
NUREG/GR-0019
UMD-RE-2000-23

Software Engineering
Measures for Predicting
Software Reliability in
Safety Critical Digital
Systems

University of Maryland

U.S. Nuclear Regulatory Commission °.#' '

Office of Nuclear Regulatory Research
Washington, DC 20555-0001

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
www.nrc. gov/N RC/ADAMS/index.html.
Publicly released records include, to name a few,
NU R EG-series publications; Federal Register notices;
applicant, licensee, and vendor documents and
correspondence; NRC correspondence and internal
memoranda; bulletins and information notices;
inspection and investigative reports; licensee event
reports; and Commission papers and their
attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
P. 0. Box 37082
Washington, DC 20402-9328
www.access.gpo.gov/su-docs
202-512-1800

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-533-6847 or, locally, 703-805-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: Office of the Chief Information Officer,

Reproduction and Distribution
Services Section

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

E-mail: DISTRIBUTION @nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
www.nrc.gov/N RC/N UREGS/indexnum.html
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was
accessed, the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and non
NRC conference proceedings may be purchased from
their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from

American National Standards Institute
11 West 4 2 nd Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and
Atomic and Safety Licensing Boards and of
Directors' decisions under Section 2.206 of NRC's
regulations (NUREG-0750).

DISCLAIMER: This publication was prepared with the support of the U.S. Nuclear Regulatory Commission (NRC)
Grant Program. This program supports basic, advanced, and developmental scientific research for a public
purpose in areas related to nuclear safety. The grantee bears prime responsibility for the conduct of the research
and exercises judgement and original thought toward attaining the scientific goals. The opinions, findings,
conclusions, and recommendations expressed herein are therefore those of the authors and do not necessarily
reflect the views of the NRC.

I

NUREG/GR-0019
UMD-RE-2000-23

Software Engineering
Measures for Predicting
Software Reliability in
Safety Critical Digital
Systems

Manuscript Completed: October 2000
Date Published: November 2000

Prepared by
C. Smidts, M. Li

University of Maryland
College Park, MD 20742

K. Brill, NRC Project Manager

Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001"
NRC Job Code K6007

ABSTRACT

This report presents the University of Maryland (UMD) research to identify measures and families for the

prediction and assessment of the reliability of software-based digital systems.

A set of software engineering measures from which the potential reliability of a digital I&C system can be

predicted is developed from a set of 30 pre-selected software engineering measures. These measures are

derived from a pool of 78 software engineering measures identified by Lawrence Livermore National

Laboratory (LLNL). The concepts of structural classification, software development life-cycle

classification, and family are presented. These 30 measures are categorized using these concepts. The

concept of RPS and an extended structural representation are introduced to bridge the gap between software

engineering measures and reliability. Expert opinion is elicited as the input in ranking the pre-selected 30

measures in terms of software reliability prediction. 10 missing measures are identified and ranked. The

potential impact of these 10 missing measures on the ranking of the pre-selected 30 measures is analyzed.

The top-ranked measures and families are presented in this report. Use of the families of measures in each

software development phase can lead to a quantitative prediction of software reliability.

This study is the first step towards a systematic approach predicting the reliability of a real-time I&C

software using RPSs established from the top-ranked measures and families. However, current knowledge

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to

investigate the quantitative reliability as a function of the RPS measures.

This report was prepared as an account of work sponsored by under a Cooperative Agreement, NRC-RES

98-056, with the US Nuclear Regulatory Commission an agency of the United States Government. Neither

the United States Government or any agency thereof, nor any of its employees, makes any warranty,

expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results

of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its

use by such a third party would not infringe privately owned rights. The views expressed in this paper are

those of the authors and should not be construed to reflect the U. S. Nuclear Regulatory Commission

position.

The opinions and viewpoints expressed herein are the authors' personal ones and do not necessarily reflect

the criteria, requirements, and guidelines of the Nuclear Regulatory Commission.

iii

TABLE OF CONTENTS

List of Figures ... ix

List of Tables .. x

Executive Sum m ary ... xiii

Ackowledgem ents ... xv

List of Acronym s ... xvii

Chapter 1 Introduction and sum m ary .. 1-1

1.1 Research Objective .. 1-1

1.2 Statement of the Problem .. 1-1

1.3 Background .. 1-2

1.4 Approach ... 1-3

1.5 Contents of This Report ... 1-4

1.6 Final Results .. 14

1.7 Significance ... 1-6

CHAPTER 2 ON THE NATURE OF RELATIONSHIPS BETWEEN MEASURES AND
RELIABILITY .. 2-1

2.1 STRUCTURAL CLASSIFICATION .. 2-1
2.1.1 Definitions ... 2-2
2.1.2 Examples 2-3
2.1.3 Structural Representation andAnalysis ... 2-5

2.2 LIFECYCLE-BASED CLASSIFICATION .. 2-7
2.2.1 Lifecycle Definition .. 2-7
2.2.2 Classification .. 2-7

2.3 SEMANTIC CLASSIFICATION AND THE CONCEPT OF FAMILY .. 2-8

2.4 EXTENDED STRUCTURAL REPRESENTATION ... 2-8

2.5 SOFTW ARE RELIABILITY PREDICTION SYSTEM ... 2-10

2.6 SELECTING A RELIABILITY PREDICTION SYSTEM ... 2-13
2.6.1 A Ranking Framework for Software Reliability Prediction Systems .. 2-14

2.62 Ranking Based on the Measures Composing the Software Reliability Prediction System 2-15

2.7 RANKING INDIVIDUAL M EASURES .. 2-16

2.8 SUM M ARY AND CONCLUSIONS .. 2-18

CHAPTER 3 RANKING M ETHODOLO GY .. 3-1

3.1 OVERVIEW OF THE M ETHODOLOGY ... 3-2

3.2 MEASURES SELECTION ... 3-5
3.2.1 The Lawrence Livermore National Laboratory Study ... 3-5
3.2.2 Thirty Software Engineering M easures .. 3-5

3.3 EXPERTS IDENTIFICATION ... 3-5

3.4 RANKING CRITERIA, RANKING CRITERIA LEVELS DEFINITION AND
QUESTIONNAIRE DESIGN ... 3-6

3.4.1 Ranking Criteria and Ranking Criteria Levels Definition .. 3-6
3.4.2 Questionnaire Design ... 3-11

3.5 EXPERT OPINIONS ELICITATION AND WORKSHOP .. 3-12

3.6 EXPERT OPINIONS AGGREGATION (RANKING METHODOLOGY) ... 3-12

3.61 Ranking Criteria Levels' Quantification .. 3-13

3.6.2 Data Analysis M ethodology ... 3-14

v

3.6.3 Phase-Based M easures' Availability .. 3-17

3.7 M ISSIN G M EASURES .. 3-18

3.8 SENSITIVITY ANALYSIS .. 3-22

3.8.1 Sensitivity Analysis with Respect to Ranking Criteria Levels Quantification 3-23

3.8.2 Sensitivity With Respect to the Weights Used in Aggregation Schemes ... 3-23

3.8.3 Sensitivity with Respect to the Aggregation Equation .. 3-24

3.9 POSSIBLE LIM ITATIONS OF THE ME THODOLOGY ... 3-25

3.10 SUM M ARY AND CONCLU SIONS .. 3-25

CHAPTER 4 RESULTS AND ANALYSIS ... 4-1

4.1 MEASURES' RATES AND RANKINGS .. 4-1

4.1.1 Results in the Requirements Phase ... 4-3

4.1.2 Results in the Design Phase ... 4-3

4.1.3 Results during the Implementation Phase .. 4-4

4.1.4 Results during the Testing Phase .. 4-6

4.2 AGGREGATION RESULTS BY FAM ILY ... 4-7

4.2.1 Results during the Requirements Phase ... 4-9

4.2.2 Results during the Design Phase .. 4-10

4.2.3 Results during the Implementation Phase .. 4-10

4.2.4 Results during the Testing Phase ... 4-11

4.3 SENSITIVITY ANALYSIS .. 4-12

4.3.1 Sensitivity Analysis on the Letter-Real Conversion .. 4-12

4.3.2 Sensitivity Analysis on Aggregation Weights ... 4-14

4.3.3 Sensitivity Analysis on the Functional Form of the Aggregation Equation 4-15

4.4 CRITERIA AN ALYSIS .. 4-17

4.5 SUM M ARY .. 4-18

CHAPTER 5 M ISSING M EASURES ... 5-1

5.1 INTRODUCTION OF THE MI SSING M EASURES ... 5-1

5.2 RATING THE MI SSING M EASURES .. 5-3

5.2.1 Using Analogy .. 5-3

5.2.2 Using the Scientific Literature and the Experts Opinion .. 5-3

5.3 REVISING FAM ILY COM POSITION .. 5-5

5.4 RESULTS ANALYSIS AND THE IMPACT OF THE MISSING MEASURES 5-9

5.4.1 M easures Applicable to non-OO Systems .. 5-10

5.4.2 M easures Applicable to 00 Systems .. 5-16

5.5 SUM M ARY .. 5-21

CHAPTER 6 SUMMARY AND FUTURE RESEARCH ... 6-1

6.1 SUM M AR Y .. 6-1

6.2 FUTURE RESEARCH .. 6-11

APPENDIX A SOFTWARE ENGINEERING MEASURES ... A-I

A.1 BUGS PER LINE OF CODE ... A-3

A.2 CAUSE & EFFECT GRAPHING .. A-4

A.3 CLASS COUPLIN G ... A-6

A.4 CLASS HIERARCHY NESTIN G LEVEL .. A-8

A.5 COHE SION .. A-10

A.6 COM PP LETENE SS ... A-I

A.7 COVERAGE FACTOR .. A-14

vi

A. 7. 1 Discrete time Markov chain ... A-14
A. 7.2 Continuous time Markov chain (CTM C) .. A-16
A. 7.3 ESPN M odels .. A-17

A.8 CUM ULATIVE FAILURE PROFILE ... A-19

A.9 CYCLOM ATIC COM PLEXITY ... A-20

A. 10 DATA OR INFORM ATION FLOW COM PLEXITY ... A-21

A.1 DEFECT DENSITY ... A-22

A.12 ERROR DISTRIBUTION .. A-24

A. 13 FAILURE RATE .. A-26

A. 14 FAULT DENSITY .. A-27

A.15 FAULT-DAYS NUMBER ... A-28

A.16 FEATURE POINT ANALYSIS ... A-29

A.17 FULL FUNCTION POINT ... A-34

A.18 FUNCTION POINT ANALYSIS ... A-36

A. 19 FUNCTION TEST COVERAGE .. A-41

A.20 GRAPH-THEORETIC COMPLEXITY FOR ARCHITECTURE ... A-41

A.21 INFORM ATION FLOW COMPLEXITY ... A-43

A.22 LACK OF COHESION IN M ETHODS (LCOM) .. A-43

A.23 M AN HOURS PER M AJOR DEFECT DETECTED .. A-45

A.24 M EAN TIM E TO FAILURE .. A-46

A.25 M INIM AL UNIT TEST CASE DETERM INATION ... A-47

A.26 M ODULAR TEST COVERAGE ... A-48

A.27 M UTATION TESTING .. A-49

A.28 NUM BER OF CHILDREN (NOC) .. A-51

A.29 NUM BER OF CLASS METHODS IN A CLASS ... A-51

A.30 NUM BER OF FAULTS REM AINING (ERROR SEEDING) ... A-52

A.31 NUM BER OF KEY CLASSES .. A-55

A.32 REQUIREMENT COM PLIANCE ... A-55

A.33 REQUIREM ENTS SPECIFICATION CHANGE REQUESTS ... A-57

A.34 REQUIREMENTS TRACEABILITY .. A-58

A.35 REVIEW S, INSPECTIONS AND W ALKTHROUGHS ... A-59

A.36 SOFTW ARE CAPABILITY M ATURITY M ODEL (CMM) .. A-61

A.37 SYSTEM DESIGN COM PLEXITY ... A-63

A.38 TEST COVE RA GE .. A-65

A.39 TEST M UTATION SCORE ... A-66

A.40 W EIGHTED M ETHOD PER CLASS (W M C) .. A-67

APPENDIX B Software Engineering M easures Questionnaire .. B-1

.APPENDIX C SENSITIVITY ANALYSIS: SCHEMES AND RESULTS ... C-1

C.1 SENSITIVITY ANALYSIS ON CRITERIA LEVELS ... C-1
C. 1. 1 Variations on Criteria Levels ... C-1
C. 1.2 Rates Corresponding to Criteria Level Variations ... C-4
C. 1.3 Rankings Corresponding to Criteria Level Variations ... C-6

C.2 SENSITIVITY ANALYSIS ON W EIGHT SETS .. C-9
C.2.1 Variations on Weight Sets .. C-9
C.2.2 Rates Corresponding to Variations on Weight Sets ... C-9

vii

C.2.3 Rankings Corresponding to Variations on Weight Sets ... C-I1

C.3 SENSITIVITY ANALYSIS ON EQUATIONS .. C-13

C.3.1 Variations on Aggregation Functions .. C-13

C.3.2 Rates Corresponding to Variations on Aggregation Functions ... C-13

C.3.3 Rates Corresponding to Variations on Aggregation Functions .. C-15

C.4 RANKING CRITERIA VALIDATION EXPERIMENT .. C-19

APPENDIX D Data Collected for the M issing M easures .. D-1

APPENDIX E Glossary .. E-1

viii

LIST OF FIGURES

Figure 2-1 Structural Representation of a M easure ... 2-2

Figure 2-2 Structural Representation and Analysis of the Gaffney Estimate of Bugs per Line of Code 2-6

Figure 2-3 Life-Cycle Coverage .. 2-8

Figure 2-4 Structural Analysis of the Bug Per Line of Code (Gaffney Estimate) Measure 2-9

Figure 2-5 Hierarchical relationships between software reliability prediction systems ... 2-12

Figure 2-6 Extended Representation and Software Reliability Prediction System .. 2-13

Figure 2-7 Ranking Problems: a) Ranking S, b) Problem being solved .. 2-17

Figure 3-1 Ranking of a M easure .. 3-1

Figure 3-2 Steps followed in ranking the software engineering measures ... 3-3

Figure 4-1 Letter-Real Conversion Schemes ... 4-13

Figure 6-1 RPS .. 6-4

Figure A-I An Example of Class Hierarchy Diagram .. A-9

Figure A-2. Three phases of error handling from a permanent effective error .. A-15

Figure A-3 CAST recovery model .. A-15

Figure A-4 A CTM C model .. A-17

Figure A-5 An ESPN coverage model .. A-18

Figure A-6 Error An alysis .. A-25

Figure A-7 Calculation of Fault-Days .. A-29

Figure A-8 Overview of Full Function Point Counting .. A-35

ix

LIST OF TABLES
Table 1-1 Top 3 M easures per Phase for non-00 Systems ... 1-5

Table 1-2 Top 3 M easures per Phase for 00 Systems .. 1-5

Table 1-3 Top 3 Families per Phase for non-O0 Systems ... 1-5

Table 1-4 Top 3 Families per Phase for 00 Systems .. 1-6

Table 2-1 Lifecycle in this Study versus Recommended Life-cycle in [IEEE610] .. 2-7

Table 3-1 Ranking criteria Level Values ... 3-14

Table 3-2 Phase-Based M easure Availability .. 3-18

Table 3-3 M issing M easures .. 3-19

Table 3-4 00 M easures and Corresponding Attributes ... 3-20

Table 3-5 Brief Descriptions of M issing 00 M easures ... 3-22

Table 4-1 Rates for the Different Software Engineering M easures Studied .. 4-2

Table 4-2 Rates and Rankings in the Requirements Phase .. 4-3

Table 4-3 Rates and Rankings in the Design Phase ... 4-4

Table 4-4 Rates and Rankings in the Implementation Phase ... 4-6

Table 4-5 Rates and Rankings in the Testing Phase .. 4-7

Table 4-6 The Definition of the Fam ily ... 4-8

Table 4-7 Rates by Fam ily in the Requirements Phase .. 4-9

Table 4-8 Rates by Family in the Design Phase .. 4-10

Table 4-9 Rates by Family in the Implementation Phase ... 4-11

Table 4-10 Rates by Family in the Testing Phase .. 4-11

Table 4-11 Correlation Coeffi cients in the Requirements Phase ... 4-13

Table 4-12 Correlation Coeffi cients in the Design Phase .. 4-13

Table 4-13 Correlation Coeffi cients in the Implementation Phase .. 4-13

Table 4-14 Correlation Coeffi cients in the Testing Phase ... 4-14

Table 4-15 W eighting Schemes used in the Sensitivity Analysis .. 4-14

Table 4-16 Correlation Coeffi cients in the Requirements Phase ... 4-15

Table 4-17 Correlation Coeffi cients in the Design Phase .. 4-15

Table 4-18 Correlation Coeffi cients in the Implementation Phase .. 4-15

Table 4-19 Correlation Coeffi cients in the Testing Phase ... 4-15

Table 4-20: Correlation Coeffi cients in the Requirements Phase .. 4-16

Table 4-21: Correlation Coeffi cients in the Design Phase ... 4-16

Table 4-22: Correlation Coefficients in the Implementation Phase ... 4-16

Table 4-23: Correlation Coeffi cients in the Testing Phase .. 4-17

Table 5-1 M easures vs Criterion Assessment M ethod ... 5-4

Table 5-2 M easure Classification in terms of Design and Systems ... 5-6

Table 5-3 non-00 Family Definitions ... 5-7

Table 5-4 00 Family Definitions .. 5-9

Table 5-5 Availability of M issing M easures .. 5-10

Table 5-6 Rates of M issing M easures .. 5-10

Table 5-7 Rates of non-00 M easures during the Requirements Phase ... 5-11

Table 5-8 Rates of non-00 Families during the Requirements Phase ... 5-1 1

Table 5-9 Rates of non-00 M easures during the Design Phase .. 5-12

Table 5-10 Rates of non-00 Families during the Design Phase ... 5-13

Table 5-11 Rates of non-00 M easures during the Implementation Phase .. 5-14

x

Table 5-12 Rates of non-00 Families during the Implementation Phase .. 5-14

Table 5-13 Rates of non-00 M easures during the Testing Phase ... 5-15

Table 5-14 Rates of non-00 Families during the Testing Phase ... 5-16

Table 5-15 Rates of 00 M easures during the Design Phase ... 5-17

Table 5-16 Rates of 00 Families during the Design Phase ... 5-18

Table 5-17 Rates of 00 M easures during the Implementation Phase ... 5-18

Table 5-18 Rates of 00 Families during the Implementation Phase ... 5-19

Table 5-19 Rates of 00 M easures during the Testing Phase ... 5-20

Table 5-20 Rates of 00 Families during the Testing Phase .. 5-21

Table 6-1 Structural Classification Axis .. 6-1

Table 6-2 Life-Cycle Classification Axis .. 6-1

Table 6-3 Semantic Classification Axis for non-QO Systems ... 6-2

Table 6-4 Semantic Classification Axis for 00 Systems .. 6-3

Table 6-5 Pre-selected Software Engineering M easures ... 6-5

Table 6-6 Ranking Criteria and Their Definitions ... 6-5

Table 6-7 Top-3 M easures Phase by Phase .. 6-6

Table 6-8 Top-3 Families Phase by Phase ... 6-7

Table 6-9 Ranges of Correlation Coefficients ... 6-8

Table 6-10 Top-Ranked Criteria Combinations ... 6-8

Table 6-11 List of M issing M easures .. 6-8

Table 6-12 Top-3 M easures Phase by Phase for non-OO Systems .. 6-9

Table 6-13 Top-3 M easures Phase by Phase for 00 Systems ... 6-10

Table 6-14 Top-3 Families Phase by Phase for non-OO Systems ... 6-10

Table'6-15 Top-3 Families Phase by Phase for 00 Systems .. 6-11

Table A-i M easures .. A-1

Table A-2 M easures not Considered in This Study .. A-2

Table A-3 Determination of Cohesion [1] ... A-10

Table A-4 Computing Feature Point M easure .. A-30

Table A-5 Computing Function Point M easure .. A-37

Table B-1 Sources of Knowledge .. B-3

Table B-2 Software Reliability Engineering Measures Related Applications' Descriptions B-4

Table B-IE Example of Table B-i Sources of Knowledge .. B-5

Table B-2E Example of Table B-2 Software Reliability Engineering Measures Related Applications'

Descriptions .. B-5

Table B-3 Evaluation of M easures by Criteria (except relevance criteria) .. B-6

Table B-3E Example of Table B-3 Evaluation of Measures by Criteria (except relevance criteria) B-10

Table B-5 Correlation Between M easures ... B-12

Table B-5E Example of Table B-5 Correlation Between M easures .. B-15

Table B-6 Sources of Knowledge (M issing M easures) ... B-16

Table B-7 Software Reliability Engineering Measures Related Applications' Descriptions B-17

Table B-6E Example of Table B-6 Sources of Knowledge (M issing M easures) ... B-17

Table B-7E Example of Table B-7 Software Reliability Engineering Measures Related Applications'

Descriptions .. B-18

TableB-8 Description of M issing M easures .. B-18

xi

Table B-8E Example of Table B-8 Description of M issing M easures ... B-19

Table B-9E Example of Table B-9 Evaluation of Measures by Criteria (except relevance criteria) (Missing

M easures) ... B-20

Table B-10E Example of Table B-10 Phase-Based Relevance to Reliability/Review (Missing Measures) B-21

Table C-1 Criteria Levels for Scheme 1 .. C-1

Table C-2 Criteria Levels for Schem e 2 .. C-1

Table C-3 Criteria Levels for Scheme 3 .. C-2

Table C-4 Criteria Levels for Scheme 4 .. C-2

Table C-5 Criteria Levels for Scheme 5 .. C-3

Table C-6 Rates for the Requirements Phase .. C 4

Table C-7 Rates for the Design Phase ... C 4

Table C-8 Rates for the Implementation Phase .. C-5

Table C-9 Rates for the Testing Phase ... C-6

Table C-10 Rankings for the Requirements Phase ... C-6

Table C-i1 Rankings for the Design Phase .. C-7

Table C-12 Rankings for the Implementation Phase ... C-7

Table C-13 Rankings for the Testing Phase .. C-8

Table C-14 W eights Used in W eight Sensitivity Analysis .. C-9

Table C-15 Rates for the Requirements Phase ... C-9

Table C-16 Rates for the Design Phase ... C-9

Table C-17 Rates for the Implementation Phase ... C-10

Table C-18 Rates for the Testing Phase .. C-10

Table C-1 9 Rankings for the Requirements Phase .. C- 11

Table C-20 Rankings for the Design Phase ... C-1I

Table C-21 Rankings for the Implementation Phase ... C-12

Table C-22 Rankings for the Testing Phase ... C-12

Table C-23 Rates for the Requirements Phase ... C-13

Table C-24 Rates for the Design Phase ... C-14

Table C-25 Rates for the Implementation Phase .. C-14

Table C-26 Rates for the Testing Phase ... C-15

Table C-27 Rankings for the Requirem ents Phase ... C-15

Table C-28 Rankings for the Design Phase ... C-16

Table C-29 Rankings for the Implem entation Phase .. C-16

Table C-30 Rankings for the Testing Phase .. C-17

Table C-31 Static W eight Sets ... C-20

Table C-32 Variations on Weight Set, Correlation Coefficients, and Virtual Distances ... C-20

Table D-1 Ranking Criteria Levels for the M issing M easures ... D-I

Table D-2 Level for the Relevance to Reliability Criterion (Per Phase) .. D-i

xii

EXECUTIVE SUMMARY

This report summarizes the results of a Cooperative Research Agreement between the University of

Maryland (UMD) and the Nuclear Regulatory Commission (NRC) to identify quantitative measures for the
prediction and assessment of the reliability of software-based digital systems.

UMIDD based its study on previous research carried out by Lawrence Livermore National Laboratory
(LLNL). In that study, LLNL identified a pool of 78 software engineering measures related to software
reliability and established a set of software engineering ranking criteria used to rank assess the measures
potential as software reliability indicators. The 78 measures were evaluated by two members of the LLNL
research staff.

UMD scrutinized the ranking criteria, their corresponding levels and the ranking procedure used in the
LLNL study. One ranking criterion was discarded and several ranking criteria were revised. The set of 78
measures was reduced by eliminating several (5) software reliability models which were mistakenly
considered as measures. This set was then further reduced to 30 using importance considerations. These
resulting 30 software engineering measures constitute the basis of the UMD study.

Realizing that the LLNL study did not examine the nature of the relationships between software
engineering measures and software reliability prediction, UMD investigated the existence of a bridge
between these notions. In particular, the concept of software Reliability Prediction System (RPS) was
introduced. A RPS is a complete set of software engineering measures from which software reliability can
be predicted. The key question is "What RPS is best for predicting the reliability of a real-time I&C
software?" However, directly answering this question is impractical to date. The simplified question,
"what are the best software engineering measures candidates for a RPS?" was found to be an appropriate
substitute to this complex issue. This is the question being answered in this report.

A three-dimensional classification important to the analysis of the measures was introduced in this study.
The axes of classification are structural', life-cycle based, and semantic. Structural classification, along
with its graphical representation, assists in the establishment of RPSs. Life-cycle based classification helps

define whether or not a measure is applicable in a particular software development phase. Semantic

classification leads to the introduction of the concept of family. Families contain measures that estimate the
same quantity using alternate means of evaluation. This concept helps further identify the relationships
among measures. It also significantly improves the stability of the results presented in this study. Although
new measures will appear as the development of software engineering techniques continues, the number of
families will not significantly vary.

Expert opinion was elicited as input to the UMD ranking process. A number of field experts were selected
from the nuclear and aerospace domain. They covered the following areas of knowledge: software
development, software engineering, software engineering measurement, software reliability engineering,
software reliability modeling, software safety, digital I&C design. A questionnaire was designed to pool
expert opinion. The experts were then convened in a workshop where they summarized their evaluations of
the measures and provided feedback on the ranking methodology being used.

Multi-attribute utility theory2 was then used to rank the experts' inputs. The aggregated results were
analyzed. The top-ranked measures were identified phase per phase. The families were also ranked and the
top-ranked families identified.

SStructural classification establishes the relative position ofa software engineering measure on a scale that ranges from physical

reality to an indicator used for decision-making, namely reliability.
2 A theory that aggregates the multiple attributes of interest into a scalar, which guides decision-making.

xiii

For purposes of this study, the software development is categorized into the following phases:

requirements, design, implementation, testing, and operation. The aim is to predict the reliability of

the operational phase. The other four phases are the periods during which software engineering measures

are gathered. The top-ranked families and measures are listed below.

During the requirements phase, the top-ranked families are "Fault detected per unit of size", "Requirements

specification change requests", and "Error distribution". The top-ranked measures are "Fault density",

"Requirements specification change requests", and "Error distribution".

During the design phase, the top-ranked families are "Fault detected per unit of size", "Module structural

complexity", and "Time taken to detect and remove faults". The top 3 measures are "Design defect

density", "Fault density", and "Cyclomatic complexity".

During the implementation phase, the top-ranked families are "Fault detected per unit of size", "Module

structural complexity", and "Time taken to detect and remove faults". The top-ranked measures are "Code

defect density", "Design defect density", and "Cyclomatic complexity".

During the test phase, the top-ranked families are "Failure rate", "Fault detected per unit of size", and

"Module structural complexity". The top-ranked measures are "Failure rate", "Code defect density", and

"Mean time to failure".

This study is the first step towards a systematic approach predicting the reliability of real-time I&C

software using RPSs established from the top-ranked measures and families. However, current knowledge

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to

investigate the quantitative reliability as a function of the RPS measures.

A sensitivity analysis was performed. The sensitivity analysis proves that the results obtained remain valid

for a wide spectrum of aggregation schemes.

Ten measures which have been omitted by LLNL were suggested by the experts. They reflect the advances

of software engineering. They cover the fault-tolerant computing environment, the mutation testing

technique, the object-oriented development method, and one adaptation of "Function point". The ranking

criteria levels of these 10 measures were assessed by UMD research team members using: (1) the fact that

analogies between measures existed; (2) the software engineering literature; (3) field expert inputs. The

aggregated rates3 were calculated. The impact of the 10 measures on the ranking of the 30 pre-selected

measures was analyzed. The analysis shows that the 00 measures do not significantly influence the

rankings. On the other hand, the "Coverage factor" and "Mutation score" play more important roles.

This study is the first step towards a systematic approach predicting the reliability of a real-time I&C

software using RPSs established from the top-ranked measures and families. However, current knowledge

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to

investigate the quantitative reliability as a function of the RPS measures.

3 An aggregated rate (also called measure's rate, or rate) is a real value ranging from 0 to 1. The rate is an indicator of the measure's

capability to predict software reliability. The higher the aggregated rate value, the more capable the measure is of predicting software

reliability.

xiv

ACKNOWLEGEMENTS

We wish to acknowledge the support and interest of the U.S. Nuclear Regulatory Commission (NRC)

Office of Research and in particular, that of Mr. Robert W. Brill, the project manager. Mr. Brill helped

refine the research direction, contributed in the identification of experts, as well as in the organization of

the workshop on software engineering measures. Finally we should thank him for his persistent editorial

review. Mr. John Calvert, Joel Kramer and Terry Jackson are to be thanked for the feed-back they provided

throughout this work.

We owe special thanks to the contributions of Sandra George, Administrative Assistant in the Department

of Materials and Nuclear Engineering, University of Maryland (UMD), College Park. Ms. George was our

point-of-contact with the experts, the workshop facilities and the hotel facilities. She handled single

handedly all practical aspects of the workshop and we would have been at a loss without her.

Also to be thanked is Mr. Gary Johnson of Lawrence Livermore National Laboratory for answering

questions on related research conducted under his direction.

We are fortunate to have been able to work on this project with a talented and dedicated team of UMD

researchers consisting of Nihal Kececi, S. Swaminathan, Jenny Li, Yu Wang, Yining Wang, Bin Li, and

Zhihong Qin. Special thanks are presented to them for their help and the support they provided to this

project.

Special thanks to the following experts for their completion of the questionnaire and additional input during

the expert panel:

Dr. A. Abran, Software Engineering Management Research Laboratory, Canada.

Dr. David Card, Software Productivity Consortium, for the introduction of structural classification.

Dr. William Everett, SPRE, Inc

Dr. Jon Hagar, Lockheed Martin Astronautics.

Dr. Herb Hecht, SoHar Inc.

Dr. Watts Humphrey, Software Engineering Institute, Carnegie Mellon University.

Dr. Jean-Claude Laprie, LAAS-CNRS, France.

Dr. Michael Lyu, Chinese University of Hong Kong.

Dr. Allen Nikora, Autonomy and Control Section at JPL

Mr. Bill Petrick, Capri Technology, Inc.

xv

LIST OF ACRONYMS

FFP Full Function Point
FPA Function Point Analysis

IEEE Institute of Electrical and Electronics Engineers

JM Jelinski Moranda model
KLOC Kilo-LOC
LCOM Lack of Cohesion of Methods
LOC Line of Code

LLNL Lawrence Livermore National Laboratory

NOC Number of Children

NRC Nuclear Regulatory Commission
00 Object-Oriented
PDL Pseudo Design Language

PRA Probabilistic Risk Analysis
RPS Reliability Prediction System

UMD University of Maryland
WMC Weighted Method per Class

xvii

Chapter 1 Introduction and Summary

CHAPTER 1 INTRODUCTION AND SUMMARY

1.1 Research Objective

The objective of this study is to identify a set of software engineering measures from which the potential
reliability of a digital I&C system can be predicted. This study commences a long-term research effort for
developing a method to obtain a quantitative estimate of the reliability of a digital system. For the purposes
of the project, reliability is defined to be the probability that the digital system will successfully perform its
intended safety function (for all conditions under which it is expected to respond) upon demand with no
unintended functions that might affect system safety.

The ultimate purpose of the method developed is:

"* To provide a set of information sufficient and necessary to estimate reliability along with its
associated uncertainty that could be used in probabilistic risk assessment (PRA).

"* To provide information that can be used to supplement existing review methods in an assessment
of software-based digital systems which have high degree of safety requirements.

1.2 Statement of the Problem

Software-based digital systems are progressively replacing analog systems in safety-critical applications
like nuclear power plants. However the ability to predict their failure rate is still not well understood and
requires further study.

The modem software-based digital systems are composed of hardware devices and software embedded in
the hardware. Reliability prediction for digital systems must account for the failure of hardware, the failure
of software, and effects of hardware and software failures on each other and the effect that such failures
have upon the function they are intended to perform.

Hardware reliability calculation usually is predicted upon the assumption that the device design is
fundamentally correct. Failures are assumed to be caused by random variability in the physical stresses
seen by the device and by variability in the devices' ability to withstand these stresses. Consequently, the
failure rate of a hardware device can be calculated from the failures observed in similar devices subject to
similar stresses.

Unlike hardware, software is a logical set of instructions, not a physical, component of a system. Its success
or failure is not affected by physical stress, which is the primary cause of hardware failure. Failures of the
software stem mostly from fundamental errors in the design that cause the system to fail under certain
combinations of system states and input trajectories. Current qualitative methods for assuring reliability are
process oriented. There is no universally accepted qualitative methods for assuring that safety critical
software is free of defects to a desired reliability level.

Four categories of models have been considered as potential candidates to modeling the reliability of
software to date. The four categories include reliability growth models, input domain models, architectural
models and early prediction models. The first class captures failure behavior during testing and
extrapolates it to behavior during operation. Hence this category of models uses failure data and trends
observed in the failure data to derive reliability predictions. The second category of models uses properties
of the input domain of the software to derive a correctness probability estimate from test cases that
executed properly. The third class of models puts emphasis on the architecture of the software and derives
reliability estimates by combining estimates obtained for the different modules of the software. Finally, the

1-1

fourth category of models uses characteristics of the software development process from requirements to

test and extrapolates this information to behavior during operation.

However, each group of models has its inherent flaws when applying them to safety critical real-time

systems. Safety critical real-time systems are characterized by the following features:

1. The probability of failure needs to be less than 10-6 per one year of execution' [Butl93].

2. The input rate is really fast, generally at the speed of 100 inputs per second.

Given such characteristics of safety critical real-time systems, applying reliability growth models is

infeasible because of the exorbitant amounts of testing that would be required [But193].

The traditional input domain model, Nelson model [Nels78], is as simple as a point estimate of failure rate

based on the number of failures and number of total test cases. According to Butler and Finelli [Butl93],

this model needs exorbitant amounts of testing for safety critical real-time systems. Nelson and other

researchers introduced the concept of equivalence class which significantly reduces the amount of testing

required. These models started with a problematic assumption that the input domain can be thoroughly

identified and classified into equivalence classes. Extreme caution should be exercised when applying this

model to real-time safety critical systems: the inputs of such a system are generally infinite and

unpredictable. A mechanism which is not yet established is required to guarantee the exhaustive

classification of such inputs.

The structural models are widely used in fault-tolerant systems [Duga95] [Scot87]. The failure rate (or

transition rate) from the normal state to the abnormal state (or vice versa) is assumed to be available.

However, how to estimate this parameter is not known. In essence, this rate is the failure rate of a sub

system in the fault-tolerant system. The estimation of the rate requires the failure data to be available.

Several early prediction models exist [Gaff88] [RADC92] [Stut98]. The Gaffiney model is based on the

assumption that the size of the system in LOC is available (or predictable) at the time the prediction is

made. Then the number of discovered faults is given by an empirical relationship. Unfortunately there is

still a long way to go from the number of discovered faults to reliability prediction. The RADC model

derives reliability from copious data sources by means of some unexplainable empirical relationships. No

research shows that this model is applicable to real-time safety critical systems.

Therefore a new research effort was initiated in this study to understand the relationship between the

characteristics of the development process, the product itself, the operational environment and software

reliability.

1.3 Background

One industry which requires high integrity safety critical software is the nuclear industry. The nuclear

industry usually uses IEEE Std 74.3.2-1993, "Standard Criteria for Digital Computers in Safety Systems of

Nuclear Power Generating Stations." While the Nuclear Regulatory Commission (NRC) endorsed this

standard in Regulatory Guide 1.152, Revision 1 (January, 1996), it did not endorse Section 5.15,

"Reliability" as a sole means of meeting the Commission's regulations for reliability of digital equipment

used in safety systems. The applicable Section 5.15 of the standard states "when qualitative or quantitative

reliability goals are required, the proof of meeting the goals shall include software used with hardware."

The NRC staff did not endorse that section because there is no general agreement that a measurement

methodology currently exists that provides a credible method to measure software reliability.

' The experts claim that a failure probability lesser than 10*3 can not be measured in practice

1-2

Chapter 1 Introduction and Summary

The aircraft industry standard for software is RTCA/DO-178B, "Software Considerations in Airborne
Systems and Equipment Certification." It states in paragraph 12.3.4 Software Reliability methods "that
currently available methods do not provide results in which confidence can be placed to the level required
for this purpose." Hence this document does not provide guidance for software error rates.

During the last several years, both the NRC and the nuclear industry have recognized that PRA analysis has
evolved to the point where it can be used as a tool for assisting in regulatory decision-making. In 1995, the
NRC adopted a policy regarding expanded NRC use of PRA. Following publication of the Commission
policy, the Commission directed the NRC staff to develop a regulatory framework that incorporates risk
insights. Recently, the NRC staff has developed risk-informed regulatory guides to meet this directive.
PRAs require a value in terms of failure rate per demand for the digital system to perform its intended
function. The lack of a credible measurement methodology that assesses this value precludes meaningful
consideration of digital systems in the development of these risk insights. The development of objective
estimates of digital system software reliability which could be used in place of subjective estimates, where
feasible, in PRAs will help the NRC make better risk-informed decisions.

1.4 Approach

The research presented in this report is a continuation of the work performed by Lawrence Livermore
National Laboratory (LLNL) CASE Tools for Software Reliability Measurement [LLNL98]. In that study,
LLNL reviewed worldwide literature to determine the state-of-the-art in measuring software reliability. 78
basic measurements were found to exist. LLNL then designed a set of ranking criteria in order to rank each
of the measures2. The 78 measures were then ranked by two laboratory personnel.

Although LLNL identified and ranked 78 measures, the relationship between the top-ranked measures and
software reliability had not been investigated. The University of Maryland (UMD) study started from the
establishment of the theoretical bridge between software engineering measures and software reliability. The
concept "software reliability prediction system (RPS)" 3 was introduced for this purpose.

The key question is "What RPS is best for predicting the reliability of a real-time I&C software?"
However, directly answering this question is impractical to date. The simplified question, "what are the
best software engineering measures candidates for a RPS?" was found to be an appropriate substitute to this
complex issue. This is the question being answered in this report.

Using the 78 Lawrence Livermore National Laboratory measures as starting point UMD reduced it to thirty
using structural considerations (such as the fact that software reliability models are not measures and
should not be part of such a study) as well as importance considerations. A group of experts was convened
in a workshop where they summarized their evaluations of the measures and provided feedback on the
ranking methodology being used. The ranking of these 30 measures was then performed based upon the
input provided by the group of experts. A sensitivity analysis was performed to verify the validity of the
aggregation approach. During the workshop, the experts described and recommended a set of measures to
be added to the pool of thirty measures selected. Ten missing measures were then rated by researchers at
UMD. The rates of these missing measures were then aggregated with the initial thirty, and the final set of
top-ranked measures were identified.

2 In this report the term "measures" refers to software engineering measures. By measure we mean the degree to which a software

system, component, or process possesses a given software attribute. For instance, the measure "Line of Code (LOC)" assesses the
physical size of a code, the measure "Function Point" evaluates the functional size of a system.

' The RPS is a complete set of software engineering measures which can be used to predict software reliability.

1-3

1.5 Contents of This Report

Chapter 2 investigates the relationships between measures and reliability prediction. It introduces three

axes of classification important to the analysis of the measures. These axes are structural, life-cycle based

and, semantic. Chapter 2 also defines the concept of a Software Reliability Prediction System, which is a

complete set of measures by which software reliability can be predicted.

Chapter 3 presents the methodology used to rank the pre-selected set of 30 software engineering measures

discussed in Section 1.4. The methodology involves the elicitation of expert opinion regarding the scores of

software engineering measures. The scoring is performed with respect to seven ranking criteria: Credibility,

Repeatability, Cost, Benefit, Experience, Validation, and Relevance to Reliability, and in terms of letter

grades. A letter-conversion scheme translates the letter values to real numbers between 0 and 1. These

numbers are then aggregated using an aggregation equation and a weighting scheme for the seven ranking

criteria. The aggregated number serves as the indicator of the "goodness" of the measure. A sensitivity

analysis is further performed on all components of the analysis, i.e. letter-real conversion scheme,

aggregation function form, weighting scheme, since, a priori, one can not assess which aggregation scheme

is correct. The sensitivity analysis proves that the results obtained remain valid for a wide spectrum of

aggregation schemes. Results of aggregation rates, rankings, and sensitivity analysis for the thirty pre

selected measures are presented in Chapter 4. Some potential inconsistencies are also examined and

explained.

The discussion provided in Chapter 5 is designed to incorporate the latest new measures generated by the

advances of software engineering into the study. The missing measures discussed in Chapter 5 were

identified by experts. The measures cover the fault-tolerant computing environment, the mutation testing

technique, the object-oriented development method, and one adaptation of "Function point". The ranking

criteria levels were assessed by UMID research team members using: the fact that analogies between

measures existed, the software engineering literature, and field expert inputs. The aggregation rates were

calculated by applying the aggregation theory discussed in Chapter 3.

Chapter 6 provides a summary of our research and discusses future research.

Appendix A provides descriptions for the forty software engineering measures used in this study. This

includes the description of the pre-selected 30 measures and the description of the 10 missing measures.

Appendix B presents the questionnaire used to elicit expert opinion.

Appendix C presents the aggregation results and sensitivity analysis for the 30 pre-selected measures.

Appendix D provides the input data for the missing measures.

In Appendix E a glossary of terms used in this report is provided.

1.6 Final Results

Forty software engineering measures were ranked in terms of their capability to predict software reliability.

The ranking was performed phase by phase due to the fact that this capability varies in different phases. In

addition, some measures applicable to non-object-oriented systems are not applicable to object-oriented

(00) systems. This leads to separate rankings performed for both 00 and non-00 systems. The top-ranked

measures are provided in the following:

Table 1-1 and Table 1-2 provide the top 3 measures, phase by phase, for non-object-oriented systems and

object-oriented systems, respectively. These top-ranked measures are the possible roots of a complete set of

measures from which software reliability can be predicted.

1-4

Chapter 1 Introduction and Summary

Requirements Design Implementation Testing

Fault density Design defect density Code defect density Failure rate

Requirements Cyclomatic complexity Design defect density Code defect density
specification change
requests

Error distribution Fault density Cyclomatic complexity Coverage factor

Table 1-1 Top 3 Measures per Phase for non-OO Systems

Requirements Design Implementation Testing

Fault density Design defect density Code defect density Failure rate

Requirements Fault density Design defect density Code defect density
specification change
requests

Error distribution Fault-days number Fault density Coverage factor

Table 1-2 Top 3 Measures per Phase for 00 Systems

The concept of family is introduced in this study to reflect a many-to-one relationship between measures

and primary attributes, such as functional size of a system, complexity of a piece of code, etc. The

introduction of this concept reduces the 40 measures to 20 families for non-OO systems and 22 for 00

systems. Although new measures would appear as the development of software engineering techniques, the

number of families might not significantly vary. Even more encouraging is the fact that the ranking of the

families is more stable than that of the measures during different software development phases.

The top 3 families for non-00 and 00 systems are provided in Table 1-3 and Table 1-4 below.

Requirements Design Implementation Testing

Fault detected per unit of Fault detected per unit Fault detected per unit Failure Rate
size of size of size

Requirements Module structural Module structural Fault Detected per

specification change complexity complexity Unit of Size
requests

Error distribution Time taken to detect Test adequacy Fault-tolerant
and remove faults Coverage Factor

Table 1-3 Top 3 Families per Phase for non-00 Systems

1-5

Requirements Design Implementation Testing

Fault detected per unit of Fault detected per unit Fault detected per unit Failure rate

size of size of size

Requirements Time taken to detect Test adequacy Fault detected per

specification change and remove faults unit of size

requests

Error distribution Requirements Time taken to detect Fault-tolerant

specification change and remove faults coverage factor

requests

Table 1-4 Top 3 Families per Phase for 00 Systems

1.7 Significance

Currently the NRC's Standard Review Plan, Chapter 7 and BTP-14 and aircraft industry standard for

software (RTCA/DO) do not contain quantitative acceptance reliability requirements. This is because there

has been no technical basis for utilizing the measures currently in use by industry. University of

Maryland's work provides a technical basis for utilizing measures currently in use.

This study recommends a set of software engineering measures to the software industry for better

management and quality control of the software development process. In particular, this study provides the

theoretical basis to support the selection of such a set of measures. Also the results of this study might help

the reviewers to better understand the results of an inspection of the digital system.

Information has been identified to perform reliability prediction in the early stages of the development.

This prediction along with the measures can signal potential problems in the development. According to

such information, either the quality controller warns the development team to improve the quality of the

development, or the decision-maker decides to terminate the development.

Another significant contribution of the study is the introduction of the concept of software reliability

prediction system (RPS). This concept helps identifying support measures that need to be collected if one

wants to obtain a credible reliability prediction.

This study is the first step towards a systematic approach predicting the reliability of a real-time I&C

software using RPSs established from the top-ranked measures and families. However, current knowledge

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to

investigate the quantitative reliability as a function of the RPS measures.

[Butl93] R. W. Butler, G. B. Finelli, The Infeasibility of Quantifying the Reliability of Life-Critical Real

Time Software, IEEE Transactions on Software Engineering, vol. 19, no. 1, Jan., 1993.

[Nels78] E. Nelson, Estimating Software Reliability from Test Data, Microelectronics and Reliability, Vol

17, pp. 67- 74, Pergamon, New York, 1978.

[Duga95] J.B.Dugan, M.Lyu. Dependability Modeling for Fault Tolerant Software and Systems, Software

Fault Tolerance, John Wiley & Sons Ltd., 1995.

[Scot87] R.K. Scott, J. W. Gault, D. F. McAllister, Fault-Tolerant Software Reliability Modeling, IEEE

Transactions on Software Engineering, vol. SE-13, No.5, May 1987.

[Gaff88] J. E. Gaffney, C. F. Davis, An approach to estimating software errors and availability, SPC-TR

88-077, version 1.0 March 1988.

1-6

Chapter 1 Introduction and Summary

[RADC92] Rome Laboratory (RL), Methodology for Software Reliability Prediction ad Assessment,

Technical Report RL-TR-92-52, Vol. 1 and 2, 1992.

[Stut98] M. Stutzke, C. Smidts, A Stochastic Model of Fault Introduction and Removal during Software

Development, Probabilistic Safety Assessment and Management - PSAM'4, Vol 1, Springer, pp 1111
1116, 1998.

[LLNL98] J. D. Lawrence, et al., Assessment of Software Reliability Measurement Methods for Use in

Probabilistic Risk Assessment, FESSP, Lawrence Livermore National Laboratory. 1998.

1-7

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

CHAPTER 2 ON THE NATURE OF RELATIONSHIPS BETWEEN
MEASURES AND RELIABILITY

Software engineering measures are essential not only to good software engineering practice, but also for the
thorough understanding of software failure behaviors and reliability prediction [Fent97]. Software engineering
measures address multiple aspects of the software development process and of the product itself. For instance, one

finds measures associated with estimation and/or prediction of cost and schedule of software development, measures
involving organizations, staff, number of lines in a software module, logical complexity of a module, etc.

Software development organizations typically elect to select a small number of such software engineering measures
to manage, predict, and assess the quality of their development processes and products. The purpose of this research
is to determine whether these measures are suitable for the prediction of software reliability, and if so, to what
extent. In other words, can these measures be used as reliability predictors?

The scientific literature reveals that limited research efforts have been undertaken to answer this question [RL92]
[Khos9O] [LLNL98] [Evan99] [Smid98][Stut98]. However, the research has not yet reached maturity and more
research is definitely required in this domain [Lyu95]. The research presented in this report builds on these prior
efforts.

To assess whether a software engineering measure can serve as a reliability predictor it is necessary to assess both
the intrinsic characteristics of the measure (how good the measure is in itself, the measure's purpose, how much it

costs) as well as its extrinsic characteristics (how it relates to reliability). In this chapter, a classification scheme is
introduced which helps classify measures structurally, with respect to the software development life-cycle and
semantically. Classification of a measure is an important step in the analysis of a measure because it helps in more
objectively assessing the intrinsic and extrinsic characteristics of the measure and also because it helps understand
relationships between various measures. Three axes of classification are introduced: 1) structural, 2) life-cycle based
and 3) semantic. The chapter begins with the definition and explanation of the structural classification (Section 2.1).
Deriving the particular class to which a measure belongs involves an analysis process leading to a graphical
representation of the structure of the measure. The "Gaffney estimate of the bugs per Line of Code"' is given as an
example. Section 2.2 is dedicated to the life-cycle based classification. Section 2.3 discusses semantic classification
and the notion of families.

Section 2.4 presents an extension of the structural representation to capture the layer that is missing between the
software engineering measure and reliability. This more detailed representation depicts the direct tie between the
measure and reliability.

From this extension, one derives the notion of a system of measures (Section2.5) and the general problem of finding
"a system of measures which could help predict reliability is introduced. The problem of finding the degree to which
"a measure is a valid indicator of reliability is shown to be a simplified version of the general problem. This
simplified problem is solved in later chapters using elicited expert opinion.

2.1 Structural classification

David Card advocated an information model in [ISO15939] that defines the increasing structural levels of measures.
A revised information model entitled as "structural classification" is presented in this section. Structural
classification establishes the relative position of a software engineering measure on a scale that goes from physical
reality to an indicator used for decision-making, namely reliability. More precisely, Figure 2-1 shows how the

software engineering measure is derived from data (the physical reality) using typically simple mathematical
operations. While building the chart, a determination is made as to whether the measure belongs to the following

SA
detailed description of the measure is given in Appendix A.

2-1

structural levels: primitive measure, derived measure or indicator. Figure 2-1 depicts these different levels.

Attributes (see Figure 2-1) are not measures, however they delimit the structural scale at one end and take root in

physical reality. Indicators are measures and define the other end of the scale, namely reliability2 . A detailed

explanation of this terminology is given in the remainder of this paragraph. The classification is such that a primitive

measure is "further away" from the indicator than a derived measure. Hence the classification helps evaluate the
"conceptual distance" between the measure and the indicator. The classification also attempts to characterize the

transformations used to derive the measure, i.e. a determination is made whether rules, models or algorithms are

used to derive the measure. Such information is important since models are based on assumptions which may or

may not be valid whereas rules or algorithms are not based on assumptions and should therefore always be valid.

Hence the nature of the transformation provides a direct indication as to the extent to which the measure is valid3 .

