
APPENDIX D
EXAMPLE TRAC-M UPDATE (OR CVS) USAGE

To be provided by the US NRC.

D-1

APPENDIX E
GRAPHICS (XTV/XMGR5) VARIABLES

E.1. Introduction

Appendix E lists the variables that are written to the graphics-data TRCXTV file.

Subroutine xtvdr orchestrates the creation of the graphics file; each data edit is

written by the subroutine responsible for that particular component or data

structure. Those variables containing the parenthetical "Header variable only" do

not vary with time and appear only in the graphics header edit.

Variables initially are listed by subroutine rather than by component to prevent

multiple listings of the variables output by subroutine xtvlD. The format of the

appendix makes it easy to determine all possible variables for a given component

while still making it clear which variables apply to particular components.

Because the exact variables available from a given calculation are dependent on

options and input parameters, we have not maintained the sequence of the

variables; however, we have alphabetized the variables for ease of reference. We

have provided definitions and, as appropriate, the corresponding SI and English

units. This listing is based on TRAC-M Version 3.0.

E.2. Global Variable Graphics

The global variables apply to the overall calculation as opposed to specific

components or cells within a component. Subroutine xtvgnpr is responsible for

these graphics variables, with the exception of timet, which is output by xtvdr.

Dimension
1
1
1

1

1

1

1

1

Description
Total CPU time (s) since time 0.0 s in the calculation.
Timestep size (s).
Maximum fractional pressure change over the
current timestep (parameter used in the timestep
control logic).
Maximum liquid-temperature change (K, IF) over

the current timestep (parameter used in the timestep
control logic).
Maximum HTSTR-component ROD or SLAB
element wall temperature change (K, IF) over the
current timestep.
Maximum saturation temperature change (K, IF)

over the current timestep.
Maximum vapor-temperature change (K, IF) over

the current timestep (parameter used in the timestep
control logic).
Transient time (s) in the calculation.
Total number of timesteps since time 0.0 s in the
calculation.

E-1

Variable
cputot
delt
dprmax

dtlmax

dtrmax

dtsmax

dtvmax

timet
tnstep

E.3. Signal-Variable, Control-Block, and Trip-Signal Graphics

Subroutine xtvcntl is responsible for all of the signal variables, control blocks, and trip
signals specified through input from the input-data file TRACIN and restart-data file
TRCRST. Subroutine xtvcntl loops over all of the signal variables in the order of
increasing magnitude of their ID numbers and similarly loops over all of the control
blocks and all of the trips. The quantities written to the graphics file are

1. the parameter value of each signal variable at the current timestep,
along with a figure label having its signal-variable ID number,
parameter title, and units of the signal-variable parameter;

2. the output-parameter value from each control block at the current
timestep, along with a figure label of its control-block ID number and
the units of the control-block output parameter; and

3. the trip signal from each trip at the current timestep, along with a
figure label of its trip ID number and the units of the trip signal.

For TRAC-P to output control-block, output-signal, and trip-signal units to the control
block and trip-signal figure labels, the user must specify those units through input by
units-name labels. This is done when one or more of the NAMELIST-variable I/O-units
flags iogrf, ioinp, iolab, and ioout has a value of 1 to specify Engish units. Users
desiring all input and output in SI units with control-block, output-signal, and trip
signal graphics labels with SI units should input NAMELIST variables iolab = 1 while
leaving inlab = 0 (default value). Inputing inlab = 3 would output a comment-labeled
input-data file inlab in English units.

Dimension
1.

1

Description
Signal-variable data (although the dimension of each is 1,
there are ntsv of them and each has its own units-name
label).
Control-block output (although the dimension of each is 1,
there are ntcb of them and each has its own units-name
label based on the user-defined units-name label of cbanin
and cbxmax).
Trip-signal data [although the dimension of each is 1, there
are ntrp of them and each has its own units-name label
based on the user-defined units name label of setpt(i),
i =lto2or4].

E.4. General 1D Hydraulic-Component Graphics

Subroutine xtvld outputs the graphics-catalog variables that are common to all of the
1D hydraulic components (PIPE, PRIZER, PUMP, TEE, and VALVE). For TEE
components, the dimension of cell-centered variables includes space for a phantom cell

E-2

Variable
Sv

cb

between the main-tube and side-tube cells. This accounts for the fact that there are more
interfaces than cells, and side-tube values are stored after main-tube values. In some
cases, the outputting of parameter values depends on user-specified options in the
TRAC-P input-data TRACIN file that cause those parameters to be evaluated. Note that
because of wall heat conduction (nodes), these components may be listed as 2D
components in XTV when nodes > 2.

Variable Dimension
alpn
alven

alvn

am
chtan

chtin

cifn
concn

fa
hgam

hil

hiv

htlsci
htlsco
id
idr
ncellt

njun
nlegs
pan
pinteg
pn
regnm
rmvm

rmvf
roan
roln
rom
rovn

ncellt
ncellt

ncellt

ncellt
ncellt

ncellt

ncellt+l
ncellt

ncellt+l
ncellt

ncellt

ncellt

1

1
ncellt

1

1

1
ncellt

1

ncellt
ncellt+l
ncellt+1
ncellt+l
ncellt
ncellt

ncellit

Description
Cell gas volume fractions (-).

Cell liquid-side interfacial heat-transfer coefficients (W K-',

Btu OFP h-') [HTC * interfacial area].

Cell-flashing interfacial heat-transfer coefficients (W K-1, Btu
OFP h-') [HTC * interfacial area].
Cell noncondensable-gas masses (kg, ibm).

Cell noncondensable-gas interfacial heat-transfer coeffi

cients (W K-1, Btu 'F-' h-') [HTC * interfacial area].

Cell gas-side interfacial heat-transfer coefficients (W K-1, Btu
°P1 h-') [HTC * interfacial area].
Interface interfacial-drag coefficients (kg mi4 , Ibm ft 4).

Cell dissolved-solute concentration ratio [kg(solute) kg-1
(liquid), Ibm(solute) lbm4(liquid)].
Interface flow areas (m 2, ft2) (header variable only).
Cell subcooled boiling heat flux (W m-2, Btu ft-2 h-).

Cell wall liquid heat-transfer coefficients (W m-2 K-', Btu ft 2

OF-' h-1).

Cell wall gas heat-transfer coefficients (W m-2 K', Btu
ft-2 0F-' h').
Inner-surface heat loss (W, Btu h-1) from the wall.

Outer-surface heat loss (W, Btu h-1) from the wall.
Component ID number (header variable only).
Cell wall heat-transfer regime numbers (-).
Total number of cells, including phantom cell (header
variable only).
Number of junctions on this component.
Number of legs (side tubes) on this component.
Cell noncondensable-gas partial pressures (Pa, psia).
Total heat-transfer rate to the wall (w, Btu h-1).
Cell total pressures (Pa, psia).
Interface flow-regime numbers.
Interface fluid mass flows (kg s-1, lbm h-).

Interface gas mass flows (kg s-1, lbm h').

Cell noncondensable-gas densities (kg m-3, Ibm ft-3).

Cell liquid densities (kg m-3, lbm ft 3).
Cell mixture densities (kg m-3, Ibm ft-3).
Cell gas densities (kg m-3, ibm ft-3).

E-3

sn
tcen
tln
tsat

tssn

tvn
twan

twen

twn

type
vln
vol
vvn
wf 1
x

ncellt
1

ncellt
ncellt

ncellt

ncellt
1

1

nodes*
ncellt

1
ncellt+1
ncellt
ncellt+1
ncellt+1
ncellt

E.5. BREAK-Component Graphics. Subroutine xtvbrak outputs all graphics
variables for the BREAK component.

Dimension
1_
1

1_

1.

1

i

1.
2
1
1.
1
1_
1
1
1.

1_
1_

Description
BREAK-cell gas volume fraction (-).
Time-integrated, noncondensable-gas mass flow (kg, Ibm).
Time-integrated mass flow (kg, Ibm) into the BREAK cell.
Noncondensable-gas mass flow (kg s-1, Ibm h-').

Mass flow (kg s-1, Ibm h-1) into the BREAK cell.
BREAK-cell, dissolved-solute concentration ratio
[kg(solute) kg-(liquid), Ibm(solute) lbm-l(liquid)].
BREAK-cell fluid enthalpy (W s kg', Btu ibm-1).

BREAK-interface flow areas (m2, ft2) (header variable only).
Component ID number (header variable only).
Total number of cells (should be 1) (header variable only).
BREAK-cell, noncondensable-gas partial pressure (Pa, psia).
BREAK-cell total pressure (Pa, psia).
BREAK-cell liquid temperature (K, 'F).
BREAK-cell gas temperature (K, 'F).
Component type (header variable only).
BREAK-cell volume (m3, ft) (header variable only).
BREAK-cell upper bound (m, ft) (header variable only).

E-4

Cell plated-solute mass/fluid volume (kg m-3, Ibm ft 3).
Total heat convected to the fluid (W s, Btu).
Cell liquid temperatures (K, 'F).
Cell saturation temperatures (K, 'F) based on the total
pressures.
Cell saturation temperatures (K, 'F) based on the steam
partial pressures.
Cell gas temperatures (K, 'F).
Absolute error in the total heat convected to the fluid (W s,
Btu).
Effective error in the total heat convected to the fluid
(W s, Btu).
Node-cell wall temperatures (K, °F) in the order:
node 1 to NODES for cell 1, node 1 to NODES for cell
2, etc.
Component type (header variable only).
Interface liquid velocities (m s-1, ft s-1).
Cell volumes (n 3, ft3) (header variable only).
Interface gas velocities (m s-1, ft s-').
Interface friction factors (-).
Cell upper bounds. (m, ft) (header variable only)(header
variable only).

Variable
alpn
bsa
bsmass
bxa
bxmass
concn

enth
fa
id
ncellt
pan
pn
tln
tvn
type
vol
x

E.6. FILL-Component Graphics.

Subroutine xtvf ill outputs all graphics variables for the FILL component.

Variable
alpn
concn

enth
fa
fxmass
id
ncellt
pan
pn
tln
tvn
type
vln
vol
vxn
x

Dimension
1
1

1
2
1
1
1
1
1
1
1
1
1
1
1
1

E.7. HTSTR (Heat-Structure)-Component ROD- or SLAB-Element Graphics.

Subroutine xtvht outputs all graphics variables for the HTSTR component ROD or
SLAB elements.

Dimension
1
2

1
nzmax

nzmax

nzmax

nzmax

1
nzmax

nzmax

Description
Gas volume-fraction reactivity (-).
Outer-surface and inner-surface heat-transfer difference (W,
Btu h-1).
Dissolved- and plated-solute reactivity (-).
Liquid heat-transfer coefficient (W m-2 K-1, Btu ft 2 F-' h-1) for
the inner surface of the ROD or SLAB elements.
Liquid heat-transfer coefficient (W m-2 K-1, Btu ft-2 'F-' h-1) for
the outer surface of the ROD or SLAB elements.
Gas heat-transfer coefficient (W mi2 K', Btu ft 2 'P 1 h-1) for
the inner surface of the ROD or SLAB elements.
Gas heat-transfer coefficient (W m-2 K-1, Btu ft 2 'F-1 h-) for
the outer surface of the ROD or SLAB elements.
Component ID number (header variable only).
Heat-transfer regime numbers for the inner surface of the
ROD or SLAB elements.
Heat-transfer regime numbers for the outer surface of the
ROD or SLAB elements.

E-5

Description
FILL-cell gas volume fraction (-).
FILL-cell, dissolved-solute concentration ratio [kg(solute)
kg-'(liquid), lbm(solute) lbm-l(liquid)].
FILL-cell fluid enthalpy (W s kg-1, Btu lbm-1).
FILL-interface flow areas (m 2, ft2) (header variable only).
Mass flow (kg s-1, lbm h-) out of the FILL cell.

Component ID number (header variable only).
Total number of cells (should be 1) (header variable only).
FILL-cell, noncondensable-gas partial pressure (Pa, psia).
FILL-cell total pressure (Pa, psia).
FILL-cell liquid temperature (K, 'F).
FILL-cell gas temperature (K, 'F).
Component type (header variable only).
FILL-interface liquid velocity (m s-1, ft s-).
FILL-cell volume (m 3, ft3) (header variable only).
FILL-interface gas velocity (m s-1, ft s-').
FILL-cell upper bound (m, ft) (header variable only).

Variable
alreac
cepwn

dbreac
hrf li

hrflo

hrfvi

hrfvo

id
ihtfi

ihtfo

nodes 1 Number of ROD-radial or SLAB-thickness heat-transfer
nodes (first levef only).

nrods 1 Total number of ROD or SLAB elements evaluated by the
HTSTR component (header variable only)

nzmax 1 Maximum number of rows of nodes in the axial direction of
the HTSTR component (header variable only).

pgreac 1 Programmed reactivity (-).
powli ncrz Inner-surface heat transfer to the liquid (W, Btu h-1).
powlo ncrz Outer-surface heat transfer to the liquid (W, Btu h-1).
powvi ncrz Inner-surface heat transfer to the gas (W, Btu h-l).
powvo ncrz Outer-surface heat transfer to the gas (W, Btu h-1).
rftn nodes* ROD- or SLAB-element temperatures (K, 'F),

nzmax ordered node 1 to node NODES for row 1, node 1 to node
NODES for row 2, etc.

rmckn 1 Reactor multiplication constant Keff (_)

rpower 1 Reactor power (W, Btu h-1).
rzht ncrz+l Axial positions of the rows of nodes (m, ft).
stnui nzmax Inner-surface Stanton number (-) of the ROD or SLAB

element.
stnuo nzmax Outer-surface Stanton number (-) of the ROD or SLAB

element.
tcefni 1 Inner-surface total heat transfer to the fluid (W s, Btu).
tcefno 1 Outer-surface total heat transfer to the fluid (W s, Btu).
tcreac 1 Coolant-temperature reactivity (-).
tfreac 1 Fuel-temperature reactivity (-).
tldi nzmaxz Inner-surface liquid temperatures (K, 'F) at bubble

departure.
tido nzmaxz Outer-surface liquid temperatures (K, 'F) at bubble

departure.
tpowi 1 Total power across the inner surface of the heat-structure

component (W, Btu h-1).
tpowo 1 Total power across the inner surface of the heat-structure

component (W, Btu h-1).
trhmax 1 Maximum temperature (K, 'F) of the supplemental ROD or

SLAB elements.
tramax 1 Maximum temperature (K, 'F) of the average power ROD or

SLAB elements.
twani 1 Inner-surface absolute error in the heat transfer to the fluid

(W s, Btu).
twano 1 Outer-surface absolute error in the heat transfer to the fluid

(W s, Btu).

tweni 1 Inner-surface effective error in the heat transfer to the fluid
(W s, Btu).

tweno 1 Outer-surface effective error in the heat transfer to the fluid
(W s, Btu).

type 1 Component type (header variable only).

E-6

nzmax Axial positions (m, ft) of the rows of nodes in the ROD or SLAB
elements.

E.8. PIPE-Component Graphics.

In addition to a call to xtvld, subroutine xtvpipe outputs graphics variables specific to
the PIPE component.

Dimension
1
1

1

1

Description
Heater power (W, Btu h-1) to the fluid.
Liquid volume discharged (m3, ft3) at the exit (interface
ncells+1) when the accumulator flag iacc> 0.
Volumetric fluid flow (m3 s-1, gpm) at the exit (interface
ncells+1) when the accumulator flag iacc > 0.
Water level (m, ft) in the PIPE component (assumes the
component is vertically oriented with cell 1 at the top) when
the accumulator flag iacc > 0.

E.9. PLENUM-Component Graphics.

Subroutine xtvplen outputs all graphics variables specific to the PLENUM component.

Dimension
1
1
1

npl in

1
1
1
1
1
1
1
1
1

1

1
1

1
1
1

Description
Cell gas volume fraction (-).
Cell noncondensable-gas mass (kg, lbm).

Cell dissolved-solute concentration ratio [kg(solute)
kg-'(liquýd), Ibm(solute) lbm-i(liquid)].
Cell lengths (m, ft) associated with each PLENUM
component junction (header variable only).
Component ID number (header variable only).
Total number of cells (should be 1) (header variable only).
Number of junctions (header variable only).
Cell noncondensable-gas partial pressure (Pa, psia).
Cell total pressure (Pa, psia).
Cell noncondensable-gas density (kg m-3, lbm if 3).

Cell liquid density (kg m-3, Ibm ft 3).

Cell mixture density (kg m-3, lbm ft 3).

Cell gas density (kg M-3, lbm ft 3).

Cell plated-solute mass/fluid volume (kg m-3, lbm ft'3).

Cell liquid temperature (K, 'F).
Cell saturation temperature (K, 'F) based on the total
pressure.
Cell gas temperature (K, 'F).
Component type (header variable only).
Cell volume (m3, ft3) (header variable only).

E-7

zht

Variable
cpow
qout

vf low

z

Variable
alpn
am
concn

dx

id
ncellt
npljn
pan
pn
roan
roln
rom
rovn
sn

tln
tsat

tvn
type
vol

E.10. PRIZER (Pressurizer)-Component Graphics.

In addition to a call to xtvld, subroutine xtvprzr outputs graphics variables specific to
the PRIZER component.

Variable Dimension Description

Volumetric flow (m3 s-1, gpm) at the exit (interface
ncells+l) of the PRIZER.
Heater/sprayer power (W, Btu h').
Liquid volume discharged (m3 , ft3) at the exit (interface
ncells+l) of the PRIZER.
Water level (m, ft) in the PRIZER component (assumes the
component is vertically oriented with cell 1 at the top).

E.11. PUMP-Component Graphics.

In addition to a call to xtvld, subroutine xtvpump outputs graphics variables specific to
the PUMP component.

1ieso

1

1

1

1

1

1

1

1

Description
Gas volume fraction donored across the second (pump
impeller) interface (weighted 10% new, 90% old).
PUMP ?P (Pa, psia) across the second (pump-impeller)
interface (pressure of cell 2 minus pressure of cell 1).
Volumetric fluid flow (m3 s-1, gpm) donored across the
second (pump-impeller) interface.

PUMP head (Pa m3 kg-1 or m 2 s-2 or N m kg-1, lbf ft lbm-i) from
the homologous curves and two-phase degradation
multiplier.
Fluid mass flow (kg s-1, ibm h') across the second (pump
impeller) interface.
Pump-impeller rotational speed (rad s-1, rpm).
Fluid mixture density (kg m-3, Ibm ft-3) donored across the
second (pump-impeller) interface.
Momentum source (Pa, psia) applied at the second (pump
impeller) interface based on the PUMP head.
PUMP hydraulic torque (Pa m3, lbf ft) from the homologous

curves and two-phase degradation multiplier.

E.12. TEE-Component Graphics.

In addition to a call to xtvld, subroutine xtvtee outputs graphics variables specific to
the TEE component.

Dimension
1

Description
Heater power (W, Btu h-) to the main-tube fluid.

E-8

flow

qin
qout

1

1
1

Z 1

Variable
alpha

delp

flow

head

mf low

omegan
rho

smom

torque

Variable
powrl

Heater power (W, Btu h-1) to the side-tube fluid.

E.13. VALVE-Component Graphics.

In addition to a call to xtvid, subroutine xtvvlve outputs graphics variables specific to
the VALVE component.

Dimension
1

Description
Adjustable valve-interface flow area (m2, ft2).

E.14. 3D VESSEL-Component Graphics

Subroutine xtvvsl outputs graphics variables to the VESSEL component. The cell and
interface data are written on a 3D basis in ROW MAJOR format, unlike TRCGRF, which
used a level format. As with the 1D variables, interface variables have one more value
than cell variables on the face axis. For example vlnz, the z-direction liquid velocity, has
nrsx*ntsx* (nasx+i) values. The VESSEL variables output to graphics are very much
dependent on the options selected and parameters set in the VESSEL input-data,
NAMELIST, and other general options. The following abbreviations are used for
dimensions in this section:

ncells = nrsx*ntsx*nasx (values at every cell)
xrfaces = (nrsx+l) *ntsx*nasx (values at each x/r face, including icOm)
ytfaces = nrsx* (ntsx+l) *nasx (values at each y/O face, including jcOm)
zfaces = nrsx*ntsx* (nasx+l) (values at each z face, including kcOm)

Dimension
ncells
ncells

ncells

ncells
ncells

ncells

1
1
1

ncells

ncells

ncells
1

Description
Cell gas volume fractions(-).
Cell liquid-side interfacial heat-transfer coefficients (W K-1,

Btu F-'P h-1) (area folded in).

Cell flashing interfacial heat-transfer coefficients (W K-1, Btu
F-' h-1) (area folded in).

Cell noncondensable-gas masses (kg, lbm).
Cell noncondensable-gas interfacial heat-transfer coeffi

cients (W K-1, Btu 'F-I h-1) (area folded in).
Cell vapor-side interfacial heat-transfer coefficients (W K-1,

Btu °F-' h-') (area folded in).
Reactor-core inlet mass flow (kg s-1, Ibm h'-).
Reactor-core inlet, liquid mass flow (kg s-1, ibm h'-).
Reactor-core inlet, gas mass flow (kg s-1, lbm h-).
Radial or x-direction interfacial-drag coefficients (kg m-4 , Ibm
ft4).
Azimuthal or y-direction interfacial-drag coefficients (kg m
4, lbm ft 4).

Axial interfacial-drag coefficients (kg mn4 , lbm ft-4).

Reactor-core region, outlet mass flow (kg s-1, Ibm h'1).

E-9

Variable
area

Variable
alpn
alven

alvn

am
chtan

chtin

cimfr
cimfrl
cimfrv
cixr

ciyt

ciz
comfr

powr21

comfrl 1 Reactor-core outlet, liquid mass flow (kg s-1, ibm h-1).
comfrv 1 Reactor-core outlet, gas mass flow (kg s-1, ibm h-1).
concn ncells Cell dissolved-solute concentration ratio [kg(solute)

kg-'(liquid), Ibm(solute) lbm-i(liquid)].

corelq 1 Reactor-core liquid volume fraction.
dcflow 1 Downcomer mass flow (kg s-1, lbm h-1) (sums the axial flow

out of the downcomer at level IDCL).
dclqvl 1 Downcomer liquid volume fraction.
faxr xrfaces Interface fluid flow areas (m2, ft2) (header variable only).
fayt ytfaces Interface fluid flow areas (m 2, ft2) (header variable only).
faz zfaces Interface fluid flow areas (m 2, ft2) (header variable only).
gamn ncells Vapor (steam) generation rate (kg m-3, lbm ft-3).
hgam ncells Cell subcooled boiling heat flux (Wn m-2, Btu ft"2 h-).
icj ncsr 1D hydraulic component numbers connected to source

connection junctions (header variable only).
id 1 Component ID number(header variable only).
isrc ncsr Cell numbers to which source-connection junctions are

connected (header variable only).
isrf ncsr Face code to which source-connection junctions are

connected (header variable only).
isrl ncsr Level numbers to which source-connection junctions are

connected (header variable only).
nasx 1 Number of axial levels (header variable only).
ncsr 1 Number of VESSEL source-connection junctions to 1D

hydraulic components (header variable only).
nrsx 1 Number of radial rings or x-direction cells (header variable

only).
nsrl nasx Number of source-connection junctions on each level

(header variable only).
ntsx 1 Number of azimuthal segments or y-direction cells (header

variable only).
pan ncells Cell noncondensable-gas partial pressures (Pa, psia).
pcore 1 Reactor-core, volume-averaged pressure (Pa, psia).
pdc 1 Downcomer volume-averaged total pressure (Pa, psia).
plp 1 Lower-plenum, volume-averaged total pressure (Pa, psia).
pn ncells Cell total pressures (Pa, psia).
pup 1 Upper-plenum, volume-averaged total pressure (Pa, psia).
qhstot 1 Total HTSTR-component heat transfer (W, Btu h-1) to the

fluid of the VESSEL component.
qsl ncells HTSTR-component heat transfer (W, Btu h-1) to the fluid in

each VESSEL cell.
r nrsx r upper bound (m, ft) of each radial ring or cell (header

variable only).
roan ncells Cell noncondensable-gas densities (kg m-3, lbm ft'3).
roln ncells Cell liquid densities (kg m-3, Ibm ft 3).

rom ncells Cell mixture densities (kg m-3, Ibm ft-3).

