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ABSTRACT 

This report presents the University of Maryland (UMD) research to identify measures and families for the 

prediction and assessment of the reliability of software-based digital systems.  

A set of software engineering measures from which the potential reliability of a digital I&C system can be 

predicted is developed from a set of 30 pre-selected software engineering measures. These measures are 

derived from a pool of 78 software engineering measures identified by Lawrence Livermore National 

Laboratory (LLNL). The concepts of structural classification, software development life-cycle 

classification, and family are presented. These 30 measures are categorized using these concepts. The 

concept of RPS and an extended structural representation are introduced to bridge the gap between software 

engineering measures and reliability. Expert opinion is elicited as the input in ranking the pre-selected 30 

measures in terms of software reliability prediction. 10 missing measures are identified and ranked. The 

potential impact of these 10 missing measures on the ranking of the pre-selected 30 measures is analyzed.  

The top-ranked measures and families are presented in this report. Use of the families of measures in each 

software development phase can lead to a quantitative prediction of software reliability.  

This study is the first step towards a systematic approach predicting the reliability of a real-time I&C 

software using RPSs established from the top-ranked measures and families. However, current knowledge 

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to 

investigate the quantitative reliability as a function of the RPS measures.  

This report was prepared as an account of work sponsored by under a Cooperative Agreement, NRC-RES 

98-056, with the US Nuclear Regulatory Commission an agency of the United States Government. Neither 

the United States Government or any agency thereof, nor any of its employees, makes any warranty, 

expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results 

of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its 

use by such a third party would not infringe privately owned rights. The views expressed in this paper are 

those of the authors and should not be construed to reflect the U. S. Nuclear Regulatory Commission 

position.  

The opinions and viewpoints expressed herein are the authors' personal ones and do not necessarily reflect 

the criteria, requirements, and guidelines of the Nuclear Regulatory Commission.
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EXECUTIVE SUMMARY 

This report summarizes the results of a Cooperative Research Agreement between the University of 

Maryland (UMD) and the Nuclear Regulatory Commission (NRC) to identify quantitative measures for the 
prediction and assessment of the reliability of software-based digital systems.  

UMIDD based its study on previous research carried out by Lawrence Livermore National Laboratory 
(LLNL). In that study, LLNL identified a pool of 78 software engineering measures related to software 
reliability and established a set of software engineering ranking criteria used to rank assess the measures 
potential as software reliability indicators. The 78 measures were evaluated by two members of the LLNL 
research staff.  

UMD scrutinized the ranking criteria, their corresponding levels and the ranking procedure used in the 
LLNL study. One ranking criterion was discarded and several ranking criteria were revised. The set of 78 
measures was reduced by eliminating several (5) software reliability models which were mistakenly 
considered as measures. This set was then further reduced to 30 using importance considerations. These 
resulting 30 software engineering measures constitute the basis of the UMD study.  

Realizing that the LLNL study did not examine the nature of the relationships between software 
engineering measures and software reliability prediction, UMD investigated the existence of a bridge 
between these notions. In particular, the concept of software Reliability Prediction System (RPS) was 
introduced. A RPS is a complete set of software engineering measures from which software reliability can 
be predicted. The key question is "What RPS is best for predicting the reliability of a real-time I&C 
software?" However, directly answering this question is impractical to date. The simplified question, 
"what are the best software engineering measures candidates for a RPS?" was found to be an appropriate 
substitute to this complex issue. This is the question being answered in this report.  

A three-dimensional classification important to the analysis of the measures was introduced in this study.  
The axes of classification are structural', life-cycle based, and semantic. Structural classification, along 
with its graphical representation, assists in the establishment of RPSs. Life-cycle based classification helps 

define whether or not a measure is applicable in a particular software development phase. Semantic 

classification leads to the introduction of the concept of family. Families contain measures that estimate the 
same quantity using alternate means of evaluation. This concept helps further identify the relationships 
among measures. It also significantly improves the stability of the results presented in this study. Although 
new measures will appear as the development of software engineering techniques continues, the number of 
families will not significantly vary.  

Expert opinion was elicited as input to the UMD ranking process. A number of field experts were selected 
from the nuclear and aerospace domain. They covered the following areas of knowledge: software 
development, software engineering, software engineering measurement, software reliability engineering, 
software reliability modeling, software safety, digital I&C design. A questionnaire was designed to pool 
expert opinion. The experts were then convened in a workshop where they summarized their evaluations of 
the measures and provided feedback on the ranking methodology being used.  

Multi-attribute utility theory2 was then used to rank the experts' inputs. The aggregated results were 
analyzed. The top-ranked measures were identified phase per phase. The families were also ranked and the 
top-ranked families identified.  

SStructural classification establishes the relative position ofa software engineering measure on a scale that ranges from physical 

reality to an indicator used for decision-making, namely reliability.  
2 A theory that aggregates the multiple attributes of interest into a scalar, which guides decision-making.
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For purposes of this study, the software development is categorized into the following phases: 

requirements, design, implementation, testing, and operation. The aim is to predict the reliability of 

the operational phase. The other four phases are the periods during which software engineering measures 

are gathered. The top-ranked families and measures are listed below.  

During the requirements phase, the top-ranked families are "Fault detected per unit of size", "Requirements 

specification change requests", and "Error distribution". The top-ranked measures are "Fault density", 

"Requirements specification change requests", and "Error distribution".  

During the design phase, the top-ranked families are "Fault detected per unit of size", "Module structural 

complexity", and "Time taken to detect and remove faults". The top 3 measures are "Design defect 

density", "Fault density", and "Cyclomatic complexity".  

During the implementation phase, the top-ranked families are "Fault detected per unit of size", "Module 

structural complexity", and "Time taken to detect and remove faults". The top-ranked measures are "Code 

defect density", "Design defect density", and "Cyclomatic complexity".  

During the test phase, the top-ranked families are "Failure rate", "Fault detected per unit of size", and 

"Module structural complexity". The top-ranked measures are "Failure rate", "Code defect density", and 

"Mean time to failure".  

This study is the first step towards a systematic approach predicting the reliability of real-time I&C 

software using RPSs established from the top-ranked measures and families. However, current knowledge 

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to 

investigate the quantitative reliability as a function of the RPS measures.  

A sensitivity analysis was performed. The sensitivity analysis proves that the results obtained remain valid 

for a wide spectrum of aggregation schemes.  

Ten measures which have been omitted by LLNL were suggested by the experts. They reflect the advances 

of software engineering. They cover the fault-tolerant computing environment, the mutation testing 

technique, the object-oriented development method, and one adaptation of "Function point". The ranking 

criteria levels of these 10 measures were assessed by UMD research team members using: (1) the fact that 

analogies between measures existed; (2) the software engineering literature; (3) field expert inputs. The 

aggregated rates3 were calculated. The impact of the 10 measures on the ranking of the 30 pre-selected 

measures was analyzed. The analysis shows that the 00 measures do not significantly influence the 

rankings. On the other hand, the "Coverage factor" and "Mutation score" play more important roles.  

This study is the first step towards a systematic approach predicting the reliability of a real-time I&C 

software using RPSs established from the top-ranked measures and families. However, current knowledge 

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to 

investigate the quantitative reliability as a function of the RPS measures.  

3 An aggregated rate (also called measure's rate, or rate) is a real value ranging from 0 to 1. The rate is an indicator of the measure's 

capability to predict software reliability. The higher the aggregated rate value, the more capable the measure is of predicting software 

reliability.
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Chapter 1 Introduction and Summary

CHAPTER 1 INTRODUCTION AND SUMMARY 

1.1 Research Objective 

The objective of this study is to identify a set of software engineering measures from which the potential 
reliability of a digital I&C system can be predicted. This study commences a long-term research effort for 
developing a method to obtain a quantitative estimate of the reliability of a digital system. For the purposes 
of the project, reliability is defined to be the probability that the digital system will successfully perform its 
intended safety function (for all conditions under which it is expected to respond) upon demand with no 
unintended functions that might affect system safety.  

The ultimate purpose of the method developed is: 

"* To provide a set of information sufficient and necessary to estimate reliability along with its 
associated uncertainty that could be used in probabilistic risk assessment (PRA).  

"* To provide information that can be used to supplement existing review methods in an assessment 
of software-based digital systems which have high degree of safety requirements.  

1.2 Statement of the Problem 

Software-based digital systems are progressively replacing analog systems in safety-critical applications 
like nuclear power plants. However the ability to predict their failure rate is still not well understood and 
requires further study.  

The modem software-based digital systems are composed of hardware devices and software embedded in 
the hardware. Reliability prediction for digital systems must account for the failure of hardware, the failure 
of software, and effects of hardware and software failures on each other and the effect that such failures 
have upon the function they are intended to perform.  

Hardware reliability calculation usually is predicted upon the assumption that the device design is 
fundamentally correct. Failures are assumed to be caused by random variability in the physical stresses 
seen by the device and by variability in the devices' ability to withstand these stresses. Consequently, the 
failure rate of a hardware device can be calculated from the failures observed in similar devices subject to 
similar stresses.  

Unlike hardware, software is a logical set of instructions, not a physical, component of a system. Its success 
or failure is not affected by physical stress, which is the primary cause of hardware failure. Failures of the 
software stem mostly from fundamental errors in the design that cause the system to fail under certain 
combinations of system states and input trajectories. Current qualitative methods for assuring reliability are 
process oriented. There is no universally accepted qualitative methods for assuring that safety critical 
software is free of defects to a desired reliability level.  

Four categories of models have been considered as potential candidates to modeling the reliability of 
software to date. The four categories include reliability growth models, input domain models, architectural 
models and early prediction models. The first class captures failure behavior during testing and 
extrapolates it to behavior during operation. Hence this category of models uses failure data and trends 
observed in the failure data to derive reliability predictions. The second category of models uses properties 
of the input domain of the software to derive a correctness probability estimate from test cases that 
executed properly. The third class of models puts emphasis on the architecture of the software and derives 
reliability estimates by combining estimates obtained for the different modules of the software. Finally, the
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fourth category of models uses characteristics of the software development process from requirements to 

test and extrapolates this information to behavior during operation.  

However, each group of models has its inherent flaws when applying them to safety critical real-time 

systems. Safety critical real-time systems are characterized by the following features: 

1. The probability of failure needs to be less than 10-6 per one year of execution' [Butl93].  

2. The input rate is really fast, generally at the speed of 100 inputs per second.  

Given such characteristics of safety critical real-time systems, applying reliability growth models is 

infeasible because of the exorbitant amounts of testing that would be required [But193].  

The traditional input domain model, Nelson model [Nels78], is as simple as a point estimate of failure rate 

based on the number of failures and number of total test cases. According to Butler and Finelli [Butl93], 

this model needs exorbitant amounts of testing for safety critical real-time systems. Nelson and other 

researchers introduced the concept of equivalence class which significantly reduces the amount of testing 

required. These models started with a problematic assumption that the input domain can be thoroughly 

identified and classified into equivalence classes. Extreme caution should be exercised when applying this 

model to real-time safety critical systems: the inputs of such a system are generally infinite and 

unpredictable. A mechanism which is not yet established is required to guarantee the exhaustive 

classification of such inputs.  

The structural models are widely used in fault-tolerant systems [Duga95] [Scot87]. The failure rate (or 

transition rate) from the normal state to the abnormal state (or vice versa) is assumed to be available.  

However, how to estimate this parameter is not known. In essence, this rate is the failure rate of a sub

system in the fault-tolerant system. The estimation of the rate requires the failure data to be available.  

Several early prediction models exist [Gaff88] [RADC92] [Stut98]. The Gaffiney model is based on the 

assumption that the size of the system in LOC is available (or predictable) at the time the prediction is 

made. Then the number of discovered faults is given by an empirical relationship. Unfortunately there is 

still a long way to go from the number of discovered faults to reliability prediction. The RADC model 

derives reliability from copious data sources by means of some unexplainable empirical relationships. No 

research shows that this model is applicable to real-time safety critical systems.  

Therefore a new research effort was initiated in this study to understand the relationship between the 

characteristics of the development process, the product itself, the operational environment and software 

reliability.  