I Indicator Legend

H

t

Model, Algorithm, or Rule

Attribute, Primitive Measure,
Derived Measure, or

Indicator

Direction of Composition

Figure 2-1 Structural Representation of a Measure

2.1.1 Definitions

The classification uses the following seven terms: indicators, derived measures, primitive measures, software

attributes, models, algorithms and rules. Each term is defined in turn in the remainder of this section.

Indicators are estimates or evaluations that provide a basis for decision-making. In this particular study,

reliability is deemed an appropriate indicator for decision making. Measures structurally less complex than

reliability, and which when combined with other measures or parameters, can yield reliability estimates are

deemed unfit to be indicators.

2 Reliability is defined as the probability of successfully performing the safety function on demand with no unintended functions that might

affect safety.
3 By valid the authors mean how useful a measure is in predicting reliability.

2-2

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

Derived measures are any intermediate values which are neither indicators nor primitive measures.

Primitive measures are values resulting from the application of rules to software attributes.

Software attributes are properties of the software. Software attributes are not measures and hence do not
constitute a structural level in the measurement framework. But they are needed to ascertain the source of
the data, i.e. requirements documents or code as well as the type of data, for example, failures.

To go from one structural level4 to another, the concepts of models, algorithms and rules are needed. Models, rules,
and algorithms are typically simple transformations which allow the combination of several lower level measures to
create a hierarchically higher measure.

Models are procedures for combining measures to produce an estimate or evaluation based on a series of
assumptions. Each assumption is an idealization of reality. The procedure is logically deduced from the
assumptions.

An Algorithm is a straightforward procedure for combining two or more measures. The output of the algorithm
represents one or more characteristics of the software product under study.

A Rule is a mapping of the attribute to a subset of the field of real or integer numbers.

To illustrate these concepts, the next paragraph provides an example of a primitive measure, a derived measure, and
an indicator.

2.1.2 Examples

2.1.2.1 Example of Primitive Measure

An example of a primitive measure is the Line Of Code (LOC) measure. A Line Of Code (LOC)5 [Fent97] is any
line that is not a comment or blank line regardless of the number of statements or fragments of statements on the
line. This specifically includes all lines containing program headers, declarations, and executable and non
executable statements. According to this definition, LOCs are calculated through application of a simple counting
rule to the source code. The software attribute here is "code size" of the physical entity "source code statements".

2.1.2.2 Example of Derived Measure

Derived measures are intermediary levels between primitive measures and indicators. As an example, consider
Cyclomatic Complexity, V(G). This measure is defined as follows:

V(G) = e - n + 2p Equation 2-1

where

n is the number of nodes, i.e., the number of sequential groups of program statements,

e is the number of edges, i.e., the number of program flows between nodes,

p is the number of connected components in the control flowgraph established from the source code or
PDL6 of the software.

A structural level is any of the following: software attribute, primitive measure, derived measure or indicator.

'There are multiple competing definitions of Lines of Code. The definition selected is probably the most commonly accepted interpretation of
Line of Code.
6 PDL stands for pseudo design language. This language can be used to specify the detailed design of software.

2-3

Variables n, e, p are primitive measures that can be obtained directly from the program's control flowgraph. V(G) is

a derived measure obtained by application of the algorithm defined above.

2.1.2.3 Example of Indicator

The reliability estimate produced by the Jelinski and Moranda (JM) model can be transformed into an indicator. The

assumptions on which the model is based are:

1. The product under study has N faults at the beginning of testing.

2. All failures are similar. In other words, all failures contribute in the same way to the final software

reliability estimation.
3. All failure occurrences are independent.

4. The time interval between the ijh and (i+ 1)h failure, ti, follows the exponential distribution:

f(t) = &j exp(- 6& t,) Equation 2-2

where

f is the failure density function.
5. The failure intensity (rate) 4 is taken proportional to the number of faults remaining in the program.

8, = k (N - i) Equation 2-3

where

k is a constant of proportionality.

6. Each time a failure is observed, the corresponding fault is removed immediately. This assumes that

faults are independent of each other and equally likely to be detected.

7. N, k can be estimated by the Maximum Likelihood (ML) method. Predictions are made by substitution

of these ML estimates into the appropriate model equations.

Reliability at time t is then given by:

R(t) = eff(r)dr
Equation 2-4

The model directly produces a reliability figure dependent on time. However , the indicator defined for this project

is a probability of success per demand. A strict adherence to the definition of the indicator requires a transformation

of the time dependent function into a probability of success on demand. Such a transformation involves a conversion

factor. The conversion factor is the number of safety related demands per unit of time; p.

The number of safety related demands n over time t is given by:

n =fp-t Equation 2-5

And reliability at time t given that the last failure was at time t,, or reliability at demand n given that the last failure

was at demand n, is given by:

- p k(i N- f,)_, Equation 2-6

R(t y ot, R(na sn,)u = e of =e P

Hence the probability of a successful demand of the safety function is constant between failures and given by

2-4

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

k(N-i)

p(n I n,) = p(ni) = e P Equation 2-7

2.1.3 Structural Representation and Analysis

The analysis of a measure's description such as, for instance, a description abstracted from [IEEE88] can help

identify the structural level to which a measure belongs. As support to such analysis, the representation given in

Figure 2-1 can be used. An illustration of this graphical technique on the Gaffney estimate of Bugs per Line of

Code7 is given in Figure 2-3.

The Gaffney estimate of bugs per line of code is meant to give a crude estimate of the number of faults per lines of

code. The estimate is based on code size. More specifically, if there are N modules in a program, one estimates the

number of faults, F,, in each of the N modules using the following formula F, = 4.2 + 0.0015 S, 4/. The number of

faults in the complete program F can be estimated as the sum of all F,'s. The formula used to derive F. is clearly an
empirical model (a correlation) based on a series of non documented assumptions. A question which the analysis of

the measure and, in particular, the nature of the mathematical transformations (i.e., model) used to obtain the bug per

line of code estimate raises, is the questions of validity, how well validated is the model, what is its range of
applicability, etc.

To obtain F, , the measure "Si", number of executable source statements in the module i, is required. In this case "Si,,

is measured directly from the existing code in the module i. In other words, "Si" is a primitive measure directly

related to a physical entity through a rule. The rule explains how the line count should be made. The physical entity

in question, or software attribute, is the size of the existing code. An analysis of the measure description presented in
Appendix A shows that the rule is not specified. Since multiple approaches for line count have been documented in
the software engineering literature, multiple interpretations of the rule can thus occur. This of course may present a

problem : different companies may use different interpretations of the rule and if one does not pay attention to this

particular issue, incorrect conclusions can be drawn. This concern is highlighted in the structural representation
(Figure 2-3) and constitutes a part of the analysis which can be made during the construction of the structural
representation. The same discussion applies to the second attribute, namely, the number of modules in the code.

In conclusion, the structural analysis determines whether a measure is a primitive measure, a derived measure or an

indicator. Such classification provides a preliminary assessment of a "conceptual distance" between the measure and
the indicator. The structural analysis also determines whether models, algorithms or rules are involved in the
transformations applied to the software attributes to yield the measure. This information is important since it gives a

preliminary feel of the extent of the validity of a measure. Through the analysis process, preciseness of the

definitions of the different concepts involved (for example, rules) is examined. The potential multiple interpretations
of such concepts might arise if these concepts have not been precisely defined. From this knowledge, one is able to

assess the degree to which a measure is repeatable. Finally, the structural representation helps identify the cost of a

measure since it clearly establishes the software attributes it builds upon and hence defines the data that should be
collected.

'For a detailed description of the measure see Appendix A.

2-5

Derived
Measures

bugs (faults) per
line of code

Model 1

F, = 4.2 + 0.0015 S,"3

Fz F, -=1

F,: the estimated number of
faults in the ith module;
F : the total number of faults in
the complete program.

Primitive
Measure Si

Number of
Executable

Statements in
module i

Rule I

The counting rule is not precisely defined but should be
simple. For instance, one possible rule is that any line that
is not a comment or blank line regardless of the number of
statements or fragments of statements on the line should

be counted.

Attribute I

code size in
module

I
Primitive

Measure N

Number of
modules N

Rule 2

The counting rule is not
precisely defined but

should be simple.

Attribute 2

The number of
modules in the

code

Figure 2-2 Structural Representation and Analysis of the Gaffney Estimate of Bugs per Line of Code

2-6

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

2.2 Lifecycle-based classification

The second classification of interest is entitled "life-cycle coverage". This classification is used to describe to which

phases of the life-cycle the measure applies.

2.2.1 Lifecycle Definition

In this study, the life-cycle of software development is represented by the following five phases: requirements,

design, implementation, testing, and operation (see Figure 2-4). These are the typical high-level phases that can be

found in the development of most software. Note however that the number of software life-cycle phases considered

by different software development organizations tends to vary. The [IEEE610] considers eight different phases.

Table 2-1 is a mapping of the phases used in this study to the [IEEE6 10] phases.

Life-Cycle in this Study Equivalent Life-Cycle in the IEEE610 standard

Requirements Concept, Requirements

Design Design

Implementation Implementation

Testing Test, Installation & Checkout Installation

Operation Operation & Maintenance, Retirement

Table 2-1 Lifecycle in this Study versus Recommended Life-cycle in [IEEE610].

It should also be noted that an inherent assumption of the study is that the software described follows a waterfall

life-cycle [Scha93]. A waterfall life-cycle is typically characterized by the succession of the phases from

requirements to operation without too many backwards steps such as for instance the fact of going back from design
to requirements. Other software development lifecycles exist such as for instance the spiral model [Boeh88], a life

cycle where development is driven by perceived risk areas and the resolution of these risks in an iterative fashion.

Spiral development makes heavy use of prototyping and is typically used for software with a strong user interface

component. Waterfall development on the other hand is recommended for programs with strong algorithmic

component such as the software used in safety applications. However, a case for the development of safety-critical

applications using Spiral development can probably be made for the real-time component of the software.

To extend the study presented to a Spiral development, one should consider adding a prototyping phase (for which it

is unclear if measures exist and would be recorded in any consistent fashion) and one would need to account for the

repetition of the phases such as requirements during the iterative cycles of development and the incompleteness of

the products and artifacts produced.

2.2.2 Classification

A life-cycle phase can, in practice, be characterized by the process followed and by the life-cycle artifact produced.

As an example, the requirement phase uses a process such as requirements review and produces a software

requirements specification, the artifact. All measures can fall into at least one of the five waterfall development

model phases, some measures can fall into more than one phase.

2-7

A measure falls either into the process domain or into the artifact domain. The question is why would such

classification be of interest. What does it indicate? First of all, one needs to remember that the indicator of interest

is the value of reliability in operation. Reliability is a property of the product and not of the process. Hence a

measure of the process will tend to be "further away" from the objective of the research than a measure of the

product. Furthermore, a measure of a product or of an artifact that belongs to a phase distant from the operation

phase will be less appealing to the analyst than a measure which is closer to the operation phase. Consequently,

analyzing a measure with respect to the life-cycle produces valuable information about the relationship that exists

between the measure and reliability.

Requirement •---o[Implementation • r)-t.•dlOperation:!
J T I I -l I.

Process

o Artifact

---------- I

-- t, --I Operation: Dashed line represents the extrapolation stage

Figure 2-3 Life-Cycle Coverage

2.3 Semantic Classification and the Concept of Family

Measures can be related to a small number of concepts such as for instance the concept of complexity, the concept

of software failure or software fault. Although the number of these concepts is certainly limited, the number of

software engineering measures certainly does not seem to be. Therefore a many-to-one relationship must exist

between measures and primary concepts. These primary concepts are at the basis of groups of software engineering

measures which in this study are called families. Two measures are said to belong to the same family if, and only if,

they measure the same quantity (or more precisely, concept) using alternate means of evaluation. For example, the

family Functional Size contains measures "Function Point" and "Feature Point" (Please refer to Appendix A).

Feature point analysis is a revised version of function point analysis appropriate for real-time embedded systems.

Both measures are based on the same fundamental concepts [Alb79] [Jone86] [Jone91].

The implications of the grouping of measures into families will be examined in detail in Chapter 4. Suffice it to say

that the concept of family of measures is more robust than that of single measure.

2.4 Extended Structural Representation

In Section 2.1.3, a structural representation of the "bugs per line of code" was presented. Figure 2-5 is an expansion

of Figure 2-1, Structural Representation of a measure, which adds other measures to bridge the gap between a

measure and reliability, the indicator. This extended representation provides a visualization of a measure's relevance

to reliability, the cost entailed in bridging the gap between reliability and the measure, the degree of subjectivity

involved, etc. The following example clearly illustrates this expansion.

2-8

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

............................

Fault Exposure
Ratio

?. .

Conversion
Factor p

S............................ ..

Legend

Fj: the estimated number of [Model, Algorithm, or Rule
faults in the ith module; [j
F : the total number of faults in
the complete program.

(IT Attribute, Primitive Measure,
tieDerived Measure, or

reS:Indicator
er of Measure N-------
ab A dashed frame means the
iable Number of ,. item still has to be fully
entmodules N analyzed

Rule I
Jng rule is not precisely defined but Rule 2 Direction of composition

nple. For instance, one example rule
ie that is not a comment or blank line
ss of the number of statements or The counting rule is not

of statements on the line should be precisely defined but
counted. should be simple.

ute
Attribute 2 size for

ule i The number of
modules in the

code

Figure 2-4 Structural Analysis of the Bug Per Line of Code (Gaffney Estimate) Measure

2-9

Figure 2-5's bottom-left part is the structural representation of the "bugs per line of code" and hence is an exact

replica of Figure 2-3. The top part of Figure 2-5 on the other hand (displayed in dashed lines) was added to
"connect" the derived measure "bugs per line of code" to the indicator of interest, reliability. Measures such as the

"linear execution frequency'8" or the "fault exposure ratio 9'' can be considered as support measures to the software

engineering measure under study. The support measures could themselves be analyzed to determine whether they

should be classified as derived measures or primitive measures. This would help understand their validity as well as

the amount of effort (cost) involved in their evaluation. Such decomposition would parallel and complete the

decomposition and analysis of the software engineering measure under study. Another element of the extended

representation is function "g". This function has intentionally been left unspecified. In fact, several software

reliability models can be used in place of "g". An example of such model is the "Musa Basic Execution model"

[Musa87]. Function "g" is another contributor to the validity and cost of the prediction of reliability. If"g" has been

extensively validated, and/or if an extensive body of experience exists then the prediction is more credible.

In conclusion, a reliability prediction for the software can be derived from the measures "bugs per line of code",

"linear execution frequency" [Musa87] [Fent97], "fault exposure ratio" [Musa87], and "conversion factor p" (see

Section 2.1.2.3). These four software engineering measures constitute a complete set (from the indicator's

viewpoint), which in this document is named Reliability Prediction System.

2.5 Software Reliability Prediction System

A short discussion of the software reliability prediction system is necessary to fully appreciate the impact of the

existence of such a set of measures.

First, as discussed earlier in this chapter, a point was made that software engineering companies typically select a

few measures which will then be used to evaluate the quality of the software development process, make decisions

to change the functionality developed, adjust the schedule, and field or not to field the product. The following

questions must be answered in order to be able to predict the final product's reliability:

"* Does the set of measures selected by the company contain at least one complete software reliability

prediction system?

"* If the selection was such that it does not, can one reconstruct such a system or is the data necessary

unrecoverable? If the answer to both questions is negative, predicting software reliability is impossible.

Second, it is necessary to examine the relationships between measures in a software reliability prediction system.

This consideration is used to validate the selection of the measures.

The issue relates to the existence of redundant measures in a set. For instance, assume S1(b, c, d) is a system, and b,

c, d are measures in system S1. If any measure among b, c, d can be derived from any other among (b, c, d) then this

measure is redundant and can safely be eliminated from the set S1. The software reliability prediction system thus

obtained is minimal. Hence in a minimal system, measures must be independent'° of one another. Note that adding

redundant measures to a system is unnecessary. It artificially increases the data collection effort for no apparent

gain.

Third, it is worthwhile mentioning the existence of reliability prediction systems that are hierarchically related to

each other. These systems have the interesting characteristic of being equally predictive if the hierarchical

relationship between them is unique. Consider the two systems depicted in Figure 2-6. The first, S1, is composed of

8 The linear execution frequency is the number of times the program would be executed per unit time if it had no branches or loops.

The fault exposure ratio represents the fraction of time that the "passage" results in a failure.

10 Independent here means that one measure can not be inferred from another. For example, the cohesion measure (see Appendix A) for a

software can not be derived from the coupling measure for the same software, and vice versa.

2-10

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

measures (a, b, c, d), the second S2 is composed of measures (a, f8, c, r 6). The two systems are hierarchically
related. Examining the two systems, one sees that #6 depends on b, and yand 5 depend on d But the dependency is
of a particular type: structural. Indeed, measure b is a parent" of 6, and d is a parent of y and S Other measures
contained in S, and S2 are identical. Since all measures in S are parents or equals to measures in S2 the systems are
declared hierarchically related with S a parent of S2. This hierarchical relationship opens the door to one of the
fallacies of classification of individual measures with respect to an indicator. Indeed, it is true that if one were to
identify the measures which are the most relevant to reliability, one would find that measures a, b ,c, d are more
relevant to reliability than measures 8, rand J. However, interestingly enough, the set (a, b, c, d) and the set (a, ,6, y
c, d 7) have exactly identical predictive value if there exists only one unique function to compose (a, b, c, d) from
set (a, 61, r, c, 45 2). Although this point is made very clear in Figure 2-6, it can be easily forgotten. This comment
will explain some of the findings in Chapter 4.

A measure a is a parent of a measure b if a is hierarchically closer to the indicator than b and:

1. either a relationship exists between a and b such that a-g(b).

2. or support measures b exist such that a'g(b, b)

2-11

Figure 2-5 Hierarchical relationships between software reliability prediction systems

2-12

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

2.6 Selecting a Reliability Prediction System

The next step is to select a software reliability prediction system. To explain the elements at play in the selection
process, Figure 2-6, an idealized version of Figure 2-5 which abstracts the various concepts found in the extended
graphical representation, is used.

Figure 2-6 Extended Representation and Software Reliability Prediction System

The top triangle represents the indicator, reliability. The middle layer is the reliability prediction system, i.e., a
system that contains the measures that can completely assess reliability. The bottom layer contains the attributes
supporting the measures in the second layer. The arrows between layers represent the rules, algorithms and models
required to establish the prediction system and the indicator's expression. In this context, reliability is then
represented by:

R = g(S) Equation 2-8

where

R

g

S

Reliability

The model function

The system

The remainder of this section will examine how one can use Equation 2-8 and the elements of the extended
graphical representation to rank a specific system with respect to other systems or to rank a specific combination (S,
g) with respect to other combinations (S, g).

To make a selection between systems a ranking framework is needed. The following section establishes the elements
of a preliminary ranking framework.

2-13

2.6.1 A Ranking Framework for Software Reliability Prediction Systems

To establish a ranking framework, one need initially identify a preliminary set of criteria which define preference.

This set is composed of the following criteria:

Cost An estimation of how much would be spent in applying the system to predict reliability.

Benefit The net gain that ensues from the use of the prediction system.

Validity The degree of confidence in the accuracy of the reliability prediction.

Credibility The degree to which the system supports the specified goals.

Experience How widely the system has been used as a whole.

Repeatability The degree of similarity of the results obtained by the repeated application of the system by

the same or different people.

The ranking of a system can be obtained by aggregating evaluations of all criteria of the system. That is,

R(S) = Max {f(C(S), B(S), V(S), E(S), Cr(S), Rp(S), C(g),
VG(S) Equation 2-9

B(g), V(g), E(g), Cr(g), Rp(g))}

where

S A specific system

R(S) The ranking of the system S

fO The aggregation function

G(S) The set of software reliability models which can predict reliability based on the set of

software engineering measures S

C(S) The evaluation 12 of the cost criterion for the system of measures

B(S) The evaluation of the benefit criterion for the system of measures

V(S) The evaluation of the validity criterion for the system of measures

E(S) The evaluation of the experience criterion for the system of measures

Cr(S) The evaluation of the credibility criterion for the system of measures

Rp(S) The evaluation of the repeatability criterion for the system of measures

C(g) The evaluation of the cost criterion for function g

B(g) The evaluation of the benefit criterion for function g

V(g) The evaluation of the validity of function g

E(g) The evaluation of the experience with function g

Cr(g) The evaluation of the credibility of function g

12 An evaluation is an assessment of the criterion on a scale. Typically the scale is discrete and counts only a few levels. For instance, the cost

criterion could count three levels: high, medium and low. The role of the assessor is then to evaluate the cost incurred by the measure on this

scale.

2-14

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

The evaluation of the repeatability of function g

The benefit obtained through use of g should be identical for all function g's and all systems S since this is the

benefit incurred from the prediction of reliability. Consequently one can remove the contribution B(g) in Equation

2-9. This yields:

R(S) = Max {f(C(S), B(S), V(S), E(S), Cr(S), Rp(S), C(g),
vG(S)

V(g), E(g), Cr(g), Rp(g))}
Equation 2-10

If one is interested in ranking sets (S, g) instead of solely S, it can be done using the following expression:

R(S,g) = f(C(S), B(S), V(S), E(S), Cr(S), Rp(S), C(g),V(g),E(g), Cr(g), Rp(g)) Equation 2-11

Where R(S, g) is now the rank of a particular combination of software engineering measures and software reliability

model.

2.6.2 Ranking Based on the Measures Composing the Software Reliability Prediction
System

If the values in Equation 2-10 are not directly available, one then can turn towards the measures that make up the

software reliability prediction system and estimate the system values from the measure values. This ranking

approach is introduced in this paragraph.

Let C(m), B(m), V(m) and E(m) be the evaluation of the cost, benefit, validity and experience criterion for a measure

m of S. Then possible expressions of C(S), B(S), V(S) and E(S) are given by:

C(S) = E C(m)
rMES

V(S) = Min(V(m))
mes

B(S) = h(B(m))

E(S) = Min(E(m)) "ME$

Cr(S) = Min(Cr(m))
"REs

Rp(S) = Min(Rp(m))
"mEs

for all m e S

Equation 2-12

Equation 2-13

Equation 2-14

Equation 2-15

Equation 2-16

Equation 2-17

where

hO An Under-determined benefit function over all measures in S

Each expression (Equation 2-5 to Equation 2-10) is justified in turn in the remainder of this paragraph.

2-15

Rp(g)

The major cost contributor to a measure is the cost incurred by the data collection effort and training of the analyst

collecting the data. The training effort relates to the understanding and mastering of the rules which allow the

establishment of primitive measures. The mathematical transformations involved in the implementation of models

and algorithms used in the realm of software engineering is certainly marginal compared to the expenditures related

to data collection and training. Hence there is reason to believe that the cost function is additive as long as two

measures do not share identical data (software attributes) or similar rules, a phenomenon which is rare in practice.

The nature of the benefit function is more difficult to identify and will be the object of future research.

As for validity, the reasoning follows the "weakest link principle", well known to system designers, i.e., it is

reasonable to consider that the trust one puts in a system is only as good as the trust one puts in its weakest

component. The same reasoning holds for the experience, credibility, and repeatability criteria.

2.7 Ranking Individual Measures

The previous paragraph establishes a framework for the ranking of a system of measures S as well as for the ranking

of a combination (S, g). In the previous sections of this chapter, we established that it is not possible to consider

measures in isolation but that measures must be considered in sets named software reliability prediction systems.

The ranking of such systems is an extremely difficult problem. It requires identification of measures which make up

a system, determination of all systems, and identification of all possible functions g. This task is impractical at this

stage because of the number of software engineering measures in existence today and the fact that the number of

possible systems grows exponentially with the number of existing measures. Therefore, a more progressive

approach needs to be taken. Consequently, a simplified problem is investigated in the remainder of this report. A

solution to this simplified problem constitutes a first step in answering the more difficult problem posed by Equation

2-9 and Equation 2-10.

This simplified problem consists of ranking single measures instead of systems. The selection process begins by

establishing the measures rankings with respect to ranking criteria establishing the intrinsic validity of the measure

and its relevance to the determination of reliability (extrinsic validity13). Relevance is somewhat similar to the notion

of distance between reliability and the measure. This integrates the distance as measured through a hierarchical

decomposition, through an examination of life-cycle coverage and through a semantic mapping of the measure. The

criteria selected will be explained in detail in chapter 3. But mainly, the ranking criteria will include C(m), B(m),

V(m),E(m), Rp(m), and Cr(m) as well as relevance to reliability Rel(m), where m is the measure. Note that the

extraction of this data is a step towards answering the question underlying Equation 2-9 and Equation 2-10 since

C(m), B(m), V(m), E(m), Rp(m), and Cr(m) are an integral part of these equations. Relevance to reliability allows

selection of the measures which are most closely related to reliability and which, as such, lead to the simplest

reliability models. Figure 2-7 describes how the two problems are related.

13 The term validity here means as an expression of the utility of the measure.

2-16

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

(a)

Legend

(b) v():

Cr():

Rp(:
Rel():
S:
mi... mn:

Rank
Cost
Benefit
Validity
Experience
Credibility
Repeatability
Relevance to reliability
Software Reliability Prediction System
Measures in S

Direction of Aggregation

Shared Items between(a) and (b)

Figure 2-7 Ranking Problems: a) Ranking S, b) Problem being solved

2-17

2.8 Summary and Conclusions

This chapter investigated the relationships between measures and reliability prediction. It introduced three axes of

classification important to the analysis of the measures. These axes are structural, life-cycle based and semantic.

Semantic classification lead to the introduction of the concept of Family. A graphical method was described for the

purpose of structural representation. The creation of this graphical representation was shown to be another valuable

tool in the analysis of a software engineering measure.

The chapter also defined the concept of a Software Reliability Prediction System. The issue of selecting a software

reliability prediction system was examined and a possible selection process suggested through Equation 2-8 to

Equation 2-11.

The point was made that the selection of a software reliability prediction system is a difficult task and that a simpler

but related problem should be examined first: the problem of selecting single software engineering measures of high

degree of validity which would be most relevant to reliability. The criteria for selection of the measures contain

relevance, cost, benefit, validity, experience, credibility, and repeatability. This set must be examined to determine

whether it is complete. And furthermore, research must be carried out to determine the aggregation functionf

The chapter also showed that measures and interrelationships between measures need to be well understood before

they are used. One should avoid the use of redundant measures and one should make sure that the set of measures at

hand is complete from a software reliability prediction stand-point. Finally, once measures have been ranked

separately, they need to be reinterpreted in the context of other measures.

[Fent97] Fenton, N. E., Pfleeger, S. L., Software Metrics, A Rigorous & Practical Approach, International Thomson

Computer Press, 1 9 97 , 2nd Edition.

[RL92] Rome Laboratory (RL), Methodology for Software reliability Prediction andAssessment, Technical report

RL-TR-92-52, volumes 1 and 2, 1992.

[Khos90] Khoshgoftaar, T., Munson, J., Predicting Software Development Errors using Software complexity

Metrics, IEEE Journal on Selected Areas in Communications, Vol. 8, No. 2, Feb. 1990

[LLNL98] Lawrence, J. D., et al., Assessment of Software Reliability Measurement Methods for Use in Probabilistic

Risk Assessment, Technical report UCRL-ID-136035, FESSP, Lawrence Livermore National Laboratory. 1998

[Evan99] Evanco, W. M., Using a proportional hazards model to analyze software reliability, STEP'99.

Proceedings Ninth International Workshop Software Technology and Engineering Practice p. xvii+1 87, 134-41

[Smid98] Smidts, C., Stutzke, M., Stoddard, R. W., Software Reliability Modeling: An Approach to Early

Reliability Prediction, IEEE Transactions on Reliability, Vol. 47, no.3, May 1998 September

[Stut98] Stutzke, M., Smidts, C., A Stochastic Model of Fault Introduction and Removal during Software

Development, Probabilistic Safety Assessment and Management - PSAM'4, Vol 1, Springer, pp 1111 - 1116, 1998

[Lyu95] Lyu, M. R., editor, Handbook of Software Reliability Engineering, computing McGraw-Hill, 1995

[IS015939] Emam, K., Card, D., ISO/JEC Standard 15939, Software Measurement Process, International

Organization for Standardization, October, 1999 (draft).

[IEEE88] IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE,

1988.

[IEEE6 10] IEEE Standard Glossary of Software Engineering Terminology, IEEE, 1990.

[Scha93] Schach, S. R., Software Engineering 2nd Edition, Richard D. Irwin, Inc., and Aksen Associates, Inc.,

Boston, 1993.

[Boeh88] Boehmn, B. W., "A Spiral Model of Software Development and Enhancement," IEEE Computer 21 (May

1988), pp. 61-72.

2-18

Chapter 2 On The Nature Of Relationships Between Measures And Reliability

[Alb79] Albrecht, A. J., "Measuring application development", Proceedings ofIBMApplications Development Joint

SHARE/GUIDE Symposium, Monterey, CA, pp. 83-92, 1979

[Jone86] Jones, C., Programming Productivity, McGraw-Hill, Inc., 1986.

[Jone91] Jones, C., Applied Software Measurement, McGraw-Hill, Inc., 1991.

[Musa87] Musa, J. D., lannino, A., Okumoto, K., Software Reliability, Measurement, Prediction, Application,

McGraw-Hill Book Company, New York, 1987.

2-19

Chapter 3 Software Engineering Measures Ranking Methodology

CHAPTER 3 RANKING METHODOLOGY

In Chapter 2, we investigated the relationships between software measures and reliability. The concept of a
reliability prediction system (RPS) was introduced and it was shown that the problem of ranking reliability
prediction systems is a difficult task. The simplified problem of identifying single measures to be used
(per life-cycle phase) to characterize reliability was introduced as a preliminary step towards a resolution of
the ranking of RPSs. In Chapter 3 we examine the process used to select single measures. Figure 3-1
depicts the problem solved. In Figure 3-1, the ranking of the measure is determined by its intrinsic' and
extrinsic validity2.

Rnking of the Measure With

Respect to Reliability

Intrinsic Validity of the Extrinsic Validity of the
Measure Measure

Figure 3-1 Ranking of a Measure

The software measures used in this study were selected from a pool of software measures identified in an
earlier Lawrence Livermore National Laboratory report (LLNL) [LLNL98]. This report contains a list of 78
measures believed to be relevant to software reliability prediction.

Most measures in the LLNL report were extracted from the IEEE standard [IEEE982] and the remainder
from the recent software engineering literature. These measures were ranked by two resident LLNL
experts. However, the ranking obtained was not peer reviewed. Under a separate contract, the University
of Maryland organized a peer review of the measures. In the process, the University of Maryland identified
the thirty top measures. These were derived by first conducting a thorough critical review of the measures
themselves.

This review effort indicated a number of discrepancies which are listed below:

" The list intermingled software engineering measures and software reliability models. Software
reliability models, however, are not measures per se. Rather they constitute a means of predicting
reliability from measures. As such they have no place in an attempt of classifying and ranking software
engineering measures and were eliminated from the list of potential candidate measures. The shortened
list contained 73 measures.

"* The list contained a number of duplicate measures which were removed.

"* The list did not account in any particular manner for fault tolerant systems or for new technologies.
This fact alerted us to the need to involve in the peer review effort experts knowledgeable in these

IThe intrinsic validity depends how well a measure performs with respect to quality ranking criteria (defined later) and cost
effectiveness ranking criteria (defined later).

2 The extrinsic validity of the measure is defined by its degree of relevance to reliability.

3-1

areas which could supplement the measures provided. As a consequence we also introduced a

mechanism by which experts could provide additional measures.

"* The list did not account for support measures in a reliability prediction system such as operational

profile. After a long discussion with the NRC representatives, it was decided that this support measure

deserved special consideration and should be examined separately during discussions with the experts.

"* Relationships between measures were not investigated; Understanding of the differences between

ranking of a single measure and the larger problem of ranking of reliability prediction system were not

addressed. This led the University of Maryland team to the writing of Chapter 2 of this report.

"* Some measures presented little impact on reliability. These measures were removed from the list and

thirty measures remained.

Apart from these apparent discrepancies, the list of measures provided withstood scrutiny and constituted a

valuable preliminary set of measures.

This chapter provides a description of the methodology used in ranking the software engineering measures.

3.1 Overview of the Methodology

In chapter 2 we established that it is not possible to consider measures in isolation but that measures must

be considered in sets named software reliability prediction systems. Rather than performing the extremely

difficult task of ranking RPSs, we took a more progressive approach which identifies single measures that

can be used (per life-cycle phase) to characterize reliability. An overview of this methodology is given in

this chapter. The identification process begins by establishing the measure rankings with respect to ranking

criteria establishing the intrinsic validity of the measure and its relevance to the determination of reliability

(extrinsic validity). Then a questionnaire was designed to elicit expert opinion on rankings of the measures.

Expert opinions were then aggregated into one single comparable number. Sensitivity analysis was

performed to validate the aggregation framework.

The methodology followed during this research consisted of the eight steps shown in Figure 3-2. Each step

is briefly described in the remainder of this paragraph. The details of each step are examined in Section 3.2

through Section 3.8. Section 3.10 provides a brief summary of the chapter and conclusions.

3-2

Chapter 3 Software Engineering Measures Ranking Methodology

Figure 3-2 Steps followed in ranking the software engineering measures

Step 1: Measure selection. Measure selection is the first step in this eight-step methodology. Measure
selection consisted in identifying measures that would serve in the analysis, in other words,
measures that may be relevant to reliability and have a high ranking criteria level of intrinsic
validity. The 30 measures used in this study were selected from the pool of measures identified in
[LLNL98]. This set of thirty measures is the set used in the remainder of the study.

Step 2: Expert Identification. Quantitative information that would help support ranking does not exist
in the current software engineering literature. This quantitative information may on the other hand
exist in industry but is jealously protected through proprietary clauses. Consequently, reliance on
expert opinion is currently the optimal approach to the problem of collecting ranking data. The
expert selection process conducted in this study was based on ranking criteria such as research
field, organization, background, engineering domain and occupation. Namely, the experts were
selected from the software reliability, software safety, safety critical digital control communities,
and from the aerospace and nuclear domains. A mix of practitioners, researchers, industry and
government agencies was also achieved in the process.

Step 3: Ranking criteria and Ranking Criteria Levels3 Definition and Questionnaire Design. A set of
ranking criteria and corresponding ranking criteria levels is necessary for the ranking. The ranking
criteria must epitomize intrinsic validity and relevance to reliability. The set of ranking criteria
developed also included aspects of cost-benefit that are important factors in the selection of
measures by companies and can not be neglected in any ranking analysis. The ranking criteria
levels help define the ranking criterion scale such as, for instance, the cost scale which can vary
between a staff-person week and three staff-person years. In preparation for the workshop, a
questionnaire was developed to constitute the basis for expert opinion elicitation. During this step,

Each ranking criterion discussed in this report is quantified into levels. Level is the position on the scale of a ranking criterion's
quantity, strength, value, etc.

3-3

ranking criteria and ranking criteria levels which were developed during the LLNL study were

revisited and revised to better suit the objectives of the study.

Step 4: Expert Opinion Elicitation and Workshop. Once designed, the questionnaires were distributed

to the experts with the request that they'd be completed within a few weeks. The experts were then

convened in a workshop where they were to summarize their evaluations of the measures and

provide feedback on the ranking methodology being used. During the workshop, the experts

described the measures they typically used in their research or in their respective industrial

settings, commented on the ranking criteria, ranking criteria levels and on the documentation

provided in support of the measures. They also described and recommended a set of measures to

be added to the pool of thirty measures selected. This feedback is an integral part of the current

report and the methodology and approach to the ranking problem were revised to incorporate the

expert's comments.

Step 5: Expert Opinion Aggregation. This step was devoted to the analysis of the data collected

through the expert opinion elicitation. It consisted of reviewing the data collected and reducing

(aggregating) the data collected for each measure into a single number on a scale from 0 to 1 that

symbolizes the ranking of the measure. Review of the data was conducted in order to determine

and eliminate any inconsistencies, differences in interpretation, and whether the aggregation

scheme needed to be modified to account for missing data. Multi-attribute theory [Keen76] was

used in this study to aggregate expert input as it was in the LLNL study. A simple additive

equation with equal weights was used as the basis of the aggregation procedure4 . The equations

used are given in Section 3.6.2.

Step 6. Missing Measures. As described in step 1, the measures selected in this study are based on a

LLNL study and the ranking of the measures performed by two of the LLNL experts. To handle

the possible omission of measures deemed worthy of consideration, elicitation of missing

measures was built into the methodology as a separate step. In other words the questionnaire was

designed with cells to provide the experts a method for defining a set of "missing measures", i.e.

measures which were not part of the initial set of thirty measures but should have been. These

measures would be ranked by the experts. Unfortunately given the limitations in time and effort

and the already considerable effort exerted by the experts, this step was not performed. Since some

of these measures might have a considerable impact on the final findings, it was decided however

that the University of Maryland team would substitute itself for the experts and rank the measures.

These rankings are provided in a separate chapter (Chapter 5) to clearly distinguish them from the

measures ranked by the experts.

Step 7: Sensitivity Analysis. To understand the possible impact on the ranking of the form of the

aggregation equation, of its parameters (the weights), and of the scheme by which the qualitative

ranking criteria levels were transformed into real values, a sensitivity analysis study was

performed. Ranking criteria, ranking criteria levels, aggregation weights, and aggregation

formulae were varied and the impact of these variations assessed. The results of the sensitivity

analysis show that little variation in the ranking of measures is observed and that for all practical

purposes the additive aggregation formula with equal weights can be considered sufficient for the

ranking of software engineerinn measures with respect to reliability.

Step 8: Result Analysis and Validation. This step draws conclusions from the analysis. Top-ranked

measures are defined. The road from the top-ranked measures to reliability is under investigation.

Lessons obtained during this research are summarized.

The additive equation is typically selected as a first choice in most ranking approaches since it is definitely the simplest and it uses

no preconceived notions as to the way the different ranking criteria impact the final ranking.

3-4

Chapter 3 Software Engineering Measures Ranking Methodology

3.2 Measures Selection

As explained earlier the purpose of performing these steps is to determine a set of measures that have a
high degree of intrinsic and extrinsic validity. The following section provides a detailed description of steps
I through 8.

3.2.1 The Lawrence Livermore National Laboratory Study

As noted in Section 3.1, the study presented in this report is based on prior work performed by a LLNL
research team. The LLNL study report " Assessment of Software Reliability Measurement Methods for Use
in Probabilistic Risk Assessment" [LLNL98] identified 78 software engineering measures related either
directly or indirectly to software reliability and that might be appropriate to the study of digital I&C
systems. It also documented a set of ranking criteria developed by LLNL and the laboratories initial
ranking of the measures. As explained in Section 3.1, this set of 78 measures was reduced to thirty using
structural considerations (such as the fact that software reliability models are not measures and should not
be part of such a study) as well as importance considerations. This new set of thirty measures served as the
basis for an expert opinion elicitation effort described in the remainder of this chapter. The expert opinion
elicitation effort is based on the revised set of ranking criteria and ranking criteria levels defined in Section
3.4.1 and on the software engineering measures questionnaire described in Section 3.4.2 and Appendix B.

3.2.2 Thirty Software Engineering Measures

The set of thirty measures considered in the study is listed below. A concise description of each measure
can be found in Appendix A. This Appendix also lists additional references to which the reader is referred
for a full understanding and appreciation of the measures.

Bugs per line of code (Gaffney estimate)
Cause & effect graphing
Code defect density
Cohesion
Completeness
Cumulative failure profile
Cyclomatic complexity
Data flow complexity
Design defect density
Error distribution
Failure rate
Fault density
Fault-days number
Feature point analysis
Function point analysis

Functional test coverage
Graph-theoretic static architecture complexity
Man hours per major defect detected
Mean time to failure
Minimal unit test case determination
Modular test coverage
Mutation testing (error seeding)
Number of faults remaining (error seeding)
Requirements compliance
Requirements specification change requests
Requirements traceability
Reviews, inspections and walkthroughs
Software capability maturity model
System design complexity
Test coverage

These thirty measures serve as the basis for the expert opinion elicitation, aggregation and ranking. The
ranking criteria and their levels are defined in Section 3.4.1.

3.3 Experts Identification

Experts were selected who together covered the following areas of knowledge: software development,
software engineering, software engineering measurement, software reliability engineering, software
reliability modeling, software safety, digital I&C design. These diverse sources were defined as the base of
knowledge necessary for resolving the problem of identifying single measures to be used (per life-cycle
phase) to characterize reliability. Many of the experts, who took part in the study presented in this report,

3-5

are knowledgeable in more than one of these areas. Furthermore a conscious effort was made to select

experts from diverse engineering domains. The final selection includes experts from the nuclear and

aerospace domain. This achieves a better representation of diverse engineering fields since the problem

posed in this study applies to more than the nuclear engineering field. Finally an effort was made to obtain

representation from academia as well as from industry. Again some of the experts have been both in

academia and in the industry. This mix takes into consideration the fact that members of industry may have

better insights into issues of cost and benefit whereas academia may have better knowledge of measures in

experimental development and is at the edge of technological advances.

The final list of experts is given below.

Name Occupation Area of Expertise

Alain Abran Director of the Research Laboratory in Software Software measurement and

Engineering Management and a Professor at management

Universite du Quebec a Montreal (Canada)

David Card Researcher and consultant in software measurement Software measurement and process

and process improvement in the Software improvement
Productivity Consortium

William Everett Consultant and owner of SPRE, Inc Software reliability

Jon Hagar Senior staff software engineer and group leader at Software reliability and testing

Lockheed Martin Astronautics in Denver, Co.

Herbert Hecht Chairman of the Board of SoHaR Incorporated, Software reliability, safety and

Beverly Hills, California digital I&C system

Watts Humphrey IBM's Director of Programming Quality and Process Software engineering

Michael Lyu Associate Professor at the Computer Science and Software reliability/safety

Engineering department of the Chinese University of

Hong Kong.

Jean-Claude Laprie "Directeur de Recherche" of CNRS, the French Software reliability/safety

National Organization of Scientific Research

William Petrick President of Capri Technology Inc Software safety

Allen Nikora Senior member of the Information Systems and Software reliability modeling

Computer Science staff in the Autonomy and Control

Section at JPL

3.4 Ranking Criteria, Ranking Criteria Levels Definition and
Questionnaire Design

3.4.1 Ranking Criteria and Ranking Criteria Levels Definition

Software engineering measures can be compared by means of several attributes, collectively termed

ranking criteria. For the problem of identifying a single measure which can be used (per life-cycle phase)

to characterize reliability, seven ranking criteria were selected. Each of these ranking criteria evaluates

some particular aspect of the measures that were considered important to the objectives of the study. The

ranking criteria are grouped into three sets: quality (intrinsic validity of the measure), cost effectiveness

(inherent cost of the use of the software engineering measure), and relevance (relevance to reliability and

strength of the relationship between measure and reliability). Ranking criteria within a set judge particular

aspects of the set.

The following is the list of ranking criteria and their assignment to one of the three sets, namely, quality,

cost effectiveness and relevance.

3-6

Chapter 3 Software Engineering Measures Ranking Methodology

Ranking criterion5 Set

Benefit Cost effectiveness

Cost Cost effectiveness

Credibility Quality

Experience Quality

Repeatability Quality

Validation Quality

Relevance to Reliability Relevance

Each measure was evaluated according to ranking criteria levels. These ranking criteria levels provide a
qualitative estimate of the "goodness" of a measure with respect to the ranking criterion. Several ranking
criteria levels were defined for each ranking criterion and a single intermediate interpolation was permitted
between each pair of defined ranking criteria levels.

The ranking criteria are described in detail in Sections 3.4.1.1 -3.4.1.3.

The ranking criteria identified seem to be adequate for measures that have appeared to date. No guarantee
exists however that the set of ranking criteria constitutes a complete set.

-3.4.1.1 Quality Set

The following ranking criteria belong to the quality set: credibility, repeatability, experience, and
validation. Each ranking criterion is defined in turn in the remainder of this section.

Credibility

The documentation 6 given for each measure claims that it measures some aspect of software development
or software. A measure is considered to be credible if we judge it likely to support the specified goals. For
example, if the measure is supposed to estimate software defects then it was deemed credible if it was
judged that it did indeed measure software defects. This ranking criterion is internal to the measure in the
sense that it rates the measure only in terms of its documented goals, not in terms of the project goals. Six
ranking criteria levels were defined for credibility as follows.

A The measure directly evaluates or estimates the stated goal.

B The measure uses one or more quantities from which the stated goal can be derived using an
algorithm.

The initial list of ranking criteria was designed by Lawrence Livermore National Laboratory and was extracted from LLNL
[LLNL98]. The LLNL list contained the following ranking criteria: benefit, cost, directness, timeliness, credibility, experience and
repeatability. The University of Maryland team reviewed the ranking criteria and modified them to better fit the objectives of the
study. In the following, we briefly review the changes made. The timeliness ranking criterion favored measures which were available
early rather than late in the software development process. This ranking criterion was eliminated since all rankings are performed on a
phase by phase basis. The directness ranking criterion was semantically close to relevance to reliability. Relevance to reliability and
(the corresponding ranking criteria levels) was introduced in its place to clarify the meaning. This ranking criterion was also initially
misplaced in the quality category in the materials for the workshop and replaced correctly in a semantically different category in this
report. Repeatability, credibility and validation were reused entirely as defined by LLNL. Definitions for the cost and benefit ranking
criteria were expanded and clarified from [LLNL98].
6 By documentation, we mean the brief description of the measure provided to the experts to help them in their ranking of the
measures. This documentation is reproduced in Appendix A.

3-7

C The measure uses one or more quantities from which the stated goal can be derived, but the

definition or derivation is not precise.

D The measure uses one or more quantities from which the stated goal may be inferred, but the

inference is indirect.

E The measure is not formalized with an algorithm, but a defined method of evaluating the measure

does exist.

F The measure uses a quantity from which the stated goal may be inferred, but the inference is not

plausible.

Repeatability

A measure is considered repeatable if the repeated application of the measure by the same or different

people result in similar results. Five ranking criteria levels were defined for repeatability, as follows.

A The calculation uses a formula that requires no judgment on the part of the user.

B The calculation uses a formula; expert judgment is required to specify one or more inputs to the

formula, but no judgment is required to perform the calculation or interpret the results.

C The calculation uses a formula: (a) no expert judgment is required to perform the calculation but

judgment is required to interpret the results, or (b) no expert judgment is required to interpret the

results but judgment is required to perform the calculation.

D The calculation uses a formula, but expert judgment is required both to perform the calculation

and to interpret the result.

E The calculation is completely ad-hoc.

Experience

Commercial experience in using the different measures varies widely. Measures that are in wide use were

judged more acceptable than those that are not widely used. This addresses a different aspect than the other

quality ranking criteria since a measure might be widely used but still not technically useful in judging

software reliability. For instance, although the measure LOC had been widely accepted by the industry for

decades, no definite relationship between the LOC and the reliability has been established [Jone96].

Five ranking criteria levels were defined, as follows.

W Measure is in wide commercial use (i.e., hundreds of companies).

M Measure has had a modest amount of commercial use (i.e., dozens of companies).

L Measure has had little commercial use (i.e., a few companies at most).

E Measure has received some reported experimental use, but no commercial use.

N Measure has not been used.

3-8

Chapter 3 Software Engineering Measures Ranking Methodology

Validation

Measures that have been extensively validated by the software community should be more acceptable than
those that have not been validated. Five ranking criteria levels were defined as follows.

A The measure has been formally validated by persons other than the inventors of the measure.

B The measure has been formally validated only by the inventors (i.e., the validation is based on
many sets of data).

C The measure has been informally validated by the inventors (i.e., it has been used on a few sets of
data).

D The measure has not been validated (i.e., there exist theoretical studies, but no experimental
results).

E The measure has been invalidated (i.e., it does not work in practice, or data used in validation is
erroneous).

3.4.1.2 Relevance Set

The relevance set only contains the relevance to reliability ranking criterion. This ranking criterion
measures the strength of the relationship existing between the measure and reliability.

Relevance to Reliability

This ranking criterion identifies relevant measures for predicting/estimating software reliability of safety
critical digital systems during the various phases of their life cycles. Six ranking criteria levels were defined
for each phase.

A Most of the models that currently estimate software reliability incorporate this measure, and any
model assessing reliability of safety critical digital systems should incorporate this measure.

B. Some models that currently estimate software reliability incorporate this measure, and any model
assessing reliability of safety critical digital systems should incorporate this measure.

C. Most of the models that currently estimate software reliability incorporate this measure, and this
measure can be useful in any model assessing reliability of safety critical digital systems.

D. Some models incorporate this measure and this measure can be useful in any model assessing
reliability of safety critical digital systems.

E. Some models incorporate this measure, but this measure would not be useful in any model
assessing reliability of safety critical digital systems.

F. Very few or none of the models include this measure, and this measure is not of relevance.

3.4.1.3 Cost Effectiveness

There are two aspects to cost effectiveness-the cost of using the measure, and the benefits gained by using
the measure. Benefits can be thought of as avoidance of costs. The two ranking criteria are defined below.

3-9

Cost

The cost ranking criterion concentrates on the effort required to implement and use the measure. Cost

includes collection of data that is not normally immediately available from the standard development

activity, the recording of such data, the calculation of results and the interpretation of results. Cost includes

training time and tool acquisition (converting acquisition dollars into equivalent staff time). Cost does not

include management use of the results.

For example, suppose a measure is associated with software reviews. Then the cost of the reviews is not

included, but the cost of collecting, analyzing, and reporting data from the reviews is included. The cost of

learning how to use the measure is part of the measure as well as the cost of acquiring, setting up and

learning to use any tools peculiar to the measure.

Because cost is subject to great differences among actual development organizations, a model of a

developer was created. It was assumed that the development organization is a small business with a staff of

about twenty software engineers. The engineers were assumed to be well-trained in software development,

but not in the particular measure under evaluation. The organization was assumed to have competent

management that understands software development. If tool support is required for a measure, it was

assumed that adequate tools exist but have not yet been acquired. It was assumed that all costs of using the

measure must be included in a single project's cost. The following cost considerations are based on this

company's typical one-year production.

Based upon this model, the possible cost ranking criteria levels range from one staff week to twenty staff

years. Therefore it is reasonable and appropriate to design ranking criteria levels in log scale as follows in

order to cover this wide range of values. Note however that the last cost ranking criteria level is 3 staff

person years since none of the measures currently available in the literature require an amount of resources

superior to this.

Five ranking criteria levels were defined, as follows.

W Use of the measure will require about a staff-person week.

M Use of the measure will require about a staff-person month.

Q Use of the measure will require about a staff-person quarter (three months).

Y Use of the measure will require about a staff-person year.

T Use of the measure will require about three staff-person years.