E-10

rovn ncells Cell gas densities (kg m 3, Ibm ft-3).

sn ncells Cell plated-solute mass/fluid volume (kg m 3, Ibm ft-3).

t ntsx 8 upper bound (rad, deg) of each azimuthal segment or
sector (header variable only).

tcilmf 1 Time-integrated reactor-core inlet, liquid mass flow (kg,
ibm).

tcivmf 1 Time integrated reactor-core inlet, gas mass flow (kg, lbm).

tcolmf 1 Time integrated reactor-core outlet, liquid mass flow (kg,
ibm).

tcore 1 Reactor-core, mass-averaged liquid temperature (K, OF).
tcovmf 1 Time integrated reactor-core outlet gas mass flow (kg, Ibm).
tdc 1 Downcomer mass-averaged liquid temperature (K, °F).
tin ncells Cell liquid temperatures (K, OF).
tip 1 Lower-plenum, mass-averaged liquid temperature (K, OF).
tsat ncells Cell saturation temperatures (K, OF) based on the total

pressures.
tscore 1 Reactor-core average saturation temperature (K, OF) based

on the reactor-core, volume-averaged total pressure.
tsdc 1 Downcomer average saturation temperature (K, OF) based

on the downcomer volume-averaged total pressure.
tsip 1 Lower-plenum average saturation temperature (K, °F)

based on the lower-plenum, volume-averaged total pres
sure.

tsup 1 Upper-plenum average saturation temperature (K, OF)
based on the upper-plenum, volume-averaged total pres
sure.

tup 1 Upper-plenum mass-averaged liquid temperature (K, OF).
tvn ncells Cell gas temperatures (K, OF).
type 1 Component type (header variable only).
vcore 1 Reactor-core liquid mass (kg, Ibm).

vdclq 1 Downcomer liquid mass (kg, Ibm).

vlnxr xrfaces Liquid radial or x-direction velocities (m s-1, ft s-).
vinyt ytfaces Liquid azimuthal or y-direction velocities (m s-1, ft s-).
vinz zfaces Liquid. axial velocities (m s-1, ft s-l).
vipliq 1 Lower-plenum liquid volume fraction.
vlpim 1 Lower-plenum liquid mass (kg, Ibm).
viplq 1 Liquid mass below downcomer (kg, Ibm).

vliqmss 1 VESSEL-component liquid mass (kg, Ibm).
vmfrl ncei is Liquid mass flows (kg s-1, Ibm h-1) (NAMELIST variable imrfr

= 1].

vmfrlr xrfaces Liquid radial mass flows (kg s-1, Ibm h-') (NAMELIST
variable imfr = 3).

vmfrlt ytfaces Liquid azimuthal mass flows (kg s-1, Ibm h-) (NAMELIST
variable imfr = 3).

vrnfriz z faces Liquid axial mass flows (kg s-', Ibm h-) (NAMELIST variable
imfr = 3).

E-11

vmfrv ncells

vmfrvr

vmfrvt

vmfrvz

vol
vsf low

vupliq
vuplm
v-vnxr
vvnyt
vvnz
x

y

z

xrfaces

ytfaces

zfaces

ncells
1

1
1

xrfaces
ytfaces
zfaces
nrsx

ntsx

nasx

Gas mass flows (kg s-1, lbm h-1) (NAMELIST variable imfr =
1).
Gas radial mass flows (kg s-1, ibm h-1) (NAMELIST variable
imfr = 3).
Gas azimuthal mass flows (kg s-1, Ibm h-) (NAMELIST
variable imfr = 3).
Gas axial mass flows (kg s-1, ibm h') (NAMELIST variable
imfr = 3).
Cell fluid volumes (m3 , ft3) (header variable only).
Fluid mass flow (kg s-', Ibm h-) summed over all VESSEL
component source-connection junctions.
Upper-plenum liquid volume fraction.
Upperrplenum liquid mass (kg, Ibm).
Gas radial or x-direction velocities (m s-i, ft s-l).
Gas azimuthal or y-direction velocities (m s-1, ft s').
Gas axial velocities (m s-1, ft s-').
x upper bound (in, ft) of each x-direction cell (header
variable only).
y upper bound (m, ft) of each y-direction cell (header
variable only).
z upper bound (m, ft) of each axial level or cell (header
variable only).

E-12

APPENDIX F
DESCRIPTION OF TRAC-M BIT FLAGS

TRAC stores a variety of "yes/no" information for all the individual mesh cells of
the 1D and 3D hydrodynamic component-types in the form of 'rbit flags." These
bit flags are the individually addressed on/off (set/not set, 1 or 0) bit positions of
the computer words in the 1D-component DUALPT arrays bitn and bit. Arrays
bitn and bit are dimensioned nfaces (which is NCELLS + 1) by TRACA1lo.

The 3D VESSEL component also uses its own arrays bitn and bit.

The bit flags are accessed with TRAC C-language functions btestc, ibsetc, and

ibclrc:

btestc -- return status of requested bit position

ibsetc -- set requested bit to "on" (1)

ibclrc -- set requested bit to "off' (0)

These TRAC C functions are named after the corresponding Fortran 90
intrinsic functions btest, ibset, and ibclr.

In addition, TRAC has two Fortran functions, on1123 and of1123, to manage
certain bit operations as a group as part of the logic for backups to the start of the
outer stage (on1123 clears all bits except a "protected" group; of 1123 dears a
group of water-packer-logic bits). These TRAC Fortran functions drive the TRAC
C-language bit functions.

TRAC (Version 3.0) currently uses 31 different bit flags (total for 1D and 3D
hydrodynamic components), leaving one position available for future use in a 32
bit word. The bit positions for the TRAC C-language bit functions are accessed
from TRAC with parameter variables that have meaningful names. The parameter
values of the bit flags are assigned in module Bits, which also has
documentation on the use of each bit flag.

Coding Standard : Any change to the bit flag parameterization should be done in
module Bits. Any change to the bit flag logic should be documented in module
Bits.

A listing of module Bits follows. After some general information, a detailed
description of the use of each bit flag is given. TRAC-M inherited its bit flag logic
from TRAC-P. In the development of TRAC-M, the original TRAC-P bit-flag
positions were "remapped" for two reasons: to fit all of the bit positions into a
single 32-bit word and to group the bits into those that carry information defined
at mesh-cell centers and those that carry information defined at cell faces. This
grouping will facilitate any future splitting of the bitn and bit arrays into cell-

F-1

center and cell-face arrays. Module Bits includes a description of the bit remapping.
Use of bit 18 was added after the remapping.

MODULE Bits

BEGIN MODULE USE
USE IntrType

! The array fbit, which holds unchanging geometric information for
! the 3D hydro, is not treated in this file.

Note that TRAC now uses a bit-numbering convention from "right to
! left," starting with bit 1. The F90 intrinsic bit manipulation

routines (ibset, btest, etc.) also go from "right to left," but
start with bit number 0.

Note that the bitn arrays are cleared with 0. (floating point
zero). The Cray and the supported IEEE platforms all represent
0. as all-zeros.

This version of header file bitflags.h re-maps the original flag id
numbers (i.e., as used in the pre-branch code -- Version 5.4.25) into
the range 1 - 32; it also groups all the flag numbers according to
whether the bit is defined for a mesh-cell center or cell face.

The current bit
follows:

id number definitions and their original values are as

current number

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 ***n•
20
21

original number

42
43
3
4
5
6
20
21
24
34
11
12
13
26
27
29
30

ot used***
18
19

cell center/face

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

f
f

F-2

* 22 22 f
! 23 23 f
! 24 10 f
! 25 25 f
! 26 44 f
* 27 45 f
* 28 28 f
! 29 46 f

30 33 f
31 31 f

! 32 32 f

[bits 33 and higher ***not used***

bit 1

I purpose: Used in interfacial heat-transfer logic to determine if the
! vapor temperature crossed the saturation line since the
, previous timestep. Bit 1 is set on in the new-time (bitn)
* array if vapor temperature tvn is greater than tssn (sat.
! temp. at steam partial pressure). If comparison with the

old-time (bit) array shows that the sat. line was crossed, the
! relaxation-limiter logic (transient mode) on changes in chti
! (vapor-side interfacial heat-transfer coefficient x

interfacial area) and chtia (non-condensable interfacial htc
! x interfacial area) is bypassed.

* Use is identical for 1D, 3D, and plenum.

set in: htif (outer stage - 1D, 3D, and plenum) -- bitn also cleared

used in: htif (outer stage - 1D, 3D, and plenum)

INTEGER(sik) satLineCrossVap
PARAMETER (satLineCrossVap=l)

bit 2

i purpose: Bit 2 is the liquid analog of bit 1; its logic for
! clearing, setting, and testing in routine htif is the same as
* for bit 1, comparing liquid temperature tln to tssn. If the

liquid temperature crossed the sat. line since the last timestep,
transient relaxation-limiter logic on alve (liquid-side
interfacial htc x interfacial area) and alv (flashing
interfacial htc x interfacial area) is bypassed.

Use is identical for 1D, 3D, and plenum (but see following
note).

Note that subroutine inner calls entry point on1123 in
subroutine bits. on1123 clears all bits except 11, 12, 13,
32, and 2; intention is to clear all new-time bits (bitn
array) except water packer flags and bits set in prep stage,

F-3

for ID components (plenum is excluded). Protecting bit 2
* is no longer needed, and in any case this logic is not
* parallel with that for bit 1. This does not appear to
* cause an actual error in the calculation, but it should be
! further investigated and at least cleaned up.

!set in: htif (outer stage - D, 3D, and plenum) -- bitn also cleared

used in: htif (outer stage - 1D, 3D, and plenum)

INTEGER(sik) satLineCrossLiq
PARAMETER (satLineCrossLiq=2)

I *************

*** bit 3***

! purpose: Used in reiteration logic when void fraction is out of
* bounds in basic (outer) step. If void fraction exceeds

tolerance of 10(-12) (i.e., if .le. -1.0e-12 or .ge. (1.0+
* 1.Oe-12)), bit 3 is set on and the logical reiteration flag

is set to .true.. If bit 3 has been set on on a previous
iteration, this test on void fraction is bypassed.

! Usage identical in 1D, 3D, and plenum hydro.

set in:

used in:

tf lds3
tf3ds3
tfplbk

tf lds3
tf3ds3
tfplbk

(outer
(outer
(outer

(outer
(outer
(outer

stage - ID)
stage - 3D)
stage - plenum)

stage - 1D)

stage - 3D)
stage - plenum)

INTEGER(sik) oneVoidFrReit
PARAMETER (oneVoidFrReit=3)

bit 4

purpose:

set in:

Two distinct uses. In the initialization stage, bit 4 is set to
indicate that internally used FRICs have been calculated from
user-input K factors (this logic is part of the input-error
checking for consistency at component junctions). During the
calculation, bit 4 is set to indicate mean mass equation
will be solved rather than vapor and liquid mass equations
(flow is single phase or nearly single phase).

The input-checking-use of bit 4 is for 1D components.
The hydro-use of bit 4 is similar in 1D, 3D, and plenum.

The parameter meanEqnSet is meant to be used only for the
hydro calculation, for 1D, 3D, and plenum.

chbset (!nit stage)
tflds (outer stage - 1D)

F-4

used in:

tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

chkbd (init stage)
tflds (outer stage - lD), tflds3 (outer stage - ID)
tf3ds3 (outer stage - 3D)

tfpln (outer stage - plenum), tfplbk (outer stage - plenum)

INTEGER(sik) meanEqnSet
PARAMETER (meanEqnSet=4)

! *** bit 5 ***

purpose: Used in calculation of interfacial heat and mass transfer in
basic (outer) step. Bit 5 is set on in a hydro cell for
condensation conditions (negative gamma and void fraction
greater than zero; see following note on plenum).

Use is very similar in 1D, 3D, and plenum. Plenum logic for
setting does __not_ have test on void fraction.

! set in: tf lds
tf3ds
tfpln

used in: tflds
tf3ds
tfpln

(outer
(outer
(outer

(outer
(outer
(outer

stage
stage
stage

stage
stage
stage

1D)
3D)
plenum)

1D)
3D)
plenum)

INTEGER(sik) condensing
PARAMETER (condensing=5)

*** bit 6***

purpose: Evaporation/flashing analog of bit 5. Bit 6 is set on if
gamma is positive and the void fraction is less than one.

Use is very similar in ID, 3D, and plenum. Plenum logic for
setting does have test on void fraction.

set in: tf lds
tf3ds
tfpln

used in: tflds
tf3ds
tfpln

(outer
(outer
(outer

(outer
(outer
(outer

stage
stage
stage

stage
stage
stage

1D)
3D)
plenum)

1D)
3D)
plenum)

INTEGER(sik) evapOrFlashing
PARAMETER (evapOrFlashing=6)

bit 7 ***

F-5

!

!
I

I

!
!

I

I

I

purpose:

set in:

When bit 7 is on, the old-time/new-time weighting factor
for donor-cell quantities used in the lD and plenum
mass and energy equations is set to 1.0. This forces
the fluxes to 100% new-time weighting. The explicit/
implicit weighting factor is local variable xvset, which is
also local array dalp, which is array rhs in the ID and
plenum data.

Bit 7 is used in similar fashion by 1D and plenum; it is not
used by 3D for any purpose, including the 3D xvset logic.
Bit 7 is cleared in subroutine htif for all components,
but this has no effect on 3D. htif is called only on the
first Newton iteration (oitno=l); once bit 7 is set for a
given series of iterations, it remains set.

htif (outer stage - 1D, 3D, and plenum) -- bitn cleared

tflds (outer stage - 1D)

tfpln (outer stage - plenum)

used in: tflds (outer stage - ID)
tfpln (outer stage - plenum)

INTEGER(sik) freezeXvset
PARAMETER (freezeXvset=7)

S*************
!**bit 8**

purpose: Used in equation set logic in basic (outer) stage.
Set in the back-substitution routines for use in
subsequent iterations for a given timestep for basic
energy equation. Bit 8 is set on for situation of
almost, but not quite, solid water in a cell (very small
bubbles). The old-time void fraction must be .le.
1.0e-8, and the new-time void fraction must be .1t. -1.0e-12.
When on, bit 8 forces the vapor temperature to equal the
saturation temperature corresponding to the partial pressure
of steam.

The void fraction test for setting bit 8 has been
modified by update fixb2l (bit 8 was bit 21 in Version
5.4.25).

Use is the same in 1D, 3D, and plenum.

set in: tf lds3
tf3ds3
tfplbk

used in: tflds
tf3ds
tfpln

(outer stage - 1D)

(outer stage - 3D)
(outer stage - plenum)

(outer stage - 1D)

(outer stage - 3D)
(outer stage - plenum)

F-6

INTEGER(sik) tinyBubbles
PARAMETER (tinyBubbles=8)

*** bit 9 ***

purpose: Set in basic-(outer) step when special logic is used to
change the current guess for the new-time value of the void
fraction before linearization. If bit 9 is set (from a
previous iteration), the special void fraction logic
is bypassed (i.e., the bit is used to allow only one use of
this logic in a given series of Newton iterations).

ID, 3D, and plenum logic the same (ID and plenum use old- and
new-time bits 20 and 21 for velocity-reversal information;
3D uses old/new time donor-cell factor arrays (owlz, wlz,
etc.) for same purpose.

set in:

used in:

tflds
tf3ds
tfpln

tflds
tf3ds
tfpln

(outer
(outer
(outer

(outer
(outer
(outer

stage
stage
stage

stage
stage
stage

ID)
3D)
plenum)

ID)
3D)
plenum)

INTEGER(sik) triedVoidFrReset
PARAMETER (triedVoidFrReset=9)

! *** bit 10 ***

! purpose:

set in:

Used in 3D hydro only (there is identical logic in the ID
that does not use a bit flag). Bit 10 is set on for a mesh
cell when the net noncondensable ("air") flow into the cell
is .gt. 1.0e-20 kg for the current timestep.
Bit 10 subsequently is used in the same step in the logic to
set an initial guess for the air partial pressure. If bit
10 is not on the initial guess is bypassed (there are other
tests that also can bypass the air logic).
The initial air partial pressure guess is the total
pressure minus the saturation pressure corresponding to
the current liquid temperature.

The 1D logic that corresponds to that for bit 10 is in
subroutine tflds3, at statement label 1337 in the pre
branch code (Version 5.4.25); the air flow is in array dr.

tf3ds (outer stage - 3D)

used in: tf3ds3 (outer stage - 3D)

INTEGER(sik) netAirFlow
PARAMETER (netAirFlow=10)

F-7

I

!

!

I

I

I

I

!

!

bit 11

purpose: Used with bits 12 and 13 in ID water packing/stretch logic.
Used with bit 13 in 3D water pack/stretch logic. Not used

! by plenum.

* Water packing and stretching are checked for determined?in each ID and
! 3D cell at the start of the back-substitution
! routines of the outer stage (tflds3 and tf3ds3

for 1D and 3D, respectively). If water packing
is detected, the back substitution
is skipped and backup to the start of outer is forced.
In the 1D bit, 11 is set on for packing or stretching at a
cell's left face (bit 12 is used for the right face); in the

I case of a stretch, bit 13 is also set on. In the 3D, bit 11
indicates packing and bit 13 indicates stretch for the cell
(the stretch information is passed to the bd array by
routine j3d).

Note that subroutine inner calls entry point on1123 in
subroutine bits to clear all 1D bits _except_ 11, 12, 13, 32,
and 2 (see additional notes on bit 2). Subroutine poster
call bits entry point of1123 to _clear_ ID 11, 12, and 13 if
water packing flag ipakon .ne. 0 (bit and bitn arrays).
j3d (vessel source junction boundary array routine) also
calls ofi123 for bd(53).

Parameter packAtLeftFace is intended for 1D use.
Parameter pack3D is intended for 3D use.

j3d -
tflds3
tf3ds3
poster

bd(53) only
(outer stage - ID)
(outer stage - 3D)
(post stage - 1D) -- bitn

.ne.

tflds (outer stage - 1D)

tfldsl (outer stage - 1D)

tflds3 (outer stage - 1D)

tf3dsl (outer stage - 3D) -- bit

tf3ds3 (outer stage - 3D) -- bit

and bit cleared if ipakon
0

13 not used
13 not used

INTEGER(sik) packAtLeftFace
INTEGER(sik) pack3D
PARAMETER (packAtLeftFace=ll)
PARAMETER (pack3D=11)

* bit 12

purpose: Used with bits 11 and 13 in 1D water packing/stretch logic.
Not used by 3D or plenum. Indicates pack or stretch
detected at 1D cell's right face. See additional notes

F-8

set in:

used in:

!
I

!
!
!

!

under bit 11.

See bit 11 on use of entry points on1123 and of1123 in bits.

bd(53) only
(outer stage - ID)
(post stage - ID) -- bitn and bit

.ne. 0
cleared if ipakon

set in:

used in:

INTEGER(sik) packAtRightFace
PARAMETER (packAtRightFace=12)

bit 13

purpose: Used with bits 11 and 12 in ID water packing/stretch logic.
! Used with bit 11 in 3D water pack/stretch logic. Not used
! by plenum.

! See bit 11 on use of entry points on1123 and of1123 in bits.

Parameter stretch is intended for ID use.
Parameter stretch3D is intended for 3D use (this is passed
to the bd array by routine j3d).

j3d -- bd(53) only
tflds3 (outer stage - ID)
tf3ds3 (outer stage - 3D)

poster (post stage - ID) -- bitn and bit cleared if ipakon
.ne. 0

used in: tfldsl (outer stage - 1D)
tflds3 (outer stage - 1D)

INTEGER(sik) stretch
INTEGER(sik) stretch3D
PARAMETER (stretch=13)
PARAMETER (stretch3D=13)

bit 14

purpose: Used in timestep-size control logic, in conjunction with
bit 15. Bits 14 and 15, used with the void fraction arrays
alpn, alp, and alpo, save void fraction change behavior
looking back over three steps. Bits 14 and 15
control calculation of variables oau and oal (in common
block chgalp), which are used in subroutine newdlt to

determine timestep size at start of next step. oau is the
largest increase in void fraction in the system immediately
after a decrease, which in turn had followed an increase

F-9

j3d -
tflds3
poster

tflds (outer stage - ID)
tfldsl (outer stage - ID)
tflds3 (outer stage - ID)

set in:

* bit 15

purpose:

set in:

used in:

Used in conjunction with bit 14 for oscillating-void
fraction timestep-size control. Bit 15 is set on (bitn
array) for a hydro cell when old-time bit 14 (bit array)
is on (i.e., when void fraction had increased during
previous timestep). Bit 15 is saved in the old-time
bit array for use in the oau/oal logic.

Use of bit 15 is identical in 1D, 3D, and plenum.

Same note applies concerning variables xoau and xoal
as for bit 14.

poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

poster (post stage - ID)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

INTEGER(sik) oldVoidFrUp
PARAMETER (oldVoidFrUp=15)

*** bit 16 ***

F-10

(all for a given hydro cell). oal measures the analogous
situation for a decrease in void fraction. Bit 14 is set on
for a hydro cell when void fraction has increased in that
cell w.r.t. previous timestep, in the bitn array.

Use of bit 14 is identical in 1D, 3D, and plenum.

Note that blkdat now sets variables xoau and xoal (common
block chgalp) to 1.0, which effectively turns off the
oscillating-void-fraction (oau or oal) timestep-size control.
Void-fraction-change timestep-size control now only uses
variables dau and dal, which only look back to the
previous step. The dau/dal logic needs only arrays alpn
and alp, and not bits 14 and 15.

set in: poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

used in: poster (post stage - 1D)
bkstb3 (post stage - 3D)
plen3 (post stage - plenum)

INTEGER(sik) newVoidFrUp
PARAMETER (newVoidFrUp=14)

t

!

!

purpose: Set on for a cell when net mass flow into cell is negative.
When bit 16 is on, the water pack/stretch logic in the back
substitution routines is bypassed.

Use is same in ID, 3D, and plenum.

set in: tflds (outer stage - ID) -- always cleared before logic for
setting

tf3ds (outer stage - 3D)

tfpln (outer stage - plenum)

used in: tflds3 (outer stage - 1D)
tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)

INTEGER(sik) netMassOut
PARAMETER (netMassOut=16)

*** bit 17

purpose: Used in equation set logic. The back-substitution routines
have logic to force the void fraction to 1.0 or 0.0 if bit 4
(for one of the single-phase mass equation sets) is on. If
bit 17 also is on, the forcing to 0.0 is bypassed. Instead,
equation to set steam pressure to saturation pressure
corresponding to the liquid temperature has been used.

Use is same in 1D, 3D, and plenum.

set in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)

used in: tflds3 (outer stage - 1D)

tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)

INTEGER(sik) specEqnSteamP
PARAMETER (specEqnSteamP=17)

bit 18 *

purpose: Used to force the variable xvset to zero in the semi-implicit
mass and energy equations. This is necessary for proper
functioning of various separation models that flux void
and/or liquid fractions out of a cell that are not equal to
the mean cell quantities

Currently Used only in the ID

set in: tee2 (outer stage - 1D)

used in: tflds (outer stage - 1D)

F-11

INTEGER(sik) noXvset
PARAMETER (noXvset=18)

* bit 19 *** not used

I ****bi******20

!**bit 20 ***

purpose:

! set in:

ID and plenum hydro only (including break and fill
components). Cell-face flag to indicate vapor velocity
direction; used in logic for vapor donor cell weighting
factors and vapor velocity reversal.
The vapor velocity reversal information is used with
corresponding liquid information in the reiteration
logic (see bits 22 and 23), and alone in the
interfacial shear logic (see bit 26). Vapor velocity
reversal information also is used in logic for special
void fraction guess (see bit 9).

Bit 20 is set on when vapor velocity is negative at
corresponding face.

tfldsl (outer stage - ID)
tflds3 (outer stage - ID)

used in: breakl (prep stage) -- bd(38) only
filll (prep stage) -- bd(38) only
flux (prep stage - 1D)

auxpln (outer stage - plenum) - bd(53) only
tflds (outer stage - 1D)

tfldsl (outer stage - 1D) -- bd(53) only
tflds3 (outer stage - 1D)

tfpln (outer stage - plenum) -- bd(38) and bd(53) only
poster (post stage - ID) -- bit 21 not used
stbme (post stage - 1D)

tee3 (post stage - 1D)

INTEGER(sik) negVapVel
PARAMETER (negVapVel=20)

bit 21

purpose: Liquid analog of bit 20.
1D and plenum hydro only (including break and fill
components). Cell-face flag to indicate liquid velocity
direction; used in logic for liquid donor cell weighting
factors and liquid velocity reversal.
The liquid velocity reversal information is used with
corresponding vapor information in the reiteration
logic (see bits 22 and 23); there is no corresponding use in
the vapor-direction interfacial shear logic (see bit 26).
Liquid velocity reversal information also is used in logic

F-12

!

!

set in:

used in:

!
!
!
!

INTEGER(sik) negLiqVel
PARAMETER (negLiqVel=21)

! ** * bit 22 ****

Sbit 22

purpose: Used in logic that determines if a reiteration is forced
by a flow reversal. Bit 22 is set on if the vapor mass-flow
threshold for a flow reversal reiteration is exceeded.
This threshold is set by variable frev (common block xvol).

Used in similar fashion for 1D and 3D; not used by plenum.
In 3D bit 22 is for radial (or x) face [bits 24 and 25 are
used for same purpose for axial and theta (or y) faces].
For ID, new-time bit 20 is first used to check for a vapor
flow reversal; then bit 22 is used to see if the
vapor mass flow sensitivity level has been exceeded.

Parameter significantVapFlow is intended for 1D use.

