APPENDIX D

EXAMPLE TRAC-V UPDATE (OR CVS) USAGE

To be provided by the US NRC.

APPENDIX E
GRAPHICS (XTV/XMGR5) VARIABLES

E.l. Introduction

Appendix E lists the variables that are written to the graphics-data TRCXTV file.
Subroutine xtvdr orchestrates the creation of the graphics file; each data edit is
written by the subroutine responsible for that particular component or data
structure. Those variables containing the parenthetical "Header variable only” do
not vary with time and appear only in the graphics header edit.

Variables initially are listed by subroutine rather than by component to prevent
multiple listings of the variables output by subroutine xtv1D. The format of the
appendix makes it easy to determine all possible variables for a given component
while still making it clear which variables apply to particular components.
Because the exact variables available from a given calculation are dependent on
options and input parameters, we have not maintained the sequence of the
variables; however, we have alphabetized the variables for ease of reference. We
have provided definitions and, as appropriate, the corresponding SI and English
units. This listing is based on TRAC-M Version 3.0.

E.2. Global Variable Graphics

The global variables apply to the overall calculation as opposed to specific
components or cells within a component. Subroutine xtvgnpr is responsible for
these graphics variables, with the exception of timet, which is output by xtvdr.

Variable Dimension Description

cputot 1 Total CPU time (s) since time 0.0 s in the calculation.

delt 1 Timestep size (s).

dprmax 1 Maximum fractional pressure change over the
current timestep (parameter used in the timestep-
control logic).

dtlmax 1 Maximum liquid-temperature change (K, °F) over
the current timestep (parameter used in the timestep-
control logic).

dtrmax 1 Maximum HTSTR-component ROD or SLAB

element wall temperature change (K, °F) over the
current timestep.

dtsmax 1 Maximum saturation temperature change (K, °F)
over the current timestep.
dtvmax 1 Maximum vapor-temperature change (K, °F) over

the current timestep (parameter used in the timestep-
control logic).

timet Transient time (s) in the calculation.

tnstep 1 Total number of timesteps since time 0.0 s in the
calculation.

H

E-1

E.3. Signal-Variable, Control-Block, and Trip-Signal Graphics

Subroutine xtventl is responsible for all of the signal variables, control blocks, and trip
signals specified through input from the input-data file TRACIN and restart-data file
TRCRST. Subroutine xtventl loops over all of the signal variables in the order of
increasing magnitude of their ID numbers and similarly loops over all of the control
blocks and all of the trips. The quantities written to the graphics file are

1. the parameter value of each signal variable at the current timestep,
along with a figure label having its signal-variable ID number,
parameter title, and units of the signal-variable parameter;

2. the output-parameter value from each control block at the current
timestep, along with a figure label of its control-block ID number and
the units of the control-block output parameter; and

3. the trip signal from each trip at the current timestep, along with a
figure label of its trip ID number and the units of the trip signal.

For TRAC-P to output control-block, output-signal, and trip-signal units to the control-
block and trip-signal figure labels, the user must specify those units through input by
units-name labels. This is done when one or more of the NAMELIST-variable I/O-units
flags iogrf, ioinp, iolab, and icout has a value of 1 to specify Engish units. Users
desiring all input and output in SI units with control-block, output-signal, and trip-
signal graphics labels with SI units should input NAMELIST variables iolab = 1 while
leaving inlab = 0 (default value). Inputing inlab = 3 would output a comment-labeled
input-data file inlab in English units.

Variable Dimension Description

sv 1 Signal-variable data (although the dimension of each is 1,
there are ntsv of them and each has its own units-name
label). '

cb 1 Control-block output (although the dimension of each is 1,

there are ntcb of them and each has its own units-name
label based on the user-defined units-name label of cbxmin
and cbxmax). -

ts 1 Trip-signal data [although the dimension of each is 1, there
are ntrp of them and each has its own units-name label
based on the user-defined units name label of setpt(i),
i =1to2or4].

E4. General 1D Hydraulic-Component Graphics
Subroutine xtvld outputs the graphics-catalog variables that are common to all of the

1D hydraulic components (PIPE, PRIZER, PUMP, TEE, and VALVE). For TEE
components, the dimension of cell-centered variables includes space for a phantom cell

E-2

between the main-tube and side-tube cells. This accounts for the fact that there are more
interfaces than cells, and side-tube values are stored after main-tube values. In some
cases, the outputting of parameter values depends on user-specified options in the
TRAC-P input-data TRACIN file that cause those parameters to be evaluated. Note that
because of wall heat conduction (nodes), these components may be listed as 2D
components in XTV when nodes > 2.

Variable

alpn
alven

alvn

am
chtan

chtin

cifn
concn

fa
hgam
hil

hiv

htlsci
htlsco
id
idr
ncellt

njun
nlegs
pan
pinteg
pn
regnm
rmvin
rmvE
roan
roln
rom
rovn

Dimension

ncellt
ncellt

ncellt

ncellt
ncellt

ncellt

ncellt+1
ncellt

ncellt+l
ncellt

ncellt

ncellt

1
1
1
ncellt
1

1

1
ncellt

1
ncellt
ncellt+l
ncellt+1l
ncellt+1
ncellt
ncellt
ncellt
ncellt

Description

Cell gas volume fractions (-).
Cell liquid-side interfacial heat-transfer coefficients (W K,

Btu °F! h'1) [HTC * interfacial area].

Cell-flashing interfacial heat-transfer coefficients (W K, Btu
°F1 h1) [HTC * interfacial area].

Cell noncondensable-gas masses (kg, 1by,).

Cell noncondensable-gas interfacial heat-transfer coeffi-
cients (W K1, Btu °F! h1) [HTC * interfacial areal.

Cell gas-side interfacial heat-transfer coefficients (W K, Btu
°F-1 h1) [HTC * interfacial area].

Interface interfacial-drag coefficients (kg m*, Ib, ft#).

Cell dissolved-solute concentration ratio [kg(solute) kg™
(liquid), b, (solute) Iby,-1(liquid)].

Interface flow areas (m?, ft2) (header variable only).

Cell subcooled boiling heat flux (W m?, Btu ftZ h).

Cell wall liquid heat-transfer coefficients (W m? K, Btu ft
°F1ht).

Cell wall gas heat-transfer coefficients (W m? K", Btu
ft2 °F1 h?).

Inner-surface heat loss (W, Btu h') from the wall.
Outer-surface heat loss (W, Btu h?) from the wall.
Component ID number (header variable only).

Cell wall heat-transfer regime numbers (-).

Total number of cells, including phantom cell (header
variable only).

Number of junctions on this component.

Number of legs (side tubes) on this component.

Cell noncondensable-gas partial pressures (Pa, psia).
Total heat-transfer rate to the wall (w, Btu h?).

Cell total pressures (Pa, psia).

Interface flow-regime numbers.

Interface fluid mass flows (kg s, Ib,, h?).

Interface gas mass flows (kg s, Ib,, h).

Cell noncondensable-gas densities (kg m?, Ib, ft3).
Cell liquid densities (kg m?, Ib, ft?).

Cell mixture densities (kg m?3, Ib,, ft?).

Cell gas densities (kg m?, Iby, ft3).

E-3

sn
tcen
tln

tsat

tssn

tvn
twan

twen
twn
type
vlin

vol

wfl

E.5.

ncellt
1

ncellt

ncellt

ncellt

ncellt
1

1

nodes*
ncellt

1
ncellt+1l
ncellt
ncellt+1l
ncellt+1l
ncellt

Cell plated-solute mass/fluid volume (kg m?3, Ib,, ft3).
Total heat convected to the fluid (W s, Btu).

Cell liquid temperatures (K, °F).

Cell saturation temperatures (K, °F) based on the total
pressures.

Cell saturation temperatures (K, °F) based on the steam
partial pressures.

Cell gas temperatures (K, °F).

Absolute error in the total heat convected to the fluid (W s,
Btu).

Effective error in the total heat convected to the fluid

(W s, Btu).

Node-cell wall temperatures (K, °F) in the order:

node 1 to NODES for cell 1, node 1 to NODES for cell

2, etc.

Component type (header variable only).

Interface liquid velocities {(m s, ft 7).

Cell volumes (m?, ft%) (header variable only).

Interface gas velocities (m s, ft s7).

Interface friction factors (-).

Cell upper bounds. (m, ft} (header variable only)(header
variable only).

BREAK-Component Graphics. Subroutine xtvbrak outputs all graphics

variables for the BREAK component.

Variable

alpn
bsa
bsmass
bxa
bxmass
concn

enth
fa
id
ncellt
pan
pn
tln
tvn
type
vol
X

Dimension

1

s

MR RRREERRP PP

Description
BREAK-cell gas volume fraction (-).
Time-integrated, noncondensable-gas mass flow (kg, 1by,).
Time-integrated mass flow (kg, Ib,) into the BREAK cell.
Noncondensable-gas mass flow (kg s?, Ib,, h?).
Mass flow (kg s, b, h'?) into the BREAK cell.
BREAK-cell, dissolved-solute concentration ratio
[kg(solute) kg'(liquid), Ib,(solute) Ib,-1(liquid)].
BREAK-cell fluid enthalpy (W s kg, Btu 1b,,-1).
BREAK-interface flow areas (m?, ft?) (header variable only).
Component ID number (header variable only).
Total number of cells (should be 1) (header variable only).
BREAK-cell, noncondensable-gas partial pressure (Pa, psia).
BREAK-cell total pressure (Pa, psia).
BREAK-cell liquid temperature (K, °F).
BREAXK-cell gas temperature (K, °F).
Component type (header variable only).
BREAK-cell volume (m?, ft?) (header variable only).
BREAK-cell upper bound (m, ft) (header variable only).

E-4

E.6. FILL-Component Graphics.
Subroutine xtv£ill outputs all graphics variables for the FILL component.

Variable Dimension Description

alpn 1 FILL-cell gas volume fraction (-).

concn 1 FILL-cell, dissolved-solute concentration ratio [kg(solute)
kg(liquid), Iby(solute) Ib,-1(liquid)].

enth 1 FILL-cell fluid enthalpy (W s kg, Btu Ib,,-1).

fa 2 FILL-interface flow areas (m?, ft2) (header variable only).
fxmass 1 Mass flow (kg s, Ib,, h?) out of the FILL cell.

id 1 Component ID number (header variable only).

ncellt 1 Total number of cells (should be 1) (header variable only).
pan 1 FILL-cell, noncondensable-gas partial pressure (Pa, psia).
pn 1 FILL-cell total pressure (Pa, psia).

tln 1 FILL-cell liquid temperature (K, °F).

tvn 1 FILL-cell gas temperature (K, °F).

type 1 Component type (header variable only).

vin 1 FILL-interface liquid velocity (m s7, ft s7).

vol 1 FILL-cell volume (m?, ft?) (header variable only).

vvn 1 FILL-interface gas velocity (m s?, fts?).

p 1 FILL-cell upper bound (m, ft) (header variable only).

E.7. HTSTR (Heat-Structure)-Component ROD- or SLAB-Element Graphics.

Subroutine xtvht outputs all graphics variables for the HISTR component ROD or
SLAB elements.

Variable = Dimension Description

alreac 1 Gas volume-fraction reactivity (-).

cepwn 2 Outer-surface and inner-surface heat-transfer difference (W,
Btu h).

dbreac 1 Dissolved- and plated-solute reactivity ().

hrfli nzmax Liquid heat-transfer coefficient (W m2 K-, Btu ft? °F* h?) for
the inner surface of the ROD or SLAB elements.

hrflo nzmax Liquid heat-transfer coefficient (W m2 K, Btu ft2 °F' h) for
the outer surface of the ROD or SLAB elements.

hrfvi nzmax Gas heat-transfer coefficient (W m2 K, Btu ft2 °F! h'!) for
the inner surface of the ROD or SLAB elements.

hrfvo nzmax Gas heat-transfer coefficient (W m2 K, Btu ft2 °F! h') for
the outer surface of the ROD or SLAB elements.

id 1 Component ID number (header variable only).

ihtfi nzmax Heat-transfer regime numbers for the inner surface of the
ROD or SLAB elements.

ihtfo nzmax Heat-transfer regime numbers for the outer surface of the
ROD or SLAB elements.

E-5

nodes
nrods
nzmax
pgreac
powli
powlo
powvi

powvo
rftn

rmckn
rpower

rzht
stnui
stnuo
tcefni
tcefno
tcreac
tfreac
tldi
tldo
tpowi
tpowo
trhmax
tramax
twani
twano

tweni

tweno

type

ncrz
ncrz
ncrz
ncrz
nodes*
nzmax

1

1
ncrz+1l
nzmax

nzmax

PR

nzmaxz

nzmaxzZ

1

1

Number of ROD-radial or SLAB-thickness heat-transfer
nodes (first level only).

Total number of ROD or SLAB elements evaluated by the
HTSTR component (header variable only)

Maximum number of rows of nodes in the axial direction of
the HTSTR component (header variable only).
Programmed reactivity (-).

Inner-surface heat transfer to the liquid (W, Btu h'?).
Outer-surface heat transfer to the liquid (W, Btu h?).
Inner-surface heat transfer to the gas (W, Btu h).
Outer-surface heat transfer to the gas (W, Btu h).

ROD- or SLAB-element temperatures (K, °F),

ordered node 1 to node NODES for row 1, node 1 to node
NODES for row 2, etc.

Reactor multiplication constant Kegf ()

Reactor power (W, Btu h?).

Axial positions of the rows of nodes (m, ft).

Inner-surface Stanton number (-) of the ROD or SLAB
element. :

Outer-surface Stanton number (=) of the ROD or SLAB
element.

Inner-surface total heat transfer to the fluid (W s, Btu).
Outer-surface total heat transfer to the fluid (W s, Btu).
Coolant-temperature reactivity (-).

Fuel-temperature reactivity (-).

Inner-surface liquid temperatures (K, °F) at bubble
departure.

Outer-surface liquid temperatures (K, °F) at bubble
departure.

Total power across the inner surface of the heat-structure
component (W, Btu h?).

Total power across the inner surface of the heat-structure
component (W, Btu h?).

Maximum temperature (K, °F) of the supplemental ROD or
SLAB elements.

Maximum temperature (K, °F) of the average power ROD or
SLAB elements.

Inner-surface absolute error in the heat transfer to the fluid
(W s, Btu). '

Outer-surface absolute error in the heat transfer to the fluid
(W s, Btu).

Inner-surface effective error in the heat transfer to the fluid
(W s, Btu).

Outer-surface effective error in the heat transfer to the fluid
(W s, Btu).

Component type (header variable only).

E-6

zht nzmax Axial positions (m, ft) of the rows of nodes in the ROD or SLAB
elements.

E.8. PIPE-Component Graphics.

In addition to a call to xtv1d, subroutine xtvpipe outputs graphics variables specific to
the PIPE component.

Variable Dimension Description

cpow 1 Heater power (W, Btu h?) to the fluid.

gout 1 Liquid volume discharged (m?, ft%) at the exit (interface
ncells+1) when the accumulator flag iacc > 0.

vilow 1 Volumetric fluid flow (m® s, gpm) at the exit (interface
ncells+1) when the accumulator flag iacc > 0.

V4 1 Water level (m, ft) in the PIPE component (assumes the

component is vertically oriented with cell 1 at the top) when
the accumulator flag iacc > 0.

E.9. PLENUM-Component Graphics.
Subroutine xtvplen outputs all graphics variables specific to the PLENUM component.

Variable Dimension Description

alpn 1 Cell gas volume fraction (-).
am 1 Cell noncondensable-gas mass (kg, lby).
concn 1 Cell dissolved-solute concentration ratio [kg(solute)

kg (liquid), Ib,(solute) T, 1(liquid)].

dx nplijn Cell lengths (m, ft) associated with each PLENUM-
component junction (header variable only).

id 1 Component ID number (header variable only).

ncellt 1 Total number of cells (should be 1) (header variable only).

npljn 1 Number of junctions (header variable only).

pan 1 Cell noncondensable-gas partial pressure (Pa, psia).

pn 1 Cell total pressure (Pa, psia).

roan 1 Cell noncondensable-gas density (kg m?, Ib,, ft3).

roln 1 Cell liquid density (kg m?, Ib,, ft?).

rom 1 Cell mixture density (kg m3, Ib,, ft3).

rovn 1 Cell gas density (kg m?, Ib, ft).

sn 1 Cell plated-solute mass/fluid volume (kg m?, lb, ft?).

tln 1 Cell liquid temperature (K, °F).

tsat 1 Cell saturation temperature (K, °F) based on the total
pressure.

tvn 1 Cell gas temperature (K, °F).

type 1 Component type (header variable only).

vol 1 Cell volume (m?3, ft*) (header variable only).

E-7

E.10. PRIZER (Pressurizer)-Component Graphics.

In addition to a call to xtv1d, subroutine xtvprzr outputs graphics variables specific to
the PRIZER component.

Variable Dimension Description

flow 1 Volumetric flow (m® s?, gpm) at the exit (interface
ncells+1) of the PRIZER.

gin 1 Heater/sprayer power (W, Btu h?).

gout 1 Liquid volume discharged (m?, ft®) at the exit (interface
ncells+1) of the PRIZER.

z 1 Water level (m, ft) in the PRIZER component (assumes the

component is vertically oriented with cell 1 at the top).
E.11. PUMP-Component Graphics.

In addition to a call to xtv1d, subroutine xtvpump outputs graphics variables specific to
the PUMP component.

Variable Dimension Description

alpha 1 Gas volume fraction donored across the second (pump-
impeller) interface (weighted 10% new, 90% old).

delp 1 PUMP ?P (Pa, psia) across the second (pump-impeller)
interface (pressure of cell 2 minus pressure of cell 1).

flow 1 Volumetric fluid flow (m?® s?, gpm) donored across the
second (pump-impeller) interface.

head 1 PUMP head (Pa m® kg or m?s? or N m kg?, Ib; ft1b,-1) from
the homologous curves and two-phase degradation
multiplier.

mflow 1 Fluid mass flow (kg s?, Ib,, h1) across the second (pump-
impeller) interface.

omegan 1 Pump-impeller rotational speed (rad s?, rpm).

rho 1 Fluid mixture density (kg m3, Ib,, ft®) donored across the
second (pump-impeller) interface.

smom 1 Momentum source (Pa, psia) applied at the second (pump-
impeller) interface based on the PUMP head.

torque 1 PUMP hydraulic torque (Pa m?, 1b; ft) from the homologous

curves and two-phase degradation multiplier.
E.12. ' TEE-Component Graphics.

In addition to a call to xtv1ld, subroutine xtvtee outputs graphics variables specific to
the TEE component.

Variable Dimension Description :
powrl 1 Heater power (W, Btu h') to the main-tube fluid.

E-8

powr2 1 Heater power (W, Btu h?) to the side-tube fluid.
E.13. VALVE-Component Graphics.

In addition to a call to xtv1d, subroutine xtvvlve outputs graphics variables specific to
the VALVE component.

Variable Dimension Description
area 1 Adjustable valve-interface flow area (m?, {t?).

E.14. 3D VESSEL-Component Graphics

Subroutine xtvvsl outputs graphics variables to the VESSEL component. The cell and
interface data are written on a 3D basis in ROW MAJOR format, unlike TRCGREF, which
used a level format. As with the 1D variables, interface variables have one more value
than cell variables on the face axis. For example vlnz, the z-direction liquid velocity, has
nrsx*ntsx* (nasx+1) values. The VESSEL variables output to graphics are very much
dependent on the options selected and parameters set in the VESSEL input-data,
NAMELIST, and other general options. The following abbreviations are used for
dimensions in this section:

ncells = nrsx*ntsx*nasx (values atevery cell)

xrfaces (nrsx+1) *ntsx*nasx (values at each x/r face, including icOm)
ytfaces = nrsx* (ntsx+1) *nasx (values at each y/ face, including jcOm)
zfaces = nrsx*ntsx* (nasx+1l) (values at each z face, including kcOm)

Variable Dimension Description

alpn ncells Cell gas volume fractions(-).

alven ncells Cell liquid-side interfacial heat-transfer coefficients (W K™,
Btu °F! h!) (area folded in).

alvn ncells Cell flashing interfacial heat-transfer coefficients (W K, Btu
°F1ht) (area folded in).)

am ncells Cell noncondensable-gas masses (kg, 1b,).

chtan ncells Cell noncondensable-gas interfacial heat-transfer coeffi-
cients (W K, Btu °F! h') (area folded in).

chtin ncells Cell vapor-side interfacial heat-transfer coefficients (W K%,
Btu °F! h?) (area folded in).

cimfr 1 Reactor-core inlet mass flow (kg s, Ib,, h).

cimfrl 1 Reactor-core inlet, liquid mass flow (kg s?, b, h?).

cimfrv 1 Reactor-core inlet, gas mass flow (kg s?, Ib,, h?).

cixr ncells Radial or x-direction interfacial-drag coefficients (kg m*, Iby,
ft4).

ciyt ncells Azimuthal or y-direction interfacial-drag coefficients (kg m-
4, Ib, ft*).

ciz ncells Axial interfacial-drag coefficients (kg m*, Ib,, ft*).

comfr 1 Reactor-core region, outlet mass flow (kg s?, Ib,, h?).

