cell voltage of [2.065] volts per cell (Vpc)). The open circuit voltage is the voltage maintained when there is no charging or discharging. Once fully charged with its open circuit voltage ≥ [2.0654] Vpc, the battery cell will maintain its capacity for [30] days without further charging per manufacturer's instructions. Optimal long term performance however, is obtained by maintaining a float voltage [2.20 to 2.25] Vpc. This provides adequate over-potential, which limits the formation of lead sulfate and self discharge. The nominal float voltage of [2.22] Vpc corresponds to a total float voltage output of [128.8] V for a [58] cell battery as discussed in the FSAR, Chapter [8] (Ref. 4).

Each battery charger of DC electrical power subsystem has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each station service battery charger has sufficient excess capacity to restore the battery from the design minimum charge to its fully charged state within 24 hours while supplying normal steady state loads (Ref. 4).

## **BACKGROUND** (continued)

The battery charger is normally in the float-charge mode. Float-charge is the condition in which the charger is supplying the connected loads and the battery cells are receiving adequate current to optimally charge the battery. This assures the internal losses of a battery are overcome and the battery is maintained in a fully charged state.

When desired, the charger can be placed in the equalize mode. The equalize mode is at a higher voltage than the float mode and charging current is correspondingly higher. The battery charger is operated in the equalize mode after a battery discharge or for routine maintenance. Following a battery discharge, the battery recharge characteristic accepts current at the current limit of the battery charger (if the discharge was significant, e.g., following a battery service test) until the battery terminal voltage approaches the charger voltage setpoint. Charging current then reduces exponentially during the remainder of the recharge cycle. Lead-calcium batteries have recharge efficiencies of greater than 95%, so once at least 105% of the ampere-hours discharged have been returned, the battery capacity would be restored to the same condition as it was prior to the discharge. This can be monitored by direct observation of the exponentially decaying charging current or by evaluating the amp-hours discharged from the battery and amp-hours returned to the battery.

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 5) and Chapter [15] (Ref. 6), assume that Engineered Safety Feature (ESF) systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the DGs, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining DC sources OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite AC power or all onsite AC power and
- b. A worst case single failure.

The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

The DC electrical power subsystems - with: 1) each station service DC subsystem consisting of two 125 V batteries in series two battery chargers and the corresponding control equipment and interconnecting

## LCO (continued)

cabling supplying power to the associated bus, and 2) each DG DC subsystem consisting of one battery bank, one battery charger, and the corresponding control equipment and interconnecting cabling are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Loss of any DC electrical power subsystem does not prevent the minimum safety function from being performed (Ref. 4).

## **APPLICABILITY**

The DC electrical power sources are required to be OPERABLE in MODES 1, 2, and 3 to ensure safe unit operation and to ensure that:

- a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA.

The DC electrical power requirements for MODES 4 and 5 are addressed in the Bases for LCO 3.8.5, "DC Sources - Shutdown."

#### **ACTIONS**

#### A.1, A.2, and A.3

Condition A represents one division with one [or two] battery chargers inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

# **ACTIONS** (continued)

#### - REVIEWER'S NOTE -

A plant that cannot meet the 12-hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.

If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 2 hours, and the charger is not operating in the current-limiting mode, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit mode that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action A.2).

Required Action A.2 requires that the battery float current be verified as less than or equal to [2] amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial [12] hour period the battery float current is not less than or equal to [2] amps this indicates there may be additional battery problems and the battery must be declared inoperable.

## **ACTIONS** (continued)

Required Action A.3 limits the restoration time for the inoperable battery charger to 7 days. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g., balance of plant non-Class 1E battery charger). The 7 day Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

#### <u>B.1</u>

#### - REVIEWER'S NOTE -

The 2 hour Completion Times of Required Actions B.1 and C.1 are in brackets. Any licensee wishing to request a longer Completion Time will need to demonstrate that the longer Completion Time is appropriate for the plant in accordance with the guidance in Regulatory Guide (RG) 1.177, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications."

Condition B represents one division with one [or two] batter[y][ies] inoperable. With one [or two] batter[y][ies] inoperable, the DC bus is being supplied by the OPERABLE battery charger[s]. Any event that results in a loss of the AC bus supporting the battery charger[s] will also result in loss of DC to that division. Recovery of the AC bus, especially if it is due to a loss of offsite power, will be hampered by the fact that many of the components necessary for the recovery (e.g., diesel generator control and field flash, AC load shed and diesel generator output circuit breakers, etc.) likely rely upon the batter[y][ies]. In addition the energization transients of any DC loads that are beyond the capability of the battery charger[s] and normally require the assistance of the batter[y][ies] will not be able to be brought online. The [2] hour limit allows sufficient time to effect restoration of an inoperable battery given that the majority of the conditions that lead to battery inoperability (e.g., loss of battery charger, battery cell voltage less than [2.07] V, etc.) are identified in Specifications 3.8.4, 3.8.5, and 3.8.6 together with additional specific completion times.

#### C.1

Condition C represents one division with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is therefore imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for

## **ACTIONS** (continued)

complete loss of DC power to the affected division. The 2 hour limit is consistent with the allowed time for an inoperable DC Distribution System division.

If one of the required DC electrical power subsystems is inoperable for reasons other than Condition A or B (e.g., inoperable battery charger and associated inoperable battery), the remaining DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate an accident condition. Since a subsequent worst case single failure could, however, result in the loss of minimum necessary DC electrical subsystems to mitigate a worst case accident, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 7) and reflects a reasonable time to assess unit status as a function of the inoperable DC electrical power subsystem and, if the DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe unit shutdown.

#### D.1 and D.2

If the inoperable station service DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. The Completion Time to bring the unit to MODE 4 is consistent with the time required in Regulatory Guide 1.93 (Ref. 7).

#### E.1

If the DG DC electrical power subsystem cannot be restored to OPERABLE status in the associated Completion Time, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable. This declaration also requires entry into applicable Conditions and Required Actions for an inoperable DG, LCO 3.8.1, "AC Sources - Operating."

## SURVEILLANCE REQUIREMENTS

#### SR 3.8.4.1

Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the battery chargers, which support the ability of the batteries to perform their intended function. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a fully charged state while supplying the continuous steady state loads of the associated DC subsystem. On float charge, battery cells will receive adequate current to optimally charge the battery. The voltage requirements are based on the nominal design voltage of the battery and are consistent with the minimum float voltage established by the battery manufacturer ([2.20] Vpc or [127.6] V at the battery terminals). This voltage maintains the battery plates in a condition that supports maintaining the grid life (expected to be approximately 20 years). The 7 day Frequency is consistent with manufacturer recommendations and IEEE-450 (Ref. 8).

#### SR 3.8.4.2

This SR verifies the design capacity of the battery chargers. According to Regulatory Guide 1.32 (Ref. 9), the battery charger supply is recommended to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the unit during these demand occurrences. The minimum required amperes and duration ensures that these requirements can be satisfied.

This SR provides two options. One option requires that each battery charger be capable of supplying [400] amps at the minimum established float voltage for [8] hours. The ampere requirements are based on the output rating of the chargers. The voltage requirements are based on the charger voltage level after a response to a loss of AC power. The time period if sufficient for the charger temperature to have stabilized and to have been maintained for at lease [2] hours.

The other option requires that each battery charger be capable of recharging the battery after a service test coincident with supplying the largest coincident demands of the various continuous steady state loads (irrespective of the status of the plant during which these demands occur). This level of loading may not normally be available following the battery service test and will need to be supplemented with additional loads. The duration for this test may be longer than the charger sizing criteria since the battery recharge is affected by float voltage,

# SURVEILLANCE REQUIREMENTS (continued)

temperature, an the exponential decay in charging current. The battery is recharged when the measured charging current is  $\leq$  [2] amps.

The Frequency is acceptable, given the unit conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these [18 month] intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths.

## SR 3.8.4.3

A battery service test is a special test of the battery's capability, as found, to satisfy the design requirements (battery duty cycle) of the DC electrical power system. The discharge rate and test length corresponds to the design duty cycle requirements as specified in Reference 4.

The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 9) and Regulatory Guide 1.129 (Ref. 10), which state that the battery service test should be performed during refueling operations or at some other outage, with intervals between tests not to exceed [18 months].

This SR is modified by two Notes. Note 1 allows the performance of a modified performance discharge test in lieu of a service test.

The reason for Note 2 is that performing the Surveillance would remove a required DC electrical power subsystem from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of

# SURVEILLANCE REQUIREMENTS (continued)

the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

## **REFERENCES**

- 1. 10 CFR 50, Appendix A, GDC 17.
- 2. Regulatory Guide 1.6.
- 3. IEEE Standard 308, 1978.
- 4. FSAR, Chapter [8].
- 5. FSAR, Chapter [6].
- 6. FSAR, Chapter [15].
- 7. Regulatory Guide 1.93.
- 8. IEEE Standard 450, 1995.
- 9. Regulatory Guide 1.32, February 1977.
- 10. Regulatory Guide 1.129, December 1974.

## **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.5 DC Sources - Shutdown

#### **BASES**

#### **BACKGROUND**

A description of the DC sources is provided in the Bases for LCO 3.8.4, "DC Sources - Operating."

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume that Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators (DGs), emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum DC electrical power sources during MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies ensures that:

- The facility can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate DC electrical power is provided to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, DC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)].

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES [1,2, and 3] have no specific analyses in MODES [4 and 5] because the energy contained

# APPLICABLE SAFETY ANALYSES (continued)

within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case Design Basis Accidents which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES [1,2, and 3] have no specific analyses in MODES [4 and 5] because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence eing significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

In addition to the requirements established by the Technical Specifications, the plant must manage shutdown tasks and associated electrical support to maintain risk at an acceptably low level.

# APPLICABLE SAFETY ANALYSES (continued)

The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

The DC electrical power subsystems - with: 1) [each required] [the required] station service DC subsystem consisting of two 125 V batteries in series, two battery chargers, and the corresponding control equipment and interconnecting cabling; and 2) [each required] [the required] DG DC subsystem consisting of one battery bank, one battery charger, and the corresponding control equipment and interconnecting cabling - [are] [is] required to be OPERABLE to support [required] [one] DC distribution subsystem[s] [required OPERABLE by LCO 3.8.10, "Distribution Systems - Shutdown."] This requirement ensures the availability of sufficient DC electrical power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel] and inadvertent reactor vessel draindown).

#### **APPLICABILITY**

The DC electrical power sources required to be OPERABLE in MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies in the secondary containment provide assurance that:

- Required features to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core in case of an inadvertent draindown of the reactor vessel,
- Bequired features needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] are available,
- c. Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The DC electrical power requirements for MODES 1, 2, and 3 are covered in LCO 3.8.4.

#### **ACTIONS**

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.

#### A.1, A.2, and A.3

#### - REVIEWER'S NOTE -

ACTION A is included only when plant-specific implementation of LCO 3.8.5 includes the potential to require both divisions of the DC System to be OPERABLE. If plant-specific implementation results in LCO 3.8.5 requiring only one division of the DC System to be OPERABLE, then ACTION A is omitted and ACTION B is renumbered as ACTION A.

Condition A represents one division with one [or two] battery chargers inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

## - REVIEWER'S NOTE -

A plant that cannot meet the 12-hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential

## **ACTIONS** (continued)

charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours.

If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 2 hours, and the charger is not operating in the current-limiting modes, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit modes that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action A.1).

Required Action A.2 requires that the battery float current be verified as less than or equal to [2] amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial [12] hour period the battery float current is not less than or equal to [2] amps this indicates there may be additional battery problems and the battery must be declared inoperable.

Required Action A.3 limits the restoration time for the inoperable battery charger to 7 days. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g. balance of plant non-Class 1E battery charger). The 7 day Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

## **ACTIONS** (continued)

## B.1, B.2.1, B.2.2, B.2.3, and B.2.4

[If more than one DC distribution subsystem is required according to LCO 3.8.10, the DC subsystems remaining OPERABLE with one or more DC power sources inoperable may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, [recently] irradiated fuel movement, and operations with a potential for draining the reactor vessel.] By allowance of the option to declare required features inoperable with associated DC power sources inoperable, appropriate restrictions are implemented in accordance with the affected system LCOs' ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies, and any activities that could result in inadvertent draining of the reactor vessel).

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required DC electrical power subsystem[s] and to continue this action until restoration is accomplished in order to provide the necessary DC electrical power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the plant safety systems may be without sufficient power.

# SURVEILLANCE REQUIREMENTS

#### SR 3.8.5.1

SR 3.8.5.1 requires performance of all Surveillances required by SR 3.8.4.1 through SR 3.8.4.3. Therefore, see the corresponding Bases for LCO 3.8.4 for a discussion of each SR.

This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required.

**REFERENCES** 

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].

#### **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.6 Battery Parameters

#### **BASES**

#### **BACKGROUND**

This LCO delineates the limits on battery float current as well as electrolyte temperature, level, and float voltage for the DC electrical power subsystems batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.4, "DC Sources - Operating," and LCO 3.8.5, "DC Sources - Shutdown." In addition to the limitations of this Specification, the [licensee controlled program] also implements a program specified in Specification 5.5.14 for monitoring various battery parameters that is based on the recommendations of IEEE Standard 450-1995, "IEEE Recommended Practice For Maintenance, Testing, And Replacement Of Vented Lead-Acid Batteries For Stationary Applications" (Ref. 1).

The battery cells are of flooded lead acid construction with a nominal specific gravity of [1.215]. This specific gravity corresponds to an open circuit battery voltage of approximately 120 V for [58] cell battery (i.e., cell voltage of [2.065] volts per cell (Vpc)). The open circuit voltage is the voltage maintained when there is no charging or discharging. Once fully charged with its open circuit voltage ≥ [2.065] Vpc, the battery cell will maintain its capacity for [30] days without further charging per manufacturer's instructions. Optimal long term performance however, is obtained by maintaining a float voltage [2.20 to 2.25] Vpc. This provides adequate over-potential which limits the formation of lead sulfate and self discharge. The nominal float voltage of [2.22] Vpc corresponds to a total float voltage output of [128.8] V for a [58] cell battery as discussed in the FSAR, Chapter [8] (Ref. 2).

# APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC electrical power subsystems provide normal and emergency DC electrical power for the diesel generators (DGs), emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least one division of DC sources OPERABLE during accident conditions, in the event of:

a. An assumed loss of all offsite AC or all onsite AC power and

# APPLICABLE SAFETY ANALYSES (continued)

b. A worst case single failure.

Since battery parameters support the operation of the DC electrical power subsystems, they satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

Battery parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Battery parameter limits are conservatively established, allowing continued DC electrical system function even with limits not met. Additional preventative maintenance, testing, and monitoring performed in accordance with the [licensee controlled program] is conducted as specified in Specification 5.5.14

#### **APPLICABILITY**

The battery parameters are required solely for the support of the associated DC electrical power subsystem. Therefore, battery parameter limits are only required when the DC power source is required to be OPERABLE. Refer to the Applicability discussions in Bases for LCO 3.8.4 and LCO 3.8.5.

#### **ACTIONS**

## A.1, A.2, and A.3

With one or more cells in one or more batteries in one division < [2.07] V, the battery cell is degraded. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage (SR 3.8.4.1) and of the overall battery state of charge by monitoring the battery float charge current (SR 3.8.6.1). This assures that there is still sufficient battery capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of one or more cells in one or more batteries < [2.07] V, and continued operation is permitted for a limited period up to 24 hours.

Since the Required Actions only specify "perform," a failure of SR 3.8.4.1 or SR 3.8.6.1 acceptance criteria does not result in this Required Action not met. However, if one of the SRs is failed the appropriate Condition(s), depending on the cause of the failures, is entered. If SR 3.8.6.1 is failed then there is not assurance that there is still sufficient battery capacity to perform the intended function and the battery must be declared inoperable immediately.

# **ACTIONS** (continued)

#### **B.1** and **B.2**

One or more batteries in one division with float > [2] amps indicates that a partial discharge of the battery capacity has occurred. This may be due to a temporary loss of a battery charger or possibly due to one or more battery cells in a low voltage condition reflecting some loss of capacity. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage. If the terminal voltage is found to be less than the minimum established float voltage there are two possibilities, the battery charger is inoperable or is operating in the current limit mode. Condition A addresses charger inoperability. If the charger is operating in the current limit mode after 2 hours that is an indication that the battery has been substantially discharged and likely cannot perform its required design functions. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action B.2). The battery must therefore be declared inoperable.

If the float voltage is found to be satisfactory but there are one or more battery cells with float voltage less than [2.07] V, the associated "OR" statement in Condition F is applicable and the battery must be declared inoperable immediately. If float voltage is satisfactory and there are no cells less than [2.07] V there is good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action B.2) from any discharge that might have occurred due to a temporary loss of the battery charger.

#### - REVIEWER'S NOTE -

A plant that cannot meet the 12-hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery with float voltage (the charger setpoint) across its terminals indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function

## **ACTIONS** (continued)

of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.

If the condition is due to one or more cells in a low voltage condition but still greater than [2.07] V and float voltage is found to be satisfactory, this is not indication of a substantially discharged battery and [12] hours is a reasonable time prior to declaring the battery inoperable.

Since Required Action B.1 only specifies "perform," a failure of SR 3.8.4.1 acceptance criteria does not result in the Required Action not met. However, if SR 3.8.4.1 is failed, the appropriate Condition(s), depending on the cause of the failure, is entered.

## C.1, C.2, and C.3

With one or more batteries in one division with one or more cells electrolyte level above the top of the plates, but below the minimum established design limits, the battery still retains sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of electrolyte level not met. Within 31 days the minimum established design limits for electrolyte level must be re-established.