1.3 Background 

One industry which requires high integrity safety critical software is the nuclear industry. The nuclear 

industry usually uses IEEE Std 74.3.2-1993, "Standard Criteria for Digital Computers in Safety Systems of 

Nuclear Power Generating Stations." While the Nuclear Regulatory Commission (NRC) endorsed this 

standard in Regulatory Guide 1.152, Revision 1 (January, 1996), it did not endorse Section 5.15, 

"Reliability" as a sole means of meeting the Commission's regulations for reliability of digital equipment 

used in safety systems. The applicable Section 5.15 of the standard states "when qualitative or quantitative 

reliability goals are required, the proof of meeting the goals shall include software used with hardware." 

The NRC staff did not endorse that section because there is no general agreement that a measurement 

methodology currently exists that provides a credible method to measure software reliability.  

' The experts claim that a failure probability lesser than 10*3 can not be measured in practice

1-2



Chapter 1 Introduction and Summary

The aircraft industry standard for software is RTCA/DO-178B, "Software Considerations in Airborne 
Systems and Equipment Certification." It states in paragraph 12.3.4 Software Reliability methods "that 
currently available methods do not provide results in which confidence can be placed to the level required 
for this purpose." Hence this document does not provide guidance for software error rates.  

During the last several years, both the NRC and the nuclear industry have recognized that PRA analysis has 
evolved to the point where it can be used as a tool for assisting in regulatory decision-making. In 1995, the 
NRC adopted a policy regarding expanded NRC use of PRA. Following publication of the Commission 
policy, the Commission directed the NRC staff to develop a regulatory framework that incorporates risk 
insights. Recently, the NRC staff has developed risk-informed regulatory guides to meet this directive.  
PRAs require a value in terms of failure rate per demand for the digital system to perform its intended 
function. The lack of a credible measurement methodology that assesses this value precludes meaningful 
consideration of digital systems in the development of these risk insights. The development of objective 
estimates of digital system software reliability which could be used in place of subjective estimates, where 
feasible, in PRAs will help the NRC make better risk-informed decisions.  

1.4 Approach 

The research presented in this report is a continuation of the work performed by Lawrence Livermore 
National Laboratory (LLNL) CASE Tools for Software Reliability Measurement [LLNL98]. In that study, 
LLNL reviewed worldwide literature to determine the state-of-the-art in measuring software reliability. 78 
basic measurements were found to exist. LLNL then designed a set of ranking criteria in order to rank each 
of the measures2. The 78 measures were then ranked by two laboratory personnel.  

Although LLNL identified and ranked 78 measures, the relationship between the top-ranked measures and 
software reliability had not been investigated. The University of Maryland (UMD) study started from the 
establishment of the theoretical bridge between software engineering measures and software reliability. The 
concept "software reliability prediction system (RPS)" 3 was introduced for this purpose.  

The key question is "What RPS is best for predicting the reliability of a real-time I&C software?" 
However, directly answering this question is impractical to date. The simplified question, "what are the 
best software engineering measures candidates for a RPS?" was found to be an appropriate substitute to this 
complex issue. This is the question being answered in this report.  

Using the 78 Lawrence Livermore National Laboratory measures as starting point UMD reduced it to thirty 
using structural considerations (such as the fact that software reliability models are not measures and 
should not be part of such a study) as well as importance considerations. A group of experts was convened 
in a workshop where they summarized their evaluations of the measures and provided feedback on the 
ranking methodology being used. The ranking of these 30 measures was then performed based upon the 
input provided by the group of experts. A sensitivity analysis was performed to verify the validity of the 
aggregation approach. During the workshop, the experts described and recommended a set of measures to 
be added to the pool of thirty measures selected. Ten missing measures were then rated by researchers at 
UMD. The rates of these missing measures were then aggregated with the initial thirty, and the final set of 
top-ranked measures were identified.  

2 In this report the term "measures" refers to software engineering measures. By measure we mean the degree to which a software 

system, component, or process possesses a given software attribute. For instance, the measure "Line of Code (LOC)" assesses the 
physical size of a code, the measure "Function Point" evaluates the functional size of a system.  

' The RPS is a complete set of software engineering measures which can be used to predict software reliability.
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1.5 Contents of This Report

Chapter 2 investigates the relationships between measures and reliability prediction. It introduces three 

axes of classification important to the analysis of the measures. These axes are structural, life-cycle based 

and, semantic. Chapter 2 also defines the concept of a Software Reliability Prediction System, which is a 

complete set of measures by which software reliability can be predicted.  

Chapter 3 presents the methodology used to rank the pre-selected set of 30 software engineering measures 

discussed in Section 1.4. The methodology involves the elicitation of expert opinion regarding the scores of 

software engineering measures. The scoring is performed with respect to seven ranking criteria: Credibility, 

Repeatability, Cost, Benefit, Experience, Validation, and Relevance to Reliability, and in terms of letter 

grades. A letter-conversion scheme translates the letter values to real numbers between 0 and 1. These 

numbers are then aggregated using an aggregation equation and a weighting scheme for the seven ranking 

criteria. The aggregated number serves as the indicator of the "goodness" of the measure. A sensitivity 

analysis is further performed on all components of the analysis, i.e. letter-real conversion scheme, 

aggregation function form, weighting scheme, since, a priori, one can not assess which aggregation scheme 

is correct. The sensitivity analysis proves that the results obtained remain valid for a wide spectrum of 

aggregation schemes. Results of aggregation rates, rankings, and sensitivity analysis for the thirty pre

selected measures are presented in Chapter 4. Some potential inconsistencies are also examined and 

explained.  

The discussion provided in Chapter 5 is designed to incorporate the latest new measures generated by the 

advances of software engineering into the study. The missing measures discussed in Chapter 5 were 

identified by experts. The measures cover the fault-tolerant computing environment, the mutation testing 

technique, the object-oriented development method, and one adaptation of "Function point". The ranking 

criteria levels were assessed by UMID research team members using: the fact that analogies between 

measures existed, the software engineering literature, and field expert inputs. The aggregation rates were 

calculated by applying the aggregation theory discussed in Chapter 3.  

Chapter 6 provides a summary of our research and discusses future research.  

Appendix A provides descriptions for the forty software engineering measures used in this study. This 

includes the description of the pre-selected 30 measures and the description of the 10 missing measures.  

Appendix B presents the questionnaire used to elicit expert opinion.  

Appendix C presents the aggregation results and sensitivity analysis for the 30 pre-selected measures.  

Appendix D provides the input data for the missing measures.  

In Appendix E a glossary of terms used in this report is provided.  

1.6 Final Results 

Forty software engineering measures were ranked in terms of their capability to predict software reliability.  

The ranking was performed phase by phase due to the fact that this capability varies in different phases. In 

addition, some measures applicable to non-object-oriented systems are not applicable to object-oriented 

(00) systems. This leads to separate rankings performed for both 00 and non-00 systems. The top-ranked 

measures are provided in the following: 

Table 1-1 and Table 1-2 provide the top 3 measures, phase by phase, for non-object-oriented systems and 

object-oriented systems, respectively. These top-ranked measures are the possible roots of a complete set of 

measures from which software reliability can be predicted.
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Requirements Design Implementation Testing 

Fault density Design defect density Code defect density Failure rate 

Requirements Cyclomatic complexity Design defect density Code defect density 
specification change 
requests 

Error distribution Fault density Cyclomatic complexity Coverage factor 

Table 1-1 Top 3 Measures per Phase for non-OO Systems 

Requirements Design Implementation Testing 

Fault density Design defect density Code defect density Failure rate 

Requirements Fault density Design defect density Code defect density 
specification change 
requests 

Error distribution Fault-days number Fault density Coverage factor 

Table 1-2 Top 3 Measures per Phase for 00 Systems 

The concept of family is introduced in this study to reflect a many-to-one relationship between measures 

and primary attributes, such as functional size of a system, complexity of a piece of code, etc. The 

introduction of this concept reduces the 40 measures to 20 families for non-OO systems and 22 for 00 

systems. Although new measures would appear as the development of software engineering techniques, the 

number of families might not significantly vary. Even more encouraging is the fact that the ranking of the 

families is more stable than that of the measures during different software development phases.  

The top 3 families for non-00 and 00 systems are provided in Table 1-3 and Table 1-4 below.  

Requirements Design Implementation Testing 

Fault detected per unit of Fault detected per unit Fault detected per unit Failure Rate 
size of size of size 

Requirements Module structural Module structural Fault Detected per 

specification change complexity complexity Unit of Size 
requests 

Error distribution Time taken to detect Test adequacy Fault-tolerant 
and remove faults Coverage Factor 

Table 1-3 Top 3 Families per Phase for non-00 Systems
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Requirements Design Implementation Testing 

Fault detected per unit of Fault detected per unit Fault detected per unit Failure rate 

size of size of size 

Requirements Time taken to detect Test adequacy Fault detected per 

specification change and remove faults unit of size 

requests 

Error distribution Requirements Time taken to detect Fault-tolerant 

specification change and remove faults coverage factor 

requests 

Table 1-4 Top 3 Families per Phase for 00 Systems 

1.7 Significance 

Currently the NRC's Standard Review Plan, Chapter 7 and BTP-14 and aircraft industry standard for 

software (RTCA/DO) do not contain quantitative acceptance reliability requirements. This is because there 

has been no technical basis for utilizing the measures currently in use by industry. University of 

Maryland's work provides a technical basis for utilizing measures currently in use.  

This study recommends a set of software engineering measures to the software industry for better 

management and quality control of the software development process. In particular, this study provides the 

theoretical basis to support the selection of such a set of measures. Also the results of this study might help 

the reviewers to better understand the results of an inspection of the digital system.  

Information has been identified to perform reliability prediction in the early stages of the development.  

This prediction along with the measures can signal potential problems in the development. According to 

such information, either the quality controller warns the development team to improve the quality of the 

development, or the decision-maker decides to terminate the development.  

Another significant contribution of the study is the introduction of the concept of software reliability 

prediction system (RPS). This concept helps identifying support measures that need to be collected if one 

wants to obtain a credible reliability prediction.  

This study is the first step towards a systematic approach predicting the reliability of a real-time I&C 

software using RPSs established from the top-ranked measures and families. However, current knowledge 

prevents the quantitative estimation of the accuracy of such prediction. Further experiments are required to 

investigate the quantitative reliability as a function of the RPS measures.  
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Chapter 2 On The Nature Of Relationships Between Measures And Reliability

CHAPTER 2 ON THE NATURE OF RELATIONSHIPS BETWEEN 
MEASURES AND RELIABILITY 

Software engineering measures are essential not only to good software engineering practice, but also for the 
thorough understanding of software failure behaviors and reliability prediction [Fent97]. Software engineering 
measures address multiple aspects of the software development process and of the product itself. For instance, one 

finds measures associated with estimation and/or prediction of cost and schedule of software development, measures 
involving organizations, staff, number of lines in a software module, logical complexity of a module, etc.  

Software development organizations typically elect to select a small number of such software engineering measures 
to manage, predict, and assess the quality of their development processes and products. The purpose of this research 
is to determine whether these measures are suitable for the prediction of software reliability, and if so, to what 
extent. In other words, can these measures be used as reliability predictors? 

The scientific literature reveals that limited research efforts have been undertaken to answer this question [RL92] 
[Khos9O] [LLNL98] [Evan99] [Smid98][Stut98]. However, the research has not yet reached maturity and more 
research is definitely required in this domain [Lyu95]. The research presented in this report builds on these prior 
efforts.  

To assess whether a software engineering measure can serve as a reliability predictor it is necessary to assess both 
the intrinsic characteristics of the measure (how good the measure is in itself, the measure's purpose, how much it 

costs) as well as its extrinsic characteristics (how it relates to reliability). In this chapter, a classification scheme is 
introduced which helps classify measures structurally, with respect to the software development life-cycle and 
semantically. Classification of a measure is an important step in the analysis of a measure because it helps in more 
objectively assessing the intrinsic and extrinsic characteristics of the measure and also because it helps understand 
relationships between various measures. Three axes of classification are introduced: 1) structural, 2) life-cycle based 
and 3) semantic. The chapter begins with the definition and explanation of the structural classification (Section 2.1).  
Deriving the particular class to which a measure belongs involves an analysis process leading to a graphical 
representation of the structure of the measure. The "Gaffney estimate of the bugs per Line of Code"' is given as an 
example. Section 2.2 is dedicated to the life-cycle based classification. Section 2.3 discusses semantic classification 
and the notion of families.  

Section 2.4 presents an extension of the structural representation to capture the layer that is missing between the 
software engineering measure and reliability. This more detailed representation depicts the direct tie between the 
measure and reliability.  