E9

comfrl
comfrv
concn

corelg
dcflow

dclgvl
faxr
fayvt
faz
gamn
hgam
icj

id
isrc

isrf
isrl

nasx

" ncsr

nrsx
nsrl
ntsx

pan
pcore
pdc
plp

pn
pup
ghstot

gsl

roan
roln
rom

xrfaces
vtfaces
zfaces
ncells

ncells
ncsr

1
ncsr

ncsr

ncsr

ncells
’l
1

ncells
nrsx

ncells
ncells
ncells

Reactor-core outlet, liquid mass flow (kg s?, Ib,, h?).
Reactor-core outlet, gas mass flow (kg s?, Ib,, h?).

Cell dissolved-solute concentration ratio [kg(solute)
kg(liquid), Ib,,(solute) Ib,-1(liquid)].

Reactor-core liquid volume fraction.

Downcomer mass flow (kg s?, Ib,, h!) (sums the axial flow
out of the downcomer at level IDCL).

Downcomer liquid volume fraction.

Interface fluid flow areas (m?, ft?) (header variable only).
Interface fluid flow areas (m?, ft?) (header variable only).
Interface fluid flow areas (m?, ft?) (header variable only).
Vapor (steam) generation rate (kg m?, Ib,, ft3).

Cell subcooled boiling heat flux (W m?, Btu ft?h1).

1D hydraulic component numbers connected to source-
connection junctions (header variable only).

Component ID number(header variable only).

Cell numbers to which source-connection junctions are
connected (header variable only).

Face code to which source-connection junctions are
connected (header variable only).

Level numbers to which source-connection junctions are
connected (header variable only).

Number of axial levels (header variable only).

Number of VESSEL source-connection junctions to 1D
hydraulic components (header variable only).

Number of radial rings or x-direction cells (header variable
only).

Number of source-connection junctions on each level
(header variable only).

Number of azimuthal segments or y-direction cells (header
variable only).

Cell noncondensable-gas partial pressures (Pa, psia).
Reactor-core, volume-averaged pressure (Pa, psia).
Downcomer volume-averaged total pressure (Pa, psia).
Lower-plenum, volume-averaged total pressure (Pa, psia).
Cell total pressures (Pa, psia).

Upper-plenum, volume-averaged total pressure (Pa, psia).
Total HTSTR-component heat transfer (W, Btu h?) to the
fluid of the VESSEL component.

HTSTR-component heat transfer (W, Btu h?) to the fluid in
each VESSEL cell.

r upper bound (m, ft) of each radial ring or cell (header
variable only).

Cell noncondensable-gas densities (kg m?3, Ib, ft3).

Cell liquid densities (kg m?, Ib, ft3).

Cell mixture densities (kg m?, Ib,, ft?).

E-10

rovn
sn
t

tcilmt

tcivmf
tcolmf

tcore
tcovmf
tdc
tln
tlp
tsat

tscore
tsdc

tslp

tsup

tup
tvn
type
vcore
vdclg
vinxr
vinyt
vinz
viplig
viplm
viplg
vlgmss
vmfrl

vmmfrir
vnfrlt

vmmfrlz

ncells
ncells
ntsx

1

1
1

1

1

1
ncells

1
ncells

1

1

xrfaces
vtfaces
zfaces

1

1

1

1

ncells
xrfaces
ytfaces

zfaces

Cell gas densities (kg m3, Ib,, ft3).

Cell plated-solute mass/fluid volume (kg m?, Ib,, ft3).

8 upper bound (rad, deg) of each azimuthal segment or
sector (header variable only).

Time-integrated reactor-core inlet, liquid mass flow (kg,
1b,,).

Time integrated reactor-core inlet, gas mass flow (kg, Iby).
Time integrated reactor-core outlet, liquid mass flow (kg,
Ib,,).

Reactor-core, mass-averaged liquid temperature (K, °F).
Time integrated reactor-core outlet gas mass flow (kg, Iby,).
Downcomer mass-averaged liquid temperature (K, °F).
Cell liquid temperatures (K, °F).

Lower-plenum, mass-averaged liquid temperature (X, °F).
Cell saturation temperatures (K, °F) based on the total
pressures.

Reactor-core average saturation temperature (K, °F) based
on the reactor-core, volume-averaged total pressure.
Downcomer average saturation temperature (K, °F) based
on the downcomer volume-averaged total pressure.
Lower-plenum average saturation temperature (K, °F)
based on the lower-plenum, volume-averaged total pres-
sure.

Upper-plenum average saturation temperature (K, °F)
based on the upper-plenum, volume-averaged total pres-
sure.

Upper-plenum mass-averaged liquid temperature (K, °F).
Cell gas temperatures (K, °F).

Component type (header variable only).

Reactor-core liquid mass (kg, Iby,).

Downcomer liquid mass (kg, Iby,).

Liquid radial or x-direction velocities (m s, ft s).

Liquid azimuthal or y-direction velocities (m s7, ft s7).
Liquid axial velocities (ms?, ftst).

Lower-plenum liquid volume fraction.

Lower-plenum liquid mass (kg, 1by,)-

Liquid mass below downcomer (kg, 1by,).
VESSEL-component liquid mass (kg, Iby,)-

Liquid mass flows (kg s, Ib, h'!) (NAMELIST variable imfr
=1L

Liquid radial mass flows (kg s, Ib, h?) (NAMELIST
variable imfr = 3).

Liquid azimuthal mass flows (kg s?, Ib,, h') (NAMELIST
variable imfr = 3).

Liquid axial mass flows (kg s*, Ib, h) NAMELIST variable
imfr = 3).

E-11

vfrv

vmfrvr
vmfrvt
vmfrvz

vol
vsflow

vupliqg
vuplm

ncells
xrfaces
vtfaces
zfaces

ncells
1

1

1
xrfaces
vtfaces
zfaces
nrsx

ntsx

nasx

Gas mass flows (kg s, Ib,, h'') (NAMELIST variable imfr =
1).

Gas radial mass flows (kg s?, Ib,, h'') (NAMELIST variable
imfr = 3).

Gas azimuthal mass flows (kg s?, lb, h?) (NAMELIST
variable imfr = 3).

Gas axial mass flows (kg s, b, h'') (NAMELIST variable
imfr =3).

Cell fluid volumes (m?, ft%) (header variable only).

Fluid mass flow (kg s?, Ib, h!) summed over all VESSEL-
component source-connection junctions.

Upper-plenum liquid volume fraction.

Upper-plenum liquid mass (kg, Ib.,).

Gas radial or x-direction velocities (m s, ft s).

Gas azimuthal or y-direction velocities (m s?, ft s7).

Gas axial velocities (m s?, ft s).

x upper bound (m, ft) of each x-direction cell (header
variable only).

y upper bound (m, ft) of each y-direction cell (header
variable only).

z upper bound (m, ft) of each axial level or cell (header
variable only).

E-12

APPENDIXF
DESCRIPTION OF TRAC-M BIT FLAGS

TRAC stores a variety of "yes/no" information for all the individual mesh cells of
the 1D and 3D hydrodynamic component-types in the form of "bit flags.” These
bit flags are the individually addressed on/off (set/not set, 1 or 0) bit positions of
the computer words in the 1D-component DUALPT arrays bitn and bit. Arrays
bitn and bit are dimensioned nfaces (which is NCELLS + 1) by TRACAllo.
The 3D VESSEL component also uses its own arrays bitnand bit.

The bit flags are accessed with TRAC C-language functions btestc, ibsetc, and
ibclrc:

btestc -- return status of requested bit position
ibsetc -- set requested bit to "on" (1)
ibclrc -- set requested bit to "off" (0)

These TRAC C functions are named after the corresponding Fortran 90
intrinsic functions btest, ibset, and ibclr.

In addition, TRAC has two Fortran functions, on1123 and 0£1123, to manage
certain bit operations as a group as part of the logic for backups to the start of the
outer stage (on1123 clears all bits except a "protected” group; o£1123 clears a
group of water-packer-logic bits). These TRAC Fortran functions drive the TRAC
C-language bit functions.

TRAC (Version 3.0) currently uses 31 different bit flags (total for 1D and 3D
hydrodynamic components), leaving one position available for future use in a 32-
bit word. The bit positions for the TRAC C-language bit functions are accessed
from TRAC with parameter variables that have meaningful names. The parameter
values of the bit flags are assigned in module Bits, which also has
documentation on the use of each bit flag.

Coding Standard : Any change to the bit flag parameterization should be done in
module Bits. Any change to the bit flag logic should be documented in module
Bits.

A listing of module Bits follows. After some general information, a detailed
description of the use of each bit flag is given. TRAC-M inherited its bit flag logic
from TRAC-P. In the development of TRAC-M, the original TRAC-P bit-flag
positions were "remapped” for two reasons: to fit all of the bit positions into a
single 32-bit word and to group the bits into those that carry information defined
at mesh-cell centers and those that carry information defined at cell faces. This
grouping will facilitate any future splitting of the bitn and bit arrays into cell-

F-1

center and cell-face arrays. Module Bits includes a description of the bit remapping.
Use of bit 18 was added after the remapping.

tam tmm sem e aem sem swm bem tme tmw bew tems tev $ma $mm sam ¢ma me bew few 4bm sem 4w =t smm f=a 4oe Sms dee fee fee des lms Gew Gms few tem Smm tmm 0w few gew 4w b P 4 s 4em

MODULE Bits

BEGIN MODULE USE
USE IntrType

The array fbit, which holds unchanging geometric information for
the 3D hydro, is not treated in this file.

Note that TRAC now uses a bit-numbering convention from "right to
left, " starting with bit 1. The F90 intrinsic bit manipulation
routines (ibset, btest, etc.) also go from "right to left," but
start with bit number O.

Note that the bitn arrays are cleared with 0. (floating point
zero). The Cray and the supported IEEE platforms all represent
0. as all-zeros. -

This version of header file bitflags.h re-maps the original flag id
numbers (i.e., as used in the pre-branch code -- Version 5.4.25) into
the range 1 - 32; it also groups all the flag numbers according to
whether the bit is defined for a mesh-cell center or cell face.

The current bit id number definitions and their original values are as
follows:

%k k Kk ok Kk ok ok ok ok ok ok ok khkkhkkhbhhhkhdkhkhkx khkhkhkkkhkhkkhkhhkdkhik

current number original number cell center/face
dhkkhkkhkkkxhkkhkkik LR R E S E RS L E S S & 8 R E R SR S LS EE S R L X4

1 42 c
2 43 c
3 3 c
4 4 c
5 5 c
6 6 c
7 20 c
8 21 c
9 24 c
10 34 c
11 11 c
12 12 c
13 13 c
14 26 c
15 27 c
16 29 c
17 30 c
18 c
19 ***not used***

20 18 £
21 19 £

F-2

22
23
24
25
26
27
28
29
30
31
32

22
23
10
25
44
45
28
46
33
31
32

Fh th Hh Hh Fh Fh Fh Fh M Fh Fh

bits 33 and higher ***not used***

kkkkhkkkkkk

**% bit 1

purpose:

set in:

used in:

% % k%

* %k

Used in interfacial heat-transfer logic to determine if the
vapor temperature crossed the saturation line since the
previous timestep. Bit 1 is set on in the new-time (bitn)
array if vapor temperature tvn is greater than tssn (sat.
temp. at steam partial pressure). If comparison with the
old-time (bit) array shows that the sat. line was crossed, the
relaxation-limiter logic (transient mode) on changes in chti
(vapor-side interfacial heat-transfer coefficient x
interfacial area) and chtia (non-condensable interfacial htc
x interfacial area) is bypassed.

Use is identical for 1D, 3D, and plenum.
htif (outer stage - 1D, 3D, and plenum) -- bitn also cleared

htif (outer stage - 1D, 3D, and plenum)

INTEGER(sik) satLineCrossVap
PARAMETER (satLineCrossVap=1)

% %k Kk kK Kk Kk Kk ok

*** bit 2

purpose:

* %k Kk Kk

* %k

Bit 2 is the liquid analog of bit 1; its logic for

clearing, setting, and testing in routine htif is the same as
for bit 1, comparing liquid temperature tln to tssn. If the
liquid temperature crossed the sat. line since the last timestep,
transient relaxation-limiter logic on alve (liguid-side
interfacial htc x interfacial area) and alv (flashing
interfacial htc x interfacial area) is bypassed.

Use is identical for 1D, 3D, and plenum (but see following
note) .

Note that subroutine inner calls entry point onll23 in
subroutine bits. onll23 clears all bits except 11, 12, 13,
32, and 2; intention is to clear all new-time bits (bitn
array) except water packer flags and bits set in prep stage,

set in:

used in:

for 1D components (plenum is excluded). Protecting bit 2
is no longer needed, and in any case this logic is not
parallel with that for bit 1. This does not appear to
cause an actual error in the calculation, but it should be
further investigated and at least cleaned up.

htif (outer stage - 1D, 3D, and plenum) -- bitn also cleared

htif (outer stage - 1D, 3D, and plenum)

INTEGER(sik) satLineCrossLig
PARAMETER (satLineCrossLig=2)

hkkkhkkhkkkkhkkkk

* % %k blt 3 * k%

purpose:

set in:

used in:

Used in reiteration logic when void fraction is out of
bounds in basic (outer) step. If void fraction exceeds
tolerance of 10(-12) (i.e., if .le. -1.0e-12 or .ge. (1.0+
1.0e-12)), bit 3 is set on and the logical reiteration flag
is set to .true.. If bit 3 has been set on on a previous
iteration, this test on void fraction is bypassed.

Usage identical in 1D, 3D, and plenum hydro.

tflds3 (outer stage - 1D)
tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)

tflds3 (outer stage - 1D)
t£3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)

INTEGER (sik) oneVoidFrReit
PARAMETER (oneVoidFrReit=3)

kkkhkkkhkkkhhkdk

* % % bit 4 %* K

purpose:

set in:

Two distinct uses. In the initialization stage, bit 4 is set to
indicate that internally used FRICs have been calculated from
user-input K factors (this logic is part of the input-error
checking for consistency at component junctions). During the
calculation, bit 4 is set to indicate mean mass equation

will be solved rather than vapor and liquid mass equations
(flow is single phase or nearly single phase).

The input-checking-use of bit 4 is for 1D components.
The hydro-use of bit 4 is similar in 1D, 3D, and plenum.

The parameter meanEqnSet is meant to be used only for the
hydro calculation, for 1D, 3D, and plenum.

chbset (init stage)
tflds (outer stage - 1D)

F-4

tee G 4w B e fma e bma dam bim b e Sme bem tee 4= G et e

t— b= b b b e tem 4= tee dew tee aes

tom b= 4=

tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

used in: chkbd (init stage)
tflds (outer stage - 1D), tflds3 (outer stage - 1D)
t£3ds3 (outer stage - 3D)
tfpln (outer stage - plenum), tfplbk (outer stage - plenum)

INTEGER (sik) meanEqnSet
PARAMETER (meanEqgnSet=4)

* ke ok ok k ok ok ok ok ok kokk

* % %k bit 5 ¥* % %k

purpose: Used in calculation of interfacial heat and mass transfer in
basic (outer) step. Bit 5 is set on in a hydro cell for
condensation conditions (negative gamma and void fraction
greater than zero; see following note on plenum).

Use is very similar in 1D, 3D, and plenum. Plenum logic for
setting does _not_ have test on void fraction.
set in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

used in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

INTEGER(sik) condensing
PARAMETER (condensing=5)

kkhkkdkkhkhkkhkkkhkidk

* %k % bit 6 * k%

purpose: Evaporation/flashing analog of bit 5. Bit 6 is set on if
gamma is positive and the void fraction is less than one.

Use is very similar in 1D, 3D, and plenum. Plenum logic for
setting does have test on void fraction.

set in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage ~ plenum)

used in: tflds (outer stage ~ 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

INTEGER(sik) evapOrFlashing
PARAMETER (evapOrFlashing=6)

%* % J ok ko ok ok ko Kok

* % % bit 7T kk*

e 4= bem

— e e

purpose:

set in:

used in:

When bit 7 is on, the old-time/new-time weighting factor
for donor-cell quantities used in the 1D and plenum

mass and energy equations is set to 1.0. This forces

the fluxes to 100% new-time weighting. The explicit/
implicit weighting factor is local variable xvset, which is
also local array dalp, which is array rhs in the 1D and
plenum data.

Bit 7 is used in similar fashion by 1D and plenum; it is not
used by 3D for any purpose, including the 3D xvset logic.
Bit 7 is cleared in subroutine htif for all components,

but this has no effect on 3D. htif is called only on the
first Newton iteration (oitno=1l); once bit 7 is set for a
given series of iterations, it remains set.

htif (outer stage - 1D, 3D, and plenum) -~ bitn cleared
tflds (outer stage - 1D)

tfpln (outer stage - plenum)

tflds (outer stage - 1D)

tfpln (outer stage - plenum)

INTEGER (sik) freezeXvset
PARAMETER (freezeXvset=7)

dodek hkok ok okkkkkhkk

* % %k bit 8 * % %

purpose:

set in:

used in:

Used in equation set logic in basic (outer) stage.

Set in the back-substitution routines for use in

subsequent iterations for a given timestep for basic

energy equation. Bit 8 is set on for situation of

almost, but not quite, solid water in a cell (very small
bubbles). The old-time void fraction must be .le.

1.0e-8, and the new-time void fraction must be .1lt. -1.0e-12.
When on, bit 8 forces the vapor temperature to equal the
saturation temperature corresponding to the partial pressure
of steam.

The void fraction test for setting bit 8 has been
modified by update fixb21l (bit 8 was bit 21 in Version
5.4.25).

Use is the same in 1D, 3D, and plenum.
tflds3 (outer stage - 1D)

tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)

tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

F-6

b bem tem tme bem e bem M dem bmm bes b e

A A R S U Yoy

- b= amm

INTEGER (sik) tinyBubbles
PARAMETER (tinyBubbles=8)

% %k ok ok % k kK ok ok ok ok

* de ko bit 9 * %k

purpose:

set in:

used in:

Set in basic- (outer) step when special logic is used to
change the current guess for the new-time value of the void
fraction before linearization. If bit 9 is set (from a
previous iteration), the special wvoid fraction logic

is bypassed (i.e., the bit is used to allow only one use of
this logic in a given series of Newton iterations).

1D, 3D, and plenum logic the same (1D and plenum use old- and
new-time bits 20 and 21 for velocity-reversal information;

3D uses old/new time donor-cell factor arrays (owlz, wlz,
etc.) for same purpose.

tflds (outer stage - 1D)
tfids (outer stage - 3D)
tfpln (outer stage - plenum)

tflds (outer stage - 1D)
tf3dds (outer stage - 3D)
tfpln (outer stage - plenum)

INTEGER (sik) triedvVoidFrReset
PARAMETER (triedvVoidFrReset=9)

dkhkdkkhkkhkdkkkkkk

* % %k bit 10 * % ¥

purpose:

set in:

used in:

Used in 3D hydro only (there is identical logic in the 1D
that does not use a bit flag). Bit 10 is set on for a mesh
cell when the net noncondensable ("air") flow into the cell
is .gt. 1.0e-20 kg for the current timestep.

Bit 10 subsequently is used in the same step in the logic to
set an initial guess for the air partial pressure. If bit
10 is not on the initial guess is bypassed (there are other
tests that also can bypass the air logic).

The initial air partial pressure guess is the total
pressure minus the saturation pressure corresponding to

the current liquid temperature.