Parameter significantVapFlowxr is intended for 3D use.

set in: tflds (outer stage - 1D)

tf3ds (outer stage - 3D)

used in: tflds3 (outer stage - ID)
tf3ds3 (outer stage - 3D)

INTEGER(sik) significantVapFlow
INTEGER(sik) significantVapFlowxr
PARAMETER (significantVapFlow=22)
PARAMETER (significantVapFlowxr=22)

*** bit 23 ***

purpose: Liquid analog of bit 22 (similar 3D use for bits 31 and 28).

F-13

for special void fraction guess (see bit 9).

Bit 21 is set on when liquid velocity is negative at
corresponding face.

tfldsl (outer stage - 1D)

tflds3 (outer stage - 1D)

breakl (prep stage) -- bd(38) only

filll (prep stage) -- bd(38) only
flux (prep stage - 1D)

auxpln (outer stage - plenum) - bd(53) only

tflds (outer stage - ID)
tfldsl (outer stage - 1D) -- bd(53) only

tflds3 (outer stage - 1D)

tfpln (outer stage - plenum) -- bd(38) and bd(53) only
stbme (post stage - ID)

tee3 (post stage - 1D)

!
!

!

!

!
!

!
!
!

* Used in logic that determines if a reiteration is forced
! by a flow reversal. Bit 23 is set on if the liquid mass-flow
* threshold for a flow reversal reiteration is exceeded.
, This threshold is set by variable frev (common block xvol).

* Used in similar fashion for 1D and 3D; not used by plenum.
! In 3D, bit 23 is for radial (or x) face [bits 31 and 28 are
, used for same purpose for axial and theta (or y) faces].

For ID, new-time bit 21 is first used to check for a liquid
flow reversal; then bit 23 is used to see if the
liquid mass flow sensitivity level has been exceeded.

Parameter significantLiqFlow is intended for 1D use.

Parameter significantLiqFlowxr is intended for 3D use.

set in: tflds (outer stage - ID)
tf3ds (outer stage - 3D)

used in: tflds3 (outer stage - 1D)
' tf3ds3 (outer stage - 3D)

INTEGER(sik) significantLiqFlow

INTEGER(sik) significantLiqFlowxr
PARAMETER (significantLiqFlow=23)
PARAMETER (significantLiqFlowxr=23)

bit 24

purpose: 3D hydro only; same use as bit 22, for axial face.
! Uses variable frev for vapor flow threshold.

set in: tf3ds (outer stage 3D)

used in: tf3ds3 (outer stage - 3D)

INTEGER(sik) significantVapFlowz
PARAMETER (significantVapFlowz=24)

bit 25 *

purpose: 3D hydro only; same use as bit 22, for theta (or y) face.
* Uses variable frev for vapor flow threshold.

set in: tf3ds (outer stage 3D)

used in: tf3ds3 (outer stage - 3D)

INTEGER(sik) significantVapFlowyt

PARAMETER (significantVapFlowyt=25)

bit 26

F-14

purpose: Set in post stage to indicate vapor velocity has changed

direction during timestep being completed. Used in prep

stage of subsequent timestep in calculation of interfacial

shear coefficients. If bit is on, relaxation-limiter logic

for interfacial shear coefficient (used for transient mode)

! is turned off.

! Used in similar fashion for ID and 3D; not used by plenum.

! In 3D, bit 26 is for theta (or y) face [bits 27 and 29 are

! used for same purpose for axial and radial (or x) faces].

! ID sets new-time bit 26 according to status of old-time

! bit 20 and new-time vapor velocity; 3D sets bit 26 according

! to status of old-time and new-time donor-cell factors

! for vapor at theta (or y) face (arrays owvyt and wvyt).

Parameter changeVapVel is intended for 1D use.

Parameter changeVapVelyt is intended for 3D use.

set in: poster (post stage - ID)
ff3d (post stage - 3D)

used in: femom (prep stage - 1D) (Note: StbVellD does this in Version 3.0.)

cif3 (prep stage - 3D)

INTEGER(sik) changeVapVel

INTEGER(sik) changeVapVelyt
PARAMETER (changeVapVel=26)
PARAMETER (changeVapVelyt=26)

bit 27 *

purpose: 3D hydro only; same use as bit 26, for axial face. Set

according to status of arrays owvz and wvz.

set in: ff3d (post stage - 3D)

used in: cif3 (prep stage - 3D)

INTEGER(sik) changeVapVelz
PARAMETER (changeVapVelz=27)

bit 28

purpose: 3D hydro only; same use as bit 23, for theta (or y) face.

Uses variable frev for liquid flow threshold.

I set in: tf3ds (outer stage - 3D)

used in: tf3ds3 (outer stage - 3D)

INTEGER(sik) significantLiqFlowyt
PARAMETER (significantLiqFlowyt=28)

F-15

bit 29

purpose: 3D hydro only; same use as bit 26, for radial (or x) face.
Set according to status of arrays owvxr and wvxr.

set in: ff3d (post stage - 3D)

used in: cif3 (prep stage - 3D)

INTEGER(sik) changeVapVelxr
PARAMETER (changeVapVelxr=29)

* bit 30

purpose: Flag for choked-flow model. Bit 30 is set on for a cell edge
if subroutine choke determines choked flow exists (the model
itself is invoked by user-input). ID only.

The logic used to set bits 11 and 12 for a water
pack condition in the 1D is bypassed if bit 30 indicates
choking at the left or right cell face in question.

If bit 30 is on, subroutine ecomp prints -l.llle-ll for the
liquid wall friction for ID components.

set in: tfldsl (outer stage - 1D) -- calls choke

used in: ecomp (large edits for 1D)
femom (prep stage - 1D) -- logic not used

(Note: StbVellD does this in Version 3.0; also not actually
using the logic.)

tfldsl (outer stage - ID) -- bd(53) only, used to set same
bit

tflds3 (outer stage - 1D)

INTEGER(sik) chokedFlowOn
PARAMETER (chokedFlowOn=30)

* bit 31

purpose: 3D hydro only; same use as bit 23, for axial face.
Uses variable frev for liquid flow threshold.

set in: tf3ds (outer stage 3D)

used in: tf3ds3 (outer stage - 3D)

INTEGER(sik) significantLiqFlowz
PARAMETER (significantLiqFlowz=31)

' ***bit 32***

F-16

purpose: Used to control choked-flow model when namelist variable
icflow is 2 (which invokes user-control of model at all ID
cell faces). Bit 32 is set in input stage for a face when
icflow .eq. 2 and component input array variable icflg is
nonzero (model is on for face). ID only.

If icflow .eq. 2 and bit 32 is not set, the call to choke
in tfldsl is bypassed (see bit 30).

Bit 32 also is used by subroutine chkbd as an input check
on the consistency of choked-flow-option array icflg at
component junctions.

Bit 32 is one of the bits "protected" by entry point on1123
in subroutine bits (see notes on bit 11).

set in: rcomp (input for ID)
preper (prep stage - 1D) -- after bitn cleared, bit 32 reset

if old-time bit 32 was on

used in: chkbd (boundary array consistency check)
preper (prep stage - 1D) -- only to reset new-time bit 32

tfldsl (outer stage - ID)

INTEGER(sik) userChokeControl
PARAMETER (userChokeControl=32)

bits 33 and higher *** not used

END MODULE Bits

F-17

APPENDIX G
ADDING NEW VARIABLES TO TRAC

This appendix includes "coding standards" and "coding requirements." A
standard promotes maintainability and extensibility. A requirement indicates that
the code will not function properly if it is not followed.

Numerous coding examples in this appendix show the addition of a new variable
to TRAC; sample additions that would be entered (or existing coding that would
be modified) by a TRAC developer are shown in bold.

Note: XTV/XMGR5 Graphics System. TRAC-M/F90 Version 3.0 uses a now
obsolete version of the XTV/XMGR5 graphics system, which is implemented by
Fortran module xtv. Module Xtv is to be replaced in a future version of TRAC
M/F90 by modules CXtvXFaces, XtvComps, XtvData, XtvDump, and
xtvSetup. The new implementation of the XTV/XMGR5 logic will include many
arrays and derived types, all of which will be defined in module XtvData.

G.1. New Component Variables

G.1.1. Summary

Component Data-Type genTabT (FLT):

1. Modify the definition of data-type genTabT and the parameterization of the
length of data-type genTabT.

2. Add the new variable to the dump/restart file.

3. Read the new variable from the dump/restart file.

4. Modify subroutine GetGenTable (as needed).

5. Echo new input variable (as needed).

6. Add to edits (as needed).

Component Data-Type "comp type"TabT (VLTs):

1. Modify the definition of data type "comp-type"TabT and the
parameterization of the length of data-type "comp-type"TabT.

2. Add the new variable to the dump/restart file.

3. Read the new variable from the dump/restart file.

G-1

4. Add or modify subroutine Get"Comp-type"Tab (as needed).

5. Add or modify subroutine Set"Compjtype"Tab (as needed).

6. Echo new input variable (as needed).

7. Add to edits (as needed).

Component Arrays:

For "comp-type"-specific arrays (1D components):

1. Add declaration of array to type "comp-type"ArrayT in module
"Comp-type"zrray.

2. Add allocation of storage for array with call to subroutine TRACA11o in "comp-type"
input routines, which are in module "Comp-type".

3. Add array to dump file with call to subroutine bfoutn in "compjtype" dump
routine in module "Comptype".

4. Read array from input file tracin with call to subroutine loadn, and echo to output
file trcout with call to subroutine warray using "comp.type" input routine in
module "Comp-type" after storage allocation.

5. Read array from restart file trcrst with call to subroutine bf inn and echo (restart)
array to trcout with call to subroutine warray, using "comp-type" restart routine
in module "Comptype".

6. Write array to large (major) edits in trcout (as needed).

For General Data Arrays (1D components):

1. Add declaration of array to type glDArrayT in module GeniDArray.

2. Add allocation of storage for array with new call to subroutine TRACA11o, inserted
in subroutine AllocGenlD, which is in module GeniDArray.

3. Add array to dump file with call to subroutine bfoutn in subroutine dcomp.

4. Read array from input file tracin with call to subroutine loadn, and echo to output
file trcout with call to subroutine warray, using subroutine rcomp after storage
allocation.

5. Read array from restart file trcrst with call to subroutine bf inn, and echo (restart)
array to trcout with call to subroutine warray, using subroutine recomp.

G-2

6. Write array to large (major) edits in trcout (as needed) with call to subroutine
wcomp.

7. If the array stores old- or new-time values of a variable, add assignment statements
for it to subroutine TimeUpGenlD (module GeniDArray) (in two places).

8. If appropriate, add an assignment statement for the array to subroutine
BackUpGenlD (module GeniDArray).

9. On an as-needed basis, add a new index variable for the array to the module
GeniDArray data interface, and add a corresponding array reference to the case
construct in subroutine GetIDArrayPointer (module GeniDArray).

For the 3D VESSEL component, the procedure to add an array is similar. The storage
arrays and service routines are described in Section H.1.4.2.

System Services

If the new variable is needed for intercomponent communication that is supported by
the System Services, the System Services should be modified.

G.1.2. Adding a New Variable To Data-Type genTabT (the component FLT)

Each TRAC component type has a set of data that is "global" for a given component and
where the variables are the same for all component types (mostly scalar variables) that
are stored in elements of derived data-type genTabT (this is the TRAC-P FLT).
Examples of such data are the component type and the user-assigned component
number. Data for a given individual component are stored in array genTab, which is of
derived-type genTabT and dimension maxComps.

All genTabT/genTab-related logic is handled by

module Flt.

The logic in module Flt comprises

"* a definition of derived data-type genTabT (declaration of its elements);

"* a declaration of array genTab;

"* parameterization of the total length of data-type genTabT (for dump/
restart);

"• subroutine GenTableDump to add an individual component's variables that
are stored in array genTab to the dump/restart file;

G-3

subroutine GenTableRst to read a component's genTab data from the
dump/restart file; and

subroutine GetGenTable to access certain genTab data of a component other
than the current instantiated component (e.g., data needed by a heat structure
from a coupled hydro component).

The following code fragment gives an overview of the areas in module Flt that are
affected when a new variable is added to genTabT. After this code fragment, specific
details are given.

Fragment of current coding in module Fit (file FltM. f

MODULE Flt

TYPE genTabT
REAL(sdk) htlsci
REAL(sdk) htisco
REAL(sdk) pinteg
REAL(sdk) title(4)
INTEGER(sik) icflg
INTEGER(sik) id
INTEGER(sik) irest
INTEGER(sik) typeIndex
INTEGER(sik) lenvlt
INTEGER(sik) lextra
INTEGER(sik) ncellt
INTEGER(sik) numbml
INTEGER(sik) numbm2
INTEGER(sik) numbm3
INTEGER(sik) numbnl
INTEGER(sik) numbn2
INTEGER(sik) numbn3
INTEGER(sik) nodes
INTEGER(sik) num
REAL(sdk) type

END TYPE genTabT

TYPE (genTabT) ,DIMENSION (maxComps) genTab

INTEGER(sik) genDumpSize

PARAMETER (genDumpSize=23) <<<--- parameter genflDumpSize

CONTAINS

SUBROUTINE GenTableDump (compInd, reordered)

G-4

SUBROUTINE GenTableRst (complnd)

SUBROUTINE GetGenTable (name, compInd, ival, rval,reordered)

End fragment of current coding

To add real variable xxxxx or integer variable iiiii to genTabT, the following steps
must be taken:

1. Modify the definition of data type oenTabT and the parameterization of the length
of data-type cenTabT:

When adding real variable xxxxx to genTabT:
la. add its declaration to the elements of type genTabT and,
lb. increase the size of parameter-variable genDumpSize as appropriate:

TYPE genTabT

REAL (sdk) type
REAL (sdk) xxxxx

END TYPE genTabT

INTEGER (sik) genDumpSize
PARAMETER (genDumpSize=n)

where n = the total number of words in type genTabT (reals + integers), counting
individual array elements separately (e.g., four words for genTabT variable-array
title). In Version 2.119, genDumpSize = 23. If variable xxxxx is to be an array, specify
its dimension (e.g., five words) within its declaration in genTabT:

REAL(sdk) xxx;x(5)

Follow an analogous procedure when adding integer variable iii i i to genTabT:

G-5

TYPE genTabT

REAL (sdk) type
INTEGER(sik) iiiii

END TYPE genTabT

INTEGER (sik) genDumpSize
PARAMETER (genDumpSize=n)

where again, n = the total number of words in data-type genTabT.

Coding Standard: The existing ordering of variables in data-type genTabT is not
significant. However, as described below, the order in which genTabT elements are
added to the dump file must match the order in which they are read from the restart file.
This ordering mostly follows the declarations in genTabT (data element num is dumped
first). New declarations in crenTabT should be appended to the end of the current
declarations.

2. Add the new variable to the dump/restart file:

Fragment of current coding in module Flt (file F1tM. f):

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfoutis (genTab (ordInd) %num, 1, ictrld)
CALL bfouts (genTab(ordInd) %htlsci, 1, ictrld)

CALL bfoutn(genTab(ordInd)%title, 4, ictrld)

CALL bfoutis(genTab(ordInd) %nodes, 1, ictrld)
CALL bfouts (genTab(ordInd) %type, 1, ictrld)

RETURN

G-6

END SUBROUTINE GenTableDump

End fragment of current coding

Subroutine GenTableDump calls subroutines bfoutis, bfouts, and bfoutn, which are
in module Restart. They are the standard service routines for dumping integer scalar,
real scalar, and real array data, respectively; module Restart also has service routine
subroutine bfoutni for dumping integer array data (see Appendix B), which presently
are not in data-type genTabT. The first actual argument in the bf out calls is the
(starting) location of the data to be dumped by the call; it includes index-variable
ordInd, which is the Component Index into array genTab. ordInd is calculated in
subroutine GenTableDump according to input argument-flag reordered (reordered
has been set if the call to GenTableDump is done after the network logic and call to
subroutine ASIGN from subroutine INPUT). The second argument in the bf out calls is
the number of words to add to the dump file for the call. The third argument, ictrld, is
the standard control array for the dump logic, which should not have to be changed.

When adding real scalar variable xxxxx to genTabT: add a call in subroutine
GenTableDump to service routine subroutine bf outs.

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfouts (genTab(ordInd) %type, 1, ictrld)
CALL bfouts (genTab (ordind)9 xýaacx, 1, ictrld)

RETURN
END SUBROUTINE GenTableDump

When adding integer scalar variable iiiii to genTabT: add a call in subroutine
GenTableDump to service routine subroutine bfoutis.

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfouts (genTab(ordInd) %type, 1, ictrld)
CALL bfoutis(genTab(ordind)%iiiii, 1, ictrld)

RETURN
END SUBROUTINE GenTableDump

G-7

When adding real array variable xxxxx (e.g., of length five words) to genTabT: add a call
in subroutine GenTableDump to service routine subroutine bfoutn.

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfouts (genTab (ordInd) %type, 1, ictrld)
CALL bfoutn(genTab (ordInd)'ý,aaa, 5, ictrld)

RETURN
END SUBROUTINE GenTableDump

When adding integer array variable iiiii (e.g., of length five words) to genTabT: add a
call in subroutine GenTableDump to service routine subroutine bfoutni.

SUBROUTINE GenTableDump (compInd, reordered)

CALL bfouts (genTab(ordlnd) %type, 1, ictrld)
CALL bfoutni (genTab(ordInd)'siiiii, 5, ictrld)

RETURN
END SUBROUTINE GenTableDump

Coding Requirement: The order of the calls to the bf out routines for individual data
elements in subroutine GenTableDump must match the order of the calls to the bf in
routines in subroutine GenTableRst (see following section).

Coding Standard: New calls to the bfout routines in subroutine GenTableDump should
be appended to the end of the list of existing calls.

3. Read the new variable from the dump/restart file:

Fragment of current coding in module Fit (file F1tM. fl:

SUBROUTINE GenTableRst (compInd)

G-8

! The first element, num, is read in SUB rdrest
to check missing component list

CALL bfins (genTab(compInd) %htlsci, 1, ictrlr)

CALL bfinn(genTab(compInd) %title, 4, ictrlr)
CALL bfinis(genTab(compInd) %icflg, l,ictrlr)

CALL bfins(genTab(compInd)%type, 1, ictrlr)

RETURN
END SUBROUTINE GenTableRst

End fragment of current coding

Subroutine GenTableRst calls subroutines bfinis, bf ins, and bfinrn, which are in
module Restart. They are the standard service routines for reading from the dump/
restart file integer scalar, real scalar, and real array data, respectively; module Restart
also has service routine subroutine bfinni for reading integer array data from the
dump/restart file (see Appendix B). The first actual argument in the bf in calls is the
(starting) location of the data to be read by the call; this argument includes index variable
compInd, which is the component index into array genTab (by the point where the
dump/restart file is read, the ordInd logic used by subroutine GenTableDump is not
needed). The second argument in the bf in calls is the number of words to read from the
dump/restart file for the call. The third argument, ictrir, is the standard control array
for the restart logic, which should not have to be changed.

When adding real scalar variable xxxxx to genTabT: add a call in subroutine
GenTableRst to service routine subroutine bf ins.

SUBROUTINE GenTableRst (compInd)

CALL bfins (genTab(compInd) %type, 1, ictrlr)
CALL bfins (genTab(compInd)9*oa, 1, ictrlr)

RETURN
END SUBROUTINE GenTableRst

When adding integer scalar variable iiiii to genTabT: add a call in subroutine
GenTableRst to service routine subroutine bfinis.

G-9

SUBROUTINE GenTableRst (compInd)

CALL bfins (genTab (compInd) %type, 1, ictrlr)
CALL bfinis(genTab(compInd)%iiiii, i,ictrlr)

RETURN
END SUBROUTINE GenTableRst

When adding real array variable xxxxx (e.g., of length five words) to genTabT: add a
call in subroutine GenTableRst to service routine subroutine bf inn.

SUBROUTINE GenTableRst (compInd)

CALL bfins (genTab(compInd) %type, 1, ictrlr)
CALL bfinn (genTab (compInd) 9,axxxxx, 5, ictrlr)

RETURN
END SUBROUTINE GenTableRst

When adding integer array variable iiiii (e.g., of length five words) to genTabT: add a
call in subroutine GenTableRst to service routine subroutine bf inni.

SUBROUTINE GenTableRst (compInd)

CALL bfins (genTab(compInd) %type, 1, ictrlr)
CALL bfinni (genTab(compInd)%iiiii, 5, ictrlr)

RETURN
END SUBROUTINE GenTableRst

Coding Requirement: The order of the calls to the bf in routines for individual data
elements in subroutine GenTableRst must match the order of the calls to the bfout
routines in subroutine GenTableDumip.

Coding Standard: New calls to the bf in routines in subroutine GenTableRst should be
appended to the end of the list of existing calls.

G-1O

4. Adding a variable to oenTabT that will be used when the component is not
instantiated:

Subroutine GetGenTable is a service routine in module Flt that is called from routines
that need GenTabT data of a component that is not instantiated. For example, the
HTSTR subroutine irodl needs the component type of hydro components that are
coupled to a specific HTSTR's inner and/or outer surface.

The argument list of subroutine GetGenTable can return either a real or integer scalar
data element for any component index, either reordered or not reordered:

SUBROUTINE GetGenTable (name, compInd, ival, rval,reordered)

IF (name.EQ.'lenvlt') THEN
ival=genTab (ordInd) %lenvlt

ELSEIF (name.EQ.'type') THEN
rval=genTab (ordInd) %type

ELSEIF (name.EQ.'typeIndex') THEN
ival=genTab (ordInd) %typeIndex

ELSEIF (name.EQ.'ncellt') THEN
ival=genTab (ordInd) %ncellt

ELSE
CALL error(l, '*GetGenTable* variable name not recognized ',4)

ENDIF

RETURN
END SUBROUTINE GetGenTable

Subroutine GetGenTable currently (Version 2.119) is set up to treat four GenTabT data

elements:

lenvlt, type, typeIndex, and ncellt

New or altered models that require other data elements of GenTabT from uninstantiated
components should make appropriate additions to subroutine GetGenTable.

Coding Standard: Subroutine GetGenTable should be used to return all data elements

of data-type GenTabT from uninstantiated components.

Using a Variable in genTabT

Instantiated Components

For cases where a genTabT data element is used in a routine that is processing data of a
specific (instantiated) component (for Component Index cco or cci), refer directly to the
genTabT data element, using the appropriate component index into array genTab (cco

G-11

after the reordering of components by subroutine ASIGN or cci for components as they
are listed in the input deck, before the network-logic reordering).

For example:

SUBROUTINE tfldsl(alpo,alp,rov,rol,vl,vv,p,vlt,vvt,vln,vvn,dr, &

IF (genTab(cco)%tYPe.NE.pumph) mscO=msc

iccmx=genTab (cco) %um

SUBROUTINE tflds3 (alp,p,vlt,vvt, fa,ara,arv,chti,alv,alve,chtia,

WRITE (imout,599) nstep,oitno,genTab(cco)%-aum,j,etime &

Noninstantiated Components

For cases where a genTabT data element of an uninstantiated component is needed, use
a call to subroutine GetGenTable, which is in module Flt. Currently (Version 2.119),
there are seven calls to GetGenTable in TRAC, four from module Hpss (for the HPSS
initialization) and three from module RodCrunch (providing hydrodynamic
Component information to HTSTRs).

The following example is taken from subroutine irodl in module RodCrunch:

60 CALL GetGenTable('type',j,iduml,ityp, .TRUE.)

where

argument 1 is a character string corresponding to one of the
genTabTdata elements treated by GetGenTable,

argument 2 is the index of the component requested by irodl,

argument 3 receives a returned integer value,

G-12

argument 4 receives a returned real value, and

argument 5 indicates if the component list has been reordered.

G.1.3. Adding A New Variable To Data-Types "comp-type" TabT

(The Component VLTs)

Each TRAC component type has a set of data that is "global" for a given component and
where the variables are common to all components of a given type. These data sets,
which are the TRAC-P VLTs, comprise mostly scalar variables that are defined by
elements of one of a set of derived data-types; there is a separate derived type for each of
the 10 component-types. The 10 VLT data types currently defined in TRAC are

breakTabT
fillTabT
pipeTabT
plenTabT
pri zeTabT
pumpTabT
rodTabT
teeTabT
valveTabT
vessTabT

These 10 derived data types are referred to as a group by the term

"compjtype"TabT.

Ten arrays, one for each component type and each of dimension maxComps, are declared
to store the "comp-type"TabT (VLT) data for the specific individual components in the
input deck. The array for each component type is declared to be of the corresponding
"comp-type"TabT derived data type and given the name "comp-type"Tab. For example,
the code has the declaration

TYPE (breakTabT),DIMENSION (maxComps) :: breakTab

to store VLT data for all the individual BREAK components in the input.

All VLT-related logic for a component type is handled by a module that is specific for
that type, which has a name of the form

MODULE "Comp-type"V1t.