Benefits

Benefits are the other aspect of cost effectiveness. Benefits are defined to be the avoidance of costs that

would be incurred if the measure was not used. All benefits accrued to the specific project should be

included. This may be a reduction in technical effort, a reduction in management effort, or a reduction in

the maintenance effort required to repair a fielded version of the software. Reliable software may lead to

additional sales, and the benefits from those sales should be included. Dollar costs were converted to staff

weeks to facilitate inclusion.

For example, assume that a measure is associated with software reviews. If a design review is held, and

faults are found in the software design that would not otherwise be found until coding is complete and

3-10

Chapter 3 Software Engineering Measures Ranking Methodology

testing has taken place, then the reduced testing time is considered a benefit. Greater benefits accrue when
faults are discovered early in the development life cycle.

The same developer model that was used for estimating cost was used to estimate benefits.

Based upon this model, the possible benefit ranking criteria levels range from one staff week to twenty staff
years. Therefore it is reasonable and appropriate to design ranking criteria levels in log scale as follows in
order to cover this wide range of values.

Six ranking criteria levels were defined as follows.

A Use of the measure will reduce staff time by twenty or more staff years.

B Use of the measure will reduce staff time by about ten staff years.

C Use of the measure will reduce staff time by about five staff years.

D Use of the measure will reduce staff time by about two years.

E Use of the measure will reduce staff time by about one year.

F Use of the measure will reduce staff time by less than 1 year.

3.4.2 Questionnaire Design

The following section briefly describes the questionnaire designed for expert opinion elicitation. Data
elicited relates to the experts' evaluation of the ranking criteria levels for each measure and their ranking
criteria level of confidence in this assessment. The detailed questionnaire can be found in Appendix B. The
questionnaire was structured in five major sub-sections as follows:

The first sub-section establishes the ranking criteria level of expertise with respect to the different
measures. The expert is requested to outline his exposure to the measure. Different types of exposure are
defined in this subsection. They read as follows:

0 Are you (the expert) the inventor of this measure?

* Have you (the expert) used this measure on different projects or experiments?

0 Have you (the expert) been exposed to this measure through readings or through
workshops/conferences?

If the expert has used the measure on a project, additional information (such as number of projects, type of
projects, size of projects) is gathered. Using the data collected, the credibility of the expert can be assessed
in an objective manner. In case of marked inconsistency in the data, this information can be cross
referenced with the degree of confidence and eventually used to reject the data or request further
information. Possible biases due to the authorship of a measure can also be flagged.

The second sub-section elicits the ranking criteria levels for each ranking criterion defined in Section 3.4.1
and a degree of confidence in these estimates. Close examination of the ranking criteria indicated that the
ranking criterion, "Relevance to Reliability", may depend heavily on the life-cycle phase. Consequently,
relevance to reliability levels and degrees of confidence were solicited for each life-cycle phase. The degree
of confidence is a subjective measure of the expert's confidence in the ranking criteria level given. This

3-11

measure varies between 0 and 1. For each measure, the expert is to define a degree of confidence per

ranking criterion or a global degree of confidence. A high degree of correlation should exist between

degree of confidence and the factual data relating to the credibility of the expert.

The third sub-section investigates dependencies between measures. A table was given where the experts

are requested to identify measures with high to medium levels of dependency (correlation) with other

measures. Recognizing dependencies is important if one wishes to understand whether two measures are

strongly coupled and thus provide inherently redundant information.

The fourth sub-section elicits new measures that have not been included in the set of thirty measures

selected for the study and that the expert considers worthy of attention. A description of the additional

measures is requested. Pertinent data, such as sources of knowledge, level and degree of confidence, level

of correlation with respect to other measures, are solicited (Appendix B Tables B-6 to B-10).

The last sub-section is devoted to comments on the ranking criteria.

Examples of how to fill in the tables are provided in the questionnaire.

Roughly there are 1500 cells in the questionnaire. The effort required to complete the questionnaire was

estimated to take one staff-week.

3.5 Expert Opinions Elicitation and Workshop

The workshop was set up to understand the expert's answers to the data collection effort and to obtain

feedback on the general methodology as it pertained to ranking of measures with respect to reliability.

This two-day workshop was divided into:

"* Individual presentations of each expert followed by questions and answers from the audience;

"* Group discussion on software engineering measures;

"* A concluding session with final presentations from the software measures working group, and

questions and answers from the audience;

The group discussion on software measure classification led to the introduction of the structural

classification in indicators, derived measures, primitive measures and attributes which was further refined

after the workshop and is integrated in Chapter 2 Section 2.1. As part of the lessons learned from the

workshop, it appears that in the future a process of this type would become even more effective if one

could clarify the description of the measures in [IEEE982] and [LLNL98] which served as the basis for

Appendix A; if a clearer definition of the ranking criteria and their levels could be given; or even better if

one could set-up the workshop in such way that preliminary discussions with the experts are held to help

them better understand the background of the study, the definitions, etc.

3.6 Expert Opinions Aggregation (Ranking Methodology)

To transform the experts' multidimensional ranking of a measure into a single number, which can then be

used to rank the measures: 1) an equivalence between the letter grade scale and the set of real numbers

belonging to [0, 1] was introduced; and 2) an aggregation scheme for the different numbers obtained was

defined.

' This count does not include data related to the missing measures.

3-12

Chapter 3 Software Engineering Measures Ranking Methodology

3.6.1 Ranking Criteria Levels' Quantification

This section explains how to convert the letter grades into real numbers. The conversion of the letter grade
scale into [0, 1] is given in Table 3-1 for each ranking criterion and it's corresponding ranking criteria
level.

The quantification of ranking criteria levels is predicated on the following principles:

"* A value of 1 is assigned to the first ranking criteria level of a ranking criterion since it represents the
best possible situation and hence is the situation of greatest utility;

"* A value of 0 is assigned to the last ranking criteria level since it represents the worst possible situation
and has the lowest possible utility;

"* A ranking criteria level lying between the first and the last ranking criteria levels takes values between
0 and 1. Values taken depend on the relative utility of the ranking criteria level considered.

For example, the first ranking criteria level of the "Repeatability" ranking criterion is labeled (graded) A
and defined as "The calculation uses a formula that requires no judgment on the part of the user". The last
ranking criteria level is labeled E and defined as "The calculation is completely ad-hoc." Three other
ranking criteria levels are recognized: "expert judgment is required to specify the inputs," "expert judgment
is required to perform the calculation or to interpret the results," "expert judgment is required to both
perform the calculation and interpret the result." Five possible calculation schemes thus exist which help
determine the value of the software engineering measure. Different degrees of preference can be assigned
to each scheme. The degree of preference is a function of the calculation scheme's capability to produce an
identical value for the software engineering measure through repeated iterations of the formula by different
or identical analysts. The quantification table given in Table 3-1 suggests that a scheme such as "expert
judgment is required to perform the calculation or to interpret the results" is roughly three times less
valuable than a scheme where "expert judgment is required to specify the inputs". In other words,
repeating the calculation identically is three times more difficult. A scheme such that "expert judgment is
required in calculation and the result interpretation" is roughly five times more difficult to repeat than the
scheme "expert judgment is required to specify the inputs" (see the definitions of the criterion Repeatability
and its levels, and the quantification of each level in Table 3-1).

Table 3-1 is based on the opinions of the UMD analysts and as such should be considered qualitative in
essence. Since major differences might be expected if other analysts were to quantify the ranking criteria
levels, sensitivity analysis was later performed to confirm that the rankings were independent of the choice
of ranking criteria levels.

3-13

Cost Experience

Ranking criteria Value Ranking criteria Value

level level

W I W 1

M 0.9 M 0.55

Q 0.75 L 0.2

Y 0.3 E 0.15

T 0 N 0

Ranking Benefits Credibility Repeatability Validation Relevance to

criteria level Reliability

A 1 1 1 1 1

B 0.9 0.9 0.85 0.85 0.9

C 0.6 0.7 0.45 0.4 0.8

D 0.3 0.6 0.25 0.25 0.75

E 0.1 0.35 0 0 0.2

F 0 0 0

Table 3-1 Ranking criteria Level Values

3.6.2 Data Analysis Methodology

Once the conversion of letter graded ranking criteria levels into real values is final, these values need to be

aggregated using an aggregation equation. The basic aggregation equation selected for this study and which

serves as a reference is the linear additive equation with equal weights. In this aggregation scheme, each

ranking criterion is assigned an equal weight (or importance) and the real values are combined linearly

using a scheme of the type defined in Equation 3-1. A real value between 0 and 1 is obtained for each

measure per expert and per phase. The per phase component of the analysis refers to an earlier comment

which expressed the fact that the relevance to reliability ranking criterion might actually vary per phase.

The ranking criteria levels for other ranking criteria are assumed independent of the software development

phase.

Using such aggregation scheme, the rate of a measure for a given expert and a given phase Rate(i, j, 0) is:

3-14

Chapter 3 Software Engineering Measures Ranking Methodology

Rate(i,]j,) = 1 r(i, j, k)wk + r,, (i, j)w,
kcS,,

Equation 3-1

where

Rate(i, j, 0) : The rate of measure i given by thejth expert in phase c0.

Measure index. The range is from 1 to the number of measures under study.

Expert index. The range is from 1 to N, where is N is the number of experts.

Ranking criterion index.

The set [Cost, Benefit, Credibility, Repeatability, Experience, Validation].

Development phase index. The range is from I to 4. A value of 1 stands for the
requirements' phase, 2 for the design phase, 3 for the implementation phase, 4
for the testing phase.

The real value equivalent of the kth ranking criterion level for measure i given
by the jth expert.

The real value equivalent of the relevance to reliability ranking criterion for the
ith measure in the Oth phase given by thejth expert.

The weight for each ranking criterion in set Sc,.

wO: The weight of the relevance to reliability ranking criterion for the Oth phase.
Generally, this weight is a constant regarding different phase.

So the overall rate for a specific measure i in a given phase 0 is given by:

Equation 3-2

The total number of valid experts' inputs.

The combined rate over all experts for a specific measure i during a given phase

In reality, the data analysis approach followed in this study differed somewhat from the one prescribed in
Equation 3-1 and Equation 3-2, because, as we anticipated, many cells in the experts' questionnaires were
left blank. Hence, Equation 3-1 and Equation 3-2 could not be used directly. To overcome this vacuum,
UMD combined all of the experts inputs together before performing any further analysis using the
following equations:

3-15

i:

S.r

r(i, j, k):

r ¢(z, j,):

Wkk:

I N
Rate(i, 0) = -• 2. Rate(i, j, 0)

where

N

Rate(i, 0)

1
R(i,k)- Nr(i,j,,k)

N(i, k) jS(i.k)

R Zr (i,j) Ro()-No (i) JE So(f)

Equation 3-3

Equation 3-4

The combined real value equivalent for the kth ranking criterion of measure i.

The combined real value equivalent for the kth ranking criterion of measure i
given by thejth expert.

The set of valid8 inputs for the kth ranking criterion of the ith measure.

The number of elements in set S(i, k).

Ranking criterion index. k e {Cost, Benefits, Credibility, Repeatability,

Experience, Validation}.

The combined level of ranking criterion relevance to reliability for the ith

measure in phase 0.

The level of the ranking criterion relevance to reliability for the ith measure

provided by thejth expert in the /*h phase.

So(i): The set of valid8 inputs for relevance to reliability for the ith measure in the Oth

phase.

No(i): The number of elements in set Sm(i).

After processing the data using Equation 3-3 and Equation 3-4, two kinds of combined inputs are obtained.

One is the combined (over all experts involved in the analysis) real-value-equivalent level for all ranking

criteria of a measure with the exception of relevance to reliability; the other is the combined (over all

experts involved in the analysis) real-value-equivalent level of a measure's relevance to reliability ranking

criterion. To obtain the overall rate of a specific measure i in a specific phase _ the following equation is
used:

Equation 3-5Rate(i, 0) = E R(i, k)w(k) +R, (i) w
k

where

Rate(i, 0): The overall rank for measure i in phase 0.

w(k): Weight for ranking criterion k

A value is called valid if it is not empty after the processing from level to real number described in Section 3.6.1

3-16

where

R(i, k):

r(i, j, k):

S(i, k):

N(i, k):

r c(i, j)):

Chapter 3 Software Engineering Measures Ranking Methodology

We,: Weight for the relevance to reliability ranking criterion in phase 0.

k: Measures index. Please refer to notations for Equation 3-3 and Equation 3-4.

0-: Phase index. Please refer to notations for Equation 3-1.

Weights in Equation 3-5 should verify Equation 3-6 for 0 = 1, 2, 3, 4 respectively.

Sw(k) + w, = 1
k

Equation 3-6

In the reference (base) case all weights are equal, that is, w(k)= w, = 1/7 for any ke Scr and any phase •.

3.6.3 Phase-Based Measures' Availability

Not all software engineering measures are applicable to a development phase. For instance, the measure
"Cyclomatic complexity" can not be calculated until the design phase since the primitives used to calculate
cyclomatic complexity are not defined until that phase. Once the primitives are available, they will remain
available in the later phases of the life-cycle. Hence, a measure is defined as applicable to a phase if the
primitives required to calculate the measure are available in the specific phase.

Availability information is used in the phase-to-phase calculation of the rate of a measure. Indeed, rates
provided by the experts need to be filtered to reflect the availability of the measure during the phase.

Availability information is displayed in Table 3-2. A value of I corresponds to a measure that is available
and a value of 0 to a measure which is not. This information is used as a multiplicative filter to eliminate
measures from the corresponding phases or this information is used as a multiplicative filter to retain
measures in the corresponding phases. For example, the availability of the "Failure Rate" is 0 during the
"Requirement" phase. Thus the rate of this measure during the requirements phase is the value given in
Equation 3-1 multiplied by the filter value 0 and will thus be equal to 0.

A note is necessary here to better understand the notion of availability. A measure specifically defined to
capture the software's design characteristics is available from the design phase on till the end of the
software's life, and not just during the design phase. One should also note that most of the phase-based
availability information presented in Table 3-2 is extracted from IEEE Std 982.2 [IEEE982]. Where
conflicts appear between the IEEE interpretation and this study's interpretation, these have been carefully
noted in footnotes.

Table 3-2 lists the phase-by-phase availability of the thirty measures selected.

Phase-Based Availability
Requirement Design Implementation Testing

Bugs per line of code (Gaffney estimate) 0 0 1 1

Cause & effect graphing. 1 1 1 1

Code defect density 0 0 1 1

Cohesion 0 1 1 1

Completeness 1 1 1 I

Cumulative failure profile 0 0 0 1'

3-17

. In the IEEE Standard [IEEE9821, this measure is considered available from the requirement phase.

Phase-Based Availability
Measure

Requirement Design Implementation Testing

Cyclomatic complexity 0 1 1 1

Data flow complexity 0 1 1 1

Design defect density 0 1 1 1

Error distribution 1 1 1 1

Failure rate 0 0 0 1

Fault density 1 1 1

Fault-days number 1 1 1 1

Feature point analysis 1 1 1

Function point analysis 1 1 1 1

Functional test coverage 0 0 0 1

Graph-theoretic static architecture 0 1 1 1

complexity

Man hours per major defect detected 0 1 1 1

Mean time to failure 0 0 0 1

Minimal unit test case determination 0 19 1 1

Modular test coverage 0 0 0 1

Mutation testing (error seeding) 0 0 0 1

Number of faults remaining (error 1 1 1 1

seeding)

Requirements compliance 1 1 1 1

Requirements specification change 1 1 1 1

requests

Requirements traceability 010 1 1 1

Reviews, inspections and walkthroughs 1 1 1 1

Software capability maturity model 1 1 1 1

System design complexity 0 1 1 1

Test coverage 0 0 0 1

Table 3-2 Phase-Based Measure Availability

3.7 Missing Measures

The experts identified, per step 4, a set of measures or categories of measures that should be added to the

analysis. Specifically the following set of measures and measure categories were identified: {Coverage

Measure, Test Mutation Score, Full Function Point, Measures for Object Oriented (00) Technologies and

other Modern Technologies}1".

In IEEE Standard [IEEE982] this measure is considered not available during the requirements phase. UMD changed it to available.

0 In IEEE Standard [IEEE982] this measure is considered available during the requirements phase. UMD changed it to not available.

"These measures were not part of the initial 78 measures described in the Lawrence Livermore National Laboratory's study-

3-18

Chapter 3 Software Engineering Measures Ranking Methodology

A brief description of: {Coverage Measure, Test Mutation Score, Full Function Point} is proposed in Table
3-3. A more detailed description has also been developed and is given in Appendix A.

Measures Definition

Coverage Measure Coverage = Probability [system recoversi fault occurs], which means the
probability that the system can recover from an error.

The goal of this measure is to reflect the ability of the system to
automatically recover from the occurrence of a fault during normal system
operation.

A mutation is a single-point, syntactically correct change, introduced in the
program P to be tested. The mutation score, denoted mis, is the ratio of the
non-equivalent mutants of P (i.e. those which are distinguishable from P
under at least one data item from the input domain) which are killed
(distinguished from P) by a specific test data set T. It is a number in the

Test Mutation Score interval [0,1].

The goal of this measure is to provide a measure of the efficiency of the test
data set T. A high score indicates that T is very efficient for the program P
with respect to mutation fault exposure.

FFP is an adaptation of Function Point Analysis (FPA) techniques to the
functional characteristics of real-time software.

Full Function Point (FFP) FFP measurement involves applying a set of rules and procedures to a given
piece of software, as it is perceived from the perspective of its inherent

measurement functional user requirements. FFP, like FPA, measures functional size by

evaluating transactional processes and logical groups of data. Full Function
Point Analysis is a functional size measure for real-time control software.

Table 3-3 Missing Measures

The experts did not specify precisely what they meant by "Measures for 00 Technologies and other
Modem Technologies", or more specifically which of the many 00 measures or of the measures for
"modem technologies" should be used.

Measures for 00 technology as well as for web-based systems are beginning to emerge. However, the
current digital technology does not use web-based technology. Furthermore digital controllers will not be
developed using web-technology in the foreseeable future and measurement within this area is still in its
infancy. Based on these arguments, no measure was identified to reflect these.

On the other hand there certainly is no reason to rule out the use of 00 in embedded systems. Hence, a
preliminary set of 00 measures [Chid94] [Lore94] [Hend96] for ranking was identified, which is presented
in Table 3-4. The rationale for selecting this preliminary set of software measures is explored below.

3-19

The key component of a system implemented using 00 technology is the concept of class. A class is an

abstraction of an existing entity, such as a sensor or a control panel in a control system. Each class

possesses a set of attributes, which represents the state of the class, and a set of methods, a concept

equivalent to the concept of functions, which can act on the class. Classes are combined together by

mechanisms called messages to construct a system. Consequently, the resulting system is characterized by

the attributes of its classes, class attributes, class methods and the messages among the classes. The 00

measures selected and displayed in Table 3-4 reflect these notions. Next to each measure is listed the

attribute of the system it measures. Although these measures serve as a suitable initial set of measures, no

guarantee is given that these measures constitute a complete set of 00 measures adequate for reliability

prediction. They need further validation.

00 Measure Attribute

Class Coupling Coupling among classes. This is one of the
measures characterizing message complexity

Class Hierarchy Nesting Level The level of inheritance and information reuse

Lack of Cohesion in Methods The cohesion of the class

Number of Children The number of immediate subclasses derived from
the class

Number of Class Methods in a Class The number of methods in each class

Number of Key Classes Size of the system (in class)

Weighted Method per Class Complexity of the class

Table 3-4 00 Measures and Corresponding Attributes

A brief description of the 00 measures is given in Table 3-5. The full description of the measures can be

found in Appendix A.

Measures Definition

Coupling is defined as: when one object depends implicitly on another, they
are tightly coupled. Object instances are tightly coupled with their classes.

When one object depends directly on the visibility of another, they are

closely coupled. When one object references another only indirectly through

the other's public interface, they are loosely coupled.
Class coupling

The goal of this measure is to examine how the class relates to other classes,

subsystems, users, and so on. In practice, we want to build systems that get

their work done by requesting services from other objects, which means we

want to leverage the other classes' services, but we want to have services

available at the right level, which means we want to keep the amount of

coupling to a limited number.

3-20

Chapter 3 Software Engineering Measures Ranking Methodology

Measures Definition

Classes are organized for inheritance purposes hierarchically in a tree
structure, with the base or the topmost class called the root. The further
down from the root that a class exists in this hierarchy is called its nesting

Class hierarchy nesting level.

level The goal of this measure is to identify the quality of the classes' use of

inheritance. Large nesting numbers indicate a design problem, where
developers are overly zealous in finding and creating objects. This will

usually result in subclasses that are not specialization of all the super-classes.

A subclass should ideally extend the functionality of the super-classes.

This measure is a relative indicator of cohesion of a class. The "relative"
originates from the fact that this measure is the subtraction of the number of

Lack of Cohesion in related method pairs from the number of unrelated method pairs within the
Lack (class under measurement. Therefore the value of LCOM is a comparison

Methods (LCOM) between the number of correlated methods and the number of irrelevant

method from design perspective (because whether two methods are
correlated is determined by whether there is any instance variable shared by
both of them. This criterion is based on the design consideration).

Number of Children NOC is the count of the immediate subclasses of the class being measured.
NOC was presented by Chidamber and Kemerer s a measure of complexity.

Classes are objects that can provide services (and state data) that are global
to their instances. The number of methods available to the class and not its

Number of Class methods instances affects the size of the class.
In a Class

The number of class methods can indicate the amount of commonality being
handled for all instances. It can also indicate poor design if services, better

handled by individual instances, are handled by the class itself.

The number of key classes is an indicator of the volume of work involved in

developing an application. It is also an indication of the number of long-term
reusable objects that will be developed as a part of this effort for applications

Number of Key Classes dealing with the same or similar problem domain.

Key classes are central to the business domain being developed. A key class

can be related to a subset of an entity class or a model class. The number of

key classes is a count of identified classes that are deemed to be of critical
importance to the business.

3-21

Measures
Definition

This measure deals with the internal characteristics of the classes' methods.

The method measured can be a function or an action. There has historically
been a lot of work done in the area of code complexity, but the fact that there
are some basic differences between 00 design and sequential design (1. 00
codes are more compact and 2. 00 design does not use case statement)

Weighted Method per makes these measurements less useful.
Class (WMC)

This measure considers the number and types of messages sent by a method
as being the basic measurement of complexity. It uses some assigned
weights to compute method complexity.

WMC is the sum of weighted methods in a class. Each method within the

class is weighted by the complexity defined above and this weight is
summed to arrive at WMC.

Table 3-5 Brief Descriptions of Missing 00 Measures

For lack of available time during the workshop and due to the fact that not all missing measures had been
precisely identified at that time, these additional measures could not be ranked by the experts during the
workshop. Such ranking is however a necessary step for the completion of the analysis. Hence it was
decided that the University of Maryland would perform a preliminary ranking of the additional measures
and that this ranking would be validated by the workshop experts. This ranking effort is discussed in
Chapter 5.

3.8 Sensitivity Analysis

The ranking methodology presented in Section 3.6 (and part of step 5) is based on a given equivalence
between letter-graded ranking criteria levels and the set of real numbers, on the additive aggregation
equation and equal weights. This reference or base needed to be validated by sensitivity analysis since:

" It could not be ensured that the letter/real equivalence was correctly inferred. The levels of ranking
criteria were identified in the light of an assumed "distance" between adjacent ranking criteria levels.
However, the quantification of this distance was essentially subjective, thus results needed to be
validated by varying the ranking criteria level values. This variation needed to be comprehensive to

cover all the possibilities.

"* It was unclear which of the ranking criteria most influenced our ability to predict reliability. Such
inadequate understanding prevents determination of a so-called correct set of weights and thus leads to
the need for the analysis of the impact of variations in the weights used in the aggregation equation.

" It was unclear how the ranking criteria's influences should be combined. Unfortunately, the way in

which ranking criteria interact defines the form of the aggregation function. Hence, the lack of
understanding of this interaction mechanism impedes the construction of a so-called correct
aggregation function. The only remedy to this obstacle was to explore alternate forms of the

3-22

Measures Definition

Chapter 3 Software Engineering Measures Ranking Methodology

aggregation function and determine whether the aggregated rate1 2 of a measure is sensitive to the form
of the equation.

Hence, sensitivity analysis is performed by varying: 1) the function used to transform a measure's
alphanumerical ranking criteria levels into real numbers, 2) the weights used for aggregating ranking

criteria levels into a single real number in [0, 1] used to rank the measure, and 3) the equations used for
aggregating ranking criteria levels into a single real number in [0, 1] used to rank the measures.

The result of the sensitivity analysis is an understanding of the specific impact of each of these elements on
the ranking of the measures. The following paragraphs describe the different types of sensitivity analysis
performed and provide the rationale for the selection of these particular schemes.

The results of the sensitivity analysis show that little variation in the ranking of measures is observed and
that for all practical purposes the additive aggregation formula with equal weights can be considered

sufficient for the ranking of software engineering measures with respect to reliability.

3.8.1 Sensitivity Analysis with Respect to Ranking Criteria Levels Quantification

Sensitivity analysis was first done with respect to the conversion of the letter scale used for ranking criteria
levels into real numbers. Five different transformations were selected. The five transformations are
described in Appendix C.

3.8.2 Sensitivity With Respect to the Weights Used in Aggregation Schemes

Sensitivity was then done by varying the weights appearing in the reference aggregation scheme. Four
weighting schemes were considered. Their description follows:

Scheme 1 Each ranking criterion was assumed to have the same weight. This scheme modeled the
case where no single ranking criterion is more important than any other.

Scheme 2 Scheme 2 distinguished four groups of ranking criteria: fCost, Benefits}, fCredibility,
Repeatability}, {Experience, Validation}, fRelevance to Reliability}.

The motivation for considering scheme 2 in this way was as follows. The four groups
each represent distinctly different aspects of a measure. The group {Cost, Benefits} is
related to its financial impact. The group (Credibility, Repeatability} is related to the
theoretical validity of a measure. The group {Experience, Validation} is related to the

experimental validity of a measure. The group {Relevance to Reliability) evaluates the
relationship between the measure and the goal of the study: reliability. Since apriori

each of these aspects will contribute equally to the ranking, these four groups can be
assigned equal weights. And, furthermore, equal weights can be given within each group
if no further knowledge is available.

In practice, since there are four distinct groups of ranking criteria, each group is assigned
a weight of 1/4. Since each ranking criterion in a group receives the same weight, this

translates for instance for the group {Cost, Benefits) into a weight of 1/8 for the Cost
ranking criterion as well as for the Benefits ranking criterion. On the other hand, the
group (Relevance to Reliability) has only one criterion, therefore the criterion
Relevance to Reliability receives a weight of 1/4.

12 An aggregated rate is a real value ranging from 0 to 1. It indicates the capability of the measure to predict software reliability. The

higher aggregated rate value, the more capable the measure is of predicting software reliability.

3-23

Scheme 3 Scheme 3 uses the same groups as scheme 2 but varies the contributions of each group.

The weighting scheme for the groups is as follows: {Credibility, Repeatability} = 1/3,

Relevance to Reliability = 1/3, and {Cost, Benefits} = 1/6, and {Experience, Validation}
= 1/6. The weights are distributed equally between ranking criteria in a group. Scheme 3

implies that factors such as theoretical validity and relevance to reliability contribute

equally to the aggregated rates and are twice as important as {Experience, Validation}

and financial considerations. This scheme reflects a weighting scheme that gives more
value to the theoretical validity of a measure than to the practical aspects of applying the

measure.

Scheme 4 -5 Schemes I to 3 are based on reasonableness assumptions. Two weighting schemes were

added to the set to allow for errors in the reasoning leading to schemes 1 to 3. These

schemes were obtained by random selection of the weights with the constraint that the

sum of all weights equals to 1.

The reader should be reminded of the fact that the aim of the schemes is not to represent reality but to cover

the space of possible weighting schemes.

3.8.3 Sensitivity with Respect to the Aggregation Equation

Finally, a sensitivity analysis was performed with respect to the aggregation equation. Two equations were

considered. The first equation is a simple linear weighted sum which has already served as the reference

equation for the analysis. The underlying concept for this equation is that every ranking criterion

contributes to the aggregated rate of a measure independently, or in other words, ranking criteria are

orthogonal or linearly independent. The second form is derived from the consideration that quality ranking

criteria and relevance to reliability may interact with each other. The part of the equation that relates to

quality ranking criteria and relevance to reliability is thus multiplicative [Keen76].

R =I Wkvk Equation Form 1
k

where

R: The rate of the measure.

k: Ranking criterion index, k e {Cost, Benefits, Credibility, Repeatability,

Experience, Validation, Relevance to Reliability}.

Wk: The weight for the kth ranking criterion. Vk, wk = 1/7.

Vk: The real-value-equivalent for kth 's ranking criterion level.

R = wv + WcVc Equation Form 2

where

v,, = [rl-'(I + Kw,) - 1]

3-24

Chapter 3 Software Engineering Measures Ranking Methodology

K = fi (1+ Kw1)-1

wý Weights for all ranking criteria except the cost/benefit ranking criteria.

wc Weights for the cost set with wz + wc = 1

l: Running index referencing one of the ranking criteria within the following set

{Credibility, Repeatability, Experience, Validation, Relevance to Reliability}

wl: Weight for the Ith ranking criterion. E w, is not required to be 1.

Credibility Repeatability Experience Validation Relevance to K w- wC
Reliability

0.4 0.4 0.2 0.2 0.8 -0.9346 0.5 0.5

Table 4 Weights used in Equation Form 2

3.9 Possible Limitations of the Methodology

The methodology proposed in this chapter is based on expert opinion elicitation. Consequently, the

correctness and accuracy of the results depends heavily on the experts.

Software engineering technology is continually evolving and concurrently measures are being developed to

reflect these changes. In the volatile nature of software engineering lies a weakness of the study presented:
the need to modify the set of measures as the technology evolves

3.10 Summary and Conclusions

This chapter presents the methodology used to rank software engineering measures. The methodology is

based on the use of expert opinion elicitation to solicit the scores of software engineering measures. The

scoring is performed with respect to seven ranking criteria: credibility, repeatability, cost, benefit,

experience, validation and relevance to reliability. The scoring is performed in terms of letter grades. A

letter-conversion scheme translates the letter values to real numbers between 0 and 1. These numbers are

then aggregated using an aggregation equation and a weighting scheme for the seven ranking criteria. The

aggregated number serves as the indicator of the "goodness" of the measure. A sensitivity analysis is

further performed on all components of the analysis: letter-real conversion scheme, aggregation function

form, weighting scheme. Since a priori one can not assess which aggregation scheme is correct, the

purpose of such sensitivity analysis is to prove that the results obtained remain valid for a wide spectrum of

aggregation schemes.

The next chapter, Chapter 4, will provide the results obtained by application of this methodology to the

initial set of measures. Chapter 5 will discuss the ranking of the missing measures.

[LLNL98] Lawrence, J. D., et al., Assessment of Software Reliability Measurement Methods for Use in

Probabilistic Risk Assessment, Technical report UCRL-ID-136035, FESSP, Lawrence Livermore National

Laboratory. 1998.

[Keen76] Keeney, R. L., Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs,

John Wiley & Sons, New York, 1976.

3-25

[Jone96] Jones, C., Applied Software Measurement: Assuring Productivity and Quality, 2nd Edition,

McGraw-Hill, New York, 1996.

[IEEE982] IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

[Mi1172] Mills, H. D., "On the Statistical Validation of Computer Programs", IBM Federal Systems

Division, Gaithersburg, MD, Red. 72-6015, 1972.

[Chid94] Chidamber, S. R., Kemerer, F., A Metrics Suite for Object Oriented Design, IEEE Transactions

on Software Engineering, Vol. 20, No. 6, June 1994.

[Lore94] Lorenz, M., Kidd, J., Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc.

New Jersey, 1994.

[Hend96] Henderson-Sellers, B., Object-oriented metrics: measures ofcomplexity, Prentice Hall, New

Jersey, 1996.

3-26

Chapter 4 Results and Analysis

CHAPTER 4 RESULTS AND ANALYSIS

Chapter 2 examined the problem of selecting software engineering measures to predict software reliability
and designed a methodology which would help achieve this objective. The methodology is based on a
rating and the consequent ranking of the measures. The rating of a measure is derived from the intrinsic and
extrinsic characteristics of the measure. Chapter 3 outlined a full description of the rating process. Chapter
4 provides the rates and ranks obtained when applying the rating methodology to the measures selected. As
discussed in chapter 2, measures can be classified into categories named "families". Hence, results are also
presented by family. Results of the sensitivity analysis on letter-real conversion schemes, aggregation
weights, and aggregation functions are also provided. These allow an assessment of the stability of the
rankings and rates under various ranking schemes. A systematic analysis of the importance of ranking
criteria was also performed and is presented at the end of the chapter.

4.1 Measures' Rates and Rankings

Rates define the degree to which measures can be used to predict software reliability. These rates are real
numbers ranging from 0 to 1. Rates of 1 indicate measures deemed crucial to the prediction of software
reliability. Rates of 0 correspond to measures that definitely should not be used.

The rate of a measure may vary from one development phase to another since relevance to reliability may
vary between phases. Hence the methodology described in Chapter 2 and 3 aggregates the rates of
measures phase by phase. Four development phases are of interest: Requirements, Design,
Implementation, and Testing. Later phases are ruled out of the analysis since the software is already in
operation. Table 4-1 lists the rates of the thirty measures in the four phases.

The following sections (Section 4.1.1 to Section 4.1.4) will discuss in greater detail the rates and rankings
of the measures phase by phase. The emphasis will be placed on noteworthy trends and results.

4-1

Measure' Development Phase
Requirement Design Implementation Testing

Bugs per line of code (Gaffney estimate) 0.46 0.40

Cause & effect graphing 0.45 0.43 0.40 0.44

Code defect density 0.83 0.83

Cohesion 0.42 0.36 0.36

Completeness 0.42 0.36 0.36 0.36

Cumulative failure profile 0.76

Cyclomatic complexity 0.73 0.74 0.72

Data flow complexity 0.62 0.59 0.59

Design defect density 0.75 0.75 0.75

Error distribution 0.68 0.68 0.65 0.66

Failure rate 0.83

Fault density 0.71 0.73 0.73 0.75

Fault-days number 0.60 0.71 0.71 0.72

Feature point analysis 0.46 0.50 0.50 0.45

Function point analysis 0.51 0.54 0.55 0.50

Functional test coverage 0.62

Graph-theoretic static architecture complexity 0.52 0.46 0.46

Man hours per major defect detected 0.63 0.61 0.63

Mean time to failure 0.79

Minimal unit test case determination 0.59 0.64 0.70

Modular test coverage 0.70

Mutation testing (error seeding) 0.50

Number of faults remaining (error seeding) 0.46 0.46 0.47 0.51

Requirements compliance 0.50 0.49 0.50 0.50

Requirements specification change requests 0.70 0.69 0.69 0.69

Requirements traceability 0.56 0.56 0.55

Reviews, inspections and walkthroughs 0.61 0.61 0.61 0.61

Software capability maturity model 0.60 0.60 0.60 0.60

System design complexity 0.53 0.53 0.53

Test coverage 0.68

Table 4-1 Rates for the Different Software Engineering Measures Studied

I An empty cell in the table denotes that the corresponding measure is not applicable in the corresponding phase. For instance, the measure "Code defect density" is

not available in the Requirements and Design phases. The same comment applies to all tables throughout the chapter

4-2

Chapter 4 Results and Analysis

4.1.1 Results in the Requirements Phase

Table 4-2 lists rates and rankings for the twelve measures available in the requirements phase 2. The three

top measures are "Fault density", "Requirements specification change requests", and "Error distribution". It
implies that these measures are prime candidates as roots3 of a software reliability prediction system in the
requirements phase.

Other results worth commenting about are discussed below. The measure "Completeness" has the lowest
ranking, a result due to the fact that the measure scores low in the Credibility criterion. This is because the
measure attempts to assess completeness of the requirements, an objective that cannot theoretically be
achieved. Furthermore the measure uses several primitives which are related to the design phase rather than
to the requirements phase. This leads to confusion since the analyst is led to believe that the measure cannot
be completely assessed during the requirements phase.

The measures "Feature point analysis" and "Function point analysis" belong to a family of measures
dedicated to the evaluation of system functional size. The measure "Feature point analysis" is a variant of
"Function point analysis" dedicated to real-time embedded systems. One would thus expect that these two
measures would score identically or even that feature point analysis would score higher than function point
analysis since it is devoted to the objective of this particular study, i.e. embedded systems for safety critical
applications. However, the results in Table 4-2 indicate otherwise. The inconsistency originates from the
difference observed in the scores of the Experience criterion: there is less industrial experience with
"Feature point analysis" than with "Function point analysis".

Measure Rate Rank
Fault density 0.71 1
Requirements specification change requests 0.70 2
Error distribution 0.68 3
Reviews, inspections and walkthroughs 0.61 4
Fault-days number 0.60 5
Software capability maturity model 0.60 6
Function point analysis 0.51 7
Requirements compliance 0.50 8
Feature point analysis 0.46 9
Number of faults remaining (error seeding) 0.46 10
Cause & effect graphing 0.45 11
Completeness 0.42 12

Table 4-2 Rates and Rankings in the Requirements Phase

4.1.2 Results in the Design Phase

Table 4-3 lists rates and rankings for the twenty measures available in the design phase. The top ranked
measures are "Design defect density", "Fault density", and "Cyclomatic complexity". Two of these three
measures were not available in the requirements phase and are therefore new. The three measures are prime

candidates as roots3 of a software reliability prediction system in the design phase. But it should be noted

2 For the list of measures available in a particular phase, the reader is referred to Table 3-2 in Chapter 3.

3A root of a software reliability prediction system is a measure that constitutes the starting point of a system and should be

supplemented by additional measures which will complete the system.

4-3

that the number of measures above and close to the arbitrary threshold value of 0.74 has increased from 3 to

6 (0.68 and 0.69 are very close to 0.70) if compared with the requirements phase. This means that the

number of measures considered valid for reliability prediction has increased and that the size of the

underlining reliability prediction system has increased except some of the measures are redundant. Another

interesting fact is that the highest rate encountered has increased between requirements and design phase

from 0.71 to 0.75. This trend is to be expected since measures reflect artifacts and process phases which are

closer to the final code being delivered. Hence the general "quality" of the measures should improve.

Measure Rate Rank

Design defect density 0.75 1

Fault density 0.73 2

Cyclomatic complexity 0.73 3

Fault-days number 0.71 4

Requirements specification change requests 0.69 5

Error distribution 0.68 6

Man hours per major defect detected 0.63 7

Data flow complexity 0.62 8

Reviews, inspections and walkthroughs 0.61 9

Software capability maturity model 0.60 10

Minimal unit test case determination 0.59 11

Requirements traceability 0.56 12

Function point analysis 0.54 13

System design complexity 0.53 14

Graph-theoretic static architecture complexity 0.52 15

Feature point analysis 0.50 16

Requirements compliance 0.49 17

Number of faults remaining (error seeding) 0.46 18

Cause & effect graphing 0.43 19

Cohesion 0.42 20

Completeness 0.36 21

Table 4-3 Rates and Rankings in the Design Phase

4.1.3 Results during the Implementation Phase

Table 4-4 lists rates and rankings for the 23 measures available in the implementation phase. The top

ranked measures are "Code defect density", "Design defect density ", "Cyclomatic complexity", and "Fault

density", respectively. The number of measures above (including one is very close to 0.70) the arbitrary

level of 0.7 is still 6. The top ranked measure in this phase has a rating of 0.83 instead of 0.75 which was

the value of the top-ranked measure in the design phase, reflecting once again a general improvement in the

"quality" of the measures.

The rankings obtained seem reasonable but for two exceptions: the fact that the measure "Code defect

density" and "Cyclomatic complexity" rank higher than the measure "Fault density", and that the measure

"Number of faults remaining (error seeding)" only ranks number 18.

' This number is an arbitrary value selected by the University of Maryland. It is a threshold that allows to distinguish a "good"

measure from a "bad" one.

4-4

Chapter 4 Results and Analysis

The relative ranking of "Code defect density" versus "Fault density" is due to differences in the criteria
Repeatability, Experience, and Relevance to Reliability. These scores reveal that the measure "Fault
density" is more difficult to reproduce consistently, and is less widely used in industry than "Code defect
density". Moreover, the measure "Fault density" is less relevant to reliability prediction than the measure
"Code defect density". This is puzzling since one would think that the measure "Code defect density" is a
specific instance of the measure "Fault density" particular to the implementation phase. This quagmire can
be avoided by remembering that reliability is not solely determined by the fault content, but also by how
frequently the faults manifest themselves as failures. Manifestation as a failure is determined by the
position of the faults as explained in the example below.

Module M1 is characterized by fault density FD,, and a frequency of execution of p1 . Module M2 's fault
density is FD2, and its frequency of execution is P2. If one assumes that FD1 is greater than FD2, and pj is
much smaller than P2, then the statement " module M, impacts the reliability of the system more
significantly than module Ml2" does not hold. In other words, the reliability of a system is determined not
only by the number of faults residing in the system (or fault density), but also by the frequency at which
these faults are encountered.

As shown in Appendix A, the process involved in measuring "Fault density" is that of tracing back from
failures observed to the faults that caused the failure. However, the faults counted in the measure "Code
defect density" are observed directly through the code inspection and walkthrough process. Hence fault
location information for "Code defect density" is more reliable than for "Fault density". Therefore the
measure "Code defect density" was assessed more relevant to reliability than the measure "Fault density".

The similar analysis can resolve the puzzle that the measure "Cyclomatic complexity" ranks higher than the
measure "Fault density". Although the scores of ranking criteria Benefit, Credibility, and Relevance to
Reliability of the measure "Fault density" are higher than those of the measure "Cyclomatic complexity"
(0.23 against 0.15, 0.82 against 0.76, 0.62 against 0.46, respectively), the scores of ranking criteria Cost,
Repeatability, Experience are lower (0.88 against 0.92, 0.68 against 0.90, 0.91 against 1.00, respectively).
Therefore the aggregation results are 0.74 against 0.73.

The second puzzling result is the low ranking achieved by the "Number of faults remaining", a result
seemingly counterintuitive. The criteria Benefit, Experience, and Validation, were ranked low, i.e. the
experts believe the application of the measure not to be practical. Relevance to Reliability received an
equally low rate. This can be explained in the same manner as above, i.e. the measure does not provide
location information on the faults that together with the number of faults remaining could be used for
reliability estimation.

4-5

Measure Rate Rank

Code defect density 0.83 1

Design defect density 0.75 2

Cyclomatic complexity 0.74 3

Fault density 0.73 4

Fault-days number 0.71 5

Requirements specification change requests 0.69 6

Error distribution 0.65 7

Minimal unit test case determination 0.64 8

Reviews, inspections and walkthroughs 0.61 9

Man hours per major defect detected 0.61 10

Software capability maturity model 0.60 11

Data flow complexity 0.59 12

Requirements traceability 0.56 13

Function point analysis 0.55 14

System design complexity 0.53 15

Requirements compliance 0.50 16

Feature point analysis 0.50 17

Number of faults remaining (error seeding) 0.47 18

Bugs per line of code (Gaffney estimate) 0.46 19

Graph-theoretic static architecture complexity 0.46 20

Cause & effect graphing 0.40 21

Cohesion 0.36 22

Completeness - 0.36 23

Table 4-4 Rates and Rankings in the Implementation Phase

4.1.4 Results during the Testing Phase

All thirty measures are applicable in this phase. The top ranked measures are "Failure rate", "Code defect

density", and "Mean time to failure", respectively. The number of measures above the 0.7 threshold has
increased to 10 as expected, and so has the rate of the top ranked measure, now equal to 0.83.

Worthy of comment is the observed difference between "Failure rate" and "Mean time to failure", and the

relative rating of "Mean time to failure" and "Code defect density". These are discussed in turn.

Going back to the raw data provided by the experts, the difference in rankings between the measures
"Failure rate" and "Mean time to failure" can be attributed to differences in the Experience criterion.

Note also that one would typically expect measures such as "Failure rate", "Mean time to failure", and

"Cumulative failure profile" which all relate to the notion of failure (a notion conceptually close to
reliability since reliability is inherently the study of software failures) to be better rated than the measure

"Code defect density" which conceptually relates to faults. However, the rate of "Code defect density" is

higher than the rate of "Mean time to failure" and "Cumulative failure profile" and distinguished from the

measure "Failure rate" only by the third digit after the point (0.828 against 0.833). This can be explained by

differences in the rate given to the criterion Experience. There is indeed much more reported industrial
experience with "Code defect density" than with the other two measures.

4-6

Chapter 4 Results and Analysis

Finally, differences between "Code defect density " and "Fault density", and the apparently surprising
result of the low rates and rankings achieved by the "Number of faults remaining (error seeding)" in all
four development phases can be explained in the same manner as in Section 4.1.3.

Measure Rate Rank
Failure rate 0.83 1
Code defect density 0.83 2
Mean time to failure 0.79 3
Cumulative failure profile 0.76 4
Fault density 0.75 5
Design defect density 0.75 6
Cyclomatic complexity 0.72 7
Fault-days number 0.72 8
Modular test coverage 0.70 9
Minimal unit test case determination 0.70 10
Requirements specification change requests 0.69 11
Test coverage 0.68 12
Error distribution 0.66 13
Man hours per major defect detected 0.63 14
Functional test coverage 0.62 15
Reviews, inspections and walkthroughs 0.61 16
Software capability matufty model 0.60 17
Data flow complexity 0.59 18
Requirements traceability 0.55 19
System design complexity 0.53 20
Number of faults remaining (error seeding) 0.51 21
Requirements compliance 0.50 22
Function point analysis 0.50 23
Mutation testing (error seeding) 0.50 24
Graph-theoretic static architecture complexity 0.46 25
Feature point analysis 0.45 26
Cause & effect graphing 0.44 27
Bugs per line of code (Gaffney estimate) 0.40 28
Cohesion 0.36 29
Completeness 0.36 30

Table 4-5 Rates and Rankings in the Testing Phase

4.2 Aggregation Results by Family

Section 4.1 provides rates by measure in each development phase. Section 4.2 provides rates per family of
measures per phase. The concept of family has been explained in Chapter 2 as a grouping of measures
which evaluates the same underlying concept. The thirty measures extracted from the LLNL study can be
classified into eighteen families defined in Table 4-6.

4-7

Family Measure
Code defect density

Fault detected per unit of size Design defect density
Fault density

Feature point analysis

Functional size Function point analysis
Mutation testing (error seeding)

Estimate of faults remaining in code Mtto etn errseig

Number of faults remaining (error seeding)

Estimate of faults remaining per unit of size Bugs per line of code (Gaffney estimate)
Cumulative failure profile

Failure rate Failure rate
Mean time to failure
Data flow complexity

System architectural complexity Graph-theoretic static architecture complexity
System design complexity

Module structural complexity Cyclomatic complexity
Minimal unit test case determination

Cohesion Cohesion

Time taken to detect and remove faults Fault-days number
Man hours per major defect detected

Functional test coverage

Test coverage Modular test coverage
Test coverage

Error distribution Error distribution

Software development maturity Software capability maturity model

Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs

Cause & effect graphing Cause & effect graphing

Requirements compliance Requirements compliance

Requirements traceability Requirements traceability

Requirements specification change requests Requirements specification change requests
Completeness Completeness

Table 4-6 The Definition of the Family

The introduction of the concept of family results in the following benefits:

1. Conceptual redundancies among measures are eliminated and hence the population of measures is

dramatically reduced. Less effort is required to reach meaningful conclusions. One can finally "see

the forest for the trees." In the specific case examined here the number of measures was brought
from 30 down to 18, a considerable reduction.

2. Families are more stable than measures. A distressing phenomenon plaguing the software

measurement community is the continuous advent of new software engineering measures. Many

of these measures constitute minute variations of known measures. Others originate from the

advent of new development techniques. However, software as an artifact and software

development in its wake is defined by a small number of fundamental characteristics. These

characteristics are independent of a particular language, and are not likely to evolve in the very

near future. Measures that relate to these particular characteristics are called families. Because all

characteristics of software can be thoroughly identified and classified, so can families.

4-8

Chapter 4 Results and Analysis

3. The concept of family eliminates the possible noise in the expert's inputs and hence improves the
robustness of the ranking of measures. For instance, the ranking of "Code defect density" in the
testing phase is higher than the ranking of measures such as "Mean time to failure" and
"Cumulative failure profile". This is contradictory to intuition as explained in Section 4.1.4.
However, "Mean time to failure" and "Cumulative failure profile" belong to the family "Failure
rate". By choosing to represent the family by its highest ranked member, here "Failure rate", one
reestablishes the natural ordering of measures: the family "Failure rate" ranks higher than the
family "Fault detected per unit of size".

4. Each family reflects at least one software characteristic. Software reliability is ultimately
determined by the interaction of such characteristics. Hence, the task of selecting measures to
constitute a software reliability prediction system becomes tantamount to the task of picking one
measure from each family.

The data in this section is taken directly from the data in Section 4.1. The only difference comes from the
fact that a family is a set of related measures, and the rates and rankings in Section 4.1 are replaced by the
values of the minimum, median, and maximum statistics of the rate in a family. The maximum rate
represents the family as a whole. It tells the analyst how good a family can be in practice. This value
however is still different from the value that could be attained by the concept underlying the family since
the physical implementation is a "degraded" version of the concept itself. The median value is the most
likely observation of the concept. As for the minimum value, it represents the worst known (in this study)
implementation of the concept.

This section will examine the rates of the eighteen families in each development phase.

4.2.1 Results during the Requirements Phase

Family rates in the requirements phase are summarized in Table 4-7. The top ranked families are "Fault
detected per unit of size", "Requirements specification change requests", and "Error distribution". The only
difference between Table 4-7 and Table 4-2 is the fact that the twelve measures in Table 4-2 are regrouped
into the eleven families in Table 4-7. All other comments in Section 4.1.1 are applicable to this section.

Family Min Median Max
Fault Detected per Unit of Size 0.71 0.71 _,_0.71_

Requirements specification change requests 0.70 0.70 0.70
Error Distribution 0.68 0.68 0.68
Reviews, inspections and walkthroughs 0.61 0.61 0.61

Time Taken to Detect and Remove Faults 0.60 0.60 0.60

Software Development Maturity 0.60 0.60 0.60

Functional Size 0.46 0.48 0.51
Requirements compliance 0.50 0.50 0.50

Estimate of Faults Remaining in Code 0.46 0.46 0.46
Cause & effect graphing 0.45 0.45 0.45
Completeness 0.42 0.42 0.42

Table 4-7 Rates by Family in the Requirements Phase

Graying is used to depict the rates of the families that have crossed the arbitrary 0.7 threshold.