With electrolyte level below the top of the plates there is a potential for dryout and plate degradation. Required Actions C.1 and C.2 address this potential (as well as provisions in Specification 5.5.14, Battery Monitoring and Maintenance Program). They are modified by a note that indicates they are only applicable if electrolyte level is below the top of the plates. Within 8 hours level is required to be restored to above the top of the plates. The Required Action C.2 requirement to verify that there is no leakage by visual inspection and the Specification 5.5.14.b item to initiate action to equalize and test in accordance with manufacturer's recommendation are taken from Annex D of IEEE Standard 450-1995. They are performed following the restoration of the electrolyte level to above the top of the plates. Based on the results of the manufacturer's recommended testing the batter[y][ies] may have to be declared inoperable and the affected cell[s] replaced.

## **ACTIONS** (continued)

## <u>D.1</u>

With one or more batteries in one division with pilot cell temperature less than the minimum established design limits, 12 hours is allowed to restore the temperature to within limits. A low electrolyte temperature limits the current and power available. Since the battery is sized with margin, while battery capacity is degraded, sufficient capacity exists to perform the intended function and the affected battery is not required to be considered inoperable solely as a result of the pilot cell temperature not met.

## <u>E.1</u>

With one or more batteries in redundant trains with battery parameters not within limits there is not sufficient assurance that battery capacity has not been affected to the degree that the batteries can still perform their required function, given that redundant batteries are involved. With redundant batteries involved this potential could result in a total loss of function on multiple systems that rely upon the batteries. The longer Completion Times specified for battery parameters on non-redundant batteries not within limits are therefore not appropriate, and the parameters must be restored to within limits on at least one train within 2 hours.

### <u>F.1</u>

When any battery parameter is outside the allowances of the Required Actions for Condition A, B, C, D, or E, sufficient capacity to supply the maximum expected load requirement is not ensured and the corresponding battery must be declared inoperable. Additionally, discovering one or more batteries in one division with one or more battery cells float voltage less than [2.07] V and float current greater than [2] amps indicates that the battery capacity may not be sufficient to perform the intended functions. The battery must therefore be declared inoperable immediately.

## SURVEILLANCE REQUIREMENTS

### SR 3.8.6.1

Verifying battery float current while on float charge is used to determine the state of charge of the battery. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a charged state. The float current requirements are based on the float current indicative of

## SURVEILLANCE REQUIREMENTS (continued)

a charged battery. Use of float current to determine the state of charge of the battery is consistent with IEEE-450 (Ref. 1). The 7 day Frequency is consistent with IEEE-450 (Ref. 1).

This SR is modified by a Note that states the float current requirement is not required to be met when battery terminal voltage is less than the minimum established float voltage of SR 3.8.4.1. When this float voltage is not maintained the Required Actions of LCO 3.8.4 ACTION A are being taken, which provide the necessary and appropriate verifications of the battery condition. Furthermore, the float current limit of [2] amps is established based on the nominal float voltage value and is not directly applicable when this voltage is not maintained.

### SR 3.8.6.2 and SR 3.8.6.5

Optimal long term battery performance is obtained by maintaining a float voltage greater than or equal to the minimum established design limits provided by the battery manufacturer, which corresponds to [130.5] V at the battery terminals, or [2.25] Vpc. This provides adequate overpotential, which limits the formation of lead sulfate and self discharge, which could eventually render the battery inoperable. Float voltages in this range or less, but greater than [2.07] Vpc, are addressed in Specification 5.5.14. SRs 3.8.6.2 and 3.8.6.5 require verification that the cell float voltages are equal to or greater than the short term absolute minimum voltage of [2.07] V. The Frequency for cell voltage verification every 31 days for pilot cell and 92 days for each connected cell is consistent with IEEE-450 (Ref. 1).

#### SR 3.8.6.3

The limit specified for electrolyte level ensures that the plates suffer no physical damage and maintains adequate electron transfer capability. The Frequency is consistent with IEEE-450 (Ref. 1).

#### SR 3.8.6.4

This Surveillance verifies that the pilot cell temperature is greater than or equal to the minimum established design limit (i.e., [40]°F). Pilot cell electrolyte temperature is maintained above this temperature to assure the battery can provided the required current and voltage to meet the design requirements. Temperatures lower than assumed in battery sizing calculations act to inhibit or reduce battery capacity. The Frequency is consistent with IEEE-450 (Ref. 1).

## SURVEILLANCE REQUIREMENTS (continued)

### SR 3.8.6.6

A battery performance discharge test is a test of constant current capacity of a battery, normally done in the as found condition, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage.

Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.6.6; however, only the modified performance discharge test may be used to satisfy the battery service test requirements of SR 3.8.4.3.

A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test.

It may consist of just two rates; for instance the one minute rate for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a one minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test must remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test.

The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 3) and IEEE-485 (Ref. 4). These references recommend that the battery be replaced if its capacity is below 80% of the manufacturer's rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements. Furthermore, the battery is sized to meet the assumed duty cycle loads when the battery design capacity reaches this [80]% limit.

The Frequency for this test is normally 60 months. If the battery shows degradation, or if the battery has reached 85% of its expected life and capacity is < 100% of the manufacturer's rating, the Surveillance Frequency is reduced to 12 months. However, if the battery shows no

## SURVEILLANCE REQUIREMENTS (continued)

degradation but has reached 85% of its expected life, the Surveillance Frequency is only reduced to 24 months for batteries that retain capacity ≥ 100% of the manufacturer's rating. Degradation is indicated, according to IEEE-450 (Ref. 3), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is 10% below the manufacturer's rating. All these Frequencies are consistent with the recommendations in IEEE-450 (Ref. 3).

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DC electrical power subsystem from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].
- 3. IEEE Standard 450, 1995.
- 4. IEEE Standard 485, 1983.

## **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.7 Inverters - Operating

### **BASES**

### **BACKGROUND**

The inverters are the preferred source of power for the AC vital buses because of the stability and reliability they achieve. There is one inverter per AC vital bus, making a total of four inverters. The function of the inverter is to provide AC electrical power to the vital buses. The inverter can be powered from an internal AC source/rectifier or from the station battery. The station battery provides an uninterruptible power source for the instrumentation and controls for the Reactor Protection System (RPS) and the Emergency Core Cooling Systems (ECCS) initiation.

Specific details on inverters and their operating characteristics are found in FSAR, Chapter [8] (Ref. 1).

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 2) and Chapter [15] (Ref. 3), assume Engineered Safety Feature systems are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the RPS and ECCS instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the unit. This includes maintaining electrical power sources OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite AC electrical power or all onsite AC electrical power and
- b. A worst case single failure.

The inverters are a part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverters ensure the availability of AC electrical power for the instrumentation for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the RPS and ECCS instrumentation and controls is maintained. The four battery powered inverters ensure an uninterruptible supply of AC electrical power to the AC vital buses even if the 4.16 kV safety buses are de-energized.

OPERABLE inverters require the associated vital bus to be powered by the inverter with output voltage and frequency within tolerances, and power input to the inverter from a [125 VDC] station battery. Alternatively, power supply may be from an internal AC source via rectifier as long as the station battery is available as the uninterruptible power supply.

This LCO is modified by a Note allowing [two] inverter[s] to be disconnected from their associated DC buses for  $\le$  24 hours. This allowance is provided to perform an equalizing charge on one battery. If the inverters were not disconnected, the resulting voltage condition might damage the inverters energized from their associated DC bus. Disconnecting the inverters is allowed provided that the associated AC vital buses are energized from their [Class 1E constant voltage source transformer or inverter using an internal AC source] and that the AC vital buses for the other division(s) are energized from the associated inverters connected to their DC buses. These provisions minimize the loss of equipment that occurs in the event of a loss of offsite power. The 24 hour time period for the allowance minimizes the time during which a loss of offsite power could result in the loss of equipment energized from the affected AC vital bus while it takes into consideration the time required to perform an equalizing charge on the batteries.

The intent of the Note is to limit the number of inverters that may be disconnected. Only those inverters associated with the single battery undergoing an equalizing charge may be disconnected. All other inverters must be aligned to their associated batteries, regardless of the number of inverters or plant design.

### **APPLICABILITY**

The inverters are required to be OPERABLE in MODES 1, 2, and 3 to ensure that:

## APPLICABILITY (continued)

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

Inverter requirement for MODES 4 and 5 are covered in the Bases for LCO 3.8.8, "Inverters - Shutdown."

### **ACTIONS**

## <u>A.1</u>

With a required inverter inoperable, its associated AC vital bus becomes inoperable until it is manually re-energized from its [Class 1E constant voltage source transformer or inverter using an internal AC source]. LCO 3.8.9 addresses this action; however, pursuant to LCO 3.0.6, these actions would not be entered even if the AC vital bus were de-energized. Therefore, the ACTIONS are modified by a Note to require the ACTIONS for LCO 3.8.9 be entered immediately. This ensures the vital bus is reenergized within 2 hours.

Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. The 24 hour limit is based upon engineering judgment and takes into consideration the time required to repair an inverter and the additional risk to which the unit is exposed because of the inverter inoperability. This risk has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems that such a shutdown might entail. When the AC vital bus is powered from its constant voltage source, it is relying upon interruptible AC electrical power sources (offsite and onsite). Similarly, the uninterruptible inverter source to the AC vital buses is the preferred source for powering instrumentation trip setpoint devices.

## **B.1 and B.2**

If the inoperable devices or components cannot be restored to OPERABLE status within the associated Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant

## **ACTIONS** (continued)

conditions from full power conditions in an orderly manner and without challenging unit systems.

## SURVEILLANCE REQUIREMENTS

### SR 3.8.7.1

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for instrumentation connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

- 1. FSAR, Chapter [8].
- 2. FSAR, Chapter [6].
- 3. FSAR, Chapter [15].

### **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.8 Inverters - Shutdown

### **BASES**

## **BACKGROUND**

A description of the inverters is provided in the Bases for LCO 3.8.7, "Inverters - Operating."

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Reactor Protection System and Emergency Core Cooling Systems instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum inverters to each AC vital bus during MODES 4 and 5 ensures that:

- a. The facility can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability are available for monitoring and maintaining the unit status, and
- c. Adequate power is available to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, the AC and DC inverters are only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)].

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES [1,2, and 3] have no

## APPLICABLE SAFETY ANALYSES (continued)

specific analyses in MODES [4 and 5]. Worst case bounding events are deemed not credible in MODES [4 and 5] because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case Design Basis Accidents which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The inverters were previously identified as part of the Distribution System and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverter[s] ensure the availability of electrical power for the instrumentation for systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or postulated DBA. The battery powered inverter[s] provides uninterruptible supply of AC electrical power to the AC vital bus[es] even if the 4.16 kV safety buses are de-energized. OPERABLE inverter[s] require the AC vital bus be powered by the inverter through inverted DC voltage. This ensures the availability of sufficient inverter power sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel] and inadvertent reactor vessel draindown).

### **APPLICABILITY**

The inverter[s] required to be OPERABLE in MODES 4 and 5 and also any time during movement of [recently] irradiated fuel assemblies in the [primary or secondary] containment provide assurance that:

- Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core in case of an inadvertent draindown of the reactor vessel,
- b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] are available,
- c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

Inverter requirements for MODES 1, 2, and 3 are covered in LCO 3.8.7.

#### **ACTIONS**

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.

### A.1, A.2.1, A.2.2, A.2.3, and A.2.4

[If two divisions are required by LCO 3.8.10, "Distribution Systems - Shutdown," the remaining OPERABLE inverters may be capable of supporting sufficient required feature(s) to allow continuation of CORE ALTERATIONS, [recently] irradiated fuel movement, and operations with a potential for draining the reactor vessel.] By the allowance of the option to declare required feature(s) inoperable with the associated inverter(s) inoperable, appropriate restrictions are implemented in accordance with the affected required feature(s) of the LCOs' ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies in the [primary or secondary] containment, and

## **ACTIONS** (continued)

any activities that could result in inadvertent draining of the reactor vessel).

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverter[s] and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the plant safety systems may be without power or powered from a constant voltage source transformer.

## SURVEILLANCE REQUIREMENTS

### SR 3.8.8.1

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].

## **B 3.8 ELECTRICAL POWER SYSTEMS**

B 3.8.9 Distribution Systems - Operating

### **BASES**

### **BACKGROUND**

The onsite Class 1E AC and DC electrical power distribution system is divided into redundant and independent AC, DC, and AC vital bus electrical power distribution subsystems.

The primary AC electrical power distribution subsystem for each division consists of a 4.16 kV Engineered Safety Feature (ESF) bus having an offsite source of power as well as a dedicated onsite diesel generator (DG) source. Each 4.16 kV ESF bus is normally connected to a normal source startup auxiliary transformer (SAT) (2D). During a loss of the normal offsite power source to the 4.16 kV ESF buses, the alternate supply breaker from SAT 2C attempts to close. If all offsite sources are unavailable, the onsite emergency DGs supply power to the 4.16 kV ESF buses.

The secondary plant distribution subsystem includes 600 VAC emergency buses 2C and 2D and associated load centers, motor control centers, distribution panels, and transformers.

The 120 VAC vital buses 2YV1, 2YV2, 2YV3, and 2YV4 are arranged in four load groups and are normally powered from DC. The alternate power supply for the vital buses is a Class 1E constant voltage source transformer powered from the same division as the associated inverter, and its use is governed by LCO 3.8.7, "Inverters - Operating." Each constant voltage source transformer is powered from AC.

There are two independent 125/250 VDC station service electrical power distribution subsystems and three independent 125 VDC DG electrical power distribution subsystems that support the necessary power for ESF functions. Each subsystem consists of a 125v and a 250v bus and associated distribution panels.

The list of all distribution subsystem buses, transformers, load centers, motor control centers, and distribution panels, is presented in Table B 3.8.9-1.

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume ESF systems are OPERABLE. The AC and DC electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6 Containment Systems.

The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining distribution systems OPERABLE during accident conditions in the event of:

- An assumed loss of all offsite power or all onsite AC electrical power and
- b. A worst case single failure.

The AC and DC electrical power distribution system satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

The required electrical power distribution subsystems listed in Table B 3.8.9-1 ensure the availability of AC, DC, and AC vital bus electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The AC, DC, and AC vital bus electrical power distribution subsystems are required to be OPERABLE.

Maintaining the [Division 1 and 2] AC, DC, and AC vital bus electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of ESF is not defeated. Therefore, a single failure within any system or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor.

The AC electrical power distribution subsystems require the associated buses and electrical circuits, including any load centers, motor control centers, and distribution panels, to be energized to their proper voltages. OPERABLE DC electrical power distribution subsystems require the associated buses and distribution panels to be energized to their proper voltage from either the associated battery or charger. OPERABLE vital

## LCO (continued)

bus electrical power distribution subsystems require the associated buses to be energized to their proper voltage from the associated [inverter via inverted DC voltage, inverter using interval AC source, or Class 1E constant voltage transformer].

In addition, tie breakers between redundant safety related AC, DC, and AC vital bus power distribution subsystems, if they exist, must be open. This prevents any electrical malfunction in any power distribution subsystem from propagating to the redundant subsystem, which could cause the failure of a redundant subsystem and a loss of essential safety function(s). If any tie breakers are closed, the affected redundant electrical power distribution subsystems are considered inoperable. This applies to the onsite, safety related, redundant electrical power distribution subsystems. It does not, however, preclude redundant Class IE 4.16 kV ESF buses from being powered from the same offsite circuit.

## **APPLICABILITY**

The electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, and 3 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

Electrical power distribution subsystem requirements for MODES 4 and 5 are covered in the Bases for LCO 3.8.10, "Distribution Systems - Shutdown."

### **ACTIONS**

### <u>A.1</u>

With one or more Division 1 and 2 required AC buses, load centers, motor control centers, or distribution panels (except AC vital buses), in one division inoperable and a loss of function has not occurred, the remaining AC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining power distribution subsystems could result in the

## **ACTIONS** (continued)

minimum required ESF functions not being supported. Therefore, the required AC buses, load centers, motor control centers, and distribution panels must be restored to OPERABLE status within 8 hours.

The Condition A worst scenario is one division without AC power (i.e., no offsite power to the division and the associated DG inoperable). In this Condition, the unit is more vulnerable to a complete loss of AC power. It is, therefore, imperative that the unit operators' attention be focused on minimizing the potential for loss of power to the remaining division by stabilizing the unit, and on restoring power to the affected division. The 8 hour time limit before requiring a unit shutdown in this Condition is acceptable because:

- a. There is a potential for decreased safety if the unit operators' attention is diverted from the evaluations and actions necessary to restore power to the affected division to the actions associated with taking the unit to shutdown within this time limit.
- The potential for an event in conjunction with a single failure of a redundant component in the division with AC power. (The redundant component is verified OPERABLE in accordance with Specification 5.5.12, "Safety Function Determination Program (SFDP).")

The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DC bus is inoperable and subsequently returned OPERABLE, this LCO may already have been not met for up to 2 hours. This situation could lead to a total duration of 10 hours, since initial failure of the LCO, to restore the AC distribution system. At this time a DC circuit could again become inoperable, and AC distribution could be restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This results in establishing the "time zero" at the time this LCO was initially not met, instead of at the time Condition A was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

Required Action A.1 is modified by a Note that requires the applicable Conditions and Required Actions of LCO 3.8.4, "DC Sources -

## **ACTIONS** (continued)

Operating," to be entered for DC divisions made inoperable by inoperable power distribution subsystems. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. Inoperability of a distribution system can result in loss of charging power to batteries and eventual loss of DC power. This Note ensures that the appropriate attention is given to restoring charging power to batteries, if necessary, after loss of distribution systems.

### [ B.1

With one or more AC vital buses inoperable, and a loss of function has not yet occurred, the remaining OPERABLE AC vital buses are capable of supporting the minimum safety functions necessary to shut down the unit and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum required ESF functions not being supported. Therefore, the required AC vital bus must be restored to OPERABLE status within 2 hours by powering the bus from the associated [inverter via inverted DC, inverter using internal AC source, or Class 1E constant voltage transformer].

Condition B represents one or more AC vital buses without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation the plant is significantly more vulnerable to a complete loss of all noninterruptible power. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for loss of power to the remaining vital buses, and restoring power to the affected AC vital buses.