From this extension, one derives the notion of a system of measures (Section2.5) and the general problem of finding 
"a system of measures which could help predict reliability is introduced. The problem of finding the degree to which 
"a measure is a valid indicator of reliability is shown to be a simplified version of the general problem. This 
simplified problem is solved in later chapters using elicited expert opinion.  

2.1 Structural classification 

David Card advocated an information model in [ISO15939] that defines the increasing structural levels of measures.  
A revised information model entitled as "structural classification" is presented in this section. Structural 
classification establishes the relative position of a software engineering measure on a scale that goes from physical 
reality to an indicator used for decision-making, namely reliability. More precisely, Figure 2-1 shows how the 

software engineering measure is derived from data (the physical reality) using typically simple mathematical 
operations. While building the chart, a determination is made as to whether the measure belongs to the following 

SA 
detailed description of the measure is given in Appendix A.
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structural levels: primitive measure, derived measure or indicator. Figure 2-1 depicts these different levels.  

Attributes (see Figure 2-1) are not measures, however they delimit the structural scale at one end and take root in 

physical reality. Indicators are measures and define the other end of the scale, namely reliability2 . A detailed 

explanation of this terminology is given in the remainder of this paragraph. The classification is such that a primitive 

measure is "further away" from the indicator than a derived measure. Hence the classification helps evaluate the 
"conceptual distance" between the measure and the indicator. The classification also attempts to characterize the 

transformations used to derive the measure, i.e. a determination is made whether rules, models or algorithms are 

used to derive the measure. Such information is important since models are based on assumptions which may or 

may not be valid whereas rules or algorithms are not based on assumptions and should therefore always be valid.  

Hence the nature of the transformation provides a direct indication as to the extent to which the measure is valid3 .  

I Indicator Legend

H

t

Model, Algorithm, or Rule 

Attribute, Primitive Measure, 
Derived Measure, or 

Indicator 

Direction of Composition

Figure 2-1 Structural Representation of a Measure 

2.1.1 Definitions 

The classification uses the following seven terms: indicators, derived measures, primitive measures, software 

attributes, models, algorithms and rules. Each term is defined in turn in the remainder of this section.  

Indicators are estimates or evaluations that provide a basis for decision-making. In this particular study, 

reliability is deemed an appropriate indicator for decision making. Measures structurally less complex than 

reliability, and which when combined with other measures or parameters, can yield reliability estimates are 

deemed unfit to be indicators.  

2 Reliability is defined as the probability of successfully performing the safety function on demand with no unintended functions that might 

affect safety.  
3 By valid the authors mean how useful a measure is in predicting reliability.
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Derived measures are any intermediate values which are neither indicators nor primitive measures.  

Primitive measures are values resulting from the application of rules to software attributes.  

Software attributes are properties of the software. Software attributes are not measures and hence do not 
constitute a structural level in the measurement framework. But they are needed to ascertain the source of 
the data, i.e. requirements documents or code as well as the type of data, for example, failures.  

To go from one structural level4 to another, the concepts of models, algorithms and rules are needed. Models, rules, 
and algorithms are typically simple transformations which allow the combination of several lower level measures to 
create a hierarchically higher measure.  

Models are procedures for combining measures to produce an estimate or evaluation based on a series of 
assumptions. Each assumption is an idealization of reality. The procedure is logically deduced from the 
assumptions.  

An Algorithm is a straightforward procedure for combining two or more measures. The output of the algorithm 
represents one or more characteristics of the software product under study.  

A Rule is a mapping of the attribute to a subset of the field of real or integer numbers.  

To illustrate these concepts, the next paragraph provides an example of a primitive measure, a derived measure, and 
an indicator.  

2.1.2 Examples 

2.1.2.1 Example of Primitive Measure 

An example of a primitive measure is the Line Of Code (LOC) measure. A Line Of Code (LOC)5 [Fent97] is any 
line that is not a comment or blank line regardless of the number of statements or fragments of statements on the 
line. This specifically includes all lines containing program headers, declarations, and executable and non
executable statements. According to this definition, LOCs are calculated through application of a simple counting 
rule to the source code. The software attribute here is "code size" of the physical entity "source code statements".  

2.1.2.2 Example of Derived Measure 

Derived measures are intermediary levels between primitive measures and indicators. As an example, consider 
Cyclomatic Complexity, V(G). This measure is defined as follows: 

V(G) = e - n + 2p Equation 2-1 

where 

n is the number of nodes, i.e., the number of sequential groups of program statements, 

e is the number of edges, i.e., the number of program flows between nodes, 

p is the number of connected components in the control flowgraph established from the source code or 
PDL6 of the software.  

A structural level is any of the following: software attribute, primitive measure, derived measure or indicator.  

'There are multiple competing definitions of Lines of Code. The definition selected is probably the most commonly accepted interpretation of 
Line of Code.  
6 PDL stands for pseudo design language. This language can be used to specify the detailed design of software.
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Variables n, e, p are primitive measures that can be obtained directly from the program's control flowgraph. V(G) is 

a derived measure obtained by application of the algorithm defined above.  

2.1.2.3 Example of Indicator 

The reliability estimate produced by the Jelinski and Moranda (JM) model can be transformed into an indicator. The 

assumptions on which the model is based are: 

1. The product under study has N faults at the beginning of testing.  

2. All failures are similar. In other words, all failures contribute in the same way to the final software 

reliability estimation.  
3. All failure occurrences are independent.  

4. The time interval between the ijh and (i+ 1)h failure, ti, follows the exponential distribution: 

f(t) = &j exp(- 6& t,) Equation 2-2 

where 

f is the failure density function.  
5. The failure intensity (rate) 4 is taken proportional to the number of faults remaining in the program.  

8, = k ( N - i) Equation 2-3 

where 

k is a constant of proportionality.  

6. Each time a failure is observed, the corresponding fault is removed immediately. This assumes that 

faults are independent of each other and equally likely to be detected.  

7. N, k can be estimated by the Maximum Likelihood (ML) method. Predictions are made by substitution 

of these ML estimates into the appropriate model equations.  

Reliability at time t is then given by: 

R(t) = eff(r)dr 
Equation 2-4 

The model directly produces a reliability figure dependent on time. However , the indicator defined for this project 

is a probability of success per demand. A strict adherence to the definition of the indicator requires a transformation 

of the time dependent function into a probability of success on demand. Such a transformation involves a conversion 

factor. The conversion factor is the number of safety related demands per unit of time; p.  

The number of safety related demands n over time t is given by: 

n =fp-t Equation 2-5 

And reliability at time t given that the last failure was at time t,, or reliability at demand n given that the last failure 

was at demand n, is given by: 

- p k(i N- f,)_, Equation 2-6 

R(t y ot, R(na sn,)u = e of =e P 

Hence the probability of a successful demand of the safety function is constant between failures and given by
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k(N-i) 

p(n I n,) = p(ni) = e P Equation 2-7 

2.1.3 Structural Representation and Analysis 

The analysis of a measure's description such as, for instance, a description abstracted from [IEEE88] can help 

identify the structural level to which a measure belongs. As support to such analysis, the representation given in 

Figure 2-1 can be used. An illustration of this graphical technique on the Gaffney estimate of Bugs per Line of 

Code7 is given in Figure 2-3.  

The Gaffney estimate of bugs per line of code is meant to give a crude estimate of the number of faults per lines of 

code. The estimate is based on code size. More specifically, if there are N modules in a program, one estimates the 

number of faults, F,, in each of the N modules using the following formula F, = 4.2 + 0.0015 S, 4/. The number of 

faults in the complete program F can be estimated as the sum of all F,'s. The formula used to derive F. is clearly an 
empirical model (a correlation) based on a series of non documented assumptions. A question which the analysis of 

the measure and, in particular, the nature of the mathematical transformations (i.e., model) used to obtain the bug per 

line of code estimate raises, is the questions of validity, how well validated is the model, what is its range of 
applicability, etc.  

To obtain F, , the measure "Si", number of executable source statements in the module i, is required. In this case "Si,, 

is measured directly from the existing code in the module i. In other words, "Si" is a primitive measure directly 

related to a physical entity through a rule. The rule explains how the line count should be made. The physical entity 

in question, or software attribute, is the size of the existing code. An analysis of the measure description presented in 
Appendix A shows that the rule is not specified. Since multiple approaches for line count have been documented in 
the software engineering literature, multiple interpretations of the rule can thus occur. This of course may present a 

problem : different companies may use different interpretations of the rule and if one does not pay attention to this 

particular issue, incorrect conclusions can be drawn. This concern is highlighted in the structural representation 
(Figure 2-3) and constitutes a part of the analysis which can be made during the construction of the structural 
representation. The same discussion applies to the second attribute, namely, the number of modules in the code.  

In conclusion, the structural analysis determines whether a measure is a primitive measure, a derived measure or an 

indicator. Such classification provides a preliminary assessment of a "conceptual distance" between the measure and 
the indicator. The structural analysis also determines whether models, algorithms or rules are involved in the 
transformations applied to the software attributes to yield the measure. This information is important since it gives a 

preliminary feel of the extent of the validity of a measure. Through the analysis process, preciseness of the 

definitions of the different concepts involved (for example, rules) is examined. The potential multiple interpretations 
of such concepts might arise if these concepts have not been precisely defined. From this knowledge, one is able to 

assess the degree to which a measure is repeatable. Finally, the structural representation helps identify the cost of a 

measure since it clearly establishes the software attributes it builds upon and hence defines the data that should be 
collected.  

'For a detailed description of the measure see Appendix A.
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Figure 2-2 Structural Representation and Analysis of the Gaffney Estimate of Bugs per Line of Code
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2.2 Lifecycle-based classification 

The second classification of interest is entitled "life-cycle coverage". This classification is used to describe to which 

phases of the life-cycle the measure applies.  

2.2.1 Lifecycle Definition 

In this study, the life-cycle of software development is represented by the following five phases: requirements, 

design, implementation, testing, and operation (see Figure 2-4). These are the typical high-level phases that can be 

found in the development of most software. Note however that the number of software life-cycle phases considered 

by different software development organizations tends to vary. The [IEEE610] considers eight different phases.  

Table 2-1 is a mapping of the phases used in this study to the [IEEE6 10] phases.  

Life-Cycle in this Study Equivalent Life-Cycle in the IEEE610 standard 

Requirements Concept, Requirements 

Design Design 

Implementation Implementation 

Testing Test, Installation & Checkout Installation 

Operation Operation & Maintenance, Retirement 

Table 2-1 Lifecycle in this Study versus Recommended Life-cycle in [IEEE610].  

It should also be noted that an inherent assumption of the study is that the software described follows a waterfall 

life-cycle [Scha93]. A waterfall life-cycle is typically characterized by the succession of the phases from 

requirements to operation without too many backwards steps such as for instance the fact of going back from design 
to requirements. Other software development lifecycles exist such as for instance the spiral model [Boeh88], a life

cycle where development is driven by perceived risk areas and the resolution of these risks in an iterative fashion.  

Spiral development makes heavy use of prototyping and is typically used for software with a strong user interface 

component. Waterfall development on the other hand is recommended for programs with strong algorithmic 

component such as the software used in safety applications. However, a case for the development of safety-critical 

applications using Spiral development can probably be made for the real-time component of the software.  

To extend the study presented to a Spiral development, one should consider adding a prototyping phase (for which it 

is unclear if measures exist and would be recorded in any consistent fashion) and one would need to account for the 

repetition of the phases such as requirements during the iterative cycles of development and the incompleteness of 

the products and artifacts produced.  

2.2.2 Classification 

A life-cycle phase can, in practice, be characterized by the process followed and by the life-cycle artifact produced.  

As an example, the requirement phase uses a process such as requirements review and produces a software 

requirements specification, the artifact. All measures can fall into at least one of the five waterfall development 

model phases, some measures can fall into more than one phase.
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A measure falls either into the process domain or into the artifact domain. The question is why would such 

classification be of interest. What does it indicate? First of all, one needs to remember that the indicator of interest 

is the value of reliability in operation. Reliability is a property of the product and not of the process. Hence a 

measure of the process will tend to be "further away" from the objective of the research than a measure of the 

product. Furthermore, a measure of a product or of an artifact that belongs to a phase distant from the operation 

phase will be less appealing to the analyst than a measure which is closer to the operation phase. Consequently, 

analyzing a measure with respect to the life-cycle produces valuable information about the relationship that exists 

between the measure and reliability.  