The 1D logic that corresponds to that for bit 10 is in
subroutine tflds3, at statement label 1337 in the pre-
branch code (Version 5.4.25); the air flow is in array dr.

tf3ds (outer stage - 3D)

tf3ds3 (outer stage - 3D)

INTEGER (sik) netAirFlow
PARAMETER (netAirFlow=10)

hkkhkkkhkkkkkkkk

* % %k bit 11 * % %k

purpose: Used with bits 12 and 13 in 1D water packing/stretch logic.

set in:

Used with bit 13 in 3D water pack/stretch logic. Not used
by plenum.

Water packing and stretching are checked for determined?in each 1D and
3D cell at the start of the back-substitution
routines of the outer stage (tflds3 and tf3ds3
for 1D and 3D, respectively). If water packing
is detected, the back substitution
is skipped and backup to the start of outer is forced.
In the 1D bit, 11 is set on for packing or stretching at a
cell's left face (bit 12 is used for the right face); in the
case of a stretch, bit 13 is also set on. In the 3D, bit 11
indicates packing and bit 13 indicates stretch for the cell
(the stretch information is passed to the bd array by
routine 3j3d).

Note that subroutine inmer calls entry point onll23 in
subroutine bits to clear all 1D bits _except_ 11, 12, 13, 32,
and 2 (see additional notes on bit 2). Subroutine poster
call bits entry point 0£1123 to _clear_ 1D 11, 12, and 13 if
water packing flag ipakon .ne. 0 (bit and bitn arrays).

33d (vessel source junction boundary array routine) also
calls o0f1123 for bd(53).

Parameter packAtLeftFace is intended for 1D use.
Parameter pack3D is intended for 3D use.

334 -- bd(53) only

tflds3 (outer stage - 1D)

t£3ds3 (outer stage - 3D)

poster (post stage - 1D) -- bitn and bit cleared if ipakon
.ne. 0

used in: tflds (outer stage - 1D)

tfldsl (outer stage - 1D)
tfids3 (outer stage - 1D)
tf3dsl (outer stage - 3D} -- bit 13 not used
tf3ds3 (outer stage - 3D) -- bit 13 not used

INTEGER (sik) packAtLeftFace
INTEGER (sik) pack3D
PARAMETER (packAtLeftFace=11)
PARAMETER (pack3D=11)

khkhkkdkdkkkdkkkhdk

* %k blt 12 * % %

purpose: Used with bits 11 and 13 in 1D water packing/stretch logic.

Not used by 3D or plenum. Indicates pack or stretch
detected at 1D cell's right face. See additional notes

F-8

under bit 11.
See bit 11 on use of entry points onll23 and o0£1123 in bits.

set in: 334 -- bd(53) only
tflds3 (outer stage - 1D)
poster {(post stage - 1D) ~-- bitn and bit cleared if ipakon
.ne. 0

used in: tflds (outer stage - 1D)
tfldsl (outer stage - 1D)
tflds3 (outer stage - 1D)

INTEGER (sik) packAtRightFace
PARAMETER (packAtRightFace=12)

FhkkhkhkkFhkhkkhkk

* k% bit 13 % % k

purpose: Used with bits 11 and 12 in 1D water packing/stretch logic.
Used with bit 11 in 3D water pack/stretch logic. Not used
by plenum.

See bit 11 on use of entry points on1123'and 0£1123 in bits.

Parameter stretch is intended for 1D use.
Parameter stretch3D is intended for 3D use (this is passed
to the bd array by routine j3d4).

set in: 334 -- bd(53) only
tflds3 (outer stage - 1D)
t£3ds3 (outer stage - 3D)
poster (post stage - 1D) -- bitn and bit cleared if ipakon
.ne. O

used in: tfldsl {(outer stage - 1D)
tf1lds3 (outer stage - 1D)

INTEGER (sik) stretch
INTEGER (sik) stretch3D
PARAMETER (stretch=13)
PARAMETER (stretch3D=13)

kdkkdkkhkhkhkkhkkkk

%* d Kk bit 14 * %k %k

purpose: Used in timestep-size control logic, in conjunction with
bit 15. Bits 14 and 15, used with the void fraction arrays
alpn, alp, and alpo, save void fraction change behavior
looking back over three steps. Bits 14 and 15
control calculation of variables oau and ocal (in common
block chgalp), which are used in subroutine newdlt to
determine timestep size at start of next step. oau is the
largest increase in void fraction in the system immediately
after a decrease, which in turn had followed an increase

F-9

{(all for a given hydro cell). ocal measures the analogous
situation for a decrease in void fraction. Bit 14 is set on
for a hydro cell when void fraction has increased in that
cell w.r.t. previous timestep, in the bitn array.

Use of bit 14 is identical in 1D, 3D, and plenum.

Note that blkdat now sets variables xocau and xocal (common
block chgalp) to 1.0, which effectively turns off the
oscillating-void-fraction (cau or oal) timestep-size control.
Void-fraction-change timestep-size control now only uses
variables dau and dal, which only look back to the

previous step. The dau/dal logic needs only arrays alpn

and alp, and not bits 14 and 15.

set in: poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

used in: poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

INTEGER (sik) newVoidFrUp
PARAMETER (newVoidFrUp=14)

kkkhkkhkkkkkkkhkihk

* % % bit 15 * % %

purpose: Used in conjunction with bit 14 for oscillating-void
fraction timestep-size control. Bit 15 is set on (bitn
array) for a hydro cell when old-time bit 14 (bit array)
is on (i.e., when void fraction had increased during
previous timestep). Bit 15 is saved in the old-time
bit array for use in the ocau/oal logic.

Use of bit 15 is identical in 1D, 3D, and plenum.

Same note applies concerning variables xocau and xoal
as for bit 14.

set in: poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

used in: poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

INTEGER(sik) 0ldVoidFrUp
PARAMETER (01dVoidFrUp=15)

khkkkdkkkhkhkkkkix

* k% bit 16 * %k %

F-10

purpose: Set on for a cell when net mass flow into cell is negative.
When bit 16 is on, the water pack/stretch logic in the back-
substitution réutines is bypassed.

Use is same in 1D, 3D, and plenum.

set in: tflds (outer stage - 1D) -- always cleared before logic for
setting
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

used in: tflds3 (outer stage - 1D)
tf3ds3 (outer stage -~ 3D)
tfplbk (outer stage - plenum)

INTEGER (sik) netMassOut
PARAMETER (netMassOut=16)

% d ok Kk ok ok kok ok ok ok kok ok

* k bit 17 * % %

purpose: Used in equation set logic. The back-substitution routines
have logic to force the void fraction to 1.0 or 0.0 if bit 4
{(for one of the single-phase mass equation sets) is on. If
bit 17 also is on, the forcing to 0.0 is bypassed. Instead,
equation to set steam pressure to saturation pressure
corresponding to the liquid temperature has been used.

Use is same in 1D, 3D, and plenum.

set in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

used in: tflds3 (outer stage - 1D)
tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)

INTEGER (sik) specEqnSteamP
PARAMETER (specEgqnSteamP=17)

dkhkhkkhkkkhkkkkkkixk

* Kk * bit 18 * % %

purpose: Used to force the variable xvset to zero in the semi-implicit
mass and energy equations. This is necessary for proper
functioning of various separation models that flux void
and/or liquid fractions out of a cell that are not equal to
the mean cell quantities '
Currently Used only in the 1D

set in: tee2 (outer stage - 1D)

used in: tflds (outer stage -~ 1D)

F-11

INTEGER(sik) noXvset
PARAMETER (noXvset=18)

*hkokkk ok ok ok kkkkkk

*%% hit 19 *** pot used

hkkkdkkhhkkhhkkdk

* % %k bit 20 * % %

purpose:

set in:

used in:

1D and plenum hydro only (including break and f£fill
components). Cell-face flag to indicate vapor velocity
direction; used in logic for vapor donor cell weighting
factors and vapor velocity reversal.

The vapor velocity reversal information is used with
corresponding liquid information in the reiteration
logic (see bits 22 and 23), and alone in the
interfacial shear logic (see bit 26). Vapor velocity
reversal information also is used in logic for special
void fraction guess (see bit 9).

Bit 20 is set on when vapor velocity is negative at
corresponding face.

tfldsl (outer stage - 1D)
tflds3 (outer stage - 1D)

breakl (prep stage) -- bd(38) only

£filll (prep stage) -- bd(38) only

flux (prep stage - 1D)

auxpln (outer stage - plenum) -~ bd(53) only
tflds (outer stage - 1D)

tfldsl (outer stage - 1D} ~- bd(53) only

tflds3 (outer stage - 1D)

tfpln (outer stage - plenum) -- bd(38) and bd(53) only
poster (post stage - 1D) -- bit 21 not used

stbme (post stage - 1D)
tee3 (post stage - 1D)

INTEGER(sik) negVapVel
PARAMETER (negVapVel=20)

dode g deok ke ok de ok ok ok ok ok ok

* %k blt 21 * % %k

purpose:

Liquid analog of bit 20.

1D and plenum hydro only (including break and fill
components). Cell-face flag to indicate liquid velocity
direction; used in logic for liquid donor cell weighting
factors and liquid velocity reversal.

The liquid velocity reversal information is used with
corresponding vapor information in the reiteration

logic (see bits 22 and 23); there is no corresponding use in
the vapor-direction interfacial shear logic (see bit 26).
Liquid velocity reversal information also is used in logic

F-12

for special void fraction guess (see bit 9).

Bit 21 is set on when liquid velocity is negative at
corresponding face.

set in: tfldsl (outer stage - 1D)
tfids3 (outer stage - 1D)

used in: breakl (prep stage) -- bd(38) only
filll (prep stage) -- bd(38) only
flux (prep stage - 1D)
auxpln (outer stage - plenum) - bd(S3) only
tflds (outer stage - 1D)

tfldsl (outer stage - 1D) -- bd(53) only
tflds3 (outer stage - 1D)
tfpln (outer stage - plenum) -- bd(38) and bd(53) only

stbme (post stage - 1D)
tee3 (post stage - 1D)

tow dem bew bew e tee tee tee g b= few dee dem e dme dmm tem sem e

INTEGER (sik) negLigVel
PARAMETER (negLigVel=21)

dddeok ok deok ok ok ok kokkk

* %k bit 22 * Kk %

purpose: Used in logic that determines if a reiteration is forced
by a flow reversal. Bit 22 is set on if the vapor mass-flow
threshold for a flow reversal reiteration is exceeded.
This threshold is set by variable frev (common block xvol).

!

t

)

!

I

!

1

!

!

! Used in similar fashion for 1D and 3D; not used by plenum.
! In 3D bit 22 is for radial (or x) face [bits 24 and 25 are
t used for same purpose for axial and theta (or y) faces].

1 For 1D, new-time bit 20 is first used to check for a vapor
! flow reversal; then bit 22 is used to see if the

! vapor mass flow sensitivity level has been exceeded.

1

1

1

1

1

1

1

1

1

t

Parameter significantVapFlow is intended for 1D use.
Parameter significantVapFlowxr is intended for 3D use.

set in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)

used in: tflds3 (outer stage - 1D)
t£3ds3 (outer stage - 3D)

INTEGER(sik) significantVapFlow
INTEGER(sik) significantVapFlowxr
PARAMETER (significantVapFlow=22)
PARAMETER (significantVapFlowxr=22})

Tdhkkhkkdkkdkkkk

* %k bit 23 * % %

e tem bt 4= 0=

purpose: Liquid analog of bit 22 (similar 3D use for bits 31 and 28).

F-13

b e tem b pew ot bew b b

Used in logic that determines if a reiteration is forced

by a flow reversal. Bit 23 is set on if the liquid mass-flow

threshold for a flow reversal reiteration is exceeded.
This threshold is set by variable frev (common block xvol).

Used in similar fashion for 1D and 3D; not used by plenum.
In 3D, bit 23 is for radial (or x} face [bits 31 and 28 are
used for same purpose for axial and theta (or y) faces].
For 1D, new-time bit 21 is first used to check for a liquid
flow reversal; then bit 23 is used to see if the

liquid mass flow sensitivity level has been exceeded.

Parameter significantLigFlow is intended for 1D use.
Parameter significantLiqgFlowxr is intended for 3D use.

set in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)

used in: tflds3 (outer stage - 1D)
tf3ds3 (outer stage - 3D)

INTEGER(sik) significantLigFlow
INTEGER(sik) significantLigFlowxr

PARAMETER (significantLigFlow=23)
PARAMETER (significantLigFlowxr=23)

* ok ko ok ok ok ok kK ok ke k ok

* % % bit 24 % de J

purpose: 3D hydro only; same use as bit 22, for axial face.
Uses variable frev for vapor flow threshold.

set in: tf3ds (outer stage - 3D)
used in: tf3ds3 (outer stage - 3D)

INTEGER (sik) significantVapFlowz
PARAMETER (significantVapFlowz=24)

khkkhkkhkkhkhkihkkikk

* % Xx bit 25 * kk

purpose: 3D hydro only; same use as bit 22, for theta (or y) face.
Uses variable frev for vapor flow threshold.

set in: t£f3ds (outer stage - 3D)
used in: tf3ds3 (outer stage - 3D)

INTEGER (sik) significantVapFlowyt
PARAMETER (significantVapFlowyt=25)

khkkkkhhkhkkhkkki

%* k ok bit 26 ¥* % J%

F-14

e T

purpose: Set in post stage to indicate vapor velocity has changed
direction during timestep being completed. Used in prep
stage of subsequent timestep in calculation of interfacial
shear coefficients. If bit is on, relaxation-limiter logic
for interfacial shear coefficient (used for transient mode)
is turned off.

Used in similar fashion for 1D and 3D; not used by plenum.
In 3D, bit 26 is for theta (or y) face [bits 27 and 29 are
used for same purpose for axial and radial (or x) faces].

1D sets new-time bit 26 according to status of old-time

bit 20 and new-time vapor velocity; 3D sets bit 26 according
to status of old-time and new-time donor-cell factors

for vapor at theta (or y) face (arrays owvyt and wvyt) .

Parameter changeVapVel is intended for 1D use.
Parameter changeVapVelyt is intended for 3D use.

set in: poster (post stage - 1D)
f£34 (post stage - 3D)

used in: femom (prep stage - 1D) (Note: StbVellD does this in Version 3.0.)
cif3 (prep stage - 3D)

INTEGER (sik) changeVapVel
INTEGER (sik) changeVapVelyt

PARAMETER (changeVapVel=26)
PARAMETER (changeVapVelyt=26)

% K Kk Kk kg ok hk ok ok ok k ok

L bit 27 * %k %

purpose: 3D hydro only; same use as bit 26, for axial face. Set
according to status of arrays owvz and wvz.

set in: ff3d (post stage - 3D)
used in: cif3 (prep stage - 3D)

INTEGER (sik) changeVapVelz
PARAMETER (changeVapVelz=27)

khkhkhkkxkkhkkkkkk

* k% bit 28 % ¥ %k

purpose: 3D hydro only; same use as bit 23, for theta (or y) face.
Uses variable frev for liquid flow threshold.

set in: tf3ds (outer stage - 3D)
used in: tf3ds3 (outer stage -~ 3D)

INTEGER (sik) significantLigFlowyt
PARAMETER (significantLigFlowyt=28)

F-15

e aew sma em e tee tes tew s b

J oKk ok ok Kok ok ke ok ok gk ok ke

* %k blt 29 * % %

purpose: 3D hydro only; same use as bit 26, for radial (or x) face.
Set according to status of arrays owvxr and wvxr.

set in: f£34d (post stage - 3D)
used in: cif3 (prep stage - 3D)

INTEGER (sik) changeVapVelxr
PARAMETER (changeVapVelxr=29)

dkkhkhkkhkhkkkdkk ki

* % %k blt 30 * % %

purpose: Flag for choked-flow model. Bit 30 is set on for a cell edge
if subroutine choke determines choked flow exists (the model
itself is invoked by user-input). 1D only.

The logic used to set bits 11 and 12 for a water
pack condition in the 1D is bypassed if bit 30 indicates
choking at the left or right cell face in question.

If bit 30 is on, subroutine ecomp prints -1.l11le-11 for the
liquid wall friction for 1D components.

set in: tfldsl (outer stage - 1D) -- calls choke

used in: ecomp (large edits for 1D)
femom (prep stage - 1D) -- logic not used
(Note: StbVellD does this in Version 3.0; also not actually
using the logic.)
tfldsl (outer stage - 1D) -- bd(53) only, used to set same
bit
tflds3 (outer stage - 1D)

INTEGER (sik) chokedFlowOn
PARAMETER (chokedFlowOn=30}

J ok k deok ok ok odok ok ok ok ok ke

Y %k % bit 31 * %k %

purpose: 3D hydro only; same use as bit 23, for axial face.
Uses variable frev for liquid flow threshold.

set in: tf3ds (outer stage - 3D)
used in: tf3ds3 (outer stage - 3D)

INTEGER{sik) significantLigFlowz
PARAMETER (significantLigFlowz=31)

khkkkhkkkhkhkdhkkhhhti

* % % blt 32 * k%

F-16

[T T P T S T S Y P O T TN Ty VR SU P T

- tms bee tem s

purpose: Used to control choked-flow model when namelist variable
icflow is 2 (which invokes user-control of model at all 1D

cell faces). Bit 32 is set in input stage for a face when
icflow .eq. 2 and component input array variable icflg is
nonzero (model is on for face). 1D only.

If icflow .eg. 2 and bit 32 is not set, the call to choke
in tfldsl is bypassed (see bit 30).

Bit 32 also is used by subroutine chkbd as an input check
on the consistency of choked-flow-option array icflg at
component junctions.

Bit 32 is one of the bits ®protected" by entry point onll23
in subroutine bits (see notes on bit 11).

set in: rcomp (input for 1D)
preper (prep stage - 1D) -- after bitn cleared, bit 32 reset
if old-time bit 32 was on

used in: chkbd (boundary array consistency check)
preper (prep stage - 1D) -- only to reset new-time bit 32

tfldsl (outer stage - 1D)

INTEGER (sik) userChokeControl
PARAMETER (userChokeControl=32)

kkhkkkdkkhkhhhkhrkhdkhkhkhkdhdhkkik

*** bits 33 and higher *** not used

END MODULE Bits

EF-17

APPENDIX G
ADDING NEW VARIABLES TO TRAC

This appendix includes "coding standards” and "coding requirements." A
standard promotes maintainability and extensibility. A requirement indicates that
the code will not function properly if it is not followed.

Numerous coding examples in this appendix show the addition of a new variable
to TRAC; sample additions that would be entered (or existing coding that would
be modified) by a TRAC developer are shown in bold.

Note: XTV/XMGRS5 Graphics System. TRAC-M/F90 Version 3.0 uses a now-
obsolete version of the XTV/XMGRS graphics system, which is implemented by
Fortran module Xtv. Module Xtv is to be replaced in a future version of TRAC-
M/F90 by modules CXtvXFaces, XtvComps, XtvData, XtvDump, and
XtvSetup. The new implementation of the XTV/XMGRS5 logic will include many
arrays and derived types, all of which will be defined in module XtvData.

G.1. New Component Variables

G.1.1. Summary
Component Data-Type genTabT (FLT):

1. Modify the definition of data-type genTabT and the parameterization of the
length of data-type genTabT.

2. Add the new variable to the dump/restart file.

3. Read the new variable from the dump/restart file.
4. Modifyb subroutine GetGenTable (as needed).

5. Echo new input variable (as needed).

6. Add to edits (as needed).

Component Data-Type "comp type"TabT (VLI5s):

1. Modify the definition of data type “"comp_type"TabT and the
parameterization of the length of data-type "comp_type"TabT.

2. Add the new variable to the dump/restart file.

3. Read the new variable from the dump/restart file.

6.

7.

Add or modify subroutine Get"Comp_type"Tab (as needed).
Add or modify subroutine Set"Comp_type"Tab (as needed).

Echo new input variable (as needed).

Add to edits (as needed).

Component Arrays:

For "comp_type"-specific arrays (1D components):

1.

6.

Add declaration of array to type ‘“comp_type"ArrayT in module
"Comp_type"zrray. '

Add allocation of storage for array with call to subroutine TRACAllo in "comp_type"
input routines, which are in module "Comp_type".

Add array to dump file with call to subroutine bfoutn in "comp_type" dump
routine in module "Comp_type".

Read array from input file tracin with call to subroutine 1oadn, and echo to output
file trcout with call to subroutine warray using "comp_type" input routine in
module "Comp_type" after storage allocation.

Read array from restart file trcrst with call to subroutine bf inn and echo (restart)
array to trcout with call to subroutine warray, using "comp_type" restart routine
in module "Comp_type".