4-9

4.2.2 Results during the Design Phase
Family Min Median Max

Fault Detected per Unit of Size 0.73 0.74 0.75

Module Structural Complexity 0.59 0.66 0.73

Time Taken to Detect and Remove Faults 0.63 0.67 0.71

Requirements specification change requests" 0.69 0.69 0.69

Error Distribution 0.68 0.68 0.68

System Architectural Complexity 0.52 0.53 0.62

Reviews, inspections and walkthroughs 0.61 0.61 0.61

Software Development Maturity 0.60 0.60 0.60

Requirements traceability 0.56 0.56 0.56

Functional Size 0.50 0.52 0.54

Requirements compliance 0.49 0.49 0.49

Estimate of Faults Remaining in Code 0.46 0.46 0.46

Cause & effect graphing 0.43 0.43 0.43

Cohesion 0.42 0.42 0.42

Completeness 0.36 0.36 0.36

Table 4-8 Rates by Family in the Design Phase

Table 4-8 lists family rates in the design phase. Families are ordered by their "Max" values. Therefore the

ranking of the family "Requirements specification change requests" is lower than that of the family "Time

taken to detect and remove faults". The potential measures for a software reliability prediction should be

chosen from the families "Fault detected per unit of size", "Module structural complexity", and "Time

taken to detect and remove faults". Families "Requirements specification change requests" and "Error

distribution" should also be considered because their rates are close to the top ranking families.

4.2.3 Results during the Implementation Phase

Table 4-9 lists rates by family in the implementation phase. The top ranked families (top four) are identical

to the top ranked families found in the design phase. This implies that no significant changes occur between

design and implementation, due to the probable similarity between the phases (detailed design closely

approximates coding).

Family Min Median Max

Fault Detected per Unit of Size 0.73 0.75 0.83

Module Structural Complexity 0.64 0.69 0.74

Time Taken to Detect and Remove Faults 0.61 0.66 0.71

Requirements specification change requests 0.69 0.69 0.69

Error Distribution 0.65 0.65 0.65

Reviews, inspections and walkthroughs 0.61 0.61 0.61

Software Development Maturity 0.60 0.60 0.60

System Architectural Complexity 0.46 0.53 0.59

Requirements traceability 0.56 0.56 0.56

Functional Size 0.50 0.53 0.55

6 "Requirements specification change requests" and "Error distribution" are included in the set of top ranking families since they so

closely follows "Time Taken to Detect and Remove Faults" in Table 4-8.

4-10

Chapter 4 Results and Analysis

Requirements compliance 0.50 0.50 0.50

Estimate of Faults Remaining in Code 0.47 0.47 0.47
Estimate of Faults Remaining per Unit of Size 0.46 0.46 0.46

Cause & effect graphing 0.40 0.40 0.40

Cohesion 0.36 0.36 0.36

Completeness 0.36 0.36 0.36

Table 4-9 Rates by Family in the Implementation Phase

4.2.4 Results during the Testing Phase

Table 4-10 lists rates by family in the testing phase. As expected, the family "Failure rate" is ranked as No.
1. The family "Fault detected per unit of size" falls in the second position. The next 4 families are rated
very closely and above or barely below the "good enough" threshold of 0.7. Therefore these families
should all be candidates in the software reliability prediction system.

Family Min Median Max

Failure Rate 0.76 0.79 '0.83
Fault Detected per Unit of Size 0.75 0.75 0.83
Module Structural Complexity 0.70 0.71 0.72
Time Taken to Detect and Remove Faults 0.63 0.67 0.72
Test Coverage 0.62 0.68 0.70
Requirements specification change requests 0.69 0.69 0.69
Error Distribution 0.66 0.66 0.66
Reviews, inspections and walkthroughs 0.61 0.61 0.61
Software Development Maturity 0.60 0.60 0.60
System Architectural Complexity 0.46 0.53 0.59
Requirements traceability 0.55 0.55 0.55
Estimate of Faults Remaining in Code 0.50 0.50 0.51

Requirements compliance 0.50 0.50 0.50
Functional Size 0.45 0.47 0.50

Cause & effect graphing 0.44 0.44 0.44
Estimate of Faults Remaining per Unit of Size 0.40 0.40 0.40

Cohesion 0.36 0.36 0.36

Completeness 0.36 0.36 0.36

Table 4-10 Rates by Family in the Testing Phase

The reader may find interest in noting that the number of families above the arbitrary limit of 0.7 is almost
constant reflecting the stability throughout the software development lifecycle of the software
characteristics of importance. This number takes values "3", "5", "4" and "6" respectively.

This section (Section 4.2) provides rates for all measures and families. These results are calculated based
on a specific aggregation framework that includes a letter-real conversion scheme, an aggregation
weighting scheme, and an aggregation function form. This specific aggregation framework needs to be
validated by means of sensitivity analysis. Section 4.3 discusses this validation effort.

4-11

4.3 Sensitivity Analysis

The analysis presented in this section examines whether the results obtained (rates and ranks of the

measures studied) depend on the aggregation framework 7 or, whether or not the present aggregation

framework is "good enough" to reproduce the ranking and rates that would be observed in the most likely

situations one can encounter.

In this section, the letter-real conversion scheme, the aggregation weighting scheme, and the aggregation

function form are varied, and, one computes the new rates and rankings accordingly. The correlation

coefficients between rates and rankings are then calculated.

Correlation coefficients characterize the existence (or non-existence) of a "linear relationship" [Sinc92]

between two random variables, namely yj and Y2. If Y2 increases as yi increases, and y2 decreases as yj

decreases, then the relationship between Y2 and yi is "linear". The correlation coefficient between yi and Y2

tends to be 1 ify2 increases as yj increases, and 0 ify 2 randomly increases or decreases as y, increases.

The rates obtained under an aggregation framework denoted 1 can be considered as the random variable yl,

and the rates obtained under an aggregation framework denoted 2 can be considered as the second random

variable y2- If the correlation coefficient of yj and y2 equals 1, which means Y2 increases as y1 increases, and

vice versa, then the rankings related to Y2 should be identical to the rankings related to yj. Hence, in the

case of a high correlation coefficient between yj and Y2 one can conclude that the use of aggregation

framework 2 instead of I will not impact the rankings. If one can prove that the correlation coefficient

remains high when framework 2 varies to cover the entire valid aggregation framework space, then

rankings are invariant for all valid frameworks in this valid framework space. The next three sub-sections

(Section 4.3.1 to Section 4.3.3) discuss the correlation analysis for variations of the letter-real conversion

scheme, the aggregation weighting scheme, and the aggregation function form, respectively.

4.3.1 Sensitivity Analysis on the Letter-Real Conversion

In this section, five letter-real conversion schemes are examined. Each scheme is fully described in

Appendix C. The selection of these different conversion schemes is based on two considerations: complete

coverage of all potential conversion-curve shapes and realism.

For instance, Figure 4-1 displays five different conversion schemes. "Scheme 1" is characterized by a high

density at the high end of the conversion scheme. This means that most letters transform into values close

to 1. "Scheme 2" emphasizes the middle of the conversion-curve, that is, the levels B 8, C, D, and E are all

converted to a value close to 0.5, the level F is converted into 0.0 and the level A is converted into 1.0.

"Scheme 3" equally distributes the values along the [0,1] interval. "Scheme 4" is the opposite image of

"Scheme 2", and puts emphasis at the each end of the conversion-curve. Levels B and C convert into values

close to 1.0, however D and E convert into values close to 0.0. Level A is converted into 1.0 and level F is

converted into 0.0. "Scheme 5" is characterized by a high density at the low end of the conversion-curve.

This means that most letters transform into values close to zero. These five schemes cover the space of

possible conversion schemes.

An aggregation framework is defined as the set {aggregation equation, weights, a letter-real conversion scheme}.

The letter levels are not constrained to the range from A to F Some criterion, like the Cost, utilizes letters T, Y, Q, M, and W which

are equivalent to E, D, C, B, and A, respectively

4-12

Chapter 4 Results and Analysis

0.86 Y 7
0.2

F E D C B A

Figure 4-1 Letter-Real Conversion Schemes

The correlation coefficients for the rates and rankings corresponding to the five conversion schemes are
given below phase by phase in Table 4-11 to Table 4-14. "Rate 1" denotes the aggregated rate obtained
using conversion "Scheme 1". "Rank 1" denotes the aggregated ranking obtained using conversion
"Scheme 1". Similarly, "Rate 2" and "Rank 2" correspond to the "Scheme 2", and so forth and so on. These
notations hold for any other labels found in the following four tables. At the intersection of two rates, e.g.,
Rate 1 and Rate 2, one finds the correlation coefficient P12. The same convention holds for the rankings.

Rate I Rate 2 Rate 3 Rate 4 Rate 5
Rate 1 1
Rate 2 0.985 1
Rate 3 0.939 0.928 1
Rate 4 0.975 0.991 0.921 1
Rate 5 0.950 0.936 0.968 0.951 1

Table 4-11 Correlation Coefficients in the Requirements Phase

Rate I Rate 2 Rate 3 Rate 4 Rate 5
Rate 1 1
Rate 2 0.990 1
Rate 3 0.941 0.922 1
Rate 4 0.953 0.971 0.844 1
Rate 5 0.962 0.960 0.924 0.956 1

Table 4-12 Correlation Coefficients in the Design Phase

Rate1 Rate2 Rate3 Rate4 Rate5
Ratel 1
Rate2 0.995 1
Rate3 0.961 0.946 1
Rate4 0.956 0.976 0.870 1
Rate5 0.979 0.981 0.945 0.964 1

Table 4-13 Correlation Coefficients in the Implementation Phase

4-13

Rate1 Rate2 Rate3 Rate4 Rate5

Ratel 1
Rate2 0.992 1
Rate3 0.955 0.939 1
Rate4 0.947 0.966 0.843 1
Rate5 0.984 0.98 0.939 0.959 1

Table 4-14 Correlation Coefficients in the Testing Phase

Observing the four tables above, one can reach the following conclusion:

Correlation coefficients between scheme 3 and scheme 4 are much lower than other coefficients.

Scheme 3 and scheme 4 represent two extremely opposite situations in the letter-real conversion
schemes. Hence this difference, although not significant, shows that extreme cases do impact the final

rates and rankings, but do not generate drastic changes.

4.3.2 Sensitivity Analysis on Aggregation Weights

Sensitivity analysis on aggregation weights is discussed in this section. The correlation coefficients, results

of this analysis, are presented in Table 4-16 to Table 4-19. A discussion of the selection of weighting

schemes can be found in Section 3.8 and the detailed weighting schemes are shown in Appendix C and
Table 4-15.

Cost Benefits Credibility Repeatability Experience Validation Relevance to Reliability

Scheme 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Scheme 2 0.13 0.13 0.13 0.13 0.13 0.13 0.25

Scheme 3 0.08 0.08 0.17 0.17 0.08 0.08 0.33
Scheme 4 0.245 0.045 0.088 0.036 0.130 0.239 0.216

Scheme 5 0.20 0.03 0.10 0.17 0.16 0.14 0.20

Scheme 6 0 0 0.25 0.25 0.25 0 0.25

Table 4-15 Weighting Schemes used in the Sensitivity Analysis

The first three weighting schemes are based on reasonableness considerations with respect to each

criterion's contribution. Schemes 4 and 5 are obtained by random selection of the weight sets. The sixth

scheme is an extreme case in which the criteria Cost, Benefit, and Validation are set to zero. In this scheme

it is assumed that these criteria can be eliminated without critical impact on the final aggregation rates and
rankings.

In Table 4-16, only the correlation coefficients of Scheme 1 and Scheme 3, Scheme 3 and Scheme 5,

Scheme 3 and Scheme 6, and Scheme 4 and Scheme 6, are below 0.959, while others are above 0.95. In

Table 4-17, the same thing happens to the correlation coefficients of Scheme 1 and Scheme 3, and Scheme
4 and Scheme 6. In Table 4-18 the phenomenon reoccurs with Scheme 4 and Scheme 6, and also in Table

4-19 with Scheme 4 and Scheme 6. A more in-depth study of the weighting schemes shows that Scheme 4

UMD classifies the correlation coefficients as follows:

I. 0.95 - 1.0 characterizes a relationship between the two random variables labeled as "strongly linear".

2. 0.9 - 0.95 characterizes a relationship between the two random variables labeled as "satisfyingly linear".

3. 0.85 - 0.90 characterizes a relationship between the two random variables labeled as "acceptably linear".

4. below 0.85 . This value is characteristic of a relationship between the two random variables labeled as "non linear".

4-14

Chapter 4 Results and Analysis

assigns strong weights to Cost, Validation, and Relevance to Reliability, while Scheme 6 assigns zero
weights to Cost and Validation criteria.

Results presented in this sub-section show that a high degree of correlation exists between the different
weighting schemes. This justifies the use of the scheme with equal weights adopted in Sections 4.1 and
4.2.

Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Rate 6
Rate 1 1
Rate 2 0.962 1
Rate 3 0.908 0.983 1
Rate 4 0.956 0.986 0.953 1
Rate 5 0.984 0.978 0.939 0.984 1
Rate 6 0.980 0.967 0.931 0.937 0.968 1

Table 4-16 Correlation Coefficients in the Requirements Phase

Rate I Rate 2 Rate 3 Rate 4 Rate 5 Rate 6
Rate 1 1
Rate 2 0.981 1
Rate 3 0.947 0.988 1
Rate 4 0.959 0.978 0.950 1
Rate 5 0.988 0.987 0.963 0.978 1
Rate 6 0.975 0.962 0.945 0.901 0.961 1

Table 4-17 Correlation Coefficients in the Design Phase

Rate I Rate 2 Rate 3 Rate 4 Rate 5 Rate 6
Rate 1 1
Rate 2 0.991 1
Rate 3 0.973 0.993 1
Rate 4 0.975 0.981 0.960 1
Rate 5 0.993 0.991 0.979 0.983 1
Rate 6 0.979 0.976 0.972 0.927 0.972 1

Table 4-18 Correlation Coefficients in the Implementation Phase

Rate I Rate 2 Rate 3 Rate 4 Rate 5 Rate 6
Rate 1 1
Rate 2 0.992 1
Rate 3 0.972 0.992 1
Rate 4 0.984 0.983 0.959 1
Rate 5 0.995 0.991 0.974 0.988 1
Rate 6 0.984 0.984 0.978 0.948 0.979 1

Table 4-19 Correlation Coefficients in the Testing Phase

4.3.3 Sensitivity Analysis on the Functional Form of the Aggregation Equation

In this study two forms of aggregation functions are examined. One is the simple additive function. This
functional form characterizes situations where all criteria affect the aggregated result independently
[Keen76]. It implies that one would be willing to give up a designated amount on criterion i to gain a

4-15

designated amount on another criterion j regardless of the levels of the other criteria. For instance, one

would give up 0.2 on criterion Credibility to gain 0.2 on the criterion Cost given equal weights, regardless

at which levels any criterion, including Credibility and Cost, currently is.

The second functional form hypothesizes a potential influence among criteria in the quality and relevance

set. Such influence can be represented by a product function. The cost/benefit set is considered independent

of the quality and relevance sets, and the two groups are thus combined using an additive function. In this

case a different type of dependency holds: the amount one would be willing to give up on a criterion in the

quality or relevance sets to gain a designated amount on criteria Cost and Benefit depends on the current

level of the other criteria in the quality or relevance sets. For instance, if one considers the trade-off

between criteria Credibility and Cost, the level of the other criteria such as Experience, Repeatability would

impact the designated trade-off value. For instance, if the value of criterion Experience is 0.6, one will give

up an amount of 0.2 on criterion Credibility to gain the amount of 0.4 on criterion Cost; on the other hand,

if the value of criterion Experience is very high, namely, 0.9, which means that there exists a wide

commercial use of the measure, one would give up more on the criterion Credibility to gain the same

amount on the criterion Cost. In this case, the relationship between Credibility and Experience is

characterized by the multiplicative form.

The correlation coefficients between the two forms of aggregation functions shown in Table 4-20 to Table

4-23 demonstrate that a linear relationship exists in the Implementation and Testing Phase. However, the

correlation coefficients in the Requirements phase cannot reveal a readily linear relationship. The

correlation coefficients in the design phase are higher than those in Requirements phase and can

demonstrate an acceptable linear relationship.

In contrast to the conversion scheme and weighting scheme, the aggregation function needs further study.

The UMD research team believes that the criteria Credibility, Repeatability, Experience, Validation, and

Relevance to Reliability interactively influence the rankings of a measure with respect to reliability

prediction. A low level of any such criterion should impair the aggregated rankings drastically even if other

criteria have relatively high levels. This dependency is better represented by a multiplicative function than

by an additive function.

Rate I Rate 2

Rate 1 1

Rate 2 0.826905 1

Table 4-20: Correlation Coefficients in the Requirements Phase

Rate I Rate 2

Rate 1 1
Rate 2 0.901893 1

Table 4-21: Correlation Coefficients in the Design Phase

Rate I Rate 2

Rate 1 1

Rate 2 0.930295 1

Table 4-22: Correlation Coefficients in the Implementation Phase

4-16

Chapter 4 Results and Analysis

Rate I Rate 2
Rate 1 1
Rate 2 0.946141 1

Table 4-23: Correlation Coefficients in the Testing Phase

The introduction of the concept of family significantly improves the robustness of the rankings under
various function forms. For instance, the correlation coefficient of the rates in the requirements phase is

0.982 when rating is done per family against the 0.82 if the rating is done per measure. In the testing phase,
the results are 0.952 and 0.94, respectively. Both cases display an improvement due to the use of families.

4.4 Criteria Analysis

An aggregation fi-amework has been defined as a set {aggregation equation, weights, letter-real conversion
scheme}. This set is defined on a set of criteria which at this point have never been challenged. To
conclude this chapter, an experiment is conducted to challenge the criteria themselves. As has been
repeatedly noted throughout this entire study, the set of criteria may be incomplete, incorrect or too many
criteria may be involved in the analysis.

This section attempts to respond, to the latter concern. In other words, "Are all seven criteria presented in
this report necessary in ranking measures with regard to software reliability prediction?"

An experiment was subsequently carried out in which the weights of each criterion was varied according to
the following procedure:

1. Select one of the criteria and assign a 1.0 to its weight and Os to the weights of all remaining
criteria. Repeat this step until each of the criteria has been given a weight of 1.0.

2. Select two out of seven criteria and assign each of these two criteria a weight of 0.5. Assign a
weight of 0 to all other criteria. Repeat this step, selecting a new set of two, until each of the
possible combinations is examined.

3. Select three out of seven criteria and assign each of these three criteria a weight of 0.33. Assign a
weight of 0 to all other criteria. Repeat this step, selecting a new set of three, until each of the
possible combinations is examined.

4. Select four out of seven criteria and assign each of these four criteria a weight of 0.25. Assign a
weight of 0 to all other criteria. Repeat this step, selecting a new set of four, until each of the
possible combinations is examined.

5. Select five out of seven criteria and assign each of these five criteria a weight of 0.2. Assign a
weight of 0 to all other criteria. Repeat this step, selecting a new set of five, until each of the
possible combinations is examined.

6. Select six out of seven criteria and assign each of these six criteria a weight of 0.17. Assign a
weight of 0 to the remaining criteria. Repeat this step, selecting a new set of six, until each of the
possible combinations is examined.

For each weighting scheme obtained by the above procedure, aggregate the rates and rankings for all
measures. Perform a sensitivity analysis between this scheme and the 5 schemes described in Section

4-17

4.3.2. The results of the above experiment were sorted using the concept of "virtual distance" defined in

Equation 4-1.

1 Equation 4-1 VDi =j (-POi,j)

'5

where

The index of the weighting scheme under study. It ranges from 1 to 127 in this

experiment.

VD, The "Virtual Distance (VD)" of the ith weighting scheme. The concept of VD

quantifies the strength of the linear relationship between the rates under the ith

weighting scheme and the rates under the first five weighting schemes described

in Section 4.3.2.

j The index of the five weighting schemes described in Section 4.3.2.

p,.j The correlation coefficient of the rates under the ith weighting scheme (I=1,127)

and the rates under the jth reference weighting scheme (j= 1,5) described in

Section 4.3.2.

Results are presented in Appendix C. Observing the results, one can reach the following conclusions:

1. The larger the number of criteria included in the aggregation, the stronger the linear relationship

observed between the experiment's rates and the reference rates described in Section 4.3.2.

Therefore "more is better" and if possible one should include as many criteria as possible in the

analysis.

2. All top-ranked weighting schemes contain the Relevance to Reliability criterion, implying that this

criterion is significant in the determination of the rank of a measure.

3. The three criteria combinations {Cost, Credibility, Experience, Relevance to Reliability},

{Credibility, Repeatability, Experience, Validation, Relevance to Reliability}, and {Cost,

Credibility, Repeatability, Experience, Validation, Relevance to Reliability} are the best possible

criteria combinations obtained by selecting four out of seven, five out of seven, and six out of

seven criteria, respectively. Furthermore, these combinations lead to virtual distances that are so

low that the ranking would remain unchanged if one were to only know the values of these

criteria.

4.5 Summary

This chapter discussed the rates and rankings (with respect to software reliability prediction) obtained for

the 30 measures selected at the beginning of the study. Some potential inconsistencies are examined and

explained. Sensitivity analysis with respect to the weights, the functional form of the aggregation function

and with the letter-real conversion was carried out.

The top-ranked measures were aggregated by an additive function with equal weights. These measures

constitute the possible roots of software reliability prediction systems.

Similar results were found for various aggregation schemes and can be found in Appendix C.

4-18

Chapter 4 Results and Analysis

It was proven however that rates and ranks remain relatively stable for different aggregation schemes. The
sole exception was the change in equation form that signals noticeable changes in the results. This indicates
that a more detailed study of the form of the aggregation equation should be performed. Stability, however,
is reestablished when one analyzes the results by families rather than by single measure.

A final result of interest lies in the study of the impact of the ranking criteria. The study shows that optimal
combinations of four, five and six criteria exist which generate a ranking that closely approximates the
ranking obtained using seven criteria. This allows ranking under partial information.

[Sinc92] Sincich, T., Statistics for Engineering and the Sciences, 3Td Edition, Dellen Publishing corp. New
York, 1992.

[Keen76] Keeney, R. L., Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs,
John Wiley & Sons, New York, 1976.

4-19

Chapter 5 Missing Measures

CHAPTER 5 MISSING MEASURES

The research performed by Lawrence Livermore National Laboratory identified 78 measures as discussed
in Chapter 3. University of Maryland refined them into the 30 measures which were evaluated by experts.
The experts identified 11 missing measures witch needed to be included into the study.

The missing measures presented in this chapter were recommended by experts who participated in the NRC
workshop. The set of missing measures includes "Full function point" (FFP), which is an alternative for

"Function point" for real-time systems, the "Coverage factor" to better represent fault-tolerant systems, the
"Mutation score" to capture mutation testing techniques, and a bevy of measures for object-oriented (00)
techniques. The experts also suggested the addition of the "Reliability Trend Indicator". However, this is
actually a reliability analysis method. Therefore it should not be considered as a missing measure.

The ranking methodology discussed in Chapter 3 was applied to the missing measures. Section 5.1 presents
a brief description for each missing measure. Section 5.2 describes how the missing measures were rated.
Section 5.3 presents classifications of all measures in terms of design and systems discussed in this study,
and divides them into four groups. Separate family groups were identified to highlight the differences
between non-00 and 00 families. Section 5.4 provides the ranking results, and analyzes the impact of
these missing measures on the rankings of the pre-selected measures. The analysis is performed per
measure and by family. Finally Section 5.5 summarizes the contents of this chapter. All the raw input data
and aggregated results discussed in this chapter are provided in Appendix D.

5.1 Introduction of the Missing Measures

The missing measures proposed by experts try to cover functional size measurement for real-time control
systems, the fault-tolerant computing environment, the mutation testing technique, and the new but widely
spread object-oriented development technique. A brief description of each of the ten missing measures is
given below.

Full Function Point (FFP) is an adaptation of Function Point Analysis (FPA) for the counting of the real
time software's functional size [SELl. FFP measurement applies a set of rules and procedures to a given
piece of software, as it is perceived from the perspective of its inherent functional user requirements. FFP,
like FPA, measures functional size by evaluating transactional processes and logical groups of data.

Coverage Factor is defined as the probability of a fault-tolerant system automatically recovering from the
occurrence of a failure by the failure detection and recovery mechanism embedded in the system. The
objective of this measure is to gauge the ability of the system to automatically recover from the occurrence
of a failure during normal system operation [Arno73].

Mutation Score is an indicator of the efficiency of a test data set. A mutation is a single-point,
syntactically correct change, introduced in the program P to be tested. The mutation score, denoted ms, is
the ratio of the non-equivalent mutants of P (i.e. those which are distinguishable from P under at least one
data item from the input domain) which are killed (distinguished from P) by a specific test data set T to the
number of the non-equivalent mutants of P. The mutation score is a number in the interval [0,1] [Voas98].

The 00 measures selected characterize the different aspects of 00 design [Lore94]. The seven 00
measures selected are described below:

Class Coupling. Coupling was proposed and defined by Myers [Myer78] as the degree of interaction
between two modules. Chidamber and Kemerer [Khid94] revised this notion for 00 systems as the
dependability among classes. They also entitled it in [Khid94] "Coupling between Objects (CBO)".

5-1

This measure examines how the class relates to other classes. In practice, the coupling of a class to others

needs to be limited to assure a good design and class reuse.

Class Hierarchy Nesting Level. Classes are organized for inheritance purposes hierarchically in a tree

structure, with the base or the topmost class called the root. The number of levels from the root to a class is

called its nesting level [Lore94].

This measure sheds light on the quality of the design with respect to inheritance. It is commonly understood

that the deeper a class is nested in the inheritance hierarchy, the more public and protected methods there

are for the class, and the more chances for method overrides or extensions. This all results in greater

difficulty in testing a class.

Lack of Cohesion of Methods (LCOM). LCOM was introduced by Chidamber and Kemerer as a measure

of the interaction among methods within a class [Khid94]. Module cohesion [Myer78] is defined as the

degree of interaction within a module. LCOM, the 00 version of cohesion, was defined as the difference

between the number of method pairs that share at least one instance variable (also called attribute in some

other literature) and the number of method pairs that do not share an instance variable.

The LCOM value provides a measure of the relatively disparate nature of methods in the class. The
"relatively" here comes from the fact that although LCOM tries to quantify the strength of cohesion of a

class, it does not arrive at an absolute value of the cohesion. Instead, it utilizes a value that can indirectly

gauge the strength of the notion of cohesion. In other words, the value of LCOM grows as the strength of

cohesion increases and vice versa. However, the potential relationship between LCOM and the absolute

measure of cohesion (if it exists) is still not identified as yet.

LCOM is intimately tied to the instance variables and methods of a class, and therefore is a measure of the

attributes of an object class.

Number of Children (NOC). NOC is defined as the number of immediate subclasses subordinated to a

class in the class hierarchy [Khid94]. NOC measures how many subclasses are going to inherit the methods

of the parent class. According to Chidamber and Kemerer, 1) the greater the number of children, the greater

the inheritance and 2) the more children a parent class has, the greater the potential for improper abstraction

of the parent class [Khid94]. NOC was introduced as a measure of complexity.

NOC is used as an ordinal scale of psychological complexity (understandability) [Nea196]. In other words,

the understandability of a class is closely related to the number of immediate subclasses.

Number of Class Methods in a Class. Class methods are class services or behaviors. Methods are

executed whenever an object receives a message. The number of methods available to the class affects the

size of the class.

Number of Key Classes. A key class is a class that is requisite to the construction of a system. For

instance, the calling class, connection class, and switch class are key classes of a telephony system. The

number of key classes reveals the amount of total work required to complete the software. They are

typically identified early in the 00 analysis and design process. It is also an indication of the number of

long-term reusable objects that will be developed as a part of the current effort.

Weighted Method per Class (WMC). WMC was introduced by its authors as a measure of complexity

[Khid94]. It is the sum of weighted methods in a class. Each method within the class is weighted by a

certain complexity value and this weight is summed to arrive at WMC. In this study we adopt a complexity

value1 defined by Lorenz and Kidd in [Lore94].

SA
detailed description can be found in Appendix A, Section A.40.

5-2

Chapter 5 Missing Measures

This section provided brief descriptions of the missing measures. The next section will discuss the ratings
of the measures.

5.2 Rating the Missing Measures

The rating process consists of applying the methodology described in Chapter 3 to the missing measures.
The input of the rating process was provided by UMD. This section describes the approaches that UMD has
taken to obtain the inputs for the 10 missing measures.

5.2.1 Using Analogy

The experts' inputs2 for the pre-selected 30 measures are available at this point of our study. Hence the
level of a criterion for a missing measure can be determined by the level of the same criterion for a related
measure among the pre-selected 30 measures. Two measures A and B are "related" if, for instance, the cost
estimate of applying the measure A is one month effort, and the cost of applying the measure B is three
times as much as that of the measure A. A and B are then "analogous" to each other. In the following, the
determination of several of FFP inputs illustrates the analogy.

FFP is a functional measure based on the standard function point analysis (FPA) technique. It was designed
for both management information systems (MIS) and real-time software. Since FFP is an extension of the
standard FPA, all rules of FPA are included in the FFP counting process. However, FPA rules dealing with
control concepts have been expanded considerably. The analogy is explained as follows:

1. Credibility. The goals of FFP and FPA are almost identical. Therefore levels of the criterion
Credibility should be identical (D+ for FFP).

2. The counting rules and processes are similar. Hence levels of the criterion Repeatability should be
identical (C for FFP).

3. FFP and FPA both measure the functional size of the system. Therefore FFP is as relevant to
reliability as FPA. Consequently the levels of the criterion Relevance to Reliability for FFP are E
for the requirements phase, D- for the design phase, D- for the implementation phase, and F+ for
the testing phase.

5.2.2 Using the Scientific Literature and the Experts Opinion

An alternative approach is to refer to the literature and/or elicit expert inputs to assess the levels of ranking
criteria. The approach is demonstrated by the determination of the levels of criteria Cost, Benefit,
Experience, and Validation for FFP.

1. Regardless of the similarities between FFP and FPA, the difference between the levels of the
criterion Cost cannot be determined by a simple analogy. FFP expands significantly the concepts
and counting rules used in FPA. Therefore the use of FFP is more expensive than that of FPA.
This is due to the increased effort and cost incurred in training and in the data collection process.
However, the quantitative relationship between cost increase and the extension of rules is not
simple and clear. Field expert inputs are required in this case. Unlike the approach taken during
the workshop, UMD only selected a small number (less than three) of the field experts for the
input of the specific criterion (or criteria) for the specific missing measures.

2. The improvement of FFP on "Function point" is the fact that applying FFP can lead to a more
conceptually correct functional size count. The potential benefit generated through this improved

2 An "input" is the level of a ranking criterion for a software engineering measure.

5-3

accuracy can only be evaluated through practical experience. Expert inputs are required to perform

benefit assessment.

3. The levels for criteria Validation and Experience were culled from the scientific literature. UMD

scrutinized a number of papers and articles published in journals, conferences, and laboratory
reports related to FFP. All the information related to the validation and application of FFP was
extracted and used to support the determination of the levels.

The methodology used for assessing the levels of the ranking criteria for the missing measure FFP is
described in this section. Other missing measures were assessed using identical approaches. Table 5-1
defines the approach used for each missing measure.

Measure Criterion Assessed Criterion Assessed Using Criterion Assessed

Using Analogy the Literature Using Experts' Inputs

FFP Cr., Rep., Rel. Va., Ex. Co., Be.

Mutation score Cr., Rep., Rel., Va., Ex. Co., Be.

Coverage factor Cr., Rep., Rel., Va., Ex. Co., Be.

Class coupling Cr., Rep., Rel., Va., Ex.,
Co., Be.

Class hierarchy nesting level Cr., Rep., Rel., Va., Ex.,
Co., Be.

Lack of cohesion in methods Cr., Rep., Rel., Va., Ex.,
Co., Be.

Number of children Cr., Rep., Rel., Va., Ex.,
Co., Be.

Number of class methods Cr., Rep., Rel., Va., Ex.,
Co., Be.

Number of key classes Cr., Rep., Rel., Va., Ex.,
Co., Be.

Weighted method per class Cr., Rep., Rel., Va., Ex.,

Co., Be.

Table 5-1 Measures vs Criterion Assessment Method

In Table 5-1, the abbreviations "Co.", "Be.., "Cr.", "Rep.", "Va.", "Ex.", and "Rel." stand for Cost,
Benefit, Credibility, Repeatability, Validation, Experience, and Relevance to Reliability, respectively.

5-4

Chapter 5 Missing Measures

5.3 Revising Family Composition

The introduction of new measures inevitably influences family composition. The introduction of FFP,

"Coverage factor", "Mutation score" and the six 00 measures adds to the number of families and expands
the sizes of some of the existing families defined in Chapter 4.

Table 5-2 lists measures classified in terms of non-00 vs 00 design and fault-tolerant vs non-fault-tolerant
systems.

Non-00

Non-fault-tolerant

Bugs per line of code (Gaffney estimate)
Cause & effect graphing
Code defect density
Cohesion
Completeness
Cumulative failure profile
Cyclomatic complexity
Data flow complexity
Design defect density
Error distribution
Failure rate
Fault density
Fault-days number
Feature point analysis
Full function point
Function point analysis
Functional test coverage
Graph-theoretic static architecture complexity
Man hours per major defect detected
Mean time to failure
Minimal unit test case determination
Modular test coverage
Mutation score
Mutation testing (error seeding)
Number of faults remaining (error seeding)
Requirements compliance
Requirements specification change requests
Requirements traceability
Reviews, inspections and walkthroughs
Software capability maturity model
System design complexity
Test coverage

Fault-tolerant

Bugs per line of code (Gaffney estimate)
Cause & effect graphing
Code defect density
Cohesion
Completeness
Coverage factor
Cumulative failure profile
Cyclomatic complexity
Data flow complexity
Design defect density
Error distribution
Failure rate
Fault density
Fault-days number
Feature point analysis
Full function point
Function point analysis
Functional test coverage
Graph-theoretic static architecture complexity
Man hours per major defect detected
Mean time to failure
Minimal unit test case determination
Modular test coverage
Mutation score
Mutation testing (error seeding)
Number of faults remaining (error seeding)
Requirements compliance
Requirements specification change requests
Requirements traceability
Reviews, inspections and walkthroughs
Software capability maturity model
System design complexity
Test coverage

Cause & effect graphing Cause & effect graphing
Class coupling Class coupling
Class hierarchy nesting level Class hierarchy nesting level
Code defect density Code defect density

00 Completeness Completeness
Cumulative failure profile Coverage factor
Design defect density Cumulative failure profile

I Error distribution Design defect density

5-5

Failure rate
Fault density

Fault-days number

Feature point analysis

Full function point

Function point analysis

Functional test coverage

Lack of cohesion in methods (LCOM)

Man hours per major defect detected

Mean time to failure

Mutation score

Mutation testing (error seeding)

Number of children (NOC)

Number of class methods

Number of faults remaining (error seeding)

Number of key classes

Requirements compliance

Requirements specification change requests

Requirements traceability
Reviews, inspections and walkthroughs

Software capability maturity model

Test coverage

Weighted method per class (WMC)

Error distribution
Failure rate

Fault density

Fault-days number

Feature point analysis

Full function point

Function point analysis

Functional test coverage

Lack of cohesion in methods (LCOM)

Man hours per major defect detected

Mean time to failure

Mutation score

Mutation testing (error seeding)

Number of children (NOC)

Number of class methods

Number of faults remaining (error seeding)

Number of key classes

Requirements compliance

Requirements specification change requests

Requirements traceability

Reviews, inspections and walkthroughs

Software capability maturity model

Test coverage

Weiehted method per class (WMC)

Table 5-2 Measure Classification in terms of Design and Systems

Only the measure "Coverage factor" is fault-tolerant specific. Therefore the fault-tolerant category differs

from the non-fault-tolerant category solely as indicated by this measure.

The measures "Bugs per line of code (Gaffney estimate)", "Cohesion", "Cyclomatic complexity", "Data

flow complexity", "Graph-theoretic static architecture complexity", "Minimum unit test case

determination", "Modular test coverage", and "System design complexity" are not applicable to 00

systems.

The non-applicability of the measures is explained below.

No research to date reveals whether the relationship in "Bugs per line of code (Gaffney estimate)" still

holds true for 00 systems. The 00 environment has its own version of cohesion, specifically, "Lack of

cohesion in methods". The traditional implementation of cohesion is not applicable to 00 systems.

"Cyclomatic complexity" can not capture the structural complexity of a method. This is because the fact

that the size of each method is limited to a small value (the LOC of a method is typically 6 to 8 for

SmallTalk and 20 for C++. Please refer to [Lore94] for further discussion). "Weighted method per class" is

an 00-specific implementation of complexity introduced to substitute for "Cyclomatic complexity". The

measure "Minimum unit test case determination" is no longer applicable to 00 systems because of its

consistently small value, which prevents it from acting as a quality discriminator as it does in non-GO

environments.

"Modular test coverage" was removed from the list of measures applicable to 00 systems because the

concept "module" does not exist in 00 systems.

Measures "Data flow complexity", "Graph-theoretic static architecture complexity", and "System design

complexity" demonstrate the interaction between modules developed in sequential languages, such as

5-6

______________________I

Chapter 5 Missing Measures

FORTRAN and C. The execution of the system is driven by the data flow, namely, the state of the system.
On the other hand, the 00 system is composed of loosely connected classes. Each class is autonomous,
having its own state variables, and behavior methods. The execution of the 00 system is driven by events.
The group of 00 measures selected in this study reflects these characteristics of an 00 system.

Family Measure
Cause & effect graphing Cause & effect graphing

Cohesion Cohesion
Completeness Completeness

Error distribution Error distribution
Mutation testing error seeding

Estimate of faults remaining in code Mutation tsting (error seeding)
Number of faults remaining (error seeding)

Estimate of faults remaining per unit of size Bugs per line of code (Gaffney estimate)
Cumulative failure profile

Failure rate Failure rate
Mean time to failure
Code defect density

Fault detected per unit of size Design defect density
Fault density

Fault-tolerant coverage factor Coverage factor
Feature point analysis

Functional size Function point analysis
___________________________Full function point

Module structural complexity Cyclomatic complexity
Minimal unit test case determination

Requirements compliance Requirements compliance
Requirements specification change requests Requirements specification change requests

Requirements traceability Requirements traceability
Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs

Software development maturity Software capability maturity model
Data flow complexity

System architectural complexity Graph-theoretic static architecture complexity
System design complexity

Test.adequacy Mutation Score .
Functional test coverage

Test coverage Modular test coverage
Test coverage

Time taken to detect and remove faults Fault-days number
Man hours per major defect detected

Table 5-3 non-OO Family Definitions

Some families (or elements in families) were removed from the family list because the fact that they were
not applicable to 00 systems. Some new families (or new elements) were introduced because the
introduction of new 00 measures. Table 5-3 and Table 5-4 present the revised families in non-O0 and 00
systems, respectively.

Gray shadowing of a row is used to pinpoint missing measures, their rates, and the corresponding ranking.

5-7

In Table 5-3 a new family called "Fault-tolerant coverage factor" is created to reflect the introduction of the

"Coverage factor". FFP goes into the family "Functional size". "Mutation score" introduces a family titled

"Test adequacy" because this measure tests the efficiency (or adequacy) of a set of test data.

All changes in Table 5-3 also appear in Table 5-4. In addition, families titled "Class behavioral

complexity", "Class inheritance breadth", "Class inheritance depth", "Class structural complexity",

"Cohesion", and "Coupling" are introduced to accommodate the following new 00 measures: "Number of

class methods", "Number of children (NOC)", "Class hierarchy nesting level", "Weighted method per

class", "Lack of cohesion in methods", and "Class coupling", respectively.

"Number of class methods" assesses the number of methods available to a class. It also indicates how many

activities this class could perform. "Number of children" indicates the breadth of a class's immediate

inheritance. Likewise, the "Class hierarchy nesting level" shows the depth of a class in its inheritance

hierarchy. The original "Module structural complexity" is revised to "Class structural complexity" to

accommodate the new measure "Weighted method per class (WMC)". "Lack of cohesion in methods

(LCOM)" substitutes for the original "Cohesion" in the family "Cohesion" because the latter is not

applicable to 00 systems. A new family "Coupling" is introduced by the introduction of the measure

"Class coupling".

"Number of key classes" goes into the family "Functional size" because this measure can indicate the

functional size of an 00 system in terms of the concept of key classes. However, this measure is not as

mature as "Function point". This immaturity can be illustrated by the following example.

Let us assume that one measures the "Number of key classes" of two different 00 systems A and B. A is

an airplane system in which the key classes should be the body, the jet and its support system, and the

control system. B is a car system in which the key classes are the engine, the transmission, and the body. In

this example the values of the "Number of key classes" of both systems are 3. However these values are not

comparable in terms of the functional size of the system (the functional size of system A must be much

larger than that of the system B). This inconsistency is unavoidable from the fact that a set of counting

rules, like those used for "Function point", are not precisely defined.

5-8

Chapter 5 Missing Measures

Family Measure
Cause & effect graphing Cause & effect graphing

Class behavioral complexity Number of class meMods
Class inheritance breadth Number of children (NOC)
Class inheritance depth Class hierarchy nesting level

Class structural complexity Weighted method per class (WMC)
Cohesion Lack of cohesion in methods (LCOM)
Coupling Class coupling

Completeness Completeness
Error distribution Error distribution

Estimate of faults remaining in code Mutation testing (errorseedng
Number of faults remaining (error seeding)

Cumulative failure profile
Failure rate Failure rate

Mean time to failure
Code defect density

Fault detected per unit of size Design defect density
Fault density

Fault-tolerbhtcoverage factor Coverage fator
Feature point analysis
Function point analysis

Functional size function pnt
Numnber of key classes

Requirements compliance Requirements compliance
Requirements specification change requests Requirements specification change requests

Requirements traceability Requirements traceability
Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs

Software development maturity Software capability maturity model

Test adequacy Mutatios score

Test coverage Functional test coverage
______________________________Test coverage

Time taken to detect and remove faults Fault-days number
Man hours per major defect detected

Table 5-4 00 Family Definitions

5.4 Results Analysis and the Impact of the Missing Measures

The rates of the missing measures were aggregated by applying the methodology described in Chapter 3.
The aggregated values are provided in Table 5-6. Availability" information is provided in Table 5-5.

SAvailability is where a measure specifically defined to capture the software's characteristics is available from the phase where it is
introduced until the end of the software's life, and not just during that specific phase.

5-9

Requirements Design Implementation Testing

Full function point 1 1 1 1

Coverage 0 0 0 1

Mutation score 0 0 1 1

Number of key classes 0 1 1 1

Weighted measure per class 0 1 1 1

Number of class methods 0 1 1 1

Class hierarchy nesting level 0 1 1 1

Class coupling 0 1 1 1

Number of children 0 1 1 1

Lack of cohesion in methods 0 1 1 1

Table 5-5 Availability of Missing Measures

Rates
Requirements Design Implementation Testing

Full function point 0.49 0.53 0.53 0.48

Coverage 0.81

Mutation score 0.71 0.71

Number of key classes 0.53 0.53 0.51

Weighted measure per class 0.67 0.67 0.65

Number of class methods 0.69 0.69 0.66

Class hierarchy nesting level 0.69 0.69 0.66

Class coupling 0.69 0.69 0.66

Number of children 0.69 0.69 0.66
Lack of cohesion in methods 0.67 0.67 0.65

Table 5-6 Rates of Missing Measures

At this point it is appropriate to make a comment regarding the availability of the measure "Mutation
Score". According to Offutt [Offu95], "mutation testing is a technique for unit testing..." But unit testing is
performed during the implementation phase. Therefore it follows that the "Mutation Score" is applicable to
the implementation phase.

This section is composed of two subsections. The rankings of the 33 measures and 20 families applicable to
non-OO systems are analyzed in Section 5.4.1. And the rankings of the 32 measures and 22 families
applicable to 00 systems are discussed in Section 5.4.2.

5.4.1 Measures Applicable to non-OO Systems

5.4.1.1 Requirements Phase

Only the new measure FFP is introduced in this phase. Table 5-7 lists all the measures, the corresponding
rates and rankings for the requirements phase. The missing measure FFP plays a less important role than

the measure "function point" but is of greater importance than the measure "feature point": the lack of

experience with FFP diminishes its importance in predicting software reliability. However, the wider
acceptance of FFP contributes to a higher ranking of FFP than "Feature point".

5-10

Chapter 5 Missing Measures

FFP belongs to the family "Functional size". The introduction of FFP does not significantly change the
statistics of this family but increases the median from 0.48 to 0.49. Table 5-8 shows the family rates after
the introduction of FFP. The ranking of the family "Functional size" remains the same as with the
introduction of the FFP.

In summary, the introduction of the new measure FFP does not influence the rankings of families that are
applicable during the requirements phase.

Measure Rate Ranking

Fault density 0.71 1
Requirements specification change requests 0.70 2
Error distribution 0.68 3
Reviews, inspections and walkthroughs 0.61 4
Fault-days number 0.60 5
Software capability maturity model 0.60 6
Function point analysis 0.51 7
Requirements compliance 0.50 8

FuH functionine 0,49 9
Feature point analysis 0.46 10
Number of faults remaining (error seeding) 0.46 11
Cause & effect graphing 0.45 12
Completeness 0.42 13

Table 5-7 Rates of non-OO Measures during the Requirements Phase

Family Rate
Family Min Median Max

Fault detected per unit of size 0.71 0.71 $71vi•7
Requirements specification change requests 0.70 0.70 '\ ý.7'K
Error distribution 0.68 0.68 0.68
Reviews, inspections and walkthroughs 0.61 0.61 0.61
Time taken to detect and remove faults 0.60 0.60 0.60
Software development maturity 0.60 0.60 0.60
Functional sieý 46 0.4089 0.51
Requirements compliance 0.50 0.50 0.50
Estimate of faults remaining in code 0.46 0.46 0.46
Cause & effect graphing 0.45 0.45 0.45
Completeness 0.42 0.42 0.42

Table 5-8 Rates of non-OO Families during the Requirements Phase

5.4.1.2 Design Phase

No missing measures were found for the design phase. Table 5-9 lists all measure rates and rankings in the
design phase. Table 5-10 lists all family rates in the design phase.

'Gray shadowing of a row is used to pinpoint missing measures, their rates, and the corresponding ranking.

6 Right diagonal graying is used to depict the rates of families that have crossed the arbitrary 0.7 threshold.

7 Bolding is used to pinpoint statistics modified by the introduction of missing measures.

5-11

The rankings of FFP in this phase is higher than that in the requirements phase. Its higher degree of

relevance to reliability contributes to this higher ranking. This is consistent with the experts' inputs. As a

matter of fact, the level of the criterion Relevance to Reliability for FPA increases from the requirements

phase to the implementation phase and reaches its apogee during the implementation phase. The

corresponding FFP criterion follows the same trend.

The discussion presented in Chapter 4 Sections 4.1.2 and 4.2.2 is also relevant to this section.

Measure Rate Ranking

Design defect density 0.75 1
Cyclomatic complexity 0.73 2
Fault density 0.73 3
Fault-days number 0.71 4
Requirements specification change requests 0.69 5
Error distribution 0.68 6
Man hours per major defect detected 0.63 7
Data flow complexity 0.62 8
Reviews, inspections and walkthroughs 0.61 9
Software capability maturity model 0.60 10
Minimal unit test case determination 0.59 11
Requirements traceability 0.56 12
Function point analysis 0.54 13

System design complexity 0.53 15
Graph-theoretic static architecture complexity 0.52 16
Feature point analysis 0.50 17
Requirements compliance 0.49 18
Number of faults remaining (error seeding) 0.46 19
Cause & effect graphing 0.43 20
Cohesion 0.42 21
lCompleteness 0.36 22

Table 5-9 Rates of non-OO Measures during the Design Phase

5-12

Chapter 5 Missing Measures

Rate
Family Min Median Max

Fault detected per unit of size 0.73 0.74 ,.7&
Module structural complexity 0.59 0.66 \\.7'37 \
Time taken to detect and remove faults 0.63 0.67 ",0\1 ý\
Requirements specification change requests 0.69 0.69 0.69
Error distribution 0.68 0.68 0.68
System architectural complexity 0.52 0.53 0.62
Reviews, inspections and walkthroughs 0.61 0.61 0.61
Software development maturity 0.60 0.60 0.60
Requirements traceability 0.56 0.56 0.56
Functional size 0.50 0.53 0.54,
Requirements compliance 0.49 0.49 0.49
Estimate of faults remaining in code 0.46 0.46 0.46
Cause & effect graphing 0.43 0.43 0.43
Cohesion 0.42 0.42 0.42
Completeness 0.36 0.36 0.36

Table 5-10 Rates of non-OO Families during the Design Phase

5.4.1.3 Implementation Phase

The missing measure "Mutation score" emerged the implementation phase. "Mutation score" ranks 6th in
this phase.

"Mutation score" is a support measure that helps validate the completeness of the failure data. It is a
percentage of the observed failures against potential failures. Therefore the use of this measure can reveal
the number of potential failures residing in the code based upon the number of observed failures.

Table 5-11 lists the measures and their corresponding rankings. Table 5-12 provides the families and their
corresponding statistics during the implementation phase.

Measure Rate Ranking

Code defect density 0.83 1
Design defect density 0.75 2
Cyclomatic complexity 0.74 3
Fault density 0.73 4
Fault-days number 0.71 5

Mutatio score0.716
Requirements specification change requests 0.69 7
Error distribution 0.65 8
Minimal unit test case determination 0.64 9
Man hours per major defect detected 0.61 10
Reviews, inspections and walkthroughs 0.61 11
Software capability maturity model 0.60 12
Data flow complexity 0.59 13
Requirements traceability 0.56 14
Function point analysis 0.55 15

5-13

System design complexity 0.53 16

Feature point analysis 0.50 18
Requirements compliance 0.50 19

Number of faults remaining (error seeding) 0.47 20

Bugs per line of code (Gaffney estimate) 0.46 21

Graph-theoretic static architecture complexity 0.46 22

Cause & effect graphing 0.40 23

Cohesion 0.36 24

,Completeness 0.36 25

Table 5-11 Rates of non-OO Measures during the Implementation Phase

Family Rate
Family Min Median Max

Fault detected per unit of size 0.73 0.75 , __,3,_

Module structural complexity 0.64 0.69 >0.4K>

Test adequacy .0.71 0.71 ~ 1~
Time taken to detect and remove faults 0.61 0.66 x \0

Requirements specification change requests 0.69 0.69 0.69

Error distribution 0.65 0.65 0.65

Reviews, inspections and walkthroughs 0.61 0.61 0.61

Software development maturity 0.60 0.60 0.60

System architectural complexity 0.46 0.53 0.59

Requirements traceability 0.56 0.56 0.56

Functional size 0.50 0.53 0.55
Requirements compliance 0.50 0.50 0.50

Estimate of faults remaining in code 0.47 0.47 0.47

Estimate of faults remaining per unit of size 0.46 0.46 0.46

Cause & effect graphing 0.40 0.40 0.40

Cohesion 0.36 0.36 0.36

Completeness 0.36 0.36 0.36

Table 5-12 Rates of non-OO Families during the Implementation Phase

The family "Test adequacy" is applicable with the implementation phase because of the introduction of the

measure "Mutation score". The introduction of FFP during this phase does not change the statistics of the
family "Functional size", let alone the rankings of this family.