Requirement •---o[ Implementation • r)-t.•dlOperation:! 
J T I I -l ........ I.  

Process 

o Artifact 

---------- I 

-- t, --I Operation: Dashed line represents the extrapolation stage 

Figure 2-3 Life-Cycle Coverage 

2.3 Semantic Classification and the Concept of Family 

Measures can be related to a small number of concepts such as for instance the concept of complexity, the concept 

of software failure or software fault. Although the number of these concepts is certainly limited, the number of 

software engineering measures certainly does not seem to be. Therefore a many-to-one relationship must exist 

between measures and primary concepts. These primary concepts are at the basis of groups of software engineering 

measures which in this study are called families. Two measures are said to belong to the same family if, and only if, 

they measure the same quantity (or more precisely, concept) using alternate means of evaluation. For example, the 

family Functional Size contains measures "Function Point" and "Feature Point" (Please refer to Appendix A).  

Feature point analysis is a revised version of function point analysis appropriate for real-time embedded systems.  

Both measures are based on the same fundamental concepts [Alb79] [Jone86] [Jone91].  

The implications of the grouping of measures into families will be examined in detail in Chapter 4. Suffice it to say 

that the concept of family of measures is more robust than that of single measure.  

2.4 Extended Structural Representation 

In Section 2.1.3, a structural representation of the "bugs per line of code" was presented. Figure 2-5 is an expansion 

of Figure 2-1, Structural Representation of a measure, which adds other measures to bridge the gap between a 

measure and reliability, the indicator. This extended representation provides a visualization of a measure's relevance 

to reliability, the cost entailed in bridging the gap between reliability and the measure, the degree of subjectivity 

involved, etc. The following example clearly illustrates this expansion.
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............................  
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Figure 2-4 Structural Analysis of the Bug Per Line of Code (Gaffney Estimate) Measure
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Figure 2-5's bottom-left part is the structural representation of the "bugs per line of code" and hence is an exact 

replica of Figure 2-3. The top part of Figure 2-5 on the other hand (displayed in dashed lines) was added to 
"connect" the derived measure "bugs per line of code" to the indicator of interest, reliability. Measures such as the 

"linear execution frequency'8" or the "fault exposure ratio 9'' can be considered as support measures to the software 

engineering measure under study. The support measures could themselves be analyzed to determine whether they 

should be classified as derived measures or primitive measures. This would help understand their validity as well as 

the amount of effort (cost) involved in their evaluation. Such decomposition would parallel and complete the 

decomposition and analysis of the software engineering measure under study. Another element of the extended 

representation is function "g". This function has intentionally been left unspecified. In fact, several software 

reliability models can be used in place of "g". An example of such model is the "Musa Basic Execution model" 

[Musa87]. Function "g" is another contributor to the validity and cost of the prediction of reliability. If"g" has been 

extensively validated, and/or if an extensive body of experience exists then the prediction is more credible.  

In conclusion, a reliability prediction for the software can be derived from the measures "bugs per line of code", 

"linear execution frequency" [Musa87] [Fent97], "fault exposure ratio" [Musa87], and "conversion factor p" (see 

Section 2.1.2.3). These four software engineering measures constitute a complete set (from the indicator's 

viewpoint), which in this document is named Reliability Prediction System.  

2.5 Software Reliability Prediction System 

A short discussion of the software reliability prediction system is necessary to fully appreciate the impact of the 

existence of such a set of measures.  

First, as discussed earlier in this chapter, a point was made that software engineering companies typically select a 

few measures which will then be used to evaluate the quality of the software development process, make decisions 

to change the functionality developed, adjust the schedule, and field or not to field the product. The following 

questions must be answered in order to be able to predict the final product's reliability: 

"* Does the set of measures selected by the company contain at least one complete software reliability 

prediction system? 

"* If the selection was such that it does not, can one reconstruct such a system or is the data necessary 

unrecoverable? If the answer to both questions is negative, predicting software reliability is impossible.  

Second, it is necessary to examine the relationships between measures in a software reliability prediction system.  

This consideration is used to validate the selection of the measures.  

The issue relates to the existence of redundant measures in a set. For instance, assume S1(b, c, d) is a system, and b, 

c, d are measures in system S1. If any measure among b, c, d can be derived from any other among (b, c, d) then this 

measure is redundant and can safely be eliminated from the set S1. The software reliability prediction system thus 

obtained is minimal. Hence in a minimal system, measures must be independent'° of one another. Note that adding 

redundant measures to a system is unnecessary. It artificially increases the data collection effort for no apparent 

gain.  

Third, it is worthwhile mentioning the existence of reliability prediction systems that are hierarchically related to 

each other. These systems have the interesting characteristic of being equally predictive if the hierarchical 

relationship between them is unique. Consider the two systems depicted in Figure 2-6. The first, S1, is composed of 

8 The linear execution frequency is the number of times the program would be executed per unit time if it had no branches or loops.  

The fault exposure ratio represents the fraction of time that the "passage" results in a failure.  

10 Independent here means that one measure can not be inferred from another. For example, the cohesion measure (see Appendix A) for a 

software can not be derived from the coupling measure for the same software, and vice versa.
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measures (a, b, c, d), the second S2 is composed of measures (a, f8, c, r 6). The two systems are hierarchically 
related. Examining the two systems, one sees that #6 depends on b, and yand 5 depend on d But the dependency is 
of a particular type: structural. Indeed, measure b is a parent" of 6, and d is a parent of y and S Other measures 
contained in S, and S2 are identical. Since all measures in S are parents or equals to measures in S2 the systems are 
declared hierarchically related with S a parent of S2. This hierarchical relationship opens the door to one of the 
fallacies of classification of individual measures with respect to an indicator. Indeed, it is true that if one were to 
identify the measures which are the most relevant to reliability, one would find that measures a, b ,c, d are more 
relevant to reliability than measures 8, rand J. However, interestingly enough, the set (a, b, c, d) and the set (a, ,6, y 
c, d 7) have exactly identical predictive value if there exists only one unique function to compose (a, b, c, d) from 
set (a, 61, r, c, 45 2). Although this point is made very clear in Figure 2-6, it can be easily forgotten. This comment 
will explain some of the findings in Chapter 4.  

A measure a is a parent of a measure b if a is hierarchically closer to the indicator than b and: 

1. either a relationship exists between a and b such that a-g(b).  

2. or support measures b exist such that a'g(b, b)
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Figure 2-5 Hierarchical relationships between software reliability prediction systems
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2.6 Selecting a Reliability Prediction System 

The next step is to select a software reliability prediction system. To explain the elements at play in the selection 
process, Figure 2-6, an idealized version of Figure 2-5 which abstracts the various concepts found in the extended 
graphical representation, is used.

Figure 2-6 Extended Representation and Software Reliability Prediction System

The top triangle represents the indicator, reliability. The middle layer is the reliability prediction system, i.e., a 
system that contains the measures that can completely assess reliability. The bottom layer contains the attributes 
supporting the measures in the second layer. The arrows between layers represent the rules, algorithms and models 
required to establish the prediction system and the indicator's expression. In this context, reliability is then 
represented by:

R = g(S) Equation 2-8

where

R 

g 

S

Reliability 

The model function 

The system

The remainder of this section will examine how one can use Equation 2-8 and the elements of the extended 
graphical representation to rank a specific system with respect to other systems or to rank a specific combination (S, 
g) with respect to other combinations (S, g).  

To make a selection between systems a ranking framework is needed. The following section establishes the elements 
of a preliminary ranking framework.
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2.6.1 A Ranking Framework for Software Reliability Prediction Systems 

To establish a ranking framework, one need initially identify a preliminary set of criteria which define preference.  

This set is composed of the following criteria: 

Cost An estimation of how much would be spent in applying the system to predict reliability.  

Benefit The net gain that ensues from the use of the prediction system.  

Validity The degree of confidence in the accuracy of the reliability prediction.  

Credibility The degree to which the system supports the specified goals.  

Experience How widely the system has been used as a whole.  

Repeatability The degree of similarity of the results obtained by the repeated application of the system by 

the same or different people.  

The ranking of a system can be obtained by aggregating evaluations of all criteria of the system. That is, 

R(S) = Max {f(C(S), B(S), V(S), E(S), Cr(S), Rp(S), C(g), 
VG(S) Equation 2-9 

B(g), V(g), E(g), Cr(g), Rp(g))} 

where 

S A specific system 

R(S) The ranking of the system S 

fO The aggregation function 

G(S) The set of software reliability models which can predict reliability based on the set of 

software engineering measures S 

C(S) The evaluation 12 of the cost criterion for the system of measures 

B(S) The evaluation of the benefit criterion for the system of measures 

V(S) The evaluation of the validity criterion for the system of measures 

E(S) The evaluation of the experience criterion for the system of measures 

Cr(S) The evaluation of the credibility criterion for the system of measures 

Rp(S) The evaluation of the repeatability criterion for the system of measures 

C(g) The evaluation of the cost criterion for function g 

B(g) The evaluation of the benefit criterion for function g 

V(g) The evaluation of the validity of function g 

E(g) The evaluation of the experience with function g 

Cr(g) The evaluation of the credibility of function g 

12 An evaluation is an assessment of the criterion on a scale. Typically the scale is discrete and counts only a few levels. For instance, the cost 

criterion could count three levels: high, medium and low. The role of the assessor is then to evaluate the cost incurred by the measure on this 

scale.
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The evaluation of the repeatability of function g

The benefit obtained through use of g should be identical for all function g's and all systems S since this is the 

benefit incurred from the prediction of reliability. Consequently one can remove the contribution B(g) in Equation 

2-9. This yields:

R(S) = Max {f(C(S), B(S), V(S), E(S), Cr(S), Rp(S), C(g), 
vG(S) 

V(g), E(g), Cr(g), Rp(g))}
Equation 2-10

If one is interested in ranking sets (S, g) instead of solely S, it can be done using the following expression:

R(S,g) = f(C(S), B(S), V(S), E(S), Cr(S), Rp(S), C(g),V(g),E(g), Cr(g), Rp(g)) Equation 2-11

Where R(S, g) is now the rank of a particular combination of software engineering measures and software reliability 

model.  

2.6.2 Ranking Based on the Measures Composing the Software Reliability Prediction 
System 

If the values in Equation 2-10 are not directly available, one then can turn towards the measures that make up the 

software reliability prediction system and estimate the system values from the measure values. This ranking 

approach is introduced in this paragraph.  

Let C(m), B(m), V(m) and E(m) be the evaluation of the cost, benefit, validity and experience criterion for a measure 

m of S. Then possible expressions of C(S), B(S), V(S) and E(S) are given by:

C(S) = E C(m) 
rMES 

V(S) = Min(V(m)) 
mes 

B(S) = h(B(m)) 

E(S) = Min(E(m)) "ME$ 

Cr(S) = Min(Cr(m)) 
"REs 

Rp(S) = Min(Rp(m)) 
"mEs

for all m e S

Equation 2-12 

Equation 2-13 

Equation 2-14 

Equation 2-15 

Equation 2-16 

Equation 2-17

where

hO An Under-determined benefit function over all measures in S 

Each expression (Equation 2-5 to Equation 2-10) is justified in turn in the remainder of this paragraph.
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The major cost contributor to a measure is the cost incurred by the data collection effort and training of the analyst 

collecting the data. The training effort relates to the understanding and mastering of the rules which allow the 

establishment of primitive measures. The mathematical transformations involved in the implementation of models 

and algorithms used in the realm of software engineering is certainly marginal compared to the expenditures related 

to data collection and training. Hence there is reason to believe that the cost function is additive as long as two 

measures do not share identical data (software attributes) or similar rules, a phenomenon which is rare in practice.  

The nature of the benefit function is more difficult to identify and will be the object of future research.  

As for validity, the reasoning follows the "weakest link principle", well known to system designers, i.e., it is 

reasonable to consider that the trust one puts in a system is only as good as the trust one puts in its weakest 

component. The same reasoning holds for the experience, credibility, and repeatability criteria.  

2.7 Ranking Individual Measures 

The previous paragraph establishes a framework for the ranking of a system of measures S as well as for the ranking 

of a combination (S, g). In the previous sections of this chapter, we established that it is not possible to consider 

measures in isolation but that measures must be considered in sets named software reliability prediction systems.  