Write array to large (major) edits in trcout (as needed).

For General Data Arrays (1D components):

1.

2.

Add declaration of array to type glDArrayT in module GenlDArray.

Add allocation of storage for array with new call to subroutine TRACAl 1o, inserted
in subroutine 2A11ocGenlD, which is in module GenlDaArray.

Add array to dump file with call to subroutine bfoutn in subroutine dcomp.
Read array from input file tracin with call to subroutine 1oadn, and echo to output
file trcout with call to subroutine warray, using subroutine rcomp after storage

allocation.

Read array from restart file trcrst with call to subroutine bfinn, and echo (restart)
array to trcout with call to subroutine warray, using subroutine recomp.

6. Write array to large (major) edits in trcout (as needed) with call to subroutine
WCOomp.

'7. If the array stores old- or new-time values of a variable, add assignment statements
for it to subroutine TimeUpGenlD (module GenlDArray) (in two places).

8. If appropriate, add an assignment statement for the array to subroutine
BackUpGen1D (module Gen1DArray).

9. On an as-needed basis, add a new index variable for the array to the module
GenlDArray data interface, and add a corresponding array reference to the case
construct in subroutine Get 1DArrayPointer (module GenlDArray).

For the 3D VESSEL component, the procedure to add an array is similar. The storage
arrays and service routines are described in Section H.1.4.2.

System Services

If the new variable is needed for intercomponent communication that is supported by
the System Services, the System Services should be modified.

G.1.2. Addinga New Variable To Data-Type genTabT (the component FLT)
Each TRAC component type has a set of data that is "global" for a given component and
where the variables are the same for all component types (mostly scalar variables) that
are stored in elements of derived data-type genTabT (this is the TRAC-P FLT).
Examples of such data are the component type and the user-assigned component
number. Data for a given individual component are stored in array genTab, which is of
derived-type genTabT and dimension maxComps.
All genTabT/genTab-related logic is handled by
module Flt.

The logic in module F1t comprises

e a definition of derived data-type genTabT (declaration of its elements);

e adeclaration of array genTab;

e parameterization of the total length of data-type genTabT (for dump/
restart);

e subroutine GenTableDump to add an individual component's variables that
are stored in array genTab to the dump/restart file;

G-3

¢ subroutine GenTableRst to read a component's genTab data from the
dump/restart file; and

* subroutine GetGenTable to access certain genTab data of a component other
than the current instantiated component (e.g., data needed by a heat structure
from a coupled hydro component).

The following code fragment gives an overview of the areas in module F1t that are
affected when a new variable is added to genTabT. After this code fragment, specific
details are given.

Fragment of current coding in module rit (file F1tM. f):

MODULE Flt

TYPE genTabT
REAL(sdk) htlsci
REAL(sdk) htlsco
REAL(sdk) pinteg
REAL(sdk) title(4)
INTEGER(sik) icflg
INTEGER (sik) id
INTEGER(sik) irest
INTEGER (sik) typelIndex
INTEGER(sik) lenvlt
INTEGER(sik) lextra
INTEGER (sik) ncellt
INTEGER (sik) numbml
INTEGER(sik) numbm2
INTEGER (sik) numbm3
INTEGER {sik) numbnl
INTEGER (sik) numbn2
INTEGER(sik) numbn3
INTEGER(sik) nodes
INTEGER(sik) num
REAL(sdk) type

END TYPE genTabT

TYPE (genTabT) , DIMENSION (maxComps) :: genTab

INTEGER (sik) genDumpSize
PARAMETER (genDumpSize=23) <<<--- parameter genDumpSize

CONTAINS

SUBROUTINE GenTableDump {(compInd, reordered)

must be taken:

1. Modify the definition of data type genTabT and the parameterization of the length
of data-type genTabT:

When adding real variable xooxxx to genTabT:
la. add its declaration to the elements of type genTabT and.
1b. increase the size of parameter-variable genDumpSize as appropriate:

TYPE genTabT

REAL (sdk) type
REAL (sdk) soooxx
END TYPE genTabT

INTEGER (sik) genDumpSize
PARAMETER (genDumpSize=n)

where n = the total number of words in type genTabT (reals + integers), counting
individual array elements separately (e.g., four words for genTabT variable-array
title). In Version 2.119, genDumpSize = 23. If variable xxxxx is to be an array, specify
its dimension (e.g., five words) within its declaration in genTabT:

REAL(sdk) sxoexxx(5)

TYPE genTabT

REAL (sdk) type
INTEGER (sik) iiiii
END TYPE genTabT

INTEGER (sik) genDumpSize
PARAMETER (genDumpSize=n)

where again, n = the total number of words in data-type genTabT.

Coding Standard: The existing ordering of variables in data-type genTabT is not
significant. However, as described below, the order in which genTabT elements are
added to the dump file must match the order in which they are read from the restart file.
This ordering mostly follows the declarations in genTabT (data element num is dumped
first). New declarations in genTabT should be appended to the end of the current
declarations.

2. Add the new variable to the dump /restart file:

Fragment of current coding in module F1t (file F1tM. £):

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfoutis{genTab(ordInd)%num, 1, ictrld)
CALL bfouts(genTab (ordInd)%htlsci, 1, ictrld)

CALL bfoutis(genTab(ordInd)%nodes, 1, ictrld)
CALL bfouts(genTab(ordInd)%type,l, ictrld)

RETURN

G-6

END SUBROUTINE GenTableDump

End fragment of current coding

Subroutine GenTableDump calls subroutines bfoutis, bfouts, and bfoutn, which are
in module Restart. They are the standard service routines for dumping integer scalar,
real scalar, and real array data, respectively; module Restart also has service routine
subroutine bfoutni for dumping integer array data (see Appendix B), which presently
are not in data-type genTabT. The first actual argument in the bfout calls is the
(starting) location of the data to be dumped by the call; it includes index-variable
ordind, which is the Component Index into array genTab. ordInd is calculated in
subroutine GenTableDump according to input argument-flag reordered (reordered
has been set if the call to GenTableDump is done after the network logic and call to
subroutine ASIGN from subroutine INPUT). The second argument in the bfout calls is
the number of words to add to the dump file for the call. The third argument, ictrld, is
the standard control array for the dump logic, which should not have to be changed.

When adding real scalar variable xooxx to genTabT: add a call in subroutine
GenTableDump to service routine subroutine bfouts.

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfouts(genTab (ordInd)%type,1l, ictrld)
CALL bfouts (genTab (ordInd)%xoxoex,1,ictrld)

RETURN
END SUBROUTINE GenTableDump

GenTableDump to service routine subroutine bfoutis.

SUBROUTINE GenTableDump (compInd, recrdered)

CALL bfouts(genTab(ordInd)$type,1l,ictrld)
CALL bfoutis(genTab (ordInd)%iiiii,1,ictrld)

RETURN
END SUBROUTINE GenTableDump

When adding real array variable xxxxx (e.g., of length five words) to genTabT: add a call
in subroutine GenTableDump to service routine subroutine bfoutn.

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfouts (genTab(ordInd)%type, 1, ictrld)
CALL bfoutn{genTab (ordInd)%oexx,5,ictrld)

RETURN
END SUBROUTINE GenTableDump

call in subroutine GenTableDump to service routine subroutine bfoutni.

SUBROUTINE GenTableDump (compInd, reordered)

RETURN
END SUBROUTINE GenTableDump

Coding Requirement: The order of the calls to the bfout routines for individual data
elements in subroutine GenTableDump must match the order of the calls to the bfin
routines in subroutine GenTableRst (see following section).

Coding Standard: New calls to the bfout routines in subroutine GenTableDump should
be appended to the end of the list of existing calls.

3. Read the new variable from the dump/restart file:

Fragment of current coding in module F1t (file F1tM. £):

SUBROUTINE GenTableRst (compInd)

G-8

! The first element, num, is read in SUB rdrest
! to check missing component list

CALL bfins(genTab(compInd)%htlsci,1,ictrlr)

CALL bfinn(genTab(compInd)%title,4,ictrlr)
CALL bfinis(genTab(compInd)%icflg,l,ictrlr)

CALL bfins(genTab (compInd)%type,1l,ictrlr)

RETURN
END SUBROUTINE GenTableRst

End fragment of current coding

Subroutine GenTableRst calls subroutines bfinis, bfins, and bfinn, which are in
module Restart. They are the standard service routines for reading from the dump/
restart file integer scalar, real scalar, and real array data, respectively; module Restart
also has service routine subroutine bfinni for reading integer array data from the
dump/restart file (see Appendix B). The first actual argument in the bfin calls is the
(starting) location of the data to be read by the call; this argument includes index variable
compInd, which is the component index into array genTab (by the point where the
dump/restart file is read, the ordInd logic used by subroutine GenTableDump is not
needed). The second argument in the bfin calls is the number of words to read from the
dump/restart file for the call. The third argument, ictrlr, is the standard control array
for the restart logic, which should not have to be changed.

When adding real scalar variable xxxxx to genTabT: add a call in subroutine
GenTableRst to service routine subroutine bfins.

SUBROUTINE GenTableRst (compInd)

CALL bfins(genTab(compInd)%type,l, ictrlr)
CALL bfins (genTab (compInd)%xxxxx,1,ictrlr)

RETURN
END SUBROUTINE GenTableRst

GenTableRst to service routine subroutine bfinis.

G-9

SUBROUTINE GenTableRst (compInd)

RETURN
END SUBROUTINE GenTableRst

When adding real array variable xxxxx (e.g., of length five words) to genTabT: add a
call in subroutine GenTableRst to service routine subroutine bfinn.

SUBROUTINE GenTableRst (compInd)

CALL bfins (genTab (compInd)%type,l, ictrlr)
CALL bfinn(genTab (compInd) %ok, 5,ictrlr)

RETURN
END SUBROUTINE GenTableRst

call in subroutine GenTableRst to service routine subroutine bfinni.

SUBROUTINE GenTableRst (compInd)

RETURN
END SUBROUTINE GenTableRst

Coding Requirement: The order of the calls to the bfin routines for individual data
elements in subroutine GenTableRst must match the order of the calls to the bfout

routines in subroutine GenTableDump.

Coding Standard: New calls to the bfin routines in subroutine GenTableRst should be
appended to the end of the list of existing calls.

G-10

4. Adding a variable to genTabT that will be uéed when the component is not

instantiated:

Subroutine GetGenTable is a service routine in module F1t that is called from routines
that need GenTabT data of a component that is not instantiated. For example, the
HTSTR subroutine irodl needs the component type of hydro components that are
coupled to a specific HTSTR's inner and /or outer surface.

The argument list of subroutine GetGenTable can return either a real or integer scalar
data element for any component index, either reordered or not reordered:

SUBROUTINE GetGenTable (name, compInd, ival, rval, reordered)

IF (name.EQ.'lenvlt') THEN
ival=genTab(ordInd)%lenvlt
ELSEIF (name.EQ.'type') THEN
rval=genTab (ordInd) %type
ELSEIF (name.EQ.'typeIndex') THEN
ival=genTab (ordInd) $typelndex
ELSEIF (name.EQ.‘'ncellt') THEN
ival=genTab (ordInd) %ncellt
ELSE
CALL error(l, '*GetGenTable* variable name not recognized ',4)

ENDIF

RETURN
END SUBROUTINE GetGenTable

Subroutine GetGenTable currently (Version 2.119) is set up to treat four GenTabT data

elements:

lenvlt, type, typeIndex, and ncellt

New or altered models that require other data elements of GenTabT from uninstantiated
components should make appropriate additions to subroutine GetGenTable.

Coding Standard: Subroutine GetGenTable should be used to return all data elements
of data-type GenTabT from uninstantiated components.

Using a Variable in genTabT

Instantiated Components

For cases where a genTabT data element is used in a routine that is processing data of a
specific (instantiated) component (for Component Index cco or cci), refer directly to the
genTabT data element, using the appropriate component index into array genTab (cco

G-11

after the reordering of components by subroutine ASIGN or cci for components as they
are listed in the input deck, before the network-logic reordering).

For example:

SUBROUTINE tflds3 (alp,p.vlt,vvt, fa,ara,arv,chti,alv,alve,chtia, &

Noninstantiated Components

For cases where a genTabT data element of an uninstantiated component is needed, use
a call to subroutine GetGenTable, which is in module Flt. Currently (Version 2.119),
there are seven calls to GetGenTable in TRAC, four from module Hpss (for the HPSS
initialization) and three from module RodCrunch (providing hydrodynamic-
Component information to HTSTRs).

The following example is taken from subroutine irodl in module RodCrunch:

60 CALL GetGenTable('type',b j,iduml,ityp, .TRUE.)

where

argument 1 is a character string corresponding to one of the
genTabTdata elements treated by GetGenTable,

argument 2 is the index of the component requested by irodl,

argument 3 receives a returned integer value,

G-12

argument 4 receives a returned real value, and
argument 5 indicates if the component list has been reordered.

G.1.3. Adding A New Variable To Data-Types "comp_type" TabT
(The Component VLTs)

Each TRAC component type has a set of data that is "global" for a given component and
where the variables are common to all components of a given type. These data sets,
which are the TRAC-P VLTs, comprise mostly scalar variables that are defined by
elements of one of a set of derived data-types; there is a separate derived type for each of
the 10 component-types. The 10 VLT data types currently defined in TRAC are

breakTabT
£illTabT
pipeTabT
plenTabT
prizeTabT
pumpTabT
rodTabT
teeTabT
valveTabT
vessTabT

These 10 derived data types are referred to as a group by the term

"comp_type"TabT.
Ten arrays, one for each component type and each of dimension maxComps, are declared
to store the "comp_type"TabT (VLT) data for the specific individual components in the
input deck. The array for each component type is declared to be of the corresponding
"comp_type"TabT derived data type and given the name "comp_type"Tab. For example,
the code has the declaration

TYPE (breakTabT) , DIMENSION (maxComps) :: breakTab
to store VLT data for all the individual BREAK components in the input.

All VLT-related logic for a component type is handled by a module that is specific for
that type, which has a name of the form

MODULE "Comp_type"V1t.
In Version 2.119 there are 10 "Comp_type"v1t modules:

BreakVlt
Fillvlt

G-13

PipeVlt
PlenvVlt
PrizeVlt
PumpVlt
Rodvlt
TeeVl1t
ValveVlt
VessV1t

The logic in each module "Comp_type"V1t comprises

e a definition of derived data-type "comp_type"TabT (declaration of its
elements);

* adeclaration of array "comp_type"Tab to be of type "comp_type"TabT and
dimension maxComps;

* parameterization of the total length of data-type "comp_type"TabT (for
dump/restart);

* subroutine "Comp_type"TableDump, which adds an individual component's
variables that are stored in array "comp_type"Tab to the dump/restart file;
and

*» subroutine "Comp_type"TableRst, which reads a component's
"comp_type"Tab data from the dump/restart file.

Two additional subroutines are confained in only some of the "Comp_type"vlt
modules: _

* subroutine Get"Comp_type"Tab, which accesses certain "comp_type"Tab
data of a component other than the current instantiated component (e.g.,
when adjusting the power for the heat structures in a neutronics calculation
group), and

* subroutine Set"Comp_type"Tab, which sets certain "comp_type"Tab data of
a component other than the current instantiated component (e.g., when
adjusting the power for the heat structures in a neutronics calculation group).

In Version 2.119 there are Get"Comp_type"Tab subroutines for the ROD, TEE, VALVE,
PUMP, and VESSEL component types; there is a Set"Comp_type"Tab subroutine only
for the ROD type.

The component-type routines for dump and restart, subroutine
"Comp_type"TableDump and subroutine "Comp_type"TableRst, are called by generic
driver subroutines dmpVLT and rstVLT, respectively, which branch according to the
component-type. Subroutines dmpVLT and rstVLT pass the Component Index ordInd

G-14

to the component-level dump and restart routines; dmpVLT assumes that reordering has
been done; rstVLT assumes reordering has not been done.

The following code fragment gives an overview of the areas in a module
"Comp_type"V1lt that are affected when a new variable is added to a "comp_type"TabT
data type. The coding is taken from module Rodvlt. After this code fragment, specific
details are given, again using module Rodv1t.

Fragment of current coding in module Rodv1t (file Rodv1tM. f):

MODULE RodVlt

TYPE rodTabT
REAL (sdk) amh?2
REAL (sdk) bcrx0

INTEGER (sik) nzpwz
INTEGER(sik) nzznhc
END TYPE rodTabT

TYPE (rodTabT) , DIMENSION (maxComps) :: rodTab

This is used to calculate the total dump size, and must
be adjusted when changes are made to rodTab

[T —

INTEGER (sik) rodDumpSize
PARAMETER (rodDumpSize=163) <<<--- rodDumpSize

CONTAINS

SUBROUTINE RodTableDump (ordInd, caller)

G-15

End fragment of current coding

The following examples show the addition of new real variable xxxx and integer
variable iiiii to data-type rodTabT. The logic is the same for the other
"comp_type"TabT component data-types (addition of new coding to an existing
subroutine Get"Comp_type"Tab or a subroutine Set"Comp_type"Tab or creation of a
new Get or Set routine for a component type not already covered is needed only if the
new variable is to be made available for reading or overwriting when one of its specific

components is not instantiated).

Module Rodv1t (file Rodv1tM. £)

must be taken:

1. Modify the definition of data-type rodTabT and the parameterization of the length
of data-type rodTabT:

When adding real variable xxxxx to rodTabT:
la. add its declaration to the elements of type rodTabT and
1b. increase the size of parameter-variable rodDumpSize as appropriate:

TYPE rodTabT

REAL (sdk) zlptop
REAL (sdk) zlpbot

REAL (sdk) ooy <<<--- declare xxxxx
INTEGER (sik) iaf

END TYPE rodTabT
TYPE (rodTabT) , DIMENSION (maxComps) :: rodTab

This is used to calculate the total dump size, and must
be adjusted when changes are made to rodTab

[Y PR .

INTEGER (sik) rodDumpSize
PARAMETER (rodDumpSize=n) <<<--- modify rodDumpSize

G-16

where n = the total number of words in type rodTabT (reals + integers), counting any
individual array elements separately. In Version 2.119, rodDumpSize = 163. Each
module "Comp_type"v1t has a "comp_type"DumpSize parameter; these are calculated
separately for each component type. If variable xxxxx is to be an array, specify its
dimension (e.g., five words) within its declaration in rodTabT: '

REAL(sdk) xooomx(5)

TYPE rodTabT
REAL (sdk) amh2

INTEGER (sik) nzznhc
INTEGER(sik) iiiii
END TYPE rodTabT

TYPE (rodTabT) , DIMENSION (maxComps) :: rodTab

This is used to calculate the total dump size, and must
be adjusted when changes are made to rodTab

O Uy Yy

INTEGER (sik) rodDumpSize
PARAMETER {rodDumpSize=n)

where again, n = the total number of words in data-type rodTabT.

Coding Standard: The current ordering of variables in data-type "comp_type"TabT is not
significant. However, as described below, the order in which "comp_type"TabT
elements are added to the dump file must match the order in which they are read from
the restart file. For ease of maintenance, reals and integers are now grouped separately
in the "comp_type"TabT definitions, and they are dumped in the same order as they are

defined. New declarations of reals in a "comp type"TabT to the end of the current real

declarations, and integers should be appended to the end of the current integers.
(Alphabetical order is not a requirement.)

(Note that the special "place-holding” variables used in TRAC-P (aal111l, =z11111,

ial11l, and zi1111) for determining the length of the component-type VLTs are not
used by TRAC-M.)

G-17

2. Add the new variable to the dump/restart file:

The "Comp_type"TableDump routines call the standard service routines in module
Restart for adding data to the dump/restart file:

subroutine bfouts -- for real scalar variables
subroutine bfoutn -- for real array variables
subroutine bfoutis -- for integer scalar variables
subroutine bfoutni -- for integer array variables

Fragment of current coding in module Rodvit (file Rodv1tM. £):

SUBROUTINE RodTableDump (ordInd, caller)

END SUBROUTINE RodTableDump

End fragment of current coding

where in each of the bfout calls,

argument 1 is the (starting) location of the data to be dumped by the call; it
includes index-variable ordind, which is the Component Index into array
rodTab. ordiInd is passed to RodTableDump by subroutine dmpVLT; AmpVLT
assumes that component reordering has been done.

G-18

argument 2 is the number of words to add to the dump file for the call.

argument 3, ictrld, is the standard control array for the dump logic; it should
not have to be changed.