5.4.1.4 Testing Phase

The measure "Coverage factor" emerges in the testing phase. The measure "Mutation score" during this

phase retains the same value from the previous (implementation) phase. The ranking of the measure

"Coverage factor" follows immediately that of the measure "Failure rate". The ranking of "Mutation score"

decreases from 6 to 10 while the rate remains the same. This change stems from the fact that other measure

rates increase with this phase. The rates and rankings of all measures applicable during the testing phase are
provided in Table 5-13.

5-14

Chapter 5 Missing Measures

Measure Rate Ranking

Failure rate 0.83 1
Code defect density 0.83 2
Cove.age fa.or'• 0.81 3
Mean time to failure 0.79 4
Cumulative failure profile 0.76 5
Design defect density 0.75 6
Fault density 0.75 7
Cyclomatic complexity 0.72 8
Fault-days number 0.72 9
Mtitafionscoreý, 011, 1
Minimal unit test case determination 0.70 11
Modular test coverage 0.70 12
Requirements specification change requests 0.69 13
Test coverage 0.68 14
Error distribution 0.66 15
Man hours per major defect detected 0.63 16
Functional test coverage 0.62 17
Reviews, inspections and walkthroughs 0.61 18
Software capability maturity model 0.60 19
Data flow complexity 0.59 20
Requirements traceability 0.55 21
System design complexity 0.53 22
Number of faults remaining (error seeding) 0.51 23
Function point analysis 0.50 24
Mutation testing (error seeding) 0.50 25
Requirements compliance 0.50 26

Ful fridipi pin ,0.48 27
Graph-theoretic static architecture complexity 0.46 28
Feature point analysis 0.45 29
Cause & effect graphing 0.44 30
Bugs per line of code (Gaffney estimate) 0.40 31
Cohesion 0.36 32
Completeness 0.36 33

Table 5-13 Rates of non-OO Measures during the Testing Phase

Table 5-14 provides the families and their corresponding rates. The introduction of the measure "Coverage
factor" introduces a new family titled "Fault-tolerant coverage factor". As a support family of "Failure
rate" in a fault-tolerant system, the family "Fault-tolerant coverage factor" ranks lower but very close to the
family "Failure rate". All the families related to failure and fault information during the testing phase rank
higher than other families. The only exception is the instance where the family "Module structural
complexity" ranks higher than the family "Time Taken to Detect and remove Faults". This exception
indicates the fact that the module structural complexity measures ("Cyclomatic complexity" and
"Minimum unit test case determination") still play an important role in software reliability prediction even
during the testing phase.

5-15

Family Rate
Family Min Median Max

Failure Rate 0.76 0.79 083\
Fault Detected per Unit of Size 0.75 0.75 0.83

Fault-tolerant Coverage Fa~ctor 0.81 0.181 \ .1
Module Structural Complexity 0.70 0.71 0,72\

Time Taken to Detect and Remove Faults 0.63 0.67 0.72

Test adequacy 0.71 0.71 \-,O

Test Coverage 0.62 0.68 & .0
Requirements specification change requests 0.69 0.69 0.69

Error Distribution 0.66 0.66 0.66

Reviews, inspections and walkthroughs 0.61 0.61 0.61

Software Development Maturity 0.60 0.60 0.60

System Architectural Complexity 0.46 0.53 0.59

Requirements traceability 0.55 0.55 0.55

Estimate of Faults Remaining in Code 0.50 0.50 0.51

Requirements compliance 0.50 0.50 0.50

Fu~nctio-nal Size 0.45 0.48 0.50
Cause & effect graphing 0.44 0.44 0.44

Estimate of Faults Remaining per Unit of Size 0.40 0.40 0.40

Cohesion 0.36 0.36 0.36

Completeness 0.36 0.36 0.36

Table 5-14 Rates of non-OO Families during the Testing Phase

5.4.2 Measures Applicable to 00 Systems

5.4.2.1 Requirements Phase

The sets of measures applicable to non-OO and 00 systems are identical during the requirements phase.

All rates and rankings are presented in Table 5-7 and Table 5-8.

5.4.2.2 Design Phase

Table 5-15 lists the rates and rankings of 00 measures which are applicable during the design phase. Table

5-16 provides the statistical record of the rates for 00 families.

00 measures are introduced in this phase. The three top-ranked measures are "Design defect density",

"Fault density", and "Fault-days number". The 00 measures, which capture the design characteristics of

00 systems, score lower than the top-ranked fault measures. This again supports the idea that fault data

plays a more important role than system structural data in software reliability prediction.

Measure Rate Ranking

Design defect density 0.75 1

Fault density 0.73 2

Fault-days number 0.71 3

Class coupling 0.69 4 1

5-16

Chapter 5 Missing Measures

Completeness 0.36 24
Table 5-15 Rates of 00 Measures during the Design Phase

Unlike other 00 measures, "Number of key classes" scores much lower. As a matter of fact, the lack of
precisely defined counting rules for this measure drastically lowers the level of the criterion Repeatability,
which leads to the lower rates of the measure.

The addition of 00 measures significantly favors the family "Cohesion". The higher ranking of the family
"Cohesion" is due mainly to the fact that the measure LCOM, which is the 00 alternative of cohesion,
scores much higher than "Cohesion" does. On the other hand, the statistics of the family "Functional size"
does not change with the introduction of the 00 measure "Number of key classes".

Family Rate
Family Min Median Max

Fault detected per unit of size 0.73 0.74 >075
Time taken to detect and remove faults 0.63 0.67 ,0.71!"
Requirements specification change requests 0.69 0.69 0.69
Class behavioral complexity 0.69 0.69 0.69
Class inheritance breadth 0.69 0.69 0.69
Class inheritance depth 0.69 0.69 0.69
Coupling 0.69 0.69 0.69
Error distribution 0.68 0.68 0.68
Class structural complexity 0.67 0.67 0.67
Cohesion. 0.67 0.67 0.67
Reviews, inspections and walkthroughs 0.61 0.61 0.61

Software development maturity 0.60 0.60 0.60
Requirements traceability 0.56 0.56 0.56
Functional size 0.50 0.53 0.54
Requirements compliance 0.49 0.49 0.49

5-17

Class hierarchy nesting level 0.69 5
Number of children (NOC) 0.69 6
Number of class methods 0.69 7
Requirements specification change requests 0.69 8
Error distribution 0.68 9
Lack of cohesion in methods (LCOM) 0.67 10
Weighted method per class (WMC) 0.67 11
Man hours per major defect detected 0.63 12
Reviews, inspections and walkthroughs 0.61 13
Software capability maturity model 0.60 14
Requirements traceability 0.56 15
Function point analysis 0.54 16

villurt poit10-5

Number of key classes 0.53, 18
Feature point analysis 0.50 19
Requirements compliance 0.49 20
Number of faults remaining (error seeding) 0.46 21
Cause & effect graphing 0.43 22
Cohesion 0.42 23

Estimate of faults remaining in code 0.46 0.46 0.46
Cause & effect graphing 0.43 0.43 0.43
Completeness 0.36 0.36 0.36

Table 5-16 Rates of 00 Families during the Design Phase

5.4.2.3 Implementation Phase

The three top-ranked 00 measures during the implementation phase are "Code defect density", "Design
defect density", and "Fault density". Table 5-17 provides the rates and rankings of all 00 measures
applicable in this phase.

Measure Rate Ranking

Code defect density 0.83 1
Design defect density 0.75 2
Fault density 0.73 3
Fault-days number 0.71 4

Class coupling ~0.69 6
Class hierarchy nesting level 0.69 7
Number of children (NOC) 0.69' 8
Number of class methods . 0.69 9
Requirements specification change requests 0.69 10
Lack of cohesion in methods (LCOM) 0.67 11
Weighted method per class (WMC) 0.67 12
Error distribution 0.65 13
Man hours per major defect detected 0.61 14
Reviews, inspections and walkthroughs 0.61 15
Software capability maturity model 0.60 16
Requirements traceability 0.56 17
Function point analysis 0.55 18
ulF h<'dnPo 0~.53 19 2

Number of key classes 0.53 20
Feature point analysis 0.50 21
Requirements compliance 0.50 22
Number of faults remaining (error seeding) 0.47 23
Cause & effect graphing 0.40 24
Completeness 0.36 25

Table 5-17 Rates of 00 Measures during the Implementation Phase

Table 5-18 lists the family rates during the implementation phase. The three top-ranked families are "Fault
detected per unit of size", "Test adequacy", and "Time taken to detect and remove faults". The high
ranking of the new family is a strong indicator that the efficiency of the test data plays an important role in
software reliability determination.

5-18

Chapter 5 Missing Measures

_______ Rate ____

Family Min -Median Max

Fault detected per unit of size 0.73 ''0.75
Test adequacy 0.71. 0.71 >3>
Time taken to detect and remove faults 0.61 0.66 \071

Requirements specification change requests 0.69 0.69 0.69

Class behavioral complexity 0.69 0.69 0.69
Class inheritance breadth 0.69 0.69 0.69
Class inheritance wfidth 0.69 .0.69 0.69
Coupling 0.69 0.69 0.69
Class structural comiplexity 0.67,06 .7

Cohesion 0.67 -0.67. 0A67
Error distribution 0.65 0.65 0.65
Reviews, inspections and walkthroughs 0.61 0.61 0.61
Software development maturity 0.60 0.60 0.160
Requirements traceability 0.56 0.56 0.56
Functional[size 0.50 0.53 0.55
Requirements compliance 0.50 0.50 0.50
Estimate of faults remaining in code 0.47 0.47 0.47

Cause & effect graphing 0.40 0.40 0.40

Completeness 0.36 0.36 0.36

Table 5-18 Rates of 00 Families during the Implementation Phase

5.4.2.4 Testing Phase

Table 5-19 lists the rates of 00 measures during the testing phase. The three top-ranked measures are

"Failure rate", "Code defect density", and "Coverage factor". It should be noted that the importance of the

00 missing measures in software reliability prediction decreases significantly in this phase. The top-ranked

measures are failure and fault measures. This fact indicates that the 00 design measures do not contribute

much to software reliability prediction, even for 00 systems.

Error distribution 0.66

Measure Rate Ranking

Failure rate 0.83 1
Code defect density 0.83 2
C-oicerage fbctor. 0.81 3

Mean time to failure 0.79 1 4
Cumulative failure profile 0.76 5
Design defect density 0.75 6
Fault density 0.75 7
Fault-days number 0.72 8

Requirements specification change requests 0.69 10
Test coverage 0.68 11
Class coupling 0.66 12
Class hierarchy nesting level 0.66 13

5-19

14

Number of children (NOC) 0.66 15

Numb~er of class methods 0.66 16
L o h n m d C0.65 17

Weihted method er class MC 0.65 18

Man hours per major defect detected 0.63 19

Functional test coverage 0.62 20

Reviews, inspections and walkthroughs 0.61 21

Software capability maturity model 0.60 22

Requirements traceability 0.55 23

Number of faults remaining (error seeding) 0.51 24

Number of key classes 0,51 25

Function point analysis 0.50 26

Mutation testing (error seeding) 0.50 27

Requirements compliance 0.50 28

17611fuixtiin-p~ht G.4. ½~O82 .f29>
Feature point analysis 0.45 30

Cause & effect graphing 0.44 31

Completeness 0.36 32

Table 5-19 Rates of 00 Measures during the Testing Phase

Table 5-20 provides the 00 family rates during the testing phase. The three top-ranked families are

"Failure Rate", "Fault detected per unit of size", and "Fault-tolerant coverage factor". The measure

"Coverage factor" introduces the family "Fault-tolerant coverage factor" during this phase. The rates and

rankings in Table 5-20 indicate the fact that families related to failure ("Failure rate" and "Fault-tolerant

coverage factor") play a more important role than families related to fault ("Fault detected per unit of size"

and "Test adequacy"). These characteristics are also apparent from the extended structural representation in

which failure measures are positioned closer to the indicator than the fault measures.

Family_ Rate
Family Min Median Max

Failure rate 0.76 0.79 '0•83

Fault detected per unit of size 0.75 0.75 0,83

Fault-tolerant coverage factor 0.81, 0.81 081'
Time taken to detect and remove faults 0.63 0.67 i" 022"

Test adequacy _ 0.62 0.69 '>K0.71½

Requirements specification change requests 0.69 0.69 0.69

Error distribution 0.66 0.66 0.66

Class behavioral complexity 0.66 0.66 0.66

Class inheritance breadth 0.66 0.66 0.66
Class inheritance width 0.66 0.66 0.66
Coupling 0.66 0.68 0.66
Class structural complexity 0.65 0.65 0.65
Cohesion 0.65 0.65 0.65
Reviews, inspections and walkthroughs 0.61 0.61 0.61

Software development maturity 0.60 0.60 0.60

Requirements traceability 0.55 0.55 0.55

Estimate of faults remaining in code 0.50 0.50 0.51

Functional size 0.45 0.49 0.51

Requirements compliance 0.50 0.50 0.50

5-20

Chapter 5 Missing Measures

Cause & effect graphing 0.44 0.44 0.44

Estimate of faults remaining per unit of size 0.40 0.40 0.40

Completeness 0.36 0.36 0.36

Table 5-20 Rates of 00 Families during the Testing Phase

5.5 Summary

The discussion provided in this chapter is designed to incorporate in this report new measures generated by

advances of software engineering which have occurred since the LLNL study was performed.

The missing measures discussed in this chapter were identified by experts. The measures covered the fault

tolerant computing environment, the mutation testing technique, the object-oriented development method,

and one adaptation of "Function point". Eleven missing measures were initially identified. UMD eliminated

the "Reliability trend indicator" because it is a reliability analysis approach rather than a missing measure.

The ranking criteria levels were assessed by UMD research team members according to the rational

comparison to the experts' inputs, the software engineering literature, and field experts' inputs. The

aggregation rates were calculated by applying the aggregation theory discussed in Chapter3.

The composition of families was revised to reflect the emergence of the missing measures. Two family

groups corresponding to the non-00 technique and 00 technique were identified. The rates and rankings

of measures and families were reported separately for the two groups.

The impact analysis in this chapter shows that the introduction of the missing measures does not nullify

everything described in Chapter 4. The "Coverage factor" is almost mandatory for the construction of any

RPS for the real-time embedded systems. The "Mutation score" is highly recommended because it can

reveal the percentage of failures that have not yet become manifest. It is a valuable support measure for the

failure measures in the construction of RPSs.

FFP is an extension of function point in the field of real-time control systems for the purpose of functional

size counting. The rate and ranking of this measure are lower than their predecessor, function point,

because of the lack of experience with FFP despite the higher credibility level of FFP.

The 00 measures cannot substitute for the traditional fault and failure measures in software reliability

prediction. They provide means to clearly demonstrate the 00-specific design characteristics, such as the

level of data abstraction, the depth of inheritance, and the degree of data encapsulation, etc. The rankings of

these measures show that constructing the RPS directly from these measures is an arduous task.

As software engineering advances and new software engineering measures emerge, iterations of the study

presented in this chapter should be performed to avoid obsolescence of the results presented in this chapter.

[SEL] SELAM, Software Engineering in Applied Metrics. Web: http://www.lmagl.gc.ca

[Arno73] Arnold, T. F., The Concept of Coverage and Its Effect on the Reliability Model of a Repairable

System, IEEE Transaction on Computers, vol. c-22, no. 3, March 1973.

[Voas98] Voas, J. M., McGraw, G., Software Fault Injection: Inoculating Programs Against Errors, John

Wiley & Sons, Inc., New York, 1998

8 Most real-time embedded control systems are fault-tolerant systems.

5-21

[Lore94] Lorenz, M., Kidd, J., Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc.

New Jersey, 1994

[Myer78] Myers, G. J., Composite / Structural Design, Van Nostrand Reinhold, New York, 1978.

[Khid94] Chidamber, S. R., Kemerer, F., A Metrics Suite for Object Oriented Design, IEEE Transaction on

Software Engineering, Vol. 20, No. 6, June 1994

[Nea196] Neal, Rt D., The Validation by Measurement Theory of Proposed Object-Oriented Metrics,

Dissertation, Virginia Commonwealth University, Richmond, Va., 1996.

[Offu95] Offut, J., A Practical System for Mutation Testing: Help for the Common Programmer, The

Proceedings of the Twelfth International Conference on Testing Computer Software, pp. 99-109,

Washington, DC, June 1995.

5-22

Chapter 6 Summary and Conclusions

CHAPTER 6 SUMMARY AND FUTURE RESEARCH

6.1 Summary

Although the most important sources of information in predicting software reliability are known as

software engineering measures, limited study systematically demonstrates how software engineering

measures determine software reliability. The study in this report was a constructive attempt towards the

establishment of a relationship between software engineering measures and software reliability.

This study identified top-ranked software engineering measures in terms of their ability to predict software

reliability. The top-ranked families were also identified in this study. A very strong indication of reliability
might be obtained if the prediction is initiated from several compatible top-ranked families.

Chapter 2 investigated the relationships between measures and reliability prediction. It introduced three

axes of classification important to the analysis of the measures. These axes are structural, life-cycle based

and semantic. Semantic classification lead to the introduction of the concept of Family. The axes and axes'

definitions are provided from Table 6-1 to Table 6-4. A graphical method was described for the purpose of

structural representation. The creation of this graphical representation was shown to be another valuable
tool in the analysis of a software engineering measure.

Axis Definition

Estimate or evaluation that provides a basis for decision

Indicator making. In this particular study, reliability is deemed an
appropriate indicator.

Derived Measure Any intermediate value which is neither an indicator nor
a primitive measure.

Value resulting from the application of rules to a
Primitive Measure software attribute'.

Table 6-1 Structural Classification Axis

Axis Definition

Requirements Phase Contains [IEEE610] phases: Concept and Requirements

Design Phase Contains [IEEE610] phase: Design

Implementation Phase Contains [IEEE610] phase: Implementation 2

Contains [IEEE610] phases: Test, Installation and Checkout
Testing Phase Installation

Contains [IEEE610] phases: Operation, Maintenance, and
Operation Retirement

Table 6-2 Life-Cycle Classification Axis

The user is referred to Chapter 2 (Section 2.1.1) for the explanation of the terms rule and software attribute.
This phase contains unit testing.

6-1

Axis (Family) Definition

Cause & effect graphing Cause & effect graphing

Cohesion Cohesion

Completeness Completeness

Error distribution Error distribution
Mutation testing (error seeding)

Estimate of faults remaining in code

Number offaults remaining (error seeding)

Estimate of faults remaining per unit of size Bugs per line of code (Gaffney estimate)

Cumulative failure profile

Failure rate Failure rate

Mean time to failure

Code defect density

Fault detected per unit of size Design defect density

Fault density

Fault-tolerant coverage factor Coverageffactor

Feature point analysis

Functional size Function point analysis

Full functionpon
Cyclomatic complexity

Module structural complexity ylmtcopexy

Minimal unit test case determination

Requirements compliance Requirements compliance

Requirements specification change requests Requirements specification change requests

Requirements traceability Requirements traceability

Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs

Software development maturity Software capability maturity model

Data flow complexity

System architectural complexity Graph-theoretic static architecture complexity

System design complexity

Test adequacy Mutation Score

Functional test coverage

Test coverage Modular test coverage

Test coverage

Time taken to detect and remove faults Fault-days number

Man hours per major defect detected

Table 6-3 Semantic Classification Axis for non-OO Systems

Gray shadowing of a row is used to pinpoint missing measures, their rates, and the corresponding ranking.

6-2

Chapter 6 Summary and Conclusions

Axis (Family) Definition

Cause & effect graphing Cause & effect graphing

Class behavioral complexity Number of class methods

Class inheritance breadth Nunber of children (NOC)

Class inheritance depth Class hierarchy nesting level

Class structural complexity Wfeighted method per class (WMC)

Cohesion Lack of Cohesion in methods (LCOM)

Coupling class coupling

Completeness Completeness

Error distribution Error distribution
Mutation testing (error seeding)

Estimate of faults remaining in code

Number offaults remaining (error seeding)

Cumulative failure profile

Failure rate Failure rate

Mean time to failure

Code defect density

Fault detected per unit of size Design defect density

Fault density

Fault-tolerant coverage factor Coverage.fa .t or

Feature point analysis

Function point analysis
Functional size

Fullfimclic'n point

Number of key classes

Requirements compliance Requirements compliance

Requirements specification change requests Requirements specification change requests

Requirements traceability Requirements traceability

Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs

Software development maturity Software capability maturity model

Test adequacy Mutation score

Functional test coverage
Test coverage Test coverage

Fault-days number

Time taken to detect and remove faults

Man hours per major defect detected

Table 6-4 Semantic Classification Axis for 00 Systems

This chapter also defined the concept of a Software Reliability Prediction System (RPS), which is a

complete set of measures by which software reliability can be predicted. The RPS is composed of a root

measure and several support measures as shown in Figure 6-1. The issue of selecting a software reliability

6-3

prediction system was examined and a possible selection process suggested through Equation 2-8 to

Equation 2-11.

Figure 6-1 RPS

The point was made that the selection of a software reliability prediction system is a difficult task and that a

simpler but related problem should be examined first: the problem of selecting single software engineering

measures of high degree of validity which would be most relevant to reliability. The criteria for selection of

the measures contain relevance, cost, benefit, validity, experience, credibility, and repeatability.

This chapter also showed that measures and interrelationships between measures need to be well

understood before they are used. One should avoid the use of redundant measures and one should make

sure that the set of measures at hand is complete from a software reliability prediction stand-point. Finally,

once measures have been ranked separately, they need to be reinterpreted in the context of other measures.

Chapter 3 presented the methodology used to rank a pre-selected set of 30 software engineering measures

(Table 6-5). The 30 measures were selected from the pool of measures identified in [LLNL98]. LLNL

identified 78 software engineering measures related either directly or indirectly to software reliability and

that might be appropriate to the study of digital I&C systems.

Bugs per line of code (Gaffhey estimate)
Cause & effect graphing
Code defect density
Cohesion
Completeness
Cumulative failure profile
Cyclomatic complexity
Data flow complexity
Design defect density
Error distribution
Failure rate
Fault density
Fault-days number
Feature point analysis
Function point analysis

Functional test coverage
Graph-theoretic static architecture complexity
Man hours per major defect detected
Mean time to failure
Minimal unit test case determination
Modular test coverage
Mutation testing (error seeding)
Number of faults remaining (error seeding)
Requirements compliance
Requirements specification change requests
Requirements traceability
Reviews, inspections and walkthroughs
Software capability maturity model
System design complexity
Test coverage

6-4

Chapter 6 Summary and Conclusions

Table 6-5 Pre-selected Software Engineering Measures

The methodology was based on the use of expert opinion elicitation to solicit the scores of software
engineering measures. The scoring was performed with respect to seven ranking criteria: Credibility,
Repeatability, Cost, Benefit, Experience, Validation, and Relevance to Reliability. The criteria are given in
Table 6-6. The scoring was performed in terms of letter grades. A letter-conversion scheme translated the
letter values to real numbers between 0 and 1. These numbers were then aggregated using an aggregation
equation and a weighting scheme for the seven ranking criteria. The aggregated number served as the
indicator of the "goodness" of the measure. A sensitivity analysis was further performed on all components
of the analysis: letter-real conversion scheme, aggregation function form, weighting scheme. Since a priori
one can not assess which aggregation scheme is correct, the purpose of such sensitivity analysis was to
prove that the results obtained remain valid for a wide spectrum of aggregation schemes. All results of
aggregation rates, rankings, and sensitivity analysis for the thirty pre-selected measures were presented in
Chapter 4.

Set Criterion Definition

Rates the measure in terms of its documented goals. A
Credibility measure is considered to be credible if we judge it likely

to support the specified goals.

Experience Rates the commercial experience in using the measure.

Quality Set A measure is considered repeatable if the repeated
Repeatability application of the measure by the same or different

people results in similar results.

Determines how extensively the measure has been
validated.

Estimates the avoidance of costs that would be incurred
if the measure was not used.

Cost effectiveness
Cost Estimates the effort required to implement and use the

measure.

Scores the level at which the measure is relevant to
Relevance Relevance to Reliability software reliability prediction.

Table 6-6 Ranking Criteria and Their Definitions

Chapter 4 discussed the rates and rankings (with respect to software reliability prediction) obtained for the
thirty measures selected at the beginning of the study. Some potential inconsistencies were examined and
explained. The minimum, mean, and maximum rates for each family were calculated base on the rates of
measures, composing the family.

The top-ranked measures were aggregated by an additive function with equal weights. These measures
constitute the possible roots of software reliability prediction systems. Table 6-7 provides the top 3
measures, their semantic and structural classifications for each software development phase. Table 6-8
displays the top 3 families and their rankings.

6-5

Structural

Phase Top-3 Measures Semantic Classification Ssifcat
Classification

Fault density Fault detected per unit Derived Measure
of size

Requirements Phase Requirements specification change Requirements
requests specification change Derived Measure

requests

Error distribution Error distribution Derived Measure

Design defect density Fault detected per unit Derived Measure
of size

Design Phase Fault density Fault detected per unit Derived Measure
of size

Cyclomatic complexity Module structural Derived Measure
complexity

Code defect density Fault detected per unit Derived Measure
of size

Implementation Design defect density Fault detected per unit Derived Measure
Phase of size

Cyclomatic complexity Module structural Derived Measure
complexity

Testing Phase Failure rate Failure rate Derived Measure

Code defect density Fault detected per unit Derived Measure
of size

Mean time to failure Failure rate Derived Measure

Table 6-7 Top-3 Measures Phase by Phase

It was proven however that rates and ranks remain relatively stable for different aggregation schemes. The

sole exception was the change in equation form that signals noticeable changes in the results. This indicates

that a more detailed study of the form of the aggregation equation should be performed. Stability, however,

is reestablished when one analyzes the results by families rather than by single measure. The ranges of the

correlation coefficients of the aggregation schemes are provided in Table 6-9.

6-6

Chapter 6 Summary and Conclusions

Phase Top-3 Families Measures

Fault detected per unit of size Fault density4

Requirements Phase Requirements specification change Requirements specification change
requests requests

Error distribution Error distribution

Fault detected per unit of size Design defect density

Fault density

Design Phase Module structural complexity "Cyclomatic complexity

Minimal unit test case determination

Time taken to detect and remove *Fault-days number
faults Man hours per major defect detected

"Code defect density

Fault detected per unit of size Design defect density

Fault density

ImplementationModule structural complexity Cyclomatic complexity

Minimal unit test case determination

Time taken to detect and remove *Fauft-days number
faults Man hours per major defect detected

*Failure rate

Failure rate Mean time to failure

Cumulative failure profile

""Code defect density Testing Phase
Fault detected per unit of size Design defect density

Fault density

Module structural complexity Cyclomatic complexity

Minimal unit test case determination

Table 6-8 Top-3 Families Phase by Phase

4 It is important to note that other two elements of the family "Fault Detected Per Unit of Size", "Code defect density" and "Design

defect density" are not applicable during the requirements phase.
. Highest ranked measure in family.

6-7

Correlation Coefficient Range Rate Count

0-0.8 0

0.8-0.9 4

0.9 - 0.99 90

0.99-1.0 11

Table 6-9 Ranges of Correlation Coefficients

A final result of interest lies in the study of the impact of the ranking criteria. The study shows that optimal

combinations of four, five and six criteria exist which generate a ranking that closely approximates the
ranking obtained using seven criteria. Table 6-10 provides the top 5 criteria combinations through which a
satisfactory aggregation can be obtained.

Rankings Criteria Combinations

I {Co., Be., Cr., Re., Exp., Va., Rel.}

2 (Co., Cr., Re., Exp., Va., Rel.}

3 (Cr., Re., Exp., Va., Rel.}

4 {Co., Be., Re., Exp., Va., Rel.}

5 {Co., Be., Re., Va., Rel.}

Table 6-10 Top-Ranked Criteria Combinations

The discussion provided in Chapter 5 was designed to incorporate current measures generated by advances
in software engineering.

The missing measures discussed in this chapter were identified by experts. The measures covered the fault

tolerant computing environment, the mutation testing technique, the object-oriented development method,

and one adaptation of "Function point". Eleven missing measures were initially identified. UMD eliminated

the "Reliability trend indicator" because it is a reliability analysis approach rather than a missing measure.
Table 6-11 lists 10 missing measures analyzed in this chapter.

FFP

Mutation score

Coverage factor

Class coupling

Lack of cohesion in methods

Number of children

Number of class methods

Number of key classes

Class hierarchy nesting level Weighted method per class

Table 6-11 List of Missing Measures

The abbreviations in this column "Co.", "Be.", "Cr.", "Re.", "Exp.", "Va.", and "Re." stand for "Cost", "Benefit", "Credibility",
"Repeatability", "Experience", "Validation", and "Relevance to Reliability", respectively.

6-8

Chapter 6 Summary and Conclusions

The ranking criteria levels were assessed by UMD research team members using rational comparison with
experts' input for analog measures, the software engineering literature, and field experts' input. The
aggregation rates were calculated using the aggregation theory discussed in Chapter 3.

The composition of families was revised to reflect the emergence of the missing measures. Two family
groups corresponding to the non-00 technique and 00 technique were identified. The rates and rankings
of measures and families were reported separately for the two groups. The top-3 measures and top-3
families for non-OO systems and 00 systems are provided in Table 6-12 to Table 6-15.

Structural
Phase Top-3 Measures Semantic Classification Ssifcat

Classification

Fault density Fault detected per unit Derived Measure
of size

Requirements Phase Requirements specification change Requirements
requests specification change Derived Measure

requests

Error distribution Error distribution Derived Measure

Design defect density Fault detected per unit Derived Measure
of size

Design Phase Fault density Fault detected per unit Derived Measure

of size

Cyclomatic complexity Module structural Derived Measure
complexity

Code defect density Fault detected per unit Derived Measure
of size

Implementation Design defect density Fault detected per unit Derived Measure
Phase of size

Cyclomatic complexity Module structural Derived Measure
complexity

Failure rate Failure rate Derived Measure

Code defect density Fault detected per unit Derived Measure
Testing Phase of size

Coverage factor Fault-tolerant coverage Derived Measure
factor

Table 6-12 Top-3 Measures Phase by Phase for non-OO Systems

Structural
Phase Top-3 Measures Semantic Classification Ssifcat

Classification

Fault density Fault detected per unit Derived Measure
of size

Requirements Phase Requirements specification change Requirements
requests specification change Derived Measure

requests

Error distribution Error distribution Derived Measure

6-9

Table 6-13 Top-3 Measures Phase by Phase for 00 Systems

Phase Top-3 Families

Fault Detected per Unit of Size

Requirements Phase Requirements specification change requests

Error Distribution

Fault Detected per Unit of Size

Design Phase Module Structural Complexity

Time Taken to Detect and Remove Faults

Fault Detected per Unit of Size

Implementation Phase Module Structural Complexity

Test Adequacy

Failure Rate

Testing Phase Fault Detected per Unit of Size

Fault-tolerant Coverage Factor

Table 6-14 Top-3 Families Phase by Phase for non-OO Systems

6-10

Chapter 6 Summary and Conclusions

Phase Top-3 Families

Fault Detected per Unit of Size

Requirements Phase Requirements specification change requests

Error Distribution

Fault Detected per Unit of Size

Design Phase Time Taken to Detect and Remove Faults

Requirements specification change requests

Fault Detected per Unit of Size

Implementation Phase Test Adequacy

Time Taken to Detect and Remove Faults

Failure Rate

Testing Phase Fault Detected per Unit of Size

Fault-tolerant Coverage Factor

Table 6-15 Top-3 Families Phase by Phase for 00 Systems

The analysis in this chapter shows that the introduction of the missing measures impacts the results
obtained in Chapter 4 although not dramatically. It was established that the "Coverage factor" is almost
mandatory for the construction of any RPS for the real-time embedded system 6. The "Mutation score" is
highly recommended because it can reveal the percentage of failures that have not manifested yet. It is a
valuable support measure for the failure measures in the construction of RPSs.

FFP is an extension of function point in the field of real-time control systems for the purpose of functional

size counting. The rate and ranking of this measure are lower than their predecessor, function point,
because of the lack of experience with FFP despite its higher credibility level.

The 00 measures provide means to clearly capture the 00-specific design characteristics, such as the level
of data abstraction, the depth of inheritance, and the degree of data encapsulation, etc. The rankings of
these measures show that constructing an RPS directly from these measures is an arduous task. They can
not substitute for the traditional fault and failure measures.

It is clear that applying the top-ranked measures and families to establishing an RPS will lead to a
significant improvement in predicting software reliability. However, current knowledge prevents the
quantitative estimation of such improvement. Further experiments are required to investigate the
quantitative reliability as a function of the RPS measures.

As software engineering advances and new software engineering measures emerge, iterations of the study
presented in Chapter 5 should be performed to avert obsolescence of the results.

6.2 Future Research

The research presented in this report initiated a long-term study of the reliability prediction of software
based real-time digital systems. The following activities are recommended for future research.

1. The report, its methodology and the results presented should be peer-reviewed.

6 Most real-time embedded control systems are fault-tolerant systems.

6-11

2. A larger set of expert opinion aggregation functions is recommended. UMD examined two forms

of aggregation functions: additive and multiplicative. However, these only constitute a limited,

though reasonable, set of aggregation functions typically in use for multiple objectives'

aggregation [Keen76]. Further research on this topic is recommended.

3. Top-ranked software reliability prediction systems (RPSs) need to be fully identified for each life

cycle phase. The roots of top RPS's have been identified. It is now necessary to identify their

support measures.

4. A reliability threshold under which an application is not acceptable needs to be determined for

each phase. These thresholds are designed for the V&V process.

5. The research presented in this report needs to be validated through experiments. Validation

includes 1) identifying applications for which the top-ranked RPSs are either available or

recoverable, 2) predicting their operational reliability based on the RPSs for each phase of the life

cycle, 3) assessing the actual operational reliability, 4) comparing estimation and prediction.

Preliminary research needs to be carried out to determine how many applications are required to

perform this validation.

[IEEE6 10] IEEE Standard Glossary of Software Engineering Terminology, IEEE, 1990.

[LLNL98] J. D. Lawrence, et al., Assessment of Software Reliability Measurement Methods for Use in

Probabilistic Risk Assessment, Technical report UCRL-ID-136035, FESSP, Lawrence Livermore National

Laboratory. 1998

[Keen76] R. L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs,

John Wiley & Sons, New York, 1976.

6-12

Appendix A Software Engineering Measures

APPENDIX A SOFTWARE ENGINEERING MEASURES

This appendix contains brief descriptions of the measures used in this study (see Table A-l). The

measures that were identified by LLNL but not considered in this study are listed in Table A-2. The

measures are listed in alphabetic order. Table entries in bold-face type denote measures note described

in the IEEE standard. Plain-text entries denote those measures described in the IEEE standard.

Bugs per line of code (Gaffney estimate)
Cause & effect graphing
Class coupling
Class hierarchy nesting level
Code defect density
Cohesion
Completeness
Coverage factor
Cumulative failure profile
Cyclomatic complexity
Data flow complexity
Design defect density
Error distribution
Failure rate
Fault density
Fault-days number
Feature point analysis
Full function point
Function point analysis
Functional test coverage

Graph-theoretic static architecture complexity
Lack of cohesion in methods
Man hours per major defect detected
Mean time to failure
Minimal unit test case determination
Modular test coverage
Mutation score
Mutation testing (error seeding)
Number of children
Number of class method in a class
Number of faults remaining (error seeding)
Number of key classes
Requirements compliance
Requirements specification change requests
Requirements traceability
Reviews, inspections and walkthroughs
Software capability maturity model
System design complexity
Test coverage
Weighted method per class

A-1 Measures

A-1

Bugs per line of code (Lipow estimate)
Bugs per line of code (Stetter estimate)
BVA model
Cost
Coupling
Data structure metrics

Defect indices

Design structure
Failure analysis using elapsed time

Fault density
Functional complexity
Graph-theoretic dynamic architecture complexity
Graph-theoretic generalized static architecture
complexity
Independent process reliability
Input domain models (Brown-Lipow model)
Input domain models (Miller model)
Interface complexity
K-out-of-n model
Markov reliability model
Mean time to discover next K faults
Micro complexity
Multiversion software
Number of conflicting requirements
Number of entries & exits per module

Table A-2 Measures nq

Appendix A Software Engineering Measures

Operation (functional) complexity
Operator complexity
Project initiation reliability prediction
Reliability block diagrams
Reliability growth function

Reliability prediction as a function of development
environment
Reliability prediction as a function of software
characteristics
Reliability prediction during software testing
Reliability prediction for the operational
environment
RELY-Required software reliability
Residual fault count
Run reliability
Schedule

Software documentation
Software maturity index
Software process capability determination (SPICE)
Software purity level
Software release readiness
Software science reliability measure
Source listings
System operational availability
System performance reliability
Test accuracy (error seeding)
Testability analysis
Testing sufficiency

ot Considered in This Study

A-2

Appendix A Software Engineering Measures

A.1 Bugs per Line of Code

Categories

* Structural Level

* Life-Cycle Coverage

derived

implementation' (artifact)

The goal of this measure is to give a crude estimate of the number of faults in a program module per

line of code.

Primitive

number of executable source statements

estimated number of faults in the ith module

total number of faults in the complete program

Implementation

Gaffney Model [1]

Empirical formulas are derived, yielding slightly different estimates for assembly code and high-level

language (Jovial, in this case) code. Since the differences in the coefficients are smaller than the

estimated errors in the basic theory, only the latter is given here. It is

F = 42 + 0.0015S 413

The power (4/3) implies that this estimate should be used for modules, not a complete program. If there

are N modules in the program, and F, is the estimated number of faults in the ith module, then the

number of faults in the complete program can be estimated to be

N

i=1

It is important to note that the measure is also applicable in the later stages. For instance, the measure Bugs per Line of Code is

applicable from the implementation phase and remains applicable afterwards.

A-3

Application

S

Definition

Fi

F

Appendix A Software Engineering Measures

Remarks

These models are based on the Halstead measures, which are not considered particularly credible in

this study, so should be used with considerable caution. In particular, the measures do not account for

differences in the type of code (business data processing, scientific calculations, real time control,

compilers, and so forth) or the degree of sophistication of the development organization (as measured,

for example, by its CMM level).

There are rough industry estimates that, ignoring all else, one should expect 5-30 faults per thousand

executable lines of code. The measures given here may be an improvement on this, and may therefore

be suitable as a starting point for deriving a more accurate estimate. It is difficult to see any other value

to them.

The measures are easy to calculate.

The measures are simplistic and ignore many aspects of the software and its development, so are not

likely to be very accurate.

References

1. John E. Gaffiey, "Estimating the number of faults in code," IEEE Trans. Soft. Eng. 10, 4 (July

1984), 459-464.

A.2 Cause & Effect Graphing

Categories

* Structural Level derived

* Life-Cycle Coverage requirement (artifact)

Application

Cause and effect graphing aids in identifying requirements that are incomplete and ambiguous. This

measure explores the inputs and expected outputs of a program and identifies the ambiguities. Once

these ambiguities are eliminated, the specifications are considered complete and consistent.

Cause and effect graphing can also be applied to generate test cases in any type of computing

application where the specification is clearly stated (that is, no ambiguities) and combinations of input

conditions can be identified. It is used in developing and designing test cases that have a high

probability of detecting faults that exist in programs. It is not concerned with the internal structure or

behavior of the program.

Primitives

List of causes

A-4

Appendix A Software Engineering Measures

List of effects

Definitions

List of causes distinct input conditions

List of effects distinct output conditions or system transformations (effects are caused by

changes in the state of the system)

Accisting number of ambiguities in a program remaining to be eliminated

Atot total number of ambiguities identified.

Implementation

A cause and effect graph is a formal translation of natural language specification into its input

conditions and expected outputs. The graph depicts a combinatorial logic network.

To begin, identify all requirements of the system and divide them into separate identifiable entities.

Carefully analyze the requirements to identify all the causes and effects in the specification. After the

analysis is completed, assign each cause and effect a unique identifier. For example, El for effect one

or I1 for input one.

To create the cause and effect graph, perform the following steps:

I. Represent each cause and each effect by a node identified by its unique number.

2. Interconnect the cause and effect nodes by analyzing the semantic content of the specification

and transforming it into a Boolean graph. Each cause and effect can be in one of two states:

true or false. Using Boolean logic, set the possible states of the causes and determine under

what conditions each effect will be present.

3. Annotate the graph with constraints describing combinations of causes and effects that are

impossible because of semantic or environmental constraints.

4. Identify as an ambiguity any cause that does not result in a corresponding effect, any effect

that does not originate with a cause, and effects that are inconsistent with the requirements

specification or impossible to achieve.

The measure is computed as follows:

CE(%/) = 100 X I -• A

To derive test cases for the program, convert the graph into a limited entry decision table with "effects"

as columns and "causes" as rows. For each effect, trace back through the graph to find all combinations

of causes that will set the effect to be TRUE. Each such combination is represented as a column in the

A-5

Appendix A Software Engineering Measures

decision table. The state of all other effects should also be determined for each such combination. Each

column in the table represents a test case.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Elmendorf, W. R. Cause-Effect Graphs on Functional Testing. Poughkeepsie: IBM Systems

Development Division, TR-00.2487, 1973.

3. Myers, Glenford J. The Art of Software Testing. New York, Wiley-Interscience, 1979

4. Powell, B. P., ed. Validation, Verification, and Testing Technique and Tool Reference Guide.

National Bureau of Standards Special Publication 500-93, 1982.

A.3 Class Coupling

Application

Class Coupling [3], which is also called coupling between object classes (CBO) in [1], is designed to

examine how one class relates to other classes.

In practice, one wants to build systems that get their work done by requesting services from other

objects. This means that one class can leverage the other classes' services. However, the level of this

service availability should be limited to the level of complexity that one can handle. In other words, the

amount of coupling should remain below a certain threshold.

Definitions

Class Coupling is defined as the sum total of other classes to which a class is coupled [I]. Intuitively,

coupling refers to the degree of interdependence between parts of design. In ontological terms, "two

objects are coupled if and only if at least one of them acts upon the other. X is said to act upon Y if the

history of Y is affected by X, where history is defined as the chronologically ordered states that a thing

traverses in time." [2, p 547]

Class Coupling relates to the notion that an object is coupled to another object if one of them acts on

the other, i.e., methods of one use methods or instance variables2 of another.

Some empirical observations with regard to Class Coupling are listed as follows:

1. Excessive coupling between object classes is detrimental to modular design and prevents

reuse. The more independent a class is, the easier it is to reuse it in another application.

2 A name that allows one object (instance) to refer to another one. The instance variables make up an object's state data. In some

literature instance variable is also called attribute.

A-6

Appendix A Software Engineering Measures

2. In order to improve modularity and promote encapsulation, inter-object class couples should

be kept to a minimum. The larger the number of couples, the higher the sensitivity to changes

in other parts of the design, and therefore the maintenance is more difficult.

3. A measure of coupling is useful to determine how complex the testing of various parts of a

design is likely to be. The higher the inter-object class coupling, the more rigorous the testing

needs to be.

Implementation

Chidamber and Kemerer [1] advocated a formal representation of an object X as

X = <x, p(x)>

where

x the substantial individual, namely, the entity that object X represents.

p(x) the finite collection of x's properties

Thereafter, let X=<x, p(x)> and Y=<y, p(y)> be two objects,

p(x) = {Mx} {Ix}

p(y) = {My} {Iy}

where

(Mi) is the set of methods and (Ii) is the set of instance variables of object i.

Using the above definition of coupling, any action by (Mx) on (My} or fly) constitutes coupling, as

does any action by (My) on (Mx) or {Ix). Therefore, any evidence of a method of one object using

methods or instance variables of another object constitutes coupling. Since objects of the same class

have the same properties, two classes are coupled when methods declared in one class use methods or

instance variables of the other class.

Reflecting the definitions and principles described above, the potential steps for evaluating the "Class

Coupling" of a class X are

1. Extract the set of methods {Mx) and instance variables {Ix} of the class X.

2. For each class Y in the system other than the class X, extract the set of methods (My) and

instance variables {Iy).

3. Examine the behavior of (Mx), if there is any action on (My) or {Iy), skip step 4.

4. Examine the behavior of (My), if there is any action on (Mx) or (lx), go to step 5, otherwise,

go to step 6.

A-7

Appendix A Software Engineering Measures

5. Class X and Y are coupled, increase the sum of the measure by 1. Then go to step 1.

6. Class X and Y are not coupled. Go to step 1.

Reference:

1. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on

Software Engineering, Vol. 20, No. 6, June 1994

2. I. Vessey and R. Weber, Research on Structured Programming: An Empiricist's Evaluation, IEEE

Transactions on Software Engineering, vol. SE- 10, 1984

3. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc. New

Jersey, 1994

A.4 Class Hierarchy Nesting Level

Application

This measure assesses how many classes can potentially affect this class [1].

Definition

Classes are organized for inheritance purposes hierarchically in a tree structure, with the base or the

topmost class called the root. The nesting level is the distance3 in this hierarchy between the root and

the class [21 [3]. For instance, in Figure A-I the hierarchy nesting level of class F is 2. In case of

multiple inheritance, this measure is the maximum length from the node to the root of the tree. This

measure was also defined by Chidamber and Kemerer as Depth of Inheritance Tree (DIT) [1].

Large nesting numbers indicate a design problem, where developers are overly zealous in finding and

creating objects. This will usually result in subclasses that are not specialization of all the superclasses.

A subclass should ideally extend the fiuctionality of the superclasses.

The distance is measured as the number of classes (circles in Figure A-1) between the root and the class being measured, which

includes root but excludes current class.

A-8

Appendix A Software Engineering Measures

Implementation

Figure A-1 An Example of Class Hierarchy Diagram

1. Construct the class hierarchy diagram of the class being counted (for example, Figure A-I is

the class hierarchy diagram that is applicable to class C, D, E, and F).

2. Count the number of ancestors of the class being counted. For example, if one tries to count

the DIT value of class C, then the set of ancestors of class C is {P, A}. Therefore the DIT of

class C is 2.

After the above steps, we can count the nesting level from the top of the class hierarchy or the bottom

of the firmework. Lorenz and Kidd suggested the threshold of this measure is 6. That is, if the value of

this measure of a class is over 6, this class then needs to be reexamined or redesigned for over-design

[2] [4].

Reference:

I. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on

Software Engineering, Vol. 20, No. 6, June 1994

2. B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity, Prentice Hall Inc. 1996.

3. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc.

New Jersey, 1994

4. R. D. Neal, The Applicability of Proposed Object-Oriented metrics to Developer Feedback in

Time to Impact Development, NASA/WVU Software IV&V Facility, Software Research

Laboratory, Technical Report Series, NASA-IVV-96-004, NASA, 1996.

A-9

Appendix A Software Engineering Measures

A.5 Cohesion

Categories

• Structural Level

0 Life-Cycle Coverage

derived

design (artifact)

Application

The goal of this measure is to indicate the "goodness" of a design.

Cohesion was introduced by Myers [1] in 1978 to serve as an indication of "goodness" of a design.

There is a widespread belief that high cohesion yields better software designs, which in turn should

lead to fewer faults, and thus higher reliability.

Cohesion falls in the category of "good design principles" and is widely believed to promote good

software design. Determination of its values is frequently somewhat subjective. Additional discussion

can be found in [3].

Definitions

Cohesion is defined to be "the degree of functional relatedness of processing elements within a single

module."

Implementation

Decision tables that permit cohesion and coupling to be determined for a module are presented in Table

A-3. This table is ordered from poorer forms of cohesion to preferred forms.

Table A-3 Determination of Cohesion [11

Difficult to describe the module function

Module performs more than one function

Only one function performed per

invocation

Each function has an entry point

Module performs related class of functions -

Functions are related to problem procedure -

Y IN

X
Coincidental cohesion

Logical cohesion

- IN

N IN IN

Y IY lY

Y IN IN

N IY lY I-

X

N

Y

N

N

Y

Y

Y I-

N IY IY I-

- IN IY IY

- � .1 .1 - J - J - - -

A-I0

I

A.- ; e ti- same data All or Ule CL V- - - i i + i 1 - I

Appendix A Software Engineering Measures

Classical cohesion

Procedural cohesion X

Communicational cohesion X

Informational cohesion X

Functional cohesion
X

Remarks

Ref. 4 provides a theoretically more precise measure of functional cohesion. This was not included here

because of doubts as to its practicality.

References

1. J. Myers, Reliable Software through Composite Design, Petrocelli (1975).

2. Han S. Son and Poong H. Seong, "Quantitative evaluation of safety-critical software at the

early development stage: an interposing logic system software example."

3. Edward Yourdon and Larry L. Constantine, Structured Design: Fundamentals of a Discipline

of Computer Program and Systems Design, Prentice-Hall (1979).Rel. Eng. And System Safety

50, 3 (1995), 261-269.

4. James M. Bieman and Linda M. Ott, "Measuring functional cohesion," IEEE Trans. Soft. Eng.

20, 8 (August 1994), 644-657.

5. James M. Bieman and Byung-Kyoo Kang, "Measuring design-level cohesion," IEEE Trans.

Soft. Eng. 24, 2 (February 1998), 111-124.

A.6 Completeness

Categories

* Structural Level derived

* Life-Cycle Coverage requirement (artifact)

Application

This measure determines the completeness of the software specification during the requirements phase.

Also, the values determined for the primitives associated with the completeness measure can be used to

identify problem areas within the software specification.

A-1 I

Appendix A Software Engineering Measures

Primitives

The completeness measure consists of the following primitives:

B, = number of functions not satisfactorily defined

B2 = number of functions

B 3 = number of data references not having an origin

B4 = number of data references

B5 = number of defined functions not used

B6 = number of defined functions

B 7 = number of referenced finctions not defined

B& = number of referenced functions

B9 = number of decision points not using all conditions, or options or both.

B10 = number of decision points

BII = number of condition options without processing

B12 = number of condition options

B13 = number of calling routines with parameters not agreeing with defined parameters

B 14 = number of calling routines

B15 = number of condition options not set

B 16 = number of set condition options having no processing

B17 = number of set condition options

B]8 = number of data references having no destination

Implementation

The completeness measure (CM) is the weighted sum often derivatives expressed as

10
CM = w, D

where for each i = 1, ... , 10, each weight wi has a value between 0 and 1, the sum of the weights is

equal to 1, and each Di is a derived measure with a value between I and 0.