The ranking of such systems is an extremely difficult problem. It requires identification of measures which make up 

a system, determination of all systems, and identification of all possible functions g. This task is impractical at this 

stage because of the number of software engineering measures in existence today and the fact that the number of 

possible systems grows exponentially with the number of existing measures. Therefore, a more progressive 

approach needs to be taken. Consequently, a simplified problem is investigated in the remainder of this report. A 

solution to this simplified problem constitutes a first step in answering the more difficult problem posed by Equation 

2-9 and Equation 2-10.  

This simplified problem consists of ranking single measures instead of systems. The selection process begins by 

establishing the measures rankings with respect to ranking criteria establishing the intrinsic validity of the measure 

and its relevance to the determination of reliability (extrinsic validity13). Relevance is somewhat similar to the notion 

of distance between reliability and the measure. This integrates the distance as measured through a hierarchical 

decomposition, through an examination of life-cycle coverage and through a semantic mapping of the measure. The 

criteria selected will be explained in detail in chapter 3. But mainly, the ranking criteria will include C(m), B(m), 

V(m),E(m), Rp(m), and Cr(m) as well as relevance to reliability Rel(m), where m is the measure. Note that the 

extraction of this data is a step towards answering the question underlying Equation 2-9 and Equation 2-10 since 

C(m), B(m), V(m), E(m), Rp(m), and Cr(m) are an integral part of these equations. Relevance to reliability allows 

selection of the measures which are most closely related to reliability and which, as such, lead to the simplest 

reliability models. Figure 2-7 describes how the two problems are related.  

13 The term validity here means as an expression of the utility of the measure.
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2.8 Summary and Conclusions 

This chapter investigated the relationships between measures and reliability prediction. It introduced three axes of 

classification important to the analysis of the measures. These axes are structural, life-cycle based and semantic.  

Semantic classification lead to the introduction of the concept of Family. A graphical method was described for the 

purpose of structural representation. The creation of this graphical representation was shown to be another valuable 

tool in the analysis of a software engineering measure.  

The chapter also defined the concept of a Software Reliability Prediction System. The issue of selecting a software 

reliability prediction system was examined and a possible selection process suggested through Equation 2-8 to 

Equation 2-11.  

The point was made that the selection of a software reliability prediction system is a difficult task and that a simpler 

but related problem should be examined first: the problem of selecting single software engineering measures of high 

degree of validity which would be most relevant to reliability. The criteria for selection of the measures contain 

relevance, cost, benefit, validity, experience, credibility, and repeatability. This set must be examined to determine 

whether it is complete. And furthermore, research must be carried out to determine the aggregation functionf 

The chapter also showed that measures and interrelationships between measures need to be well understood before 

they are used. One should avoid the use of redundant measures and one should make sure that the set of measures at 

hand is complete from a software reliability prediction stand-point. Finally, once measures have been ranked 

separately, they need to be reinterpreted in the context of other measures.  
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CHAPTER 3 RANKING METHODOLOGY 

In Chapter 2, we investigated the relationships between software measures and reliability. The concept of a 
reliability prediction system (RPS) was introduced and it was shown that the problem of ranking reliability 
prediction systems is a difficult task. The simplified problem of identifying single measures to be used 
(per life-cycle phase) to characterize reliability was introduced as a preliminary step towards a resolution of 
the ranking of RPSs. In Chapter 3 we examine the process used to select single measures. Figure 3-1 
depicts the problem solved. In Figure 3-1, the ranking of the measure is determined by its intrinsic' and 
extrinsic validity2.  

Rnking of the Measure With 

Respect to Reliability 

Intrinsic Validity of the Extrinsic Validity of the 
Measure Measure 

Figure 3-1 Ranking of a Measure 

The software measures used in this study were selected from a pool of software measures identified in an 
earlier Lawrence Livermore National Laboratory report (LLNL) [LLNL98]. This report contains a list of 78 
measures believed to be relevant to software reliability prediction.  

Most measures in the LLNL report were extracted from the IEEE standard [IEEE982] and the remainder 
from the recent software engineering literature. These measures were ranked by two resident LLNL 
experts. However, the ranking obtained was not peer reviewed. Under a separate contract, the University 
of Maryland organized a peer review of the measures. In the process, the University of Maryland identified 
the thirty top measures. These were derived by first conducting a thorough critical review of the measures 
themselves.  

This review effort indicated a number of discrepancies which are listed below: 

" The list intermingled software engineering measures and software reliability models. Software 
reliability models, however, are not measures per se. Rather they constitute a means of predicting 
reliability from measures. As such they have no place in an attempt of classifying and ranking software 
engineering measures and were eliminated from the list of potential candidate measures. The shortened 
list contained 73 measures.  

"* The list contained a number of duplicate measures which were removed.  

"* The list did not account in any particular manner for fault tolerant systems or for new technologies.  
This fact alerted us to the need to involve in the peer review effort experts knowledgeable in these 

IThe intrinsic validity depends how well a measure performs with respect to quality ranking criteria (defined later) and cost 
effectiveness ranking criteria (defined later).  

2 The extrinsic validity of the measure is defined by its degree of relevance to reliability.
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areas which could supplement the measures provided. As a consequence we also introduced a 

mechanism by which experts could provide additional measures.  

"* The list did not account for support measures in a reliability prediction system such as operational 

profile. After a long discussion with the NRC representatives, it was decided that this support measure 

deserved special consideration and should be examined separately during discussions with the experts.  

"* Relationships between measures were not investigated; Understanding of the differences between 

ranking of a single measure and the larger problem of ranking of reliability prediction system were not 

addressed. This led the University of Maryland team to the writing of Chapter 2 of this report.  

"* Some measures presented little impact on reliability. These measures were removed from the list and 

thirty measures remained.  

Apart from these apparent discrepancies, the list of measures provided withstood scrutiny and constituted a 

valuable preliminary set of measures.  

This chapter provides a description of the methodology used in ranking the software engineering measures.  

3.1 Overview of the Methodology 

In chapter 2 we established that it is not possible to consider measures in isolation but that measures must 

be considered in sets named software reliability prediction systems. Rather than performing the extremely 

difficult task of ranking RPSs, we took a more progressive approach which identifies single measures that 

can be used (per life-cycle phase) to characterize reliability. An overview of this methodology is given in 

this chapter. The identification process begins by establishing the measure rankings with respect to ranking 

criteria establishing the intrinsic validity of the measure and its relevance to the determination of reliability 

(extrinsic validity). Then a questionnaire was designed to elicit expert opinion on rankings of the measures.  

Expert opinions were then aggregated into one single comparable number. Sensitivity analysis was 

performed to validate the aggregation framework.  

The methodology followed during this research consisted of the eight steps shown in Figure 3-2. Each step 

is briefly described in the remainder of this paragraph. The details of each step are examined in Section 3.2 

through Section 3.8. Section 3.10 provides a brief summary of the chapter and conclusions.
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Figure 3-2 Steps followed in ranking the software engineering measures

Step 1: Measure selection. Measure selection is the first step in this eight-step methodology. Measure 
selection consisted in identifying measures that would serve in the analysis, in other words, 
measures that may be relevant to reliability and have a high ranking criteria level of intrinsic 
validity. The 30 measures used in this study were selected from the pool of measures identified in 
[LLNL98]. This set of thirty measures is the set used in the remainder of the study.  

Step 2: Expert Identification. Quantitative information that would help support ranking does not exist 
in the current software engineering literature. This quantitative information may on the other hand 
exist in industry but is jealously protected through proprietary clauses. Consequently, reliance on 
expert opinion is currently the optimal approach to the problem of collecting ranking data. The 
expert selection process conducted in this study was based on ranking criteria such as research 
field, organization, background, engineering domain and occupation. Namely, the experts were 
selected from the software reliability, software safety, safety critical digital control communities, 
and from the aerospace and nuclear domains. A mix of practitioners, researchers, industry and 
government agencies was also achieved in the process.  

Step 3: Ranking criteria and Ranking Criteria Levels3 Definition and Questionnaire Design. A set of 
ranking criteria and corresponding ranking criteria levels is necessary for the ranking. The ranking 
criteria must epitomize intrinsic validity and relevance to reliability. The set of ranking criteria 
developed also included aspects of cost-benefit that are important factors in the selection of 
measures by companies and can not be neglected in any ranking analysis. The ranking criteria 
levels help define the ranking criterion scale such as, for instance, the cost scale which can vary 
between a staff-person week and three staff-person years. In preparation for the workshop, a 
questionnaire was developed to constitute the basis for expert opinion elicitation. During this step, 

Each ranking criterion discussed in this report is quantified into levels. Level is the position on the scale of a ranking criterion's 
quantity, strength, value, etc.
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ranking criteria and ranking criteria levels which were developed during the LLNL study were 

revisited and revised to better suit the objectives of the study.  

Step 4: Expert Opinion Elicitation and Workshop. Once designed, the questionnaires were distributed 

to the experts with the request that they'd be completed within a few weeks. The experts were then 

convened in a workshop where they were to summarize their evaluations of the measures and 

provide feedback on the ranking methodology being used. During the workshop, the experts 

described the measures they typically used in their research or in their respective industrial 

settings, commented on the ranking criteria, ranking criteria levels and on the documentation 

provided in support of the measures. They also described and recommended a set of measures to 

be added to the pool of thirty measures selected. This feedback is an integral part of the current 

report and the methodology and approach to the ranking problem were revised to incorporate the 

expert's comments.  

Step 5: Expert Opinion Aggregation. This step was devoted to the analysis of the data collected 

through the expert opinion elicitation. It consisted of reviewing the data collected and reducing 

(aggregating) the data collected for each measure into a single number on a scale from 0 to 1 that 

symbolizes the ranking of the measure. Review of the data was conducted in order to determine 

and eliminate any inconsistencies, differences in interpretation, and whether the aggregation 

scheme needed to be modified to account for missing data. Multi-attribute theory [Keen76] was 

used in this study to aggregate expert input as it was in the LLNL study. A simple additive 

equation with equal weights was used as the basis of the aggregation procedure4 . The equations 

used are given in Section 3.6.2.  

Step 6. Missing Measures. As described in step 1, the measures selected in this study are based on a 

LLNL study and the ranking of the measures performed by two of the LLNL experts. To handle 

the possible omission of measures deemed worthy of consideration, elicitation of missing 

measures was built into the methodology as a separate step. In other words the questionnaire was 

designed with cells to provide the experts a method for defining a set of "missing measures", i.e.  

measures which were not part of the initial set of thirty measures but should have been. These 

measures would be ranked by the experts. Unfortunately given the limitations in time and effort 

and the already considerable effort exerted by the experts, this step was not performed. Since some 

of these measures might have a considerable impact on the final findings, it was decided however 

that the University of Maryland team would substitute itself for the experts and rank the measures.  

These rankings are provided in a separate chapter (Chapter 5) to clearly distinguish them from the 

measures ranked by the experts.  

Step 7: Sensitivity Analysis. To understand the possible impact on the ranking of the form of the 

aggregation equation, of its parameters (the weights), and of the scheme by which the qualitative 

ranking criteria levels were transformed into real values, a sensitivity analysis study was 

performed. Ranking criteria, ranking criteria levels, aggregation weights, and aggregation 

formulae were varied and the impact of these variations assessed. The results of the sensitivity 

analysis show that little variation in the ranking of measures is observed and that for all practical 

purposes the additive aggregation formula with equal weights can be considered sufficient for the 

ranking of software engineerinn measures with respect to reliability.  

Step 8: Result Analysis and Validation. This step draws conclusions from the analysis. Top-ranked 

measures are defined. The road from the top-ranked measures to reliability is under investigation.  

Lessons obtained during this research are summarized.  

The additive equation is typically selected as a first choice in most ranking approaches since it is definitely the simplest and it uses 

no preconceived notions as to the way the different ranking criteria impact the final ranking.
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3.2 Measures Selection 

As explained earlier the purpose of performing these steps is to determine a set of measures that have a 
high degree of intrinsic and extrinsic validity. The following section provides a detailed description of steps 
I through 8.  