This 2 hour limit is more conservative than Completion Times allow for the majority of components that are without adequate vital AC power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, that would have Required Action Completion Times shorter than 2 hours if declared inoperable, is acceptable because of:

- [ a. The potential for decreased safety when requiring a change in plant conditions (i.e., requiring a shutdown) while not allowing stable operations to continue,
- The potential for decreased safety when requiring entry into numerous applicable Conditions and Required Actions for components without adequate vital AC power, while not providing

## **ACTIONS** (continued)

sufficient time for the operators to perform the necessary evaluations and actions to restore power to the affected division, and

c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time takes into account the importance to safety of restoring the AC vital bus to OPERABLE status, the redundant capability afforded by the other OPERABLE vital buses, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action B.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This situation could lead to a total duration of 10 hours, since initial failure of the LCO, to restore the vital bus distribution system. At this time an AC division could again become inoperable, and vital bus distribution could be restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This allowance results in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time that Condition B was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.]

## <u>C.1</u>

With one or more station service DC bus or distribution panel inoperable, and a loss of function has not yet occurred, the remaining DC electrical power distribution subsystem is capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the required DC buses and distribution panels must be restored to OPERABLE status within 2 hours by powering the bus from the associated battery or charger.

## **ACTIONS** (continued)

Condition C represents one or more DC buses or distribution panels without adequate DC power, potentially with both the battery significantly degraded and the associated charger nonfunctioning. In this situation the plant is significantly more vulnerable to a complete loss of all DC power. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for loss of power to the remaining divisions, and restoring power to the affected division.

This 2 hour limit is more conservative than Completion Times allowed for the majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of:

- a. The potential for decreased safety when requiring a change in plant conditions (i.e., requiring a shutdown) while not allowing stable operations to continue,
- The potential for decreased safety when requiring entry into numerous applicable Conditions and Required Actions for components without DC power, while not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected division,
- c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 3).

The second Completion Time for Required Action C.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition C is entered while, for instance, an AC bus is inoperable and subsequently restored OPERABLE, the LCO may already have been not met for up to 8 hours. This situation could lead to a total duration of 10 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC division could again become inoperable, and DC distribution could be restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This allowance results in

## **ACTIONS** (continued)

establishing the "time zero" at the time the LCO was initially not met, instead of at the time Condition C was entered. The 16 hour Completion Time is an acceptable limitation on this potential of failing to meet the LCO indefinitely.

### D.1 and D.2

If the inoperable distribution subsystem cannot be restored to OPERABLE status within the associated Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

## <u>E.1</u>

With one or more DG DC buses inoperable, the associated DG(s) may be incapable of performing their intended functions. In this situation the DG(s) must be immediately declared inoperable. This action also requires entry into applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources - Operating."

### F.1

Condition F corresponds to a level of degradation in the electrical distribution system that causes a required safety function to be lost. When more than one AC or DC electrical power distribution subsystem is lost, and this results in the loss of a required function, the plant is in a condition outside the accident analysis. Therefore, no additional time is justified for continued operation. LCO 3.0.3 must be entered immediately to commence a controlled shutdown.

## SURVEILLANCE REQUIREMENTS

#### SR 3.8.9.1

This Surveillance verifies that the AC and DC, electrical power distribution systems are functioning properly, with the correct circuit breaker alignment. The correct breaker alignment ensures the appropriate separation and independence of the electrical buses are maintained, and the appropriate voltage is available to each required bus. The verification of proper voltage availability on the buses ensures that the required voltage is readily available for motive as well as control functions for

## SURVEILLANCE REQUIREMENTS (continued)

critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the AC, DC, and AC vital bus electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].
- 3. Regulatory Guide 1.93, December 1974.

## Table B 3.8.9-1 (page 1 of 1) AC and DC Electrical Power Distribution Systems

| TYPE            | VOLTAGE  | TRAIN A*                                                                     | TRAIN B*                                                                     |
|-----------------|----------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| AC safety buses | [4160 V] | [ESF Bus] [NB01]                                                             | [ESF Bus] [NB02]                                                             |
|                 | [480 V]  | Load Centers<br>[NG01, NG03]                                                 | Load Centers<br>[NG02, NG04]                                                 |
|                 | [480 V]  | Motor Control<br>Centers<br>[NG01A, NG01I,<br>NG01B, NG03C,<br>NG03I, NG03D] | Motor Control<br>Centers<br>[NG02A, NG02I,<br>NG02B, NG04C,<br>NG04I, NG04D] |
|                 | [120 V]  | Distribution Panels<br>[NP01, NP03]                                          | Distribution Panels<br>[NP02, NP04]                                          |
| DC buses        | [125 V]  | Bus [NK01]                                                                   | Bus [NK02]                                                                   |
|                 |          | Bus [NK03]                                                                   | Bus [NK04]                                                                   |
|                 |          | Distribution Panels<br>[NK41, NK43, NK51]                                    | Distribution Panels<br>[NK42, NK44, NK52]                                    |
| AC vital buses  | [120 V]  | Bus [NN01]                                                                   | Bus [NN02]                                                                   |
|                 |          | Bus [NN03]                                                                   | Bus [NN04]                                                                   |

<sup>\*</sup> Each train of the AC and DC electrical power distribution systems is a subsystem.

### B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.10 Distribution Systems - Shutdown

### **BASES**

### **BACKGROUND**

A description of the AC, DC, and AC vital bus electrical power distribution system is provided in the Bases for LCO 3.8.9, "Distribution Systems - Operating."

## APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature (ESF) systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution system is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum AC, DC, and AC vital bus electrical power sources and associated power distribution subsystems during MODES 4 and 5, and during movement of [recently] irradiated fuel assemblies in the secondary containment ensures that:

- The facility can be maintained in the shutdown or refueling condition for extended periods,
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and
- c. Adequate power is provided to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident [involving handling recently irradiated fuel. Due to radioactive decay, AC and DC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)].

The AC and DC electrical power distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of Technical Specifications required systems, equipment, and components - both specifically addressed by their own LCO, and implicitly required by the definition of OPERABILITY.

Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the plant in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel] and inadvertent reactor vessel draindown).

### **APPLICABILITY**

The AC and DC electrical power distribution subsystems required to be OPERABLE in MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies in the [secondary] containment provide assurance that:

- Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core in case of an inadvertent draindown of the reactor vessel.
- b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [ ] days)] are available,
- c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and
- Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The AC, DC, and AC vital bus electrical power distribution subsystem requirements for MODES 1, 2, and 3 are covered in LCO 3.8.9.

### **ACTIONS**

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent

## **ACTIONS** (continued)

of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.

## A.1, A.2.1, A.2.2, A.2.3, A.2.4, and A.2.5

Although redundant required features may require redundant divisions of electrical power distribution subsystems to be OPERABLE, one OPERABLE distribution subsystem division may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, [recently] irradiated fuel movement, and operations with a potential for draining the reactor vessel. By allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions are implemented in accordance with the affected distribution subsystem LCO's Required Actions. In many instances this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made, (i.e., to suspend CORE ALTERATIONS, movement of [recently] irradiated fuel assemblies in the [secondary] containment, and any activities that could result in inadvertent draining of the reactor vessel).

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the plant safety systems.

Notwithstanding performance of the above conservative Required Actions, a required residual heat removal-shutdown cooling (RHR-SDC) subsystem may be inoperable. In this case, Required Actions A.2.1 through A.2.4 do not adequately address the concerns relating to coolant circulation and heat removal. Pursuant to LCO 3.0.6, the RHR-SDC ACTIONS would not be entered. Therefore, Required Action A.2.5 is provided to direct declaring RHR-SDC inoperable, which results in taking the appropriate RHR-SDC ACTIONS.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the plant safety systems may be without power.

## SURVEILLANCE REQUIREMENTS

### SR 3.8.10.1

This Surveillance verifies that the AC, DC, and AC vital bus electrical power distribution subsystem is functioning properly, with the buses energized. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the electrical power distribution subsystems, as well as other indications available in the control room that alert the operator to subsystem malfunctions.

- 1. FSAR, Chapter [6].
- 2. FSAR, Chapter [15].

### **B 3.9 REFUELING OPERATIONS**

## B 3.9.1 Refueling Equipment Interlocks

### **BASES**

#### **BACKGROUND**

Refueling equipment interlocks restrict the operation of the refueling equipment or the withdrawal of control rods to reinforce unit procedures that prevent the reactor from achieving criticality during refueling. The refueling interlock circuitry senses the conditions of the refueling equipment and the control rods. Depending on the sensed conditions, interlocks are actuated to prevent the operation of the refueling equipment or the withdrawal of control rods.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods, when fully inserted, serve as the system capable of maintaining the reactor subcritical in cold conditions during all fuel movement activities and accidents.

One channel of instrumentation is provided to sense the position of the refueling platform, the loading of the refueling platform fuel grapple, and the full insertion of all control rods. Additionally, inputs are provided for the loading of the refueling platform frame mounted hoist, the loading of the refueling platform monorail mounted hoist, the full retraction of the fuel grapple, and the loading of the service platform hoist. With the reactor mode switch in the shutdown or refueling position, the indicated conditions are combined in logic circuits to determine if all restrictions on refueling equipment operations and control rod insertion are satisfied.

A control rod not at its full-in position interrupts power to the refueling equipment and prevents operating the equipment over the reactor core when loaded with a fuel assembly. Conversely, the refueling equipment located over the core and loaded with fuel inserts a control rod withdrawal block in the Control Rod Drive System to prevent withdrawing a control rod.

The refueling platform has two mechanical switches that open before the platform or any of its hoists are physically located over the reactor vessel. All refueling hoists have switches that open when the hoists are loaded with fuel.

The refueling interlocks use these indications to prevent operation of the refueling equipment with fuel loaded over the core whenever any control

## **BACKGROUND** (continued)

rod is withdrawn, or to prevent control rod withdrawal whenever fuel loaded refueling equipment is over the core (Ref. 2).

The hoist switches open at a load lighter than the weight of a single fuel assembly in water.

## APPLICABLE SAFETY ANALYSES

The refueling interlocks are explicitly assumed in the FSAR analyses for the control rod removal error during refueling (Ref. 3) and the fuel assembly insertion error during refueling (Ref. 4). These analyses evaluate the consequences of control rod withdrawal during refueling and also fuel assembly insertion with a control rod withdrawn. A prompt reactivity excursion during refueling could potentially result in fuel failure with subsequent release of radioactive material to the environment.

Criticality and, therefore, subsequent prompt reactivity excursions are prevented during the insertion of fuel, provided all control rods are fully inserted during the fuel insertion. The refueling interlocks accomplish this by preventing loading of fuel into the core with any control rod withdrawn or by preventing withdrawal of a rod from the core during fuel loading.

The refueling platform location switches activate at a point outside of the reactor core such that, considering switch hysteresis and maximum platform momentum toward the core at the time of power loss with a fuel assembly loaded and a control rod withdrawn, the fuel is not over the core.

Refueling equipment interlocks satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

To prevent criticality during refueling, the refueling interlocks ensure that fuel assemblies are not loaded with any control rod withdrawn.

To prevent these conditions from developing, the all-rods-in, the refueling platform position, the refueling platform fuel grapple fuel loaded, the refueling platform trolley frame mounted hoist fuel loaded, the refueling platform monorail mounted hoist fuel loaded, the refueling platform fuel grapple fully retracted position, and the service platform hoist fuel loaded inputs are required to be OPERABLE. These inputs are combined in logic circuits, which provide refueling equipment or control rod blocks to prevent operations that could result in criticality during refueling operations.

### **APPLICABILITY**

In MODE 5, a prompt reactivity excursion could cause fuel damage and subsequent release of radioactive material to the environment. The refueling equipment interlocks protect against prompt reactivity excursions during MODE 5. The interlocks are required to be OPERABLE during in-vessel fuel movement with refueling equipment associated with the interlocks.

In MODES 1, 2, 3, and 4, the reactor pressure vessel head is on, and CORE ALTERATIONS are not possible. Therefore, the refueling interlocks are not required to be OPERABLE in these MODES.

### **ACTIONS**

### **A.1**

With one or more of the required refueling equipment interlocks inoperable (does not include the one-rod-out interlock addressed in LCO 3.9.2), the unit must be placed in a condition in which the LCO does not apply. Therefore, Required Action A.1 requires that in-vessel fuel movement with the affected refueling equipment must be immediately suspended. This action ensures that operations are not performed with equipment that would potentially not be blocked from unacceptable operations (e.g., loading fuel into a cell with a control rod withdrawn). Suspension of in-vessel fuel movement shall not preclude completion of movement of a component to a safe position.

## SURVEILLANCE REQUIREMENTS

### SR 3.9.1.1

Performance of a CHANNEL FUNCTIONAL TEST demonstrates each required refueling equipment interlock will function properly when a simulated or actual signal indicative of a required condition is injected into the logic. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST may be performed by any series of sequential, overlapping, or total channel steps so that the entire channel is tested.

The 7 day Frequency is based on engineering judgment and is considered adequate in view of other indications of refueling interlocks and their associated input status that are available to unit operations personnel.

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. FSAR, Section [7.6.1].
- 3. FSAR, Section [15.1.13].
- 4. FSAR, Section [15.1.14].

## **B 3.9 REFUELING OPERATIONS**

B 3.9.2 Refuel Position One-Rod-Out Interlock

### **BASES**

### **BACKGROUND**

The refuel position one-rod-out interlock restricts the movement of control rods to reinforce unit procedures that prevent the reactor from becoming critical during refueling operations. During refueling operations, no more than one control rod is permitted to be withdrawn.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods serve as the system capable of maintaining the reactor subcritical in cold conditions.

The refuel position one-rod-out interlock prevents the selection of a second control rod for movement when any other control rod is not fully inserted (Ref. 2). It is a logic circuit that has redundant channels. It uses the all- rods-in signal (from the control rod full-in position indicators discussed in LCO 3.9.4, "Control Rod Position Indication") and a rod selection signal (from the Reactor Manual Control System).

This Specification ensures that the performance of the refuel position one-rod-out interlock in the event of a Design Basis Accident meets the assumptions used in the safety analysis of Reference 3.

## APPLICABLE SAFETY ANALYSES

The refueling position one-rod-out interlock is explicitly assumed in the FSAR analysis for the control rod withdrawal error during refueling (Ref. 3). This analysis evaluates the consequences of control rod withdrawal during refueling. A prompt reactivity excursion during refueling could potentially result in fuel failure with subsequent release of radioactive material to the environment.

The refuel position one-rod-out interlock and adequate SDM (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)" prevent criticality by preventing withdrawal of more than one control rod. With one control rod withdrawn, the core will remain subcritical, thereby preventing any prompt critical excursion.

The refuel position one-rod-out interlock satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

To prevent criticality during MODE 5, the refuel position one-rod-out interlock ensures no more than one control rod may be withdrawn. Both channels of the refuel position one-rod-out interlock are required to be OPERABLE and the reactor mode switch must be locked in the refuel position to support the OPERABILITY of these channels.

### **APPLICABILITY**

In MODE 5, with the reactor mode switch in the refuel position, the OPERABLE refuel position one-rod-out interlock provides protection against prompt reactivity excursions.

In MODES 1, 2, 3, and 4, the refuel position one-rod-out interlock is not required to be OPERABLE and is bypassed. In MODES 1 and 2, the Reactor Protection System (LCO 3.3.1.1) and the control rods (LCO 3.1.3) provide mitigation of potential reactivity excursions. In MODES 3 and 4, with the reactor mode switch in the shutdown position, a control rod block (LCO 3.3.2.1) ensures all control rods are inserted, thereby preventing criticality during shutdown conditions.

## **ACTIONS**

## A.1 and A.2

With one or both channels of the refueling position one-rod-out interlock inoperable, the refueling interlocks may not be capable of preventing more than one control rod from being withdrawn. This condition may lead to criticality.

Control rod withdrawal must be immediately suspended, and action must be immediately initiated to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Action must continue until all such control rods are fully inserted. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and, therefore, do not have to be inserted.

## SURVEILLANCE REQUIREMENTS

### SR 3.9.2.1

Proper functioning of the refueling position one-rod-out interlock requires the reactor mode switch to be in Refuel. During control rod withdrawal in MODE 5, improper positioning of the reactor mode switch could, in some instances, allow improper bypassing of required interlocks. Therefore, this Surveillance imposes an additional level of assurance that the refueling position one-rod-out interlock will be OPERABLE when required. By "locking" the reactor mode switch in the proper position (i.e., removing the reactor mode switch key from the console while the reactor mode

## SURVEILLANCE REQUIREMENTS (continued)

switch is positioned in refuel), an additional administrative control is in place to preclude operator errors from resulting in unanalyzed operation.

The Frequency of 12 hours is sufficient in view of other administrative controls utilized during refueling operations to ensure safe operation.

### SR 3.9.2.2

Performance of a CHANNEL FUNCTIONAL TEST on each channel demonstrates the associated refuel position one-rod-out interlock will function properly when a simulated or actual signal indicative of a required condition is injected into the logic. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST may be performed by any series of sequential, overlapping, or total channel steps so that the entire channel is tested. The 7 day Frequency is considered adequate because of demonstrated circuit reliability, procedural controls on control rod withdrawals, and visual and audible indications available in the control room to alert the operator to control rods not fully inserted. To perform the required testing, the applicable condition must be entered (i.e., a control rod must be withdrawn from its full-in position). Therefore, SR 3.9.2.2 has been modified by a Note that states the CHANNEL FUNCTIONAL TEST is not required to be performed until 1 hour after any control rod is withdrawn.

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. FSAR, Section [7.6.1.1].
- 3. FSAR, Section [15.4.1.1].

### **B 3.9 REFUELING OPERATIONS**

### B 3.9.3 Control Rod Position

### **BASES**

### **BACKGROUND**

Control rods provide the capability to maintain the reactor subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the Control Rod Drive System. During refueling, movement of control rods is limited by the refueling interlocks (LCO 3.9.1 and LCO 3.9.2) or the control rod block with the reactor mode switch in the shutdown position (LCO 3.3.2.1).