A-12

Appendix A Software Engineering Measures

To calculate the completeness measure

1. The definitions of the primitives for the particular application must be determined.

2. The priority associated with the derived measure must also be determined. This prioritization

would affect the weights used to calculate the completeness measure.

Each primitive value would then be determined by the number of occurrences related to the definition

of the primitive.

Each derived measure is determined as follows:

D= (B2 - B1)/B2 = functions satisfactorily defined

D2 = (B4 - B3)/B4 = data references having an origin

D3 = (B6 - BS)/B 6 = defined functions used

D4 = (B8 - B7)/Bg = referenced functions used

5= (Bjo- B9)/Bjo = all condition options at decision points

D6= (B 12 - B 1)/B12 = all condition options with processing at decision points are used

D7= (B 14 - Bl 3)/B[4 = calling routine parameters agree with the called routine's defined

parameters

Ds= (B12 - B15)/B12 = all condition options that are set

D9 = (B17 - BI 6)/B17 =processing follows set condition options

Dlo= (B4 - B18)/B4 = data references have a destination

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Murine, g. e. On Validating Software Quality Metrics. 4" Annual IEEE Conference on

Software Quality, Phoenix, Arizona, Mar. 1985.

3. San Antonio, R, and Jackson, K. Application of Software Metrics During Early Program

Phase. Proceedings of the National Conference on Software Test and Evaluation, Feb. 1982.

A-13

Appendix A Software Engineering Measures

A.7 Coverage Factor

Application

This measure reflects the ability of the system to automatically recover from the occurrence of a failure

during normal system operation.

Definitions

Coverage = Probability [system recovers I failure occurs], which means the probability that the system

can recover from a failure. [1] [2]

Implementation

Several different models for predicting coverage in a fault-tolerant system are listed here. They include

models for permanent, intermittent, and transient errors4 . These models are described below:

A.7.1 Discrete time Markov chain

A high-level abstraction of a typical error-handling model may divide the process into sequential

phases, forming a discrete time Markov chain (DTMC) [2]. According to [3], the matrix of eventual

exit probabilities given an entry state is given by ([I - P I -J R), where P = [py] denotes the transition

probability matrix, and pj is the probability that the next state will be an error handling statej given that

the current state is the error handling state i. R =] r,] where r,1 is the probability of reaching an exit

statej from an error handling state i.

The terminology in this description is borrowed from [6]:

Afailure occurs when the delivered service deviates from the specified service.

An error is that part of the system state which is liable to lead to failure.

The cause of an error is afault.

Upon occurrence, a fault creates a latent error, which becomes effective when it is activated.

If an error, once activated, remains effective for a long time (relative to the time needed to detect and handle it), it may be

considered permanent. If the error cycles relatively quickly between the active and latent states, it is considered intermittent. If

the error, once activated, becomes latent, and remains latent for a long time, it is considered a transient error.

A- 14

Appendix A Software Engineering Measures

_.c
Detect I -_ Locate -- ReoVerl L - iicce

(1- cd)
(1k~e (- C,)

L -
verag

Figure A-2. Three phases of error handling from a permanent effective error

A three-phase error-handling model of detection, location, and recovery is presented in Figure A-2

(cited from [21) with the assumption that errors are permanently effective, which means that once

errors has been activated, they remain effective. Thus system coverage c is given by:

C = Cd XCt XCr

where Cd, c,, c, are the probabilities that the system reaches the "Locate" state from the "Detect" state,

the "Recover" state from the "Locate" state, the "Coverage Success" state from the "Recover" state,

respectively.

Some models, like the one proposed by the designer of CAST [41, combined the concept of transient

restoration with a permanent recovery model (like the one in Figure A-2) into a single model shown in

Figure A-3 (cited from [2]).

"+, IU

1 -is
4; Al r Detection

--
Failure

I L, i - u

Transient , Permanent 1,P,_ ~ N

Recovery -- Recoveri

Figure A-3. CAST recovery model

In this CAST model, errors are activated at a total rate of X (permanent rate) + c(transient rate); they

are detected with a probability ofu,. Failure to detect the error is conservatively assumed to "pollute"

the system with more errors resulting in a system failure. After detection, transient recovery is

attempted; it is successful (if the error is transient) with probability I- 1,, where 1n is the transient

A-15

Appendix A Software Engineering Measures

leakage. Unsuccessful transient recovery leads to permanent recovery where the cause of the error (the

fault) is located with a probability of v. and the system recovers with a probability of w,, 5.

A.7.2 Continuous time Markov chain (CTMC)

The only difference between CTMC and DTMC stems from the fact that the labels on the arcs of a

CTMC model represent the rate at which the state changes occur, rather than simply probabilities as in

the DTMC models.

An example of CTMC model is shown in Figure A-4 (cited from [2]). In this model, state A is entered

on activation of the error. In this state A, the effective error begins to pollute the system with more

errors (at rate p to state P). The effective error may be detected (state D) at the rate 8 before affecting

delivered service. The error may become latent (state B) before producing more errors or being

detected. Global error detection mechanisms may detect an error (at rate C with probability q) before

the delivered service is affected [2].

The model shown in Figure A-4 can be used to represent either permanent or intermittent errors.

Parameters a and 13 represent the rates at which an effective error becomes latent and vice versa. Thus

if a and 13 are set to 0, this model represents permanent errors.

The coverage factor, that is, the probability of going from state A to state D is given by:

C 5 qp
I = S+p S+p

I The parameters with the subscript n represent the parameters of the nth module.

A-16

Appendix A Software Engineering Measures

Figure A-4 A CTMC model

A.7.3 ESPN Models

ESPN (Extended stochastic Petri net) models combine both local and global timing in the same model.

Please refer to [5] for a more detailed explanation. Figure A-5 (cited from [2]) represents a coverage

model for a system that combines hardware and software error detection techniques. Errors that are not

detected by hardware checking may be detected by a diagnostic program that is run periodically. The

diagnostic unit is periodically executed even if there is no indication of an error in the unit, so as to

detect latent errors in the system.

When a latent error is activated, a token is deposited in the place labeled effective error, enabling

transition T1. Transition T1 fires immediately, and deposits a token in the place labeled perm, with

probability p, or in place inter A (active intermittent) with probability i, or place trans with probability

t. If the effective error is permanent, its representative token remains in the corresponding place, just as

a permanent error remains in the system. If the error is intermittent, the token will circulate between the

inter A and inter B places. If the error is transient, its representative token will eventually move to the

trans gone place. While the error is not benign, transitions 72 or T3 may be enabled. (An arc with a

small circle signifies an inhibitor6 arc.)

There is also a set of two places and transitions that represent the state of the running process: norm

(normal operation), or diag (diagnostics). Initially, a token is present in the norm place, and cycles

around through these two places. When the token is in the norm place, the effective error propagates

within the system. The error may be detected by local (hardware) error detection mechanisms with

probability s (transition 72); if not detected, the system is polluted. These additional errors may be

detected by some global error detection mechanisms (transition T4) with probability q. When the

system is undergoing diagnostics, transition T3 is enabled and the error may be detected with

6 An inhibitor arc is analogous with the negative gate in logic theory.

A-17

Appendix A Software Engineering Measures

probability c. Each of the probabilities c, q, and s are conditional, and are conditioned in the event that

an error exists.

Figure A-5 An ESPN coverage model

Once an error is detected, the recovery processes may begin. The counter place counts the number of

times an error is detected. The first k times it is detected, the system attempts some recovery, denoted

by the place labeled start T.R., after which the system undergoes diagnosis. If the transient error

disappears in the meantime, the transient restoration (trans rest) exit is taken. If an error is detected

more than k times, permanent recovery is commenced.

The methodology used solving an ESPN model depends upon the distributions chosen for the transition

firing times. If all the firing times are assumed to be exponentially distributed, then the ESPN can be

converted to a Markov chain for solution [5]. Under certain conditions, the net may be solved as a

semi-Markov process or it may be simulated for solution.

Reference

1. T. F. Arnold, "The Concept of Coverage and Its Effect on the Reliability Model of a Repairable

System", IEEE Transactions on Computers, vol. c-22, no. 3, March 1973

A-18

Appendix A Software Engineering Measures

2. J. B. Dugan, K. s. Trivedi, "Coverage Modeling for Dependability Analysis of Fault-Tolerant

Systems", IEEE Transactions on Computers, vol. 38, no. 6, June 1989

3. U.N. Bhat, Elements of Applied Stochastic Processes, 2nd ed. New York, Wiley, 1984

4. R. B. Conn, P. M. Merryman, and K. L. Whitelaw, "CAST - A complementary analytic-simulative

technique for modeling fault-tolerant computing systems", Proceedings AIAA Comput. Aerosp.

Conf., Los Angeles, CA, Nov. 1977, pp. 6.1-6.27

5. M. K. Molloy, "Performance analysis using stochastic Petri nets," IEEE Trans. Comput., vol. C

31, pp. 913-917, Setp. 1982.

6. J. Laprie, Dependable computing and fault-tolerance: Concepts and terminology," Proc. Fifteenth

Int. Symp. Fault-Tolerant Comput., July 1985, pp. 2-7.

A.8 Cumulative Failure Profile

Categories

* Structural Level derived

• Life-Cycle Coverage implementation(process)

Applications

The goal of this measure is to

1. Predicate reliability through the use of failure profiles;

2. Estimate additional testing time to reach an acceptability reliable system;

3. Identify modules and subsystems that require additional testing.

Primitives

fi total number of failures of a given severity level in a given time interval, i

=1,..

Implementation

Plot cumulative failures versus a suitable time base. The curve can be derived for the system as a

whole, subsystems, or modules.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

A-19

Appendix A Software Engineering Measures

2. Mendis, K. S., Quantifying Software Quality, Quality Progress, May 1982, pp 18-22.

3. Musa, J. D., lannino, A., and Okumoto, K., Software Reliability: Measurements, Prediction,

Application, New York, McGraw-Hill, 1987.

4. Shooman, M. L., Software Engineering DesignrReliability/Management, New York, McGraw

Hill, 1983, pp 329-335.

5. Trachtenberg, M., Discovering How to Ensure Software Reliability, RCA Engineer, vol 27, no

1, Jan/Feb 1982, pp 53-57.

A.9 Cyclomatic Complexity

Categories

* Structural Level

* Life-Cyde Coverage

derived

design(artifact)

This measure determines the structure complexity of a coded module. The use of this measure is

designed to limit the complexity of a module, thereby promoting understandability of the module and

the number of minimum logical testing path.

Definitions & primittves

N = number of nodes (sequential groups of program statements)

E = number of edges (program flows between nodes)

SN = number of splitting nodes (nodes with more than one edge emanating from it)

RG = number of regions (areas bounded by edges with no edges crossing)

Implementation

Using regions, or nodes and edges, a strongly connected graph of the module is required. A strongly

connected graph is one in which a node is reachable from any other node: this is accomplished by

adding an edge between the exit node and the entry node. Once the graph is constructed, the measure is

computes as follows:

C=E-N+ I

The cyclomatic complexity is also equivalent to the umber of regions (RG) or the number of splitting

nodes plus one (SN + 1). If a program contains an N-way predicate, such as a CASE statement with N

cases, the N-way predicate contributes N-I to the count of SN.

A-20

Application

Appendix A Software Engineering Measures

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Basili, V. R., Perricone, B. T., Software Errors and Complexity: An Empirical Investigation,

Communications of the ACM, Jan. 1984.

3. McCabe, T. J., Structured Testing: A Software Testing Methodology Using the Cyclomatic

Complexity Metric, National Bureau of Standards Special Publication 500-99, Dec. 1982.

A.10 Data or Information Flow Complexity

Categories

* Structural Level derived

* Life-Cycle Coverage design(artifact)

Application

The measures Data or Information Flow Complexity are designed to measure the structural complexity

or procedural complexity of a system.

This measure can be used to evaluate:

1. The information flow structure of large scale systems

2. The procedure and module information flow structure

3. The complexity of the interconnections between modules

Moreover, this measure can also be used to indicate the degree of simplicity of relationships between

subsystems and to correlate total observed failures and software reliability with data complexity.

Primitives

Ufi = local flows into a procedure

datain = number of data structures from which the procedure retrieves data

1fo = local flows from a procedure

dataout = number of data structures that the procedure updates

length = number of source statements in a procedure (excludes comments in a procedure)

A-21

Appendix A Software Engineering Measures

implementationow

Determine the flow of information between modules or subsystems or both by automated data flow

techniques, HIPO charts, etc.

A local flow from module A to B exists if one of the following holds true:

(1) A calls B,

(2) B calls A and A returns a value to B that is used by B, or

(3) Both A and B are called by another module that passes a value from A to B.

Values of primitives are obtained by counting the data flow paths directly into and out of the modules.

The two intermediate derived measures fanin and fanout are defined as:

fanin = Ifi + datain

faout = fo + dataout

The information flow complexity (IFC) is IFC = (fanin *fanout)
2

Weighted IFC- length * (fanin * fanout)
2

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Bieman, I. W., Edwards, W. P.., Measuring Software Complexity, Technical Report 83-5-1,

Computer Science Department, University of Southwestern Louisiana, Feb. 1983.

3. Bieman, J. W., Edwards, W. R-, Measuring Data Dependency Complexity. Technical Report

83-5-3, Computer Science Department, University of Southwestern Louisiana, Feb. 1983.

4. Bieman, J. W., Baker, A., Clites, P., et al, A Standard Representation of Imperative Language

Program for Data collection and Software Measures Specification. Journal of Systems and

Software, Dec. 1987.

5. Henry, S., Kafura, D., Software Structure Metrics Base on Information Flow, IEEE

Transactions on Software Engineering, vol SE-7 (5), Sept. 1981.

A.11 Defect Density

Categories

Structural Level derived

A-22

Appendix A Software Engineering Measures

Life-Cycle Coverage design(process)

Application

This measure indicates whether the inspection process is effective.

The defect density measure can be used after design and code inspections of new development or large

block modifications. If the defect density is outside the norm after several inspections, it is an

indication that the inspection process requires further scrutiny.

Primitives

Establish severity levels for defect designation.

Di = total number of unique defects detected during the ith design or code inspection process.

I = total number of inspections.

KLSOD = in the design phase, the number of source lines of design statements in thousands.

KSLOC = in the implementation phase, the number of source lines of executable code and non

executable data declarations in thousands.

Inplementatlon

Establish a classification scheme for severity and class of defect. For each inspection, record the

product size, and the total number of unique defects.

For example, in the design phase, calculate the ratio.
I

ZDi
i=1

DD =
KSLOD

This measure assumes that a structured design language is used. However, if some other design

methodology is used, then some other unit of defect density has to be developed to conform to the

methodology in which the design is expressed.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Dobbins, J., Buck, R., Software Quality in the 80's. Trends andrApplications Proceedings,

IEEE Computer Society, 1981.

3. Dobbins, J., Buck, R., Software Quality Assurance, Concepts, Journal of the Defense Systems

Management College, Autumn, 1982.

A-23

Appendix A Software Engineering Measures

4. Fagan, Michael, E., Design and Code Inspection to Reduce Errors in Program Development.

IBM Systems Journal, vol 15, no 3, Jul. 1976, pp 102-211.

A.12 Error Distribution

Categories

* StructuralLevel

* Life-Cycle Coverage

derived

requirements (artifact)

This measure is designed to rank the failure modes. The search for the causes of software faults and

failures involves the analysis of the defect data collected during each phase of the software

development. Distribution of the errors allows ranking of the predominant failure modes.

Primitives

Error description notes the following points:

1. Associated faults

2. Types

3. Severity

4. Phase introduced

5. Preventive measure

6. Discovery mechanism, including reasons for earlier non-detection of associated faults.

Implementation

The primitives for each error are recorded and the errors are counted according to the criteria adopted

for each classification. The number of errors is then plotted for each class. Examples of such

distribution plots are shown in Figure A-6. In the three examples of Figure A-6, the errors are classified

and counted by phase, by the cause, and by the cause for deferred fault detection. Other similar

classification could be used such as the type of steps suggested to prevent the reoccurrence of similar

errors or the type of steps suggested for earlier detection of the corresponding faults.

A-24

Application

Appendix A Software Engineering Measures

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

Figure A-6 Error Analysis

SW W22-M Em.y GUIDHEpoR TUE m or imm.ANARD DICTIONARY

NUMBER OF
ERR.ORS

I I I I I

i LIF

aI I I I I i I z z j

(a) Ermor Distzbution by Phase

NUMBR OF
ERRORSý (GLOBIALLY, •I "

CAUSES CATEGORY

8 Ini 0- ZZ

(b) EUT- by Cause Categm

NU.MBER OF
ERRORS

S I I

I g"" " I II
I I II I I S I

WHY THE ERROR HAS NOT

z BEEN DETECTED EAR UER

0
z z

a_ 2

(c) Suggested Causes for Error Detecion Deferral

A-25

Appendix A Software Engineering Measures

A.13 Failure Rate

Categories

* Structural Level

* Life-Cycle Coverage

derived

testing (artifact)

Application

This measure is used to indicate the growth in the software reliability as a function of test time.

Primitives

observed times between failure (for example, execution time) for a given severity level, i = 1,

fi= number of failures of a given severity level in the ith time interval

Implementation

The failure rate X(t) at any point in time can be estimated from the reliability function, R(t), which in

turn can be obtained from the cumulative probability distribution, F(t), of the time until the next failure

using any of the software reliability growth models such as the non-homogeneous Poisson process

I F [dR(t)]
) L dt J

(NHPP) or a Bayesian type model. The failure rate is

where

R(t) = I - F(t)

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Miller, D. R., Exponential Order Statistic Models of Software Reliability Growth, IEEE

Transactions on Software Engineering, vol SE-1 2, no 1, Jan. 1986.

3. Okumoto, K., A Statistical Method for Quality Control, IEEE Transaction on Software

Engineering, vol SE-I 1, no 12, Dec. 1985, pp 1424-1430.

4. Gingpurwalla, N., Soyer, R., Assessing (Software) Reliability Growth Using a Random

Coefficient Autoregressive Process and Its Ramifications, IEEE Transactions on Software

Engineering, vol SE-1 1, no 12, Dec. 1985, pp 1456-1463.

A-26

Appendix A Software Engineering Measures

5. Yamada, S., Osaki, S., Software Reliability Growth Modeling: Models and Applications,

IEEE Transactions on Software Engineering, vol SE- 11, no 12, Dec. 1985, pp 1431-1437.

A.14 Fault Density

Categories

* Structural Level

* Life-Cycle Coverage

derived

requirements (artifact)

This measure indicates the fault density of a specific program for the given severity levels. In particular

this measure can be used to perform the following functions:

1. Predicate remaining faults by comparison with expected fault density.

2. Determine if sufficient testing has been completed based on predetermined goals for severity

class.

3. Establish standard fault densities for comparison and prediction.

Primitfives

Establish the severity levels for failure designation.

F = total number of unique faults found in a given time interval resulting in failures of a specified

severity level

KSLOC = number of source lines of executable code and non-executable data declarations in

thousands.

Implementation

Establish severity, failure types and fault types.

I. Failure types might include 110 (input, output, or both) and user. Fault types might result from

design, coding, documentation, and initialization.

2. Observe and log each failure.

3. Determine the program fault(s) that caused the failure. Classify the faults by type. Additional

failures may be found resulting in total faults being greater than the number of failures

observed, or one fault may manifest itself by several failures. Thus, faults and failure density

may both be measured.

A-27

Application

Appendix A Software Engineering Measures

4. Determine total lines of executable and non-executable data declaration source code

(KLSOC).

5. Calculate the fault density for a given severity levels as Fd = F/KLSOC.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Bowen, J. B., A Survey of Standards and Proposed Metrics for Software Quality Metrics,

Computer, 1979, 12 (8), pp 3741.

3. Shooman, M. L., Software Engineering Design/Reliability/Management, New York, McGraw

Hill, 1983, pp 325-329.

A.15 Fault-Days Number

Categories

* Structural Level derived

* Life-Cycle Coverage testing (process)

Application

This measure represents the number of days that faults spend in the software system from their creation

to their removal.

Primitives

Phase when the fault was introduced in the system.

Date when the fault was introduced in the system.

Phase, date and time when the fault is removed.

FDi = fault days for the ith fault.

Note: For more meaningful measures, the time unit can be made relative to test time to operational

time.

Implementation

For each fault detected and removed, during any phase, the number of days from its creation to its

removal is determined (fault-days).

A-28

Appendix A Software Engineering Measures

The fault-days are then summed for all faults detected and removed, to get the fault-days number at

system level, including all faults detected/removed up to the delivery date. In cases when the creation

date for the fault is not known, the fault is assumed to have been created at the middle of the phase in

which it was introduced.

In Figure A-7 the fault-days for the design fault for module A can be accurately calculated because the

design approval date for the detailed design of module A is known. The fault introduced during the

requirements phase is assumed to have been created at the middle of the requirement phase because the

exact knowledge of when the corresponding piece of requirement was specified, is not known.

FAULT- DAYS 2

r-- AULT?

4- FAULT-DAYS 1

, . -',

CONCEPT REOrE- oeSI. I PMLFME1- TEST INST
MENTS TAT0N AND IILIATION OPERAT1ON

HECKOUT MAOVCTM'ANCE

The measure is calculated as shown is Figure A-7.

Figure A-7 Calculation of Fault-Days

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Mills, Harland, D., Software Development, IEEE Transactions on Software Engineering, vol

SE-4, no 4, Dec. 1976.

A.16 Feature Point Analysis

Categories

* Structural Level

* Life-Cycle Coverage

derived

requirements (artifact)

A-29

I

Appendix A Software Engineering Measures

Application

This measure is designed to determine the functional size of software, especially for real-time or

embedded software applications.

This measure can be used starting in the requirements specification phase and throughout the remainder

of the software life cycle as a basis to assess software quality, costs, documentation and productivity.

Feature Points are gaining acceptance as a measure of software size, especially for real-time or

embedded software applications. Feature Points measure the size of an entire application as well as that

of software enhancements, regardless of the technology used for its development and / or maintenance.

Primitives

ILF, EIF, EI, EO, EQ, Algorithms;

The 14 software characteristics: Data Communications, distributed data processing, performance

application, heavily used configuration, transaction rate, on-line data entry, end-user efficiency,

complex processing, reusability, installation ease, operational ease, multiple sites, facilitate change;

The value adjustment factor

Implementation

Feature Point Analysis measures software size by counting six distinct software attributes. Two of

these address the software program data requirements of an end user and are referred to as Data

Functions (items I and 2 below). The remaining four address the user's need to access data and are

referred to as Transactional Functions (items 3, 4, 5 and 6 below).

1. Internal Logical Files (ILF) (logical groups of data maintained in an application)

2. External Interface Files (EIF) (logical groups of data used by one application but maintained

by another application)

3. External Inputs (EI) (which maintain internal logical files)

4. External Outputs (EO) (reports and data leaving the application)

5. External Inquiries (EQ) (combination of a data request and data retrieval)

6. Algorithms (bounded computational problems that are included within a software component)

These six attributes are rated using a single weight as shown in Table A-4.

Table A-4 Computing Feature Point Measure

Measurement Parameters Count Weight Weighted Value
(Count x Weight)

Number of Internal Logical 7

A-30

Appendix A Software Engineering Measures

Thus, an Unadjusted Feature Point is defined as follows:

Unadjusted Feature Point = (External Inputs X Weight) +

(External Outputs X Weight) +

(Logical Internal Files X Weight) +

(Logical Interface Files X Weight) +

(Inquiries X Weight) +

(Algorithms X Weight)

The Unadjusted Feature Point Count is modified by a Value Adjustment Factor that assesses the design

characteristics of the software under consideration. The Unadjusted Feature Point count is multiplied

by the Value Adjustment Factor that considers the system's technical and operational characteristics

and is calculated by answering questions about the following 14 software characteristics:

1. Data Communications. The data and control information used in the application are sent or

received over communication facilities.

2. Distributed Data Processing. Distributed data or processing functions are a characteristic of

the application within the application boundary.

3. Performance Application. performance objectives, stated or approved by the user, in either

response or throughput, influence (or will influence) the design, development, installation and

support of the application.

4. Heavily Used Configuration. A heavily used operational configuration, requiring special

design considerations, is a characteristic of the application.

A-31

Files

Number of External Interface 7
Files

Number of External Inputs 4

Number of External Outputs 5

Number of External Inquires 4

Number of Algorithms 3

Total Feature
Point Count:

Appendix A Software Engineering Measures

5. Transaction Rate. The transaction rate is high and influences the design, development,

installation and support.

6. On-Line Data Entry. On-line data entry and control information functions are provided in

the application.

7. End-User Efficiency. The on-line functions provided emphasize a design for end-user

efficiency.

8. On-Line Update. The application provides on-line update for the internal logical files.

9. Complex Processing. Complex processing is a characteristic of the application.

10. Reusability. The application and the code in the application have been specifically designed,

developed and supported to be usable in other applications.

11. Installation Ease. Conversion and installation ease are characteristics of the application. A

conversion and installation plan and/or conversion tools were provided and tested during the

system test phase.

12. Operational Ease. Operational ease is a characteristic of the application. Effective start-up,

backup and recovery procedures were provided and tested during the system test phase.

13. Multiple Sites. The application has been specifically designed, developed and supported to be

installed at multiple sites for multiple organizations.

14. Facilitate Change. The application has been specifically designed, developed and supported

to facilitate change.

The Function Point Counting Practices Manual gives specific guidelines for determining the "Degree

of Influence" from 0 to 5 for each of fourteen "general system characteristics." These are also

suggested for use in computing the Value Adjustment Factor for Feature Points. This calculation

provides us with the Adjusted Feature Point count.

The following formula converts the total of the Degrees of Influence assigned above to the Value

Adjustment Factor:

Value Adjustment Factor = Total Degree of Influence X .01 + .65

The Value Adjustment Factor measures software design characteristics and changes significantly only

when design changes are made to the software.

Since such design changes occur infrequently, the Value Adjustment Factor is the most stable part of

the Feature Point count. The Value Adjustment Factor is then applied to the Unadjusted Feature Points

(the total of the weighted counts) to establish the Adjusted Feature Point Count. This represents the size

of the application and can be used to compute several measures as discussed in the Interpretation

section of this document.

A-32

Appendix A Software Engineering Measures

Adjusted Feature Points = (Unadjusted Feature Points) X

(Value Adjustment Factor)

This is referred to as the Feature Point Count, denoted by Feature Point, in the following.

The measure of interest is that of software quality, defined by

Software Quality = 1 - [(Number of defects found) / Feature Point]

Each of the functional components of a software system is analyzed in this way and each component's

Feature Point score is added to the total to derive a total Feature Point Count for the application.

Once the Feature Point Count has been calculated, it can be used as a measure of software quality as

defined above. The software quality measure can be computed during each phase of the software life

cycle. The software quality measure is judged to be better as the value computed for the measure

approaches the value 1.

Remarks

The software quality measure based on Feature Point Analysis allows the software production process

to be quantified in terms of the quality of the software produced and it is easily measured.

Organizations that have adopted Feature Point Analysis as a software measure claim to realize many

benefits, including improved quality, improved project estimating, better understanding of project and

maintenance productivity, more disciplined management of changing project requirements, and user

requirements.

Feature Points were originally an extension to the Function Point measure and have similar

disadvantages to Function Points. To use Feature Points effectively, training in the calculation of

Feature Points is required.

Feature Point Analysis has proven to be an accurate technique for sizing, documenting, and

communicating a system's capabilities. It has been successfully used to evaluate the functions of real

time and embedded code systems, such as robot-based warehouses and avionics, as well as traditional

data processing. As computing environments become increasingly complex, it can potentially prove to

be a valuable tool that helps to measure the software quality.

The measure is easy to understand throughout the software life cycle phases, even where direct

measurement of reliability is not possible. Even when more direct measures of software quality and

reliability are available, the software quality measure provides an additional perspective as to the

effectiveness of the design and implementation processes and thus, has the potential of adding

credibility to the product.

References

1. Jones, C., Programming Productivity, McGraw-Hill, Inc., 1986.

2. Jones, C., Applied Software Measurement, McGraw-Hill, Inc., 1991.

A-33

Appendix A Software Engineering Measures

3. Heller, R., "An Introduction to Function Point Analysis," Newsletter from Process Strategies,

Inc., No. 4, Fall 1996, (http://www.processtrat.com/)

4. Pressman, R., Software Engineering-A Practitioner's Approach, McGraw-Hill, 1992.

A.17 Full Function Point

Application

Full Function Point (FFP) was proposed with the aim of offering a functional size measure specifically

adapted to real-time software. [1] [2]

Definiton

FFP is a functional measure based on the standard function point analysis (FPA) technique. It was

designed for both management information system (MIS) and real-time software. Since FFP is an

extension of the standard FPA, all rules of FPA are included in the FFP counting process. However, a

small number of subsets of FPA rules dealing with control concepts have been expanded considerably.

The control aspect of real-time control software is addressed by new function types.

FFP introduces two new Control Data Function Types named Updated Control Group (UCG) and

Read-only Control Group (RCG). A UCG is a group of control data updated by the application. The

control data live for more than one transaction. A RCG is a group of control data used, but not updated,

by the application being counted. The control data live for more than one transaction, too.

The following four new Control Process Function Types address the sub-processes of real-time

software.

1. External Control Entry ECE: processes control data coming from outside the application's

boundary 7.

2. External Control Exit ECX: An ECX is a unique sub-process. It is identified from a functional

perspective. The ECX process control data goes outside the application's boundary.

3. Internal Control Read ICR. An ICR is a unique sub-process. It is identified from a functional

perspective. The ICR reads control data.

4. Internal Control Write ICW: is a unique sub-process. The ICW writes control data.

The Control Data Function Types, which contribute to the overall size, fall into two categories.

' The boundary of a piece of software is the conceptual frontier between this piece and the environment in which it operates, as it

is perceived externally from the perspective of its users. The boundary allows the measurer to distinguish, without ambiguity,

what is included inside the measured software from what is part of the measured software's operating environment.

A-34

Appendix A Software Engineering Measures

I. Multiple occurrences Control Data Function Types, which can be either updated or read only by

the process. These are similar to the Internal Logical files and External Interface files counted for

FPA.

2. Single occurrence Control Data Function Types. These data groups may be maintained by the

processes (Updated Control Group-UCG) or only read by the processes (Read only Control Group

RCG). The single occurrence data groups contain all instances of single control values used by the

processes. There may be only one instance of a UCG or RCG per application.

Implementation

The FFP involves applying a set of rules and procedures to a given piece of software, as it is perceived

from the perspective of its inherent functional user requirements [1] [2]. An overview of the counting

by FFP is summarized in Figure A-8 [3]. After identifying the counting boundary, FFP analysis

includes the following steps:

Figure A-8 Overview of Full Function Point Counting

I. Counting Management Function Types. For the Management Function Types, namely, ILF,

EIF, EI, EO, and EQ, the counting procedure and point assignment rules are unchanged in

FFP. This step covers the counting of Management Data and Management Process shown in

Figure A-8.

2. Counting Control Data Function Types. Control Data Function Types, include UCG and RCG,

are classified into single occurrence groups of data and multiple occurrence groups of data

The point of these kinds of data groups is determined by the number of Data Element Types

(DETs) and Record Elements Types (RETs) and the corresponding complexity matrix (please

refer to the description of FPA in this appendix and [4] for more detailed explanation). The

point of single occurrence Control Data Function Types depends only on the number of DETs.

A-35

Appendix A Software Engineering Measures

3. Counting Control Process Function Types. The number of points assigned to Control Process

Functions Types, namely, ECE, ECX, ICW, and ICR, depends on the number of DETs. Once

the number of DETs is determined, the number of points is determined by the matrix in [5],

pp. 14.

4. Determine the unadjusted FFP and the adjust factor. The determination of the unadjusted FFP

count and the technical complexity factor is the same as that of FPA.

References

1. SELAM, Software Engineering in Applied Metrics. web: http://www.tmagl.qc.ca

2. UQAM, Software Engineering Management Research Laboratory, Universite' du Quebec a

Montreal. web: http://www.lmagl.qc.ca

3. 1999, N. Kececi, M. Li, C. Smidts, "Function Point Analysis: An application to a nuclear reactor

protection system," Probabilistic Scfety Assessment - PSA'99, August 22-25, 1999, Washington,

DC.

4. IFPUG (1994). Function Point Counting Practices Manual, Release 4. 0, International Function

Point Users Group - IFPUG, Westerville, Ohio, 1994

5. D. St-Pierre, etc. Full Function Points: Counting Practices Manual, Technical Report 1997-04,

Software Engineering Management Research laboratory and Software Engineering Laboratory in

Applied Metrics (SELAM), September, 1997.

A.18 Function Point Analysis

Categories

* StructuralLevel derived

* Life-Cycle Coverage requirements (artifact)

Application

This measure is designed to determine the functional size of software.

This measure can be used starting in the requirements specification phase and throughout the remainder

of the software life cycle as a basis to assess software quality, costs, documentation and productivity.

Function points have gained acceptance as a primary measure of software size. Function points

accurately measure the size of an entire application as well as that of software enhancements,

regardless of the technology used for its development and/or maintenance.

A-36

Appendix A Software Engineering Measures

Primitives

ILF, EIF, EI, EO, EQ;

The 14 software characteristics: Data Communications, distributed data processing, performance

application, heavily used configuration, transaction rate, on-line data entry, end-user efficiency,

complex processing, reusability, installation ease, operational ease, multiple sites, facilitate change;

The value adjustment factor

Implementation

Function Point Analysis measures software size by counting five distinct software attributes. Two of

these address the software program data requirements of an end user and are referred to as Data

Functions (items I and 2 below). The remaining three address the user's need to access data and are

referred to as Transactional Functions (items 3, 4, and 5 below).

1. Internal Logical Files (logical groups of data maintained in an application)

2. External Interface Files (logical groups of data used by one application but maintained by

another application)

3. External Inputs (which maintain internal logical files)

4. External Outputs (reports and data leaving the application)

5. External Inquiries (combination of a data request and data retrieval)

These five attributes are rated as having low, average, or high importance in the analysis. The

rating matrix for inputs is shown in the table and illustrates the rating process. The importance of

each component is then weighted according to Table A-5.

Table A-5 Computing Function Point Measure

Measurement Count Low Average High Weighted Value
Parameters I I (Count x Weight)

Number of Internal 7 10 15
Logical Files

Number of External 5 7 10
Interface Files

Number of External 3 4 6
Inputs

Number of External 4 5 7
Outputs

A-37

Appendix A Software Engineering Measures

The total Function Point count is based upon an Unadjusted Function Point Count that is defined as

follows:

Unadjusted Function Points = (Internal Logical Files X Weight) +

(External Interface Files X Weight) +

(External Inputs X Weight) +

(External Outputs X Weight) +

(External Inquiries X Weight)

The Unadjusted Function Point Count is modified by a Value Adjustment Factor that assesses the

design characteristics of the software. The Unadjusted Function Point count is multiplied by the Value

Adjustment Factor. This factor considers the system's technical and operational characteristics and is

calculated by answering questions about the following 14 software characteristics:

I. Data Communications. The data and control information used in the application are sent or

received over communication facilities.

2. Distributed Data Processing. Distributed data or processing functions are a characteristic of

the application within the application boundary.

3. Performance Application. performance objectives, stated or approved by the user, in either

response or throughput, influence (or will influence) the design, development, installation and

support of the application.

4. Heavily Used Configuration. A heavily used operational configuration, requiring special

design considerations, is a characteristic of the application.

5. Transaction Rate. The transaction rate is high and influences the design, development,

installation and support.

6. On-Line Data Entry. On-line data entry and control information functions are provided in

the application.

7. End-User Efficiency. The on-line functions provided emphasize a design for end-user

efficiency.

A-38

Number of External 3 4 6
Inquires

Total Function

Point Count:

Appendix A Software Engineering Measures

8. On-Line Update. The application provides on-line update for the internal logical files.

9. Complex Processing. Complex processing is a characteristic of the application.

10. Reusability. The application and the code in the application have been specifically designed,

developed, and supported to be usable in other applications.

11. Installation Ease. Conversion and installation ease are characteristics of the application. A

conversion and installation plan and/or conversion tools were provided and tested during the

system test phase.

12. Operational Ease. Operational ease is a characteristic of the application. Effective start-up,

backup, and recovery procedures were provided and tested during the system test phase.

13. Multiple Sites. The application has been specifically designed, developed, and supported to

be installed at multiple sites for multiple organizations.

14. Facilitate Change. The application has been specifically designed, developed and supported

to facilitate change.

The Function Point Counting Practices Manual gives specific guidelines for determining the "Degree

of Influence" from 0 to 5 for each of fourteen "general system characteristics." Each of these factors is

scored based on their influence on the system being counted. The resulting score will increase or

decrease the Unadjusted Function Point count by 35%. This calculation provides us with the Adjusted

Function Point count.

The following formula converts the total of the Degrees of Influence assigned above to the Value

Adjustment Factor:

Value Adjustment Factor = Total Degree of Influence X .01 + .65

The Value Adjustment Factor measures software design characteristics and changes significantly only

when design changes are made to the software.

Since such design changes occur infrequently, the Value Adjustment Factor is the most stable part of

the Function Point count. The Value Adjustment Factor is then applied to the Unadjusted Function

Points (the total of the weighted counts) to establish the Adjusted Function Point Count. This

represents the size of the application and can be used to compute several measures as discussed in the

Interpretation section of this document.

Adjusted Function Points = (Unadjusted Function Points) X

(Value Adjustment Factor)

This is referred to as the Function Point Count, denoted by FP, in the following. The measure of

interest is that of software quality, defined by

Software Quality = 1 - [(Number of defects found) / FP]

A-39

Appendix A Software Engineering Measures

Each of the functional components of a software system is analyzed in this way and each component's

FP score is added to the total to derive a total Function Point count for the application.

Once the Function Point Count, FP, has been calculated, it can be used as a measure of software

quality as defined above. The software quality measure can be computed during each phase of the

software life cycle. The software quality measure is judged to be better as the value computed for the

measure approaches the value 1.

Remarks

The software quality measure based on Function Point Analysis allows the software production process

to be quantified in terms of the quality of the software produced and it is easily measured.

Organizations that have adopted Function Point Analysis as a software measure claim to realize many

benefits including improved: project estimating; understanding of project and maintenance activity

productivity, management of changing project requirements and user requirements. Function Points can

be converted to an equivalent size in terms of lines of source code (LOC).

The following table, adapted from Ref. 4, provides a rough estimate of the average number of lines of

code required to build one Function Point (FP) using various types of computer programming

languages:

Additional information on the conversion of Function Points to lines of code can be found in Ref. 2.

Function Points were originally designed to be applied to business information processing type

applications. Capers Jones proposed extensions to the Function Point measure that may enable the

concept to be applied to scientific and real-time application software. To use Function Points

effectively, training in the calculation of Function Points is required.

A-40

Programming Language LOC / FP (Average)

Assembly Language 300

COBOL 100

FORTRAN 100

Pascal 90

Ada 70

Object-Oriented Languages 30

Fourth Generation Languages 20

Code Generators 15

Appendix A Software Engineering Measures

Function Point Analysis has proven to be an accurate technique for sizing, documenting and

communicating a system's capabilities. It has been successfully used to evaluate the functions of real

time and embedded code systems, such as robot based warehouses and avionics, as well as traditional

data processing. As computing environments become increasingly complex, it is proving to be a

valuable tool that accurately reflects the systems we deliver and maintain.

The measure is easy to understand throughout the software life cycle phases, even where direct

measurement of reliability is not possible. Even when more direct measures of software quality and

reliability are available, the software quality measure provides an additional perspective as to the

effectiveness of the design and implementation processes and thus, has the potential of adding

credibility to the product.

References

1. Jones, C., Programming Productivity, McGraw-Hill, Inc., 1986.

2. Jones, C., Applied Software Measurement, McGraw-Hill, Inc., 1991.

3. Heller, R., An Introduction to Function Point Analysis, Newsletter from Process Strategies,

Inc., No. 4, Fall 1996, (http://www.processtrat.con/)

4. Pressman, R., Software Engineering-A Practitioner's Approach, McGraw-Hill, 1992.

A.19 Function Test Coverage

Readers are referred to the Section A.26 for the description of this measure.

A.20 Graph-Theoretic Complexity for Architecture

Categories

* Structural Level derived

* Life-Cycle Coverage design (artifact)

Application

Complexity measures can be applied early in the product cycle for development trade-offs as well as to

assure system and module comprehensibility adequate for correct and efficient maintenance. Many

system faults are introduced in the operational phase by modifications to systems that are reliable but

difficult to understand. In time, a system's entropy increase making a fault insertion more likely with

each new change. Through complexity measures the developer plans ahead for correct change by

establishing initial order and thereby improves the continuing reliability of the system throughout its

operational life.

A-41

Appendix A Software Engineering Measures

There are three graph-theoretic complexity measures for software architecture:

(1) Static complexity - A measure of software architecture, as represented by a network of

modules, useful for design tradeoff analyses. Network complexity is a function based on

the countable properties of the modules (nodes) and network.

(2) Generalized static complexity -- a measure of software architecture, as represented by a

network of modules and the resources used. Since resources are acquired or released when

program are invoked in other modules, it is desirable to measure the complexity associated

with allocation of those resources in addition to the basic (static) network complexity.

(3) Dynamic complexity - A measure of software architecture, as represented by a network of

modules during execution, rather than at rest, as is the case for the static measures. For

example, modules may execute at different frequencies.

Prifmtives

K = number of resources, index by k = 1, K

E = number of edges, indexed by i = 1. E

N = number of nodes, indexed byj = 1. N

cj = complexity for program invocation and return along each edge ej as determined by the user (

such as operating system complexity)

Resource status array R(kE)

{I if kth resource is required for the ith edge (el)
rid 0 otherwise

dk = complexity for allocation of resource k as determined by the user (for example, complexity

associated with a procedure used to gain exclusive access to common data)

Implementation

Using nodes and edges, a strongly connected graph of the network is required. a strongly connected

graph is one in which a node is reachable from any other node. This is accomplished by adding an edge

between the exit node and the entry node. Each node represents a module that may or may not be

executed concurrently with another module. Each edge represents program invocation and return

between modules. In this case the edges are called single paths.

1. Static Complexity - Once a strongly connected graph is constructed, with modules as nodes,

and transfer of control as edges, the static complexity is calculated as C = E - N + 1

2. Generalized Static complexity - Resources (storage, time, logic complexity, or other

measurable factors) are allocated when programs are invoked in other modules. Given a

A-42

Appendix A Software Engineering Measures

network and resources to be controlled in the network, the generalized static complexity

E K

associated with allocation of these resources is C = I (c, + L (dk -r,))
i=1 k=1

3. Dynamic Complexity - A change in the number of edges may result from module interruption

due to invocations and returns. An average dynamic network complexity can be derived over a

given time period to account for the execution of modules at different frequencies and also for

module interruption during execution. Dynamic complexity is calculated using the formula for

static complexity at various points in time. The behavior of the measure is then used to

indicate the evolution of the complexity of the software.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Hall, N. R., Complexity Measures for Systems Design, Ph.D. Dissertation, Polytechnic

Institute of New York, Brooklyn, Jun. 1983.

3. Hall, N. R., Preiser, S., Dynamic Complexity Measures for Software Design, Proceedings of

Total Systems Reliability Symposium, IEEE Computer Society, Dec. 1983.

4. Hall, N. R., Preiser, S., Combined Network Complexity Measures. IBMJournal of Research

and Development, Jan. 1984.

5. McCabe, T. J., A Complexity Measure, IEEE Transactions on Software Engineering, vol SE

2, no 4, Dec. 1976, pp 308-320.

A.21 Information Flow Complexity

Readers can be referred to the Section A. 10 for the description of the measure Information Flow

Complexity.

A.22 Lack of Cohesion in Methods (LCOM)

Application

This measure is a relative indicator of cohesion of a class. The "relative" originates from the fact that

this measure is the subtraction of the number of related method pairs from the number of unrelated

method pairs within the class under measurement [1]. Therefore the value of LCOM is a comparison

between the number of correlated methods and the number of irrelevant methods from a design

perspective (because whether two methods are correlated is determined by whether there is any

instance variable shared by both of them. This criterion is based on the design perspective).

A-43

Appendix A Software Engineering Measures

Definition

Consider a class C1 with n methods Mi, M2 ... , M.. Let {!j} be the set of instance variables used by

method Mi. Then there are n such sets {(1}, {(}, ... , {I,}. Let P = {({I,, !j) I Ii nI/j = 0} and Q ={(,

Ij) I Ii r 12 # •0}. If all n sets {11}, {}...) I}are 0 then let P = 0 .

The LCOM is defined as [1]:

LCOM = P1 - IQI, if JP1 > 1Q18

or

LCOM = 0, otherwise

LCOM is the sum total of the number of method pairs whose similarity9 is 0 minus the number of

method pairs whose similarity is not zero. The larger the number of similar methods10 , the more

cohesive the class, which is consistent with traditional notions of cohesion that measure the inter

relatedness between portions of a program [2].

The LCOM value provides a measure of the relative disparate nature of methods in the class. A smaller

number of disjoint pairs (elements of set P) implies greater similarity of methods. LCOM is intimately

tied to the instance variables and methods of a class, and therefore is a measure of the attributes of an

object class.

The following are observations that relate to the value of this measure:

I. Cohesiveness of methods within a class is desirable, since it promotes encapsulation.

2. Lack of cohesion signals classes should probably be split into two or more subclasses.

3. Any measure of disparateness of methods helps identify flaws in the design of classes.

4. Low cohesion increases complexity, thereby increasing the likelihood of errors during the

development process.

Implementation

1. Identify the n methods MI, A,, ..., M, in the class under measurement.

2. Identify the n sets of {l}, {IŽ}..{I).

3. Identify P and Q.

s JP1 is defined as the number of elements contained in the set P.

9The degree of similarity between two methods MI and M2 in class C, is given by: o = {J}) r) (12} where {11} and (12} are the

sets of instance variables used by MI and M2.

"10 Similar methods are also called correlated methods in this description. They are methods that share at least one instance

variables.

A-44

Appendix A Software Engineering Measures

4. Calculate the LCOM.

References

1. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on

Software Engineering, Vol. 20, No. 6, June 1994

2. S. R. Schach, Software Engineering 2 nd Edition, Richard d. Irwin, Inc., Aksen Associates, Inc.

Boston, 1993.

A.23 Man Hours per Major Defect Detected

Categories

* Structural Level

* Life-Cycle Coverage

derived

design (process)

This measure is created to supply a quantitative figure that can be used to evaluate the efficiency of the

design and code inspection process.

The design and code inspection processes are two of the most effective defect removal processes

available. The early removal of defects at the design and implementation phases, if done effectively

and efficiently, significantly improves the reliability of the developed product and allows a more

controlled test environment.

Primitives

T, = time expended by the inspection team in preparation for design or code inspection meeting.

"T2 = time expended by the inspection team in conduct of a design or code inspection meeting.

Si = number of major (nontrivial) defects detected during the ith inspection.

I = total number of inspections to date.

Implementation

At each inspection meeting, record the total preparation time expended by the inspection team. Also,

record the total time expended in conducting the inspection meeting. All defects are recorded and

grouped into major/minor categories. (A major defect is one which must be corrected for the product to

function within specified requirements.)

A-45

Application

Appendix A Software Engineering Measures

The inspection time is summarized and the defects are cumulatively added. The computation should be

performed during design and code. If the design is not written in a structural design language, then this

measure can be only applied during the implementation phase.

The man hours per major defect detected is
I

S(T1 + o

si=

This computation should be initiated after approximately 8000 lines of detailed design or code have

been inspected.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Fagan, Michael, E., Design and Code Inspection to Reduce Errors in Program Development,

IBMSystems Journal, vol 15, no 3, Jul. 1976, pp 182-211.

A.24 Mean Time to Failure

Categories

* Structural Level derived

• Life-Cycle Coverage testing (process)

Application

The goal of this measure is for hypothesis testing a specified MTTF requirement.

Primitive

Mean time to failure is the basic parameter required by most software reliability models. Computation

is dependent on accurate recording of failure time (ti), where t, is the elapsed time between the ith and

the (i-1)st failure. Time units used should be as precise as feasible. CPU execution time provides more

resolution than wall-clock time. Thus CPU cycles would be more appropriate for a software

development environment. For an operational environment that might require less resolution, an

estimate based on wall-clock time could be used.

Implementation

Detailed record keeping of failure occurrences that accurately track the time (calendar or execution) at

which the faults manifest themselves is essential. If weighting or organizing the failures by complexity,

A-46

Appendix A Software Engineering Measures

severity, or the reinsertion rate is desired, detailed failure analysis must be performed to determine the

severity and complexity. Prior failure experience or model fitting analysis (for example, goodness-of

fit-test) can be used to select a model representative of a failure process, and to determine a reinsertion

rate of faults.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Currit, P. A., Dyer, M., Mills, H. D., Certifying the Reliability of Software, IEEE Transaction

on Software Engineering, vol SE-12, no 1, Jan. 1986, pp 3-11.

3. Musa, J. D., Okumoto, K. A., Logarithmic Poisson Execution Time Model for Software

Reliability Measurement, Proceedings of the 7th International Conference on Software

Engineering, 1984, pp 230-238.

4. Rushforth, C., Staffanson, F., Crawford, A., Software Reliability Estimation Under Conditions

of Incomplete Information, University of Utah, RADC-TR-230, Oct. 1979.

5. Shooman, M. L., Trivedi, A. K, A Many-State Markov Model for Computer Software

Performance Parameters, IEEE Transactions on Reliability, vol R-25, no 2, Jun. 1976, pp 66

68.

6. Sukert, A. N., A Software Reliability Modeling Study, RADC-TR-76-247, Aug. 1976.

7. Wagoner, W. L., The Final Report on Software Reliability Measurement Study, Aerospace

Corporation, Report Number TOR-0074(4112), Aug. 1973.

A.25 Minimal Unit Test Case Determination

Categories

• Structural Level

• Life-Cycle Coverage

derived

design (artifact)

This measure determines the number of independent paths through a module so that a minimal number

of covering test cases can be generated for unit test.

Primitives

N = number of nodes; a sequential group of program statements

E = number of edges; program flow between nodes

A-47

Application

Appendix A Software Engineering Measures

SN = number of splitting nodes; a node with more than I edge emanating from it

RG = number of regions; in a graph with no edges crossing, an area bounded by edges

Implementation

The cyclomatic complexity is first computed using the cyclomatic complexity measure described in 6.

The complexity of the module establishes the number of distinct paths. The user constructs test cases

along each path so all edges of the graph are traversed. This set of test cases forms a minimal set of

cases that covers all paths through the module.

References

I. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Conte, S. D., Dunsmore, H. E., Shen, V. Y., Software Engineering Metrics and Models,

Menlo Park: Benjamin/Cummings Publishing Co, 1986.