Note that in the fragment above, rodTabT data element ircjtb is a 2D array (4,4);in
the call to bfoutni, it is necessary to pass only the total number of words to be dumped,
16.

When adding real scalar variable xxxxx to a "comp_type"TabT: add a call in subroutine
"Comp_type"TableDump to Service Routine subroutine bfouts. This new call should
be appended to the end of the current list of reals:

SUBROUTINE RodTableDump (ordInd,caller)

CALL bfouts(rodTab (ordInd)%zupbot,l,ictrld)

CALL bfouts(rodTab(ordInd)%zlptop,l, ictrld)

CALL bfouts(rodTab (ordind)%zlpbot, 1, ictrld)
CALL bfouts (rodTab (ordInd)%xxxxx, 1, ictrld)

-

RETURN
END SUBROUTINE RodTableDump

When adding real array variable xxxxx (e.g., of length five words) to a
"comp_type"TabT: add a call in subroutine "Comp_type"TableDump to service routine
subroutine bfoutn. This new call should be appended to the end of the current list of
reals:

SUBROUTINE RodTableDump (ordInd,caller)

CALL bfouts(rodTab(ordInd)%zupbot, 1, ictrld)

CALL bfouts (rodTab(ordInd)%$zlptop, 1, ictrld)

CALL bfouts(rodTab(ordInd) %$zlpbot,1l,ictrld)
CALL bfoutn(rodTab (ordInd)%oxxx,5,ictrld)

RETURN

G-19

END SUBROUTINE RodTableDump

subroutine "Comp_type"TableDump to service routine subroutine bfoutis. This new
call should be appended to the end of the current list of integers:

SUBROUTINE RodTableDump (ordind, caller)

CALL bfoutis(rodTab(ordInd)%nzpwi,l,ictrld)

CALL bfoutis(rodTab (ordInd)%nzpwz,1l,ictrld)

CALL bfoutis(rodTab(ordInd) %nzznhc,1, ictrld)
CALL bfoutis(rodTab(ordInd)%iiiii,1,ictrld)

RETURN
END SUBROUTINE RodTableDump

"comp_type"TabT :add a call in subroutine "Comp_type"TableDump to service routine
subroutine bfoutni. This new call should be appended to the end of the current list of
integers:

SUBROUTINE RodTableDump (ordInd,caller)

CALL bfoutis(rodTab (ordInd)%nzpwi,l, ictrld)
CALL bfoutis (rodTab(ordInd)%nzpwz, 1, ictrld)
CALL bfoutis (rodTab (ordInd)%nzznhc,l1l,ictrld)

RETURN
END SUBROUTINE RodTableDump

Coding Requirement: The order of the calls to the bfout routines for the individual

variables in a subroutine "Comp_type"TableDump must match the order of the calls to
the bfin routines in the corresponding subroutine "Comp type'TableRst (see the

following section).

Coding Standard: New calls for reals (scalar and array) to the bfout routines in a
subroutine "Comp type"TablebDump should be appended to the end of the list of existing
real calls. New calls for integers (scalar and array) to the bfout routines in a subroutine

G-20

"Comp_type"TableDump should be appended to the end of the list of existing integer

calls.

3. Read the new variable from the dump /restart file:

The "Comp_type"TableRst routines call the standard service routines in module
Restart for reading data from the dump/restart file:

subroutine bfins -- for real scalar variables
subroutine bfinn -- for real array variables
subroutine bfinis -- for integer scalar variables
subroutine bfinni -- for integer array variables

Fragment of current coding in module Rodvit (file Rodv1tM. £):

SUBROUTINE RodTableRst (oxrdInd,caller)

END SUBROUTINE RodTableRst

End fragment of current coding

where in each of the bfin calls,

G-21

argument 1 is the (starting) location of the data to be read by the call; it includes
index-variable ordInd, which is the Component Index into array rodTab.
ordInd is passed to RodTableRst by subroutine rstVLT; rstVLT assumes
component reordering has not been done.

argument 2 is the number of words to read from the restart file for the call.

argument 3, ictrlr, is the standard control array for the restart logic; it should
not have to be changed.

Note that in the fragment above, rodTabT data element ircjtbisa 2D array (4,4); in the
call to bfinni, it is necessary to pass only the total number of words to be read, 16.

When adding real scalar variable xxxxx to a "comp_type"TabT: add a call in subroutine
"Comp_type"TableRst to service routine subroutine bfins. This new call should be
appended to the end of the current list of reals:

SUBROUTINE RodTableRst (ordInd,caller)

CALL bfins (rodTab{ordInd) %zupbot,l,ictrlr)

CALL bfins(rodTab(ordInd)%zlptop,l,ictrlr)

CALL bfins(rodTab(ordInd)%zlpbot,l,ictrlr)
CALL bfins(rodTab(ordInd)%wooooz, 1, ictrlr)

RETURN
END SUBROUTINE RodTableRst

When adding real array' variable xxxxx (e.g., of length five words) to a "comp_type"TabT:
add a call in subroutine "Comp_type"TableRst to service routine subroutine bfinn.
This new call should be appended to the end of the current list of reals:

SUBROUTINE RodTableRst (ordInd, caller)

CALL bfins(rodTab (ordInd) %zupbot,l,ictrlr)

CALL bfins (rodTab(ordInd)%zlptop,1l,ictrlr)

CALL bfins(rodTab(ordInd)%zlpbot,l,ictrlr)
CALL bfinn(rodTab (ordInd)%exxxxx,5S,ictrlr)

G-22

RETURN .
END SUBROUTINE RodTableRst

subroutine "Comp_type"TableRst to service routine subroutine bfinis. This new call
should be appended to the end of the current list of integers:

SUBROUTINE RodTableRst (ordInd,caller)

CALL bfinis(rodTab (ordInd)%nzpwi,l,ictrlr)
CALL bfinis (rodTab (ordInd)%nzpwz,l,ictrlir)

RETURN
END SUBROUTINE RodTableRst

"comp_type"TabT : add a call in subroutine "Comp_type"TableRst to service routine
subroutine bfinni. This new call should be appended to the end of the current list of
integers:

SUBROUTINE RodTableRst (ordiInd,caller)

CALL bfinis(rodTab(ordInd)%nzpwi,l,ictrlr)

CALL bfinis(rodTab(ordInd)%nzpwz,l,ictrlr)

CALL bfinis(rodTab(ordInd)%nzznhc,1l,ictrlr)
CALL bfinni (rodTab(ordInd)%iiiii,5,ictrlr)

RETURN
END SUBROUTINE RodTableRst

Coding Requirement: The order of the calls to the bfin routines for individual variables

in a subroutine "Comp type"TableRst must match the order of the calls to the bfout
routines _in the corresponding subroutine "Comp type"TableDump (see previous

section).

Coding Standard: New calls for reals (scalar and array) to the bfin routines in a
subroutine "Comp type"TableRst should be appended to the end of the list of existing
real calls. New calls for integers (scalar and array) to the bfin routines in a subroutine
"Comp _type"TableRst should be appended to the end of the list of existing integer calls.

G-23

4. Adding a variable to "comp type"TabT that will be used when the component is not
instantiated:

Some of the component types have data access service routines in their module
"comp_type"V1t;; these routines are called from routines that need "comp_type"TabT
data of components that are not instantiated. These routines have names of the form
Get"Comp_type"Tab. Some component types (currently only the HTSTR) have a
corresponding service routine in their module "comp_type"v1t that allows overwriting
of their data when one of their components is not instantiated. These routines have
names of the form Set"Comp_type"Tab. For example, in subroutine corel, the coupled
neutronics-group logic needs the power of uninstantiated HTSTRs and also needs to
adjust their power:

adjust the power for the heat structures in a neutronics
calculation group

tm b b= e

IF (rodTab(cco)%mldt.NE.(0) THEN
ratio=rodTab (cco) $rpowrn/rodTab (cco) $rpowr
icmpml=icmp-1
DO i=icmpl, icmpml

! NOT TESTED IN SHORT SET
! jdearing 1/97
CALL GetRodTab('rpowrn',i,iduml, rpowrnx, .TRUE. }<<<---
rpowrnx=rpowrnx*ratio <L e
CALL SetRodTab('rpowrn', i, iduml, rpowrnx, .TRUE.) <<<-~--
! a(ig(lmldp+i-1})=ratio*a(ig(lmldp+i-1))
ENDDO
icmpl=0
ENDIF

The argument list of a subroutine Get"Comp_type"Tab can return either a real or integer
scalar data element for any component index, either reordered or not reordered. The logic
is similar to that of subroutine GetGenTable (see the section on the component FLTs):

SUBROUTINE GetRodTab (name, complInd, ival, rval, reordered)

ordInd = compInd
if (reordered) ordInd = compIndices (compInd)

IF {name.EQ.'iis') THEN
ival=rodTab{ordInd) %iis
ELSEIF (name.EQ.‘'idbci') THEN
ival=rodTab (ordInd) $idbci
ELSEIF (name.EQ.'idbco') THEN
ival=rodTab(ordInd) %idbco
ELSEIF (name.EQ. ‘rpowrn') THEN
rval=rodTab (ordInd) %rpowrn

G-24

ELSEIF (name.EQ.'ncrx') THEN

ival=rodTab (ordInd)%ncrx
ELSE

CALL error(l,'*getRodTab* variable name not recognized ', 4)
ENDIF

RETURN
END SUBROUTINE GetRodTab

Currently (Version 2.119), there are Get VLT routines for the PUMP, HTSIR, TEE,
VALVE, and VESSEL components. The various subroutine Get"Comp_type"Tab are
designed to treat "comp_type"TabT data elements on an as-needed basis.

New or altered models that require other data elements of a "comp_type"TabT from
uninstantiated components should make appropriate additions to the appropriate
subroutine Get"Comp_type"Tab.

Coding Standard: A subroutine Get"Comp_type"Tab should be used to return all data
elements of a data-type "comp_type"TabT from uninstantiated components.

The argument list of a subroutine Set"Comp_type"Tab can overwrite either a real or
integer scalar data element for any component index, either reordered or not reordered:

SUBROUTINE SetRodTab (name, compInd,ival, rval, reordered)

ordInd = complInd
if (reordered) ordInd = compIndices (compInd)

IF (name.EQ. 'rpowrn') THEN
rodTab (cco)%rpowrn=rval ERROR: (cco -=-=>>> ordInd)
ELSE
CALL error(l, '*setRod* variable name not recognized ',4)
ENDIF
1
RETURN

END SUBROUTINE SetRodTab

Currently (Version 2.119), there is a Set VLT routine only for the HTSTR component.
Subroutine SetRodTab is designed to treat rodTabT data elements on an as-needed
basis.

New or altered models that need to overwrite other data elements of a "comp_type"TabT
of uninstantiated components should make appropriate additions to the appropriate
subroutine Set"Comp_type"Tab.

Coding Standard: A subroutine Set"Comp_type"Tab should be used for any overwrites
of data elements of a data-type "comp_type"TabT of uninstantiated components.

G-25

Using a Variable in a "comp_type" TabT:

Instantiated Components

For cases where a "comp_type"TabT data element is used in a routine that is processing
data of a gpecific (instantiated) component (for Component Index cco or cci), refer
directly to the "comp_type"TabT data element, using the appropriate component index
into array "comp_type"Tab (cco after the reordering of components by subroutine
ASIGN, or cci for components as they are listed in the input deck, before the network-
logic reordering).

For example:

MODULE Pipe

! BEGIN MODULE USE
USE PipeArray

CONTAINS
SUBROUTINE dpipe (icomp)

! BEGIN MODULE USE
USE IntrType
USE PipeVlt
USE Restart

IMPLICIT REAL({sdk) (a-h,o-z)
! dumps pipe data

CALL dcomp (icomp)
CALL bfoutn(pipedr (cco)%powtb, iabs (pipeTab(cco)$npowtb) *2,ictrld)
CALL bfoutn(pipeAr (cco)%powrf, iabs (pipeTab(cco) $npowrf) *2,ictrld)
i2=2

IF (pipeTab(cco)%gp3in.LT.0.0d40) i2=1l+pipeTab(cco)%ncells
CALL bfoutn(pipeAr (cco)%gp3tb, iabs (pipeTab(cco)$ngp3tb)*i2,ictrld)
CALL bfoutn(pipeAr(cco)%gp3rf, iabs (pipeTab(cco) %ngp3rf) *2, ictrld)
RETURN
END SUBROUTINE dpipe

Noninstantiated Components

For cases where the value of a "comp_type"TabT data element of an uninstantiated
component is needed, use a call to the appropriate subroutine Get"Comp_type"Tab,
which is in module "Comp_type"vit. Where a "comp_type"TabT data element of an

G-26

uninstantiated component must be overwritten, use a call to the appropriate subroutine
Set"Comp_type"Tab, which is also in module "Comp_type"V1t.

The following example is taken from subroutine corel in module RodTask:
CALL GetRodTab('rpowrn', i, iduml, rpowrnx, .TRUE.)
rpowrnx=rpowrnx*ratio
CALL SetRodTab('rpowrn',i,iduml, rpowrnx, .TRUE.) ,

where for both routines:

argument 1 is a character string corresponding to one of the rodTabT data
elements treated by GetRodTab or SetRodTab,

argument 2 is the index of the component requested by corel,
argument 3 receives/overwrites an integer value,
argument 4 receives/overwrites a real value, and

argument 5 indicates if the component list has been reordered.

G.14. Adding A New Component Array Variable

G.1.4.1. 1D Hydrodynamic Components

The addition of new arrays that are specific for a given 1D hydrodynamic component
type is treated first. A new array then may be added to the general 1D-component data
arrays if the new general array is to be made available to the data interface in module
GenlDArray (for noninstantiated components).

All TRAC 1D hydrodynamic component types have a module with a name of the form
module "Comp_type".

These modules contain component-type-specific routines for I/O, storage allocation, and
driving the generic hydrodynamics routines.

In the following we use the PIPE-component type for specific examples. Module Pipe
contains the following routines:

Module Pipe (file PipeM.f)
USE PipeArray (file PipeArrayM.f)

CONTAINS

G-27

SUBROUTINE dpipe -- add to dump file

SUBROUTINE ipipe --initialize after input

SUBROUTINE pipel -- drive PREP hydro stage

SUBROUTINE pipelx -- obtain analysis data

SUBROUTINE pipe2 -- drive OUTER hydro stage

SUBROUTINE pipe3 -- drive POST hydro stage

SUBROUTINE repipe -- read restart file

SUBROUTINE rpipe -- read input, call TRACAllo, AllocGenlD
SUBROUTINE wpipe -- write text output

Adding an Array -- Specific for PIPE Component

The following example shows the addition of a new real, rank-1 array called
YYYYY '
of dimension ncells.

Module PipeArray (file PipeArrayM.)

In Version 2.120, module PipeArray defines derived data-type pipeArrayT for the
PIPE-component-specific arrays powr £, powtb, gp3rf, and gp3tb and declares array
pipeAr to be of this type:

TYPE (pipeArrayT),DIMENSION (maxComps) :: pipeAr
Add the following declaration for new array yyyyy to derived data-type pipeArrayT:

TYPE pipeArrayT

REAL (sdk) , POINTER, DIMENSION(:) :: powrf
REAL (sdk) , POINTER, DIMENSION(:) :: powtb
REAL (sdk) , POINTER, DIMENSION(:) :: gp3rf
REAL (sdk) , POINTER, DIMENSION(:) :: gp3tb
REAL(sdk), POINTER, DIMENSION(:) :: YYYYY

END TYPE pipeArrayT

Module Pipe (file PipeM. f)

Allocate storage for new pipe-specific array yyyyy by calling subroutine TRACAllo.
TRACAllo is a generic name (interface) for subroutines AllocRealOneD,
AllocRealTwoD, AllocRealThreeD, and AllocIntOneD. The call to TRACAllo is
inserted in subroutine rpipe and in subroutine repipe; the form of the call is the same
in both routines:

SUBROUTINE rpipe(......)

G-28

CALL TRACAllo(pipeAr(cci)%powrf, ' innnnan.)

CALL TRACAllo(pipeAr{(cci)3powtb, « i i iii i nnann)
CALL TRACAllo(pipeAr(ccil)®ap3rt, vttt neenennnnnnns)
CALL TRACAllo(pipeAr(ccl)®ap3th, vt ie it iiiiennnns)
CALL TRACAllo(pipeAr(cci)%yyyyy.ncells, 'vyvyy',0.40)

where cci is the current Component Index into pipeAr (not reordered by subroutine
asign), ncells is the dimension of array vyyyy, 'vyyyy' is the name of yyyvy, and
0.4d0 will be used to initialize yyyvy.

SUBROUTINE repipe(......)

CALL TRACAllo(pipelAr(cci)spowrf, ... eennnn)
CALL TRACAlLlo(pipeAr(cci)®powtbh, « v v vt i ittt e iinennnns)
CALL TRACAllo(pipeAr(cci)sgp3rf, . @ittt iinnnnens)
CALL TRACAllo(pipelr(cci)sap3tb, -« i i ittt iieeeennnns)
CALL TRACAllo(pipeAr(cci)%yyyvy.ncells, 'vyyyy',0.40)

where the actual arguments to TRACA1lo are as in the call from rpipe.

Add array yyyyy to the dump file trcdmp by calling subroutine bfoutn; the call to
bfoutn is inserted in subroutine dpipe:

SUBROUTINE dpipe(.......)

CALL bfoutn(pipeAr(cco)%powtb,)
CALL bfoutn(pipelr(cco)spowrf,ot eeenens)
CALL bfoutn(pipeAr(cco)3gp3tb, .. cceii i ienan.)
CALL bfoutn(pipeAr(cco)%gp3rf,c. ..)
CALL bfoutn(pipelAr (cco)%yyyyy ,ncells, ictrld)

where cco is the current Component Index into pipeAr (reordered by subroutine
asign), ncells is the dimension of array yyyyy, and ictrld is the standard control
array for the dump logic.

Read array yyyyy from the input file tracin by calling subroutine 1oadn, and echo the

input to output file trcout by calling subroutine warray; the read and write calls are
inserted in subroutine rpipe, after storage for yyyyy has been allocated:

G-29

SUBROUTINE rpipe(.......)

CALL loadn(pipeAr(cci)%yyyyy.ncells,1)
CALL warray('vyyYY ', pipeAr (cci)%yyyyy.ncells,_sv)

where cci is the current Component Index (not reordered by asign), ncells is the
dimension of array yyyyy, the argument 1 tells 1oadn to read a real variable, 'yyyyy
is the name of yyyyy (padded to eight characters), and __sv is the ID number of the
signal variable or control block corresponding to the odd-numbered elements of array
pipeAr(cci) (see the comments in subroutine warray for more information on

argument __sv).

Read array yyyyy from the restart file trcrst by calling subroutine bfinn, and echo
‘the restart-file input to output file trcout by calling subroutine warray; the read and
write calls are inserted in subroutine repipe, after storage for yyyyy has been allocated:

SUBROUTINE repipe(.......)

CALL bfinn(pipeAr(cci)%yyvyy.ncells,ictrlr)
CALL warray('vyvyvyy ', pipeAr (cci)%yyyyy .ncells,_sv)

where cci is the current Component Index (not reordered by asign), ncells is the
dimension of array yyyyy, ictrlr is the standard control array for the restart input
logic, *yvyyyy" is the name of yyyyy (padded to eight characters), and __sv is the ID
number of the signal variable or control block corresponding to the odd-numbered
elements of array pipeAr(cci).

If appropriate, write array yyyyy to the text output file (trcout) large edits. Currently,
no data in the component-specific arrays must be written to the large edits for the 1D
hydrodynamic components. If the need does arise, the edits should be placed in the
component-specific trcout driver routines, such as

SUBROUTINE wpipe (cfmass, cener) .
which is in module Pipe.

Adding an Array—General ("generic") Arrays

The following example shows the addition of a new real, rank-1 array called

YYYYY '
of dimension ncells, to the general ("generic") 1D hydrodynamic component arrays,

which are elements of derived data-type glDArrayT (in TRAC-P, these arrays are
allocated and accessed in the hydropt and dualpt pointer tables). Many of these

G-30

arrays hold data for old- or new-time values of the same quantity (TRAC-P’s dualpt);
for such old- and new time arrays, sample arrays yyyyy and yyyyyn, respectively, are
treated.