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods serve as the system capable of maintaining the reactor subcritical in cold conditions.

The refueling interlocks allow a single control rod to be withdrawn at any time unless fuel is being loaded into the core. To preclude loading fuel assemblies into the core with a control rod withdrawn, all control rods must be fully inserted. This prevents the reactor from achieving criticality during refueling operations.

## APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling are provided by the refueling interlocks (LCO 3.9.1 and LCO 3.9.2), the SDM (LCO 3.1.1), the intermediate range monitor neutron flux scram (LCO 3.3.1.1), the average power range monitor neutron flux scram (LCO 3.3.1.1), and the control rod block instrumentation (LCO 3.3.2.1).

The safety analysis for the control rod withdrawal error during refueling in the FSAR (Ref. 2) assumes the functioning of the refueling interlocks and adequate SDM. The analysis for the fuel assembly insertion error (Ref. 3) assumes all control rods are fully inserted. Thus, prior to fuel reload, all control rods must be fully inserted to minimize the probability of an inadvertent criticality.

Control rod position satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

### LCO

All control rods must be fully inserted during applicable refueling conditions to minimize the probability of an inadvertent criticality during refueling.

## **APPLICABILITY**

During MODE 5, loading fuel into core cells with control rods withdrawn may result in inadvertent criticality. Therefore, the control rods must be inserted before loading fuel into a core cell. All control rods must be inserted before loading fuel to ensure that a fuel loading error does not result in loading fuel into a core cell with the control rod withdrawn.

In MODES 1, 2, 3, and 4, the reactor pressure vessel head is on, and no fuel loading activities are possible. Therefore, this Specification is not applicable in these MODES.

### **ACTIONS**

## <u>A.1</u>

With all control rods not fully inserted during the applicable conditions, an inadvertent criticality could occur that is not analyzed in the FSAR. All fuel loading operations must be immediately suspended. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

# SURVEILLANCE REQUIREMENTS

### SR 3.9.3.1

During refueling, to ensure that the reactor remains subcritical, all control rods must be fully inserted prior to and during fuel loading. Periodic checks of the control rod position ensure this condition is maintained.

The 12 hour Frequency takes into consideration the procedural controls on control rod movement during refueling as well as the redundant functions of the refueling interlocks.

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. FSAR, Section [15.1.13].
- 3. FSAR, Section [15.1.14].

## **B 3.9 REFUELING OPERATIONS**

## B 3.9.4 Control Rod Position Indication

#### **BASES**

#### **BACKGROUND**

The full-in position indication channel for each control rod provides necessary information to the refueling interlocks to prevent inadvertent criticalities during refueling operations. During refueling, the refueling interlocks (LCO 3.9.1 and LCO 3.9.2) use the full-in position indication channel to limit the operation of the refueling equipment and the movement of the control rods. The absence of the full-in position channel signal for any control rod removes the all-rods-in permissive for the refueling equipment interlocks and prevents fuel loading. Also, this condition causes the refuel position one-rod-out interlock to not allow the withdrawal of any other control rod.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods serve as the system capable of maintaining the reactor subcritical in cold conditions.

## APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling are provided by the refueling interlocks (LCO 3.9.1 and LCO 3.9.2), the SDM (LCO 3.1.1), the intermediate range monitor neutron flux scram (LCO 3.3.1.1), and the control rod block instrumentation (LCO 3.3.2.1).

The safety analysis for the control rod withdrawal error during refueling (Ref. 2) assumes the functioning of the refueling interlocks and adequate SDM. The analysis for the fuel assembly insertion error (Ref. 3) assumes all control rods are fully inserted. The full-in position indication channel is required to be OPERABLE so that the refueling interlocks can ensure that fuel cannot be loaded with any control rod withdrawn and that no more than one control rod can be withdrawn at a time.

Control rod position indication satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

## LCO

Each control rod full-in position indication channel must be OPERABLE to provide the required input to the refueling interlocks. A channel is OPERABLE if it provides correct position indication to the refueling interlock logic.

## **APPLICABILITY**

During MODE 5, the control rods must have OPERABLE full-in position indication channels to ensure the applicable refueling interlocks will be OPERABLE.

In MODES 1 and 2, requirements for control rod position are specified in LCO 3.1.3, "Control Rod OPERABILITY." In MODES 3 and 4, with the reactor mode switch in the shutdown position, a control rod block (LCO 3.3.2.1) ensures all control rods are inserted, thereby preventing criticality during shutdown conditions.

## **ACTIONS**

A Note has been provided to modify the ACTIONS related to control rod position indication channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable control rod position indication channels provide appropriate compensatory measures for separate inoperable channels. As such, this Note has been provided, which allows separate Condition entry for each inoperable required control rod position indication channel.

## A.1.1, A.1.2, A.1.3, A.2.1 and A.2.2

With one or more required full-in position indication channels inoperable, compensating actions must be taken to protect against potential reactivity excursions from fuel assembly insertions or control rod withdrawals. This may be accomplished by immediately suspending in-vessel fuel movement and control rod withdrawal, and immediately initiating action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Actions must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted. Suspension of in-vessel fuel movements and control rod withdrawal shall not preclude moving a component to a safe position.

Alternatively, actions must be immediately initiated to fully insert the control rod(s) associated with the inoperable full-in position indicator(s) and disarm the drive(s) to ensure that the control rod is not withdrawn. Actions must continue until all associated control rods are fully inserted and drives are disarmed. Under these conditions (control rod fully inserted and disarmed), an inoperable full-in channel may be bypassed to allow refueling operations to proceed. An alternate method must be used

## **ACTIONS** (continued)

to ensure the control rod is fully inserted (e.g., use the "00" notch position indication).

## SURVEILLANCE REQUIREMENTS

## SR 3.9.4.1

The full-in position indication channels provide input to the one-rod-out interlock and other refueling interlocks that require an all-rods-in permissive. The interlocks are actuated when the full-in position indication for any control rod is not present, since this indicates that all rods are not fully inserted. Therefore, testing of the full-in position indication channels is performed to ensure that when a control rod is withdrawn, the full-in position indication is not present. The full-in position indication channel is considered inoperable even with the control rod fully inserted, if it would continue to indicate full-in with the control rod withdrawn. Performing the SR each time a control rod is withdrawn is considered adequate because of the procedural controls on control rod withdrawals and the visual and audible indications available in the control room to alert the operator to control rods not fully inserted.

## **REFERENCES**

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. FSAR, Section [15.1.13].
- 3. FSAR, Section [15.1.14].

## **B 3.9 REFUELING OPERATIONS**

## B 3.9.5 Control Rod OPERABILITY - Refueling

## **BASES**

## **BACKGROUND**

Control rods are components of the Control Rod Drive (CRD) System, the primary reactivity control system for the reactor. In conjunction with the Reactor Protection System, the CRD System provides the means for the reliable control of reactivity changes during refueling operation. In addition, the control rods provide the capability to maintain the reactor subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the CRD System.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The CRD System is the system capable of maintaining the reactor subcritical in cold conditions.

## APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling are provided by refueling interlocks (LCO 3.9.1 and LCO 3.9.2), the SDM (LCO 3.1.1), the intermediate range monitor neutron flux scram (LCO 3.3.1.1), and the control rod block instrumentation (LCO 3.3.2.1).

The safety analyses for the control rod withdrawal error during refueling (Ref. 2) and the fuel assembly insertion error (Ref. 3) evaluate the consequences of control rod withdrawal during refueling and also fuel assembly insertion with a control rod withdrawn. A prompt reactivity excursion during refueling could potentially result in fuel failure with subsequent release of radioactive material to the environment. Control rod scram provides protection should a prompt reactivity excursion occur.

Control rod OPERABILITY during refueling satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

#### LCO

Each withdrawn control rod must be OPERABLE. The withdrawn control rod is considered OPERABLE if the scram accumulator pressure is ≥ [940] psig and the control rod is capable of being automatically inserted upon receipt of a scram signal. Inserted control rods have already completed their reactivity control function, and therefore are not required to be OPERABLE.

## **APPLICABILITY**

During MODE 5, withdrawn control rods must be OPERABLE to ensure that in a scram the control rods will insert and provide the required negative reactivity to maintain the reactor subcritical.

For MODES 1 and 2, control rod requirements are found in LCO 3.1.2, "Reactivity Anomalies," LCO 3.1.3, "Control Rod OPERABILITY," LCO 3.1.4, "Control Rod Scram Times," and LCO 3.1.5, "Control Rod Scram Accumulators." During MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod OPERABILITY during these conditions.

### **ACTIONS**

## <u>A.1</u>

With one or more withdrawn control rods inoperable, action must be immediately initiated to fully insert the inoperable control rod(s). Inserting the control rod(s) ensures the shutdown and scram capabilities are not adversely affected. Actions must continue until the inoperable control rod(s) is fully inserted.

## SURVEILLANCE REQUIREMENTS

## SR 3.9.5.1 and SR 3.9.5.2

During MODE 5, the OPERABILITY of control rods is primarily required to ensure a withdrawn control rod will automatically insert if a signal requiring a reactor shutdown occurs. Because no explicit analysis exists for automatic shutdown during refueling, the shutdown function is satisfied if the withdrawn control rod is capable of automatic insertion and the associated CRD scram accumulator pressure is  $\geq$  [940] psig.

The 7 day Frequency takes into consideration equipment reliability, procedural controls over the scram accumulators, and control room alarms and indicating lights that indicate low accumulator charge pressures.

SR 3.9.5.1 is modified by a Note that allows 7 days after withdrawal of the control rod to perform the Surveillance. This acknowledges that the control rod must first be withdrawn before performance of the Surveillance, and therefore avoids potential conflicts with SR 3.0.3 and SR 3.0.4.

#### REFERENCES

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. FSAR, Section [15.1.13].

REFERENCES (continued)

3. FSAR, Section [15.1.14].

## **B 3.9 REFUELING OPERATIONS**

B 3.9.6 Reactor Pressure Vessel (RPV) Water Level - [Irradiated Fuel]

#### **BASES**

### **BACKGROUND**

The movement of [irradiated] fuel assemblies [or handling of control rods] within the RPV requires a minimum water level of [23] ft above the top of the RPV flange. During refueling, this maintains a sufficient water level in the reactor vessel cavity and spent fuel pool. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to  $\leq$  25% of 10 CFR 100 limits, as provided by the guidance of Reference 3.

## APPLICABLE SAFETY ANALYSES

During movement of [irradiated] fuel assemblies [or handling of control rods], the water level in the RPV is an initial condition design parameter in the analysis of a fuel handling accident in containment postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of 23 ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1).

Analysis of the fuel handling accident inside containment is described in Reference 2. With a minimum water level of 23 ft and a minimum decay time of 24 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and that offsite doses are maintained within allowable limits (Ref. 4).

While the worst case assumptions include the dropping of the irradiated fuel assembly being handled onto the reactor core, the possibility exists of the dropped assembly striking the RPV flange and releasing fission products. Therefore, the minimum depth for water coverage to ensure acceptable radiological consequences is specified from the RPV flange. Since the worst case event results in failed fuel assemblies seated in the core, as well as the dropped assembly, dropping an assembly on the RPV flange will result in reduced releases of fission gases. [Based on this judgement, and the physical dimensions which preclude normal operation with water level 23 feet above the flange, a slight reduction in this water level is acceptable (Ref. 4).]

## APPLICABLE SAFETY ANALYSES (continued)

RPV water level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

## LCO

A minimum water level of [23] ft above the top of the RPV flange is required to ensure that the radiological consequences of a postulated fuel handling accident are within acceptable limits, as provided by the guidance of Reference 3.

## **APPLICABILITY**

LCO 3.9.6 is applicable when moving [irradiated] fuel assemblies [or handling control rods (i.e., movement with other than the normal control rod drive)] within the RPV. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. [If irradiated fuel is not present within the RPV, there can be no significant radioactivity release as a result of a postulated fuel handling accident.] Requirements for handling of new fuel assemblies or control rods (where water depth to the RPV flange is not of concern) are covered by LCO 3.9.7, "RPV Water Level - New Fuel or Control Rods." Requirements for fuel handling accidents in the spent fuel storage pool are covered by LCO 3.7.8, "Spent Fuel Storage Pool Water Level."

#### - REVIEWER'S NOTE -

LCO 3.9.6 is written to cover new fuel and control rods as well as irradiated fuel. If a plant adopts LCO 3.9.7, however, the second bracketed portion of this Applicability is adopted in lieu of the first bracketed portion, and the LCO name and Required Action A.1 modified appropriately.

#### **ACTIONS**

#### **A.1**

If the water level is < [23] ft above the top of the RPV flange, all operations involving movement of [irradiated] fuel assemblies [and handling of control rods] within the RPV shall be suspended immediately to ensure that a fuel handling accident cannot occur. The suspension of [irradiated] fuel movement [and control rod handling] shall not preclude completion of movement of a component to a safe position.

## SURVEILLANCE REQUIREMENTS

## SR 3.9.6.1

Verification of a minimum water level of [23] ft above the top of the RPV flange ensures that the design basis for the postulated fuel handling accident analysis during refueling operations is met. Water at the

## SURVEILLANCE REQUIREMENTS (continued)

required level limits the consequences of damaged fuel rods, which are postulated to result from a fuel handling accident in containment (Ref. 2).

The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls on valve positions, which make significant unplanned level changes unlikely.

## **REFERENCES**

- 1. Regulatory Guide 1.25, March 23, 1972.
- 2. FSAR, Section [15.1.41].
- 3. NUREG-0800, Section 15.7.4.
- 4. 10 CFR 100.11.

## **B 3.9 REFUELING OPERATIONS**

B 3.9.7 Reactor Pressure Vessel (RPV) Water Level - New Fuel or Control Rods

#### **BASES**

#### **BACKGROUND**

The movement of new fuel assemblies or handling of control rods within the RPV when fuel assemblies seated within the reactor vessel are irradiated requires a minimum water level of [23] ft above the top of irradiated fuel assemblies seated within the RPV. During refueling, this maintains a sufficient water level above the irradiated fuel. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to  $\leq$  25% of 10 CFR 100 limits, as provided by the guidance of Reference 3.

## APPLICABLE SAFETY ANALYSES

During movement of new fuel assemblies or handling of control rods over irradiated fuel assemblies, the water level in the RPV is an initial condition design parameter in the analysis of a fuel handling accident in containment postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of [23] ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1).

Analysis of the fuel handling accident inside containment is described in Reference 2. With a minimum water level of [23] ft and a minimum decay time of 24 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and that offsite doses are maintained within allowable limits (Ref. 4).

The related assumptions include the worst case dropping of an irradiated fuel assembly onto the reactor core loaded with irradiated fuel assemblies.

RPV water level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

#### LCO

A minimum water level of [23] ft above the top of irradiated fuel assemblies seated within the RPV flange is required to ensure that the radiological consequences of a postulated fuel handling accident are within acceptable limits, as provided by the guidance of Reference 3.

## **APPLICABILITY**

LCO 3.9.7 is applicable when moving new fuel assemblies or handling control rods (i.e., movement with other than the normal control rod drive) over irradiated fuel assemblies seated within the RPV. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel is not present within the RPV, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel storage pool are covered by LCO 3.7.8, "Spent Fuel Storage Pool Water Level." Requirements for handling irradiated fuel over the RPV are covered by LCO 3.9.6, "[Reactor Pressure Vessel (RPV)] Water Level - [Irradiated Fuel]."

### **ACTIONS**

#### **A.1**

If the water level is < [23] ft above the top of irradiated fuel assemblies seated within the RPV, all operations involving movement of new fuel assemblies and handling of control rods within the RPV shall be suspended immediately to ensure that a fuel handling accident cannot occur. The suspension of fuel movement and control rod handling shall not preclude completion of movement of a component to a safe position.

## SURVEILLANCE REQUIREMENTS

## SR 3.9.7.1

Verification of a minimum water level of [23] ft above the top of irradiated fuel assemblies seated within the RPV ensures that the design basis for the postulated fuel handling accident analysis during refueling operations is met. Water at the required level limits the consequences of damaged fuel rods, which are postulated to result from a fuel handling accident in containment (Ref. 2).

The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls on valve positions, which make significant unplanned level changes unlikely.

#### REFERENCES

- 1. Regulatory Guide 1.25, March 23, 1972.
- 2. FSAR, Section [15.1.41].
- 3. NUREG-0800, Section 15.7.4.
- 4. 10 CFR 100.11.

## **B 3.9 REFUELING OPERATIONS**

B 3.9.8 Residual Heat Removal (RHR) - High Water Level

## **BASES**

#### BACKGROUND

The purpose of the RHR System in MODE 5 is to remove decay heat and sensible heat from the reactor coolant, as required by GDC 34. Each of the two shutdown cooling loops of the RHR System can provide the required decay heat removal. Each loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after it has been cooled by circulation through the respective heat exchangers, to the reactor via the associated recirculation loop or to the reactor via the low pressure coolant injection path. The RHR heat exchangers transfer heat to the RHR Service Water System. The RHR shutdown cooling mode is manually controlled.

In addition to the RHR subsystems, the volume of water above the reactor pressure vessel (RPV) flange provides a heat sink for decay heat removal.

## APPLICABLE SAFETY ANALYSES

With the unit in MODE 5, the RHR System is not required to mitigate any events or accidents evaluated in the safety analyses. The RHR System is required for removing decay heat to maintain the temperature of the reactor coolant.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

## LCO

Only one RHR shutdown cooling subsystem is required to be OPERABLE and in operation in MODE 5 with irradiated fuel in the RPV and the water level ≥ [23] ft above the RPV flange. Only one subsystem is required because the volume of water above the RPV flange provides backup decay heat removal capability.