In Version 2.119 there are 10 "Comptype"vlt modules:

BreakVlt
FillVlt

G-13

PipeVl t
PlenVlt
PrizeVlt
PuMpVlt
RodVlt
TeeVlt
ValveVl t
VessVlt

The logic in each module "Comp_type"vlt comprises

"* a definition of derived data-type "comp-type"TabT (declaration of its
elements);

"* a declaration of array "comp-type"Tab to be of type "comp-type"TabT and
dimension maxComps;

"* parameterization of the total length of data-type "comp-type"TabT (for
dump/restart);

"* subroutine "Comptype"TableDumnp, which adds an individual component's
variables that are stored in array "comptype"Tab to the dump/restart file;
and

"* subroutine "Comp-type"TableRst, which reads a component's
"comp-type"Tab data from the dump/restart file.

Two additional subroutines are contained in only some of the "Comp-type"vlt
modules:

" subroutine Get"Comp-type"Tab, which accesses certain "comp-type"Tab
data of a component other than the current instantiated component (e.g.,
when adjusting the power for the heat structures in a neutronics calculation
group), and

" subroutine Set"Comp-type"Tab, which sets certain "comp-type"Tab data of
a component other than the current instantiated component (e.g., when
adjusting the power for the heat structures in a neutronics calculation group).

In Version 2.119 there are Get"CompJype"Tab subroutines for the ROD, TEE, VALVE,
PUMP, and VESSEL component types; there is a Set"Comptype"Tab subroutine only
for the ROD type.

The component-type routines for dump and restart, subroutine
"Comp-type"TableDump and subroutine "Comptype"TableRst, are called by generic
driver subroutines dmpVLT and rstVLT, respectively, which branch according to the
component-type. Subroutines dmpVLT and rstVLT pass the Component Index ordind

G-14

to the component-level dump and restart routines; dmpVLT assumes that reordering has
been done; rstVLT assumes reordering has not been done.

The following code fragment gives an overview of the areas in a module
"Comp-type"Vlt that are affected when a new variable is added to a "comp-type"TabT
data type. The coding is taken from module RodVi t. After this code fragment, specific
details are given, again using module RodV1 t.

Fragment of current coding in module RodVlt (file RodVltM. f):

MODULE RodVlt

TYPE rodTabT
REAL(sdk) amh2
REAL(sdk) bcrO

INTEGER(sik) nzpwz
INTEGER(sik) nzznhc

END TYPE rodTabT

TYPE (rodTabT),DIMENSION (maxComps) rodTab

This is used to calculate the total dump size,
be adjusted when changes are made to rodTab

and must

INTEGER(sik) rodDumpSize
PARAMETER (rodDumpSize=163) <<<--- rodDumpSize

CONTAINS

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

RodTableDump(ordInd, caller)

RodTableRst(ordInd, caller)

GetRodTab(name, compInd, ival,rval,reordered)

SetRodTab(name,compInd, ival,rval,reordered)

G-15

End fragment of current coding

The following examples show the addition of new real variable xxxxx and integer
variable iiiii to data-type rodTabT. The logic is the same for the other
"comp-type"TabT component data-types (addition of new coding to an existing
subroutine Get"Comptype"Tab or a subroutine Set"Comp-type"Tab or creation of a
new Get or Set routine for a component type not already covered is needed only if the
new variable is to be made available for reading or overwriting when one of its specific
components is not instantiated).

Module RodVlt (file RodVltM. f)

To add real variable xx>ox or integer variable iiiii to rodTabT, the following steps
must be taken:

1. Modify the definition of data-type rodTabT and the parameterization of the length
of data-tye rodTabT:

When adding real variable xxxxx to rodTabT:

la. add its declaration to the elements of type rodTabT and

lb. increase the size of parameter-variable rodDumpSize as appropriate:

TYPE rodTabT

REAL(sdk) zlptop
REAL (sdk) zlpbot

REAL(sdk) xxxxx <<<--- declare xxxxx
INTEGER(sik) iaf

END TYPE rodTabT

TYPE (rodTabT),DIMENSION (maxComps) :: rodTab

This is used to calculate the total dump size, and must
be adjusted when changes are made to rodTab

INTEGER(sik) rodDumpSize
PARAMETER (rodDumpSize=n) <<<--- modify rodDumpSize

G-16

where n = the total number of words in type rodTabT (reals + integers), counting any
individual array elements separately. In Version 2.119, rodDumnpSize = 163. Each
module "Compitype"Vtt has a "comp-type"DumpSize parameter; these are calculated
separately for each component type. If variable xxxxx is to be an array, specify its
dimension (e.g., five words) within its declaration in rodTabT:

REAL (sdk) xxx=a (5)

Follow an analogous procedure when adding integer variable iii i i to rodTabT:

TYPE rodTabT
REAL(sdk) amh2

INTEGER(sik) nzznhc
INTEGER (sik) iiiii

END TYPE rodTabT

TYPE (rodTabT), DIMENSION (maxComps) rodTab

This is used to calculate the total dump size, and must
be adjusted when changes are made to rodTab

INTEGER (sik) rodDumpSize
PARAMETER (rodIlumpSize=n)

where again, n = the total number of words in data-type rodTabT.

Coding Standard: The current ordering of variables in data-type "comp-type"TabT is not
significant. However, as described below, the order in which "comp-type"TabT
elements are added to the dump file must match the order in which they are read from
the restart file. For ease of maintenance, reals and integers are now grouped separately
in the "comp-type"TabT definitions, and they are dumped in the same order as they are
defined. New declarations of reals in a "comp type"TabT to the end of the current real
declarations, and integers should be appended to the end of the current integers.
(Alphabetical order is not a requirement.)

(Note that the special "place-holding" variables used in TRAC-P (aallll, z1l111,
iallll, and zillil) for determining the length of the component-type VLTs are not
used by TRAC-M.)

G-17

2. Add the new variable to the dump/restart file:

The "Comp-type"TableDump routines call the standard service routines in module
Restart for adding data to the dump/restart file:

subroutine bfouts -- for real scalar variables
subroutine bfoutn -- for real array variables
subroutine bfoutis -- for integer scalar variables
subroutine bfoutni -- for integer array variables

Fragment of current coding in module RodVit (file RodVltM. f):

SUBROUTINE RodTableDump (ordInd, caller)

CALL bfouts (rodTab (ordInd) %amh2, 1, ictrld)

CALL bfoutn(rodTab (ordlnd) %dtnht, 2, ictrld)

CALL bfoutis (rodTab(ordInd) %iaf, 1, ictrld)

CALL bfoutni (rodTab (ordInd) %ibu, 4, ictrld)

CALL bfoutni (rodTab(ordInd) %ircjtb, 16, ictrld)

END SUBROUTINE RodTableDump

End fragment of current coding

where in each of the bf out calls,

argument 1 is the (starting) location of the data to be dumped by the call; it
includes index-variable ordInd, which is the Component Index into array
rodTab. ordInd is passed to RodTableDump by subroutine dmpVLT; dmpVLT
assumes that component reordering has been done.

G-18

--

argument 2 is the number of words to add to the dump file for the call.

argument 3 ictrld, is the standard control array for the dump logic; it should
not have to be changed.

Note that in the fragment above, rodTabT data element irci tb is a 2D array (4,4); in
the call to bfoutni, it is necessary to pass only the total number of words to be dumped,
16.

When adding real scalar variable xxxxx to a "comp-type"TabT: add a call in subroutine
"Comp-type"TableDump to Service Routine subroutine bfouts. This new call should
be appended to the end of the current list of reals:

SUBROUTINE RodTableDump (ordInd, caller)

CALL bfouts (rodTab(ordInd) %zupbot, 1, ictrld)

CALL bfouts(rodTab(ordInd)%zlptop, 1,ictrld)
CALL bfouts (rodTab(ordInd) %zlpbot, 1, ictrld)

CALL bfouts (rodTab(ordind) locxx, 1, ictrld)

RETURN
END SUBROUTINE RodTableDump

When adding real array variable xxxxx (e.g., of length five words) to a
"comp-type"TabT: add a call in subroutine "Comp-type"TableDump to service routine
subroutine bfoutn. This new call should be appended to the end of the current list of
reals:

SUBROUTINE RodTableDump(ordInd, caller)

CALL bfouts (rodTab(ordInd) %zupbot, 1, ictrld)
CALL bfouts (rodTab(ordInd) %zlptop, 1, ictrld)
CALL bfouts (rodTab(ordInd) %zlpbot, 1, ictrld)

CALL bfoutn(rodTab(ordInd)%9aoxxx, 5, ictrld)

RETURN

G-19

END SUBROUTINE RodTableDump

When adding integer scalar variable iiiii to a "comp-type"TabT: add a call in
subroutine "Compitype"TableDump to service routine subroutine bfoutis. This new
call should be appended to the end of the current list of integers:

SUBROUTINE RodTableDump (ordInd, caller)

CALL bfoutis (rodTab (ordInd) %nzpwi, 1, ictrld)
CALL bfoutis (rodTab (ordInd) %nzpwz, 1, ictrld)
CALL bfoutis (rodTab (ordInd) %nzznhc, 1, ictrld)

CALL bfoutis (rodTab(ordlnd)%iiiii, 1,ictrld)

RETURN
END SUBROUTINE RodTableDump

When adding integer array variable iiiii (e.g., of length 5 words) to a
"comp-type"TabT : add a call in subroutine "Comptype"TableDump to service routine
subroutine bfoutni. This new call should be appended to the end of the current list of
integers:

SUBROUTINE RodTableDump (ordInd, caller)

CALL bfoutis(rodTab(ordInd)%nzpwi, l,ictrld)
CALL bfoutis(rodTab(ordInd)%nzpwz, l,ictrld)
CALL bfoutis (rodTab(ordInd) %nzznhc, 1, ictrld)

CALL bfoutni (rodTab(ordInd)%iiiii, 5, ictrld)

RETURN
END SUBROUTINE RodTableDump

Coding Requirement: The order of the calls to the bfout routines for the individual
variables in a subroutine "Comp type"TableDumpn must match the order of the calls to
the bf in routines in the corresponding subroutine "Comp type"TableRst (see the
following section).

Coding Standard: New calls for reals (scalar and array) to the bfout routines in a
subroutine "Comp type"TableDpuip should be appended to the end of the list of existing
real calls. New calls for integers (scalar and array) to the bf out routines in a subroutine

G-20

"Comp type"TableDumD should be appended to the end of the list of existing integer
calls.

3. Read the new variable from the dump/restart file:

The "Comp-type"TableRst routines call the standard service routines in module
Restart for reading data from the dump/restart file:

subroutine bf ins -- for real scalar variables
subroutine bfirnn -- for real array variables
subroutine bfinis -- for integer scalar variables
subroutine bfinni -- for integer array variables

Fragment of current coding in module RodVlt (file RodVltM. f):

SUBROUTINE RodTableRst(ordInd, caller)

CALL bfins(rodTab(ordInd)%amh2,1,ictrlr)

CALL bfinn(rodTab(ordInd)%dtnht,2,ictrlr)

CALL bfinis(rodTab(ordInd)%iaf,l,ictrlr)

CALL bfinni(rodTab(ordInd)%ibu, 4,ictrlr)

CALL bfinni(rodTab(ordInd)%ircjtb, 16,ictrlr)

END SUBROUTINE RodTableRst

End fragment of current coding

where in each of the bf in calls,

G-21

--

argument 1 is the (starting) location of the data to be read by the call; it includes
index-variable ordind, which is the Component Index into array rodTab.
ordInd is passed to RodTableRst by subroutine rstVLT; rstVLT assumes
component reordering has not been done.

argument 2 is the number of words to read from the restart file for the call.

argument 3 ictrlr, is the standard control array for the restart logic; it should
not have to be changed.

Note that in the fragment above, rodTabT data element ircj tb is a 2D array (4,4); in the
call to bfinni, it is necessary to pass only the total number of words to be read, 16.

When adding real scalar variable xxxxx to a "comp-type"TabT: add a call in subroutine
"Comp-type"TableRst to service routine subroutine bf ins. This new call should be
appended to the end of the current list of reals:

SUBROUTINE RodTableRst (ordInd, caller)

CALL bfins (rodTab(ordInd) %zupbot, 1, ictrlr)
CALL bfins (rodTab(ordInd) %zlptop, 1, ictrlr)
CALL bfins (rodTab(ordInd) %zlpbot, 1, ictrlr)

CALL bf ins (rodTab (ordind)kaooxax, 1, ictrlr)

RETURN
END SUBROUTINE RodTableRst

When adding real array variable xxxxx (e.g., of length five words) to a "comp-type"TabT:
add a call in subroutine "Comp-type"TableRst to service routine subroutine bfiinn.
This new call should be appended to the end of the current list of reals:

SUBROUTINE RodTableRst (ordInd, caller)

CALL bfins (rodTab (ordInd) %zupbot, 1, ictrlr)
CALL bfins (rodTab(ordInd) %zlptop, 1, ictrlr)
CALL bfins (rodTab(ordInd) %zlpbot, 1, ictrlr)

CALL bfinn(rodTab (ordInd)? aacxx, 5, ictrlr)

G-99

RETURN
END SUBROUTINE RodTableRst

When adding integer scalar variable iiiii to a "compiype"TabT: add a call in
subroutine "Compype"TableRst to service routine subroutine bfinis. This new call
should be appended to the end of the current list of integers:

SUBROUTINE RodTableRst (ordInd, caller)

CALL bfinis (rodTab(ordInd) %nzpwi, 1, ictrlr)
CALL bfinis (rodTab(ordInd) %nzpwz, 1, ictrlr)
CALL bfinis (rodTab (ordlnd)9iiiii, 11 ictrlr)

RETURN
END SUBROUTINE RodTableRst

When adding integer array variable iiiii (e.g., of length five words) to a
"comp-type"TabT: add a call in subroutine "Comp_type"TableRst to service routine
subroutine bfinni. This new call should be appended to the end of the current list of
integers:

SUBROUTINE RodTableRst (ordInd, caller)

CALL bfinis (rodTab (ordInd) %nzpwi, 1, ictrlr)
CALL bfinis (rodTab(ordInd) %nzpwz, 1, ictrlr)
CALL bfinis (rodTab(ordInd) %nzznhc, 1, ictrlr)

CALL bfinni (rodTab(ordInd)%iiiii, 5, ictrlr)

RETURN
END SUBROUTINE RodTableRst

Coding Requirement: The order of the calls to the bf in routines for individual variables
in a subroutine "Comp type"TableRst must match the order of the calls to the bf out
routines in the corresponding subroutine "Corn e"TableDump (see previous
section).

Coding Standard: New calls for reals (scalar and array) to the bf in routines in a
subroutine "Comp type"TableRst should be appended to the end of the list of existing
real calls. New calls for integers (scalar and array) to the bf in routines in a subroutine
"Comp ype"TableRst should be appended to the end of the list of existing integer calls.

G-23

4. Adding a variable to "comp type"TabT that will be used when the component is not
instantiated:

Some of the component types have data access service routines in their module
"compjtype"Vlt;; these routines are called from routines that need "comp-type"TabT
data of components that are not instantiated. These routines have names of the form
Get"Comp-type"Tab. Some component types (currently only the HTSTR) have a
corresponding service routine in their module "comp-type"Vlt that allows overwriting
of their data when one of their components is not instantiated. These routines have
names of the form Set"Comp-type"Tab. For example, in subroutine corel, the coupled
neutronics-group logic needs the power of uninstantiated HTSTRs and also needs to
adjust their power:

adjust the power for the heat structures in a neutronics
! calculation group

IF (rodTab(cco)%mldt.NE.0) THEN
ratio=rodTab (cco) %rpowrn/rodTab (cco) %rpowr
icmpml=icmp-1
DO i=icmpl,icmpml

! NOT TESTED IN SHORT SET
! jdearing 1/97

CALL GetRodTab('rpowrn' , i, iduml,rpowrnx, .TRUE.)<<<--

rpowrnx=rpowrnx* ratio << --
CALL SetRodTab(rpowrn' , i, iduml, rpowrnx, .TRUE.)<<<--

a(ig(lmldp+i-l))=ratio*a(ig(imldp+i-1))
ENDDO
icmpl=0

ENDIF

The argument list of a subroutine Get"Compype"Tab can return either a real or integer
scalar data element for any component index, either reordered or not reordered. The logic
is similar to that of subroutine GetGenTable (see the section on the component FLTs):

SUBROUTINE GetRodTab (name, compInd, ival, rval, reordered)

ordInd = compInd
if(reordered) ordInd = compIndices(compInd)

IF (name.EQ.'iis') THEN
ival=rodTab (ordInd) %iis

ELSEIF (name.EQ.'idbci') THEN
ival=rodTab (ordInd) %idbci

ELSEIF (name.EQ.'idbco') THEN
ival=rodTab (ordInd) %idbco

ELSEIF (name.EQ.'rpowrn') THEN
rval=rodTab (ordInd) %rpowrn

G-24

ELSEIF (name.EQ.'ncrx') THEN
ival=rodTab (ordInd) %ncrx

ELSE

CALL error (1, '*getRodTab* variable name not recognized 1,4)

ENDIF

RETURN
END SUBROUTINE GetRodTab

Currently (Version 2.119), there are Get VLT routines for the PUMP, HTSTR, TEE,
VALVE, and VESSEL components. The various subroutine Get"Comptype"Tab are
designed to treat "comptype"TabT data elements on an as-needed basis.

New or altered models that require other data elements of a "comp-type"TabT from
uninstantiated components should make appropriate additions to the appropriate
subroutine Get"Comp.type"Tab.

Coding Standard: A subroutine Get"Comp-jype"Tab should be used to return all data
elements of a data-type "comp-type"TabT from uninstantiated components.

The argument list of a subroutine set"Comp-type"Tab can overwrite either a real or
integer scalar data element for any component index, either reordered or not reordered:

SUBROUTINE SetRodTab (name, compInd, ival, rval, reordered)

ordInd = compInd

if(reordered) ordInd = compIndices(compInd)

IF (name.EQ.'rpowrn') THEN
rodTab(cco)%rpowrn=rval ERROR: (cco --- >>> ordInd)

ELSE
CALL error(, '*setRod* variable name not recognized ' ,4)

ENDIF

RETURN
END SUBROUTINE SetRodTab

Currently (Version 2.119), there is a Set VLT routine only for the HTSTR component.
Subroutine SetRodTab is designed to treat rodTabT data elements on an as-needed
basis.

New or altered models that need to overwrite other data elements of a "comp-type"TabT
of uninstantiated components should make appropriate additions to the appropriate
subroutine Set"Comp-type"Tab.

Coding Standard: A subroutine Set"Comp-type"Tab should be used for any overwrites
of data elements of a data-type "compJype"TabT of uninstantiated components.

G-25

Using a Variable in a "comp-type" TabT:

Instantiated Components

For cases where a "comp-type"TabT data element is used in a routine that is processing
data of a specific (instantiated) component (for Component Index cco or cci), refer
directly to the "comp-jype"TabT data element, using the appropriate component index
into array "comp-type"Tab (cco after the reordering of components by subroutine
ASIGN, or cci for components as they are listed in the input deck, before the network
logic reordering).

For example:

MODULE Pipe

BEGIN MODULE USE
USE PipeArray

CONTAINS

SUBROUTINE dpipe (icomp)

BEGIN MODULE USE

USE IntrType
USE PipeVlt
USE Restart

IMPLICIT REAL(sdk) (a-h,o-z)

dumps pipe data

CALL dcomp(icomp)
CALL bfoutn (pipeAr (cco) %powtb, iabs (pipeTab (cco)%npowtb) *2, ictrld)

CALL bfoutn(pipeAr(cco) %powrf, iabs (pipeTab(cco)%npowrf) *2, ictrld)
i2=2

IF (pipeTab(cco)%p3in.LT.O.OdO) i2=1+pipeTab(cco)$1nce11s
CALL bfoutn(pipeAr(cco) %qp3tb, iabs (pipeTab(cco) %nqp3tb) *i2, ictrld)

CALL bfoutn(pipeAr(cco) %qp3rf, iabs (pipeTab(cco) %nqp3rf) *2, ictrld)
RETURN
END SUBROUTINE dpipe

S...

Noninstantiated Components

For cases where the value of a "comp-type"TabT data element of an uninstantiated
component is needed, use a call to the appropriate subroutine Get"Comp-type"Tab,
which is in module "Comp-type"vlt. Where a "comp-type"TabT data element of an

G-26

uninstantiated component must be overwritten, use a call to the appropriate subroutine
Set"Compitype"Tab, which is also in module "Comp-type"vlt.

The following example is taken from subroutine corel in module RodTask:

CALL GetRodTab (' rpowrn', i, iduml, rpowrnx, .TRUE.)
rpowrnx=rpowrnx* ratio
CALL SetRodTab('rpowrn', i, iduml,rpowrnx, .TRUE.)

where for both routines:

argument 1 is a character string corresponding to one of the rodTabT data
elements treated by GetRodTab or SetRodTab,

argument 2 is the index of the component requested by corel,

argument 3 receives/overwrites an integer value,

argument 4 receives/overwrites a real value, and

argument 5 indicates if the component list has been reordered.

G.1.4. Adding A New Component Array Variable

G.1.4.1. 1D Hydrodynamic Components
The addition of new arrays that are specific for a given 1D hydrodynamic component
type is treated first. A new array then may be added to the general 1D-component data
arrays if the new general array is to be made available to the data interface in module
GenlDArray (for noninstantiated components).

All TRAC 1D hydrodynamic component types have a module with a name of the form

module "Comp-type".

These modules contain component-type-specific routines for I/O, storage allocation, and
driving the generic hydrodynamics routines.

In the following we use the PIPE-component type for specific examples. Module Pipe
contains the following routines:

Module Pipe (file PipeM.f)

USE PipeArray (file PipeArrayM.f)

CONTAINS

G-27

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

dpipe -- add to dump file
ipipe -- initialize after input
pipel -- drive PREP hydro stage
pipelx -- obtain analysis data
pipe2 -- drive OUTER hydro stage
pipe3 -- drive POST hydro stage
repipe -- read restart file
rpipe -- read input, call TRACAllo, AllocGenlD
wpipe -- write text output

Adding an Array -- Specific for PIPE Component

The following example shows the addition of a new real, rank-1 array called

yyy ,

of dimension ncells.

Module PipeArray (file PipeArrayM. f)

In Version 2.120, module PipeArray defines derived data-type pipeArrayT for the
PIPE-component-specific arrays powrf, powtb, qp3rf, and qp3tb and declares array
pipeAr to be of this type:

TYPE (pipeArrayT),DIMENSION(maxComps) :: pipeAr

Add the following declaration for new array yyyyy to derived data-type pipeArrayT:

TYPE pipeArrayT
REAL(sdk), POINTER, DIMENSION(:)
REAL(sdk), POINTER, DIMENSION(:)
REAL(sdk), POINTER, DIMENSION(:)
REAL(sdk), POINTER, DIMENSION(:)
REAL(sdk), POINTER, DIMENSIONO(:)

END TYPE pipeArrayT

powrf
powtb
qp3rf
qp3 tb
yyyyy

Module Pipe (file PipeM. f)

Allocate storage for new pipe-specific array yyyyy by calling subroutine TRACAIlo.
TRACAllo is a generic name (interface) for subroutines AllocRealOneD,
AllocRealTwoD, AllocRealThreeD, and AllocIntOneD. The call to TRACAIlo is
inserted in subroutine rpipe and in subroutine repipe; the form of the call is the same
in both routines:

SUBROUTINE rpipe (......

G-28

CALL TRACAIo1(pipeAr(cci)%powrf)
CALL TRACA11o(pipeAr(cci)%powtb)
CALL TRACA11o(pipeAr(cci)%qp3rf)
CALL TRACA11o(pipeAr(cci)%qp3tb)
CALL TRACA11o(pipeAr(cci)96yyyyy,ncells, 'yyyyy',O.dO)

where cci is the current Component Index into pipeAr (not reordered by subroutine
asign), ncells is the dimension of array yyyyy, 'yyyyy' is the name of yyyyy, and
0. dO will be used to initialize yyyyy.

SUBROUTINE repipe (......

CALL TRACA11o(pipeAr(cci)%powrf)
CALL TRACA11o(pipeAr(cci)%powtb)
CALL TRACA11o(pipeAr(cci)%qp3rf)
CALL TRACA11o(pipeAr(cci)%qp3tb)
CALL TRACAllo(pipeAr(cci)$yyyyy,ncells, 'yyyyy',O.dO)

where the actual arguments to TRACAI io are as in the call from rpipe.

Add array yyyyy to the dump file trcdmp by calling subroutine bfoutn; the call to
bfoutn is inserted in subroutine dpipe:

SUBROUTINE dpipe (.......

CALL bfoutn(pipeAr(cco)%powtb)
CALL bfoutn(pipeAr(cco)%powrf)

CALL bfoutn(pipeAr(cco)%qp3tb)
CALL bfoutn(pipeAr(cco)%qp3rf)
CALL bfoutn(pipeAr(cco)%yyyyy,ncells, ictrld)

where cco is the current Component Index into pipeAr (reordered by subroutine
asign), ncells is the dimension of array yyyyy, and ictrld is the standard control
array for the dump logic.