The hydropt and dualpt arrays for all 1D components are stored in and accessed from
array gldAr by the following steps:

 The driver input routine (rpipe, repipe, rtee, retee, etc.) for each 1D
component in the input (or restart) deck uses module Gen1DArray, which
defines derived data-type g1DArrayT. The members of data-type
glDArrayT are the former hydropt and dualpt arrays, which are declared
as pointers of dimension (:).

e Module GenlDArray declares array g1DAr to be of type (g1DArrayT) and
of dimension (maxComps).

* The driver input routine then allocates storage for the generic arrays for the
specific component it is reading by calling subroutine Al1ocGen1D, which is
also in module Gen1DArray. AllocGenlD has a call to subroutine

" TRACAllo for each array that is a member of array g1lDAr.

The remaining 1D-component generic arrays (TRAC-P’s intpt and heatpt) are treated
in a similar manner but are stored in their own arrays called intAr and heatAr,
respectively. Module IntArray defines data-type intArrayT, and module HeatArray
defines data-type heatArrayT. Module GenlDArray calls TRACA1lo for each member
of intAr and heatAr.

Module GenlDArray (file GenlDArray M. f)

To add real rank-1 array yvvvvy, of dimension (rlcells). to hydropt:
Within type glDArrayT add the following declaration:

~

TYPE glDArrayT

REAL(sdk), POINTER, DIMENSION(:) :: vlsm
REAL (sdk), POINTER, DIMENSION(:) :: qgrl
REAL (sdk), POINTER, DIMENSION(:) :: Qrv

REAL(sdk), POINTER, DIMENSION(:) :: YYYYY

Allocate ncells of storage for array yyyyy for the component being read from the input
or restart file by adding a call to TRACAllo in subroutine AllocGenlD, which is
contained in module GenlDArray:

G-31

SUBROUTINE AllocGenlD(ncells,nfaces,nods, inflg, ihtflg)

CALL TRACAllo (glDAr(cci)%cl,ncells, 'cl',0.040)

CALL TRACAllo(glDAr (cci)%dfvdp,nfaces, 'dfvdp*,0.0d40)

CALL TRACAllo(glDAr (cci)%dfldp,nfaces, 'dfldp’,0.0d0)
. glDAr (cci)%cfz=>glDAr (cci)%dfldp

CALL TRACAllo(glDAr (cci)%yyyyy.ncells, 'yyyyy',0.0d0)

where cci is the Component Index (not reordered), ncells is the dimension of array
vyyyy, 'vyyyy' is the name of yyyyy,and 0.040 will be used to initialize yyvyyy. (Note
that the association of pointer c£z with d£1dp in this code fragment (taken from Version
2.120) treats one of several special cases in the generic arrays.)

Subroutine rcomp (file rcomp . £)

Read array yyyyy from text input file tracin, and echo the input to output file trcout
by adding the following to subroutine rcomp:

SUBROUTINE rcomp (ncells,nods,bump, idef, iconc)

USE GenlDArray

REAL (sdk), POINTER, DIMENSION(:) 25 et ennennanasses &
&AXD,VOlD, @b, c vt i ettt e e st &
& vvnb, tlnb, pnb, ot i i e e i et s e &

& gpppb,YYYYYb

yyyyyb=>gldaAr (cci)%yyyyy (bump+1:)
CALL loadn(yyyvyb,ncells, 1)
CALL warray('yyyvyy ', yyyyvyb,ncells, 0)

G-32

where the associations of the local “b-suffix” pointers were required by at least one of the
Fortran 90 compilers used when TRAC-M was originally developed.

This example does not include the special logic in rcomp for setting certain arrays to
user-input default values, under the control of namelist variable istopt.

Subroutine dcomp (file dcomp . £)

Add array yyyyy to the dump file trcdmp:

SUBROUTINE dcomp (icomp)

USE GenlDArray

CALL bfoutn{gldAr (cco)%alven, genTab{cco)%ncellt, ictrld)
CALL bfoutn(gldAr{cco)%twan,l,ictrld)
CALL bfoutn(gldAr{cco)%twen,l,ictrld)
CALL bfoutn(gldAr{cco)%tcen,l,ictrld)
IF (isoclut.NE.O) THEN
CALL bfoutn(gldAr(cco)%sn,genTab(cco)%ncellt,ictrld)
CALL bfoutn(gldAr (cco)%concn, genTab(cco) $ncellt, ictrld)
ENDIF
IF (nods.GT.0) CALL bfoutn(gldAr (cco)%gppc, genTab(cco)¥ncellt &
&, ictrld)
CALL bfoutn(gldhr(cco)%yyyyy,genTab(cco)%ncellt,ictrld)

Subroutine recomp (file recomp . £)
Read array yyyyy from the restart file trcrst:

SUBROUTINE recomp (bump,ncells,nods)

USE GenlDArray

CALL bfinn(gldAr(cci)%alven,ncells,ictrlr)
CALL bfinn(gldAr(cci)%twan,l,ictrlr)

CALL bfinn(gldar (cci)%twen,l,ictrlr)

CALL bfinn(gldar(cci)%tcen,l,ictrlr)

IF {isolut.NE.(QO) THEN

G-33

CALL bfinn(gldar (cci)%sn,ncells,ictrlr)

CALL bfinn(gldAr(cci)%concn,ncells,ictrlr)
ENDIF
IF (nods.GT.0) CALL bfinn(gldAr(cci)%qppc,ncells,ictrlr)
CALL bfinn(gldAr(cci)%yyyyy,ncells,ictrlr)

Coding Requirement: The order of the calls to bfoutn in subroutine dcomp is not
significant, but it must match the order of calls to bfinn in subroutine recomp.

Subroutine ecomp (file ecomp .)

If needed, add array yyyyy to the large (major) edits to text output file trcout. Certainly,
the specific changes to ecomp will depend on the desired output format; the following
code fragment is the existing coding for the basic edit of hydrodynamic data. Note that
new-time data typically are printed in the large edits; additional details on adding a dual-
time array are given in the following section.

SUBROUTINE ecomp(jstrt,jstop,iflgw,nodes,cfmass,xpintg,cener)

DIMENSION tmp(10,24) <<<-— array tmp is used for units conversion
! print out hydraulic-solution parameters

WRITE (iout,100) lup,lup,lud,lutp,lutp,lutp,lur,lur,luv,luv,lud

100 FORMAT (/19x%, ‘ncd-gas'/7x,'pressure pressure void fr. temp', &
& '.sat. temp.lig. temp.gas den.lig. den.vap. vel.liq"', &
& . vel.gas wf.lig.' /" cell',3x,a,7x,a,7x,a,8x,a,8x,a,8x,a, &

& 5x,a,2x,a,b5x,a,6x,a,6x,a)
nn=1+(jstop-jstrt) /10
jn=0
DO n=1,nn
jl=jstrt+(n-1)*10
j2= min(j1+9,jstop)
j0=41-1
§3=42-30
DO 3=31,32
j3=3-30
jml=j-1
tmp (33, 1) =g1ldAr (cco) ¥pn(jml+l) <<<--- store in array tmp
tmp (35, 2) =gldAr (cco) ¥pan(jml+l)
tmp (33, 3)=gldAr (cco)%alpn(jml+l)
tmp (j3j,4)=gldAr(cco)%tsat (jml+l)
tmp (§3.5)=gldAr (cco) $tln(jml+l) .
tmp (33, 6) =gldAr (cco)%tvn(jml+l)
tmp(j3,7)=gldAr (cco)%roln(jml+1)
tmp(j3.8)=gldAr (cco)$rovn(jml+l)
tmp (33, 9)=gldAr (cco) $vin(jml+l)
tmp(jj,lO)=g1dAr(cco)%vvn(jm1+1) .
IF (btestc(gldAr(cco)%bitn(jm1+l),chokedFlowOn).NE &
& .0) gldAr(cco)%wfl(jm1+l)=—l.111d-11
tmp (§3,11)=gldAr (cco)$wil (Jml+1)

G-34

cfmass=cfmass+gldAr (cco)$vol (jml+1l) * (gldAr (cco) $arv(jml+l)
& +gldAr (cco) %arl {(jml+1))
cener=cener+gldAr (cco) $vol (jml+1l) * (gldAr (cco) $arev(jml+l)
& +gldAr (cco) %arel (jml+l))
ENDDO
IF (ioout.EQ.1l) THEN
CALL uncnvt (‘pn’,tmp(1,1),33,1,-1) <<<--- units conversion
CALL uncnvt('pan’',tmp(1,2),33,1,-1)
CALL uncnvt(‘tsat’',tmp(l,4),33,1,-1)
CALL uncnvt('tln’, tmp(l,5),33,1,-1)
CALL uncnvt('tvn',tmp(l,6),33,1,-1)
CALL uncnvt('roln',tmp(1,7),33,1,-1)
CALL uncnvt('rovn',tmp(1l,8),33,1,~-1)
CALL uncnvt('vln',tmp(1,9),33,1,-1)
CALL uncnvt{'vvn',tmp(1,10),33,1,-1)
ENDIF
j1=31-30
j2=42-30
WRITE (iout,120)} (Jn+3j, (tmp(j,k).k=1,11),3=31,32)
120 FORMAT (1x,i3,1lp.,2el2.5,6e10.3,2e11.3,e10.3)
jn=jn+10
ENDDO
1
edit last cell-face:
tmp(1l,1)=gldAr (cco)$vin(jstop+l)
tmp (2, 1)=gldar{cco) $vvn(jstop+l)
IF (ioout.EQ.1) CALL uncnvt('vln‘',tmp,2,1,-1)
IF (btestc (gldAr (cco)%bitn(jstop+l),chokedFlowOn) .NE
&.0) gldar(cco)%$wfl(jstop+l)=-1.111d-11
jn=jstop-jstrt+2
WRITE (iout,140) jn,tmp(l,l),tmp(2,1),gldAr(cco)%wfl(jstop+1)
140 FORMAT (1x,i3,84x,1p,2e11.3,el0.3)

To add real rank-1 arrays vyyyy and vvyvyn, of dimension (ncells), to dualpt:

Within type glDArrayT, add the following declarations:

TYPE glDArrayT

REAL (sdk), POINTER, DIMENSION(:) :: twa
REAL (sdk), POINTER, DIMENSION(:) :: twe
REAL (sdk), POINTER, DIMENSION(:)} :: tce

REAL(sdk), POINTER, DIMENSION(:) :: YYYVY

REAL (sdk), POINTER, DIMENSION(:) :: twan
REAL(sdk), POINTER, DIMENSION(:) :: twen
REAL (sdk), POINTER, DIMENSION(:) :: tcen

G-35

REAL (sdk), POINTER, DIMENSION(:) :: yyyyyn
END TYPE glDArrayT

Allocate ncells of storage for arrays yyyyy and yyyyyn, for the component being read
from the input or restart file, by adding calls to TRACAllo in subroutine AllocGenlD,
which is contained in module GenlDArray:

SUBROUTINE AllocGenlD(ncells,nfaces,nods, inflg,ihtflg)

CALL TRACAllo(glDAr(cci)%alven,ncells, 'alven', 0.0d0)
CALL TRACAllo(glDAr (cci)%alvn,ncells, 'alvn',0.0d0)
glDAr (cci) %alpdn=>glDAr (cci) %alvn

CALL TRACAllo(glDAr (cci)%alpn,ncells, 'alpn',0.0d0)
CALL TRACAllo(glDAr (cci)%yvyyyn,ncells, 'yyyyyn',0.0d40)

CALL TRACAllo(glDAr(cci)%alve,ncells, 'alve',(0.040)
CALL TRACAllo (glDAr (cci)%alv,ncells, ‘alv',0.0d40)
glDAr (cci) %alpd=>glDAr (cci)%alv

CALL TRACAllo(glDAr(cci)%alp,ncells, 'alp',0.0d4d0)
CALL TRACAllo(glDAr(cci)% ;ncells, 'yyvyy',0.040)

where cci is the Component Index (not reordered), ncells is the dimension of arrays
yyyyyn and vyyyy, 'yyvyyn' and 'yyyyy' are the names of yyyyyn and yyyyy, and
0.0d0 will be used to initialize yyyyyn and yyyyy. [Note that the associations of pointers
alpdn and alpd with alvn and alv, respectively, in this code fragment (taken from
Version 2.120) treat two of several special cases in the generic arrays.]

Coding Standard: Type G1DARRAYT first declares the hydropt arrays, then the
dualpt arrays. Add a new hydropt variable to the existing hydropt portion of type
glDArrayT and a new dualpt variable to the dualpt portion. The dualpt portion first
lists old-time arrays, then new-time arrays.

Note that in TRAC-P, the ordering of the assignment of the dualpt array pointers (in
subroutine sldptr) is significant for supporting the logic for a water-packing-type
backup. This is no longer the case in TRAC-M: the water-packing, backup-specific arrays
are explicitly treated in subroutine BackUpGen1D, in module GenlDArray (details are
given below).

G-36

Coding Standard: The order of allocation of the hydropt and dualpt arrays in
AllocGenlD is not significant; however, the two sets of arrays are grouped together, and
this grouping should be maintained. The dualpt arrays are grouped further into new-
and old-time arrays.

Add new-time to old-time data transfers and old-time to new-time data transfers to
subroutine TimeUpGenlD, which is contained in module Genl1DArray:

SUBROUTINE TimeUpGenlD (newTo0ld)

gldAr (cco) $twa = gldAr (cco)%twan

gldAr(cco) stwe = gldAr (cco)%twen

gldAr (cco) %tce = gldAr (cco)%tcen

gldAr(cco)%yyyyy = gldAr(cco)%yyyyyn
1

ELSE

gldAr(cco)%twan = gldAr(cco)%twa
gldar (cco) $twen gldar (cco) 3twe
gldAr (cco) %tcen gldAr (cco) %tce
gldAr (cco) %yyyyyn= gldAr(cco)’yyyyy

ENDIF

where cco is the Component Index (reordered).

Logic for Special Timestep Backups

The "standard” TRAC timestep backup (forced, e.g., by convergence difficulties with a
given timestep size) repeats a timestep from the start of the PREP stage. Another type of
backup to the start of the outer stage is forced by detection of water packing. Care must
be taken that the new-time arrays have the proper values when such a special backup
occurs. This logic is handled by subroutine BackUpGen1D, which is contained in module
GenlDArray.

G-37

If the values in arrays yyyyy and yyyyyn are the same at the start of the outer stage of
a timestep, add the following old-time to new-time data transfer to subroutine
BackUpGenlD: - '

SUBROUTINE BackUpGenlD

gldAr (cco) stwn = gldAr (cco) %tw
gldar (cco) %$vlin = gldAr(cco)%vl
gldAr (cco) $vvn = gldAr (cco)%svv

gldAr (cco)%yyyyyn= gldAr (cco)%yyyyy
END SUBROUTINE BackUpGenlD
where cco is the Component Index (reordered).

Note that for dual-time arrays, the new-time arrays are dumped and read from the restart
file:

Subroutine dcomp (file dcomp. £)
Add array yyyyyn to the dump file trcdmp:

SURROUTINE dcomp (icomp)

CALL bfoutn(gldAr(cco)%alven,genTab(cco)%ncellt,ictrld)
CALL bfoutn(gldAr (cco)%twan,l,ictrld)
CALL bfoutn(gldAr(cco)%twen,l,ictrld)
CALL bfoutn(gldAr(cco)%tcen,l, ictrld)
IF (isolut.NE.0) THEN
CALL bfoutn(gldAr(cco)%sn,genTab(cco)%ncellt,ictrld)
CALL bfoutn(gldar (cco)%concn, genTab(cco) $ncellt, ictrld)

ENDIF

IF (nods.GT.0) CALL bfoutn (gldAr {cco) %gppc, genTab(cco) ¥ncellt &
&,ictrld)

CALL bfoutn(gldAr(cco)%yyyyyn,genTab(cco)%ncellt,ictrld)

Subroutine recomp (file recomp . f)
Read array yyyyyn from the restart file trcrst:

SUBROUTINE recomp (bump,ncells,nods)

G-38

USE GenlDArray

CALL bfinn(gldAr(cci)%alven,ncells,ictrlr)
CALL bfinn(gldAr(cci)$%twan,l,ictrlr)
CALL bfinn(gldAr(cci)%twen,l,ictrlr)
CALL bfinn(gldAr{cci)%tcen,l,ictrlr)
IF (isolut.NE.0) THEN
CALL bfinn(gldAr(cci)%sn,ncells,ictrlr)
CALL bfinn(gldAr(cci)%concn,ncells,ictrlr)
ENDIF
IF (nods.GT.0) CALL bfinn(gldAr(cci)%qppc,ncells,ictrlr)
CALL bfinn(gldAr(cci)%yyyyyn,ncells,ictrlr)

Coding Requirement: The order of the calls to bfoutn in subroutine dcomp must match
the order of calls to bf inn in subroutine recomp.

Accessing glDAr (hydropt and dualpt) Array Data

In the hydrodynamic calling chain:

Subroutine t £1d (module Gen1DTask) calls subroutine t£1ds (module Gen1DCrunch)
using array gldar:

SUBROUTINE tfld(kbdl,bd2,ncl)

-—— -

CALL tflds(gldAr(cco)%alp, ... ceoeeeecsecnncnansceens &

& t e eccerar e ,gldar(cco)%fa, &
& ,gldAr(cco)%qu,gldAr(cco)%qrv)

Subroutine tflds has the same dummy-argument list as in TRAC-P but declares the
dummy arguments with (:) notation: :

SUBROUTINE
Lo ol s 1] €= ¥) « JEP U I I &
& e eae et P - D L &
& ,arl,qrv)

G-39

and indexing into the dummy-argument arrays remains as in TRAC-P, e.g.,
alp(jstart)
fa(jp)
qrl(j)

grv(j)

Module GenlDArray Data Interface (for noninstantiated components)

Module GenlDArray contains all the logic for providing generic 1D array data from
noninstantiated components (such as for use by the Control System). This logic comprises
all of the needed definitions and declarations, including declaration and setting of array
indices, at the start of the module:

MODULE GenlDArray

INTEGER (sik), PARAMETER :: hgamInd= 1
INTEGER (sik), PARAMETER :: tlInd= 22
INTEGER (sik), PARAMETER :: tlnInd= 23
INTEGER (sik), PARAMETER :: faInd= 66

INTEGER (sik) , PARAMETER :: numlDFaceArrays=66

TYPE arraylDPtrT

LOGICAL :: isAssociated

REAL (sdk) , POINTER, DIMENSION(:) :: arraylDPtr
END TYPE arraylDPtrT

G-40

TYPE arrayNodeT

! Array(comp index) of Pointers to this 1-D Array

TYPE (arraylDPtrT) , DIMENSION (maxComps)
END TYPE arrayNodeT

:: arraylDPtrs

TYPE (arrayNodeT) , DIMENSION (numlDFaceArrays)

faceArs

! Initialize 1-D interface pointers:
DO nv=1,numlDFaceArrays

nullify(faceArs (nv)%arraylDPtrs (cci)%arraylDPtr)
faceArs (nv) $arraylDPtrs (cci)%$isAssociated=.FALSE.

ENDDO

RETURN
END SUBROUTINE AllocGenlD

‘This is followed by the data interface routines that are called from elsewhere in the code,
which in turn are followed by worker routines that the interface routines use to provide

the actual requested information:
Data Interface Routines:

REAL (sdkx) FUNCTION GetEosDrivld
REAL (sdkx) FUNCTION GetGenlD
REAL (sdkx) FUNCTION GetGenlD2D
SUBROUTINE GetGenlDArray
SUBROQUTINE CopyGenlDArray
SUBROUTINE IncrementGenlD

Worker Routines:

SUBROUTINE GetlDArrayPointer
SUBROUTINE Get2DArrayPointer

G-41

Code fragments from these routines are listed here, followed by guidelines for adding a
new general 1D array to the data interface.