An OPERABLE RHR shutdown cooling subsystem consists of an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path. In MODE 5, the RHR cross tie valve is not required to be closed; thus, the valve may be opened to allow pumps in one loop to discharge through the opposite loop's heat exchanger to make a complete subsystem.

Additionally, each RHR shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. Operation (either

## LCO (continued)

continuous or intermittent) of one subsystem can maintain and reduce the reactor coolant temperature as required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required. A Note is provided to allow a 2 hour exception for the operating subsystem to not be in operation every 8 hours.

#### **APPLICABILITY**

One RHR shutdown cooling subsystem must be OPERABLE and in operation in MODE 5, with irradiated fuel in the reactor pressure vessel and with the water level ≥ [23] feet above the top of the RPV flange, to provide decay heat removal. RHR System requirements in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS); Section 3.5, Emergency Core Cooling Systems (ECCS) and Reactor Core Isolation Cooling (RCIC) System; and Section 3.6, Containment Systems. RHR Shutdown Cooling System requirements in MODE 5 with irradiated fuel in the reactor pressure vessel and with the water level < [23] ft above the RPV flange are given in LCO 3.9.9.

#### **ACTIONS**

## A.1

With no RHR shutdown cooling subsystem OPERABLE, an alternate method of decay heat removal must be established within 1 hour. In this condition, the volume of water above the RPV flange provides adequate capability to remove decay heat from the reactor core. However, the overall reliability is reduced because loss of water level could result in reduced decay heat removal capability. The 1 hour Completion Time is based on decay heat removal function and the probability of a loss of the available decay heat removal capabilities. Furthermore, verification of the functional availability of these alternate method(s) must be reconfirmed every 24 hours thereafter. This will ensure continued heat removal capability.

Alternate decay heat removal methods are available to the operators for review and preplanning in the unit's Operating Procedures. For example, this may include the use of the Reactor Water Cleanup System, operating with the regenerative heat exchanger bypassed. The method used to remove the decay heat should be the most prudent choice based on unit conditions.

## **ACTIONS** (continued)

## B.1, B.2, B.3, and B.4

If no RHR shutdown cooling subsystem is OPERABLE and an alternate method of decay heat removal is not available in accordance with Required Action A.1, actions shall be taken immediately to suspend operations involving an increase in reactor decay heat load by suspending loading of irradiated fuel assemblies into the RPV.

Additional actions are required to minimize any potential fission product release to the environment. This includes ensuring secondary containment is OPERABLE; one standby gas treatment subsystem is OPERABLE; and secondary containment isolation capability (i.e., one secondary containment isolation valve and associated instrumentation are OPERABLE or other acceptable administrative controls to assure isolation capability) in each associated penetration not isolated that is assumed to be isolated to mitigate radioactive releases. This may be performed as an administrative check, by examining logs or other information to determine whether the components are out of service for maintenance or other reasons. It is not necessary to perform the Surveillances needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperable, then it must be restored to OPERABLE status. In this case, a surveillance may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are OPERABLE.

## C.1 and C.2

If no RHR Shutdown Cooling System is in operation, an alternate method of coolant circulation is required to be established within 1 hour. The Completion Time is modified such that the 1 hour is applicable separately for each occurrence involving a loss of coolant circulation.

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR Shutdown Cooling System), the reactor coolant temperature must be periodically monitored to ensure proper functioning of the alternate method. The once per hour Completion Time is deemed appropriate.

## SURVEILLANCE REQUIREMENTS

## SR 3.9.8.1

This Surveillance demonstrates that the RHR subsystem is in operation and circulating reactor coolant.

The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability. The Frequency of 12 hours is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystem in the control room.

## **REFERENCES**

None.

#### **B 3.9 REFUELING OPERATIONS**

B 3.9.9 Residual Heat Removal (RHR) - Low Water Level

## **BASES**

## **BACKGROUND**

The purpose of the RHR System in MODE 5 is to remove decay heat and sensible heat from the reactor coolant, as required by GDC 34. Each of the two shutdown cooling loops of the RHR System can provide the required decay heat removal. Each loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after it has been cooled by circulation through the respective heat exchangers, to the reactor via the associated recirculation loop or to the reactor via the low pressure coolant injection path. The RHR heat exchangers transfer heat to the RHR Service Water System. The RHR shutdown cooling mode is manually controlled.

## APPLICABLE SAFETY ANALYSES

With the unit in MODE 5, the RHR System is not required to mitigate any events or accidents evaluated in the safety analyses. The RHR System is required for removing decay heat to maintain the temperature of the reactor coolant.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

#### LCO

In MODE 5 with irradiated fuel in the reactor pressure vessel (RPV) and the water level < 23 ft above the reactor pressure vessel (RPV) flange both RHR shutdown cooling subsystems must be OPERABLE.

An OPERABLE RHR shutdown cooling subsystem consists of an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path. To meet the LCO, both pumps in one loop or one pump in each of the two loops must be OPERABLE. In MODE 5, the RHR cross tie valve is not required to be closed; thus, the valve may be opened to allow pumps in one loop to discharge through the opposite loop's heat exchanger to make a complete subsystem.

Additionally, each RHR shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. Operation (either continuous or intermittent) of one subsystem can maintain and reduce the reactor coolant temperature as required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required. A Note is provided to

## LCO (continued)

allow a 2 hour exception for the operating subsystem to not be in operation every 8 hours.

### **APPLICABILITY**

Two RHR shutdown cooling subsystems are required to be OPERABLE, and one must be in operation in MODE 5, with irradiated fuel in the RPV and with the water level < [23] ft above the top of the RPV flange, to provide decay heat removal. RHR System requirements in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS); Section 3.5, Emergency Core Cooling Systems (ECCS) and Reactor Core Isolation Cooling (RCIC) System; and Section 3.6, Containment Systems. RHR Shutdown Cooling System requirements in MODE 5 with irradiated fuel in the RPV and with the water level ≥ [23] ft above the RPV flange are given in LCO 3.9.8, "Residual Heat Removal (RHR) - High Water Level."

## **ACTIONS**

## **A.1**

With one of the two required RHR shutdown cooling subsystems inoperable, the remaining subsystem is capable of providing the required decay heat removal. However, the overall reliability is reduced. Therefore an alternate method of decay heat removal must be provided. With both required RHR shutdown cooling subsystems inoperable, an alternate method of decay heat removal must be provided in addition to that provided for the initial RHR shutdown cooling subsystem inoperability. This re-establishes backup decay heat removal capabilities, similar to the requirements of the LCO. The 1 hour Completion Time is based on the decay heat removal function and the probability of a loss of the available decay heat removal capabilities. Furthermore, verification of the functional availability of this alternate method(s) must be reconfirmed every 24 hours thereafter. This will ensure continued heat removal capability.

Alternate decay heat removal methods are available to the operators for review and preplanning in the unit's Operating Procedures. For example, this may include the use of the Reactor Water Cleanup System, operating with the regenerative heat exchanger bypassed. The method used to remove decay heat should be the most prudent choice based on unit conditions.

## **ACTIONS** (continued)

## B.1, B.2, and B.3

With the required decay heat removal subsystem(s) inoperable and the required alternate method(s) of decay heat removal not available in accordance with Required Action A.1, additional actions are required to minimize any potential fission product release to the environment. This includes ensuring secondary containment is OPERABLE; one standby gas treatment subsystem is OPERABLE; and secondary containment isolation capability (i.e., one secondary containment isolation valve and associated instrumentation are OPERABLE or other acceptable administrative controls to assure isolation capability) in each associated penetration not isolated that is assumed to be isolated to mitigate radioactive releases. This may be performed as an administrative check. by examining logs or other information to determine whether the components are out of service for maintenance or other reasons. It is not necessary to perform the Surveillances needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperable, then it must be restored to OPERABLE status. In this case, the surveillance may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are OPERABLE.

#### C.1 and C.2

If no RHR subsystem is in operation, an alternate method of coolant circulation is required to be established within 1 hour. The Completion Time is modified such that the 1 hour is applicable separately for each occurrence involving a loss of coolant circulation.

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR Shutdown Cooling System), the reactor coolant temperature must be periodically monitored to ensure proper functioning of the alternate method. The once per hour Completion Time is deemed appropriate.

## SURVEILLANCE REQUIREMENTS

## SR 3.9.9.1

This Surveillance demonstrates that one RHR shutdown cooling subsystem is in operation and circulating reactor coolant. The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability.

# SURVEILLANCE REQUIREMENTS (continued)

The Frequency of 12 hours is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystems in the control room.

**REFERENCES** 

None.

## **B 3.10 SPECIAL OPERATIONS**

B 3.10.1 Inservice Leak and Hydrostatic Testing Operation

#### **BASES**

#### **BACKGROUND**

The purpose of this Special Operations LCO is to allow certain reactor coolant pressure tests to be performed in MODE 4 when the metallurgical characteristics of the reactor pressure vessel (RPV) require the pressure testing at temperatures > 200°F (normally corresponding to MODE 3).

Inservice hydrostatic testing and system leakage pressure tests required by Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Ref. 1) are performed prior to the reactor going critical after a refueling outage. Recirculation pump operation and a water solid RPV (except for an air bubble for pressure control) are used to achieve the necessary temperatures and pressures required for these tests. The minimum temperatures (at the required pressures) allowed for these tests are determined from the RPV pressure and temperature (P/T) limits required by LCO 3.4.10, "Reactor Coolant System (RCS) Pressure and Temperature (P/T) Limits." These limits are conservatively based on the fracture toughness of the reactor vessel, taking into account anticipated vessel neutron fluence.

With increased reactor vessel fluence over time, the minimum allowable vessel temperature increases at a given pressure. Periodic updates to the RPV P/T limit curves are performed as necessary, based upon the results of analyses of irradiated surveillance specimens removed from the vessel. Hydrostatic and leak testing will eventually be required with minimum reactor coolant temperatures > 200°F.

The hydrostatic test requires increasing pressure to [ ]% of design pressure (1250 psig) or [ ] psig, and because of the expected increase in reactor vessel fluence, the minimum allowable vessel temperature according to LCO 3.4.10 is increased to [ ]°F. This increase to [ ]% of design pressure does not exceed the Safety Limit of 1375 psig.

## APPLICABLE SAFETY ANALYSES

Allowing the reactor to be considered in MODE 4 during hydrostatic or leak testing, when the reactor coolant temperature is > 200°F, effectively provides an exception to MODE 3 requirements, including OPERABILITY of primary containment and the full complement of redundant Emergency Core Cooling Systems. Since the hydrostatic or leak tests are performed nearly water solid, at low decay heat values, and near MODE 4 conditions, the stored energy in the reactor core will be very low. Under these conditions, the potential for failed fuel and a subsequent increase

## APPLICABLE SAFETY ANALYSES (continued)

in coolant activity above the LCO 3.4.7, "RCS Specific Activity," limits are minimized. In addition, the secondary containment will be OPERABLE, in accordance with this Special Operations LCO, and will be capable of handling any airborne radioactivity or steam leaks that could occur during the performance of hydrostatic or leak testing. The required pressure testing conditions provide adequate assurance that the consequences of a steam leak will be conservatively bounded by the consequences of the postulated main steam line break outside of primary containment described in Reference 2. Therefore, these requirements will conservatively limit radiation releases to the environment.

In the event of a large primary system leak, the reactor vessel would rapidly depressurize, allowing the low pressure core cooling systems to operate. The capability of the low pressure coolant injection and core spray subsystems, as required in MODE 4 by LCO 3.5.2, "ECCS - Shutdown," would be more than adequate to keep the core flooded under this low decay heat load condition. Small system leaks would be detected by leakage inspections before significant inventory loss occurred.

For the purposes of this test, the protection provided by normally required MODE 4 applicable LCOs, in addition to the secondary containment requirements required to be met by this Special Operations LCO, will ensure acceptable consequences during normal hydrostatic test conditions and during postulated accident conditions.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

#### LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation at reactor coolant temperatures > 200°F can be in accordance with Table 1.1-1 for MODE 3 operation without meeting this Special Operations LCO or its ACTIONS. This option may be required due to P/T limits, however, which require testing at temperatures > 200°F, while the ASME inservice test itself requires the safety/relief valves to be gagged, preventing their OPERABILITY.

If it is desired to perform these tests while complying with this Special Operations LCO, then the MODE 4 applicable LCOs and specified

## LCO (continued)

MODE 3 LCOs must be met. This Special Operations LCO allows changing Table 1.1-1 temperature limits for MODE 4 to "NA" and suspending the requirements of LCO 3.4.9, "Residual Heat Removal (RHR) Shutdown Cooling System - Cold Shutdown." The additional requirements for secondary containment LCOs to be met will provide sufficient protection for operations at reactor coolant temperatures > 200°F for the purpose of performing either an inservice leak or hydrostatic test.

This LCO allows primary containment to be open for frequent unobstructed access to perform inspections, and for outage activities on various systems to continue consistent with the MODE 4 applicable requirements that are in effect immediately prior to and immediately after this operation.

#### **APPLICABILITY**

The MODE 4 requirements may only be modified for the performance of inservice leak or hydrostatic tests so that these operations can be considered as in MODE 4, even though the reactor coolant temperature is > 200°F. The additional requirement for secondary containment OPERABILITY according to the imposed MODE 3 requirements provides conservatism in the response of the unit to any event that may occur. Operations in all other MODES are unaffected by this LCO.

#### **ACTIONS**

A Note has been provided to modify the ACTIONS related to inservice leak and hydrostatic testing operation. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for each requirement of the LCO not met provide appropriate compensatory measures for separate requirements that are not met. As such, a Note has been provided that allows separate Condition entry for each requirement of the LCO.

## <u>A.1</u>

If an LCO specified in LCO 3.10.1 is not met, the ACTIONS applicable to the stated requirements are entered immediately and complied with. Required Action A.1 has been modified by a Note that clarifies the intent

## **ACTIONS** (continued)

of another LCO's Required Action to be in MODE 4 includes reducing the average reactor coolant temperature to  $\leq 200^{\circ}$ F.

## A.2.1 and A.2.2

Required Action A.2.1 and Required Action A.2.2 are alternate Required Actions that can be taken instead of Required Action A.1 to restore compliance with the normal MODE 4 requirements, and thereby exit this Special Operation LCO's Applicability. Activities that could further increase reactor coolant temperature or pressure are suspended immediately, in accordance with Required Action A.2.1, and the reactor coolant temperature is reduced to establish normal MODE 4 requirements. The allowed Completion Time of 24 hours for Required Action A.2.2 is based on engineering judgment and provides sufficient time to reduce the average reactor coolant temperature from the highest expected value to  $\leq$  200°F with normal cooldown procedures. The Completion Time is also consistent with the time provided in LCO 3.0.3 to reach MODE 4 from MODE 3.

## SURVEILLANCE REQUIREMENTS

## SR 3.10.1.1

The LCOs made applicable are required to have their Surveillances met to establish that this LCO is being met. A discussion of the applicable SRs is provided in their respective Bases.

#### **REFERENCES**

- 1. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section XI.
- 2. FSAR, Section [15.1.40].

### **B 3.10 SPECIAL OPERATIONS**

B 3.10.2 Reactor Mode Switch Interlock Testing

## **BASES**

#### BACKGROUND

The purpose of this Special Operations LCO is to permit operation of the reactor mode switch from one position to another to confirm certain aspects of associated interlocks during periodic tests and calibrations in MODES 3, 4, and 5.

The reactor mode switch is a conveniently located, multiposition, keylock switch provided to select the necessary scram functions for various plant conditions (Ref. 1). The reactor mode switch selects the appropriate trip relays for scram functions and provides appropriate bypasses. The mode switch positions and related scram interlock functions are summarized as follows:

- a. Shutdown Initiates a reactor scram; bypasses main steam line isolation and reactor high water level scrams,
- Refuel Selects Neutron Monitoring System (NMS) scram function for low neutron flux level operation (but does not disable the average power range monitor scram); bypasses main steam line isolation and reactor high water level scrams,
- Startup/Hot Standby Selects NMS scram function for low neutron flux level operation (intermediate range monitors and average power range monitors); bypasses main steam line isolation and reactor high water level scrams, and
- Run Selects NMS scram function for power range operation.

The reactor mode switch also provides interlocks for such functions as control rod blocks, scram discharge volume trip bypass, refueling interlocks, suppression pool makeup, and main steam isolation valve isolations.

## APPLICABLE SAFETY ANALYSES

The acceptance criterion for reactor mode switch interlock testing is to prevent fuel failure by precluding reactivity excursions or core criticality. The interlock functions of the shutdown and refuel positions normally maintained for the reactor mode switch in MODES 3, 4, and 5 are provided to preclude reactivity excursions that could potentially result in fuel failure. Interlock testing that requires moving the reactor mode switch to other positions (run, startup/hot standby, or refuel) while in

## APPLICABLE SAFETY ANALYSES (continued)

MODE 3, 4, or 5, requires administratively maintaining all control rods inserted and no other CORE ALTERATIONS in progress. With all control rods inserted in core cells containing one or more fuel assemblies, and no CORE ALTERATIONS in progress, there are no credible mechanisms for unacceptable reactivity excursions during the planned interlock testing.

For postulated accidents, such as control rod removal error during refueling or loading of fuel with a control rod withdrawn, the accident analysis demonstrates that fuel failure will not occur (Refs. 2 and 3). The withdrawal of a single control rod will not result in criticality when adequate SDM is maintained. Also, loading fuel assemblies into the core with a single control rod withdrawn will not result in criticality, thereby preventing fuel failure.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. MODES 3, 4, and 5 operations not specified in Table 1.1-1 can be performed in accordance with other Special Operations LCOs (i.e., LCO 3.10.1, "Inservice Leak and Hydrostatic Testing Operation," LCO 3.10.3, "Single Control Rod Withdrawal - Hot Shutdown," LCO 3.10.4, "Single Control Rod Withdrawal - Cold Shutdown," and LCO 3.10.8, "SDM Test - Refueling") without meeting this LCO or its ACTIONS. If any testing is performed that involves the reactor mode switch interlocks and requires repositioning beyond that specified in Table 1.1-1 for the current MODE of operation, the testing can be performed, provided all interlock functions potentially defeated are administratively controlled. In MODES 3, 4, and 5 with the reactor mode switch in shutdown as specified in Table 1.1-1, all control rods are fully inserted and a control rod block is initiated. Therefore, all control rods in core cells that contain one or more fuel assemblies must be verified fully inserted while in MODES 3, 4, and 5, with the reactor mode switch in other than the shutdown position. The additional LCO requirement to preclude CORE ALTERATIONS is appropriate for MODE 5 operations, as discussed below, and is inherently met in MODES 3 and 4 by the definition of CORE ALTERATIONS, which cannot be performed with the vessel head in place.