Read array yyyyy from the input file tracin by calling subroutine loadn, and echo the
input to output file trcout by calling subroutine warray; the read and write calls are
inserted in subroutine rpipe, after storage for yyyyy has been allocated:

G-29

SUBROUTINE rpipe(.......)

CALL loadn(pipeAr(cci) %syyyyy,ncells, 1)
CALL warray('yyyyy ',pipeAr(cci)%yyyyy,ncells,_sv)

where cci is the current Component Index (not reordered by asign), ncells is the
dimension of array yyyyy, the argument 1 tells loadn to read a real variable, ' yyyyy I
is the name of yyyyy (padded to eight characters), and sv is the ID number of the
signal variable or control block corresponding to the odd-numbered elements of array
pipeAr(cci) (see the comments in subroutine warray for more information on
argument sv).

Read array yyyyy from the restart file trcrst by calling subroutine bf inn, and echo
the restart-file input to output file trcout by calling subroutine warray; the read and
write calls are inserted in subroutine repipe, after storage for yyyyy has been allocated:

SUBROUTINE repipe (.......)

CALL bfinn(pipeAr(cci)%•yyyyy,ncells, ictrlr)
CALL warray('yyyyy ',pipeAr(cci)%yyyyy,ncells,_sv)

where cci is the current Component Index (not reordered by asign), ncells is the
dimension of array yyyyy, ictrir is the standard control array for the restart input
logic, 'yyyyy' is the name of yyyyy (padded to eight characters), and _sv is the ID
number of the signal variable or control block corresponding to the odd-numbered
elements of array pipeAr(cci).

If appropriate, write array yyyyy to the text output file (trcout) large edits. Currently,
no data in the component-specific arrays must be written to the large edits for the 1D
hydrodynamic components. If the need does arise, the edits should be placed in the
component-specific trcout driver routines, such as

SUBROUTINE wpipe(cfmass,cener)

which is in module Pipe.

Adding an Array--General ("generic") Arrays

The following example shows the addition of a new real, rank-1 array called

YYYY f

of dimension ncells, to the general ("generic") 1D hydrodynamic component arrays,
which are elements of derived data-type glDArrayT (in TRAC-P, these arrays are
allocated and accessed in the hydropt and dualpt pointer tables). Many of these

G-30

arrays hold data for old- or new-time values of the same quantity (TRAC-P's dualpt);
for such old- and new time arrays, sample arrays yyyyy and yyyyyn, respectively, are
treated.

The hydropt and dualpt arrays for all 1D components are stored in and accessed from
array gidAr by the following steps:

" The driver input routine (rpipe, repipe, rtee, retee, etc.) for each 1D
component in the input (or restart) deck uses module GeniDArray, which
defines derived data-type giDArrayT. The members of data-type
glDArrayT are the former hydropt and dualpt arrays, which are declared
as pointers of dimension (:).

"* Module GeniDArray declares array giDAr to be of type (glDArrayT) and
of dimension (maxComps).

" The driver input routine then allocates storage for the generic arrays for the
specific component it is reading by calling subroutine Al locGenlD, which is
also in module GeniDArray. AllocGenlD has a call to subroutine
TRACAllo for each array that is a member of array giDAr.

The remaining 1D-component generic arrays (TRAC-P's intpt and heatpt) are treated
in a similar manner but are stored in their own arrays called intAr and heatAr,
respectively. Module IntArray defines data-type intArrayT, and module HeatArray
defines data-type heatArrayT. Module GenlDArray calls TRACA1lo for each member
of intAr and heatAr.

Module GenlDArray (file GenlDArray M. f)

To add real rank-i array vvvv, of dimension (ncells), to hydropt:

Within type giDArrayT add the following declaration:

"TYPE giDArrayT

REAL(sdk), POINTER, DIMENSION(:) vlsm
REAL(sdk), POINTER, DIMENSION(:) qrl
REAL(sdk), POINTER, DIMENSION(:) qrv
REAL(sdk), POINTER, DIMENSION(:) :: yyyyy

Allocate ncells of storage for array yyyyy for the component being read from the input
or restart file by adding a call to TRACAllo in subroutine AllocGenlD, which is
contained in module GeniDArray:

G-31

SUBROUTINE AllocGenlD(ncells,nfaces,nods,inflg, ihtflg)

USE Alloc

CALL TRACAllo(glDAr(cci)%cl,ncells,'cl',0.OdO)

CALL TRACAllo(glDAr(cci)%dfvdp,nfaces,'dfvdp',0.Od0)
CALL TRACAllo(glDAr(cci)%dfldp,nfaces,'dfldp',0.OdO)
glDAr(cci)%cfz=>glDAr(cci)%dfldp
CALL TRACAo1(glDAr(cci)%ýyyY,flncells, 'yyyyy',0.0d0)

where cci is the Component Index (not reordered), ncells is the dimension of array

yyyyy, ' yyyyy' is the name of yyyyy, and 0. OdO will be used to initialize yyyyy. (Note

that the association of pointer c f z with df idp in this code fragment (taken from Version

2.120) treats one of several special cases in the generic arrays.)

Subroutine rcomp (file rcomp. f)

Read array yyyyy from text input file tracin, and echo the input to output file trcout

by adding the following to subroutine rcomp:

SUBROUTINE rcomp(ncells,nods,bump, idef,iconc)

USE GenlDArray

REAL(sdk), POINTER, DIMENSION(:) :: &

&dxb,volb,fab .. &

& vvnb,tlnb,pnb &

& qpppb,yyyyyb

yyyyyb=>gldAr(cci)%Yyyyy(bump+
1 :)

CALL loadn(yyyyyb,ncells,l)
CALL warray('yyyyy ',yyyyyb,ncells,0)

G-32

where the associations of the local "b-suffix" pointers were required by at least one of the
Fortran 90 compilers used when TRAC-M was originally developed.

This example does not include the special logic in rcomp for setting certain arrays to

user-input default values, under the control of namelist variable istopt.

Subroutine dcomp (file dcomp. f)

Add array yyyyy to the dump file trcdmp:

SUBROUTINE dcomp (icomp)

USE GenlDArray

CALL bfoutn (gldAr (cco) %alven, genTab (cco) %ncellt, ictrld)

CALL bfoutn(gldAr(cco)%twan, 1,ictrld)
CALL bfoutn(gldAr(cco)%twen, 1, ictrld)
CALL bfoutn(gldAr(cco)%tcen, 1, ictrld)
IF (isolut.NE.0) THEN

CALL bfoutn(gldAr(cco)%sn,fgenTab(cco) %ncellt, ictrld)

CALL bfoutn(gldAr(cco)%conch,genTab(cco) %ncellt, ictrld)
ENDIF
IF (nods.GT.0) CALL bfoutn(gldAr(cco)%qppc,genTab(cco) %ncellt

&, ictrld)
CALL bfoutn(gldAr(cco) •oyyyyy, genTab(cco)9 rncellt, ictrld)

Subroutine recomp (file recomp. f)

Read array yyyyy from the restart file trcrst:

SUBROUTINE recomp (bump, ncells,nods)

USE GenlDArray

CALL bfinn (gldAr (cci) %alven, ncells, ictrlr)
CALL bfinn(gldAr (cci) %twan, 1, ictrir)
CALL bfinn(gldAr (cci) %twen, 1, ictrlr)
CALL bfinn(gldAr (cci) %tcen, 1, ictrir)
IF (isolut.NE.0) THEN

G-33

CALL bfinn(gldAr(cci)%sn,fncells, ictrlr)

CALL bfinn(gldAr(cci) %concn,ncells, ictrlr)

ENDIF
IF (nods.GT.0) CALL bfinn(gldAr(cci)%qppc,ncells,ictrlr)
CALL bfinn(gldAr(cci) yyyyYlncells, ictrlr)

Coding Requirement: The order of the calls to bfoutn in subroutine dcomp is not

significant, but it must match the order of calls to bf inn in subroutine recomp.

Subroutine ecomip (file ecomp. f)

If needed, add array yyyyy to the large (major) edits to text output file trcout. Certainly,

the specific changes to ecomp will depend on the desired output format; the following

code fragment is the existing coding for the basic edit of hydrodynamic data. Note that

new-time data typically are printed in the large edits; additional details on adding a dual

time array are given in the following section.

SUBROUTINE ecomp(jstrt,j stop, iflgw, nodes, cfmass,xpintg,cener)

DIMENSION tmp (10, 24) <<<-- array tmp is used for units conversion

print out hydraulic-solution parameters

WRITE (iout,1 0 0) lup,Iup,lud,lutp,lutp,lutp,lur,lur,luv,luvlud

100 FORMAT (/19x,1ncd-gas1/7x,'pressure pressure void fr. temp', &

& '.sat. temp.liq. temp.gas den.liq. den.vap. vel.liq', &

& . vel.gas wf.liq.2/1 cell,,3x,a,7x,a,7x,a,8x,a,8x,a,sx,a, &

& 5x,a,2x,a,5x,a,6x,a,6x,a)
nn=l+ (jstop-jstrt)/10
jn=0
DO n=l,nn

jl=jstrt+ (n-l) *10
j2= min(jl+9,jstop)
j0=jl-l
j3=j2-j0
DO j=jl,j2

jj=j-j0
jml=j-1

tmp(jj,i)=gldAr(cco)%pn(jml+l) <<<--store in array tmp
tmp(jj, 2)=gldAr(cco) %pan(jml+l)

tmp(j j,3)=gldAr(cco)%alpn(jml+l)
tmp(jj,4)=gldAr(cco)%tsat(jml+l)
tmp(jj, 5)=gldAr(cco)%tln(jml+l)
tmp (jj, 6)=gldAr(cco)%tvnf(jml+l)
tmp(jj,7)=gldAr(cco)%roln(jml+l)
tmp(j j, 8)=gldAr(cco)%rovn(jml+l)
tmp(jj, 9) =gldAr (cco) %vln(jml+l)

tmp(j j, 10)=gldAr(cco)%vvn (jml+l)

IF (btestc (gldAr(cco) %bitn(jml+1),chokedFlowOn) .NE &

& .0) gldAr(cco)%wfl(jml+l)=-i.llld-ll
tmp(j j,ii)=gldAr(cco)%wfl(jml+l)

G-34

cfmass=cfmass+gldAr(cco)%v01(iml+l)* (gldA~r(cco)%arv(jml+1) &

& +gldAr(cco)%ar1(jml+l))
cener=cener+gldAr(cco) %vol (jml+1) *(gldAr~cco) %arev(jml+1) &

& +gldAr(cco)%are1(jm1+1))
ENDDO
IF (ioout.EQ.1) THEN

CALL uncnvt (I pnI , tmp (1, 1) , j3, 1, -1) <<<-- units conversion
CALL uncnvt('pans ,tmp(1,2) ,j3,1,-1)

CALL uncnvt(tsat' ,tmp(1,4) ,j3,1,-1)

CALL uncnvt('tli' ,tmp(1,5},j3,l,-l)
CALL uncnvt('tvn',tmp(1,6),j

3 ,1 ,-l)

CALL uncnvt('roln',tmp(l,
7), i3,1,-1)

CALL uncnvt('rovn',tmp(1,8) ,j3,1, -1)

CALL uncnvt('vln',tmp(1,9), i3,1,-1)
CALL uncnvt('vvn',tmp(1,10),j

3 ,l,-l)

ENDIF
j1=j1-j0
j 2=j 2-j0
WRITE (iout,120) (jn+j,(tmp(j,k),k=1,11),j=jl..i2)

120 FORMAT (lx,i3, lp,2el2.5,6e10.3,2e11.3,elO.
3)

jn=jn+10
ENDDO

edit last cell-face:
tmp(1,1)=gldAr(cco)%vln(istop+l)
tmp(2 ,1) =gldAr(cco) %vvn(jstop4-1)
IF (ioout.EQ.1) CALL uncnvt('vlri,tinp,

2 ,1,-l)

IF (btestc(gldAr(cco)%bitfl(jstop+l) ,chokedFlowon) .NE&

&.0) gldAr(cco)%wfl(istop+l)=1I.llld-ll
iri=istop-I strt+2
WRITE (iout,140) jn,tmp(l,1),tmp(2,1),gldAr(cco)%wfl(jstop+l)

140 FORMAT (lx, i3, 84x,lp,2e11.3,elO.3)

To add real rank-i arrays vvvvv and yyvvvn. of dimension (ncells). to dual t:

Within type g1DArrayT, add the following declarations:

TYPE giDArrayT

REAL(sdk), POINTER, DIMENSION(:) twa

REAL(sdk), POINTER, DIMENSION(:) ::twe

REAL(sdk), POINTER, DIMENSION(:) tce

REAL (sdk), POINTER, DIMENSION(:) ::yyyyy

REAL(sdk), POINTER, DINENSION(:) :twan

REAL(sdk), POINTER, DINENSION(:) :twen

REAL(sdk), POINTER, DIMENSION(:) tcen

G-35

REAL(sdk), POINTER, DIMENSION(:) :: yyyyyn
END TYPE glDArrayT

Allocate ncells of storage for arrays yyyyy and yyyyyn, for the component being read
from the input or restart file, by adding calls to TRACAIlo in subroutine AllocGenlD,
which is contained in module GenlDArray:.

SUBROUTINE AllocGenlD(ncells,nfaces,nods, inflg, ihtflg)

USE Alloc

CALL TRACAllo (glDAr (cci) %alven,ncells, 'alven', 0.OdO)
CALL TRACAIlo(glDAr(cci)%alvn,ncells, 'alvn',O.OdO)
glDAr (cci) %alpdn=>glDAr (cci) %alvn
CALL TRACAllo (glDAr(cci) %alpn,ncells, 'alpn', 0.OdO)
CALL TRACAI1o(glDAr(cci)5 6yyyyyn,ncells, 'yyyyyn ',O.OdO)

CALL TRACA ilo(glDAr(cci)%alve,ncells, 'alve',0.OdO)
CALL TRACAIlo(glDAr(cci)%alv,ncells, 'alv' ,O.OdO)
giDAr (cci) %alpd=>glDAr (cci) %alv
CALL TRACAIIo(glDAr(cci)%alp,ncells, 'alp',O.OdO)
CALL TRACAI1o(glDAr(cci) %yyyyy,ncells, 'yyyyy',O.OdO)

where cci is the Component Index (not reordered), ncells is the dimension of arrays
yyyyyn and yyyyy, I yyyyyn' and ' yyyyy' are the names of yyyyyn and yyyyy, and
0. OdO will be used to initialize yyyyyn and yyyyy. [Note that the associations of pointers
alpdn and alpd with alvn and alv, respectively, in this code fragment (taken from
Version 2.120) treat two of several special cases in the generic arrays.]

Coding Standard: Type GIDARRAYT first declares the hydropt arrays, then the
dualpt arrays. Add a new hydropt variable to the existing hydropt portion of type
glDArrayT and a new dualpt variable to the dualpt portion. The dualpt portion first
lists old-time arrays, then new-time arrays.

Note that in TRAC-P, the ordering of the assignment of the dualpt array pointers (in
subroutine sldptr) is significant for supporting the logic for a water-packing-type
backup. This is no longer the case in TRAC-M: the water-packing, backup-specific arrays
are explicitly treated in subroutine BackUpGenlD, in module GenlDArray (details are
given below).

G-36

Coding Standard: The order of allocation of the hydropt and dualpt arrays in
AllocGenlD is not significant; however, the two sets of arrays are grouped together, and
this grouping should be maintained. The dualpt arrays are grouped further into new
and old-time arrays.

Add new-time to old-time data transfers and old-time to new-time data transfers to
subroutine TimeUpGenlD, which is contained in module GenlDArray:

SUBROUTINE TimeUpGenlD (newToOld)

IF (newToOld) THEN

gldAr (cco) %twa
gldAr (cco) %twe
gldAr(cco) %tce
gidAr (cco) %yyyyy

= gldAr(cco)%twan
= gldAr(cco)%twen
= gldAr(cco)%tcen

= g1dAr(cco)9oyyyyyn

ELSE

gldAr(cco)%twan = gldAr(cco)%twa
gldAr(cco)%twen = gldAr(cco)%twe
gldAr(cco)%tcen = gldAr(cco)%tce
g1dkr (cco) lyyynyýi= gidAr (cco)*yyyy

ENDIF

where cco is the Component Index (reordered).

Logic for Special Timestep Backups

The "standard" TRAC timestep backup (forced, e.g., by convergence difficulties with a
given timestep size) repeats a timestep from the start of the PREP stage. Another type of
backup to the start of the outer stage is forced by detection of water packing. Care must
be taken that the new-time arrays have the proper values when such a special backup
occurs. This logic is handled by subroutine BackUpGenlD, which is contained in module
GenlDArray.

G-37

If the values in arrays yyyyy and yyyyyn are the same at the start of the outer stage of
a timestep, add the following old-time to new-time data transfer to subroutine
BackUpGenlD:

SUBROUTINE BackUpGenlD

gldAr(cco)%twn = gldAr(cco)%tw
gldAr(cco)%vln = gldAr(cco)%vl
gldAr(cco)%vvn = gldAr(cco)%vv
gldAr (cco) %oyyyyyn= gldAr (cco)'6yyyy

END SUBROUTINE BackUpGenlD

where cco is the Component Index (reordered).

Note that for dual-time arrays, the new-time arrays are dumped and read from the restart
file:

Subroutine dcomp (file dcomp. f)

Add array yyyyyn to the dump file trcdmp:

SUBROUTINE dcomp (icomp)

USE GenlDArray

CALL bfoutn(gldAr(cco)%alven,genTab(cco) %ncellt, ictrld)

CALL bfoutn(gldAr(cco) %twan, 1, ictrld)
CALL bfoutn(gldAr(cco) %twen, 1, ictrld)
CALL bfoutn(gldAr(cco) %tcen, 1, ictrld)
IF (isolut.NE.0) THEN

CALL bfoutn(gldAr(cco) %sn,genTab(cco) %ncellt, ictrld)

CALL bfoutn(gldAr(cco) %concn, genTab(cco) %ncellt, ictrld)

ENDIF
IF (nods.GT. 0) CALL bfoutn(gldAr(cco) %qppc,genTab(cco) %ncellt &

&, ictrld)
CALL bfoutn (gldAr(cco)% iyyyyn,genTab(cco)'rncellt, ictrld)

Subroutine recomp (file recomp. f)

Read array yyyyyn from the restart file trcrst:

SUBROUTINE recomp (bump, ncells,rnods)

G-38

USE GenlDArray

CALL bfinn(gldAr(cci) %alven,ncells, ictrlr)

CALL bfinn (gldAr (cci) %t'wan, 1, ictrlr)

CALL bfinn(g1dAr(cci)%twen, iictrlr)

CALL bfinn(gldAr(cci)%tcen, 1, ictrlr)

IF (isolut.NE.0) THEN
CALL bfinn(gldAr(cci)%sn,fncells, ictrlr)

CALL bfinn (gldAr (cci) %concn, ncells, ictrlr)

ENDIF
IF (nods.GT.0) CALL bfinnj(gldAr(cci)%qppc,fncells,ictrlr)
CALL bfinn(gldAr(cci)?6YYYYYn,ncells,ictrlr)

Coding Requirement: The order of the calls to bfoutn in subroutine dcomp must match

the order of calls to bf inn in subroutine recomp.

Accessing giDAr (hydropt and dualpt) Array Data

In the hydrodynamic calling chain:

Subroutine tf ld (module GeniDTask) calls subroutine tf lds (module GenlDCrunch)

using array gldAr:

SUBROUTINE tfld (bdl, bd2, ncl)

CALL tflds(gldAr(cco)%alp &

&. gldAr(cco) %fa &

& ,g1dAr(cco)%qr1,g1dAr(cco)%qrv)

Subroutine tflds has the same dummy-argument list as in TRAC-P but declares the

dummy arguments with (:) notation:

SUBROUTINE

tflds(alp,.................................& & fa &

& ,qrl,qrv)

G-39

REAL(sdk)
alp (:) &

REAL (sdk) fa(:) qrl(:),qrv(:)

and indexing into the dummy-argument arrays remains as in TRAC-P, e.g.,

alp (j start)

fa(jp)

qrl(j)

qrv(j)

Module GenlDArray Data Interface (for noninstantiated components)

Module GenlDArray contains all the logic for providing generic 1D array data from

noninstantiated components (such as for use by the Control System). This logic comprises

all of the needed definitions and declarations, including declaration and setting of array
indices, at the start of the module:

MODULE GenlDArray

INTEGER(sik), PARAMETER

INTEGER(sik), PARAMETER
INTEGER(sik), PARAMETER

INTEGER(sik), PARAMETER

hgamInd= 1

tlInd= 22
tlnInd= 23

faInd= 66

INTEGER(sik),PARAMETER :: numlDFaceArrays=66

TYPE arraylDPtrT
LOGICAL :: isAssociated
REAL(sdk),POINTER,DIMENSION(:) :: arraylDPtr

END TYPE arraylDPtrT

G-40

TYPE arrayNodeT
Array(comp index) of Pointers to this l-D Array

TYPE(arraylDPtrT),DIMENSION(maxComps) :: arraylDPtrs
END TYPE arrayNodeT

TYPE(arrayNodeT),DIMENSION(numlDFaceArrays)
faceArs

This is followed by initialization at the end of subroutine AllocGenlD:

SUBROUTINE AllocGenlD(........)

Initialize 1-D interface pointers:
DO nv=1,numlDFaceArrays

nullify(faceArs(nv)%arraylDPtrs(cci)%arraylDPtr)
faceArs(nv)%arraylDPtrs(cci)%isAssociated=.FALSE.

ENDDO

RETURN
END SUBROUTINE AllocGenlD

-This is followed by the data interface routines that are called from elsewhere in the code,

which in turn are followed by worker routines that the interface routines use to provide
the actual requested information:

Data Interface Routines:

REAL (sdkx)
REAL (sdkx)
REAL (sdkx)
SUBROUTINE
SUBROUTINE
SUBROUTINE

FUNCTION GetEosDrivld
FUNCTION GetGenlD
FUNCTION GetGenlD2D
GetGenlDArray
CopyGenlDArray
IncrementGenlD

Worker Routines:

SUBROUTINE GetlDArrayPointer
SUBROUTINE Get2DArrayPointer

G-41

Code fragments from these routines are listed here, followed by guidelines for adding a
new general 1D array to the data interface.

REAL(sdkx) FUNCTION GetEosDrivld(compInd, arrayName, cell)

Extract scalar from inverted derivative container driv

ordInd = compIndices(compInd)

IF (arrayName.EQ.'drvdt 1) THEN
index=9

ELSE IF(arrayName.EQ.'drldt ') THEN

index=8
ELSE IF(arrayName.EQ.'hvst 1) THEN

index=10
ELSE IF(arrayName.EQ.'hlst) THEN

index=ll
ENDIF

Inverted DataBase
index=index+(cell-l)*nthm
GetEosDrivld=glDAr(ordInd)%driv(index)

END FUNCTION GetEosDrivld
S..

S..
REAL(sdkx) FUNCTION GetGenlD(compInd, arrayInd, cell)

IMPLICIT NONE

INTEGER(sik),INTENT(IN) :: compInd, cell,arrayInd

REAL(sdk), POINTER, DIMENSION(:) :: arPtr

CALL GetlDArrayPointer(arraylnd, compInd,arPtr)
GetGenlD=arPtr(cell)

END FUNCTION GetGenlD

REAL(sdkx) FUNCTION GetGenlD2D(compInd, arrayName, i,j)

IMPLICIT NONE

INTEGER(sik),INTENT(IN) :: compInd, i,j

CHARACTER*8 arrayName
REAL(sdk), POINTER, DIMENSION(:,:) :: arPtr

G-42

CALL Get2DArrayPointer(arrayNamecompIndarPtr)

GetGenlD2D=arPtr(ij)

END FUNCTION GetGenlD2D

SUBROUTINE GetGen1DArr (compIndarrayIndarPtrncells)

IMPLICIT NONE

INTEGER(sik),INTENT(IN) :: ncellsarrayInd

REAL(sdk), POINTER, DIMENSION(:) :: arPtr

INTEGER(sik) compInd

CALL GetlDArrayPointer(arrayindcomplndarPtr)

END SUBROUTINE GetGenlDArray

SUBROUTINE Coip-,z-GenlDArr!iY(compIndarrayIndarrayncells)

IMPLICIT NONE

INTEGER(sik),INTENT(IN) :: ncellsarrayInd

REAL(sdk), DIMENSION(ncells) :: array

REAL(sdk), POINTER, DIMENSION(:) :: arPtr

INTEGER(sik) compIndi

CALL GetlDArrayPointer(arraylnd.compZnd.arPtr)

DO i=lncells

array(i)=arPtr(i)

ENDDO

END SUBROUTINE CopyGenlDArray

SUBROUTINE IncrementGenlD(compIndarrayIndcellvalue)

IMPLICIT NONE

INTEGER(sik),INTENT(IN) :: compIndcellarrayInd

REAL(sdk),INTENT(IN) :: value

REAL(sdk), POINTER, DIMENSION(:) :: arPtr

CALL GetlDArrayPointer(array3:ndcompindarPtr)

arPtr(cell)=arPtr(cell)+value

END SUBROUTINE IncrementGenlD

------------------------------ ---

G-43

SUBROUTINE GetIDArrayPointer(arrayIndcompIndarPtr)

INTEGER(sik),INTENT(IN) :: compIndarrayInd

INTEGER(sik) :: ordInd

RF.AL(sdk), POINTER, DIMENSION(:)':: arPtr

ordInd = compIndices(compInd)

IF(faceArs(arrayInd)%arraylDPtrs(ordInd)%isAssociated) THEN

arPtr=>faceArs(arrayInd)%arraylDPtrs(ordInd)%arraylDPtr

ELSE

SELECT CASE (arrayInd)

CASE (hgamInd)

arPtr=>gldA-r(ordInd)%hgam

CASE (hlaInd)

arPtr=>gldAr(ordInd)%hla

CASE (hvaInd)

arPtr=>gldAr(ordInd)%hva

CASE (-alvnInd)

arPtr=>gldAr(ordInd)%alvn

CASE (faInd)

arPtr=>g1dAr(ordInd)%fa

CASE DEFAULT

PRINT *, "BAD NAME INDEX TO GenldArray:GetlDArrayPointer"

STOP

END SELECT

faceArs(arrayInd)%arraylDPtrs(ordInd)%arraylDPtr=>arPtr

faceArs(arrayInd)%arraylDPtrs(ordInd)%isAssociated=.TRUE.