REAL (sdkx) FUNCTION GetEosDrivld(compInd, arrayName,cell)

! Extract scalar from inverted derivative container driv

ordInd = compIndices (compInd)

IF (arrayName.EQ. 'drvdt ') THEN
index=9

ELSE IF(arrayName.EQ.'drldt '} THEN
index=8

ELSE IF (arrayName.EQ. 'hvst ') THEN
index=10

ELSE IF(arrayName.EQ. 'hlst ') THEN
index=11

ENDIF

—

Inverted DataBase
index=index+ (cell-1) *nthm
GetEosDrivld=glDAr (ordInd) $driv(index)

END FUNCTION GetEosDrivld

REAL (sdkx) FUNCTION GetGenlD(compInd, arrayInd, cell)

IMPLICIT NONE

INTEGER({sik), INTENT (IN) :: compInd,cell,arrayInd
REAL (sdk), POINTER, DIMENSTON(:) :: arPtr

CALL GetlDArxrrayPointer (arrayInd, compInd,arPtr)
GetGenlD=arPtr (cell)

o—

END FUNCTION GetGenlD

REAL (sdkx) FUNCTION GetGenlD2D(compInd, arrayName, i, j)

IMPLICIT NONE
INTEGER (sik), INTENT(IN) :: compInd,i,]

CHARACTER*8 arrayName
REAL(sdk), POINTER, DIMENSTON(:,:) :: arPtr

G-42

CALL Get2DArrayPointer (arrayName, compInd,arPtr)
GetGenlD2D=arPtx (i, Jj)

END FUNCTION GetGenlD2D

SUBROUTINE GetGenlDArray (compInd,arrayInd, arPtr,ncells)

IMPLICIT NONE

INTEGER (sik) , INTENT (IN) :: ncells,arrayInd
REAL (sdk), POINTER, DIMENSTON(:) :: arPtr

INTEGER (sik) compInd
CALL GetlDArrayPointer (arrayInd,compInd,arPtr)

END SUBROUTINE GetGenlDArray

-

SUBROQUTINE CopvGenlDArrav(compInd,arrayind,array,ncells)

IMPLICIT NONE

INTEGER (sik) , INTENT (IN) :: ncells,arrayInd
REAL(sdk), DIMENSION(ncells) :: array
REAL(sdk), POINTER, DIMENSION(:) :: arPtr

INTEGER(sik) compInd,i

CALL GetlDArrayPointer (arrayInd,compInd,arPtr)
DO i=1,ncells

array(i)=arPtr (i)
ENDDO

END SUBROUTINE CopyGenlDArray

SUBROUTINE IncrementGenlD{compInd,arrayInd,cell,value)

IMPLICIT NONE

INTEGER (sik) , INTENT (IN) :: compInd,cell,arrayInd
REAL (sdk) , INTENT (IN) :: value
REAL (sdk), POINTER, DIMENSION(:) :: arPtr

CALL GetlDArrayPointer(arrayInd,campInd,arPtr)
arPtr(cell)=arPtr(cell) +value

END SUBROUTINE IncrementGenlD

G-43

SUBROUTINE GetlDArravPointer (arrayInd, compInd, arPtr)

INTEGER (sik) , INTENT (IN) :: compInd,arrayInd
INTEGER (sik) :: ordInd
RE2AL (sdk), POINTER, DIMENSION(:) :: arPtr

ordInd = compIndices (compInd)

IF (faceArs (arrayInd)%arraylDPtrs (ordInd) $isAssociated) THEN
arPtr=>faceArs (arrayInd) %$arraylDPtrs (ordInd) $arraylDPtr
ELSE

SELECT CASE (arrayInd)

CASE (hgamInd)

arPtr=>gldAr (ordInd) %$hgam
CASE (hlaInd)

arPtr=>gldAr (ordInd) $hla
CASE (hvaInd)

arPtr=>gldAr (ordInd)$hva

CASE f{alvnInd)
arPtr=>gldar(ordInd)%alvn
CASE (faInd)
arPtr=>gldAr (ordInd) %fa

CASE DEFAULT
PRINT *, "BAD NAME INDEX TO GenldArray:GetlDArrayPointer”
STOP

END SELECT

faceArs (arrayInd) %$arraylDPtrs (ordInd) %arraylDPtr=>arPtr
faceArs (arrayInd) $arraylDPtrs {ordInd) $isAssociated=.TRUE.

ENDIF

RETURN
END SUBROUTINE GetlDArrayPointer

SUBROUTINE Get2DArravPointer (arrayName, compInd, arPtr)

BEGIN MODULE USE
USE Global

IMPLICIT NONE

CHARACTER*8 arrayName
INTEGER(sik) compInd, oxrdInd

G-44

REAL(sdk), POINTER, DIMENSION(:,:) :: arPtr
ordInd = compIndices {compInd)

IF (arrayName.EQ. 'twn '} THEN
arPtr=>gldAr (ordInd)%twn
ELSE
PRINT *, "BAD ARRAY NAME TO GenldArray:Get2DArrayPointer"”
PRINT *, arrayName
STOP
ENDIF

RETURN
END SUBROUTINE Get2DArrayPointer
If the new general array xxocxx is to be made available to the GenlDArray data interface:
1. Add a new index variable for the array at the end of the current list of index
declarations at the start of module GenlDArray, and increase parameter

numlDFaceArrays accordingly:

MODULE GenlDArray

INTEGER (sik), PARAMETER :: hgamInd= 1
INTEGER (sik), PARAMETER :: tlInd= 22
INTEGER (sik), PARAMETER :: tlnInd= 23
INTEGER (sik), PARAMETER :: faInd= 66

INTEGER (sik), PARAMETER :: oooxxInd= 67

INTEGER (sik) , PARAMETER :: numlDFaceArrays=67

2. Add a new case for array xxxxx to subroutine Get IDArrayPointer:

SUBROUTINE GetlDArrayPointer (arrayInd, compInd, arPtr)

SELECT CASE (arrayInd)

G-45

CASE (hgamInd)
arPtr=>gldAr (ordInd) shgam

CASE (faInd)
arPtr=>gldar (ordInd) %fa
CASE (xoooorInd)
arPtr=>gldAr (ordInd) %ot

CASE DEFAULT

PRINT *, "BAD NAME INDEX TO GenldArray:GetlDArrayPointer"
STOP
END SELECT

END SUBROUTINE GetlDArrayPointer

Coding Standard: For maintainability, any new case added to subroutine
Getl1DArrayPointer should be appended to the end of the current list of cases.

G.1.4.2. 3D Vessel-Component Arrays
Special Arrays

The 3D Vessel Special Arrays are stored in array vsAr, which is of derived-type
vessArrayT. The elements of type vessArrayT are defined in module VessArray,
and array vsAr is declared there to be of dimension(maxComps):

MODULE VessArray
! BEGIN MODULE USE

USE IntrType

USE GlocbalDim

IMPLICIT NONE

! Vessel component specific arrays

TYPE vessArrayT <<<--- type vessArrayT
REAL(sdk), POINTER, DIMENSION(:) :: z
REAL(sdk), POINTER, DIMENSION(:) :: dz
INTEGER (sik), POINTER, DIMENSION(:) :: jsn
INTEGER (sik) , POINTER, DIMENSION(:) :: Jjsnget

G-46

INTEGER (sik), POINTER, DIMENSION(:) :: jsnput

REAL(sdk), POINTER, DIMENSION(:) :: esm
REAL(sdk), POINTER, DIMENSION(:) : evsm
INTEGER(sik), POINTER, DIMENSION(:) :: nfcvsm

INTEGER (sik), POINTER, DIMENSION(:) :: nfclsm
REAL(sdk), POINTER, DIMENSION(:) :: ztbn
!
END TYPE vessArrayT
t
TYPE (vessArrayT),DIMENSION(maxComps) :: vsAr <<<--— declare vsAr

Storage is allocated for the individual arrays in array vsAr by calls to TRACALlo by
subroutine AllocVess, which is also in module VessArray:

MODULE VessArray

CONTAINS

SUBROUTINE AllocVess

nclx=vessTab (cci)$nclx <<<---local variables used in TRACAllo CALLs
nrsx=vessTab(ccl)%nrsx

nytv=vessTab(cci)%nytv

nasx=vessTab (cci)%$nasx

ntsx=vessTab(cci) ¥$ntsx

ncsr=vessTab(ccil) %ncsr

nvent=vessTab(cci)%nvent

CALL TRACAllo(vsAr(cci)%ztbn,nclx, 'ztbn*,0.0d0)
CALL TRACAllo(vsAr(cci)%zchfn,nclx, 'zchfn',0.0d40)
CALL TRACAllo(vsAr(cci)%alptn,nclx, 'alptn',0.0d40)

Subroutine Al1ocVess is called once each by subroutines rvssl and revssl.

G-47

Coding Standard: For maintainability, the order of calls to TRACAllo in subroutine
AllocVess should match the (reversed) order of array declarations in derived data-type
vessArrayT. .

Read the Special Array from the text input file, and echo the read to the text output file
with calls to service routines loadn and warray:

Subroutine rvssl (module VessTask):

CALL loadn(vsAr(ccl)%z,vessTab(cci) %nasx, 1)
CALL warray('z ', vsAr(cci) %z, vessTab(cci) $nasx, 0)

CALL loadn(vsAr(cci)%rad,vessTab(cci) $nrsx,1)
IF (vessTab({cci)%igeom.EQ.0) THEN

CALL warray('r ', vsAr(cci) %rad, vessTab(cci) $nrsx, 0)
ELSE

CALL warray('x ' ,vsAr(cci)%rad,vessTab(cci) $nrsx, 0)
ENDIF

CALL loadn(vsAr(cci)%th,vessTab(cci)%ntsx, 1)
IF ((vessTab(cci)%igeom.EQ.0).AND. (ioinp.EQ.0) .AND &
&. (vsAr(cci)%th(vessTab(cci) ¥ntsx) .GT.2.0d40*pi+0.0001d40)) THEN
DO i=1,vessTab(cci) $ntsx
vsAr (cci)%th(i)=(pi/180.040) *vsAr(cci)$th(i)
ENDDO ’
ENDIF
IF (vessTab{(cci)%igeom.EQ.0) THEN
CALL warray('t ', vsAr(cci)%th,vessTab(cci) $ntsx, 0)
ELSE .
CALL warray('y ', vsAr(cci) %th,vessTab(cci) %$ntsx, 0)
ENDIF

Add the Special Array to the dump file, read it from the restart file, and echo the read to
the text output file. This is done with calls to service routines bfoutn, bf inn, and
warray:

Subroutine dvssl (module VessTask):

CALL bfoutn(vsAr(cco)%z,vessTab(cco)%nasx, ictrld)
CALL bfoutn(vsAr (cco)%rad,vessTab(cco)¥nrsx, ictxrld)
CALL bfoutn(vsAr(cco)%th,vessTab(cco) %ntsx, ictrld)

G-48

CALL bfinn(vsAr(cci)%z,vessTab(cci)%nasx, ictrlr)
CALL bfinn(vsAr(cci)%rad,vessTab(cci)%nrsx, ictrlr)
CALL bfinn(vsAr(cci)%th,vessTab(cci)%ntsx,ictrlr)

CALL warray('z 1, vsAr (cci) %z, vessTab{ccl) $nasx, 0)
IF (vessTab(cci)%igeom.EQ.0) THEN
CALL warray('r ', vsAr (cci)%rad, vessTab(cci) $nrsx, 0)
CALL warray('t ', vsAr (cci)%th, vessTab(cci) $ntsx, 0)
ELSE
CALL warray('x ', vsAr {cci)%rad, vessTab{cci)%nrsx, 0)
CALL warray('y ', vsAr (cci)%$th,vessTab(cci) $ntsx, 0)
ENDIF

Fluid-Mesh Arrays

The 3D Vessel Fluid-Mesh Arrays are stored in array vsAr3, which is of derived-type
vessArray3T. The elements of type vessArray3T are defined in module VessArrays3,
and array vsAr3 is declared in VessArray3 to be of dimension(maxComps). Storage is
allocated for the individual arrays in array vsAr3 by calls to TRACAllo by subroutine
AllocVess3, which is also in module VessArrays3.

MODULE VessArray3

TYPE vessArray3T

REAL(sdk), POINTER, DIMENSION(:,:, :) : hla
REAL({sdk), POINTER, DIMENSION(:,:,:) : hva
REAL(sdk), POINTER, DIMENSION(:,:,:) :: g3drl
REAL(sdk), POINTER, DIMENSION(:,:,:) :: qg3drv
REAL(sdk), POINTER, DIMENSION(:, :,) : xvd
REAL(sdk), POINTER, DIMENSION(:, :,) : Xv5
REAL(sdk), POINTER, DIMENSION(:,:,:) : xv6
REAL(sdk), POINTER, DIMENSION(:,:,:) : XVS

END TYPE vessArray3T

1]
TYPE (vessArray3T),DIMENSION (maxComps) :: vsAr3

G-49

CONTAINS

SUBROUTINE AllocVess3 (ni,nj,nk, ccix)

! BEGIN MODULE USE
USE Alloc

IMPLICIT NONE
INTEGER (sik) ni,nj,nk,ccix

CALL TRACAllo(vsAr3(ccix)%hla,ni,nj,nk, 'hla',0.0d40)
CALL TRACAllo(vsAr3(ccix)%hva,ni,nj,nk, 'hva',0.0d0)
CALL TRACAllo (vsAr3(ccix)%g3drl,ni,nj,.nk, 'g3drl*, 0.0d40)
CALL TRACAllo(vsAr3(ccix)%$g3drv,ni,nj,nk, 'qg3drv', 0.040)

CALL TRACAllo(vsAr3(ccix)%xv4,ni,nj,nk,
CALL TRACAllo(vsAr3(ccix)%xv5,ni,nj.nk,
CALL TRACAllo(vsAr3(ccix)%xv6,ni,nj,nk,
CALL TRACAllo(vsAr3(ccix)%xvs,ni,nj,nk,

END SUBROUTINE AllocVess3

'xvd',0.0d40)
'xv5',0.0d40)
'xv6',0.0d40)
'xvs',0.0d0)

Subroutine AllocVess3 is called once each by subroutines rvssl and revssl. Note
that AllocVess3 obtains its dimensioning information through its argument list, unlike
subroutine AllocVess, which uses data in VessTab. Another difference between the
two allocation routines is in AllocVess3’s use of argument variable ccix to index a
specific VESSEL component in array vsAr3 (this will support future parallelization of

TRAC).

Many of the Vessel fluid-mesh arrays are dual time (they contain either old- or new-time

values of the same quantity), e.g.,

REAL(sdk), POINTER, DIMENSION(:,:
REAL(sdk), POINTER, DIMENSION(:,:
REAL (sdk), POINTER, DIMENSION(:,:
REAL(sdk), POINTER, DIMENSION(:,:

REAL(sdk), POINTER, DIMENSION(:, :
REAL(sdk), POINTER, DIMENSION(:,:
REAL(sdk), POiNTER, DIMENSION(:, :
REAL(sdk), POINTER, DIMENSION(:,:

-
.

-

" v e .
— o e

.
R i

:: tv <<<--- old vapor temp
£l

:: gam
:: p <<<---old pressure

:: tvn <<<--- new vapor temp
:: tln

:: gamn

:: pn <<<--- Neéw pressure

Coding Standard: For maintainability, declarations of new dual-time array elements that
are added to the VESSEL-component, derived-type vessArray3T should be included in
the appropriate section of vessArray3T, old-time variables should be included with the

G50

other old-time variables, and new-time variables should be included with other new-
time variables.

Coding Standard: For maintainability, the order of calls to TRACAllo in subroutine
AllocVess3 should match the order of array declarations in derived data-type
vessArray3T.

If necessary, read the Fluid-Mesh Array from the text input file and echo the read to the
text output file with calls to service routines loadn, clearn, and rlevel; the arrays are
first read into scratch array scr, grouped by axial level (i,j planes), within a loop over the
axial (k) coordinate:

Subroutine rvssl (module VessTask):

IF (tlqg.NE.1.0d20) inproc=2

CALL loadn(scr,vessTab(cci)%nclx, 1)

IF ((istopt.NE.O).AND.(tlqg.NE.1.0d20)) THEN <<<-— istopt option
tmp=tlg
IF (ioinp.EQ.1) CALL uncnves ('tl',tmp,1,1,-1)
CALL clearn(tmp,scr,vessTab(cci)%nclx)

ENDIF

CALL rlevel('tln',scr,vessTab(cci)%nclx,vsAr3(cci)3tln)

The level-input logic supports the feature to input default values for certain data arrays,
under control of namelist variable istopt.

There is also logic at the end of subroutine rvssl for the “repeat level” Vessel input
feature:

READ (card,710) nlev
710 FORMAT (14x,il14)
IF ((nlev.GE.l—vessTab(cci)%igbcz).AND.(nlev.LT.nas)) THEN
IF {(inlab.EQ.3) WRITE (inlab,725) nlev
725 FORMAT (1h*/12hrepeat level,i4/1h*)

ksnk=kc

ksrc=nlev+nzbcm

DO i=vessTab(cci)%icOmm, vessTab(cci)%iall
DO j=vessTab(cci)%jcOmm,vessTab(cci)¥jall

vsAr3(cci)%alp(i, j.ksnk)=vsAr3(cci)%alp(i,j, ksrc)
vsAr3(cci)%alpn(i,j,ksnk)=vsAr3(cci)%alpn(i,], ksrc)
vsAr3 (cci)%hdyt (i, 3, ksnk)=vsAr3(cci)shdyt (i,], ksrc)
vsAr3 (cci)$hdz (i, j, ksnk)=vsAr3 (cci)ghdz (i, j, ksrc)

G-51

Add the Fluid-Mesh Array to the dump file, read it from the restart file, and echo the read
to the text output file with calls to service routines dlevel, bfinn, warray, and levelr:

Subroutine dvssl (module VessTask):

! level data

DO k=k0,kx
iz=k-nzbcm
CALL dlevel (vsAr3 (cco)%cfzlyt,vessTab(cco)%nclx)
CALL dlevel (vsAr3(cco)%cfzlz,vessTab(cco)¥$nclx)
CALL dlevel (vsAr3 (cco)%cfzlxr,vessTab{cco)$nclx)
CALL dlevel (vsAr3(cco)%cfzvyt,vessTab(cco) $nclx)
CALL dlevel (vsAr3(cco)%$cfzvz,vessTab(cco)¥nclx)

! read level array data

IF (vessTab(cci)$%$igbcz.EQ.0) THEN
kO=vessTab(cci) %kcO
kx=vessTab(cci) ¥kcx

ELSE
kO=vessTab(cci) $kclm
kx=vessTab(cci) %kcxp

ENDIF

ALLOCATE (scr (vessTab(cci) $nclx)) <<<--- scratch array scr

DO k=k0, kx
nas=k-nzbcm
iz=nas
WRITE (iout,140) nas
140 FORMAT (/' level',i3,' data')
CALL bfinn(scr,vessTab(cci)%nclx,ictrlr)
CALL warray('cfzlyt ',scr,vessTab(cci)%$nclx,0)
CALL levelr(vsAr3(cci)%cfzlyt,scr)

G-52

CALL bfinn(scr,vessTab(cci)%nclx,ictrlr)
CALL warray('cfzlz ', scr,vessTab(cci)%nclx, 0)
CALL levelr(vsAr3(cci)%cfzlz,scr) ’

CALL bfinn(scr,vessTab(cci)%nclx,ictrlr)
CALL warray('cfzlxr ',scr,vessTab(cci)s%nclx,0)
CALL levelr (vsAr3(cci)%cfzlxr, scr)

CALL bfinn(scr,vessTab(cci)%nclx, ictrlr)
CALL warray('cfzvyt ',scr,vessTab(cci)%nclx,0)
CALL levelr(vsAr3(cci)%cfzvyt,scr)

CALL bfinn(scr,vessTab(cci)%nclx,ictrlr)
CALL warray('cfzvz ' scr,vessTab(cci)%nclx,0)
CALL levelr(vsAr3(cci)%cfzvz,scr)

If appropriate, add a time edit of the array to the text output file trcout, with a call to
service routine wlevel (which calls leveli to stack the rank-3 arrays into a temporary
rank-1 array for printing):

Subroutine wvssl (module VessTask):

k0=vessTab(cco) $kcO
kx=vessTab (cco) $kcx
IF (vessTab(cco)%igbcz.NE.Q) kO=vessTab(cco)tkcOm
IF (vessTab(cco)%igbcz.NE.O) kx=vessTab(cco)tkcxp

DO kec=k0, kx
iz=kc-nzbcm

WRITE (iout,110) iz
110 FORMAT (/' level',i3,' data')

CALL wlevel('alpn ", vsAr3 (cco)%alpn, vessTab (cco) $nclx)

CALL wlevel('rovn ', vsAr3 (cco) $rovn, vessTab (cco) $nclx)

IF (ntsprn.NE.0) CALL wlevel('arvn ', vsAr3 (cco) %arvn &
& ,vessTab{cco)%nclx)

CALL wlevel('roln ', vsAr3 (cco) $roln,vessTab(cco) $nclx)

IF (ntsprn.NE.O) CALL wlevel('arln ', vsAr3 (cco)%arlin &
& ,vessTab(cco)%nclx)

CALL wlevel ('vvnyt ', vsAr3 (cco) $vvnyt, vessTab (cco) $nclx)

IF (ntsprn.NE.0) CALL wlevel ('vvntyt ' ,vsAr3{cco) $vvntyt &
& ,vessTab(cco)%nclx)

CALL wlevel('vvnz ', vsAr3 (cco) $vvnz, vessTab (cco) $nclx)

IF (ntsprn.NE.(Q) CALL wlevel('vvntz t,vsAr3 (cco) %vvntz &

G-53

& ,vessTab(cco)%nclx)

If the new array is dual time, add a new-time to old-time data copy to subroutine t imupd
(for timestep advancement):

Subroutine timupd (module VessCrunch):

! over-writes start of time step variables with end of time
! step values for one vessel level

IF (iml00x.NE.-100) THEN

k=iz+nzbcm
DO i=vessTab(cco)%icOm,vessTab(cco)%icx
DO j=vessTab(cco)%jcOm, vessTab(cco)%jcx
vsAr3{cco)%alpo(i, j,k)=vsAr3(cco)%alp(i,j, k)

vsAr3{cco)%bit (i, j,k)=vsAr3(cco)%bitn(i,j, k)
vsAr3 (cco) %$frcil(i, j,k)=vsAr3(cco)%frciln(i,j, k)
vsAr3{cco)%frci2 (i, j,k)=vsAr3 (cco)%frci2n (i, j, k)
vsAr3(cco)%frci3 (i, j,k)=vsAr3d(cco)%frci3n(i,j, k)
vsAr3(cco)$ciyvt (i, j. k)=vsAr3(cco)%cinyt (i, j, k)
vsAr3(cco)%ciz (i, j,k)=vsAr3(cco)%cinz(i,j, k)
vsAr3 (cco)$cixr(i,j,k)=vsAr3{(cco)%$cinxr(i, j, k)

vsAr3 (cco)sowlz (i, 3, k)=vsAr3(cco)%wlz(i,j, k)
vsAr3 (cco) $owlxr (i, j, k)=vsAr3 (cco) swlxr(i, j. k)
ENDDO
ENDDO
ENDIF

RETURN
END SUBROUTINE timupd

Old-time to new-time data copies for timestep backups are handled by subroutine
- bakup. Copying for special (i.e., water-packer) backups is called from the outer stage
and for normal backups from POST; as with the 1D-component, dual-time arrays, care
must be taken with the old-time/new-time value of the array for the water-packing logic
(i-e., add the copy only if the value of the array does not change in the PREP stage).