## LCO (continued)

In MODE 5, with the reactor mode switch in the refuel position, only one control rod can be withdrawn under the refuel position one-rod-out interlock (LCO 3.9.2, "Refuel Position One-Rod-Out Interlock"). The refueling equipment interlocks (LCO 3.9.1, "Refueling Equipment Interlocks") appropriately control other CORE ALTERATIONS. Due to the increased potential for error in controlling these multiple interlocks, and the limited duration of tests involving the reactor mode switch position, conservative controls are required, consistent with MODES 3 and 4. The additional controls of administratively not permitting other CORE ALTERATIONS will adequately ensure that the reactor does not become critical during these tests.

## **APPLICABILITY**

Any required periodic interlock testing involving the reactor mode switch, while in MODES 1 and 2, can be performed without the need for Special Operations exceptions. Mode switch manipulations in these MODES would likely result in unit trips. In MODES 3, 4, and 5, this Special Operations LCO is only permitted to be used to allow reactor mode switch interlock testing that cannot conveniently be performed without this allowance. Such interlock testing may consist of required Surveillances, or may be the result of maintenance, repair, or troubleshooting activities. In MODES 3, 4, and 5, the interlock functions provided by the reactor mode switch in shutdown (i.e., all control rods inserted and incapable of withdrawal) and refueling (i.e., refueling interlocks to prevent inadvertent criticality during CORE ALTERATIONS) positions can be administratively controlled adequately during the performance of certain tests.

#### **ACTIONS**

## A.1, A.2, A.3.1, and A.3.2

These Required Actions are provided to restore compliance with the Technical Specifications overridden by this Special Operations LCO. Restoring compliance will also result in exiting the Applicability of this Special Operations LCO.

All CORE ALTERATIONS, except control rod insertion, if in progress, are immediately suspended in accordance with Required Action A.1, and all insertable control rods in core cells that contain one or more fuel assemblies are fully inserted within 1 hour, in accordance with Required Action A.2. This will preclude potential mechanisms that could lead to criticality. Suspension of CORE ALTERATIONS shall not preclude the completion of movement of a component to a safe condition. Placing the reactor mode switch in the shutdown position will ensure that all inserted control rods remain inserted and result in operating in accordance with

## **ACTIONS** (continued)

Table 1.1-1. Alternatively, if in MODE 5, the reactor mode switch may be placed in the refuel position, which will also result in operating in accordance with Table 1.1-1. A Note is added to Required Action A.3.2 to indicate that this Required Action is not applicable in MODES 3 and 4, since only the shutdown position is allowed in these MODES. The allowed Completion Time of 1 hour for Required Action A.2, Required Action A.3.1, and Required Action A.3.2 provides sufficient time to normally insert the control rods and place the reactor mode switch in the required position, based on operating experience, and is acceptable given that all operations that could increase core reactivity have been suspended.

## SURVEILLANCE REQUIREMENTS

## SR 3.10.2.1 and SR 3.10.2.2

Meeting the requirements of this Special Operations LCO maintains operation consistent with or conservative to operating with the reactor mode switch in the shutdown position (or the refuel position for MODE 5). The functions of the reactor mode switch interlocks that are not in effect, due to the testing in progress, are adequately compensated for by the Special Operations LCO requirements. The administrative controls are to be periodically verified to ensure that the operational requirements continue to be met. The Surveillances performed at the 12 hour and 24 hour Frequencies are intended to provide appropriate assurance that each operating shift is aware of and verifies compliance with these Special Operations LCO requirements.

#### **REFERENCES**

- 1. FSAR, Chapter [7].
- 2. FSAR, Section [15.1.13].
- 3. FSAR, Section [15.1.14].

## **B 3.10 SPECIAL OPERATIONS**

B 3.10.3 Single Control Rod Withdrawal - Hot Shutdown

#### **BASES**

#### **BACKGROUND**

The purpose of this MODE 3 Special Operations LCO is to permit the withdrawal of a single control rod for testing while in hot shutdown, by imposing certain restrictions. In MODE 3, the reactor mode switch is in the shutdown position, and all control rods are inserted and blocked from withdrawal. Many systems and functions are not required in these conditions, due to the other installed interlocks that are actuated when the reactor mode switch is in the shutdown position. However, circumstances may arise while in MODE 3 that present the need to withdraw a single control rod for various tests (e.g., friction tests, scram timing, and coupling integrity checks). These single control rod withdrawals are normally accomplished by selecting the refuel position for the reactor mode switch. This Special Operations LCO provides the appropriate additional controls to allow a single control rod withdrawal in MODE 3.

## APPLICABLE SAFETY ANALYSES

With the reactor mode switch in the refuel position, the analyses for control rod withdrawal during refueling are applicable and, provided the assumptions of these analyses are satisfied in MODE 3, these analyses will bound the consequences of an accident. Explicit safety analyses in the FSAR (Ref. 1) demonstrate that the functioning of the refueling interlocks and adequate SDM will preclude unacceptable reactivity excursions.

Refueling interlocks restrict the movement of control rods to reinforce operational procedures that prevent the reactor from becoming critical. These interlocks prevent the withdrawal of more than one control rod. Under these conditions, since only one control rod can be withdrawn, the core will always be shut down even with the highest worth control rod withdrawn if adequate SDM exists.

The control rod scram function provides backup protection to normal refueling procedures and the refueling interlocks, which prevent inadvertent criticalities during refueling.

Alternate backup protection can be obtained by ensuring that a five by five array of control rods, centered on the withdrawn control rod, are inserted and incapable of withdrawal.

## APPLICABLE SAFETY ANALYSES (continued)

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

## **LCO**

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 3 with the reactor mode switch in the refuel position can be performed in accordance with other Special Operations LCOs (i.e., LCO 3.10.2, "Reactor Mode Switch Interlock Testing," without meeting this Special Operations LCO or its ACTIONS. However, if a single control rod withdrawal is desired in MODE 3, controls consistent with those required during refueling must be implemented and this Special Operations LCO applied. "Withdrawal" in this application includes the actual withdrawal of the control rod as well as maintaining the control rod in a position other than the full-in position, and reinserting the control rod. The refueling interlocks of LCO 3.9.2, "Refuel Position One-Rod-Out Interlock," required by this Special Operations LCO, will ensure that only one control rod can be withdrawn.

To back up the refueling interlocks (LCO 3.9.2), the ability to scram the withdrawn control rod in the event of an inadvertent criticality is provided by this Special Operations LCO's requirements in Item d.1. Alternately, provided a sufficient number of control rods in the vicinity of the withdrawn control rod are known to be inserted and incapable of withdrawal (Item d.2), the possibility of criticality on withdrawal of this control rod is sufficiently precluded, so as not to require the scram capability of the withdrawn control rod. Also, once this alternate (Item d.2) is completed, the SDM requirement to account for both the withdrawn-untrippable control rod and the highest worth control rod may be changed to allow the withdrawn-untrippable control rod to be the single highest worth control rod.

#### **APPLICABILITY**

Control rod withdrawals are adequately controlled in MODES 1, 2, and 5 by existing LCOs. In MODES 3 and 4, control rod withdrawal is only allowed if performed in accordance with this Special Operations LCO or Special Operations LCO 3.10.4, and if limited to one control rod. This allowance is only provided with the reactor mode switch in the refuel position. For these conditions, the one-rod-out interlock (LCO 3.9.2), control rod position indication (LCO 3.9.4, "Control Rod Position Indication"), full insertion requirements for all other control rods and

## APPLICABILITY (continued)

scram functions (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and LCO 3.9.5," Control Rod OPERABILITY - Refueling"), or the added administrative controls in Item d.2 of this Special Operations LCO, minimize potential reactivity excursions.

#### **ACTIONS**

A Note has been provided to modify the ACTIONS related to a single control rod withdrawal while in MODE 3. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for each requirement of the LCO not met provide appropriate compensatory measures for separate requirements that are not met. As such, a Note has been provided that allows separate Condition entry for each requirement of the LCO.

## **A.1**

If one or more of the requirements specified in this Special Operations LCO are not met, the ACTIONS applicable to the stated requirements of the affected LCOs are immediately entered as directed by Required Action A.1. Required Action A.1 has been modified by a Note that clarifies the intent of any other LCO's Required Action, to insert all control rods. This Required Action includes exiting this Special Operations Applicability by returning the reactor mode switch to the shutdown position. A second Note has been added, which clarifies that this Required Action is only applicable if the requirements not met are for an affected LCO.

## A.2.1 and A.2.2

Required Actions A.2.1 and A.2.2 are alternate Required Actions that can be taken instead of Required Action A.1 to restore compliance with the normal MODE 3 requirements, thereby exiting this Special Operations LCO's Applicability. Actions must be initiated immediately to insert all insertable control rods. Actions must continue until all such control rods are fully inserted. Placing the reactor mode switch in the shutdown position will ensure all inserted rods remain inserted and restore operation in accordance with Table 1.1-1. The allowed Completion Time of 1 hour to place the reactor mode switch in the shutdown position provides sufficient time to normally insert the control rods.

## SURVEILLANCE REQUIREMENTS

## SR 3.10.3.1, SR 3.10.3.2, and SR 3.10.3.3

The other LCOs made applicable in this Special Operations LCO are required to have their Surveillances met to establish that this Special Operations LCO is being met. If the local array of control rods is inserted and disarmed while the scram function for the withdrawn rod is not available, periodic verification in accordance with SR 3.10.3.2 is required to preclude the possibility of criticality. SR 3.10.3.2 has been modified by a Note, which clarifies that this SR is not required to be met if SR 3.10.3.1 is satisfied for LCO 3.10.3.d.1 requirements, since SR 3.10.3.2 demonstrates that the alternative LCO 3.10.3.d.2 requirements are satisfied. Also, SR 3.10.3.3 verifies that all control rods other than the control rod being withdrawn are fully inserted. The 24 hour Frequency is acceptable because of the administrative controls on control rod withdrawal, the protection afforded by the LCOs involved, and hardwire interlocks that preclude additional control rod withdrawals.

## **REFERENCES**

1. FSAR, Section [15.1.13].

## **B 3.10 SPECIAL OPERATIONS**

B 3.10.4 Single Control Rod Withdrawal - Cold Shutdown

#### **BASES**

#### **BACKGROUND**

The purpose of this MODE 4 Special Operations LCO is to permit the withdrawal of a single control rod for testing or maintenance, while in cold shutdown, by imposing certain restrictions. In MODE 4, the reactor mode switch is in the shutdown position, and all control rods are inserted and blocked from withdrawal. Many systems and functions are not required in these conditions, due to the installed interlocks associated with the reactor mode switch in the shutdown position. Circumstances may arise while in MODE 4, however, that present the need to withdraw a single control rod for various tests (e.g., friction tests, scram time testing, and coupling integrity checks). Certain situations may also require the removal of the associated control rod drive (CRD). These single control rod withdrawals and possible subsequent removals are normally accomplished by selecting the refuel position for the reactor mode switch.

## APPLICABLE SAFETY ANALYSES

With the reactor mode switch in the refuel position, the analyses for control rod withdrawal during refueling are applicable and, provided the assumptions of these analyses are satisfied in MODE 4, these analyses will bound the consequences of an accident. Explicit safety analyses in the FSAR (Ref. 1) demonstrate that the functioning of the refueling interlocks and adequate SDM will preclude unacceptable reactivity excursions.

Refueling interlocks restrict the movement of control rods to reinforce operational procedures that prevent the reactor from becoming critical. These interlocks prevent the withdrawal of more than one control rod. Under these conditions, since only one control rod can be withdrawn, the core will always be shut down even with the highest worth control rod withdrawn if adequate SDM exists.

The control rod scram function provides backup protection in the event normal refueling procedures and the refueling interlocks fail to prevent inadvertent criticalities during refueling. Alternate backup protection can be obtained by ensuring that a five by five array of control rods, centered on the withdrawn control rod, are inserted and incapable of withdrawal. This alternate backup protection is required when removing a CRD because this removal renders the withdrawn control rod incapable of being scrammed.

## APPLICABLE SAFETY ANALYSES (continued)

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

#### LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 4 with the reactor mode switch in the refuel position can be performed in accordance with other LCOs (i.e., Special Operations LCO 3.10.2, "Reactor Mode Switch Interlock Testing") without meeting this Special Operations LCO or its ACTIONS. If a single control rod withdrawal is desired in MODE 4, controls consistent with those required during refueling must be implemented and this Special Operations LCO applied. "Withdrawal" in this application includes the actual withdrawal of the control rod as well as maintaining the control rod in a position other than the full-in position, and reinserting the control rod.

The refueling interlocks of LCO 3.9.2, "Refuel Position One-Rod-Out Interlock," required by this Special Operations LCO will ensure that only one control rod can be withdrawn. At the time CRD removal begins, the disconnection of the position indication probe will cause LCO 3.9.4, "Control Rod Position Indication," and therefore, LCO 3.9.2 to fail to be met. Therefore, prior to commencing CRD removal, a control rod withdrawal block is required to be inserted to ensure that no additional control rods can be withdrawn and that compliance with this Special Operations LCO is maintained.

To back up the refueling interlocks (LCO 3.9.2) or the control rod withdrawal block, the ability to scram the withdrawn control rod in the event of an inadvertent criticality is provided by the Special Operations LCO requirements in Item c.1. Alternatively, when the scram function is not OPERABLE, or when the CRD is to be removed, a sufficient number of rods in the vicinity of the withdrawn control rod are required to be inserted and made incapable of withdrawal (Item c.2). This precludes the possibility of criticality upon withdrawal of this control rod. Also, once this alternate (Item c.2) is completed, the SDM requirement to account for both the withdrawn-untrippable control rod and the highest worth control rod may be changed to allow the withdrawn-untrippable control rod to be the single highest worth control rod.

## **APPLICABILITY**

Control rod withdrawals are adequately controlled in MODES 1, 2, and 5 by existing LCOs. In MODES 3 and 4, control rod withdrawal is only allowed if performed in accordance with Special Operations LCO 3.10.3, or this Special Operations LCO, and if limited to one control rod. This allowance is only provided with the reactor mode switch in the refuel position.

During these conditions, the full insertion requirements for all other control rods, the one-rod-out interlock (LCO 3.9.2), control rod position indication (LCO 3.9.4), and scram functions (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and LCO 3.9.5, "Control Rod OPERABILITY - Refueling"), or the added administrative controls in Item b.2 and Item c.2 of this Special Operations LCO, provide mitigation of potential reactivity excursions.

## **ACTIONS**

A Note has been provided to modify the ACTIONS related to a single control rod withdrawal while in MODE 3. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for each requirement of the LCO not met provide appropriate compensatory measures for separate requirements that are not met. As such, a Note has been provided that allows separate Condition entry for each requirement of the LCO.

## A.1, A.2.1, and A.2.2

If one or more of the requirements of this Special Operations LCO are not met with the affected control rod insertable, these Required Actions restore operation consistent with normal MODE 4 conditions (i.e., all rods inserted) or with the exceptions allowed in this Special Operations LCO. Required Action A.1 has been modified by a Note that clarifies that the intent of any other LCO's Required Action to insert all control rods. This Required Action includes exiting this Special Operations Applicability by returning the reactor mode switch to the shutdown position. A second Note has been added to Required Action A.1 to clarify that this Required Action is only applicable if the requirements not met are for an affected LCO.

Required Actions A.2.1 and A.2.2 are specified, based on the assumption that the control rod is being withdrawn. If the control rod is still insertable,

## **ACTIONS** (continued)

actions must be immediately initiated to fully insert all insertable control rods and within 1 hour place the reactor mode switch in the shutdown position. Actions must continue until all such control rods are fully inserted. The allowed Completion Time of 1 hour for placing the reactor mode switch in the shutdown position provides sufficient time to normally insert the control rods.

## B.1, B.2.1, and B.2.2

If one or more of the requirements of this Special Operations LCO are not met with the affected control rod not insertable, withdrawal of the control rod and removal of the associated CRD must be immediately suspended. If the CRD has been removed, such that the control rod is not insertable, the Required Actions require the most expeditious action be taken to either initiate action to restore the CRD and insert its control rod, or initiate action to restore compliance with this Special Operations LCO.

## SURVEILLANCE REQUIREMENTS

## SR 3.10.4.1, SR 3.10.4.2, SR 3.10.4.3, and SR 3.10.4.4

The other LCOs made applicable by this Special Operations LCO are required to have their associated surveillances met to establish that this Special Operations LCO is being met. If the local array of control rods is inserted and disarmed while the scram function for the withdrawn rod is not available, periodic verification is required to ensure that the possibility of criticality remains precluded. Verification that all the other control rods are fully inserted is required to meet the SDM requirements. Verification that a control rod withdrawal block has been inserted ensures that no other control rods can be inadvertently withdrawn under conditions when position indication instrumentation is inoperable for the affected control rod. The 24 hour Frequency is acceptable because of the administrative controls on control rod withdrawals, the protection afforded by the LCOs involved, and hardwire interlocks to preclude an additional control rod withdrawal.

SR 3.10.4.2 and SR 3.10.4.4 have been modified by Notes, which clarify that these SRs are not required to be met if the alternative requirements demonstrated by SR 3.10.4.1 are satisfied.