ENDIF

RETURN

END SUBROUTINE GetIDArrayPointer

SUBROUTINE Get2DArrayPointer(arrayNamecompIndarPtr)

BEGIN MODULE USE

USE Global

IMPLICIT NONE

CHARACTER*8 arrayName

INTEGER(sik) compIndordInd

G-44

REAL(sdk), POINTER, DIMENSION(:,:) :: arPtr

ordInd = compIndices(compInd)

IF (arrayName.EQ.'twn ') THEN
arPtr=>gldAr (ordInd) %twn

ELSE
PRINT * "BAD ARRAY NAME TO Gen1dArray:Get2DArrayPointer"
PRINT *, arrayName
STOP

ENDIF

RETURN
END SUBROUTINE Get2DArrayPointer

If the new general array xxxxx is to be made available to the GenIDArray data interface:

1. Add a new index variable for the array at the end of the current list of index

declarations at the start of module GeniDArray, and increase parameter
numlDFaceArrays accordingly:

MODULE GenlDArray

INTEGER(sik), PARAMETER hgamInd= 1

INTEGER(sik), PARAMETER tlInd= 22
INTEGER (sik), PARAMETER tlnInd= 23

INTEGER(sik), PARAMETER faInd= 66
INTEGER(sik), PARAMETER :: xxxacInd= 67

INTEGER(sik) ,PARAMETER numlDFaceArrays=67

2. Add a new case for array xxxxx to subroutine GetIDArrayPointer:

SUBROUTINE GetlDArrayPointer (arrayInd, compInd, arPtr)

SELECT CASE (arrayInd)

G-45

CASE (hgamInd)
arPtr=>gldAr (ordInd) %hgam

CASE (faInd)
arPtr=>gldAr (ordInd) %fa

CASE (xxxxxlnd)
arPtr= >gldAr (ordInd) Skamxx

CASE DEFAULT

PRINT *, "BAD NAME INDEX TO GenldArray:GetlDArrayPointer"
STOP

END SELECT

END SUBROUTINE GetlDArrayPointer

Coding Standard: For maintainability, any new case added to subroutine
GetIDArrayPointer should be appended to the end of the current list of cases.

G.1.4.2. 3D Vessel-Component Arrays

Special Arrays

The 3D Vessel Special Arrays are stored in array vsAr, which is of derived-type
vessArrayT. The elements of type vessArrayT are defined in module VessArray,
and array vsAr is declared there to be of dimension(maxComps):

MODULE VessArray

BEGIN MODULE USE
USE IntrType
USE GlobalDim

IMPLICIT NONE

Vessel component specific arrays

TYPE vessArrayT <<<--- type vessArrayT
REAL(sdk), POINTER, DIMENSION(:) z

REAL(sdk), POINTER, DIMENSION(:) dz

INTEGER(sik), POINTER, DIMENSION(:) jsn

INTEGER(sik), POINTER, DIMENSION(:) jsnget

G-46

INTEGER(sik), POINTER, DIMENSION(:) :: jsnput

REAL(sdk), POINTER, DIMENSION(:)

REAL(sdk), POINTER, DIMENSION(:)

INTEGER(sik), POINTER, DIMENSION(:)
INTEGER(sik), POINTER, DIMENSION(:)

esm
evsm

nfcvsm
nfclsm

REAL(sdk), POINTER, DIMENSION(:) :: ztbn

END TYPE vessArrayT

TYPE (vessArrayT) , DIMENSION (maxComps) :: vsAr <<<-- declare vsAr

Storage is allocated for the individual arrays in array vsAr by calls to TRACAllo by
subroutine AllocVess, which is also in module vessArray.

MODULE VessArray

CONTAINS

SUBROUTINE AllocVess

nclx=vessTab(cci)%nclx <<<-- local variables used in TRACAllo CALLs
nrsx=vessTab(cci)%nrsx
nytv=vessTab(cci)%nytv
nasx=vessTab(cci)%nasx
ntsx=vessTab(cci)%ntsx
ncsr=vessTab(cci)%ncsr
nvent=vessTab(cci)%nvent

CALL TRACAllo(vsAr(cci)%ztbn,nclx, ztbn',O.OdO)

CALL TRACAllo(vsAr(cci)%zchfn,nclx,'zchfn',O.OdO)

CALL TRACA1lo(vsAr(cci)%alptn,nclx,'alptn',O.OdO)

Subroutine AllocVess is called once each by subroutines rvssI and revssl.

G-47

!

Coding Standard: For maintainability, the order of calls to TRACAllo in subroutine
AllocVess should match the (reversed) order of array declarations in derived data-type
ves sArrayT.

Read the Special Array from the text input file, and echo the read to the text output file
with calls to service routines loadn and warray.

Subroutine rvssl (module VessTask):

CALL loadn(vsAr(cci)%z,vessTab(cci)%nasx,1)
CALL warray (z ',vsAr(cci)%z,vessTab(cci)%nasx,O)

CALL loadn(vsAr(cci)%rad,vessTab(cci) %nrsx, 1)
IF (vessTab(cci)%igeom.EQ.0) THEN

CALL warray('r ,vsAr(cci)%rad,vessTab(cci)%nrsx, 0)
ELSE

CALL warray('x ,vsAr(cci)%rad,vessTab(cci)%nrsx,,0)
ENDIF

CALL loadn(vsAr(cci)%th,vessTab(cci)%ntsx,1)
IF ((vessTab(cci)%igeom.EQ.0).AND.(ioinp.EQ.0).AND &

&. (vsAr(cci)%th(vessTab(cci)%ntsx) .GT.2.OdO*pi+0.000ldO)) THEN
DO i=1,vessTab(cci)%ntsx

vsAr(cci)%th(i)=(pi/180.Od0) *vsAr(cci)%th(i)
ENDDO

ENDIF
IF (vessTab(cci)%igeom.EQ.0) THEN

CALL warray('t ',vsAr(cci)%th,vessTab(cci)%ntsx,0)
ELSE

CALL warray('y ',vsAr(cci)%th,vessTab(cci)%ntsx,0)
ENDIF

Add the Special Array to the dump file, read it from the restart file, and echo the read to
the text output file. This is done with calls to service routines bfoutn, bf inn, and
warray.

Subroutine dvss1 (module VessTask):

CALL bfoutn(vsAr(cco) %z,vessTab(cco)%nasx, ictrld)
CALL bfoutn(vsAr(cco) %rad,vessTab(cco) %nrsx, ictrld)
CALL bfoutn(vsAr(cco) %th,vessTab(cco) %ntsx, ictrld)

G-48

Subrountine revssl (module VessTask):

CALL bfinn(vsAr(cci)%z,vessTab(cci)%nasx, ictrlr)

CALL bfinn(vsAr(cci)%rad,vessTab(cci)%nrsx, ictrlr)

CALL bfinn(vsAr(cci)%th,vessTab(cci)%ntsx, ictrlr)

CALL warray('z ,,vsAr(cci)%z,vessTab(cci)%nasx,O)

IF (vessTab(cci)%igeom..EQ.0) THEN

CALL warray(r ,,vsAr(cci)%rad,vessTab(cci)%nrsx,O)

CALL warray('t ,,vsAr(cci)%th,vessTab(cci)%ntsx,O)
ELSE

CALL warray('x ,,vsAr(cci)%rad,vessTab(cci)%nrsx,O)

CALL warray('y ,,vsAr(cci)%th,vessTab(cci)%ntsx, 0)

ENDIF

Fluid-Mesh Arrays

The 3D Vessel Fluid-Mesh Arrays are stored in array vsAr3, which is of derived-type

vessArray3T. The elements of type vessArray3T are defined in module VessArray3,

and array vsAr3 is declared in vessArray3 to be of dimension(maxComps). Storage is

allocated for the individual arrays in array vsAr3 by calls to TRACAllo by subroutine

AllocVess3, which is also in module vessArray3.

MODULE VessArray3

TYPE vessArray3T

REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,

END TYPE vessArray3T

DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)

DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)

TYPE (vessArray3T),DIMENSION(maxComps) :: vsAr3

G-49

hia
hva
q3drl
q3drv

xv4
xv5
xv6
xvs

!

CONTAINS

SUBROUTINE AllocVess3(ni,nj,nk, ccix)

BEGIN MODULE USE
USE Alloc

IMPLICIT NONE
INTEGER(sik) ni,nj,nk, ccix

CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL

TRACAllo(vsAr3(ccix)%hla,ni,nj,nk,'hla',O.OdO)
TRACAllo(vsAr3(ccix)%hva,ni,nj,nk,'hva',O.OdO)
TRACAllo(vsAr3(ccix)%q3drl,ni,nj,nk,'q3drl',O.OdO)
TRACAllo(vsAr3(ccix)%q3drv,ni,nj,nk,'q3drv',O.OdO)

TRACAllo(vsAr3(ccix)%xv4,ni,nj,nk,'xv4',O.OdO)
TRACAllo(vsAr3(ccix)%xv5,ni,nj,nk,'xv5',O.OdO)
TRACAllo(vsAr3(ccix)%xv6,ni,nj,nk,'xv6',O.OdO)
TRACAllo(vsAr3(ccix)%xvs,ni,nj,nk, xvs',O.OdO)

END SUBROUTINE AllocVess3

Subroutine AllocVess3 is called once each by subroutines rvssl and revssl. Note
that A1locVess3 obtains its dimensioning information through its argument list, unlike
subroutine AllocVess, which uses data in VessTab. Another difference between the
two allocation routines is in AllocVess3's use of argument variable ccix to index a
specific VESSEL component in array vsAr3 (this will support future parallelization of
TRAC).

Many of the Vessel fluid-mesh arrays are dual time (they contain either old- or new-time
values of the same quantity), e.g.,

REAL(sdk),
REAL (sdk),
REAL(sdk),

REAL(sdk),

REAL(sdk),

REAL(sdk),
REAL(sdk),

REAL(sdk),

POINTER,
POINTER,
POINTER,

POINTER,

POINTER,

POINTER,
POINTER,

POINTER,

DIMENSION(:,:,:)

DIMENSION(:,:,:)
DIMENSION(:,:,:)

DIMENSION(:,:,:)

DIMENSION(:,:,:)

DIMENSION(:,:,:)
DIMENSION(:,:,:)

DIMENSION(:,:,:)

tv <<<--- old vapor temp
tl
gam

p <<<--- old pressure

tvn <<<--- new vapor temp
tin

gamn

pn <<<--- new pressure

Coding Standard: For maintainability, declarations of new dual-time array elements that
are added to the VESSEL-component, derived-type vessArray3T should be included in
the appropriate section of vessArray3T, old-time variables should be included with the

G-50

other old-time variables, and new-time variables should be included with other new
time variables.

Coding Standard: For maintainability, the order of calls to TRACAllo in subroutine
AllocVess3 should match the order of array declarations in derived data-type
vessArray3T.

If necessary, read the Fluid-Mesh Array from the text input file and echo the read to the

text output file with calls to service routines loadn, clearn, and rievel; the arrays are

first read into scratch array scr, grouped by axial level (ij planes), within a loop over the
axial (k) coordinate:

Subroutine rvssl (module VessTask):

ALLOCATE(scr(vessTab(cci) %nclx))

IF (tlq.NE.1.0d20) inproc=2
CALL loadn(scr,vessTab(cci) %nclx, 1)

IF ((istopt.NE.0) .AND. (tlq.NE.1.0d20)) THEN «<--istoptoption
tmp=tlq
IF (ioinp.EQ.1) CALL uncnvts(1t1',tmp,i,l,-I)
CALL clearnr(tmp, scr,vessTab(cci) %nclx)

ENDIF
CALL rlevel(tln ,scr,vessTab(cci)%nclx, vsAr 3 (cci)%tln)

The level-input logic supports the feature to input default values for certain data arrays,

under control of namelist variable istopt.

There is also logic at the end of subroutine rvssl for the "repeat level" Vessel input
feature:

READ (card,710) nlev
710 FORMAT (14x,i14)

IF ((nlev.GE.1-vessTab(cci)%igbcz).AND. (nlev.LT.nas)) THEN

IF (inlab.EQ.3) WRITE (inlab,725) nlev

725 FORMAT (lh*/12hrepeat level,i4/lh*)

ksnk=kc
ksrc=nlev+nzbcm
DO i=vessTab(cci)%icOmm,vessTab(cci)%iall

DO j=vessTab(cci) %jcOmm,vessTab(cci) %jall

vsAr3 (cci)%alp(i,j,ksnk)=vsAr3(cci)%alp(i,j,ksrc)
vsAr3(cci)%alpn(i,j,ksnk)=vsAr3(cci)%alpnf(i,j,ksrc)
vsAr3(cci)%hdyt(i,j,ksnk)=vsAr3(cci)%hdyt(ij,ksrc)
vsAr3 (cci)%hdz (i, j,ksnk)=vsAr3 (cci)%hdz(i, j,ksrc)

G-51

Add the Fluid-Mesh Array to the dump file, read it from the restart file, and echo the read

to the text output file with calls to service routines dlevel, bf inn, warray, and levelr:

Subroutine dvssl (module VessTask):

level data

DO k=kO,kx
iz=k-nzbcm
CALL dlevel(vsAr3(cco)%cfzlyt,vessTab(cco)%nclx)
CALL dlevel(vsAr3(cco)%cfzlz,vessTab(cco)%nclx)
CALL dlevel(vsAr3(cco)%cfzlxr,vessTab(cco)%nclx)
CALL dlevel(vsAr3(cco)%cfzvyt,vessTab(cco)%nclx)
CALL dlevel(vsAr3(cco)%cfzvz,vessTab(cco)%nclx)

Subroutine revssl (module VessTask):

read level array data

IF (vessTab(cci)%igbcz.EQ.0) THEN
kO=vessTab(cci)%kcO
kx=vessTab(cci)%kcx

ELSE
kO=vessTab(cci)%kc0m
kx=vessTab(cci) %kcxp

ENDIF

ALLOCATE (scr (vessTab(cci) %nclx)) <-_ scratch array scr

DO k=kO,kx
nas=k-nzbcm
iz=nas
WRITE (iout,140) nas

140 FORMAT (P' level',i3,' data')
CALL bfinn(scr,vessTab(cci)%nclx, ictrlr)
CALL warray(Ccfzlyt ',scr,vessTab(cci)%nclx,,0)
CALL levelr(vsAr3(cci)%cfzlyt,scr)

G-52

CALL bfinn(scr,vessTab(cci)%clCx, ictrir)

CALL warray('cfzlz ',scr,vessTa~b(cci)%nlclx,O)
CALL 1evelr(vsAr3 (cci) %cfzlz, scr)

CALL bfinn(scr,vessTab(cci) %nclx, ictrir)

CALL warray(lcfzlxr ,scr,vessTab(cci)%nlc1x,O)

CALL leveir (vsAr3 (cci) %cfzlxr, scr)

CALL bfinn(scr,vessTab(cci) %nclx, ictrir)

CALL warray(lcfzvyt ',scr,vessTab(cci)%flclx,*)
CALL leveir (vsAr3 (cci) %cfzvyt, scr)

CALL bfinn(scr,vessTab(cci) %nclx, ictrir)

CALL warray('cfzvz ',scr,vessTab(cci)%nclx,O)
CALL 1evelr(vsAr3 (cci)%cfzvz,scr)

If appropriate, add a time edit of the array to the text output file trc out, with a call to

service routine wievel (which calls leveli to stack the rank-3 arrays into a temporary

rank-i array for printing):

Subroutine wvssl (module VessTask):

kO=vessTab(cco) %kcO

kx=vessTab (cco) %kcx

IF (vessTab~cco)%igbcz.NE.O) kQ=vessTab(cco)%kc~m

IF (vessTab(cco) %igbcz.NE.O) kx=vessTab(cco)'%kcxp

DO kc=kO,kx
iz=kc-nzbcm

110 FORMAT (P levell,i3,1 data')

CALL wievel (alpn ',vsAr3 (cco)%alpn,vessTab(cco) %nclx)

CALL wievel (rovn ',vsAr3 (cco)%rovn,viessTab(cco) %nclx)

IF (ntsprn.NE.0) CALL wlevel(larvn ',vsAr3(cco)%arvnl

"& vessTab(cco)%nlclx)
CALL wievel (roin l,vsAr3 (cco) %roln, vessTab (cco) %nclx)

IF (ntsprn.NE.O) CALL wlevel('arln ',vsAr3(cco)%arlfl &

"& vessTab (cco) %nclx)
CALL wievel ('xvnyt ',vsAr3 (cco) %vvnyt,vessTab(cco)%rlclx)

IF (ntsprn.NE.0) CALL wlevel(1vvntyt ',vsAr3(cco)%vvntyt &

"& vessTab(cco) %nclx)

CALL wlevel(vvnz l,vsAr3 (cco)%vvnz,vessTab(cco)%flclx)

IF (ntsprn.NE.0) CALL wlevel('vvntz ~,vsAr3(cco)%vvn~tz &

G-53

& ,vessTab(cco)%nclx)

If the new array is dual time, add a new-time to old-time data copy to subroutine timupd
(for timestep advancement):

Subroutine timuDd (module VessCrunch):

over-writes start of time step variables with end of time
step values for one vessel level

IF (iml00x.NE.-100) THEN

k=iz+nzbcm
DO i=vessTab(cco) %ic0m,vessTab(cco) %icx

DO j=vessTab(cco)%jc0m,vessTab(cco)%jcx
vsAr3(cco)%alpo(i,j,k)=vsAr3(cco)%alp(i,j,k)

vsAr3(cco)%bit(i,j,k)=vsAr3(cco)%bitn(i,j,k)
vsAr3(cco)%frcil(i,j,k)=vsAr3(cco)%frciln(i,j,k)
vsAr3(cco)%frci2(i,j,k)=vsAr3(cco)%frci2n(i,j,k)
vsAr3(cco)%frci3(i,j,k)=vsAr3(cco)%frci3n(i,j,k)
vsAr3 (cco) %ciyt (i, j,k) =vsAr3 (cco) %cinyt (i, j,k)
vsAr3(cco)%ciz(ij,k)=vsAr3(cco)%cinz(i,j,k)
vsAr3(cco)%cixr(i,j,k)=vsAr3(cco)%cinxr(i,j,k)

vsAr3(cco)%owlz(i,j,k)=vsAr3(cco)%wlz(i,j,k)
vsAr3(cco)%owlxr(i,j,k)=vsAr3(cco)%wlxr(i,j,k)

ENDDO
ENDDO

ENDIF

RETURN
END SUBROUTINE timupd

Old-time to new-time data copies for timestep backups are handled by subroutine
bakup. Copying for special (i.e., water-packer) backups is called from the outer stage
and for normal backups from POST; as with the 1D-component, dual-time arrays, care
must be taken with the old-time/new-time value of the array for the water-packing logic
(i.e., add the copy only if the value of the array does not change in the PREP stage).

Subroutine bakup (module vessCrunch):

SUBROUTINE bakup (iopt) <<<--- iopt is flag for type of backup

G-54

! over-writes end of time step variables with start of time

! step values for one vessel level

k=iz+nzbcm

IF (iopt.EQ.0) THEN

! backup from the post stage

DO i=vessTab(cco)%icOmmvessTab(cco)%ial!
DO j=vessTab(cco)%jcOmm,vessTab(cco)%jall

vsAr3(cco)%bitn(i,jk)=vsAr3(cco)%bit(i,j,k)
vsAr3(cco)%frciln(i,j,k)=vsAr3(cco)%frcil(i,j,k)
vsAr3(cco)%frci2n(i,j,k)=vsAr3(cco)%frci2(i,j,k)
vsAr3(cco)%frci3n(i,j,k)=vsAr3(cco)%frci3(i,j,k)

vsAr3(cco)%wvxr(i,j,k)=vsAr3(cco)%owvxr(i,j,k)
vsAr3(cco)%wlyt(ij,k)=vsAr3(cco)%owlyt(i,j,k)
vsAr3(cco)%wlz(i,jk)=vsAr3(cco)%owlz(i,j,k)
vsAr3(cco)%wlxr(i,j,k)=vsAr3(cco)%owlxr(i,j,k)

ENDDO
ENDDO

ELSE

, backup from the outer stage

DO i=vessTab(cco)%icOmm,vessTab(cco)%iall
DO j=vessTab(cco)%jcOmm,vessTab(cco)%jall

vsAr3(cco)%chtin(i,j,k)=vsAr3(cco)%chti(i,j,k)
vsAr3(cco)%chtan(i,j,k)=vsAr3(cco)%chtia(i,j,k)
vsAr3(cco)%alvn(i,jk)=vsAr3(cco)%alv(i,j,k)
vsAr3(cco)%alven(i,j,k)=vsAr3(cco)%alve(ij,k)

vsAr3(cco)%wlyt(i,j,k)=vsAr3(cco)%owlyt(i,j,k)
vsAr3(cco)%wlz(i,j,k)=vsAr3(cco)%owlz(i,j,k)
vsAr3(cco)%wlxr(i,j,k)=vsAr3(cco)%owlxr(i,j,k)

ENDDO
ENDDO

ENDIF
RETURN
END SUBROUTINE bakup

Vessel Data Interface (Noninstantiated VESSEL Components)

Function GetVSAR, in module vessArray3, is a data-access routine that returns a value
from a subset of the Vessel 3D mesh arrays. GetVSAR takes as input arguments a character
string specifying the requested array name, the Vessel's cco index, and the (i, j, k)

indices into the array; it operates with IF-THEN-ELSEIF tests on the array name:

G-55

MODULE VessArray

CONTAINS

REAL(sdkx) FUNCTION GetVSAR(varNameccoijk)

INTEGER(sik) ijkcco
CHARACTER*8 varName

LOGICAL debug
DATA debug /.FALSE./

IF (debug) THEN
WRITE(*,*) 1getVSAR called for ',varName

ENDIF

IF (varName.EQ.'vvnz 1) THEN
getVSAR=vsA.r3(cco)%vvnz(ijk)

ELSEIF (varName.EQ.Icinz -) THEN

getVSAR=vsAr3(cco)%cinz(ijk)
ELSEIF (varName.EQ.'hfg 1) THEN

getVSAR=vsAr3(cco)%hfg(ijk)
ELSEIF (varName.EQ.Ivvxr -) THEN
getVSAR=vsAr3(cco)%vvxr(ijk)

ELSEIF (varName.EQ.Ichtin 1) THEN
getVSAR=vsAr3(cco)%chtin(ijk)

ELSEIF (varName.EQ.'vlnz 1) THEN
getVSAR=vsAr3(cco)%vlnz(ijk)

ELSEIF (varName.EQ-'vlxr 1) THEN
getVSAR=vsAr3(cco)%vlxr(ijk)

ELSEIF (varName.EQ.'rom -) THEN
getVSAR=vsAr3(cco)%rom(ijk)

ELSEIF (varName.EQ.'vlyt -) THEN
getVSAR=vsAr3(cco)%vlyt(ijk)

ELSEIF (varName.EQ.'roan 1) THEN
getVSAR=vsAr3(cco)%roan(ijk)

ENDIF

RETURN
END FUNCTION getvsar

END MODULE VessArray3

G-56

G.1.4.3. System Services
Detailed guidelines for modification of the System Services that support intercomponent
communication are given in Section 3.2.3.a.