3. McCabe, T. J., A Complexity Measure, IEEE Transactions on Software Engineering, Vol SE

2, no 4, Dec. 1976, pp 308-320.

4. McCabe, T. J., Structured Testing: A Software Testing Methodology Using the Cyclomatic

Complexity Metric, National Bureau of Standards Special Publication 500-99, Dec. 1982.

A.26 Modular Test Coverage

Categories

* Structural Level derived

* Life-Cycle Coverage testing (process)

Application

This measure quantifies a software test coverage index for a software delivery.

The primitives counted may be either functions or modules. The operational user is most familiar with

the system and will report system problems in terms of functional requirements rather than module test

requirements. It is the task of the evaluator to obtain or develop the functional requirements an

associated module cross-reference table.

Primitives

FE = number of the software functional (modular) requirements for which all test cases have been

satisfactorily completed.

A-48

Appendix A Software Engineering Measures

FT = total number of software functional (modular) requirements.

Implementation

The test coverage index is expressed as a ratio of the number of software functions (modules) tested to

the total number of software functions (modules) that make up the users' (developers') requirements.

This ratio is expressed as

FE
Functional (modular) test coverage index =

FT

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Ceriani, M., Cicu, A., Maiocchi, M., A Methodology for Accurate Software Test Specification

and Auditing, Computer Program Testing, B. Chandrasekaran and S. Radicchi, eds, North

Holland Publishing Company, 1981.

3. Henderson, J. B., Hierarchical Decomposition: Its Use in Testing, Testing Techniques

Newsletter, vol 3, no 4, San Francisco: Software Research Associate, Nov. 1980.

4. Maiocchi, M., Mazzetti, A., Villa, M., TEFAX: An Automated Test Factory for Functional

Quality Control of Software Projects, Colloque de Genie Logiciel #2, Nice, 1984.

5. Miller, E., Coverage Measure Definition Reviewed, Testing Technique Newsletter, vol 3, no 4,

San Francisco: Software Research Associate, Nov. 1980.

A.27 Mutation Testing

Categories

"* Structural Level derived

"• Life-Cycle Coverage testing (process)

Application

The goal of this measure is to examine the ability of the test data to differentiate between a correct

program and an incorrect one.

Several known error types are inserted into the program and the program is executed with the specified

test cases and in the testing environment. This allows the estimation of the number of errors remaining

in the program.

A-49

Appendix A Software Engineering Measures

Primitives

Number of seeded errors found

Total number of seeded errors

Number of real errors found

Implementation

This measure, denoted by MTR, is based on the assumption that the ratio of the seeded errors found to

the total number of seeded errors is approximately equal to the ratio of the number of real errors found

to the number of real errors. Thus, MTR is defined as follows:

AMTR Number of seeded errors found - Number of real errors found
Total number of seeded errors Total number of real errors

The equation that defined MTR allows one to solve for any of the variables given knowledge of the

other three. In particular, one can estimate the total number of real errors remaining and the associated

testing effort. If all seeded errors were found, this is an indication that either the test cases are adequate,

the inserted mutations (seeded errors) do not represent the distribution of real errors or the seeded

errors were too easy to find.

Remarks

The measure is easy to calculate and provides an indication that the test cases are adequate to locate

software errors. This measure is applicable to algorithmic solution and generally results in good

estimates of operational reliability.

The generation of mutations may be labor intensive. The error types and seeded errors must be a

statistical distribution of real errors in the program for this method to be of value. Even for a small

program the number of mutants can be quite large.

A mutation of a correct program is another program that exhibits differences from the correct one

(these are referred to as "seeded errors" even though they are intentionally inserted into the program).

These errors are inserted one at a time and reflect those errors that may be made by a "competent

programmer." An example of such of such an error is replacing "<" by">" in a conditional. See Refs.

1, 2, and 3 for additional detail on the mutation testing measure.

References

1. Peng, W. and Wallace, D., Software Error Analysis, NIST Special Publication 500-209, 1993.

2. Myers, G., The Art of Software Testing," John Wiley & Sons, 1979.

3. Royer, T., Software Testing Management: Life on the Critical Path," Prentice-Hall, Inc.,

1993.

A-50

Appendix A Software Engineering Measures

A.28 Number of Children (NOC)

Application

NOC is the count of the immediate subclasses of the class being measured. NOC was presented by

Chidamber and Kemerer as a measure of complexity [1] [2].

Definition

NOC is defined as the number of immediate subclasses subordinated to a class in the class hierarchy.

This measurement has the following viewpoints [I]:

I. The greater the number of children, the greater the reuse, since inheritance is a form of reuse.

2. The greater the number of children, the greater the likelihood of improper abstraction of the parent

class. If a class has a large number of children, it may be a case of misuse of subclassing.

3. The number of children gives an idea of the potential influence a class has on the design. If a class

has a large number of children, it may require more testing of the methods in that class.

Implementation

1. Construct the class hierarchy diagram (see Figure A-1).

2. Identify the immediate subclasses of the class under measurement. For instance, if the class P in

Figure A-I is under measurement, then the immediate subclasses of class P are class C and class

D.

3. Sum up the number of such subclasses. For instance, that number is 2 in the previous example. The

number is NOC.

References

1. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on

Software Engineering, Vol. 20, No. 6, June 1994

2. R. D. Neal, The Applicability of Proposed Object-Oriented Metrics to Developer Feedback in

Time to Impact Development, NASA/WVU Software IV & V Facility, Software Research Lab.,

NASA-IVV-96-004, 1996.

A.29 Number of Class Methods in a Class

Application

This measure assesses software size in terms of the number of methods in a class [I].

A-51

Appendix A Software Engineering Measures

The number of class methods can indicate the amount of commonalty being handled for all instances. It

can also indicate poor design if the services handled by individual instances1" are handled by the class

itself.

Definition

Methods are the behaviors that a class can exhibit. Generally they are activated by a message sent to

the class. The number of methods available to the class affects the size of the class.

Implementation

1. Identify all the methods within the class under measurement. These methods include the

overridden methods.

2. Count the number of the methods retrieved by step 1.

3. This number is the value of the measure number of class methods in a class.

References

1. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc. New

Jersey, 1994

A.30 Number of Faults Remaining (Error Seeding)

Categories

"* Structural Level

"* Life-Cycle Coverage

derived

requirements (artifact)

Application

This measure estimates the faults remaining in a program. The estimated number of faults remaining in

a program is related to the reliability of the program. There are many sampling techniques that estimate

this number. This section describes a simple form of seeding that assumes a homogeneous distribution

of a representative class of faults.

This measure can be applied to any phase of the software life cycle. The search for faults continues for

a determined period of time that may be less than that required to find all seeded faults. The measure is

not computed unless some non-seeded faults are found.

" The instance means the subclass in this context.

A-52

Appendix A Software Engineering Measures

Primitives

N, = number of seeded faults

n,= number of seeded faults found

nF= number of faults found that were not intentionally seeded

Implementation

A monitor is responsible for error seeding. The monitor inserts (seeds) N, faults representative of the

expected indigenous faults. The test team reports to the monitor the faults found during a test period of

predetermined length.

Before seeding, a fault analysis is needed to determine the types of faults and their relative frequency

of occurrences expected under a particular set of software development conditions. Although an

estimate of the number of faults remaining can be made on the basis of very few inserted faults, the

accuracy of the estimate (and hence the confidence in it) increases as the number of seeded faults

increases.

Faults should be inserted randomly throughout the software. Personnel inserting the faults should be

different and independent of those persons later searching for the faults. The process of searching for

the faults should be carried out without knowledge of the inserted faults. The search should be

performed for a previously determined period of time (or effort) and each fault reported to the central

monitor.

Each report fault should be reviewed to determine if it is in the class of faults being studied and, if so, if

it is a seeded or an indigenous fault. The maximum likelihood estimate of the number of indigenous

(unseeded) faults in the specified class is

NF = nN

ns

where NF is truncated to the integer value. The estimate of the remaining number of faults is then

NFm = NF - nF

The probability of finding nF of NF indigenous faults and nF of N, seeded faults, given that there are (nh

+ n5) faults found in the program is C(NS, n,) C(NF nF) / C(NF +N,. nF + n,), where the function C(x, y)

= x!/(x-y)!y! is the combination of"x" things taken at "y" at a time. Using this relation one can

calculate confidence intervals.

A-53

Appendix A Software Engineering Measures

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Thayer, T. A., Kipow, M., Nelson, E. C., Software Reliability: A Study of Large Project

Reality, New York: North Holland Publishing Co, 1978.

3. Basin, S. L, Estimation of Software Error Rates Via Capture-Recapture Sampling, Palo Alto:

Science Applications Inc, Sept 1973.

4. Basin, S. L., Measuring the Error Content of Software, Palo Alto: Science Applications Inc,

Sept 1974.

5. Bowen, J. B., Saib, S. H., Association of Software Errors, Classifications to AED language

Elements, Prepared under Contract Number NAS 2-10550 by Hughes Aircraft Company, Ful

lerton, and General Research Corporation, Santa Barbara, California, Nov 1980.

6. Bowen, J. B., Saib, S. H., Error Seeding Technique Specification, Prepared under Contract

Number NAS 2-10550 by Hughes Air-craft Company, Fullerton, and General Research

Corporation, Santa Barbara, California, Dec 1980.

7. DACS, Rudner Model, Seeding/Tagging, Quantitative Software Models, DACS, SSR- 1, Mar

1979, pp 8-56 to 3-58.

8. Duran, J. W., Wjorkowski, J. J., Capture-Recapture Sampling for Estimating Software Error

Content, IEEE Transactions on Software Engineering, vol SE-7, Jan. 1981.

9. Feller, W., An Introduction to Probability Theory and Its Applications, New York: John Wiley

and Sons, Inc, 1957, p 43.

10. System Specification for Flexible Inter-connect Specification Number SS078779400, May

15,1980.

11. Lipow, M., Estimation of Software Package Residual Errors, TRW Software Series SS-72-09,

Redondo Beach: TRW E&D, 1972.

12. McCabe, T. J., Structural Testing, Columbia, Maryland: McCabe & Associates, Inc, 1984.

13. Mills, H. D., On the Statistical Validation of Computer Programs, FSC-72-6015, Gaithers

burg, Maryland: Federal Systems Division, Inter-national Business Machines Corporation,

1972.

14. Ohba, M., et al. S-shape Reliability Control Curve: How Good Is It? Proceedings COMP

SACS2, IEEE Computer Society, 1982, pp 38-44.

15. Rudner, B., Seeding/Tagging Estimation of Software Errors: Models and Estimates. RADC

TR-15, 1977.

A-54

Appendix A Software Engineering Measures

16. Seber, G. A. F., Estimation ofAnimalAbundance and Related Parameters, 2nd ed, New York:

McMillan Publishing Co, 1982.

A.31 Number of Key Classes

Application

This measure estimates the number of key classes in a system. The value of this measure is an indicator

of effort required to develop the system.

Definitions

Key classes are central to the business domain being developed. Key classes are also the central points

of reuse on future projects, since they are highly likely to be needed in other domains in the business

[1]. The number of key classes is an indication of the volume of work needed in order to develop an

application. It is also one indication of the amount of long-term reusable objects that will be developed

as a part of this effort for applications dealing with the same or similar problem domain.

Implementation

Usually, we can determine if a class is key by asking questions such as,

I. Could I easily develop applications in this domain without this class?

2. Would a customer consider this object important?

3. Do many scenarios involve this class?

Answers to these questions will segregate classes into categories of key and support. In general, project

experiences have shown that you can expect 20-40 percent of your classes being categorized as key

domain classes, with the rest being support classes. Low numbers of key classes may indicate that you

need to explore more of your business domain to discover important abstractions to simulate your

business.

Reference

1. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc.

New Jersey, 1994

A.32 Requirement Compliance

Categories

. Structural Level derived

A-55

Appendix A Software Engineering Measures

Life-Cycle Coverage requirements (artifact)

Application

The goal of this measure is to verify requirements' compliance by using system verification diagram

(SVDs).

SVD is a logical interconnection of stimulus response elements (for example, stimulus and response)

which detect inconsistencies, incompleteness, and misinterpretations.

Primitives

Des = decomposition elements:

Stimulus - external input

Function - defined input/output process

Response - result of the function

Label - numerical DE identifier

Reference - specification paragraph number

Requirement errors detected using SVDs:

N1 = number due to inconsistencies

N2 = number due to incompleteness

N3 = number due to misinterpretation

Implementation

The implementation of an SVD is composed of the following phases:

(1) The decomposition phase is initiated by mapping the system requirement specifications into

stimulus/response elements (Des). That is, all keywords, phases, functional and/or

performance requirements and expected outputs are documented on decomposition forms.

(2) The graph phase uses the Des from the decomposition phase and logically connects them to

form the SVD graph.

(3) The analysis phase examines the SVD from the graph by using connectivity and

reachability metrics. The various requirements error types are determined by examining the

system verification diagram and identifying errors as follows:

a) Inconsistencies --- Decomposition elements that do not accurately reflect the system

requirement specification.

A-56

Appendix A Software Engineering Measures

b) Incompleteness --- Decomposition elements that do not completely reflect the system

requirement specification.

c) Misinterpretation -- Decomposition element that do not correctly reflect the system

requirement specification. This error may occur during translation of the requirements

into decomposition elements, constructing the connectivity and reachability matrices.

An analysis is also made of the percentages for the various requirement error types for the respective

categories' inconsistencies, incompleteness, and misinterpretation.

Inconsistencies (%) = (N]/(NI+N 2+N3)) * 100

Incompleteness (%) = (N2/(N1+N2+N3)) * 100

Misinterpretation (%) = (N3/(N1+N2+N3)) * 100

This analysis can aid also in future software development efforts.

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Fischer, K. F., Walker, M. G., Improved Software Reliability Through Requirement

Verification, IEEE Transactions on Reliability, vol R-28, no 3, Aug. 1979, pp 233-239.

A.33 Requirements Specification Change Requests

Categories

* StructuralLevel

* Life-Cycle Coverage

derived

requirement (artifact)

This measure indicates the stability of the functional requirements.

The requirements phase of the software life cycle has the greatest potential for improving the quality of

the resulting system and helping to control the software development cost. It has been observed that a

significant cause of project failure and poor quality in software systems is frequent changes to the

requirements.

Primitives

Requested changes to the requirements specification

A-57

Application

Appendix A Software Engineering Measures

Implementation

The requirements specification change request measure, denoted by RSCR, is defined as the number of

change requests that are made to the requirements specification. The requested changes are counted

from the time of the first release of the requirements specification document to the time when the

product begins it operational life. Thus, RSCR is defined as:

RSCR = E.(requested changes to the requirements specification),

where the summation is taken over all requirement change requests initiated during the software

development life cycle.

RSCR is an indication of the quality of the resulting software system. Evidence suggests that the

system quality decreases as the size of RSCR increases.

Remarks

The RSCR is easy to compute and clearly shows the stability and/or growth of functional requirements

throughout the software life cycle, by life cycle phase.

The use of this measure in conjunction with Function Points or Feature Point counts can be used to

show status and trends in requirements growth.

The measure is easy to understand throughout the software life cycle phases, even where direct

measurement of reliability is possible. Even when more direct measures of reliability are available,

RSCR measure provides an additional view of the effectiveness of the finctional specification process

used and has the potential of adding credibility to the product.

References

1. Moller, K. and Paulish, D., Software Metrics, A Practitioner's Guide to Improved Product

Development, Chapman and Hall Computing, 1993.

2. Jones, C., Applied Software Measurement, McGraw-Hill, Inc., 1991.

A.34 Requirements Traceability

Categories

* Structural Level derived

* Life-Cycle Coverage design (artifact)

Application

This measure aids in identifying requirements that are either missing from, or in addition to, the

original requirements.

A-58

Appendix A Software Engineering Measures

Primitives

RI = number of requirements met by the architecture.

R2 = number of original requirements.

Implementation

A set of mappings from the requirements in the software architecture to the original requirements is

created. Count each requirement met by the architecture (RI) and count each of the original

requirements (R2). Compute the traceability measure (TM):

TM = R1 xl100%
R2

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Henninger, K., Specifying Software Requirements for Complex Systems, New Techniques

and Their Application, IEEE Transaction on Software Engineering, vol SE-6, no 1, Jan. 1980,

pp I - 14.

3. Perriens, M. P., Software Requirements Definition and Analysis with PSL and QBE, IBM

Technical Report FSD 80-0003, Bethesda, IBM Federal Systems Division, Oct. 1980.

4. Yeh, R., Zave, P., et al, Software Requirements: A Report on the State of the Art, Computer

Science Technical Report Series TR-949, College Park, Maryland, University of Maryland,

Oct. 1980.

A.35 Reviews, Inspections and Walkthroughs

Categories

* Structural Level derived

* Life-Cycle Coverage requirements (process)

Application

This measure identifies the number of satisfied checklist items for each product.

Performing technical reviews, walkthroughs and/or inspections may affect the overall quality of the

software development work products (e.g., software requirements specification, test plan, design

description, code, etc.) This measure uses various checklists and captures the number of checklist items

satisfied for each specific work product of interest.

A-59

Appendix A Software Engineering Measures

Primitives

NC, = the number of checklist items satisfied for that work product

N= the total number of checklist items applicable to that work product.

Implementation

Several checklists exist that can be used to evaluate a particular work product to the software

development process; e.g., a checklist for system testing (see Ref. 2, pages 371-374). Other checklists

are found in references (TBD).

This type of measure is defined as follows:

For a specific work product and selected checklist, the figure of merit, denoted by FOM, be defined as:

FOM= [(X (NC))/ N] * 100,

where

NCi = the number of checklist items satisfied for that work product

N= the total number of checklist items applicable to that work product.

FOM is only an indication of the quality of the resulting software system. Confidence in the specific

work product increases non-linearly as the FOM approaches 100%.

Remarks

The measure is easy to calculate and provides a quality check for each work product at each life cycle

phase of the software development effort.

The measure is easy to understand throughout the software life cycle phases, even where direct

measurement of reliability is possible. Even when more direct measures of reliability are available, this

measure provides an additional view of the effectiveness of development process used and has the

potential of adding credibility to the product.

References

I. Moller, K. and Paulish, D., Software Metrics, A Practitioner's Guide to Improved Product

Development, Chapman and Hall Computing, 1993.

2. Freedman, D. and Weinberg, G., Handbook of Walkthroughs, Inspections and Technical

Reviews: Evaluating Programs, Projects, and Products, Dorset House Publishing Company,

1990.

3. Redmill, F., Dependability of Critical Computer Systems 1, Elsevier Applied Science, 1988.

A-60

Appendix A Software Engineering Measures

A.36 Software Capability Maturity Model (CMM)

Categories

* Structural Level primitive

• Life-Cycle Coverage requirements (process)

Application

The goal of this measure is to describe the principles and practices underlying software process

maturity and is intended to help software organizations improve the maturity of their software

processes.

The SW-CMM is a framework that describes the key elements of an effective software process. It

covers practices for planning, engineering, and managing software development and maintenance.

When followed, these key practices improve the ability of organizations to meet goals for cost,

schedule, functionality, and product quality.

Primitives

This measure, denoted by Li, where i = 1, 2, 3, 4, 5, is based on the assumption that the predictability,

effectiveness, and control of a project's or an organization's software processes-and hence the

production of higher-quality software-are believed to improve as the organization moves up these five

levels. While not rigorous, empirical evidence to date supports this belief.

Li is defined as follows: Li represents the project's or organization's software process maturity as

measured using one of the Software Engineering Institute's CMM-based appraisal instruments.

The CMM-based appraisal methods rate an organization's software process maturity and classifies it as

one of the following levels:

1. Initial. The software process is characterized as ad hoc, and occasionally even chaotic. Few

processes are defined, and success depends on individual effort and heroics.

2. Repeatable. Basic project management processes are established to track cost, schedule, and

functionality. The necessary process discipline is in place to repeat earlier successes on

projects with similar applications.

3. Defined. The software process for both management and engineering activities is

documented, standardized, and integrated into a standard software process for the

organization. All projects use an approved, tailored version of the organization's standard

software process for developing and maintaining software.

A-61

Appendix A Software Engineering Measures

4. Managed. Detailed measures of the software process and product quality are collected. Both

the software process and products are quantitatively understood and controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feedback from the

process and from piloting innovative ideas and technologies.

Remarks

The measure is easy to calculate and provides an of software process maturity. This can be used to infer

the quality of the resulting software products that are developed by each maturity level process.

This is not a direct measure of the reliability of the software developed by an Li process.

Except for Level 1, each maturity level is decomposed into several key process areas that indicate the

areas an organization should focus on to improve its software process.

The key process areas at Level 2 focus on the software project's concerns related to establishing basic

project management controls. They are requirements management, software project planning, software

project tracking and oversight, software subcontract management, software quality assurance, and

software configuration management.

The key process areas at Level 3 address both project and organizational issues, as the organization

establishes an infrastructure that institutionalizes effective software engineering and management

processes across all projects. They are organization process focus, organization process definition,

training program, integrated software management, software product engineering, intergroup

coordination, and peer reviews.

The key process areas at Level 4 focus on establishing a quantitative understanding of both the

software process and the software work products being built. They are quantitative process

management and software quality management.

The key process areas at Level 5 cover the issues that both the organization and the projects must

address to implement continual, measurable software process improvement. They are defect

prevention, technology change management, and process change management.

Each key process area is described in terms of the key practices that contribute to satisfying its goals.

The key practices describe the infrastructure and activities that contribute most to the effective

implementation and institutionalization of the key process area. The intention in setting down the key

practices is not to require or espouse a specific model of the software life cycle, a specific

organizational structure, a specific separation of responsibilities, or a specific management and

technical approach to development. The intention, rather, is to provide a description of the essential

elements of an effective software process.

The key practices are intended to communicate principles that apply to a wide variety of projects and

organizations, that are valid across a range of typical software applications, and that will remain valid

over time. Therefore, the approach is to describe the principles and leave their implementation up to

each organization, according to its culture and the experiences of its managers and technical staff.

A-62

Appendix A Software Engineering Measures

References

1. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, "Capability Maturity

Model for Software, Version 1.1," Software Engineering Institute, CMU/SEI-93-TR-24,

DTIC Number ADA263403, February 1993.

2. Mark C. Paulk, Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis, and Marilyn W.

Bush, "Key Practices of the Capability Maturity Model, Version 1.1," Software Engineering

Institute, CMU/SEI-93-TR-25, DTIC Number ADA263432, February 1993.

3. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, "Capability Maturity

Model, Version 1.1," IEEE Software, 10, 4 (July 1993), pp. 18-27.

A.37 System Design Complexity

Categories

* Structural Level

* Life-Cycle Coverage

derived

design (artifact)

The goal of this measure is to identify the system complexity.

Systems with high complexity are more likely to contain faults than systems with lower complexity.

One measure of system complexity that has some experimental validation is system design complexity.

An expected fault rate can be derived from the design complexity.

Primitives

Let

n = number of modules in the system

(i) = fanout of the it" module

v(i) = number of 1/0 variables in the th module

Derived quantities are:

S(i) = structural complexity of the ?' module

D(i) data complexity of the ith module

St = program structural complexity

A-63

Application

Appendix A Software Engineering Measures

Dt = program data complexity

C = program design complexity

Fr = fault rate, in terms of expected faults per KLOC

Here, "fanout" is defined, for a module, to be the number of other modules called (found by counting

the number of "call" statements in the module). 1/0 variables are distinct arguments exchanged

between the module and the rest of the program, and includes distinct arguments in a calling sequence

and referenced global variables.

Module design complexity is a combination of structural complexity and data complexity, and system

design complexity is a function of the average complexity of the various module. The following

equations are used:

S(i) = f 2 (i)

D(i) = v)
f(i) + 1

St= Zf 2 (i)
i=1

Dt = __ v(i)

n j=1 f(i) + 1

C = St + Dt

Fr = 0.4 x C-5.2

Implementation

The fault rate is given in terms of delivered lines of code, and is derived from experimental data. Only

a limited number of cases were used to fit the curve, and the parameters may need to adjusted for other

organizations.

Remarks

This measure does consider more than one aspect of complexity, which is better than most complexity

measures.

This appears a useful technique for predicting faults in code, once the detailed design or code is

available.

References

1. David N. Card and Robert L. Glass, Measuring Software Design Quality, Prentice-Hall

(1990).

A-64

Appendix A Software Engineering Measures

A.38 Test coverage

Categories

• Structural Level derived

• Life-Cycle Coverage testing (process)

Application

The goal of this measure is to identify the completeness of the testing process from both a developer

and a user perspective.

The measure relates directly to the development, integration and operational test stages of product

development, in particular, unit, functional, system and acceptance tests. Developers, using the

program class of primitives, can apply the measure in unit test to obtain a measure of thoroughness of

structural tests. System tester can apply the measure in two ways: First, by focusing on requirements

primitive, the system tester can gain o user-view of the thoroughness of functional tests. Second, by

focusing on the program class of primitives, the system tester can determine the amount of

implementation in the operational environment.

Primitives

The primitives for test coverage are in two classes, program and requirements. For program, there are

two type: functional and data. The program functional primitives are either modules, segments,

statements, branches (nodes), or paths. Program data primitives are equivalence classes of data.

Requirements primitives are either test cases or functional capabilities.

Implementation

Test coverage (TC) is the percentage of requirement primitives implemented times the percentage of

primitives executed during a set of tests. A simple interpretation of test coverage can be expressed by

the following formula:

TC(%) = (implemented capabilities) × (program primitives tested) ×100

(required capabilities) (total program primitives)

References

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable

Software, IEEE, 1988.

2. Demillo, R. A., Martin, r. J., Software Test and Evaluation: Current Defense Practices

Overview, Georgia Institute of Technology, Jun. 1983.

3. McCabe, T., Tutorial Text: Structured Testing, IEEE Computer Society Press, 1981.

A-65

Appendix A Software Engineering Measures

4. Miller, E., Tutorial: Program Testing Techniques, IEEE Computer Society Press, 1977.

A.39 Test Mutation Score

Application

This measure is designed initially for the purpose of providing a measure of the efficiency of a testing

data set T. A high score indicates that T is very efficient for the program P with respect to mutation

fault exposure.

Definitions

A mutation is a single-point, syntactically correct change, introduced in the program P to be tested. The

mutation score, denoted ms, is the ratio of the non-equivalent mutants of P (i.e. those which are

distinguishable from P for at least one data point of the input domain) which are killed by a specific test

data set T [1].

A mutant is the code after a syntactical modification. A mutant is killed by a test case that causes the

mutant program to produce "altered" output. Equivalent mutants are mutant programs that are

functionally equivalent to the original program and therefore cannot be killed by any test case. The goal

of mutation is to find test cases that kill all nonequivalent mutants. [21

Implementation

A set of mutants of P consists of a set of programs which differ from P in containing one mutation from

a given list of faults representative of the most likely faults introduced by programmers using the

language of P. A mutant is killed (i.e. distinguished from P) by a test set T if its output history differs

from that of the original program P.

For instance, one of the possible mutants of the following FORTRAN procedure

SUBROUTINE MI(X, MAG)

MAG= I

DO1I =I,N

I MAG = MAG + X(I)**2

MAG = SQRT(MAG)

RETURN

END

is to change the target of the loop, which is the labeled "1" statement, to another labeled target, which

is the labeled "1" statement below.

SUBROUTINE M I (X, MAG)

MAG=1

DO 1 I=1,N

A-66

Appendix A Software Engineering Measures

MAG = MAG + X(I)**2

I MAG = SQRT(MAG)

RETURN

END

Mutation analysis has already been used in experiments conducted on FORTRAN, COBOL and C

programs. A specific mutant generator is required for each programming language, in order to produce

syntactically correct changes that should be representative of the programmers' faults.

It is debatable whether a mutation score is a convincing measure of the actual fault revealing power of

a test set. Nevertheless, let us note that (1) mutations are faults related to the program structure, and (2)

by essence, structural testing should aim at tracking down faults related to implementation (while

functional testing should focus on other fault types). Thus mutations representative of the likely faults

committed by the programmer form a fault set consistent with structural testing; and the mutation score

is a meaningful measure at least for assessing the relative efficiency of different structural testing

methods. In any case, a high mutation score indicates that the test set strongly probes the program

structure (thus, has a high fault revealing power), while a low score reveals inadequacies. Moreover,

despite the fact that mutations are simple changes, they can produce errors that are representative of the

subtle errors caused by real faults.

References

I. P. Thevenod-Fosse, C. Mazuet, Y. Crouzet, "On Statistical Structural Testing of Synchronous Data

Flow Programs," Proceedings of 1Pf European Dependable Computing Conference (EDCC-1),

Berlin, Germany, LNCS, Springer Verlag, 1994, pp. 250-267.

2. J. M. Voas, G. McGraw, Software Fault Injection: Inoculating Programs Against Errors, John

Wiley & Sons, Inc., New York, 1998

A.40 Weighted Method per Class (WMC)

Application

WMC is the sum of weighted methods in a class. Each method within the class is weighted by some

sort of complexity metric and this weight is summed up so as to arrive at WMC [2][3]. WMC was

presented by Chidamber and Kemerer as a measure of complexity [3].

Definitions

Consider a class C, with methods M,, ... M. defined in C. Let c1, c_, ... c. be the complexity of the

methods respectively. Then WMC is defined [3]:

Equation A-1

WMC=ZcJ
J~l

A-67

Appendix A Software Engineering Measures

The following assigned weights are used to compute method complexity [I]:

API calls

Assignments

Binary expressions or arithmetic operator

Keyword messages or messages with parameters

Nested expressions

Parameters

Primitive calls

Temporary variables

Unary expression or messages without parameters

5.0

0.5

2.0

3.0

0.5

0.3

7.0

0.5

1.0

Implementation

1. Inspect the method i of the class C and identify the complexity of each statement in this method

according to the mapping of weights described in the previous table.

2. The complexity of method i (c,) is defined as the sum of the results obtained in step 1.

3. Calculate WMC according to the Equation A-1.

References

1. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc. New

Jersey, 1994.

2. R. D. Neal, The Applicability of Proposed Object-Oriented metrics to Developer Feedback in

Time to Impact Development, NASA/WVU Software IV&V Facility, Software Research

Laboratory, Technical Report Series, NASA-IVV-96-004, NASA, 1996.

3. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on

Software Engineering, Vol. 20, No. 6, June 1994.

A-68

Appendix B Software Engineering Measures Questionnaire

APPENDIX B SOFTWARE ENGINEERING MEASURES
QUESTIONNAIRE

Please read the report, then answer questions (1) to (10). Use tables from Table B-iE to Table B-10E as
examples for answering the questions.

THIS QUESTIONNAIRE IS TO BE ANSWERED BY EXPERTS ONLY

QUESTIONS:

1. Please print your name:

2. Please print your title:

3. For each software engineering measure listed in Table B-I check if:

(i) you were an inventor of the measure or closely associated with the invention of the
measure.

(u) you were a user of this measure on projects or experiments. Then

Specify the number of projects

Specify the size of these projects (KLOCs or FPs). Give minimum,
maximum and average size.

Specify the context of applications, e.g. safety critical, aerospace,
nuclear, etc. This column in Table B-1 contains only an index list of
applications related to this measure. The detailed context is described in
Table B-2.

(1) your knowledge of the measure is obtained from the reading of published
materials (books, papers, reports)

(w) your knowledge of the measure is the result of your attendance to workshops and/or
conferences (specify the duration of these events in number of 8-hours days).

(o) No experience.

Please fill Table B-I and Table B-2.

4. Rate the measures given according to the ranking criteria specified in section 3 by filling the
"rate" columns in Table B-3 and B-4. In Table B-3 rate all criteria except the two relevance
criteria. The two relevance criteria are software life cycle phase dependent. In Tables B-4
rate the relevance criteria for the requirements, design, implementation and testing phases.

(Note: Please do not rate measures for which you are not qualified).

5. For each measure in the list, associate a degree of confidence (a number between 0 and 1) to
your rating of the measure. This degree of confidence reflects your knowledge and
experience in the measure. A degree of confidence of "0" means that you are absolutely

B-1

Appendix B Software Engineering Measures Questionnaire

unsure of your rating (and consequently you should not have rated the measure)! A degree of

confidence "1" means that you are absolutely sure of your rating.

If necessary, you can specify a degree of confidence for individual ranking criteria. For instance, you

could be absolutely certain of your evaluation of the rate of ranking criteria X for measure A, but
absolutely unsure of your evaluation of the rate of ranking criteria Y (for this same measure.) This
would translate into the following degrees of confidence:

Deg. of confidence (XIA) = 1
Deg. of confidence (YIA) = 0

Please fill the confidence columns in Table B-3 and B-4.

6. Identify measures highly correlated with the measure currently being rated. Highly correlated

signifies that the current measure can replace the correlated measure, i.e. the information

provided by each measure is almost identical. For example, consider "failure rate" and "mean

time to failure", these two measures are highly correlated since one can be derived from the
other and vice versa.

Please fill Table B-5 by specifying names of highly correlated measures.

7. Identify possibly missing measures that will help us in realizing the aims of the projects.

8. Define the "missing measures" to a level understandable to any of your colleagues. Append

these descriptions to this questionnaire. The description should include facts that would help

others make an assessment of the ranking criteria's rate for the particular measure identified.

Please fill Table B-8. If you have more than one "missing measure", there should exist more

than one Table B-8s. Please caption them as Table B-8-1, Table B-8-2, ... , etc.

9. Perform steps (3), (4), (5) and (6) for all "missing measures" identified and complete Table

B-6, Table B-7, Table B-9 and Table B-10 respectively.

10. Add to your report any comments you might have on the ranking criteria.

B-2

Appendix B Software Engineering Measures Questionnaire

Table B-1 Sources of Knowledge

(u)
.0

size of projects i4

Measure (i) 0- € () (W) (0)

00 E2

Bugs per line of code
(Gaffney estimate)

Cause & effect graphing
Code defect density

Cohesion

Completeness

Cumulative failure profile

Cyclomnatic complexity
Data flow complexity

Design defect density

Error distribution

Failure rate

Fault density

Fault-days number

Feature point analysis

Function point analysis

Functional test coverage

Graph-theoretic static
architecture complexity

Man hours per major
defect detected

Mean time to failure

Minimal unit test case
determination

Modular test coverage

Mutation testing (error
seeding).

Number of faults
remaining (error seeding)

Requirements compliance

B-3

SThis contains an index list of applications' description. The detailed description of applications is in Table B-2.

Appendix B Software Engineering Measures Questionnaire

(u)

size of projects

Measure (i) (W) ()
o E = •

4. 0

0 E E V I
A- E

Eo

~C
0

Requirements
specification change

requests_

Requirements traceability

Reviews, inspections and

walkthroughs I

Software capability
maturity model

System design complexity

Test coverage

Table B-2 Software Reliability Engineering Measures Related Applications' Descriptions

Application's Index Description

I

2

3

4

5

6

B-4

Appendix B Software Engineering Measures Questionnaire

Table B-1E Example of Table B-1 Sources of Knowledge

(u)

size of projects
0

Measure (i) . - (I) (w) (o)

E
.2 5

0

Failure rate x

Function Point Analysis 150 FP 450 FP 300 FP 1,2

Table B-2E Example of Table B-2 Software Reliability Engineering Measures Related Applications'
Descriptions

Application's Index Description

1 PACS system reliability evaluation. PACS is a real-time gate security control system.

GWRPS system safety evaluation. GWRPS is a safety critical, real-time nuclear plant
2 protection system.

1 This contains an index list of applications' description. The detailed description of applications is in Table B-2E.

B-5

Appendix B Software Engineering Measures Questionnaire

Table B-3 Evaluation of Measures by Criteria (except relevance criteria)

Time- Cost Benefits Credibility Repeat- Experience Validation

liness ability

Measure c
0 0 0 0 0 0 0

~ 0

CD CD 0 CD CD

Bugs per line of code (Gaffney estimate)

Cause & effect graphing

Code defect density

Cohesion

Completeness

Cumulative failure profile

Cyclomatic complexity

Data flow complexity

Design defect density

Error distribution

Failure rate

Fault density

Fault-days number

Feature point analysis

Function point analysis

Functional test coverage

Graph-theoretic static architecture complexity

Man hours per major defect detected

B-6

Appendix B Software Engineering Measures Questionnaire

Time- RepeatTimes Cost Benefits Credibility Repat Experience Validation liness ability

Measure
0 0 0 0 0 0 0

C D, ! C , ! a! (!, C! C!, C (!, C, !

0 oD 0 0 C0 0 (D

Mean time to failure

Minimal unit test case determination

Modular test coverage

Mutation testing (error seeding)

Number of faults remaining (error seeding)

Requirements compliance

Requirements specification change requests

Requirements traceability

Reviews, inspections and walkthroughs

Software capability maturity model

System design complexity

Test coverage

B-7

Appendix B Software Engineering Measures Questionnaire

Table B-4 Phase-Based Relevance to Reliability/Review

1 r

TestingImplementationDesignRequirement

-' D0C CD~

.D T -
n
0

____________________________________ I-I-4-l-I-+-4-�-I-t t-t--t-T-l-r-

I-_______________________ A l-i I-- -i i i ~ -i r- -r- -i

Data1 flow comIIp exLyI

Design defect density

Error distribution

Failure rate______ __ - -

Fault density __

B-8

Measure

C.,
0

0
CD

C., 0

0
CD

0
CD

CD

n0
0

CD
0

0

C0

"0

CD

0

0.
0 0

CD

0
CD

Bugs per ne v 1. f A 'Gaffne estimatel
100- h ; Cause m e CL grap ng

U : Co es on i I

Completeness

r, 1.*; . fol.r,- rofile

%,,YC 01"at v vv"'F '- V I I

•au•u • •ll•t •,t•pntut•

L/a[a llLiW uUiill)lUAit.y

Design defect density

Error
distribution

Failure

rate

Fault

density

Appendix B Software Engineering Measures Questionnaire

Measure

Fault-days number

Feature point analysis

Function point analysis

Functional test coverage

Graph-theoretic static architecture
complexity

Man hours per major defect detected

Mean time to failure

Minimal unit test case determination

Modular test coverage

Mutation testing (error seeding)

Number of faults remaining (error seeding)

Requirements compliance

Requirements specification change requests

Requirements traceability

Reviews, inspections and walkthroughs

Requirement

C) C C)C)lb C CS

n

0~
0

tn

CO

n
0

0.

0

0

0.

Design

CD

0
0

CO e0

Implementation

CD

0

0

D CDh

B-9

Testing

n

0
0

0

0-
0

0

CD

CD

Appendix B Software Engineering Measures Questionnaire

1 1 r r

Measure

TestingImplementation
DesignRequirement

I I �
ID ED __.jJrL�jLIiArL�it1 in n

1 �1
C-) C-)

0

0
:z

C) 0

0

C)
CD

CD

C) 0

0
CD

0 :3

CD

0

0

CD

CD

0

CD

CO

0)
0

0

CD
CD

0

0
CD
0

CD

LflfltYV�E

System design complexity

Test coverage

Table B-3E Example of Table B-3 Evaluation of Measures by Criteria (except relevance criteria)

Time- Cost Benefits Credibility Repeat- Experience Validation
liness ability

Measure 0 C) o 0 0 0 0 0 0

nDC D C CD aD CD 1; 0 D CD CD CD

0D 0D C CD CD DC

Bugs per line of code (Gaffney estimate) 0.5 0. 0.5 0. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

B-10

CD

J

Appendix B Software Engineering Measures Questionnaire

Table B-4E Example of Table B-4 Phase-Based Relevance to Reliability/Review

Measure

Implementation

3� �
ft ft ft I ft ft 1
- - - ft

c-I1= I �.-. � I � I �

0

0

0
CD

0

0

0
0

n

003
0

0-

0

0-
F;

0
0~

0L
CD

0

0

0(

0
0

F*

n)
0

CD
0
0D

Bugs per line of code (Gaffney estimate) 0.5 10.51 0.5 1 0.5 10.5 [0.5 [0.5 0.5 0.5 0.5 0.5 10.5 0.5 0.5 0.5 0.5

B-1I

Requirement Design Testing

Appendix B Software Engineering Measures Questionnaire

Table B-5 Correlation Between Measures'

Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated
Measure Measure I Measure 2 Measure 3 Measure 4 Measure 5 Measure 6 Measure 7 Measure 8 Measure 9 Measure 10

Bugs per line of code
(Gaffney estimate)

Cause & effect graphing

Code defect density

Cohesion

Completeness

Cumulative failure profile

Cyclomatic complexity

Data flow complexity

Design defect density

Error distribution

Failure rate

Fault density

Fault-days number

Feature point analysis

Function point analysis

Functional test coverage

. If you have more than 10 highly correlated measures in one row please attach a copy of this form.

B-12

Appendix B Software Engineering Measures Questionnaire

Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Measure I Measure 2 Measure 3 Measure 4 Measure 5 Measure 6 Measure 7 Measure 8 Measure 9 Measure 10

Graph-theoretic static
architecture complexity
Man hours per major

defect detected

Mean time to failure

Minimal unit test case
determination

Modular test coverage

Mutation testing (error
seeding)

Number of faults
remaining (error seeding)

Requirements compliance

Requirements
specification change
requests

Requirements traceability

Reviews, inspections and
walkthroughs

Software capability
maturity model

System design complexity

Test coverage

B-13

Appendix B Software Engineering Measures Questionnaire

Table B-5E Example of Table B-5 Correlation Between Measures

Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated
Measure Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 Measure 6 Measure 7 Measure 8 Measure 9 Measure 10

Measure A Measure B Measure C Measure D

Measure B Measure A Measure E Measure F Measure G

B-14

Appendix B Software Engineering Measures Questionnaire

Table B-6 Sources of Knowledge (Missing Measures)

This contains an index list of applications' description. The detailed description of applications is in Table B-7.

B-15

(u)

0
M r size of projects Measure(I) (w) (o)
0

oC

~ ~ . ~ . g

I 4- 1 1 4 1

I 4 $ 4

Appendix B Software Engineering Measures Questionnaire

Table B-7 Software Reliability Engineering Measures Related Applications' Descriptions

Application's Index Description

1

2

3

4

Table B-6E Example of Table B-6 Sources of Knowledge (Missing Measures)

(u)
0 0

0 size of projects

Measure (i) (I) (w) (o)
0

Measure A 2

B-16

Appendix B Software Engineering Measures Questionnaire

Table B-7E Example of Table B-7 Software Reliability Engineering Measures Related Applications' Descriptions

Apphication's Index Description

2

TableB-8 Description of Missing Measures

Name:

Author(s):

Reference:

Description:

B-17

Appendix B Software Engineering Measures Questionnaire

Table B-8E Example of Table B-8 Description of Missing Measures

Name: Coupling

Author(s): Myers

Reference: Xxx

Description:
Coupling is an indication of "goodness" of a design. There is a widespread
belief that low coupling yield better software designs.

TABLE B-9 Evaluation of Measures by Criteria (missing Measures) (except relevance criteria)

Time- Cost Benefits Credibility Repeat- Experience Validation liness ability

Measure r) n n n ()
o 00 0 0 0 0

0 00 0 0 0 0 C6 ta r D O
g CL 0 O.

B-18

Appendix B Software Engineering Measures Questionnaire

Table B-9E Example of Table B-9 Evaluation of Measures by Criteria (except relevance criteria) (Missing Measures)

Time- Repeatliness Cost Benefits Credibility ability Experience Validation

Measure
0 0 0 0 0 0 0

ab CD CD CD CD (0 CD CD (b Cb CD (

0 0 0 0D D 0D

Metric A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table B-10 Phase-Based Relevance to Reliability/Review (Missing Measures)

B-19

3

03
0.