## REFERENCES

1. FSAR, Section [15.1.13].

## **B 3.10 SPECIAL OPERATIONS**

B 3.10.5 Single Control Rod Drive (CRD) Removal - Refueling

## **BASES**

#### **BACKGROUND**

The purpose of this MODE 5 Special Operations LCO is to permit the removal of a single CRD during refueling operations by imposing certain administrative controls. Refueling interlocks restrict the movement of control rods and the operation of the refueling equipment to reinforce operational procedures that prevent the reactor from becoming critical during refueling operations. During refueling operations, no more than one control rod is permitted to be withdrawn from a core cell containing one or more fuel assemblies. The refueling interlocks use the "full in" position indicators to determine the position of all control rods. If the "full in" position signal is not present for every control rod, then the all rods in permissive for the refueling equipment interlocks is not present and fuel loading is prevented. Also, the refuel position one-rod-out interlock will not allow the withdrawal of a second control rod.

The control rod scram function provides backup protection in the event normal refueling procedures, and the refueling interlocks described above fail to prevent inadvertent criticalities during refueling. The requirement for this function to be OPERABLE precludes the possibility of removing the CRD once a control rod is withdrawn from a core cell containing one or more fuel assemblies. This Special Operations LCO provides controls sufficient to ensure the possibility of an inadvertent criticality is precluded. while allowing a single CRD to be removed from a core cell containing one or more fuel assemblies. The removal of the CRD involves disconnecting the position indication probe, which causes noncompliance with LCO 3.9.4, "Control Rod Position Indication," and, therefore, LCO 3.9.1, "Refueling Equipment Interlocks," and LCO 3.9.2, "Refueling Position One-Rod-Out Interlock." The CRD removal also requires isolation of the CRD from the CRD Hydraulic System, thereby causing inoperability of the control rod (LCO 3.9.5, "Control Rod OPERABILITY -Refueling").

## APPLICABLE SAFETY ANALYSES

With the reactor mode switch in the refuel position, the analyses for control rod withdrawal during refueling are applicable and, provided the assumptions of these analyses are satisfied, these analyses will bound the consequences of accidents. Explicit safety analyses in the FSAR (Ref. 1) demonstrate that proper operation of the refueling interlocks and adequate SDM will preclude unacceptable reactivity excursions.

# APPLICABLE SAFETY ANALYSES (continued)

Refueling interlocks restrict the movement of control rods and the operation of the refueling equipment to reinforce operational procedures that prevent the reactor from becoming critical. These interlocks prevent the withdrawal of more than one control rod. Under these conditions, since only one control rod can be withdrawn, the core will always be shut down even with the highest worth control rod withdrawn if adequate SDM exists. By requiring all other control rods to be inserted and a control rod withdrawal block initiated, the function of the inoperable one-rod-out interlock (LCO 3.9.2) is adequately maintained. This Special Operations LCO requirement to suspend all CORE ALTERATIONS adequately compensates for the inoperable all rods in permissive for the refueling equipment interlocks (LCO 3.9.1).

The control rod scram function provides backup protection to normal refueling procedures and the refueling interlocks, which prevent inadvertent criticalities during refueling. Since the scram function and refueling interlocks may be suspended, alternate backup protection required by this Special Operations LCO is obtained by ensuring that a five by five array of control rods, centered on the withdrawn control rod, are inserted and are incapable of being withdrawn (by insertion of a control rod block).

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 5 with any of the following LCOs, LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," LCO 3.3.8.2, "Reactor Protection System (RPS) Electric Power Monitoring," LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, or LCO 3.9.5 not met, can be performed in accordance with the Required Actions of these LCOs without meeting this Special Operations LCO or its ACTIONS. However, if a single CRD removal from a core cell containing one or more fuel assemblies is desired in MODE 5, controls consistent with those required by LCO 3.3.1.1, LCO 3.3.8.2, LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, and LCO 3.9.5 must be implemented, and this Special Operations LCO applied.

## LCO (continued)

By requiring all other control rods to be inserted and a control rod withdrawal block initiated, the function of the inoperable one-rod-out interlock (LCO 3.9.2) is adequately maintained. This Special Operations LCO requirement to suspend all CORE ALTERATIONS adequately compensates for the inoperable all rods in permissive for the refueling equipment interlocks (LCO 3.9.1). Ensuring that the five by five array of control rods, centered on the withdrawn control rod, are inserted and incapable of withdrawal adequately satisfies the backup protection that LCO 3.3.1.1 and LCO 3.9.2 would have otherwise provided. Also, once these requirements (Items a, b, and c) are completed, the SDM requirement to account for both the withdrawn-untrippable control rod and the highest worth control rod may be changed to allow the withdrawn-untrippable control rod to be the single highest worth control rod.

### **APPLICABILITY**

Operation in MODE 5 is controlled by existing LCOs. The allowance to comply with this Special Operations LCO in lieu of the ACTIONS of LCO 3.3.1.1, LCO 3.3.8.2, LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, and LCO 3.9.5 is appropriately controlled with the additional administrative controls required by this Special Operations LCO, which reduce the potential for reactivity excursions.

### **ACTIONS**

### A.1, A.2.1, and A.2.2

If one or more of the requirements of this Special Operations LCO are not met, the immediate implementation of these Required Actions restores operation consistent with the normal requirements for failure to meet LCO 3.3.1.1, LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, and LCO 3.9.5 (i.e., all control rods inserted) or with the allowances of this Special Operations LCO. The Completion Times for Required Action A.1, Required Action A.2.1, and Required Action A.2.2 are intended to require that these Required Actions be implemented in a very short time and carried through in an expeditious manner to either initiate action to restore the CRD and insert its control rod, or initiate action to restore compliance with this Special Operations LCO. Actions must continue until either Required Action A.2.1 or Required Action A.2.2 is satisfied.

## SURVEILLANCE REQUIREMENTS

# SR 3.10.5.1, SR 3.10.5.2, SR 3.10.5.3, SR 3.10.5.4, and SR 3.10.5.5

Verification that all the control rods, other than the control rod withdrawn for the removal of the associated CRD, are fully inserted is required to ensure the SDM is within limits. Verification that the local five by five array of control rods, other than the control rod withdrawn for removal of

## SURVEILLANCE REQUIREMENTS (continued)

the associated CRD, is inserted and disarmed, while the scram function for the withdrawn rod is not available, is required to ensure that the possibility of criticality remains precluded. Verification that a control rod withdrawal block has been inserted ensures that no other control rods can be inadvertently withdrawn under conditions when position indication instrumentation is inoperable for the withdrawn control rod. The Surveillance for LCO 3.1.1, which is made applicable by this Special Operations LCO, is required in order to establish that this Special Operations LCO is being met. Verification that no other CORE ALTERATIONS are being made is required to ensure the assumptions of the safety analysis are satisfied.

Periodic verification of the administrative controls established by this Special Operations LCO is prudent to preclude the possibility of an inadvertent criticality. The 24 hour Frequency is acceptable, given the administrative controls on control rod removal and hardwire interlock to block an additional control rod withdrawal.

#### REFERENCES

1. FSAR, Section [15.1.13].

B 3.10.6 Multiple Control Rod Withdrawal - Refueling

### **BASES**

### **BACKGROUND**

The purpose of this MODE 5 Special Operations LCO is to permit multiple control rod withdrawal during refueling by imposing certain administrative controls.

Refueling interlocks restrict the movement of control rods and the operation of the refueling equipment to reinforce operational procedures that prevent the reactor from becoming critical during refueling operations. During refueling operations, no more than one control rod is permitted to be withdrawn from a core cell containing one or more fuel assemblies. When all four fuel assemblies are removed from a cell, the control rod may be withdrawn with no restrictions. Any number of control rods may be withdrawn and removed from the reactor vessel if their cells contain no fuel.

The refueling interlocks use the "full in" position indicators to determine the position of all control rods. If the "full in" position signal is not present for every control rod, then the all rods in permissive for the refueling equipment interlocks is not present and fuel loading is prevented. Also, the refuel position one-rod-out interlock will not allow the withdrawal of a second control rod.

To allow more than one control rod to be withdrawn during refueling, these interlocks must be defeated. This Special Operations LCO establishes the necessary administrative controls to allow bypassing the "full in" position indicators.

## APPLICABLE SAFETY ANALYSES

Explicit safety analyses in the FSAR (Ref. 1) demonstrate that the functioning of the refueling interlocks and adequate SDM will prevent unacceptable reactivity excursions during refueling. To allow multiple control rod withdrawals, control rod removals, associated control rod drive (CRD) removal, or any combination of these, the "full in" position indication is allowed to be bypassed for each withdrawn control rod if all fuel has been removed from the cell. With no fuel assemblies in the core cell, the associated control rod has no reactivity control function and is not required to remain inserted. Prior to reloading fuel into the cell, however, the associated control rod must be inserted to ensure that an inadvertent criticality does not occur, as evaluated in the Reference 1 analysis.

# APPLICABLE SAFETY ANALYSES (continued)

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

#### LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 5 with either LCO 3.9.3, "Control Rod Position," LCO 3.9.4, "Control Rod Position Indication," or LCO 3.9.5, "Control Rod OPERABILITY - Refueling," not met, can be performed in accordance with the Required Actions of these LCOs without meeting this Special Operations LCO or its ACTIONS. If multiple control rod withdrawal or removal, or CRD removal is desired, all four fuel assemblies are required to be removed from the associated cells. Prior to entering this LCO, any fuel remaining in a cell whose CRD was previously removed under the provisions of another LCO must be removed. "Withdrawal" in this application includes the actual withdrawal of the control rod as well as maintaining the control rod in a position other than the full-in position, and reinserting the control rod.

When fuel is loaded into the core with multiple control rods withdrawn, special spiral reload sequences are used to ensure that reactivity additions are minimized. Spiral reloading encompasses reloading a cell (four fuel locations immediately adjacent to a control rod) on the edge of a continuous fueled region (the cell can be loaded in any sequence). Otherwise, all control rods must be fully inserted before loading fuel.

#### **APPLICABILITY**

Operation in MODE 5 is controlled by existing LCOs. The exceptions from other LCO requirements (e.g., the ACTIONS of LCO 3.9.3, LCO 3.9.4, or LCO 3.9.5) allowed by this Special Operations LCO are appropriately controlled by requiring all fuel to be removed from cells whose "full in" indicators are allowed to be bypassed.

### **ACTIONS**

#### A.1, A.2.1, and A.2.2

If one or more of the requirements of this Special Operations LCO are not met, the immediate implementation of these Required Actions restores operation consistent with the normal requirements for refueling (i.e., all control rods inserted in core cells containing one or more fuel assemblies) or with the exceptions granted by this Special Operations LCO. The Completion Times for Required Action A.1, Required

# **ACTIONS** (continued)

Action A.2.1, and Required Action A.2.2 are intended to require that these Required Actions be implemented in a very short time and carried through in an expeditious manner to either initiate action to restore the affected CRDs and insert their control rods, or initiate action to restore compliance with this Special Operations LCO.

## SURVEILLANCE REQUIREMENTS

# SR 3.10.6.1, SR 3.10.6.2, and SR 3.10.6.3

Periodic verification of the administrative controls established by this Special Operations LCO is prudent to preclude the possibility of an inadvertent criticality. The 24 hour Frequency is acceptable, given the administrative controls on fuel assembly and control rod removal, and takes into account other indications of control rod status available in the control room.

## **REFERENCES**

1. FSAR, Section [15.1.13].

B 3.10.7 Control Rod Testing - Operating

#### **BASES**

### **BACKGROUND**

The purpose of this Special Operations LCO is to permit control rod testing, while in MODES 1 and 2, by imposing certain administrative controls. Control rod patterns during startup conditions are controlled by the operator and the rod worth minimizer (RWM) (LCO 3.3.2.1, "Control Rod Block Instrumentation"), such that only the specified control rod sequences and relative positions required by LCO 3.1.6, "Rod Pattern Control," are allowed over the operating range from all control rods inserted to the low power setpoint (LPSP) of the RWM. The sequences effectively limit the potential amount and rate of reactivity increase that could occur during a control rod drop accident (CRDA). During these conditions, control rod testing is sometimes required that may result in control rod patterns not in compliance with the prescribed sequences of LCO 3.1.6. These tests include SDM demonstrations, control rod scram time testing, control rod friction testing, and testing performed during the Startup Test Program. This Special Operations LCO provides the necessary exemption to the requirements of LCO 3.1.6 and provides additional administrative controls to allow the deviations in such tests from the prescribed sequences in LCO 3.1.6.

# APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the CRDA are summarized in References 1 and 2. CRDA analyses assume the reactor operator follows prescribed withdrawal sequences. These sequences define the potential initial conditions for the CRDA analyses. The RWM provides backup to operator control of the withdrawal sequences to ensure the initial conditions of the CRDA analyses are not violated. For special sequences developed for control rod testing, the initial control rod patterns assumed in the safety analysis of References 1 and 2 may not be preserved. Therefore special CRDA analyses are required to demonstrate that these special sequences will not result in unacceptable consequences, should a CRDA occur during the testing. These analyses, performed in accordance with an NRC approved methodology, are dependent on the specific test being performed.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

#### LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Control rod testing may be performed in compliance with the prescribed sequences of LCO 3.1.6, and during these tests, no exceptions to the requirements of LCO 3.1.6 are necessary. For testing performed with a sequence not in compliance with LCO 3.1.6, the requirements of LCO 3.1.6 may be suspended, provided additional administrative controls are placed on the test to ensure that the assumptions of the special safety analysis for the test sequence are satisfied. Assurances that the test sequence is followed can be provided by either programming the test sequence into the RWM, with conformance verified as specified in SR 3.3.2.1.8 and allowing the RWM to monitor control rod withdrawal and provide appropriate control rod blocks if necessary, or by verifying conformance to the approved test sequence by a second licensed operator or other qualified member of the technical staff. These controls are consistent with those normally applied to operation in the startup range as defined in the SRs and ACTIONS of LCO 3.3.2.1, "Control Rod Block Instrumentation."

#### **APPLICABILITY**

Control rod testing, while in MODES 1 and 2, with THERMAL POWER greater than the LPSP of the RWM, is adequately controlled by the existing LCOs on power distribution limits and control rod block instrumentation. Control rod movement during these conditions is not restricted to prescribed sequences and can be performed within the constraints of LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)," and LCO 3.3.2.1. With THERMAL POWER less than or equal to the LPSP of the RWM, the provisions of this Special Operations LCO are necessary to perform special tests that are not in conformance with the prescribed sequences of LCO 3.1.6. While in MODES 3 and 4, control rod withdrawal is only allowed if performed in accordance with Special Operations LCO 3.10.3, "Single Control Rod Withdrawal - Hot Shutdown," or Special Operations LCO 3.10.4, "Single Control Rod Withdrawal - Cold Shutdown," which provide adequate controls to ensure that the assumptions of the safety analyses of Reference 1 and 2 are satisfied. During these Special Operations and while in MODE 5, the one-rod-out interlock (LCO 3.9.2, "Refuel Position One-Rod-Out Interlock,") and scram functions (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and LCO 3.9.5, "Control Rod OPERABILITY - Refueling"), or the added administrative controls prescribed in the applicable Special Operations LCOs, provide mitigation of potential reactive excursions.

### **ACTIONS**

### **A.1**

With the requirements of the LCO not met (e.g., the control rod pattern is not in compliance with the special test sequence, the sequence is improperly loaded in the RWM) the testing is required to be immediately suspended. Upon suspension of the special test, the provisions of LCO 3.1.6 are no longer excepted, and appropriate actions are to be taken to restore the control rod sequence to the prescribed sequence of LCO 3.1.6, or to shut down the reactor, if required by LCO 3.1.6.

## SURVEILLANCE REQUIREMENTS

### SR 3.10.7.1

With the special test sequence not programmed into the RWM, a second licensed operator or other qualified member of the technical staff is required to verify conformance with the approved sequence for the test. [Note: A member of the technical staff is considered to be qualified if he possesses skills equal to a licensed operator [in the following areas:].] This verification must be performed during control rod movement to prevent deviations from the specified sequence. A Note is added to indicate that this Surveillance does not need to be performed if SR 3.10.7.2 is satisfied.

### SR 3.10.7.2

When the RWM provides conformance to the special test sequence, the test sequence must be verified to be correctly loaded into the RWM prior to control rod movement. This Surveillance demonstrates compliance with SR 3.3.2.1.8, thereby demonstrating that the RWM is OPERABLE. A Note has been added to indicate that this Surveillance does not need to be performed if SR 3.10.7.1 is satisfied.

#### **REFERENCES**

- 1. NEDE-24011-P-A-US, General Electric Standard Application for Reactor Fuel, Supplement for United States (as amended).
- Letter from T. Pickens (BWROG) to G.C. Lainas (NRC)
   "Amendment 17 to General Electric Licensing Topical Report NEDE-24011-P-A," August 15, 1986.

B 3.10.8 SHUTDOWN MARGIN (SDM) Test - Refueling

### **BASES**

### **BACKGROUND**

The purpose of this MODE 5 Special Operations LCO is to permit SDM testing to be performed for those plant configurations in which the reactor pressure vessel (RPV) head is either not in place or the head bolts are not fully tensioned.

LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," requires that adequate SDM be demonstrated following fuel movements or control rod replacement within the RPV. The demonstration must be performed prior to or within 4 hours after criticality is reached. This SDM test may be performed prior to or during the first startup following the refueling. Performing the SDM test prior to startup requires the test to be performed while in MODE 5. with the vessel head bolts less than fully tensioned (and possibly with the vessel head removed). While in MODE 5, the reactor mode switch is required to be in the shutdown or refuel position, where the applicable control rod blocks ensure that the reactor will not become critical. The SDM test requires the reactor mode switch to be in the startup/hot standby position, since more than one control rod will be withdrawn for the purpose of demonstrating adequate SDM. This Special Operations LCO provides the appropriate additional controls to allow withdrawing more than one control rod from a core cell containing one or more fuel assemblies when the reactor vessel head bolts are less than fully tensioned.