G.1.5. HTSTR Arrays

The HTSTR arrays are stored in array hsAr, which is of derived-type hsArrayT. The
elements of type hsArrayT are defined in module HSArray, and array hsAr is declared
in HSArray to be of dimension(maxComps). Array hsAr is given the target attribute, and
scalar variable chs is declared to be of type hsArrayT, with the pointer attribute.
Variable chs is associated with specific array elements (i.e., with specific HTSTR
components) of hsAr; this is done only to keep the physical lengths of certain argument
lists short (in particular, to keep the number of continuation lines within a limit of 19).

MODULE HSArray

TYPE hsArrayT

REAL(sdk), POINTER, DIMENSION(:) rdpwr

REAL(sdk), POINTER, DIMENSION(:) rs

REAL(sdk), POINTER, DIMENSION(:) :: cpowr

REAL(sdk), POINTER, DIMENSION(:) :: hs

REAL(sdk), POINTER, DIMENSION(:) :: zpwzt

REAL(sdk), POINTER, DIMENSION(:,:,:) tween

REAL(sdk), POINTER, DIMENSION(:,:,:) :: tweeo
REAL(sdk), POINTER, DIMENSION(:,:,:) cepwn

REAL(sdk), POINTER, DIMENSION(:,:,:) :: cepwo

END TYPE hsArrayT

TYPE (hsArrayT),TARGET,DIMENSION(maxComps) :: hsAr
TYPE (hsArrayT),POINTER:: chs

Coding Standard: For maintainability, declarations of new data array elements that are
added to the HTSTR-component, derived-type hsArrayT should be included in the
appropriate section of hsArrayT, according to the nature of the new array. The various
array types include the general global data (which also includes data "global" to a
specific copy), the time-dependent global data (including data specific to a copy), the rod
and slab-dependent data, the time-dependent rod data, and the surface-dependent rod
data (which have single-time and dual-time portions).

Storage is allocated for the individual arrays in array hsAr for a specific HTSTR
component by calls to TRACAllo by subroutine pntrod (module RodTask), which is
called once each by subroutines rhtstr and rehtst (both in module RodTask).

G-57

Coding Standard: For maintainability, the order of calls to TRACAllo in subroutine
pntrod should match the order of array declarations in derived data-type hsArrayT.

New-Time to Old-Time and Old-Time to New-Time Data Copies

Module HSArray contains service subroutines TimeUpHS and TimeUpHSl; each routine
transfers some of the dual-time HTSTR data arrays from new-time to old-time hsAr
arrays or from old-time to new-time arrays (together they treat all of the dual-time
arrays), according to the value of input-flag newToold. Subroutine TimeUpHS is
responsible for the global dual-time arrays, and subroutine TimeUpHSl is responsible
for the dual-time rod and rod-surface data.

MODULE HSArray

CONTAINS

SUBROUTINE TimeUpHS (newToOld)

! BEGIN MODULE USE
USE Global

IMPLICIT NONE

LOGICAL newToOld

IF (newToOld) THEN
hsAr(cco)%cdg = hsAr(cco)%cdgn
hsAr(cco)%cdh = hsAr(cco)%cdhn
hsAr(cco)%clen = hsAr(cco)%clenn

ELSE
hsAr(cco)%cdgn = hsAr(cco)%cdg
hsAr(cco)%cdhn =.hsAr(cco)%cdh
hsAr(cco)%clenn = hsAr(cco)%clen

ENDIF

END SUBROUTINE TimeUpHS

SUBROUTINE TimeUpHSl(newToOld)

IF (newToOld) THEN
hsAr(cco)%radr=hsAr(cco)%radrn
hsAr(cco)%drz=hsAr(cco)%drzn
hsAr(cco)%rft=hsAr(cco)%rftn

Surface-dependent arrays
hsAr(cco)%hrflo=hsAr(cco)%hrfl
hsAr(cco)%hrfvo=hsAr(cco)%hrfv
hsAr(cco)%hrfgo=hsAr(cco)%hrfg

<<<-- dual-time global arrays

<<<--- dual-time rod arrays

G-58

!
]

hsAr(cco)%cepwo=hsAr(cco)%cepwn

ELSE <<-- old to new

hsAr (cco) %radrn=hsAr (cco) %radr
hsAr (cco) %drzn=hsAr(cco) %drz
hsAr (cco) %rftn=hsAr(cco) %rft

Surface-dependent arrays
hsAr (cco) %hrfl=hsAr (cco) %hrflo
hsAr (cco) %hrfv=hsAr (cco) %hrfvo
hsAr (cco) %hrfg=hsAr (cco) %hrfgo

hsAr (cco) %cepwn=hsAr (cco) %cepwo

ENDIF

END SUBROUTINE TimeUpHSl

In the PREP stage, subroutine htstrl has a call TimeUpHSl (. TRUE.), and corel has
a call TimeUpHS(.TRUE.) for new-time to old-time array copies for timestep
advancement. In the POST stage, subroutine htstr3 has a call TimeUpHS(.FALSE) and a
call TimeUpHSl(.FALSE.) for old-to-new copies in the case of a timestep backup (oitno
= -100).

HTSTR Data Interface

The HTSTR data interface comprises the following routines, all of which are contained in

module HSArray:

SUBROUTINE GetHSlDPtr (arrayName, compInd, arPtr)

SUBROUTINE GetHS2DPtr (arrayName, compInd, arPtr)

SUBROUTINE GetHS3DPtr (arrayName, compInd, arPtr)

REAL (sdkx) FUNCTION GetHS (compInd, arrayName, cell)

REAL (sdkx) FUNCTION GetHSSurf (compInd, arrayName, rod, cell)

INTEGER(sikx) FUNCTION GetNoht (compInd, rod)

REAL (sdkx) FUNCTION GetHS2d(compInd, arrayName, rod, cell)

G-59

REAL (sdkx) FUNCTION GetHS3d(compInd, arrayName, rod, cell, node)

Coding Standard: Any new rank-2 or rank-3 arrays that are to be part of the standard
HTSTR data interface should have the following ordering of information in their
columns:

REAL (sdkx) FUNCTION GetHS2d (compInd, arrayName, rod, cell)

CALL GetHS2DPtr (arrayName, compInd, arPtr)

GetHS2D=arPtr (cell, rod) <<<- cell, rod

REAL (sdkx) FUNCTION GetHS3d (compInd, arrayName, rod, cell, node)

CALL GetHS3DPtr (arrayName, compInd, arPtr)

GetHS3D=arPtr (node, cell, rod) <-- node, cell, rod

G.2. Adding A New XTV Graphics Variable

Variables output to the XTV file are output by component and contain seven attributes:
Dimension (scalar, ID, 2D, 3D), Frequency, Data Position, Length, Degeneracy, Color
Mapping, and Special Options. In addition, the following is needed: the conditions
under which the variable is output, assurance that the variable is indexed in the English
units subsystem, and, for 1D components, knowledge of whether this a generic variable
or a component-specific variable. Note that the graphics output is limited to floating
point values. Integers may be output by conversion to floating-point values, but the
addition of character values requires the use of Auxiliary Component Structures, which
is not covered in this appendix.

G.2.1. Understanding Variable Attributes

Dimension: This is simply the order of the variable array (scalar or single valued, 1D,
etc.) and should not be confused with the dimension of the component. Note that
variables having a dimension greater than that of the component are difficult to add and
are beyond the description of this appendix. Currently, general problem information,
control blocks, signal variables, and trips are treated graphically as scalar components;
breaks, fills, generic heat structures (not the rods and slabs), pipes, plenums, prizers,
pumps, tees, and valves are 1D components; rods and slabs are 2D components; and the
vessel is the only 3D component. Wall conduction in 1D fluid components promotes
them to 2D components when the multinode resolution is employed.

G-60

Frequency. Two kinds of variables are output to the graphics file: constants that do not
change during the course of the calculation and computed values. Constants are said to
be static or time-independent and are output in the graphics header and not in the
regular data section. Values computed during the course of a calculation are said to be
dynamic or time-dependant and are output in the data section of the graphics file. At
some later date, there may be some option for varying frequencies of output (e.g., some
values output every edit, some only every third edit).

Data Position. TRAC utilizes a staggered mesh: that is, some values are computed at the
cell center and some at the cell face. For the most part, volume and inventory quantities
are cell centered, whereas velocity and mass flow quantities are face oriented. Face
oriented arrays generally have more values than cell-centered arrays.

Length. TRAC currently implements arrays with two different classes of length: those of
a fixed length and those using a special variant of dynamic sizing. "Dynamically sized"
arrays employ a fixed dimension and denote the end of active values with the token "-1"
after the last value. The actual number of values in a fixed-dimension array can be
computed from the axis dimensions and the data position. For example, if a vessel has
dimensions of (2,2,4), then cell-centered arrays would output 2 x 2 x 4 = 16 values per
graphics edit. Similarly, arrays being face valued along the radial axis would contain
(2+1) x 2 x 4 = 24 values per edit. Dynamically sized arrays currently are handled by
outputting all values (including the inactive ones) and then utilizing only the active
ones. The actual number of values output to the graphics file is calculated in the same
manner as for fixed dimension arrays utilizing the maximum number of elements as the
dimension for the dynamically sized axis.

Degeneracy. The degeneracy attribute specifies along which axis(es) this variable lies
when the dimension of the component is greater than that of the variable. For the
purposes of the graphics file, the dimension of the component is that of the highest
dimensioned component. Thus, 1D fluid components are considered 2D components
when they have two or more wall conduction nodes. This information is used to help
the application determine the length of the array and construct an appropriate diagram
in the graphical user interface (GUI). For example, stnui, the Stanton number along the
inner surface of the heat structure, is degenerate along the j or z axis. Variables that are
the same dimension as the component, as well as scalar variables, have no degeneracy.
To keep things simple between cylindrical and Cartesian systems, the axis identifiers i, j,
and k are used for the first, second, and third axes, respectively.

Color Mapping. The XTV GUI uses two color sets or maps to help visualize data.
Quantities involving fluid properties are visualized using 'Water Colors," a series of
colors ranging from deep blue to white. Quantities involving heat transfer or energy are
displayed using "Hot Colors," a series of colors ranging from black to deep red.

Special Options. The XTV GUI supports four options for special variable treatment. The
first is the designation of a variable as a vector component. The second option is the
designation of the variable as a tensor component. Both Vector and Tensor components
are discussed in more detail in a subsequent section. The third option is the use of inset

G-61

display tiles. The 3D displays can have a second value set up for visualization; by
selecting it from an inset display menu in the GUI, the inset display attribute adds this
variable to the inset display menu. The last option is the Unlisted option. Variables that
are used only for dynamic sizing of arrays can be designated as Unlisted, in which case
they will not be displayed in the variable selection list of the XTV GUI.

G.2.2. Steps to be Completed before Adding Variables to Output

1. Verify that the variable to be output is indexed in the English Units subsystem (see
section on the LABPRG functionality for details). If it is not indexed, add the variable
to the LABPRG index.

2. Select the appropriate attributes. The table below lists the variable attribute options.
Note that for simplicity in TRAC, the dimension and data position attributes have
been hybridized into a composite value.

3. Determine whether the variable should be output conditionally. Some variables are
meaningful only if a particular namelist option is selected, others if a particular
component option is selected.

4. Determine what subroutine should be responsible for outputting the information.
See Appendix C for information as to which subroutines output information on the
various components.

5. Verify that the desired length of the variable is equal to what TRAC/XTV will
calculate. The rules for calculations are as follows:

" All OD variables except tensors output one value.

"*1D, 2D, and 3D variables that are not dynamically sized output ncellt
values for cell-centered quantities.

"* Face-valued quantities output one more value along the face axis than its
normal dimension, unless that axis is the azimuthal axis on cylinders, in
which case it outputs the same number of elements along that axis. For
example, a 3D variable that is face valued along the radial axis outputs
(ni+ 1) * nj nk = nce lit + nj *nk values. Were it to be face valued along the
azimuthal axis, it would output ni * nj * nk = ncellt values.

" Dynamically sized values output the maximum number defined for that
component axis. The end of "used values" is denoted by a "-1". If using
dynamic sizing for the component, this -1 can be in another variable.

" Dynamic minimum variables output exactly the minimum number of values
for a dynamic axis at all timesteps.

G-62

TABLE OF VARIABLE ATTRIBUTE PARAMETERS IN TRAC

Attribute Value Description

Dimension- This gives the dimension of indexing used and the relative position of
variable the data in the cell. Subdimensional variables must use the correct
position / value here and specify the degeneracy attribute for proper array length
length specification. (e.g., hrfio is a 1D variable that exists in a 2D heat

structure. It is declared here as 1D and described below as lying along
the 'J' (z) axis

vScalar scalar value (not an array)

vldCc 1D (linear) array, with values at cell centers

vldFa 1D (linear) array, with values at cell faces

vldDc 1D (linear) array, dynamically sized by component

v2dCc 2D array [indexed as (ij)], with values at cell centers

v2dFaI 2D array [indexed as (ij)], with values at cell i faces (i
faces are on the first axis, typically the radial ax)

v2dFaJ 2D array [indexed as (ij)], with values at cell j faces (j
faces are on the second axis, typically the axial axis)

v2dDc 2D array [indexed as (ij)], dynamically sized by the
component

v2dDnI 2D array [indexed as (ij)], dynamically sized by -1 on the
I axis, J axis is fixed dimension

v2dDnJ 2D array [indexed as (ij)], dynamically sized by -1 on the

J axis, I axis is fixed dimension

v3dCc 3D array [indexed as (ij,k)] with values at cell centers

v3dFaI 3D array [indexed as (ij,k)] with values at cell j faces

v3dFaJ 3D array [indexed as (ij,k)) with values at cell j faces

v3dFaK 3D array [indexed as (ij,k)] with values at cell k faces

Frequency This provides the frequency of output in the graphics file. Later,
options for reduced resolution may be specified (e.g., every other edit,
every third editetc.)
vstatic Time-independent value (output on first edit only)

vDynamic Time-depe-ndent value (output every edit)

Degeneracy This specifies which axis (es) the degenerate array lies along. For
example, all degenerate rod variables lie along the k (z) axis. This is
used for selecting the dimension

G-63

vDgnI, The 1D variable specified lies along the i, j, or k axis
vDgnJ, (respectively)
vDgnK

vDgnIJ, The 2D variable lies on the k, j, or i plane (respectively)
vDgnIK, v
DgnJK

vNotApp There is no degeneracy for this component

Color This specifies what color set to use for the visualization
Mapping

vWtr Use water colors (blue to white)

vHot Use hot colors (black to red)

Special These codes are special-purpose options. See the individual
options explanations

vectI i component of vector-valued function (ij,k components
must be sequential). Note that the name of the vector
must be supplied with the I component variable. This
name appears in the vectors submenu of XTV. The rank
of the vector is equal to the rank of the component. It
exists at as many locations as are defined by the length
attribute of the component (thus, 2D components will not
have vectK defined

vectJ j component of vector-valued function (ij,k components
must be sequential)

vectK k component of vector-valued function (ij,k components
must be sequential)

tensorI i row of tensor function (ij,k must be sequential). Note
<name>* that the name of the tensor must be supplied with the I

component variable. The rank of the tensor is given by
the component type. Thus,a scalar tensor of a 3D
component has three values

tensorJ j row of tensor function (ij,k must be sequential)

tensorK k row of tensor function (ij,k must be sequential)

vInsetDi (inset display) Display as an inset value (as wall
sp temperatures are now)

vUnliste (unlisted value) Do not place on variable selection list
d (typically used for variable use for dimensioning

dynamic arrays)

vNotApp option or attribute not relevant to this variable.

G-64

" Vectors output the same number of values as regular variables. What makes
them vectors is their association with other variables that provide the other
axis components.

"* Tensors output n* the number of values for a regular variable. n = the rank
of the component; thus, a 3D component outputting a OD tensor outputs
three values for the variable. A 2D component outputting a 1D tensor along
the j axis has nj *2 values.

Note that some variable are stored in arrays that do not correspond to any
component/cell dimension. For example, all of the reactivity properties of a
heat structure are stored in a five-element array. To handle this, five scalar
variables are output in the graphics file with five unique names: alreac,
dbreac, pgreac, tcreac, and tfreac. Similar constructs may be needed in
other cases.

6. Locate what variables and areas of code need to be changed. If the variable is a static
or first-edit-only variable, it is entered only in the subroutine where it is output. A
call must be added to PrintVarDesc, WriteStaticVx, and Lumatch, and the
local count of static variables must be increased, conditionally if necessary. If the
variable is out put at each edit, the variable information is entered in xtvinit, and
adjustments to the number of variables output by the subroutine and the number of
variables of each conditional type must be made. If a new conditional type is
introduced, a call to PrintVarDesc will be needed, and under all circumstances, a
call to XtvBufx will be needed.

7. Verify that the component that is a parent to the variable being added has the
flexibility to handle the type of variable being added. For example, some
components output only fluid variables and have the vWtr attribute hardwired. If
this is the case, either special handling of the variable or adding an array to handle
the attribute for the component is needed.

8. If the variable is a static variable, add the variable immediately after the component
header information, along with the other static variable(s) for that component. See
the sections below titled PrintVarDesc Interface and WriteStaticVx Interface

for further details on how to make the appropriate calls to output the static variable.

9. If the variable is a dynamic variable, add the appropriate entries in Xtvlnit. Note
that it will be necessary to increment nXXvar, where xx represents the appropriate
group. If this is a conditional variable, (1) no information about its conditionality is
entered in xtvInit. Only enter its name, label, composite dimensionality and
length, and occasionally its color mapping attribute or degeneracy. (2) Ensure that
the appropriate conditional group is incremented so that the locations of each
conditional group in the series are recalculated properly. These variables will be
defined at the beginning of the relevant output subroutine. Only the global number
of possible variables for the subroutine is a module variable. If this is a new
conditional group, an nXXVar parameter and an eXXVar parameter must be added.

G-65

nXXVar parameters are used to set the number of variables in a group of conditional
variables. For example, most component have a conditional group nIsolutvar=2
because most components conditionally output concn and sn if namelist variable
isolut is 1. eXXVar represents the end of a conditional group; therefore, in the
header creation section, each conditional group will be represented by a conditional
DO loop from exlvar+1 to eX2Var, where Xl represents the end of the previous
group and X2 the end of the current group. Each exxvar is defined parametrically
by the global number of variables and the number of variables in each group. Each
component also has a variable defined, IeUnCndVar, ' which is the end of the
unconditional variables. Insert the additional logic so that these boundaries remain
accurate with the definitions in Xtv-nit.

10. In the same relative location as the order in Xtvlnit, insert the call to xtvBufX
according to the information in the section the XtvBufX interface.

11. Verify the output in two ways: (1) xtv will attempt to read in both the header
description and data values. Both have error detection algorithms built in. (2) If the
variables read in properly, examine the values output to ensure that they correspond
to what TRAC is calculating. If they do not, either the wrong array is being
outputted, or there is a variable order mismatch between the header and the data
section. Ensure again that the header order matches the data string order. As an aid,
a compile option in module data.c of XTV, ECHO_BINARY will echo what values
are assigned to each variable when set to 1.

G.2.3. PrintVarDesc Interface

Subroutine PrintVarDesc is responsible for outputting the variable definition to the
graphics file header and takes a total of 10 arguments. The first five arguments are the
variable attributes, as defined in the table and in the same order. Currently, Vector,
Tensor, InsetDisplay, and Unlisted are mutually exclusive options. The variable
attributes are followed by the index into the English units conversion factor table, which
is returned from -subroutine LuMatch. Arguments 7 and 8 are the variable name and
label. Argument 9 is the name of the variable controlling the dynamic sizing. Argument
10 is the name of vector if this is the i component of that vector. Enter blanks if these
arguments are not needed. The token vNotApp is appropriate for either the degeneracy
attribute or the miscellaneous/special options attribute.

The Degeneracy attribute is needed for the 1D and 2D variables that are associated with
components that are at least one rank above the variable (3D is rank 3, etc.). OD (scalar)
variables are not degenerate. This attribute tells the GUI both about the dimensions of
the variable and what information to use in creating the display.

Only variables using the options v2dDnI or v2dDnJ need to supply argument 9, the
name of the variable supplying the locations of the cell boundaries. Similarly, only
variables using the option vectI need to supply argument 10, the name of the vector for
the GUI.

G-66

G.2.4. WriteStaticVx Interface

The WriteStaticVx subroutines are used to output 1D and 3D static variables. Static
variables are output immediately following their definition. A call to PrintVarDesc,
which has the vStatic attribute set, should be followed immediately by a call to either
WriteStaticVl or writeStaticV3. OD variables can be output as a write statement,
with only one value on the line; 2D variables will require a writestaticV2. The
interfaces are given below:

SUBROUTINE WriteStaticVl (ald,nc,uIdx)
REAL(sdk), INTENT(IN):: ald(:)
INTEGER(sik), INTENT(IN):: nc, uIdx

SUBROUTINE WriteStaticV3(a3d,kO,kx,j0,jx,iO,ix,uIdx)
REAL(sdk), INTENT(IN):: a3d(:,:,:)
INTEGER(sik), INTENT(IN):: k0,kx,jO,jx,iO,ix,uIdx

The WriteStaticVx subroutines take three groups of arguments: a pointer to the array,
the array bounds, and the units conversion index. The array bounds for the ID
implementation are simply the number of cells to output; WriteStaticVl will output
value one of the arrays specified through the ncell value. Again, as in PrintVarDesc,
the units conversion index is the value returned from LuMatch, described below.

The 3D database indudes many boundary cells that usually are not output. Thus,
WriteStaticV3 requires that the start and stop locations in each dimension be
specified. Local variables have been created in xtvvsl to assist in this. Local variables
kO, kf 0, and kx are used to define the start and stop along the k or z axis. kf 0 indicates
the start of the k-face-oriented values as opposed to kO, which indicates the start of the
cell-centered values. Similarly, variable j f0 indicates the beginning of j-face-oriented
values. The remaining values can be determined from the vessTab variables ico,
icx, jc0, and jcx.

G.2.5. XtvBufx Interface

The interfaces to the output buffer for each level of variable are

SUBROUTINE xtvbufs (scalar,uIdx)
SUBROUTINE xtvbuf 1(aid, nc,uIdx)
SUBROUTINE xtvbuf2 (a2d,ni,nj,uIdx)
SUBROUTINE xtvbuf3 (a3d,kO,kx,jc0, jcx, icO, icx,uIdx)

The XtvBufx subroutines are identical in interface to the WriteStaticVx subroutines.
The only difference is that the writeStaticVx routines output the values in ASCII
format as part of the header, whereas the XtvBufx routines output binary floats as part
of the data stream. The xtvBufx routines take three classes of arguments: a pointer to
the array of data, the array bounds, and the units conversion index. The XtvBufx

G-67

routines have both scalar and 2D implementations that the WriteStaticVx routines
currently are lacking due to the current mix of output variables.

G.2.6. LuMatch Interface

The LuMatch subroutine is used to obtain the index of a particular variable into the
English Units Conversion Table. It has the following form:

SUBROUTINE lumatch(label,uTypeIdx, vNameIdx, list)
CHARACTER* (*), INTENT (IN) ::label
INTEGER(sik), INTENT(OUT) uTypeIdx, vNameIdx
INTEGER(sik), INTENT(IN) list

Label is the name of the variable or the units type that is to be indexed.
uTypeIdx is the index into the list of units types and conversions. This value is used by

the XTV output routines to perform English units conversions if the namelist variable
iogrf=l.

vNameIdx is the index of the variable in the list of convertible variables. XTV does not use
this variable.

List is an enumeration of three options: vNameList, if it is a variable name such as
I vlnxr', uTypeList, if it is the name of a units type such as I luvolume', or
ailLists to search both lists.

Generally, LuMatch is called in XtvInit for dynamic variables and immediately before
PrintVarDesc for static variables. LuMatch is also used by other subroutines in
conjunction with input as well as the TRCOUT file.

G-68

APPENDIX H
INPUT AND OUTPUT FILE STRUCTURES

H.1. Dump/Restart

The structure of the dump/restart file is described fully in Section 2.6.3.

Note: XTVIXMGR5 Graphics System. TRAC-M/F90 Version 3.0 includes a now

obsolete version of the XTV/XMGR5 graphics system, which is implemented by Fortran

module Xtv. Module Xtv is to be replaced in a future version of TRAC-M/F90 by
modules CXtvXFaces, XtvComps, XtvData, XtvDump, and xtvSetup. The new

implementation of the XTV/XMGR5 logic will include many arrays and derived types,

all of which will be defined in module XtvData.

H.2. Graphics

XTV previously used a separate ASCII file (xtvgr. t, or file. xtvt) to describe the
contents and format of the binary graphics (xtvgr. b, or file. xtvb) output. With the
expansion of the XTV files to include full TRCGRF equivalency, the format of the XTV
file has changed. Foremost among these changes is the consolidation of the two files into
one container file (trcxtv or file. xtv). Currently, this file still consists of an ASCII

header section and binary data section, which are delineated by the ASCII string "End of
Header Block". By combining these two files into one physical file, the possibility of

mismatching multiple header and datafiles is eliminated. This new data format is
significantly more generalized than the previous formats, enabling many new
components to be added with no changes needed to either the graphics file format or the
GUI postprocessor.