U,
a)

.-2
U,

U,
U,

a)

a)

Ce

a)

Cg

a)g

'7,

Confidence "
Relevance
to Review Rate n

- Relevance Confidence 6
to

Reliability Rate

Confidence " Relevance ~ ae •

to Review

I Relevance Confidence "

to
Reliability Rate "

Relevance Confidence "

to Review
Rate

Relevance Confidence "
to

Reliability Rate <6

Confidence "
Relevance

to Review
E Rate

SRelevance Confidence c
to

Reliability Rate

C<

..-

0ý

Appendix C Sensitivity Analysis Data And Results

APPENDIX C SENSITIVITY ANALYSIS: SCHEMES AND RESULTS

C.1 Sensitivity Analysis on Criteria Levels

C.1.1 Variations on Criteria Levels

Table C-i Criteria Levels for Scheme 1

Cost Experience Benefits Credibility Repeatability Validation Relevance to
W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00

M 0.90 M 0.55 B 0.90 0.90 0.85 0.85 0.90
Q 0.75 L 0.20 C 0.60 0.70 0.45 0.40 0.80
Y 0.30 E 0.15 D 0.30 0.60 0.25 0.25 0.75
T 0.00 N 0.00 E 0.10 0.35 0.00 0.00 0.20

F 0.00 0.00 0.00

Table C-2 Criteria Levels for Scheme 2

Cost Experience Benefits Credibility Repeatability Validation Relevance to
Reliability W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00

M 0.75 M 0.75 B 0.80 0.80 0.75 0.75 0.80
Q 0.50 L 0.50 C 0.60 0.60 0.50 0.50 0.60
Y 0.25 E 0.25 D 0.40 0.40 0.25 0.25 0.40
T 0.00 N 0.00 E 0.20 0.20 0.00 0.00 0.20

F 0.00 0.00 0.00

C-1

Appendix C Sensitivity Analysis Data And Results

Table C-3 Criteria Levels for Scheme 3
Relevance to

Cost Experience Benefits Credibility Repeatability Validation Releabclity
Reliability

W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00

M 0.90 M 0.90 B 0.90 0.90 0.90 0.90 0.90

Q 0.80 L 0.80 C 0.80 0.80 0.80 0.80 0.80

Y 0.70 E 0.70 D 0.70 0.70 0.70 0.70 0.70

T 0.00 N 0.00 E 0.60 0.60 0.00 0.00 0.60

F 0.00 0.00 0.00

Table C-4 Criteria Levels for Scheme 4

Relevance to
Cost Experience Benefits Credibility Repeatability Validation Reliability

Reliability

W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00 M 0.30 M 0.30 B 0.40 0.40 0.30 0.30 0.40

Q 0.20 L 0.20 C 0.30 0.30 0.20 0.20 0.30

Y 0.10 E 0.10 D 0.20 0.20 0.10 0.10 0.20 T 0.00 N 0.00 E 0.10 0.10 0.00 0.00 0.10

I IF 0.00 0.00 0.00

C-2

Appendix C Sensitivity Analysis Data And Results

Table C-5 Criteria Levels for Scheme 5

Relevance to
Cost Experience Benefits Credibility Repeatability Validation Releabclity

Reliability

W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00
M 0.90 M 0.30 B 0.90 0.40 0.90 0.30 0.90
Q 0.80 L 0.20 C 0.80 0.30 0.80 0.20 0.80
Y 0.70 E 0.10 D 0.70 0.20 0.70 0.10 0.70
T 0.00 N 0.00 E 0.60 0.10 0.00 0.00 0.60

F 0.00 0.00 0.00

C-3

Appendix D Sensitivity Analysis Data And Results

C.1.2 Rates Corresponding to Criteria Level Variations

Table C-6 Rates for the Requirements Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Cause & effect graphing .45 .41 .66 .19 .44

Error distribution .70 .65 .78 .51 .70

Fault density .73 .69 .81 .59 .78

Fault number days .63 .62 .70 .44 .53

Feature point analysis .44 .44 .65 .21 .44

Function point analysis .51 .49 .67 .30 .54

Number of faults remaining (error .45 .43 .62 .18 .38

seeding)
Requirements compliance .52 .50 .69 .28 .49

Requirements specification change .71 .68 .79 .55 .72
requests
Reviews, inspections and walkthroughs .62 .61 .71 .48 .60

Software capability maturity model .62 .57 .70 .43 .61

Table C-7 Rates for the Design Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Cause & effect graphing .43 .40 .64 .19 .42

Cohesion .45 .45 .61 .26 .41

Completeness .33 .36 .56 .20 .35

Cyclomatic complexity .74 .69 .75 .60 .71

Data flow complexity .63 .62 .73 .42 .57

Design defect density .77 .73 .83 .60 .76

Error distribution .70 .65 .78 .51 .70

Fault density .76 .72 .82 .60 .79

Fault number days .73 .67 .80 .47 .63

Feature point analysis .47 .46 .69 .22 .48

Function point analysis .54 .51 .71 .31 .57

Graph-theoretic static architecture .52 .48 .70 .30 .49

complexity
Man hours per major defect detected .65 .63 .71 .51 .65

Mean time to failure

Minimal unit test case determination .60 .58 .70 .44 .56

Number of faults remaining (error seeding) .45 .43 .62 .18 .38

Requirements compliance .50 .50 .68 .28 .48

Requirements specification change .71 .68 .78 .55 .70

requests
Requirements traceability .58 .57 .71 .40 .56

Reviews, inspections and walkthroughs .61 .60 .71 .48 .59

Software capability maturity model .62 .58 .70 .44 .61

System design complexity .56 .55 .72 .34 .51

C-4

Appendix D Sensitivity Analysis Data. And Results

Table C-8 Rates for the Implementation Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
Bugs per line of code (Gaffney estimate) .44 .45 .58 .28 .40
Cause & effect graphing .40 .38 .61 .18 .40
Code defect density .83 .77 .85 .65 .82
Cohesion .37 .38 .53 .22 .33
Completeness .33 .36 .56 .20 .35
Cyclomatic complexity .77 .72 .80 .61 .75
Data flow complexity .60 .57 .69 .40 .53
Design defect density .77 .73 .83 .60 .76
Error distribution .69 .66 .77 .51 .69
Fault density .77 .72 .82 .60 .79
Fault number days .73 .67 .80 .47 .63
Feature point analysis .47 .46 .67 .21 .45
Function point analysis .55 .51 .69 .31 .55
Graph-theoretic static architecture .45 .44 .64 .28 .43
complexity
Man hours per major defect detected .63 .62 .69 .51 .63
Minimal unit test case determination .65 .63 .75 .46 .61
Modular test coverage
Mutation testing (error seeding)
Number of faults remaining (error seeding) .47 .44 .67 .19 .43
Requirements compliance .51 .49 .68 .28 .49
Requirements specification change .71 .68 .78 .55 .70
requests
Requirements traceability .57 .57 .71 .40 .56
Reviews, inspections and walkthroughs .61 .60 .71 .48 .60
Software capability maturity model .61 .58 .70 .44 .61
System design complexity .55 .53 .71 .33 .50

C-5

Appendix D Sensitivity Analysis Data And Results

Table C-9 Rates for the Testing Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
Bugs per line of code (Gaffney estimate) .37 .38 .50 .25 .32

Cause & effect graphing .45 .41 .66 .19 .44
Code defect density .83 .78 .85 .65 .82
Cohesion .37 .38 .53 .22 .33
Completeness .33 .36 .56 .20 .35

Cumulative failure profile .80 .76 .83 .64 .78
Cyclomatic complexity .74 .69 .78 .60 .73
Data flow complexity .6 .57 .69 .40 .53
Design defect density .76 .71 .82 .59 .75
Error distribution .69 .67 .77 .51 .69
Failure rate .87 .85 .88 .76 .86
Fault density .77 .72 .82 .60 .79

Fault number days .75 .71 .82 .49 .64
Feature point analysis .43 .43 .62 .20 .41
Function point analysis .50 .48 .65 .30 .51

Functional test coverage .61 .57 .76 .29 .56

Graph-theoretic static architecture .45 .44 .64 .28 .43
complexity
Man hours per major defect detected .65 .63 .71 .53 .65
Mean time to failure .81 .81 .87 .64 .78
Minimal unit test case determination .71 .64 .80 .47 .66
Modular test coverage .70 .70 .83 .53 .67

Mutation testing (error seeding) .47 .44 .67 .19 .42
Number of faults remaining (error seeding) .50 .46 .71 .20 .47

Requirements compliance .50 .48 .68 .27 .48
Requirements specification change .70 .67 .78 .55 .70
requests
Requirements traceability .57 .56 .71 .40 .56
Reviews, inspections and walkthroughs .62 .61 .70 .49 .59

Software capability maturity model .61 .58 .70 .44 .61
System design complexity .55 .53 .71 .33 .50
Test coverage .70 .67 .82 .55 .73

C.1.3 Rankings Corresponding to Criteria Level Variations

Table C-10 Rankings for the Requirements Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Cause & effect graphing 10 11 9 10 9
Error distribution 3 3 3 3 3
Fault density 1 1 1 1 1

Fault number days 4 4 5 5 7
Feature point analysis 11 9 10 9 10

Function point analysis 8 8 8 7 6

Number of faults remaining (error 9 10 11 11 11
seeding) I I

C-6

Appendix D Sensitivity Analysis Data And Results

Requirements compliance 7 7 7 8 8
Requirements specification change 2 2 2 2 2
requests
Requirements traceability
Reviews, inspections and walkthroughs 6 5 4 4 5
Software capability maturity model 5 6 6 6 4

Table C-1I Rankings for the Design Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
Cause & effect graphing 20 20 18 20 18
Cohesion 18 18 20 17 19
Completeness 21 21 21 19 21
Cyclomatic complexity 3 3 6 3 3
Data flow complexity 8 8 7 11 11
Design defect density 1 1 1 2 2
Error distribution 6 6 4 6 5
Fault density 2 2 2 1 1
Fault number days 4 5 3 8 7
Feature point analysis 17 17 16 18 17
Function point analysis 14 14 10 14 10
Graph-theoretic static architecture 15 16 14 15 15
complexity
Man hours per major defect detected 7 7 11 5 6
Minimal unit test case determination 11 11 13 10 13
Number of faults remaining (error seeding) 19 19 19 21 20
Requirements compliance 16 15 17 16 16
Requirements specification change 5 4 5 4 4
requests

Requirements traceability 12 12 9 12 12
Reviews, inspections and walkthroughs 10 9 12 7 9
Software capability maturity model 9 10 15 9 8
System design complexity 13 13 8 13 14

Table C-12 Rankings for the Implementation Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
Bugs per line of code (Gaffney estimate) 20 18 21 16 21
Cause & effect graphing 21 21 20 23 20
Code defect density 1 1 1 1 1
Cohesion 22 22 23 19 23
Completeness 23 23 22 21 22
Cyclomatic complexity 4 4 5 2 4
Data flow complexity 12 12 13 13 14
Design defect density 3 2 2 4 3
Error distribution 7 7 7 6 6
Fault density 2 3 3 3 2
Fault number days 5 6 4 9 8
Feature point analysis 17 17 18 20 17
Function point analysis 15 15 14 15 13

C-7

Appendix D Sensitivity Analysis Data And Results

Graph-theoretic static architecture 19 20 19 17 18
complexity
Man hours per major defect detected 9 9 15 7 7
Minimal unit test case determination 8 8 8 10 9
Number of faults remaining (error seeding) 18 19 17 22 19

Requirements compliance 16 16 16 18 16
Requirements specification change 6 5 6 5 5
requests
Requirements traceability 13 13 9 12 12
Reviews, inspections and walkthroughs 11 10 11 8 11

Software capability maturity model 10 11 12 11 10

System design complexity 14 14 10 14 15

Table C-13 Rankings for the Testing Phase

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Bugs per line of code (Gaffney estimate) 29 29 30 24 30
Cause & effect graphing 26 27 24 29 24
Code defect density 2 3 3 2 2

Cohesion 28 28 29 25 29
Completeness 30 30 28 26 28

Cumulative failure profile 4 4 4 4 4
Cyclomatic complexity 8 9 11 6 7
Data flow complexity 18 17 21 18 19

Design -defect density 6 6 7 7 6
Error distribution 13 12 13 12 10
Failure rate 1 1 1 1 1

Fault density 5 5 6 5 3
Fault number days 7 7 8 14 14
Feature point analysis 27 26 27 27 27
Function point analysis 22 21 25 20 20
Functional test coverage 17 18 14 21 17
Graph-theoretic static architecture 25 24 26 22 25
complexity
Man hours per major defect detected 14 14 18 10 13
Mean time to failure 3 2 2 3 5
Minimal unit test case determination 9 13 10 15 12

Modular test coverage 12 8 5 11 11
Mutation testing (error seeding) 24 25 23 30 26
Number of faults remaining (error seeding) 23 23 15 28 23

Requirements compliance 21 22 22 23 22
Requirements specification change 10 11 12 9 9
requests
Requirements traceability 19 19 17 17 18

Reviews, inspections and walkthroughs 15 15 19 13 16

Software capability maturity model 16 16 20 16 15

System design complexity 20 20 16 19 21
Test coverage 11 10 9 8 8

C-8

Appendix D Sensitivity Analysis Data And Results

C.2 Sensitivity Analysis on Weight Sets

C.2.1 Variations on Weight Sets

Table C-14 Weights Used in Weight Sensitivity Analysis

Cost Benefits Credibility Repeatability Experience Validation Relevance to Reliability
Weight 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Weight 2 0.13 0.13 0.13 0.13 0.13 0.13 0.25
Weight 3 0.08 0.08 0.17 0.17 0.08 0.08 0.33
Weight 4 0.245 0.045 0.088 0.036 0.130 0.239 0.216
Weight 5 0.20 0.03 0.10 0.17 0.16 0.14 0.20.
Weight 6 0 0 0.25 0.25 0.25 0 0.25

C.2.2 Rates Corresponding to Variations on Weight Sets

Table C-15 Rates for the Requirements Phase

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6
Cause & effect graphing 0.45 0.44 0.46 0.47 0.50 0.48
Completeness 0.41 0.44 0.46 0.52 0.49 0.39
Error distribution 0.70 0.71 0.73 0.79 0.75 0.73
Fault density 0.73 0.69 0.66 0.79 0.78 0.75
Fault number days 0.63 0.55 0.52 0.63 0.66 0.63
Feature point analysis 0.44 0.39 0.36 0.47 0.46 0.38
Function point analysis 0.51 0.46 0.40 0.54 0.54 0.49
Number of faults remaining (error seeding) 0.45 0.40 0.39 0.42 0.46 0.43
Requirements compliance 0.52 0.53 0.53 0.59 0.57 0.53
Requirements specification change requests 0.71 0.71 0.70 0.81 0.77 0.70
Reviews, inspections and walkthroughs 0.62 0.60 0.59 0.64 0.62 0.64
Software capability maturity model 0.62 0.61 0.60 0.67 0.65 0.67

Table C-16 Rates for the Design Phase

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6
Cause & effect graphing 0.43 0.40 0.41 0.44 0.47 0.45
Cohesion 0.45 0.47 0.47 0.60 0.53 0.38
Completeness 0.33 0.29 0.26 0.39 0.37 0.24
Cyclomatic complexity 0.74 0.69 0.66 0.78 0.80 0.77
Data flow complexity 0.63 0.62 0.63 0.72 0.70 0.61
Design defect density 0.77 0.78 0.79 0.87 0.84 0.80
Error distribution 0.70 0.71 0.73 0.79 0.75 0.73
Fault density 0.76 0.74 0.73 0.83 0.82 0.80
Fault number days 0.73 0.73 0.77 0.79 0.81 0.81
Feature point analysis 0.47 0.44 0.43 0.51 0.51 0.43
Function point analysis 0.54 0.51 0.47 0.59 0.58 0.54
Graph-theoretic static architecture complexity 0.52 0.51 0.53 0.53 0.57 0.58
Man hours per major defect detected 0.65 0.64 0.63 0.76 0.73 0.65

C-9

Appendix D Sensitivity Analysis Data And Results

Minimal unit test case determination 0.60 0.52 0.47 0.63 0.63 0.56

Number of faults remaining (error seeding) 0.45 0.40 0.39 0.42 0.46 0.43

Requirements compliance 0.50 0.51 0.51 0.57 0.55 0.51

Requirements specification change requests 0.71 0.71 0.71 0.81 0.77 0.71

Requirements traceability 0.58 0.57 0.57 0.67 0.63 0.55

Reviews, inspections and walkthroughs 0.61 0.59 0.58 0.64 0.62 0.63

Software capability maturity model 0.62 0.61 0.60 0.67 0.65 0.67

System design complexity 0.56 0.60 0.64 0.67 0.65 0.56

Table C-17 Rates for the Implementation Phase

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6

Bugs per line of code (Gaffney estimate) 0.44 0.45 0.49 0.50 0.52 0.47

Cause & effect graphing 0.40 0.35 0.34 0.39 0.43 0.39

Code defect density 0.83 0.83 0.84 0.89 0.90 0.91

Cohesion 0.37 0.33 0.28 0.48 0.41 0.24

Completeness 0.33 0.29 0.26 0.39 0.37 0.24

Cyclomatic complexity 0.77 0.74 0.72 0.82 0.84 0.82

Data flow complexity 0.60 0.56 0.55 0.67 0.65 0.55

Design defect density 0.77 0.78 0.78 0.87 0.84 0.79

Error distribution 0.69 0.68 0.68 0.76 0.73 0.70

Fault density 0.77 0.75 0.74 0.84 0.83 0.81

Fault number days 0.73 0.73 0.77 0.79 0.81 0.81

Feature point analysis 0.47 0.45 0.44 0.52 0.51 0.44

Function point analysis 0.55 0.52 0.49 0.60 0.59 0.55

Graph-theoretic static architecture complexity 0.45 0.40 0.39 0.43 0.49 0.47

Man hours per major defect detected 0.63 0.60 0.58 0.73 0.70 0.62

Minimal unit test case determination 0.65 0.61 0.59 0.71 0.70 0.65

Number of faults remaining (error seeding) 0.47 0.43 0.43 0.45 0.48 0.45

Requirements compliance 0.51 0.52 0.52 0.58 0.56 0.52

Requirements specification change requests 0.71 0.71 0.71 0.81 0.77 0.71

Requirements traceability 0.57 0.57 0.56 0.67 0.62 0.54

Reviews, inspections and walkthroughs 0.61 0.59 0.59 0.64 0.62 0.64

Software capability maturity model 0.61 0.61 0.59 0.67 0.65 0.67

System design complexity 0.55 0.58 0.62 0.65 0.63 0.54

Table C-18 Rates for the Testing Phase

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6

Bugs per line of code (Gaffney estimate) 0.37 0.32 0.31 0.39 0.41 0.34

Cause & effect graphing 0.45 0.44 0.46 0.47 0.50 0.48

Code defect density 0.83 0.83 0.84 0.89 0.90 0.91.

Cohesion 0.37 0.33 0.28 0.48 0.41 0.24

Completeness 0.33 0.29 0.26 0.39 0.37 0.24

Cumulative failure profile 0.80 0.81 0.84 0.89 0.87 0.86

Cyclomatic complexity 0.74 0.69 0.66 0.78 0.80 0.77

Data flow complexity 0.60 0.56 0.55 0.67 0.65 0.55

Design defect density 0.76 0.76 0.76 0.86 0.83 0.78

Error distribution 0.69 0.68 0.68 0.76 0.73 0.70

Failure rate 0.87 0.88 0.91 0.92 0.93 0.95

C-10

Appendix D Sensitivity Analysis Data And Results

Fault density 0.77 0.75 0.74 0.84 0.83 0.82
Fault number days 0.75 0.76 0.80 0.81 0.83 0.84
Feature point analysis 0.43 0.37 0.34 0.46 0.45 0.36
Function point analysis 0.50 0.44 0.38 0.53 0.53 0.47
Functional test coverage 0.61 0.63 0.68 0.66 0.67 0.66
Graph-theoretic static architecture complexity 0.45 0.40 0.39 0.43 0.49 0.47
Man hours per major defect detected 0.65 0.63 0.62 0.75 0.73 0.65
Mean time to failure 0.81 0.83 0.87 0.87 0.87 0.86
Minimal unit test case determination 0.71 0.71 0.72 0.79 0.77 0.74
Modular test coverage 0.70 0.72 0.78 0.76 0.77 0.77
Mutation testing (error seeding) 0.47 0.46 0.48 0.51 0.49 0.45
Number of faults remaining (error seeding) 0.50 0.48 0.51 0.50 0.53 0.51
Requirements compliance 0.50 0.51 0.51 0.57 0.55 0.51
Requirements specification change requests 0.70 0.70 0.70 0.81 0.77 0.70
Requirements traceability 0.57 0.56 0.55 0.66 0.62 0.54
Reviews, inspections and walkthroughs 0.62 0.60 0.60 0.65 0.63 0.65
Software capability maturity model 0.61 0.61 0.59 0.67 0.65 0.67
System design complexity 0.55 0.58 0.62 0.65 0.63 0.54
Test coverage 0.70 0.72 0.75 0.78 0.78 0.79

C.2.3 Rankings Corresponding to Variations on Weight Sets

Table C-19 Rankings for the Requirements Phase

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6
Cause & effect graphing 10 9 8 11 9 9
Completeness 12 10 9 9 10 11
Error distribution 3 1 1 2 3 2
Fault density 1 3 3 3 1 1
Fault number days 4 6 7 6 4 6
Feature point analysis 11 12 12 10 11 12
Function point analysis 8 8 10 8 8 8
Number of faults remaining (error seeding) 9 11 11 12 12 10
Requirements compliance 7 7 6 7 7 7
Requirements specification change requests 2 2 2 1 2 3
Reviews, inspections and walkthroughs 6 5 5 5 6 5
Software capability maturity model 5 4 4 4 5 4

Table C-20 Rankings for the Design Phase

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6
Cause & effect graphing 20 19 19 19 19 17
Cohesion 18 17 17 14 17 20
Completeness 21 21 21 21 21 21
Cyclomatic complexity 3 6 6 6 4 4
Data flow complexity 8 8 8 8 8 10
Design defect density 1 1 1 1 1 3
Error distribution 6 5 4 5 6 5
Fault density 2 2 3 2 2 2

C-1I

Appendix D Sensitivity Analysis Data And Results

Fault number days 4 3 2 4 3 1

Feature point analysis 17 18 18 18 18 18

Function point analysis 14 15 15 15 14 15

Graph-theoretic static architecture complexity 15 16 13 17 15 11

Man hours per major defect detected 7 7 9 7 7 8

Minimal unit test case determination 11 13 16 13 12 13

Number of faults remaining (error seeding) 19 20 20 20 20 19

Requirements compliance 16 14 14 16 16 16

Requirements specification change requests 5 4 5 3 5 6

Requirements traceability 12 12 12 10 11 14

Reviews, inspections and walkthroughs 10 11 11 12 13 9

Software capability maturity model 9 9 10 9 9 7

System design complexity 13 10 7 11 10 12

Table C-21 Rankings for the Implementation Phase

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

Bugs per line of code (Gaffney estimate) 20 18 16 18 17 17

Cause & effect graphing 21 21 21 23 21 21

Code defect density 1 1 1 1 1 1

Cohesion 22 22 22 19 22 23

Completeness 23 23 23 22 23 22

Cyclomatic complexity 4 4 5 4 2 2

Data flow complexity 12 14 14 12 10 13

Design defect density 3 2 2 2 3 5

Error distribution 7 7 7 7 7 7

Fault density 2 3 4 3 4 4

Fault number days 5 5 3 6 5 3

Feature point analysis 17 17 18 17 18 20

Function point analysis 15 16 17 15 15 12

Graph-theoretic static architecture complexity 19 20 20 21 19 18

Man hours per major defect detected 9 10 12 8 8 11

Minimal unit test case determination 8 8 9 9 9 9

Number of faults remaining (error seeding) 18 19 19 20 20 19

Requirements compliance 16 15 15 16 16 16

Requirements specification change requests 6 6 6 5 6 6

Requirements traceability 13 13 13 11 13 15

Reviews, inspections and walkthroughs 11 11 11 14 14 10

Software capability maturity model 10 9 10 10 11 8

System design complexity 14 12 8 13 12 14

Table C-22 Rankings for the Testing Phase

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

Bugs per line of code (Gaffney estimate) 29 29 28 30 29 28

Cause & effect graphing 26 25 24 26 24 23

Code defect density 2 2 3 2 2 2

Cohesion 28 28 29 25 28 30

Completeness 30 30 30 29 30 29

Cumulative failure profile 4 4 4 3 3 3

C-12

Appendix D Sensitivity Analysis Data And Results

Cyclomatic complexity 8 12 14 11 8 10
Data flow complexity 18 19 20 16 16 18
Design defect density 6 5 7 5 7 8
Error distribution 13 13 12 12 13 13
Failure rate 1 1 1 1 1 1
Fault density 5 7 9 6 5 6
Fault number days 7 6 5 7 6 5
Feature point analysis 27 27 27 27 27 27
Function point analysis 22 24 26 22 23 25
Functional test coverage 17 15 13 17 15 15
Graph-theoretic static architecture complexity 25 26 25 28 26 24
Man hours per major defect detected 14 14 15 14 14 16
Mean time to failure 3 3 2 4 4 4
Minimal unit test case determination 9 10 10 9 10 11
Modular test coverage 12 8 6 13 11 9
Mutation testing (error seeding) 24 23 23 23 25 26
Number of faults remaining (error seeding) 23 22 21 24 22 21
Requirements compliance 21 21 22 21 21 22
Requirements specification change requests 10 11 11 8 12 12
Requirements traceability 19 20 19 18 20 20
Reviews, inspections and walkthroughs 15 17 17 20 19 17
Software capability maturity model 16 16 18 15 17 14
System design complexity 20 18 16 19 18 19
Test coverage 11 9 8 10 9 7

C.3 Sensitivity Analysis on Equations

C.3.1 Variations on Aggregation Functions

Users can refer to Chapter 3 Section 3.8.3 for a detailed discussion on aggregation functions.

C.3.2 Rates Corresponding to Variations on Aggregation Functions

Table C-23 Rates for the Requirements Phase

Measure Equation 1 Equation 2
Cause & effect graphing 0.45 0.57
Completeness 0.41 0.59
Error distribution 0.70 0.70
Fault density 0.73 0.70
Fault number days 0.63 0.62
Feature point analysis 0.44 0.51
Function point analysis 0.51 0.54
Number of faults remaining (error seeding) 0.45 0.53
Requirements compliance 0.52 0.65
Requirements specification change requests 0.71 0.72
Reviews, inspections and walkthroughs 0.62 0.60
Software capability maturity model 0.62 0.59

C-13

Appendix D Sensitivity Analysis Data And Results

Table C-24 Rates for the Design Phase

Measure Equation 1 Equation 2

Cause & effect graphing 0.43 0.54
Cohesion 0.45 0.58

Completeness 0.33 0.43
Cyclomatic complexity 0.74 0.69
Data flow complexity 0.63 0.68
Design defect density 0.77 0.76
Error distribution 0.70 0.70
Fault density 0.76 0.72
Fault number days 0.73 0.72
Feature point analysis 0.47 0.56
Function point analysis 0.54 0.58
Graph-theoretic static architecture complexity 0.52 0.61
Man hours per major defect detected 0.65 0.64
Minimal unit test case determination 0.60 0.59
Number of faults remaining (error seeding) 0.45 0.53
Requirements compliance 0.50 0.63
Requirements specification change requests 0.71 0.72
Requirements traceability 0.58 0.64
Reviews, inspections and walkthroughs 0.61 0.60
Software capability maturity model 0.62 0.59
System design complexity 0.56 0.69

Table C-25 Rates for the Implementation Phase

Measure Equation 1 Equation 2
Bugs per line of code (Gaffney estimate) 0.44 0.59
Cause & effect graphing 0.40 0.49
Code defect density 0.83 0.76
Cohesion 0.37 0.44
Completeness 0.33 0.43
Cyclomatic complexity 0.77 0.71
Data flow complexity 0.60 0.64
Design defect density 0.77 0.76
Error distribution 0.69 0.68
Fault density 0.77 0.73
Fault number days 0.73 0.72
Feature point analysis 0.47 0.57
Function point analysis 0.55 0.59
Graph-theoretic static architecture complexity 0.45 0.54
Man hours per major defect detected 0.63 0.62
Minimal unit test case determination 0.65 0.65
Number of faults remaining (error seeding) 0.47 0.55
Requirements compliance 0.51 0.64
Requirements specification change requests 0.71 0.72
Requirements traceability 0.57 0.64
Reviews, inspections and walkthroughs 0.61 0.60

Software capability maturity model 0.61 0.58
System design complexity 0.55 0.68

C-14

Appendix D Sensitivity Analysis Data And Results

Table C-26 Rates for the Testing Phase

Measure Equation 1 Equation 2
Bugs per line of code (Gaffney estimate) 0.37 0.47
Cause & effect graphing 0.45 0.57
Code defect density 0.83 0.76
Cohesion 0.37 0.44
Completeness 0.33 0.43
Cumulative failure profile 0.80 0.76
Cyclomatic complexity 0.74 0.69
Data flow complexity 0.60 0.64
Design defect density 0.76 0.75
Error distribution 0.69 0.68
Failure rate 0.87 0.81
Fault density 0.77 0.73
Fault number days 0.75 0.73
Feature point analysis 0.43 0.50
Function point analysis 0.50 0.53
Functional test coverage 0.61 0.71
Graph-theoretic static architecture complexity 0.45 0.54
Man hours per major defect detected 0.65 0.64
Mean time to failure 0.81 0.80
Minimal unit test case determination 0.71 0.71
Modular test coverage 0.70 0.74
Mutation testing (error seeding) 0.47 0.57
Number of faults remaining (error seeding) 0.50 0.59
Requirements compliance 0.50 0.63
Requirements specification change requests 0.70 0.72
Requirements traceability 0.57 0.63
Reviews, inspections and walkthroughs 0.62 0.61
Software capability maturity model 0.61 0.58
System design complexity 0.55 0.68
Test coverage 0.70 0.66

C.3.3 Rates Corresponding to Variations on Aggregation Functions

Table C-27 Rankings for the Requirements Phase

Measure Equation 1 Equation 2
Cause & effect graphing 10 9
Completeness 12 7
Error distribution 3 2
Fault density 1 3
Fault number days 4 5
Feature point analysis 11 12
Function point analysis 8 10
Number of faults remaining (error seeding) 9 11
Requirements compliance 7 4
Requirements specification change requests 2 1
Reviews, inspections and walkthroughs 6 6
Software capability maturity model 5 8

C-15

Appendix D Sensitivity Analysis Data And Results

Table C-28 Rankings for the Design Phase

Measure Equation 1 Equation 2

Cause & effect graphing 20 19

Cohesion 18 17

Completeness 21 21

Cyclomatic complexity 3 7

Data flow complexity 8 8

Design defect density 1 1

Error distribution 6 5

Fault density 2 2

Fault number days. 4 4

Feature point analysis 17 18

Function point analysis 14 16

Graph-theoretic static architecture complexity 15 12

Man hours per major defect detected 7 9

Minimal unit test case determination 11 14

Number of faults remaining (error seeding) 19 20

Requirements compliance 16 11

Requirements specification change requests 5 3

Requirements traceability 12 10

Reviews, inspections and walkthroughs 10 13

Software capability maturity model 9 15

System design complexity 13 6

Table C-29 Rankings for the Implementation Phase

Measure Equation 1 Equation 2

Bugs per line of code (Gaffney estimate) 20 16

Cause & effect graphing 21 21

Code defect density 1 2

Cohesion 22 22

Completeness 23 23

Cyclomatic complexity 4 6

Data flow complexity 12 10

Design defect density 3 1

Error distribution 7 7

Fault density 2 3

Fault number days 5 5

Feature point analysis 17 18

Function point analysis 15 15

Graph-theoretic static architecture complexity 19 20

Man hours per major defect detected 9 13

Minimal unit test case determination 8 9

Number of faults remaining (error seeding) 18 19

Requirements compliance 16 11

Requirements specification change requests 6 4

Requirements traceability 13 12

Reviews, inspections and walkthroughs 11 14

Software capability maturity model 10 17

System design complexity 14 8

C-16

Appendix D Sensitivity Analysis Data And Results

Table C-30 Rankings for the Testing Phase

Measure Equation 1 Equation 2
Bugs per line of code (Gaffney estimate) 29 28
Cause & effect graphing 26 24
Code defect density 2 4
Cohesion 28 29
Completeness 30 30
Cumulative failure profile 4 3
Cyclomatic complexity 8 12
Data flow complexity 18 17
Design defect density 6 5
Error distribution 13 13
Failure rate 1 1
Fault density 5 7
Fault number days 7 8
Feature point analysis 27 27
Function point analysis 22 26
Functional test coverage 17 10
Graph-theoretic static architecture complexity 25 25
Man hours per major defect detected 14 16
Mean time to failure 3 2
Minimal unit test case determination 9 11
Modular test coverage 12 6
Mutation testing (error seeding) 24 23
Number of faults remaining (error seeding) 23 21
Requirements compliance 21 19
Requirements specification change requests 10 9
Requirements traceability 19 18
Reviews, inspections and walkthroughs 15 20
Software capability maturity model 16 22
System design complexity 20 14
Test coverage 11 15

C-17

A

Appendix D Sensitivity Analysis Data And Results

C.4 Ranking Criteria Validation Experiment

This experiment attempts to validate the ranking criteria chosen in the study. This is done by varying the weights of the different ranking criteria. Table C-31
provides the static weight sets (explained below) used in this experiment. Table C-32 provides the variations on the weight sets, the correlation coefficients, and
the virtual distances, which indicate how close a variation is to the pre-selected 5 static weight sets.

The rates of thirty pre-selected measures are computed for each candidate weight set and we adopt the following notations:

Rate, The rate set corresponding to weight set I in Table C-31

Rate2 The rate set corresponding to weight set 2 in Table C-31

Rate3 The rate set corresponding to weight set 3 in Table C-31

Rate4 The rate set corresponding to weight set 4 in Table C-31

Rate 5 The rate set corresponding to weight set 5 in Table C-31

Rate(i) The rate set corresponding to the ith variation on weight set in Table C-32

PI The correlation coefficient of Rate, and Rate(i)

P2 The correlation coefficient of Rate2 and Rate(i)

P3 The correlation coefficient of Rate3 and Rate(i)

P4 The correlation coefficient of Rate4 and Rate(i)

P5 The correlation coefficient of Rate5 and Rate(i)

The virtual distance VD for each variation in Table C-32 is defined as

C-19

Appendix D Sensitivity Analysis Data And Results

5 VD= : (1 _Pj)2
j=I

VD is sorted in ascending order in Table C-32.

Table C-31 Static Weight Sets

Weight Set Cost Benefits Credibility Repeatability Experience Validation Relevance to Reliability

1 0.14 0.14 0.14 0.14 0.14 0.14 0.14

2 0.13 0.13 0.13 0.13 0.13 0.13 0.25

3 0.08 0.08 0.17 0.17 0.08 0.08 0.33

4 0.245 0.045 0.088 0.036 0.130 0.239 0.216

5 0.20 0.03 0.10 0.17 0.16 0.14 0.20

Table C-32 Variations on Weight Set, Correlation Coefficients, and Virtual Distances

Relevance to
Cost Benefits Credibility Repeatability Experience Validation PIlihiiti P1 P2 P3 P4 P5 VD

0.17 0.17 0.17 0.17 0.17 0.17 0.9970 0.9883 0.9680 0.9865 0.9983 0.001352

0.20 0.20 0.20 0.20 0.20 0,9941 0.9876 0.9683 0.9758 0.9874 0.001941

0.17 0.17 0.17 0.17 0.17 0.17 0.9954 0.9866 0.9598 0.9883 0.9936 0.001991

0.20 0.20 0.20 0.20 0.20 0.9749 0.9845 0.9823 0.9730 0.9804 0.002294

0.17 0.17 0.17 0.17 0.17 0.17 0.9902 0.9851 0.9571 0.9899 0.9831 0.002542

0.17 0.17 0.17 0.17 0.17 0.17 0.9930 0.9871 0.9680 0.9691 0.9806 0.00257

0.25 0.25 0.25 0.25 0.9800 0.9823 0.9663 0.9752 0.9849 0.002688

0.20 0.20 0.20 0.20 0.20 0.9880 0.9822 0.9537 0.9954 0.9877 0.002777

0.20 0.20 0.20 0.20 0.20 0.9895 0.9798 0.9527. 0.9898 0.9947 0.00289

0.17 0.17 0.17 0.17 0.17 0.17 0.9762 0.9839 0.9861 0.9620 0.9769 0.002993

0.17 0.17 0.17 0.17 0.17 0.17 0.9867 0.9846 0.9764 0.9549 0.9849 0.003232

0.20 0.20 0.20 0.20 0.20 0.9812 0.9839 0.9678 0.9672 0.9769 0.003255

0.20 0.20 0.20 0.20 0.20 0.9688 0.9832 0.9795 0.9756 0.9675 0.003327

0.20 0.20 0.20 0.20 0.20 0.9828 0.9801 0.9725 0.9576 0.9887 0.003375

0.20 0.20 0.20 0.20 0.20 0.9837 0.9816 0.9671 0.9611 0.9862 0.00339

C-20

Appendix D Sensitivity Analysis Data And Results

Cost Benefits Credibility Repeatability Experience Validation Relevance to
Reliability PI P2 P3 P4 Ps VD

0.25 0.25 0.25 0.25 0.9867 0.9796 0.9535 0.9782 0.9828 0.003526
0.33 0.33 0.33 0.9683 0.9816 0.9824 0.9649 0.9717 0.00368

0.20 0.20 0.20 0.20 0.20 0.9873 0.9810 0.9554 0.9719 0.9768 0.003841
0.20 0.20 0.20 0.20 0.20 0.9684 0.9760 0.9793 0.9617 0.9768 0.004014

0.25 0.25 0.25 0.25 0.9719 0.9849 0.9844 0.9592 0.9663 0.004057
0.25 0.25 0.25 0.25 0.9617 0.9764 0.9737 0.9789 0.9696 0.004086

0.25 0.25 0.25 0.25 0.9836 0.9837 0.9776 0.9481 0.9795 0.004146

0.25 0.25 0.25 0.25 0.9715 0.9821 0.9871 0.9551 0.9701 0.004211
0.25 0.25 0.25 0.25 0.9616 0.9712 0.9701 0.9696 0.9767 0.004664

0.33 0.33 0.33 0.9787 0.9794 0.9668 0.9526 0.9789 0.004676

0.25 0.25 0.25 0.25 0.9755 0.9726 0.9584 0.9615 0.9876 0.004722
0.25 0.25 0.25 0.25 0.9803 0.9771 0.9497 0.9788 0.9707 0.004744
0.33 0.33 0.33 0.9748 0.9807 0.9664 0.9580 0.9674 0.004965

0.20 0.20 0.20 0.20 0.20 0.9727 0.9832 0.9868 0.9493 0.9640 0.005072
0.33 0.33 0.33 0.9602 0.9787 0.9779 0.9661 0.9562 0.005601

0.20 0.20 0.20 0.20 0.20 0.9807 0.9813 0.9746 0.9394 0.9694 0.005979
0.20 0.20 0.20 0.20 0.20 0.9777 0.9751 0.9484 0.9690 0.9619 0.006203
0.25 0.25 0.25 0.25 0.9772 0.9783 0.9654 0.9433 0.9684 0.006396

0.25 0.25 0.25 0.25 0.9529 0.9709 0.9607 0.9796 0.9570 0.006871
0.20 0.20 0.20 0.20 0.20 0.9734 0.9679 0.9314 0.9866 0.9694 0.00756

0.25 0.25 0.25 0.25 0.9585 0.9762 0.9742 0.9545 0.9460 0.007939
0.25 0.25 0.25 0.25 0.9620 0.9658 0.9403 0.9636 0.9624 0.00891

0.25 0.25 0.25 0.25 0.9671 0.9731 0.9587 0.9421 0.9514 0.009218
0.25 0.25 0.25 0.25 0.9665 0.9602 0.9225 0.9895 0.9706 0.00969

0.33 0.33 0.33 0.9534 0.9568 0.9307 0.9678 0.9656 0.011067
0.33 0.33 0.33 0.9368 0.9555 0.9460 0.9779 0.9527 0.011615

0.50 0.50 0.9371 0.9606 0.9532 0.9648 0.9384 0.012728
0.33 0.33 0.33 0.9573 0.9540 0.9177 0.9702 0.9507 0.014034

0.33 0.33 0.33 0.9401 0.9622 0.9540 0.9539 0.9306 0.014068
0.25 0.25 0.25 0.25 0.9580 0.9554 0.9203 0.9616 0.9440 0.014706

0.50 0.50 0.9479 0.9558 0.9316 0.9480 0.9452 0.015046

C-21

Appendix D Sensitivity Analysis Data And Results

Relevance to
Cost Benefits Credibility Repeatability Experience Validation Reliability PI P2 P3 P4 P5 VD

0.17 0.17 0.17 0.17 0.17 0.17 0.9769 0.9422 0.9021 0.9484 0.9652 0.017337

0.20 0.20 0.20 0.20 0.20 0.9585 0.9370 0.9222 0.9286 0.9523 0.019122

0.33 0.33 0.33 0.9437 0.9515 0.9280 0.9320 0.9303 0.020191

0.25 0.25 0.25 0.25 0.9592 0.9412 0.9282 0.9151 0.9388 0.021238

0.25 0.25 0.25 0.25 0.9525 0.9324 0.9025 0.9517 0.9408 0.022182

0.20 0.20 0.20 0.20 0.20 0.9668 0.9296 0.8883 0.9457 0.9628 0.022861

0.20 0.20 0.20 0.20 0.20 0.9686 0.9365 0.8976 0.9301 0.9467 0.02323

0.33 0.33 0.33 0.9528 0.9324 0.9199 0.9176 0.9426 0.023307

0.25 0.25 0.25 0.25 0.9657 0.9310 0.8907 0.9339 0.9509 0.024663

0.33 0.33 0.33 0.9528 0.9297 0.9047 0.9197 0.9337 0.027095

0.20 0.20 0.20 0.20 0.20 0.9231 0.9427 0.9670 0.8906 0.9292 0.027268

0.25 0.25 0.25 0.25 0.9465 0.9191 0.8922 0.9318 0.9459 0.028609

0.25 0.25 0.25 0.25 0.9109 0.9431 0.9656 0.9018 0.9158 0.029098

0.25 0.25 0.25 0.25 0.9120 0.9375 0.9617 0.8914 0.9261 0.030363

0.33 0.33 0.33 0.9188 0.9437 0.9740 0,8813 0.9227 0.030506

0.50 0.50 0.9409 0.9227 0.8935 0.9375 0.9228 0.030684

0.25 0.25 0.25 0.25 0.9236 0.9472 0.9739 0.8787 0.9177 0,030779

0.33 0.33 0.33 0.9168 0.9476 0.9751 0.8806 0.9158 0.031621

0.25 0.25 0.25 0.25 0.9365 0.9128 0.8985 0.9169 0.9414 0.032288

0.20 0.20 0.20 0.20 0.20 0.9554 0.9194 0.8647 0.9470 0.9391 0.033298

0.50 0.50 0.9038 0.9448 0.9751 0.8915 0.9058 0.033555

0.50 0.50 0.9069 0.9401 0.9723 0.8814 0.9193 0.033577

0.33 0.33 0.33 0.9400 0,9248 0.8972 0.9213 0.9095 0.034208

0.20 0.20 0.20 0.20 0.20 0.9558 0.9151 0.8624 0.9383 0.9470 0.034715

0.25 0.25 0.25 0.25 0.9068 0.9272 0.9544 0.8829 0.9233 0.03564

0.33 0.33 0.33 0.8940 0.9285 0.9549 0.8983 0.9125 0.036393

0.50 0.50 0.9356 0.9089 0.8831 0.9162 0.9305 0.037956

0.33 0.33 0.33 0.9269 0.9038 0.8729 0.9430 0.9297 0.038948

0.20 0.20 0.20 0.20 0.20 0.9482 0.9125 0.8828 0.8933 0.9384 0.039258

0.33 0.33 0.33 0.9027 0.9400 0.9654 0.8786 0.8922 0.040621

0.25 0.25 0.25 0.25 0.9436 0.9045 0.8472 0.9456 0.9363 0.042688

C-22

Appendix D Sensitivity Analysis Data And Results

Cost Benefits Credibility Repeatability Experience Validation Relevancebto P P2 P3 P4 P5 VD
Reliability P 2 P 4V

0.25 0.25 0.25 0.25 0.9459 0.9082 0.8569 0.9165 0.9249 0.044455
0.25 0.25 0.25 0.25 0.9429 0.9105 0.8825 0.8736 0.9191 0.04759

0.33 0.33 0.33 0.9401 0.9038 0.8747 0.8770 0.9259 0.049185
0.33 0.33 0.33 0.8832 0.9098 0.9377 0.8747 0.9110 0.049282

0.25 0.25 0.25 0.25 0.9371 0.9046 0.8516 0.9172 0.9088 0.050252
0.25 0.25 0.25 0.25 0.9362 0.8924 0.8378 0.9284 0.9368 0.051068
0.33 0.33 0.33 0.8728 0.9166 0.9380 0.8884 0.8878 0.052021

0.33 0.33 0.33 0.9344 0.8985 0.8425 0.9238 0.9139 0,052607
0.33 0.33 0.33 0.9362 0.8951 0.8413 0.9157 0.9239 0.053158

0.25 0.25 0.25 0.25 0.9307 0.8915 0.8611 0.8840 0.9317 0.053987
0.25 0.25 0.25 0.25 0.9286 0.8900 0.8409 0.8947 0.9122 0.0613

1.00 0.8552 0.9137 0.9458 0.8712 0.8682 0,065319
0.33 0.33 0.33 0.9023 0.8719 0.8449 0.9028 0.9168 0.06636

0.50 0.50 0.8639 0.9151 0,9404 0.8598 0.8585 0.068943
0.25 0.25 0.25 0.25 0.9152 0.8702 0.8249 0.8688 0.9100 0.080004
0.33 0.33 0.33 0.8936 0.8666 0.8142 0.9268 0.8878 0.081589
0.33 0.33 0.33 0.9091 0.8651 0,8127 0.8882 0.9065 0.082756
0.50 0.50 0.8318 0.8796 0.9058 0.8684 0.8664 0.086819

0.50 0.50 0.9094 0.8698 0.8186 0.8679 0.8862 0.088454
0.33 0.33 0.33 0.9103 0.8692 0.8255 0.8454 0.8871 0.092251
0.33 0.33 0.33 0.9064 0.8726 0.8260 0.8548 0.8718 0.092812

0.25 0.25 0.25 0.25 0.9012 0.8586 0.7867 0.9108 0.8877 0.095858
0.50 0.50 0.8765 0.8562 0.8064 0.8857 0.8447 0.11058

0.50 0.50 0.8947 0.8478 0.8010 0.8391 0.8844 0.11309
0.33 0.33 0.33 0.8765 0.8267 0.7796 0.8421 0.8856 0.131905

0.33 0.33 0.33 0.8772 0.8388 0.7692 0.8730 0.8493 0.133197
0.33 0.33 0.33 0.8721 0.8256 0.7500 0.8956 0.8698 0.137166

0.33 0.33 0.33 0.8604 0.8508 0.8694 0.7691 0.8391 0.137975
1.00 0.8476 0.8221 0.7664 0.8846 0.8341 0.150322

0.25 0.25 0.25 0.25 0.8440 0.8293 0.8437 0.7770 0.8437 0.152062
1.00 0.8376 0.8358 0.8569 0.7705 0.8170 0.159983

C-23

Appendix D Sensitivity Analysis Data And Results

Relevance to Cost Benefits Credibility Repeatability Experience ValidationRlibit
Pi P2 P3 P4 P5 VD

0.50 0.50 0.8600 0.8173 0.7430 0.8687 0.8420 0.16123

0.50 0.50 0.8348 0.8227 0.8465 0,7508 0.8294 0.173497
0.50 0.50 0.8179 0.7866 0.7315 0.8785 0.8336 0.193284

0.33 0.33 0.33 0.8147 0,8056 0.8110 0.7738 0.8079 0.195882

0.50 0.50 0.8241 0.8244 0.8359 0.7455 0.7812 0.201355

0.50 0.50 0.8168 0.8025 0.8181 0.7149 0.7965 0.228317

0.33 0.33 0.33 0.8264 0.7761 0.7010 0.8137 0.8146 0.238778
0.33 0.33 0.33 0.7858 0.7687 0.7867 0.7311 0.8024 0.256267
0.33 0.33 0.33 0.7657 0.7445 0.7535 0.7052 0.7778 0.317251

0.50 0.50 0.7929 0.7491 0.6772 0.7572 0,7572 0.327914
1.00 0,7403 0.7209 0.7443 0.6512 0.7483 0.395721

0.50 0.50 0.7578 0.7005 0.6196 0.7661 0.7655 0.402775
0.50 0.50 0.7149 0.7025 0.7128 0.6997 0.7371 0.411589

1.00 0.7567 0.7040 0.6227 0.7385 0.7369 0.426784

0.50 0.50 0.6251 0.6008 0.6138 0.5873 0.6634 0.732723
1.00 0.5366 0.5406 0.5315 0.4629 0.4682 1.216517

0.50 0.50 0.4997 0.4843 0.4675 0.5070 0.5131 1.27997

1.00 0.1064 0.0880 0.0779 0.1679 0.1702 3.861543

C-24

Appendix D Inputs for Missing Measures

APPENDIX D DATA COLLECTED FOR THE MISSING MEASURES

This appendix contains the levels assessed by the University of Maryland team for each of the missing
measures.

Table D-1 Ranking Criteria Levels for the Missing Measures

Measure Cost Benefits Credibility Repeatability Experience Validation
Class coupling W F+ C A M A
Class hierarchy nesting level W F+ C A M A
Coverage Q D A B M+ A
Full Function Point Q E+ D+ C M C+
Lack of Cohesion in Methods W F+ D A M A
Mutation Score Q C C A E A
Number of Children W F+ C A M A
Number of Class methods W F+ C A M A
Number of Key Classes W F+ D E M A
Weighted Method Complexity W F+ D A M A

Table D-2 Level for the Relevance to Reliability Criterion (Per Phase)

Measure Requirements Design Implementation Testing
Class coupling D - D - E +
Class hierarchy nesting level D - D - E +
Coverage B
Full Function Point E - D - D - F +
Lack of Cohesion in Methods D - D - E +

Mutation Score D D
Number of Children D - D - E +
Number of Class methods D - D - E +
Number of Key Classes D - D - E +
Weighted Method Complexity' D - D - E +

D-1

Appendix E Glossary

APPENDIX E GLOSSARY

Aggregation framework

An aggregation framework (also called aggregation scheme) is defined as the set

{aggregation equation, weights, a letter-real conversion scheme}.

Aggregated rate

An aggregated rate (also called measure's rate, or rate) is a real value ranging from 0 to

1. The rate is an indicator of the measure's capability to predict software reliability. The

higher the aggregated rate value, the more capable the measure is of predicting software

reliability.

Aggregation scheme
See the entry for "Aggregation framework".

Algorithm

An algorithm is a straightforward procedure for combining two or more measures. The

output of the algorithm represents one or more characteristics of the software product

under study.

Architectural model

A model that puts emphasis on the architecture of the software and derives reliability

estimates by combining estimates obtained for the different modules of the software.

Attribute (object-oriented)

Some data (state information) for which each object in a class has its own value.

Availability
Term used to define whether or not a measure is available in a particular software

development phase.

Class (object-oriented)
A group or set of objects sharing common attributes.

Cohesion
The manner and degree to which the tasks performed by a single software module are

related to one another.

Coupling
The manner and degree of interdependence between software modules.

Derived measure

E-1

Appendix E Glossary

An intermediate value which is neither an indicator nor a primitive measure.

Early prediction model

A model that uses the analyst's knowledge of the software development process to

predict reliability early in the software development process, i.e., during the design or

coding phase.

Extrinsic characteristics
The extrinsic validity of the measure is defined by its degree of relevance to reliability.

Family
Two measures are said to belong to the same family if, and only if, they measure the

same quantity (or more precisely, concept) using alternate means of evaluation.

Fault-tolerant system
A system that is able to continue normal operation despite the presence of faults.

Indicator

Estimates or evaluations that provide a basis for decision-making. In this particular

study, reliability is deemed an appropriate indicator for decision making.

Input domain model

A model that uses the properties of the input domain of the software to derive a

correctness probability estimate from test cases that executed properly.

Intrinsic validity
The intrinsic validity of a measure depends on how well it performs with respect to

quality ranking criteria (defined later) and cost effectiveness ranking criteria.

Method (object-oriented)

A function or behavior of an object.

Model

A procedure for combining measures to produce an estimate or evaluation based on a

series of assumptions. Each assumption is an idealization of reality. The procedure is

logically deduced from the assumptions.

Mutation testing
A testing methodology in which two or more program mutations are executed using the

same test cases to evaluate the ability of the test cases to detect differences in the

mutations.

Object-oriented development

E-2

Appendix E Glossary

A software development technique in which a system or component is expressed in terms

of objects and connections between those objects.

Primitive measure
Primitive measures are values resulting from the application of rules to software

attributes.

Ranking criterion

Used to assess the reliability prediction potential of a software engineering measure.

Ranking criteria level
Each ranking criterion is quantified into levels. These levels provide a qualitative

estimate of the "goodness" of a measure with respect to the criterion.

Reliability growth model

A model that characterizes the improvement in reliability that results from correction of

faults. This category of models uses failure data information and trends observed in the

failure data to derive reliability predictions.

Root of RPS

A root of a software reliability prediction system is a measure that constitutes the starting

point of the system and should be supplemented by additional measures which will

complete the system.

Reliability Prediction System (RPS)

A complete set of software engineering measures from which software reliability can be

predicted.

Rule

A rule is a mapping of the software attribute to a subset of the field of real or integer

numbers.

Software Attribute

Software attributes are properties of the software, such as the functional size, structural

complexity, etc.

Software development phase

The period of time that begins when a software product is conceived and ends when the

software is no longer available for use. The software development phase typically

includes a concept phase, requirements phase, design phase, implementation phase, test

phase, installation and checkout phase, operation and maintenance phase, and, retirement

phase. In this study the above phases are grouped into four phases:

E-3

Appendix E Glossary

"* the requirements phase, which includes the concept and requirements phases,

"* the design phase, which includes the design phase,

"* the implementation phase, which includes the implementation and unit testing

phases,

"* the test phase, which includes the test phases.

Software Engineering

1. The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software.

2. The study of approaches as in 1.

Software Engineering Measure

A measure of the degree to which a software system, component, or process possesses a

given software attribute.

Software error

A human action that produces an incorrect result.

Software failure

The inability of a system or component to perform its required functions within specified

performance requirements.

Software fault
An incorrect step, process, or data definition in a computer program.

Software Reliability

Software reliability is defined here as the probability of successfully performing the

safety function on demand with no unintended functions that might affect safety.

Software-based safety critical digital I&C system

A computer-based sub-system that controls and monitors the safe execution of a process

plant or airborne system etc. This computer-based system performs the following

functions:

(1) measurement of process variables such as temperature, flow rate, and pressure, (2)

execution of a control strategy, (3) actuation of such devices as valves and switches that

enable the process to implement the control strategy, and (4) generation of reports to

engineers and management indicating equipment status and performance.

Structural level

A structural level is any of the following: software attribute, primitive measure, derived

measure or indicator.

E-4

Appendix E Glossary

Support measure
Measure used to supplement the rootof a RPS.

E-5

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(2-89) (Assigned by NRC, Add Vol., Supp., Rev.,
NRCM 1102. and Addendum Numbers, if any.)
3201.3202 BIBLIOGRAPHIC DATA SHEET

(See instructions on the reverse) NUREG/GR-0019

2. TITLE AND SUBTITLE UMD-RE-2000-23

Software Engineeing Measures for Predicting Software Reliability in
Critical Digital Systems 3. DATE REPORT PUBLISHED

MONTH YEAR

November 2000
4. FIN OR GRANT NUMBER

K6007

5. AUTHOR(S) 6. TYPE OF REPORT

C .Smidts, M. Li Technical

7. PERIOD COVERED (Inclusive Dates)

January 1999 - August 2000

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor,
provide name and mailing address.)

University of Maryland

Center for Reliability Engineering
College Park, MD 20742

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type -Same as above,"f contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission,
and mailing address.)

Division of Engineering Technology

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES
R Rr-ill NRC Proiett Manaaer

11. ABSTRACT (200 words or less)

This report presents the University of Maryland (UMD) research to identify measures and families for the prediction and
assessment of the reliability of software-based digital systems.

A set of software engineering measures from which the potential reliability of a digital I&C system can be predicted is developed
from a set of 30 pre-selected software engineering measures. These measures are derived from a pool of 78 software
engineering measures identified by Lawrence Livermore National Laboratory (LLNL). The concepts of structural classification,
software development life-cycle classification, and family are presented. These 30 measures are categorized using these
concepts. The concept of RPS and an extended structural representation are introduced to bridge the gap between software
engineering measures and reliability. Expert opinion is elicited as the input in ranking the pre-selected 30 measures in terms of
software reliability prediction. 10 missing measures are identified and ranked. The potential impact of these 10 missing
measures on the ranking of the pre-selected 30 measures is analyzed. The top-ranked measures and families are presented in
this report. Use of the families of measures in each software development phase can lead to a quantitative prediction of
software reliability.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT

Software Reliability Measures unlimited

Software Reliability Measure classification 14. SECURITY CLASSIFICATION

Software Measure families This Page)

Ranking of Software Reliability Measures unclassified
Measures of Software quality (This Report)

unclassified

15. NUMBER OF PAGES

16. PRICE

This form was electronically produced by Elite Federal Forms, Inc.

R Brill NRC Protect Manarier

NRC FORM 335 (2-89)

Federal Recycling Program

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, D,C. 20555-0001