3.2.1 The Lawrence Livermore National Laboratory Study 

As noted in Section 3.1, the study presented in this report is based on prior work performed by a LLNL 
research team. The LLNL study report " Assessment of Software Reliability Measurement Methods for Use 
in Probabilistic Risk Assessment" [LLNL98] identified 78 software engineering measures related either 
directly or indirectly to software reliability and that might be appropriate to the study of digital I&C 
systems. It also documented a set of ranking criteria developed by LLNL and the laboratories initial 
ranking of the measures. As explained in Section 3.1, this set of 78 measures was reduced to thirty using 
structural considerations (such as the fact that software reliability models are not measures and should not 
be part of such a study) as well as importance considerations. This new set of thirty measures served as the 
basis for an expert opinion elicitation effort described in the remainder of this chapter. The expert opinion 
elicitation effort is based on the revised set of ranking criteria and ranking criteria levels defined in Section 
3.4.1 and on the software engineering measures questionnaire described in Section 3.4.2 and Appendix B.  

3.2.2 Thirty Software Engineering Measures 

The set of thirty measures considered in the study is listed below. A concise description of each measure 
can be found in Appendix A. This Appendix also lists additional references to which the reader is referred 
for a full understanding and appreciation of the measures.

Bugs per line of code (Gaffney estimate) 
Cause & effect graphing 
Code defect density 
Cohesion 
Completeness 
Cumulative failure profile 
Cyclomatic complexity 
Data flow complexity 
Design defect density 
Error distribution 
Failure rate 
Fault density 
Fault-days number 
Feature point analysis 
Function point analysis

Functional test coverage 
Graph-theoretic static architecture complexity 
Man hours per major defect detected 
Mean time to failure 
Minimal unit test case determination 
Modular test coverage 
Mutation testing (error seeding) 
Number of faults remaining (error seeding) 
Requirements compliance 
Requirements specification change requests 
Requirements traceability 
Reviews, inspections and walkthroughs 
Software capability maturity model 
System design complexity 
Test coverage

These thirty measures serve as the basis for the expert opinion elicitation, aggregation and ranking. The 
ranking criteria and their levels are defined in Section 3.4.1.  

3.3 Experts Identification 

Experts were selected who together covered the following areas of knowledge: software development, 
software engineering, software engineering measurement, software reliability engineering, software 
reliability modeling, software safety, digital I&C design. These diverse sources were defined as the base of 
knowledge necessary for resolving the problem of identifying single measures to be used (per life-cycle 
phase) to characterize reliability. Many of the experts, who took part in the study presented in this report,
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are knowledgeable in more than one of these areas. Furthermore a conscious effort was made to select 

experts from diverse engineering domains. The final selection includes experts from the nuclear and 

aerospace domain. This achieves a better representation of diverse engineering fields since the problem 

posed in this study applies to more than the nuclear engineering field. Finally an effort was made to obtain 

representation from academia as well as from industry. Again some of the experts have been both in 

academia and in the industry. This mix takes into consideration the fact that members of industry may have 

better insights into issues of cost and benefit whereas academia may have better knowledge of measures in 

experimental development and is at the edge of technological advances.  

The final list of experts is given below.  

Name Occupation Area of Expertise 

Alain Abran Director of the Research Laboratory in Software Software measurement and 

Engineering Management and a Professor at management 

Universite du Quebec a Montreal (Canada) 

David Card Researcher and consultant in software measurement Software measurement and process 

and process improvement in the Software improvement 
Productivity Consortium 

William Everett Consultant and owner of SPRE, Inc Software reliability 

Jon Hagar Senior staff software engineer and group leader at Software reliability and testing 

Lockheed Martin Astronautics in Denver, Co.  

Herbert Hecht Chairman of the Board of SoHaR Incorporated, Software reliability, safety and 

Beverly Hills, California digital I&C system 

Watts Humphrey IBM's Director of Programming Quality and Process Software engineering 

Michael Lyu Associate Professor at the Computer Science and Software reliability/safety 

Engineering department of the Chinese University of 

Hong Kong.  

Jean-Claude Laprie "Directeur de Recherche" of CNRS, the French Software reliability/safety 

National Organization of Scientific Research 

William Petrick President of Capri Technology Inc Software safety 

Allen Nikora Senior member of the Information Systems and Software reliability modeling 

Computer Science staff in the Autonomy and Control 

Section at JPL 

3.4 Ranking Criteria, Ranking Criteria Levels Definition and 
Questionnaire Design 

3.4.1 Ranking Criteria and Ranking Criteria Levels Definition 

Software engineering measures can be compared by means of several attributes, collectively termed 

ranking criteria. For the problem of identifying a single measure which can be used (per life-cycle phase) 

to characterize reliability, seven ranking criteria were selected. Each of these ranking criteria evaluates 

some particular aspect of the measures that were considered important to the objectives of the study. The 

ranking criteria are grouped into three sets: quality (intrinsic validity of the measure), cost effectiveness 

(inherent cost of the use of the software engineering measure), and relevance (relevance to reliability and 

strength of the relationship between measure and reliability). Ranking criteria within a set judge particular 

aspects of the set.  

The following is the list of ranking criteria and their assignment to one of the three sets, namely, quality, 

cost effectiveness and relevance.
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Ranking criterion5  Set 

Benefit Cost effectiveness 

Cost Cost effectiveness 

Credibility Quality 

Experience Quality 

Repeatability Quality 

Validation Quality 

Relevance to Reliability Relevance 

Each measure was evaluated according to ranking criteria levels. These ranking criteria levels provide a 
qualitative estimate of the "goodness" of a measure with respect to the ranking criterion. Several ranking 
criteria levels were defined for each ranking criterion and a single intermediate interpolation was permitted 
between each pair of defined ranking criteria levels.  

The ranking criteria are described in detail in Sections 3.4.1.1 -3.4.1.3.  

The ranking criteria identified seem to be adequate for measures that have appeared to date. No guarantee 
exists however that the set of ranking criteria constitutes a complete set.  

-3.4.1.1 Quality Set 

The following ranking criteria belong to the quality set: credibility, repeatability, experience, and 
validation. Each ranking criterion is defined in turn in the remainder of this section.  

Credibility 

The documentation 6 given for each measure claims that it measures some aspect of software development 
or software. A measure is considered to be credible if we judge it likely to support the specified goals. For 
example, if the measure is supposed to estimate software defects then it was deemed credible if it was 
judged that it did indeed measure software defects. This ranking criterion is internal to the measure in the 
sense that it rates the measure only in terms of its documented goals, not in terms of the project goals. Six 
ranking criteria levels were defined for credibility as follows.  

A The measure directly evaluates or estimates the stated goal.  

B The measure uses one or more quantities from which the stated goal can be derived using an 
algorithm.  

The initial list of ranking criteria was designed by Lawrence Livermore National Laboratory and was extracted from LLNL 
[LLNL98]. The LLNL list contained the following ranking criteria: benefit, cost, directness, timeliness, credibility, experience and 
repeatability. The University of Maryland team reviewed the ranking criteria and modified them to better fit the objectives of the 
study. In the following, we briefly review the changes made. The timeliness ranking criterion favored measures which were available 
early rather than late in the software development process. This ranking criterion was eliminated since all rankings are performed on a 
phase by phase basis. The directness ranking criterion was semantically close to relevance to reliability. Relevance to reliability and 
(the corresponding ranking criteria levels) was introduced in its place to clarify the meaning. This ranking criterion was also initially 
misplaced in the quality category in the materials for the workshop and replaced correctly in a semantically different category in this 
report. Repeatability, credibility and validation were reused entirely as defined by LLNL. Definitions for the cost and benefit ranking 
criteria were expanded and clarified from [LLNL98].  
6 By documentation, we mean the brief description of the measure provided to the experts to help them in their ranking of the 
measures. This documentation is reproduced in Appendix A.
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C The measure uses one or more quantities from which the stated goal can be derived, but the 

definition or derivation is not precise.  

D The measure uses one or more quantities from which the stated goal may be inferred, but the 

inference is indirect.  

E The measure is not formalized with an algorithm, but a defined method of evaluating the measure 

does exist.  

F The measure uses a quantity from which the stated goal may be inferred, but the inference is not 

plausible.  

Repeatability 

A measure is considered repeatable if the repeated application of the measure by the same or different 

people result in similar results. Five ranking criteria levels were defined for repeatability, as follows.  

A The calculation uses a formula that requires no judgment on the part of the user.  

B The calculation uses a formula; expert judgment is required to specify one or more inputs to the 

formula, but no judgment is required to perform the calculation or interpret the results.  

C The calculation uses a formula: (a) no expert judgment is required to perform the calculation but 

judgment is required to interpret the results, or (b) no expert judgment is required to interpret the 

results but judgment is required to perform the calculation.  

D The calculation uses a formula, but expert judgment is required both to perform the calculation 

and to interpret the result.  

E The calculation is completely ad-hoc.  

Experience 

Commercial experience in using the different measures varies widely. Measures that are in wide use were 

judged more acceptable than those that are not widely used. This addresses a different aspect than the other 

quality ranking criteria since a measure might be widely used but still not technically useful in judging 

software reliability. For instance, although the measure LOC had been widely accepted by the industry for 

decades, no definite relationship between the LOC and the reliability has been established [Jone96].  

Five ranking criteria levels were defined, as follows.  

W Measure is in wide commercial use (i.e., hundreds of companies).  

M Measure has had a modest amount of commercial use (i.e., dozens of companies).  

L Measure has had little commercial use (i.e., a few companies at most).  

E Measure has received some reported experimental use, but no commercial use.  

N Measure has not been used.
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Validation 

Measures that have been extensively validated by the software community should be more acceptable than 
those that have not been validated. Five ranking criteria levels were defined as follows.  

A The measure has been formally validated by persons other than the inventors of the measure.  

B The measure has been formally validated only by the inventors (i.e., the validation is based on 
many sets of data).  

C The measure has been informally validated by the inventors (i.e., it has been used on a few sets of 
data).  

D The measure has not been validated (i.e., there exist theoretical studies, but no experimental 
results).  

E The measure has been invalidated (i.e., it does not work in practice, or data used in validation is 
erroneous).  

3.4.1.2 Relevance Set 

The relevance set only contains the relevance to reliability ranking criterion. This ranking criterion 
measures the strength of the relationship existing between the measure and reliability.  

Relevance to Reliability 

This ranking criterion identifies relevant measures for predicting/estimating software reliability of safety 
critical digital systems during the various phases of their life cycles. Six ranking criteria levels were defined 
for each phase.  

A Most of the models that currently estimate software reliability incorporate this measure, and any 
model assessing reliability of safety critical digital systems should incorporate this measure.  

B. Some models that currently estimate software reliability incorporate this measure, and any model 
assessing reliability of safety critical digital systems should incorporate this measure.  

C. Most of the models that currently estimate software reliability incorporate this measure, and this 
measure can be useful in any model assessing reliability of safety critical digital systems.  

D. Some models incorporate this measure and this measure can be useful in any model assessing 
reliability of safety critical digital systems.  

E. Some models incorporate this measure, but this measure would not be useful in any model 
assessing reliability of safety critical digital systems.  

F. Very few or none of the models include this measure, and this measure is not of relevance.  

3.4.1.3 Cost Effectiveness 

There are two aspects to cost effectiveness-the cost of using the measure, and the benefits gained by using 
the measure. Benefits can be thought of as avoidance of costs. The two ranking criteria are defined below.
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Cost

The cost ranking criterion concentrates on the effort required to implement and use the measure. Cost 

includes collection of data that is not normally immediately available from the standard development 

activity, the recording of such data, the calculation of results and the interpretation of results. Cost includes 

training time and tool acquisition (converting acquisition dollars into equivalent staff time). Cost does not 

include management use of the results.  

For example, suppose a measure is associated with software reviews. Then the cost of the reviews is not 

included, but the cost of collecting, analyzing, and reporting data from the reviews is included. The cost of 

learning how to use the measure is part of the measure as well as the cost of acquiring, setting up and 

learning to use any tools peculiar to the measure.  

Because cost is subject to great differences among actual development organizations, a model of a 

developer was created. It was assumed that the development organization is a small business with a staff of 

about twenty software engineers. The engineers were assumed to be well-trained in software development, 

but not in the particular measure under evaluation. The organization was assumed to have competent 

management that understands software development. If tool support is required for a measure, it was 

assumed that adequate tools exist but have not yet been acquired. It was assumed that all costs of using the 

measure must be included in a single project's cost. The following cost considerations are based on this 

company's typical one-year production.  