H.2.1. Overview of Changes in Version 3.0

" Introduction of a component-type identifier and modifiers to describe the
generic type of display needed in XTV (e.g., 1D, 3D), instead of the former
component name key. This change allows XTV to handle many new
component types to be output and displayed in XTV with no additional
coding.

"* Expansion of the Face flag to a variable-attributes section that encompasses
dimension, size, and output frequency.

"* Addition of a synchronization value (1.12345E+12) at the beginning of each
timestep to validate file parsing.

" Addition of the capability for XTV (or other postprocessor) to perform unit
transformations based on the variable unit type used in TRAC (e.g., luvo lume,
lulength, and lunounit), as well as a text string label (e.g., m/s) for
processors without that functionality.

H-1

* Addition of short variable names, as well as the longer descriptive labels for
each variable.

* Addition of facilities for auxiliary component structures, which can contain
the additional information peculiar to a component type.

• Addition of facilities for possible compression of the data stream at some
later date to decrease file size and/or speed transfers over a network.

H.2.2. Summary of XTV Header Format

The XTV header, which is modular, comprises a starting block, followed by a block for
each component output to XTV, and finally an End of Header Block. There are only three
considerations for ordering in the header file: (1) the data segment must follow the order
of the header exactly, (2) substructures (i.e., rods or slabs of heat structures) must follow
after the master or parent unit, and (3) the order of appearance in the header determines
the order in which the components appear in the Component Selection window in the
XTV GUI.

In general, the XTV header is space delimited; exceptions to this are character strings
that are of varying length, which are delimited by colons, and sets of values that are
delimited by commas for clarity. Character strings had been delimited previously by
asterisks; this practice has been discontinued, and the asterisk now is reserved as a
component marker.

Starting Block

The starting block has increased dramatically in content from previous versions. The
original starting block was a one-line title taken from the first title card supplied through
TRACIN. In Version 2.1, this was augmented to support version numbers in addition to
the title on the first line. In Version 3.0, the starting block now contains a version
identifier, flags for compression and precision, the date and time, machine name,
platform type, title, and nondefault unit information to this block.

The first line of the starting block contains all of the information minus the title and
additional units information. Previously, there was only one type, and thus, the type/
version identifier was the string "XTV-TRAC " followed by a number that was the
version of XTV at the time of the modifications to the XTV subroutines in TRAC. Two
versions now output the xtv graphics file: a Fortran 77 version (currently Version 5.5.3)
and a Fortran 90 version (currently TRAC-M, Version 2.125). The string would be either
"XTV-TRAC/f77" if it were written by TRAC-P 5.5.x or "XTV-TRAC/f90" if it were
written by the modernized Fortran 90 code. The new version number would be the
version of XTV needed to display the file, followed by a revision number to identify
uniquely the version of TRAC used (and thus the set of output files used) for the original
format.

For example, the version of XTV that can read this new format will be designated 3.0;
thus, the version number presented in the header file written by TRAC-P will be "XTV-

H-2

TRAC/f77 V3.0.0". If two individual changes are made to what TRAC outputs to XTV,
the header-file-version identifier written by TRAC would become "XTV-TRAC/f77
V3.0.2". The revision number will be encoded so that it changes with each new version
of TRAC, thus allowing the exact TRAC version to be recovered from this version
number.

The compression flag will indicate whether the data block is compressed; the header
section will never be compressed. How the data section is compressed will be handled
later; this specification only adds the flag for that functionality. The date/time, machine,
and platform-type information is designed to assist the user in identifying the run, as
well as aid the XTV maintainer in diagnosing problems encountered.

The second line in the starting block will be the title for the run. This currently is drawn
from the first title card in the TRACIN file.

The remainder of the starting block is devoted to enabling intelligent units conversion.
TRAC has an extensive understanding of the type of any particular variable (e.g., vol is
type volume, vv is type velocity) and has facilities for augmenting this list for the
particular problem. TRAC will supply the XTV GUI with the user-defined units types as
part of the XTV file so that the GUI has a full and complete list of all fundamental units
types. In the starting block, the units system is specified, as well as how many problem
specific units types there are, followed by a line for each new unit type, which is derived
from the input deck information supplied to TRAC.

Component Block

The component block consists of three sections: a generic component section, a graphics
display section, and a variables section. The generic component section is the same for
all components. It contains the component name (e.g., TEE), the component ID number,
a component-type identifier with modifiers, and the label supplied through TRACIN.
The component-type identifier and its modifiers determine the content of the graphics
display section, which will be described in more detail below. The format of the variable
section is the same for all components, though the types of variables must match the
information supplied in the graphics display section (e.g., a 2D graphics display section
cannot support a 3D variable).

The generic component section contains nearly all of the information that is common to
all components. Key among these are the component-type identifier and the component
name. The component-type identifier contains the dimensionality of the component (0,

1, 2, or 3D), as well as auxiliary-structure, parent-and-child, and dynamic-sizing
modifiers. Each of these modifiers is discussed in more detail in the detailed header
format section.

The current component types and modifiers are defined later in this appendix. The
component name allows special differentiation between variables of the same type. A
PIPE and a TEE will show up differently, even though they are both 1D components,
because the TEE contains a side or branch leg in addition to the primary leg. This will
appear regardless of whether they are both named PIPEs. Through the use of name, the

H-3

TEE could label the junctions, but not the PIPEs. This facility also allows for significant
functionality of new components before modifications to XTV are completed (e.g., in
adding a channel component).

The graphics display section contains the information needed to create the graphics
template or visual tile in XTV. This information usually includes the total number of
cells or nodes, the number of cells in a particular direction, their length and width, the
junctions to a component, the number of branches, and descriptions of how to draw
degenerate forms of itself (e.g., a 1D representation of a 2D object). The details of this
structure vary significantly from none (OD) to many (3D). See the detailed description
below for specific information.

The variable description section contains the total number of variables supplied and the
number that is supplied only on initialization, followed by a one-line description of the
variable and its contents. Currently, each variable is given a name and a Face flag that
connotes its length. We propose substantially augmenting this information by adding a
short reference name, a units label, a units type identifier, and an expanded variable
attributes section. For the alternate DMTRAC version, there also would be three index
values added: the start of variable vector, file vector length, and number of timesteps in
the vector. The file vector length will be directly computable from the variable attributes
and the number of timesteps if compression is not used. The units label can be used by
programs that are not units-type savvy, whereas the units-type identifier can be used by
those who want to perform units conversion. The most significant of the changes is the
variable-attributes section. Proposed attributes are dimension, frequency, length, color
set, and degeneracy. Dimensions are 0, 1, 2, and 3D, as applicable to the component
type. Frequency is proposed to be time-dependent or time-independent, but could
expand to every other graphics dump, etc. Length contains two parameters: face/cell
centered and static/dynamic for fine mesh rezoning in heat structures. Dynamically
sized variables require that the variable that contains the current size be output before
the dynamically sized variable is output. Color choice determines whether water colors
(blue) or hot colors (red) are used to map the display tiles. Degeneracy is used to
indicate along which axes the variable is defined. This degeneracy is used mainly for
rods that contain data along the axial direction (z).

End of Header Block

The end of header block is composed solely of the string "End of Header Block",
followed by a return. This marks the position of the beginning of the data block. Using
a file pointer function such as ftell() stores the location of one end of the header and
facilitates seeking the beginning of the data block for access via the fseeko function.

H.2.3. Summary of XTV Data Format

Header/Data Interface

The binary data follow immediately after the header file. To access the data section,
open the graphics file in text mode, read in the header, and obtain the location of theend
of the header using a function similar to f tell() when the "End of Header Block"

H-4

marker is found. Reopen the file in binary mode (if text and binary modes differ; they do
not differ in Unix) and seek to the end of the header using a function similar to fseeko.
What follows will be in the form of the timestep-edit format, which is written by TRAC.

Timestep Edit Format

The timestep edit format comprises a short binary header and subsequent component
data blocks. What comprises the header will depend on whether compression is
selected. The first value of the header is always a synchronization or check value
(1.12345E+12), followed by the problem time. If compression is selected, two additional
values are specified: the length of the compressed edit and the expanded length so that
the proper data segment may be loaded-and an appropriately sized buffer created.

Each component data block will be in the order presented in the index.
Multidimensional arrays are output as they occur naturally in FORTRAN, i.e., the first
index changes the most rapidly (Row-Major), followed by the second index, then the
third, and so on.

To read in all values of a particular variable, typically you would read in each successive
timestep edit, obtain the value desired, then discard the remaining data, then read in the
next edit and repeat the procedure. This is most particularly true if the data are
compressed or have dynamically dimensioned output, in which case there is little
choice. If the data are not compressed and there are no dynamically dimensioned
variables before the desired one, then the offset can be computed into the edit and the file
can be stepped through with little processing. Currently, the heat structures output
fixed-length, dynamically used (some space is undefined/unused) variables, so each
timestep edit is exactly the same length. It may be advantageous in terms of space to
switch to dynamically dimensioned variables, in which case the access time will be
significantly increased.

To read in many values at the same timestep, e.g., for the void fraction profile in a PIPE,
step through the data block to the relevant timestep and extract the values from the array
apha(x). Typically, batch files and users access one variable at a time, so generally, all
elements desired will be in the same array.

H.2.4. Detailed Header File Format

Starting Block

Line 1: XTV-[TRAC I DMTRAC]/[f77 [f90] V<n>.<m>.<r>[-<nX>.<mX>]
<compression> <machine> <platform>: <Date/Time>

Line 2: <title>

Line 3: <Units type> <# of supplied units types>

Lines 4-3+n: <lulabel> <SI label> <alt units label> <multiplier> <offset>

TRAC used to denote file is in timestep edit format

H-5

used to denote that file is in variable vector format

f77

f90

n

m

r

nX

mX

compression

machine

platform

Date/Time

title

Units type

used to denote that file was originally written by TRAC-M/F77

used to denote that file was originally written by TRAC-M/F90

major XTV version

minor XTV version

revision number = current TRAC version # - TRAC version #
when XTV was last changed for input handling

major XTV version of executable that was used to convert to
variable vector format (only for variable vector format headers)

minor XTV version of executable that was used to convert to
variable vector format (only for variable vector format headers)

code for whether data section is compressed:

CP data section compressed using z 1 ib (deflate algorithm)

UC data section is uncompressed

result of gethostname(on POSIX compliant systems, e.g.,
startrac

system name and OS release number "uname -sr"

date and time as returned by the operating system "date" or
function ctimeo

First title card in TRACIN input file.

SI or ENG or ALT

Component Block

*<component name> <component ID> <component type id> :<component label>

Graphics Display Block

Variable Definition Block

Graphics Display Block

OD

There is no block for an unmodified OD (scalar) component

H-6

DMTRAC

1D

Line 1:

nCells:

njun:

nLegs:

Line set 2:

junlD:

jCell:

jFace:

Note:

Line set 3:

Line set 4:

Line set 5:

Line set 6:

2D

Line 1:

CoordFlag:

Line set 2:

junlD:

jCell(i,j):

jFace:

<nCells> <nJun> <nLegs>

Number of values along flow direction

Number of junctions on this component

Number of side legs on this component. currently, plen = 0, tee = 1

<junJD> <jCell > <jFace>... [for each j un, one j un per line]

Identifier for this junction

Cell number where junction occurs

Code for which face junction attaches to. I = downstream
(increasing cell numbers), i = upstream (decreasing cell numbers)

only the first junction may attach to the "upstream" face; all others
attach to the downstream face. (The one exception is PLENUM
components, where the faces can be divided into either group.)
Face noding always proceeds away from primary leg source and
goes from the primary leg downside leg(s), even if the TEE legs
are nominally sources.

<first cell> <last cell> <connects at> (for each leg, one leg per line)

<x Upper coordinate> (for each cell, eight per line)

<grav> (for each cell face, eight per line)

<fa> (for each cell face, eight per line)

<nCell-i> <nCell-j> <nJun> <nLegs> <CoordFlag>

Code for coordinate system,

CART Cartesian (x,y)

CYLrt Cylindrical (rO)

CYLrz Cylindrical (rz)

CYLtz Cylindrical (0,z)

<junDD> <jCell-i > <jCell-j> <jFace>... (for each j un, one j un per
line)

Identifier for this junction

(i,j) coordinates where junction occurs

Code for which face the junction attaches to. I/i = +/- face in first
axis direction (see CoordFlag), J/j= +/- in second axis direction.
C = cell center, Jun does not attach at the face

H-7

Line set 3:

note:

Line set 4:

Line set 5:

Line set 6:

Line set 7:

Line set 8:

Line set 9:

3D

Line 1:

CoordFlag:

Line set 2:

junlD:

jCell(i,j,k):

jface:

Line set 3:

note:

Line set 4:

Line set 5:

Line set 6:

<first cell j> <last cell j> <connects at j> (for each side leg, one leg
per line)

for now, all 2D legs break at j = value (e.g., z = const.)

<Radial segment outer radius/ x dimen.> (at each cell in r/x, eight
per line)

<Axial segment upper elevations/y dimen.> (at each cell in z/y,
eight per line)

<gray-i> ... (for each cell face in r/x, eight per line)

<grav-j> ... (for each cell face in z/y, eight per line)

<fa i> (for each cell face, eight per line)

<fa j> (for each cell face, eight per line)

<nCell-i> <nCell-j> <nCell-k> <nJun> <nLegs> <CoordFlag>

Code for coordinate system:

CART Cartesian (x,y,z)

CYL Cylindrical(rO,z)

<junlD> <jCell-i> <jCell-j> <jCell-k> <jFace>

Identifier for this junction

(i,j,k) coordinates where junction occurs

Code for which face the junction attaches to. I/i = +/- face on x/r
axis J/j = +/- face on y/t axis. K/k = +/- on z axis. C = cell center,
Jun does not attach at the face.

<1st cell k> <last cell k> <connects at k> (for each side leg, one leg
per line)

Currently, all 3D legs break at k = value (i.e., z = const.)

<Radial segment outer radius/x dimension> (at each cell in r/x,
eight per line)

<Theta segment angle/y dimension>(at each cell in t/y, eight per
line)

<Axial segment upper elevations/z dimen.>(at each cell in z, eight
per line)

Line set 7: <gray-i> ... (for each cell face in r/x, eight per line)

Line set 8: <grav-j> ... (for each cell face in t/y, eight per line)

Line set 9: <grav-k> ... (for each cell face in z, eight per line)

Line set 10: <fa-x/r> flow area x/r face (for each cell face, eight per line)

H-8

<fa-y/t> (for each cell face, eight per line)

Line set 12: <fa-z> (for each cell face, eight per line)

Modifiers

A: Auxiliary Structure. Denotes that there is a special-purpose auxiliary structure
that follows the regular Graphics display block. The first line of that structure
will contain two or three items: the name of the auxiliary structure, the number
of lines it occupies, and, optionally, a version number.

There is only one auxiliary information structure currently defined, PlenAux,
which contains the lengths of each plenum junction.

P: Parent (e.g., ODP - HTSTR Parent)
Identifies component as parent with substructures that may be 0, 1, 2 or 3D.

Line la: <nchildren>

C: Child (e.g., 2DC-HTSTR Child)
Identifies structure as a child of a parent component. No new variables are
associated with this, but the compID value is special. compID is defined for
children as parent# - child#. If a heat structure with two rods, one average and
one hot, were component 902, then the first (average) rod would be 902-1 and
the second (hot) rod would be 902-2.

S: Dynamically Sized Axis(es).
Used on components such as TRAC HTSTRs, where one or more of the axes are
typically dynamically sized in one manner between a minimum and maximum
number of elements. This allows for any of the variables to be declared as
"sized by the component" (DC) rather than individually defined for each
variable. This also obviates the need for dimensional information on the
dynamically sized axis if the minimum is 1. (Line sets 3 or 4 in 2D; line sets 3,4,
5 in 3D as appropriate.) The dimensions on line 1 of the structures must still be
entered; they are the maximum number of datapoints in that dimension.

Line 1a: <# of dynamically Sized Axes> <axis1> <VarType> <Var Name>
<Minimum>, <axis2>...

VarType: Variable Dynamic Sizing Attribute as defined in Variable
Attributes Section (this variable cannot be type DC) for the variable
that determines the size of the other variables.

VarName: name of the variable that controls the size of the dynamically
sized variables. Note that this ideally should come before the
dynamically dimensioned variables and must come before any
variables where the output length varies. (Some variables are
output at a fixed length, but only a fraction of them contain real
data.)

Minimum: Minimum number of elements present. If this value is

H-9

Line set 11:

greater than 1, then the axis dimensional information should be
given for the minimum number of elements.

If both P and S are present, the entries appear alphabetically, i.e.:

Line la: <nChildren> (P)
Line Ib: <# of dyn Sized Axes> <axisi> <VarType> <Var Name>
<Minimum>, <axis2>...

Auxiliary Component Structures

Auxiliary component structures allow for the customization of information within a
generic type. Because components generally are classed by their primary dimension,
adding special information, such as signal variable type, can be a problem. The solution
is to use the Auxiliary Component Structure. This is a self-typing (not self-describing)
structure that can be bypassed if the reader has not been programmed to understand the
component type.

Line 1: <Aux Struct Name> <lines occupied by the structure> [<vers
string>]
Lines 2-nn: Determined by individual structure

PlenAux
Lines 2-(njun/8+1): dx jun(i) for all junctions (8/line)

Variable Definition Block

Line 1: <number of total variables> <number of static (time-independent)
variables>

Timestep Edit Format

Line n: <VarName> <VarType>: <variable attributes>: <units label>:
<VarString>

Variable Vector Format

Line n: <VarName> <StartIndex> <FileLength> <Nsteps> <VarType>:
<variable attributes>: <units label>: <VarString>

VarName: Short name of variable for index and quick reference (e.g.,
rhol)

VarType: Unit type identifier from TRAC (e.g., luden)
variable attributes: Space-delineated list of dimension, frequency,

length, and special-option attributes. See table below for attribute,
codes, and meanings.

units label: Label for use in graphs and printouts (e.g., kg/m 3)
VarString: Descriptive label for the variable (e.g., liquid density)

H-10

Attribute Value Description

Dimension This gives the dimension of indexing used. Subdimensional variable
must use the correct value here and specify the degeneracy attribute
for proper array-length specification

0D scalar value (not an array)

1D 1D (linear) array

2D 2D array [indexed as (ij)]

3D 3D array [indexed as (i,j,k)]

Frequency This provides the frequency of output in the graphics file. Later,
options for reduced resolution may be specified (e.g., every other edit,
every third edit, etc.) TI Time-independent value (output on first edit only)
TD* Time-dependent value (output every edit)

Data This provides the position of data within the cell
Position

CC Cell-centered value array (same number of values as cells)
FA<ax> Face-valued array (one more value than cells on face axis

for the array); 1D arrays do not specify axis; 2D and 3D
axes specify ij,k for first, second, or third axis (x/ry/tz),
e.g., FAi

Length Provides the length in terms of known dimensions of the array

FX Fixed-dimension array. Array length given by cell
dimensions +1 if it is a face-valued array and not an
azimuthal variable

DC Dynamically dimensioned at the component level. See the
S option for component types

DM Fixed-dimension array that has dimension of minimum
value for component-defined, dynamically scaled axis

DD<ax> Dynamically dimensioned array. ax specifies the axes that
<varl>... are dynamic (ij,k). Array length given by variable varl
<var2>... specified earlier this edit. The length of each cell is defined

by var2. One variable per dimension must be supplied

DL<ax> Dynamic/fixed-length variable, ax specifies the axes that
<varl>... are dynamic (ij,k). Dimension specifiers give length
<var2>... written; actual data are of length vanl, which is of type

OD. The length of each cell is defined by var2. One
variable per dimension must be supplied

H-11

DN<ax> Dynamic/fixed-length variable array. ax specifies the axes
<var>... that are dynamic (ij,k). Dimension specifiers give length

written, first negative value gives end of actual data. The
length of each cell is defined by var. One variable per
dimension must be supplied

DR Dynamic/fixed-length variable. Dimension specifiers give
<var> length written; actual data are the same length as var for

all dimensions. The length of each cell is equivalent ot the
length of the equivalent cell in var

Degeneracy This specifies along which axis (es) the degenerate array lies. For
example, all degenerate rod variables lie along the k (z) axis. This is
used for selecting the dimension
i,j,k Standard single-axis identifiers

ij,ik,jk 2D degenerate identifiers

Color Specifies what color set to use for the visualization
Mapping

WC* Use watercolors (blues)

HC Use hot colors (reds)

Special These codes are special-purpose options. See the individual
options explanations

VI i component of vector-valued function (ij,k must be
<name>* sequential). Note that the name immediately follows this

identifier and is terminated by an asterisk(*). This name
appears in the vectors submenu of XTV. The rank of the
vector is equal to the rank of the component. It exists at as
many dimensions as are defined by the length attribute of
the component (thus, 2D components will not have VK
defined). E.g., vgxr luvelocity :3D FAi VI Vapor
Vectors* FX:m/s: radial gas velocity. This is the first of
three variables (a 3D variable must belong to a 3D
component) that form the vector named "Vapor Vectors". It
has (ni+1) *nj *nk elements...

Vi j component of vector-valued function (i,j,k must be
sequential)

VK k component of vector-valued function (ij,k must be
sequential)

H-12

H-13

IT i row of tensor function (ij,k must be sequential). Note
<name>* that the name immediately follows this identifier and is

terminated by an asterisk(*). This name appears in the
vectors submenu of XTV. The rank of the tensor is given by
the component type. Thus, a scalar tensor of a 3D
component has three values: e.g., tensorli lunounit
:OD IT Tensorl*: -:Thermal Coupling, and a iD
tensor (a tensor at each value along an axis) might be
tensor2i lunounit: ID i IT Tensor2* FA:
:Reactivity Fdbk. This would be an array (ni+1) * 2
elements long if it belonged to a 2D component.

JT j row of tensor function (ij,k must be sequential)

KT k row of tensor function (ij,k must be sequential)

ID (inset display) Display as an inset value (as wall
temperatures are now)

UV (unlisted value) Do not place on variable selection list.
(Typically used for variable use for dimensioning dynamic
arrays)

Federal Recycling Program

NRC FORM 336 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(2-89) (Assigned by NRC, Add VoL, Sup.L, Rev.,
NRCM 1102. and Acddedum Nunber, If any.)
321, 3= BIBLIOGRAPHIC DATA SHEET

(See insfruciths on tMe reyse)

2. TITLE AND SUBTITLE NUREGICR-6725

TRAC-M/FORTRAN 90
(Version 3.0) 3. DATE REPORT PUBMSHED
Programmer's Manual MONTH YEAR

May 2001
4. FIN OR GRANT NUMBER

W6245
5. AUTHOR(S) 6. TYPE OF REPORT

B.T. Adams, J.F. Dearing, P.T. Giguere, R.C. Johns,
S.J. Jolly-Woodruff, J.W. Spore, R.G. Steinke, LANL Technical

7. PERIOD COVERED (Irdusive Dates)

J.H. Mahaffy, C. Murray, PSU

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (if NRC, provide Dvsion, Offie orRegion, U.S. NudearRegulatory Commission, and maiing addss ifconador,
p-ovide na-e and marring address.)

Los Alamos National Laboratory Pennsylvania State University
Los Alamos, New Mexico 87545 University Park, PA 16802

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (IffNRC, type -Same as above';,if conftraor,, provide NRCODiision, Ofoe or Region, U.S. Nucdear Regulatoty Coamsso,
and na*Nng address)

Division of Systems Analysis and Regulatory Effectiveness

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

F. Odar, NRC Project Manager
11. ABSTRACT (200 words orless)

The Transient Reactor Analysis Code (TRAC) was developed to provide advanced best-estimate predictions of postulated
accidents in light-water reactors. The TRAC-P program has provided this capability for pressurized water reactors and for
many thermal-hydraulic test facilities for approximately 20 years. However, the maintenance and portability of TRAC-P had
become cumbersome because of the historical nature of the code and the inconsistent use of standardized FORTRAN. Thus,
the Modernized TRAC (TRAC-M) was developed by recoding the TRAC-P algorithms to take advantage of the advanced
features available in the FORTRAN 90 programming language while conserving the computational models available in the
original code. The Programmer's Manual is one of four-volume set of documents on TRAC-M, and was developed to assist a
programmer and contains information on the TRAC-M code and data structure, the TRAC-M calculation sequence, memory
management, and data precision. This document provides a code developer with a single source of information to allow either
modification of or addition to the code. Sufficient information is provided to permit replacement of modification of physical
models and correlations.

12. KEY WORDSIDESCRIPTORS (List words or phrases that wiHassist reseawdhes in ocating the report) 13. AVAIlABILITY STATEMENT

TRAC unlimited
TRAC-M 14. SECURITY CLASSIFICATION
FORTRAN 90 (Tis Page)
thermal hydraulics unclassified
pressurized water reactor (This assified

(Tis Report)

unclassified
15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (2-89)

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300