## APPLICABLE SAFETY ANALYSES

Prevention and mitigation of unacceptable reactivity excursions during control rod withdrawal, with the reactor mode switch in the startup/hot standby position while in MODE 5, is provided by the intermediate range monitor (IRM) neutron flux scram (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation"), and control rod block instrumentation (LCO 3.3.2.1, "Control Rod Block Instrumentation"). The limiting reactivity excursion during startup conditions while in MODE 5 is the control rod drop accident (CRDA).

CRDA analyses assume that the reactor operator follows prescribed withdrawal sequences. For SDM tests performed within these defined sequences, the analyses of References 1 and 2 are applicable. However, for some sequences developed for the SDM testing, the control rod patterns assumed in the safety analyses of References 1 and 2 may not be met. Therefore, special CRDA analyses, performed in accordance with an NRC approved methodology, are required to demonstrate the

# APPLICABLE SAFETY ANALYSES (continued)

SDM test sequence will not result in unacceptable consequences should a CRDA occur during the testing. For the purpose of this test, the protection provided by the normally required MODE 5 applicable LCOs, in addition to the requirements of this LCO, will maintain normal test operations as well as postulated accidents within the bounds of the appropriate safety analyses (Refs. 1 and 2). In addition to the added requirements for the RWM, APRM, and control rod coupling, the notch out mode is specified for out of sequence withdrawals. Requiring the notch out mode limits withdrawal steps to a single notch, which limits inserted reactivity, and allows adequate monitoring of changes in neutron flux, which may occur during the test.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. SDM tests may be performed while in MODE 2, in accordance with Table 1.1-1, without meeting this Special Operations LCO or its ACTIONS. For SDM tests performed while in MODE 5, additional requirements must be met to ensure that adequate protection against potential reactivity excursions is available. To provide additional scram protection, beyond the normally required IRMs, the APRMs are also required to be OPERABLE (LCO 3.3.1.1, Functions 2.a and 2.e) as though the reactor were in MODE 2. Because multiple control rods will be withdrawn and the reactor will potentially become critical, RPS MODE 2 requirements for Functions 2.a and 2.e of Table 3.3.1.1-1 must be enforced and the approved control rod withdrawal sequence must be enforced by the RWM (LCO 3.3.2.1, Function 2, MODE 2), or must be verified by a second licensed operator or other qualified member of the technical staff. To provide additional protection against an inadvertent criticality, control rod withdrawals that do not conform to the banked position withdrawal sequence specified in LCO 3.1.6, "Rod Pattern Control," (i.e., out of sequence control rod withdrawals) must be made in the individual notched withdrawal mode to minimize the potential reactivity insertion associated with each movement. Coupling integrity of withdrawn control rods is required to minimize the probability of a CRDA and ensure proper functioning of the withdrawn control rods, if they are required to scram. Because the reactor vessel head may be removed during these tests, no other CORE ALTERATIONS may be in progress.

## LCO (continued)

Furthermore, since the control rod scram function with the RCS at atmospheric pressure relies solely on the CRD accumulator, it is essential that the CRD charging water header remain pressurized. This Special Operations LCO then allows changing the Table 1.1-1 reactor mode switch position requirements to include the startup/hot standby position, such that the SDM tests may be performed while in MODE 5.

### **APPLICABILITY**

These SDM test Special Operations requirements are only applicable if the SDM tests are to be performed while in MODE 5 with the reactor vessel head removed or the head bolts not fully tensioned. Additional requirements during these tests to enforce control rod withdrawal sequences and restrict other CORE ALTERATIONS provide protection against potential reactivity excursions. Operations in all other MODES are unaffected by this LCO.

### **ACTIONS**

### <u>A.1</u>

With one or more control rods discovered uncoupled during this Special Operation, a controlled insertion of each uncoupled control rod is required; either to attempt recoupling, or to preclude a control rod drop. This controlled insertion is preferred since, if the control rod fails to follow the drive as it is withdrawn (i.e., is "stuck" in an inserted position), placing the reactor mode switch in the shutdown position per Required Action B.1 could cause substantial secondary damage. If recoupling is not accomplished, operation may continue, provided the control rods are fully inserted within 3 hours and disarmed (electrically or hydraulically) within 4 hours. Inserting a control rod ensures the shutdown and scram capabilities are not adversely affected. The control rod is disarmed to prevent inadvertent withdrawal during subsequent operations. The control rods can be hydraulically disarmed by closing the drive water and exhaust water isolation valves. Electrically the control rods can be disarmed by disconnecting power from all four directional control valve solenoids. Required Action A.1 is modified by a Note that allows the RWM to be bypassed if required to allow insertion of the inoperable control rods and continued operation. LCO 3.3.2.1, "Control Rod Block Instrumentation," Actions provide additional requirements when the RWM is bypassed to ensure compliance with the CRDA analysis.

The allowed Completion Times are reasonable, considering the small number of allowed inoperable control rods, and provide time to insert and disarm the control rods in an orderly manner and without challenging plant systems.

## **ACTIONS** (continued)

Condition A is modified by a Note allowing separate Condition entry for each uncoupled control rod. This is acceptable since the Required Actions for this Condition provide appropriate compensatory actions for each uncoupled control rod. Complying with the Required Actions may allow for continued operation. Subsequent uncoupled control rods are governed by subsequent entry into the Condition and application of the Required Actions.

### <u>B.1</u>

With one or more of the requirements of this LCO not met for reasons other than an uncoupled control rod, the testing should be immediately stopped by placing the reactor mode switch in the shutdown or refuel position. This results in a condition that is consistent with the requirements for MODE 5 where the provisions of this Special Operations LCO are no longer required.

## SURVEILLANCE REQUIREMENTS

### SR 3.10.8.1

Performance of the applicable SRs for LCO 3.3.1.1, Functions 2.a and 2.d will ensure that the reactor is operated within the bounds of the safety analysis.

### SR 3.10.8.1, SR 3.10.8.2, and SR 3.10.8.3

LCO 3.3.1.1, Functions 2.a and 2.e, made applicable in this Special Operations LCO, are required to have applicable Surveillances met to establish that this Special Operations LCO is being met. However, the control rod withdrawal sequences during the SDM tests may be enforced by the RWM (LCO 3.3.2.1, Function 2, MODE 2 requirements) or by a second licensed operator or other qualified member of the technical staff. As noted, either the applicable SRs for the RWM (LCO 3.3.2.1) must be satisfied according to the applicable Frequencies (SR 3.10.8.2), or the proper movement of control rods must be verified (SR 3.10.8.3). This latter verification (i.e., SR 3.10.8.3) must be performed during control rod movement to prevent deviations from the specified sequence. These surveillances provide adequate assurance that the specified test sequence is being followed.

#### SR 3.10.8.4

Periodic verification of the administrative controls established by this LCO will ensure that the reactor is operated within the bounds of the

# SURVEILLANCE REQUIREMENTS (continued)

safety analysis. The 12 hour Frequency is intended to provide appropriate assurance that each operating shift is aware of and verifies compliance with these Special Operations LCO requirements.

### SR 3.10.8.5

Coupling verification is performed to ensure the control rod is connected to the control rod drive mechanism and will perform its intended function when necessary. The verification is required to be performed any time a control rod is withdrawn to the "full out" notch position, or prior to declaring the control rod OPERABLE after work on the control rod or CRD System that could affect coupling. This Frequency is acceptable, considering the low probability that a control rod will become uncoupled when it is not being moved as well as operating experience related to uncoupling events.

### SR 3.10.8.6

CRD charging water header pressure verification is performed to ensure the motive force is available to scram the control rods in the event of a scram signal. A minimum accumulator pressure is specified, below which the capability of the accumulator to perform its intended function becomes degraded and the accumulator is considered inoperable. The minimum accumulator pressure of 940 psig is well below the expected pressure of 1100 psig. The 7 day Frequency has been shown to be acceptable through operating experience and takes into account indications available in the control room.

## **REFERENCES**

- 1. NEDE-24011-P-A-US, General Electric Standard Application for Reactor Fuel, Supplement for United States (as amended).
- Letter from T. Pickens (BWROG) to G.C. Lainas, NRC, "Amendment 17 to General Electric Licensing Topical Report NEDE-24011-P-A," August 15, 1986.
- 3. [Plant specific transient analysis].
- 4. [Plant specific reload analysis].

B 3.10.9 Recirculation Loops - Testing

### **BASES**

#### **BACKGROUND**

The purpose of this Special Operations LCO in MODES 1 and 2 is to allow either PHYSICS TESTS or the Startup Test Program to be performed with less than two recirculation loops in operation.

Testing performed as part of the Startup Test Program (Ref. 1), or PHYSICS TESTS authorized under the provisions of 10 CFR 50.59 (Ref. 2) or otherwise approved by the NRC, may be required to be performed under natural circulation conditions with the reactor critical. LCO 3.4.1, "Recirculation Loops Operating," requires that one or both recirculation loops be in operation during MODES 1 and 2. This Special Operations LCO provides the appropriate additional restrictions to allow testing at natural circulation conditions or in single loop operation with the reactor critical.

## APPLICABLE SAFETY ANALYSES

The operation of the Reactor Coolant Recirculation System is an initial condition assumed in the design basis loss of coolant accident (LOCA) (Ref. 3). During a LOCA caused by a recirculation loop pipe break, the intact loop is assumed to provide coolant flow during the first few seconds of the postulated accident. During PHYSICS TESTS  $\leq$  [5]% RTP, or limited testing during the Startup Test Program for the initial cycle, the decay heat in the reactor is sufficiently low, such that the consequences of an accident are reduced and the coastdown characteristics of the recirculation loops are not important. In addition, the probability of a Design Basis Accident (DBA) or other accidents occurring during the limited time allowed at natural circulation or in single loop operation is low.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

#### LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. However, to perform testing at natural circulation conditions or with a single operating loop, operations must be limited to those tests defined in the Startup Test Program or approved PHYSICS TESTS performed at  $\leq$  [5]% RTP. To minimize the probability of an

## LCO (continued)

accident, while operating at natural circulation conditions or with one operating loop, the duration of these tests is limited to  $\leq$  24 hours. This Special Operations LCO then allows suspension of the requirements of LCO 3.4.1 during such testing. In addition to the requirements of this LCO, the normally required MODE 1 or MODE 2 applicable LCOs must be met.

## **APPLICABILITY**

This Special Operations LCO may only be used while performing testing at natural circulation conditions or while operating with a single loop, as may be required as part of the Startup Test Program or during low power PHYSICS TESTS. Additional requirements during these tests to limit the time at natural circulation conditions reduces the probability that a DBA may occur with both recirculation loops not in operation. Operations in all other MODES are unaffected by this LCO.

### **ACTIONS**

### <u>A.1</u>

With the testing performed at natural circulation conditions or with a single operating loop, and the duration of the test exceeding the 24 hour time limit, actions should be taken to promptly shut down. Inserting all insertable control rods will result in a condition that does not require both recirculation loops to be in operation. The allowed Completion Time of 1 hour provides sufficient time to normally insert the withdrawn control rods.

### <u>B.1</u>

With the requirements of this LCO not met for reasons other than those specified in Condition A (i.e., low power PHYSICS TESTS exceeding [5]% RTP, or unapproved testing at natural circulation), the reactor mode switch should immediately be placed in the shutdown position. This results in a condition that does not require both recirculation loops to be in operation. The action to immediately place the reactor mode switch in the shutdown position prevents unacceptable consequences from an accident initiated from outside the analysis bounds. Also, operation beyond authorized bounds should be terminated upon discovery.

# SURVEILLANCE REQUIREMENTS

# SR 3.10.9.1 and SR 3.10.9.2

Periodic verification of the administrative controls established by this LCO will ensure that the reactor is operated within the bounds of this LCO. Because the 1 hour Frequency provides frequent checks of the LCO requirements during the allowed 24 hour testing interval, the probability of operation outside the limits concurrent with a postulated accident is reduced even further.

### REFERENCES

- 1. FSAR, Chapter [14].
- 2. 10 CFR 50.59.
- 3. FSAR, Section [6.3.3.4].
- 4. FSAR, Section [ ].

B 3.10.10 Training Startups

### **BASES**

#### **BACKGROUND**

The purpose of this Special Operations LCO is to permit training startups to be performed while in MODE 2 to provide plant startup experience for reactor operators. This training involves withdrawal of control rods to achieve criticality and then further withdrawal of control rods, as would be experienced during an actual plant startup. During these training startups, if the reactor coolant is allowed to heat up, maintenance of a constant reactor vessel water level requires the rejection of reactor coolant through the Reactor Water Cleanup System as the reactor coolant specific volume increases. Since this results in reactor water discharge to the radioactive waste disposal system, the amount of discharge should be minimized. This Special Operations LCO provides the appropriate additional controls to allow one residual heat removal (RHR) subsystem to be aligned in the shutdown cooling mode, so that the reactor coolant temperature can be controlled during the training startups, thereby minimizing the discharge of reactor water to the radioactive waste disposal system.

## APPLICABLE SAFETY ANALYSES

The Emergency Core Cooling System (ECCS) is designed to provide core cooling following a loss of coolant accident (LOCA). The low pressure coolant injection (LPCI) mode of the RHR System is one of the ECCS subsystems assumed to function during a LOCA. With reactor power  $\leq$  1% RTP (equivalent to all OPERABLE intermediate range monitor (IRM) channels  $\leq$  25/40 divisions of full scale on Range 7) and average reactor coolant temperature < 200°F, the stored energy in the reactor core and coolant system is very low, and a reduced complement of ECCS can provide the required core cooling, thereby allowing operation with one RHR subsystem in the shutdown cooling mode (Ref. 1).

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

### LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Training startups may be performed while in MODE 2 with no RHR subsystems aligned in the shutdown cooling mode and, therefore, without meeting this Special Operations LCO or its ACTIONS.

# LCO (continued)

However, to minimize the discharge of reactor coolant to the radioactive waste disposal system, performance of the training startups may be accomplished with one RHR subsystem aligned in the shutdown cooling mode to maintain average reactor coolant temperature < 200°F. Under these conditions, the THERMAL POWER must be maintained ≤ 1% RTP (equivalent to all OPERABLE IRM channels ≤ 25/40 divisions of full scale on Range 7) and the average reactor coolant temperature must be < 200°F. This Special Operations LCO then allows changing the LPCI OPERABILITY requirements. In addition to the requirements of this LCO, the normally required MODE 2 applicable LCOs must also be met.

### **APPLICABILITY**

Training startups while in MODE 2 may be performed with one RHR subsystem aligned in the shutdown cooling mode to control the reactor coolant temperature. Additional requirements during these tests to restrict the reactor power and reactor coolant temperature provide protection against potential conditions that could require operation of both RHR subsystems in the LPCI mode of operation. Operations in all other MODES are unaffected by this LCO.

#### **ACTIONS**

### **A.1**

With one or more of the requirements of this LCO not met, (i.e., any OPERABLE IRM channel > 25/40 divisions of full scale on Range 7, or average reactor coolant temperature ≥ 200°F) the reactor may be in a condition that requires the full complement of ECCS subsystems and the reactor mode switch must be immediately placed in the shutdown position. This results in a condition that does not require all RHR subsystems to be OPERABLE in the LPCI mode of operation. This action may restore compliance with the requirements of this Special Operations LCO or may result in placing the plant in either MODE 3 or MODE 4.


## SURVEILLANCE REQUIREMENTS

### SR 3.10.10.1 and SR 3.10.10.2

Periodic verification that the THERMAL POWER and reactor coolant temperature limits of this Special Operations LCO are satisfied will ensure that the stored energy in the reactor core and reactor coolant are sufficiently low to preclude the need for all RHR subsystems to be aligned in the LPCI mode of operation. The 1 hour Frequency provides frequent checks of these LCO requirements during the training startup.

REFERENCES 1. FSAR, Section [6.3.2].

| NRC FORM 335  U.S. NUCLEAR REGULATORY COMMISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. REPORT NUMBER                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| (2-89)<br>NRCM 1102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Assigned by NRC, Add Vol., Supp., Rev.,                                                                     |
| 3201, 3202 BIBLIOGRAPHIC DATA SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and Addendum Numbers, if any.)                                                                               |
| (See instructions on the reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NUREG-1433                                                                                                   |
| 2. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vol 2, Rev. 2                                                                                                |
| Standard Technical Specifications General Electric Plants,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE REPORT PUBLISHED                                                                                        |
| BWR/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MONTH YEAR                                                                                                   |
| Bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | June 2001                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4. FIN OR GRANT NUMBER                                                                                       |
| 5. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6. TYPE OF REPORT                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Final                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. PERIOD COVERED (Inclusive Dates)                                                                          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04/95-04/01                                                                                                  |
| 8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commit provide name and mailing address.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ssion, and mailing address; if contractor,                                                                   |
| Office of Nuclear Reactor Regulation, Division of Regulatory Improvement Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |
| U.S. Nuclear Regulatory Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |
| Washington, DC 20555-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |
| G SPONSODING ODGANIZATION, NAME AND ADDRESS ((AND))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |
| <ol> <li>SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission,<br/>and mailing address.)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |
| Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |
| 10. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |
| 11. ABSTRACT (200 words or less)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |
| This NUREG contains the improved Standard Technical Specifications (STS) for Ge neral Electric (GE) BWR/4 plants. Revision 2 incorporates the cumulative changes to Revision 1, which was publish ed in April 1995. The changes reflected in Revision 2 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This publication is the result of extensive public technical meetings and discussions among the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58FR39132), which was subsequently codified by changes to Section 36 of Part 50 of Title 10 of the Code of Federal Regulations (10CFR50.36) (60 FR 36953). The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Lic ensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency. |                                                                                                              |
| 12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)  Technical Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13. AVAILABILITY STATEMENT  unlimited  14. SECURITY CLASSIFICATION  (This Page)  unclassified  (This Report) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unclassified 15. NUMBER OF PAGES                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TO TO TO TAGEO                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16. PRICE                                                                                                    |



Federal Recycling Program