Based upon this model, the possible cost ranking criteria levels range from one staff week to twenty staff 

years. Therefore it is reasonable and appropriate to design ranking criteria levels in log scale as follows in 

order to cover this wide range of values. Note however that the last cost ranking criteria level is 3 staff

person years since none of the measures currently available in the literature require an amount of resources 

superior to this.  

Five ranking criteria levels were defined, as follows.  

W Use of the measure will require about a staff-person week.  

M Use of the measure will require about a staff-person month.  

Q Use of the measure will require about a staff-person quarter (three months).  

Y Use of the measure will require about a staff-person year.  

T Use of the measure will require about three staff-person years.  

Benefits 

Benefits are the other aspect of cost effectiveness. Benefits are defined to be the avoidance of costs that 

would be incurred if the measure was not used. All benefits accrued to the specific project should be 

included. This may be a reduction in technical effort, a reduction in management effort, or a reduction in 

the maintenance effort required to repair a fielded version of the software. Reliable software may lead to 

additional sales, and the benefits from those sales should be included. Dollar costs were converted to staff 

weeks to facilitate inclusion.  

For example, assume that a measure is associated with software reviews. If a design review is held, and 

faults are found in the software design that would not otherwise be found until coding is complete and
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testing has taken place, then the reduced testing time is considered a benefit. Greater benefits accrue when 
faults are discovered early in the development life cycle.  

The same developer model that was used for estimating cost was used to estimate benefits.  

Based upon this model, the possible benefit ranking criteria levels range from one staff week to twenty staff 
years. Therefore it is reasonable and appropriate to design ranking criteria levels in log scale as follows in 
order to cover this wide range of values.  

Six ranking criteria levels were defined as follows.  

A Use of the measure will reduce staff time by twenty or more staff years.  

B Use of the measure will reduce staff time by about ten staff years.  

C Use of the measure will reduce staff time by about five staff years.  

D Use of the measure will reduce staff time by about two years.  

E Use of the measure will reduce staff time by about one year.  

F Use of the measure will reduce staff time by less than 1 year.  

3.4.2 Questionnaire Design 

The following section briefly describes the questionnaire designed for expert opinion elicitation. Data 
elicited relates to the experts' evaluation of the ranking criteria levels for each measure and their ranking 
criteria level of confidence in this assessment. The detailed questionnaire can be found in Appendix B. The 
questionnaire was structured in five major sub-sections as follows: 

The first sub-section establishes the ranking criteria level of expertise with respect to the different 
measures. The expert is requested to outline his exposure to the measure. Different types of exposure are 
defined in this subsection. They read as follows: 

0 Are you (the expert) the inventor of this measure? 

* Have you (the expert) used this measure on different projects or experiments? 

0 Have you (the expert) been exposed to this measure through readings or through 
workshops/conferences? 

If the expert has used the measure on a project, additional information (such as number of projects, type of 
projects, size of projects) is gathered. Using the data collected, the credibility of the expert can be assessed 
in an objective manner. In case of marked inconsistency in the data, this information can be cross
referenced with the degree of confidence and eventually used to reject the data or request further 
information. Possible biases due to the authorship of a measure can also be flagged.  

The second sub-section elicits the ranking criteria levels for each ranking criterion defined in Section 3.4.1 
and a degree of confidence in these estimates. Close examination of the ranking criteria indicated that the 
ranking criterion, "Relevance to Reliability", may depend heavily on the life-cycle phase. Consequently, 
relevance to reliability levels and degrees of confidence were solicited for each life-cycle phase. The degree 
of confidence is a subjective measure of the expert's confidence in the ranking criteria level given. This
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measure varies between 0 and 1. For each measure, the expert is to define a degree of confidence per 

ranking criterion or a global degree of confidence. A high degree of correlation should exist between 

degree of confidence and the factual data relating to the credibility of the expert.  

The third sub-section investigates dependencies between measures. A table was given where the experts 

are requested to identify measures with high to medium levels of dependency (correlation) with other 

measures. Recognizing dependencies is important if one wishes to understand whether two measures are 

strongly coupled and thus provide inherently redundant information.  

The fourth sub-section elicits new measures that have not been included in the set of thirty measures 

selected for the study and that the expert considers worthy of attention. A description of the additional 

measures is requested. Pertinent data, such as sources of knowledge, level and degree of confidence, level 

of correlation with respect to other measures, are solicited (Appendix B Tables B-6 to B-10).  

The last sub-section is devoted to comments on the ranking criteria.  

Examples of how to fill in the tables are provided in the questionnaire.  

Roughly there are 1500 cells in the questionnaire. The effort required to complete the questionnaire was 

estimated to take one staff-week.  

3.5 Expert Opinions Elicitation and Workshop 

The workshop was set up to understand the expert's answers to the data collection effort and to obtain 

feedback on the general methodology as it pertained to ranking of measures with respect to reliability.  

This two-day workshop was divided into: 

"* Individual presentations of each expert followed by questions and answers from the audience; 

"* Group discussion on software engineering measures; 

"* A concluding session with final presentations from the software measures working group, and 

questions and answers from the audience; 

The group discussion on software measure classification led to the introduction of the structural 

classification in indicators, derived measures, primitive measures and attributes which was further refined 

after the workshop and is integrated in Chapter 2 Section 2.1. As part of the lessons learned from the 

workshop, it appears that in the future a process of this type would become even more effective if one 

could clarify the description of the measures in [IEEE982] and [LLNL98] which served as the basis for 

Appendix A; if a clearer definition of the ranking criteria and their levels could be given; or even better if 

one could set-up the workshop in such way that preliminary discussions with the experts are held to help 

them better understand the background of the study, the definitions, etc.  

3.6 Expert Opinions Aggregation (Ranking Methodology) 

To transform the experts' multidimensional ranking of a measure into a single number, which can then be 

used to rank the measures: 1) an equivalence between the letter grade scale and the set of real numbers 

belonging to [0, 1] was introduced; and 2) an aggregation scheme for the different numbers obtained was 

defined.  

' This count does not include data related to the missing measures.
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3.6.1 Ranking Criteria Levels' Quantification 

This section explains how to convert the letter grades into real numbers. The conversion of the letter grade 
scale into [0, 1] is given in Table 3-1 for each ranking criterion and it's corresponding ranking criteria 
level.  

The quantification of ranking criteria levels is predicated on the following principles: 

"* A value of 1 is assigned to the first ranking criteria level of a ranking criterion since it represents the 
best possible situation and hence is the situation of greatest utility; 

"* A value of 0 is assigned to the last ranking criteria level since it represents the worst possible situation 
and has the lowest possible utility; 

"* A ranking criteria level lying between the first and the last ranking criteria levels takes values between 
0 and 1. Values taken depend on the relative utility of the ranking criteria level considered.  

For example, the first ranking criteria level of the "Repeatability" ranking criterion is labeled (graded) A 
and defined as "The calculation uses a formula that requires no judgment on the part of the user". The last 
ranking criteria level is labeled E and defined as "The calculation is completely ad-hoc." Three other 
ranking criteria levels are recognized: "expert judgment is required to specify the inputs," "expert judgment 
is required to perform the calculation or to interpret the results," "expert judgment is required to both 
perform the calculation and interpret the result." Five possible calculation schemes thus exist which help 
determine the value of the software engineering measure. Different degrees of preference can be assigned 
to each scheme. The degree of preference is a function of the calculation scheme's capability to produce an 
identical value for the software engineering measure through repeated iterations of the formula by different 
or identical analysts. The quantification table given in Table 3-1 suggests that a scheme such as "expert 
judgment is required to perform the calculation or to interpret the results" is roughly three times less 
valuable than a scheme where "expert judgment is required to specify the inputs". In other words, 
repeating the calculation identically is three times more difficult. A scheme such that "expert judgment is 
required in calculation and the result interpretation" is roughly five times more difficult to repeat than the 
scheme "expert judgment is required to specify the inputs" (see the definitions of the criterion Repeatability 
and its levels, and the quantification of each level in Table 3-1).  

Table 3-1 is based on the opinions of the UMD analysts and as such should be considered qualitative in 
essence. Since major differences might be expected if other analysts were to quantify the ranking criteria 
levels, sensitivity analysis was later performed to confirm that the rankings were independent of the choice 
of ranking criteria levels.
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Cost Experience 

Ranking criteria Value Ranking criteria Value 

level level 

W I W 1 

M 0.9 M 0.55 

Q 0.75 L 0.2 

Y 0.3 E 0.15 

T 0 N 0 

Ranking Benefits Credibility Repeatability Validation Relevance to 

criteria level Reliability 

A 1 1 1 1 1 

B 0.9 0.9 0.85 0.85 0.9 

C 0.6 0.7 0.45 0.4 0.8 

D 0.3 0.6 0.25 0.25 0.75 

E 0.1 0.35 0 0 0.2 

F 0 0 0 

Table 3-1 Ranking criteria Level Values 

3.6.2 Data Analysis Methodology 

Once the conversion of letter graded ranking criteria levels into real values is final, these values need to be 

aggregated using an aggregation equation. The basic aggregation equation selected for this study and which 

serves as a reference is the linear additive equation with equal weights. In this aggregation scheme, each 

ranking criterion is assigned an equal weight (or importance) and the real values are combined linearly 

using a scheme of the type defined in Equation 3-1. A real value between 0 and 1 is obtained for each 

measure per expert and per phase. The per phase component of the analysis refers to an earlier comment 

which expressed the fact that the relevance to reliability ranking criterion might actually vary per phase.  

The ranking criteria levels for other ranking criteria are assumed independent of the software development 

phase.  

Using such aggregation scheme, the rate of a measure for a given expert and a given phase Rate(i, j, 0) is:
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Rate(i,]j, ) = 1 r(i, j, k)wk + r,, (i, j)w, 
kcS,,

Equation 3-1

where

Rate(i, j, 0) : The rate of measure i given by thejth expert in phase c0.

Measure index. The range is from 1 to the number of measures under study.  

Expert index. The range is from 1 to N, where is N is the number of experts.  

Ranking criterion index.  

The set [Cost, Benefit, Credibility, Repeatability, Experience, Validation].  

Development phase index. The range is from I to 4. A value of 1 stands for the 
requirements' phase, 2 for the design phase, 3 for the implementation phase, 4 
for the testing phase.  

The real value equivalent of the kth ranking criterion level for measure i given 
by the jth expert.  

The real value equivalent of the relevance to reliability ranking criterion for the 
ith measure in the Oth phase given by thejth expert.  

The weight for each ranking criterion in set Sc,.

wO: The weight of the relevance to reliability ranking criterion for the Oth phase.  
Generally, this weight is a constant regarding different phase.  

So the overall rate for a specific measure i in a given phase 0 is given by:

Equation 3-2

The total number of valid experts' inputs.

The combined rate over all experts for a specific measure i during a given phase

In reality, the data analysis approach followed in this study differed somewhat from the one prescribed in 
Equation 3-1 and Equation 3-2, because, as we anticipated, many cells in the experts' questionnaires were 
left blank. Hence, Equation 3-1 and Equation 3-2 could not be used directly. To overcome this vacuum, 
UMD combined all of the experts inputs together before performing any further analysis using the 
following equations:
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N

Rate(i, 0)



1 
R(i,k)- Nr(i,j,,k) 

N(i, k) jS(i.k) 

R Zr (i,j) Ro()-No (i) JE So(f)

Equation 3-3

Equation 3-4

The combined real value equivalent for the kth ranking criterion of measure i.  

The combined real value equivalent for the kth ranking criterion of measure i 
given by thejth expert.  

The set of valid8 inputs for the kth ranking criterion of the ith measure.  

The number of elements in set S(i, k).  

Ranking criterion index. k e {Cost, Benefits, Credibility, Repeatability, 

Experience, Validation}.  

The combined level of ranking criterion relevance to reliability for the ith 

measure in phase 0.  

The level of the ranking criterion relevance to reliability for the ith measure 

provided by thejth expert in the /*h phase.

So(i): The set of valid8 inputs for relevance to reliability for the ith measure in the Oth 

phase.  

No(i): The number of elements in set Sm(i).  

After processing the data using Equation 3-3 and Equation 3-4, two kinds of combined inputs are obtained.  