Subroutine bakup (module VessCrunch):

SUBROUTINE bakup(iopt) <<<--iopt is flag for type of backup

G-54

! over-writes end of time step variables with start of time
! step values for one vessel level

k=iz+nzbcm
IF {(iopt.EQ.0) THEN
! backup from the post stage

DO i=vessTab(cco)%icOmm, vessTab(cco)%iall
DO j=vessTab (cco)%jcOmm, vessTab(cco)%jall
vsAr3 (cco)gbitn(i, j,k)=vsAr3 (cco)%bit (i,], k)
vsAr3 (cco)%frciln(i,j,k)=vsAr3(cco)%frcil(i,j, k)
vsAr3 (cco)%frci2n(i,j, k)=vsAr3(cco)%frci2 (i, j. k)
vsAr3 (cco)%¥frci3dn(i,j, k)=vsar3{cco)%frci3(i,j, k)

vsAr3 (cco) swvxr (i, j, k)=vsAr3 {cco)%owvxr(i,j. k)
vsAr3 (cco) $wlyt (i, j,k)=vsAr3 (cco)%owlyt (i, j, k)
vsAr3(cco)%wlz (i, j,k)=vsAr3 (cco)%owlz(i,]. k)
vsAr3 (cco) swlxr (i, j,k)=vsAr3 (cco)$owlxr (i, j. k)
ENDDO
ENDDO
ELSE

! backup from the outer stage

DO i=vessTab{cco)%icOmm,vessTab(cco)%iall
DO j=vessTab(cco)%jcOmm, vessTab{cco)%jall
vsAr3 (cco) $chtin(i,j, k)=vsAr3 (cco)%chti(i,j. k)
vsAr3(cco) $chtan(i, j,k)=vsAr3 (cco)&chtia(i,j. k)
vsAr3(cco) %alvn(i,j,k)=vsAr3 (cco)%alv(i,j, k)
vsAr3 (cco)%alven(i, j, k)=vsAr3(cco)%alve(i,j. k)

vsAr3 (cco) $wlyt (i, 3. k)=vsAr3 (cco)%owlyt(i,j. k)
vsAr3 (cco)swlz (i, j,k)=vsAr3{cco)%owlz (i,], k)
vsAr3 (cco) $wlxr (i, j,k)=vsAr3 (cco)%owlxr(i,j, k)
ENDDO
ENDDO
ENDIF
RETURN
END SUBROUTINE bakup

Vessel Data Interface (Noninstantiated VESSEL Components)

Function GetVSAR, in module VessArray3, is a data-access routine that returns a value
from a subset of the Vessel 3D mesh arrays. Get VSAR takes as input arguments a character
string specifying the requested array name, the Vessel’s cco index, and the (i, j, k)
indices into the array; it operates with IF-THEN-ELSEIF tests on the array name:

G-55

MODULE VessArray

INTEGER(sik) i,Jj,k,cco
CHARACTER*8 wvarName
LOGICAL debug

DATA debug /.FALSE./

IF (debug) THEN

WRITE(*,*) 'getVSAR called for ',varName

ENDIF

IF (varName.EQ. 'vvnz ') THEN
getVSAR=vsAr3 (cco)%vvnz (i, j, k)
ELSEIF (varName.EQ.'cinz ') THEN
getVSAR=vsAr3(cco)%cinz(i,j, k)
ELSEIF (varName.EQ.'hfg ') THEN

getVSAR=vsAr3 (cco)$hfg(i, j, k)
ELSEIF (varName.EQ.'vvxr '} THEN
getVSAR=vsAr3 (cco)&vvxr (i,], k)
ELSEIF (varName.EQ.'chtin '} THEN
getVSAR=vsAr3 (cco)%chtin(i, j, k)

ELSEIF (varName.EQ.'vlnz ') THEN
getVSAR=vsAr3 (cco)%vinz (i, j, k)
ELSEIF (varName.EQ.'vlxr ') THEN
getVSAR=vsAr3 (cco)¥vixr(i, j, k)
ELSEIF (varName.EQ.'rom ') THEN

getVSAR=vsAr3 (cco)%rom(i, j, k)
ELSEIF (varName.EQ.'vlyt '} THEN
getVSAR=vsAr3 (cco)®viyt (i,], k)
ELSEIF (varName.EQ.'roan ') THEN

getVSAR=vsAr3 (cco)%roan(i,j, k)
ENDIF

RETURN
END FUNCTION getvsar

END MODULE VessArray3

G-56

G.1.4.3. System Services
Detailed guidelines for modification of the System Services that support intercomponent
communication are given in Section 3.2.3.a.

G.1.5. HTSTR Arrays

The HTSTR arrays are stored in array hsAr, which is of derived-type hsArrayT. The
elements of type hsArrayT are defined in module HSArray, and array hsAr is declared
in HSArray to be of dimension(maxComps). Array hsAr is given the target attribute, and
scalar variable chs is declared to be of type hsArrayT, with the pointer attribute.
Variable chs is associated with specific array elements (ie., with specific HITSTR
components) of hsAr; this is done only to keep the physical lengths of certain argument
lists short (in particular, to keep the number of continuation lines within a limit of 19).

MODULE HSArray

TYPE hsArrayT

REAL(sdk), POINTER, DIMENSION(:) :: rdpwr
REAL(sdk), POINTER, DIMENSION({:) :: rs
REAL(sdk), POINTER, DIMENSION({:) :: Cpowr
REAL(sdk), POINTER, DIMENSION(:) :: hs
REAL(sdk), POINTER, DIMENSION(:) : zpwzt
REAL(sdk), POINTER, DIMENSION(:,:,:) :: tween
REAL(sdk), POINTER, DIMENSION(:,:,:) :: tweeo
REAL (sdk), POINTER, DIMENSION(:,:,:) :: cepwn
REAL(sdk), POINTER, DIMENSION(:,:,:} :: cepwo
t
END TYPE hsArrayT
!
TYPE (hsArrayT), TARGET, DIMENSION (maxComps) :: hsAr

TYPE (hsArrayT),POINTER:: chs

Coding Standard: For maintainability, declarations of new data array elements that are
added to the HTSTR-component, derived-type hsArrayT should be included in the
appropriate section of hsArrayT, according to the nature of the new array. The various
array types include the general global data (which also includes data "global” to a
specific copy), the time-dependent global data (including data specific to a copy), the rod
and slab-dependent data, the time-dependent rod data, and the surface-dependent rod
data (which have single-time and dual-time portions).

Storage is allocated for the individual arrays in array hsAr for a specific HISTR
component by calls to TRACALlo by subroutine pntrod (module RodTask), which is
called once each by subroutines rhtstr and rehtst (both in module RodTask).

G-57

Coding Standard: For maintainability, the order of calls to TRACAllo in subroutine
pntrod should match the order of array declarations in derived data-type hsArrayT.

New-Time to Old-Time and Old-Time to New-Time Data Copies

Module HSArray contains service subroutines TimeUpHS and TimeUpHS1; each routine
transfers some of the dual-time HTSTR data arrays from new-time to old-time hsaAr
arrays or from old-time to new-time arrays (together they treat all of the dual-time
arrays), according to the value of input-flag newToOld. Subroutine TimeUpHS is
responsible for the global dual-time arrays, and subroutine TimeUpHS1 is responsible
for the dual-time rod and rod-surface data.

MODULE HSArray

CONTAINS
SUBROUTINE TimeUpHS (newTo01d)

! BEGIN MODULE USE
USE Global

IMPLICIT NONE
LOGICAL newTo0ld

IF (newToOld) THEN
hsAr (cco) %cdg
hsAr (cco) %cdh
hsAr (cco)$clen

hsAr (cco)$cdgn <<<--- dual-time global arrays
hsaAr (cco) $cdhn
hsaAr (cco) %clenn

ELSE
hsAr(cco)%cdgn = hsAr(cco)%cdg
hsAr(cco)%cdhn = hsAr(cco)%cdh
hsAr(cco)%clenn = hsAr(cco)%clen
ENDIF

END SUBROUTINE TimeUpHS

SUBROUTINE TimeUpHS1 (newTo0ld)

IF (newTo0ld) THEN
hsAr (cco) 3radr=hsAr (cco) $radrn <<= dual-time rod arrays

hsAr (cco) ¥drz=hsAr (cco) %drzn
hsAr (cco) $rft=hsAr (cco)%$rftn

! Surface-dependent arrays
hsAr (cco)shrflo=hsAr(cco)$hrfl
hsAr (cco) ¥hrfvo=hsAr (cco) $hrfv
hsAr (cco) $hrfgo=hsAr (cco)$hrig

G-58

hsAr (cco) %cepwo=hsAr (cco) $cepwn

ELSE <<<--- old to new
hsAr (cco) $radrn=hsAr (cco) %radr
hsAr (cco) ¥drzn=hsAr(cco) %drz

hsaAr (cco) $rftn=hsAr(cco)%rft

! Surface-dependent arrays
hsAr (cco) $hrfl=hsAr (cco)%hrflo
hsar (cco) $hrfv=hsAr (cco)$hrfvo
hsAr (cco) $hrfg=hsAr (cco)%hrfgo

hsAr (cco) $cepwn=hsAr (cco) $cepwo
ENDIF

END SUBROUTINE TimeUpHS1
In the PREP stage, subroutine htstrl has a call TimeUpHS1 (. TRUE.), and corel has
a call TimeUpHS(.TRUE.) for new-time to old-time array copies for timestep
advancement. In the POST stage, subroutine htstr3 has a call TimeUpHS(.FALSE) and a
call TimeUpHS1(.FALSE.) for old-to-new copies in the case of a timestep backup (oitno
= -100).
HTSTR Data Interface

The HTSTR data interface comprises the following routines, all of which are contained in
module HSArray:

SUBROUTINE GetHS1DPtr (arrayName, compInd, arPtr)

SUBROUTINE GetHS2DPtr (arrayName, compInd, arPtr)

SUBROUTINE GetHS3DPtr (arrayName, compInd, arPtr)

REAL (sdkx) FUNCTION GetHS (compInd, arrayName, cell)

REAL (sdkx) FUNCTION GetHSSurf (compInd, arrayName, rod, cell)
INTEGER (sikx) FUNCTION GetNoht (compInd, rod)

REAL (sdkx) FUNCTION GetHS2d(compInd, arrayName, rod, cell)

G-59

REAL (sdkx) FUNCTION GetHS3d(compInd, arrayName, rod,cell, node)

Coding Standard: Any new rank-2 or rank-3 arrays that are to be part of the standard
HTSTR data interface should have the following ordering of information in their
columns:

REAL (sdkx) FUNCTION GetHS2d(compInd, arrayName, rod,cell)

CALIL GetHS2DPtr (arrayName, compInd,arPtr)
GetHS2D=arPtr (cell, rod) <<<--- cell, rod

CALL GetHS3DPtr (arrayName, compInd, arPtr)
GetHS3D=arPtr (node, cell,xrod) <<<---node, cell, rod

G.2. Adding A New XTV Graphics Variable

Variables output to the XTV file are output by component and contain seven attributes:
Dimension (scalar, 1D, 2D, 3D), Frequency, Data Position, Length, Degeneracy, Color
Mapping, and Special Options. In addition, the following is needed: the conditions
under which the variable is output, assurance that the variable is indexed in the English
units subsystem, and, for 1D components, knowledge of whether this a generic variable
or a component-specific variable. Note that the graphics output is limited to floating
point values. Integers may be output by conversion to floating-point values, but the
addition of character values requires the use of Auxiliary Component Structures, which
is not covered in this appendix.

G.2.1. Understanding Variable Attributes

Dimension: This is simply the order of the variable array (scalar or single valued, 1D,
etc.) and should not be confused with the dimension of the component. Note that
variables having a dimension greater than that of the component are difficult to add and
are beyond the description of this appendix. Currently, general problem information,
control blocks, signal variables, and trips are treated graphically as scalar components;
breaks, fills, generic heat structures (not the rods and slabs), pipes, plenums, prizers,
pumps, tees, and valves are 1D components; rods and slabs are 2D components; and the
vessel is the only 3D component. Wall conduction in 1D fluid components promotes
them to 2D components when the multinode resolution is employed.

G-60

Frequency. Two kinds of variables are output to the graphics file: constants that do not
change during the course of the calculation and computed values. Constants are said to
be static or time-independent and are output in the graphics header and not in the
regular data section. Values computed during the course of a calculation are said to be
dynamic or time-dependant and are output in the data section of the graphics file. At
some later date, there may be some option for varying frequencies of output (e.g., some
values output every edit, some only every third edit).

Data Position. TRAC utilizes a staggered mesh: that is, some values are computed at the
cell center and some at the cell face. For the most part, volume and inventory quantities
are cell centered, whereas velocity and mass flow quantities are face oriented. Face-
oriented arrays generally have more values than cell-centered arrays.

Length. TRAC currently implements arrays with two different classes of length: those of
a fixed length and those using a special variant of dynamic sizing. "Dynamically sized"
arrays employ a fixed dimension and denote the end of active values with the token "-1"
after the last value. The actual number of values in a fixed-dimension array can be
computed from the axis dimensions and the data position. For example, if a vessel has
dimensions of (2,2,4), then cell-centered arrays would output 2 x 2 x 4 = 16 values per
graphics edit. Similarly, arrays being face valued along the radial axis would contain
(2+1) x 2 x 4 = 24 values per edit. Dynamically sized arrays currently are handled by
outputting all values (including the inactive ones) and then utilizing only the active
ones. The actual number of values output to the graphics file is calculated in the same
manner as for fixed dimension arrays utilizing the maximum number of elements as the
dimension for the dynamically sized axis.

Degeneracy. The degeneracy attribute specifies along which axis(es) this variable lies
when the dimension of the component is greater than that of the variable. For the
purposes of the graphics file, the dimension of the component is that of the highest-
dimensioned component. Thus, 1D fluid components are considered 2D components
when they have two or more wall conduction nodes. This information is used to help
the application determine the length of the array and construct an appropriate diagram
in the graphical user interface (GUI). For example, stnui, the Stanton number along the
inner surface of the heat structure, is degenerate along the j or z axis. Variables that are
the same dimension as the component, as well as scalar variables, have no degeneracy.
To keep things simple between cylindrical and Cartesian systems, the axis identifiers i, j,
and k are used for the first, second, and third axes, respectively.

Color Mapping. The XTV GUI uses two color sets or maps to help visualize data.
Quantities involving fluid properties are visualized using "Water Colors,” a series of
colors ranging from deep blue to white. Quantities involving heat transfer or energy are
displayed using "Hot Colors," a series of colors ranging from black to deep red.

Special Options. The XTV GUI supports four options for special variable treatment. The
first is the designation of a variable as a vector component. The second option is the
designation of the variable as a tensor component. Both Vector and Tensor components
are discussed in more detail in a subsequent section. The third option is the use of inset

G-61

display tiles. The 3D displays can have a second value set up for visualization; by
selecting it from an inset display menu in the GUI, the inset display attribute adds this
variable to the inset display menu. The last option is the Unlisted option. Variables that
are used only for dynamic sizing of arrays can be designated as Unlisted, in which case
they will not be displayed in the variable selection list of the XTV GUL

G.2.2. Steps to be Completed before Adding Variables to Output

1.

Verify that the variable to be output is indexed in the English Units subsystem (see
section on the LABPRG functionality for details). If it is not indexed, add the variable
to the LABPRG index.

Select the appropriate attributes. The table below lists the variable attribute options.
Note that for simplicity in TRAC, the dimension and data position attributes have
been hybridized into a composite value.

Determine whether the variable should be output conditionally. Some variables are
meaningful only if a particular namelist option is selected, others if a particular
component option is selected.

Determine what subroutine should be responsible for outputting the information.
See Appendix C for information as to which subroutines output information on the
various components.

Verify that the desired length of the variable is equal to what TRAC/XTV will
calculate. The rules for calculations are as follows:

e All 0D variables except tensors output one value.

e 1D, 2D, and 3D variables that are not dynamically sized output ncellt
values for cell-centered quantities.

* Face-valued quantities output one more value along the face axis than its
normal dimension, unless that axis is the azimuthal axis on cylinders, in
which case it outputs the same number of elements along that axis. For
example, a 3D variable that is face valued along the radial axis outputs
(ni+1)*nj nk =ncellt +nj*nk values. Were it to be face valued along the
azimuthal axis, it would output ni * nj * nk = ncellt values.

* Dynamically sized values output the maximum number defined for that
component axis. The end of "used values" is denoted by a "-1". If using
dynamic sizing for the component, this -1 can be in another variable.

* Dynamic minimum variables output exactly the minimum number of values
for a dynamic axis at all timesteps.

G-62

TABLE OF VARIABLE ATTRIBUTE PARAMETERS IN TRAC |

Attribute Value Description
Dimension- | This gives the dimension of indexing used and the relative position of
variable the data in the cell. Subdimensional variables must use the correct
position /| value here and specify the degeneracy attribute for proper array length
length specification. (e.g., hrfio is a 1D variable that exists in a 2D heat
structure. It is declared here as 1D and described below as lying along
the T' (z) axis
vScalar scalar value (not an array)
v1ldCc 1D (linear) array, with values at cell centers
vidFa 1D (linear) array, with values at cell faces
v1ldDc 1D (linear) array, dynamically sized by component
v2dCc 2D array [indexed as (i,j)], with values at cell centers
v2dFal 2D array [indexed as (ij)], with values at cell i faces (i
faces are on the first axis, typically the radial ax)
v2dFaJ 2D array [indexed as (ij)], with values at cell j faces (j
faces are on the second axis, typically the axial axis)
v2dDc 2D array [indexed as (ij)], dynamically sized by the
component
v2dDnI 2D array [indexed as (ij)], dynamically sized by -1 on the
I axis,] axis is fixed<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>