One is the combined (over all experts involved in the analysis) real-value-equivalent level for all ranking 

criteria of a measure with the exception of relevance to reliability; the other is the combined (over all 

experts involved in the analysis) real-value-equivalent level of a measure's relevance to reliability ranking 

criterion. To obtain the overall rate of a specific measure i in a specific phase _ the following equation is 
used:

Equation 3-5Rate(i, 0) = E R(i, k)w(k) +R, (i) w 
k

where

Rate(i, 0): The overall rank for measure i in phase 0.

w(k): Weight for ranking criterion k 

A value is called valid if it is not empty after the processing from level to real number described in Section 3.6.1

3-16

where

R(i, k): 

r(i, j, k): 

S(i, k): 

N(i, k):

r c(i, j)):



Chapter 3 Software Engineering Measures Ranking Methodology

We,: Weight for the relevance to reliability ranking criterion in phase 0.  

k: Measures index. Please refer to notations for Equation 3-3 and Equation 3-4.  

0-: Phase index. Please refer to notations for Equation 3-1.  

Weights in Equation 3-5 should verify Equation 3-6 for 0 = 1, 2, 3, 4 respectively.

Sw(k) + w, = 1 
k

Equation 3-6

In the reference (base) case all weights are equal, that is, w(k)= w, = 1/7 for any ke Scr and any phase •.  

3.6.3 Phase-Based Measures' Availability 

Not all software engineering measures are applicable to a development phase. For instance, the measure 
"Cyclomatic complexity" can not be calculated until the design phase since the primitives used to calculate 
cyclomatic complexity are not defined until that phase. Once the primitives are available, they will remain 
available in the later phases of the life-cycle. Hence, a measure is defined as applicable to a phase if the 
primitives required to calculate the measure are available in the specific phase.  

Availability information is used in the phase-to-phase calculation of the rate of a measure. Indeed, rates 
provided by the experts need to be filtered to reflect the availability of the measure during the phase.  

Availability information is displayed in Table 3-2. A value of I corresponds to a measure that is available 
and a value of 0 to a measure which is not. This information is used as a multiplicative filter to eliminate 
measures from the corresponding phases or this information is used as a multiplicative filter to retain 
measures in the corresponding phases. For example, the availability of the "Failure Rate" is 0 during the 
"Requirement" phase. Thus the rate of this measure during the requirements phase is the value given in 
Equation 3-1 multiplied by the filter value 0 and will thus be equal to 0.  

A note is necessary here to better understand the notion of availability. A measure specifically defined to 
capture the software's design characteristics is available from the design phase on till the end of the 
software's life, and not just during the design phase. One should also note that most of the phase-based 
availability information presented in Table 3-2 is extracted from IEEE Std 982.2 [IEEE982]. Where 
conflicts appear between the IEEE interpretation and this study's interpretation, these have been carefully 
noted in footnotes.  

Table 3-2 lists the phase-by-phase availability of the thirty measures selected.  

Phase-Based Availability 
Requirement Design Implementation Testing 

Bugs per line of code (Gaffney estimate) 0 0 1 1 

Cause & effect graphing. 1 1 1 1 

Code defect density 0 0 1 1 

Cohesion 0 1 1 1 

Completeness 1 1 1 I 

Cumulative failure profile 0 0 0 1'
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Phase-Based Availability 
Measure 

Requirement Design Implementation Testing 

Cyclomatic complexity 0 1 1 1 

Data flow complexity 0 1 1 1 

Design defect density 0 1 1 1 

Error distribution 1 1 1 1 

Failure rate 0 0 0 1 

Fault density 1 1 1 

Fault-days number 1 1 1 1 

Feature point analysis 1 1 1 

Function point analysis 1 1 1 1 

Functional test coverage 0 0 0 1 

Graph-theoretic static architecture 0 1 1 1 

complexity 

Man hours per major defect detected 0 1 1 1 

Mean time to failure 0 0 0 1 

Minimal unit test case determination 0 19 1 1 

Modular test coverage 0 0 0 1 

Mutation testing (error seeding) 0 0 0 1 

Number of faults remaining (error 1 1 1 1 

seeding) 

Requirements compliance 1 1 1 1 

Requirements specification change 1 1 1 1 

requests 

Requirements traceability 010 1 1 1 

Reviews, inspections and walkthroughs 1 1 1 1 

Software capability maturity model 1 1 1 1 

System design complexity 0 1 1 1 

Test coverage 0 0 0 1 

Table 3-2 Phase-Based Measure Availability 

3.7 Missing Measures 

The experts identified, per step 4, a set of measures or categories of measures that should be added to the 

analysis. Specifically the following set of measures and measure categories were identified: {Coverage 

Measure, Test Mutation Score, Full Function Point, Measures for Object Oriented (00) Technologies and 

other Modern Technologies}1".  

In IEEE Standard [IEEE982] this measure is considered not available during the requirements phase. UMD changed it to available.  

0 In IEEE Standard [IEEE982] this measure is considered available during the requirements phase. UMD changed it to not available.  

"These measures were not part of the initial 78 measures described in the Lawrence Livermore National Laboratory's study-
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A brief description of: {Coverage Measure, Test Mutation Score, Full Function Point} is proposed in Table 
3-3. A more detailed description has also been developed and is given in Appendix A.  

Measures Definition 

Coverage Measure Coverage = Probability [system recoversi fault occurs], which means the 
probability that the system can recover from an error.  

The goal of this measure is to reflect the ability of the system to 
automatically recover from the occurrence of a fault during normal system 
operation.  

A mutation is a single-point, syntactically correct change, introduced in the 
program P to be tested. The mutation score, denoted mis, is the ratio of the 
non-equivalent mutants of P (i.e. those which are distinguishable from P 
under at least one data item from the input domain) which are killed 
(distinguished from P) by a specific test data set T. It is a number in the 

Test Mutation Score interval [0,1].  

The goal of this measure is to provide a measure of the efficiency of the test 
data set T. A high score indicates that T is very efficient for the program P 
with respect to mutation fault exposure.  

FFP is an adaptation of Function Point Analysis (FPA) techniques to the 
functional characteristics of real-time software.  

Full Function Point (FFP) FFP measurement involves applying a set of rules and procedures to a given 
piece of software, as it is perceived from the perspective of its inherent 

measurement functional user requirements. FFP, like FPA, measures functional size by 

evaluating transactional processes and logical groups of data. Full Function 
Point Analysis is a functional size measure for real-time control software.  

Table 3-3 Missing Measures 

The experts did not specify precisely what they meant by "Measures for 00 Technologies and other 
Modem Technologies", or more specifically which of the many 00 measures or of the measures for 
"modem technologies" should be used.  

Measures for 00 technology as well as for web-based systems are beginning to emerge. However, the 
current digital technology does not use web-based technology. Furthermore digital controllers will not be 
developed using web-technology in the foreseeable future and measurement within this area is still in its 
infancy. Based on these arguments, no measure was identified to reflect these.  

On the other hand there certainly is no reason to rule out the use of 00 in embedded systems. Hence, a 
preliminary set of 00 measures [Chid94] [Lore94] [Hend96] for ranking was identified, which is presented 
in Table 3-4. The rationale for selecting this preliminary set of software measures is explored below.
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The key component of a system implemented using 00 technology is the concept of class. A class is an 

abstraction of an existing entity, such as a sensor or a control panel in a control system. Each class 

possesses a set of attributes, which represents the state of the class, and a set of methods, a concept 

equivalent to the concept of functions, which can act on the class. Classes are combined together by 

mechanisms called messages to construct a system. Consequently, the resulting system is characterized by 

the attributes of its classes, class attributes, class methods and the messages among the classes. The 00 

measures selected and displayed in Table 3-4 reflect these notions. Next to each measure is listed the 

attribute of the system it measures. Although these measures serve as a suitable initial set of measures, no 

guarantee is given that these measures constitute a complete set of 00 measures adequate for reliability 

prediction. They need further validation.  

00 Measure Attribute 

Class Coupling Coupling among classes. This is one of the 
measures characterizing message complexity 

Class Hierarchy Nesting Level The level of inheritance and information reuse 

Lack of Cohesion in Methods The cohesion of the class 

Number of Children The number of immediate subclasses derived from 
the class 

Number of Class Methods in a Class The number of methods in each class 

Number of Key Classes Size of the system (in class) 

Weighted Method per Class Complexity of the class

Table 3-4 00 Measures and Corresponding Attributes 

A brief description of the 00 measures is given in Table 3-5. The full description of the measures can be 

found in Appendix A.  

Measures Definition 

Coupling is defined as: when one object depends implicitly on another, they 
are tightly coupled. Object instances are tightly coupled with their classes.  

When one object depends directly on the visibility of another, they are 

closely coupled. When one object references another only indirectly through 

the other's public interface, they are loosely coupled.  
Class coupling 

The goal of this measure is to examine how the class relates to other classes, 

subsystems, users, and so on. In practice, we want to build systems that get 

their work done by requesting services from other objects, which means we 

want to leverage the other classes' services, but we want to have services 

available at the right level, which means we want to keep the amount of 

coupling to a limited number.
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Measures Definition 

Classes are organized for inheritance purposes hierarchically in a tree 
structure, with the base or the topmost class called the root. The further 
down from the root that a class exists in this hierarchy is called its nesting 

Class hierarchy nesting level.  

level The goal of this measure is to identify the quality of the classes' use of 

inheritance. Large nesting numbers indicate a design problem, where 
developers are overly zealous in finding and creating objects. This will 

usually result in subclasses that are not specialization of all the super-classes.  

A subclass should ideally extend the functionality of the super-classes.  

This measure is a relative indicator of cohesion of a class. The "relative" 
originates from the fact that this measure is the subtraction of the number of 

Lack of Cohesion in related method pairs from the number of unrelated method pairs within the 
Lack (class under measurement. Therefore the value of LCOM is a comparison 

Methods (LCOM) between the number of correlated methods and the number of irrelevant 

method from design perspective (because whether two methods are 
correlated is determined by whether there is any instance variable shared by 
both of them. This criterion is based on the design consideration).  

Number of Children NOC is the count of the immediate subclasses of the class being measured.  
NOC was presented by Chidamber and Kemerer s a measure of complexity.  

Classes are objects that can provide services (and state data) that are global 
to their instances. The number of methods available to the class and not its 

Number of Class methods instances affects the size of the class.  
In a Class 

The number of class methods can indicate the amount of commonality being 
handled for all instances. It can also indicate poor design if services, better 

handled by individual instances, are handled by the class itself.  

The number of key classes is an indicator of the volume of work involved in 

developing an application. It is also an indication of the number of long-term 
reusable objects that will be developed as a part of this effort for applications 

Number of Key Classes dealing with the same or similar problem domain.  

Key classes are central to the business domain being developed. A key class 

can be related to a subset of an entity class or a model class. The number of 

key classes is a count of identified classes that are deemed to be of critical 
importance to the business.
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Measures 
Definition

This measure deals with the internal characteristics of the classes' methods.  

The method measured can be a function or an action. There has historically 
been a lot of work done in the area of code complexity, but the fact that there 
are some basic differences between 00 design and sequential design (1. 00 
codes are more compact and 2. 00 design does not use case statement) 

Weighted Method per makes these measurements less useful.  
Class (WMC) 

This measure considers the number and types of messages sent by a method 
as being the basic measurement of complexity. It uses some assigned 
weights to compute method complexity.  

WMC is the sum of weighted methods in a class. Each method within the 

class is weighted by the complexity defined above and this weight is 
summed to arrive at WMC.  

Table 3-5 Brief Descriptions of Missing 00 Measures 

For lack of available time during the workshop and due to the fact that not all missing measures had been 
precisely identified at that time, these additional measures could not be ranked by the experts during the 
workshop. Such ranking is however a necessary step for the completion of the analysis. Hence it was 
decided that the University of Maryland would perform a preliminary ranking of the additional measures 
and that this ranking would be validated by the workshop experts. This ranking effort is discussed in 
Chapter 5.  

3.8 Sensitivity Analysis 

The ranking methodology presented in Section 3.6 (and part of step 5) is based on a given equivalence 
between letter-graded ranking criteria levels and the set of real numbers, on the additive aggregation 
equation and equal weights. This reference or base needed to be validated by sensitivity analysis since: 

" It could not be ensured that the letter/real equivalence was correctly inferred. The levels of ranking 
criteria were identified in the light of an assumed "distance" between adjacent ranking criteria levels.  
However, the quantification of this distance was essentially subjective, thus results needed to be 
validated by varying the ranking criteria level values. This variation needed to be comprehensive to 

cover all the possibilities.  

"* It was unclear which of the ranking criteria most influenced our ability to predict reliability. Such 
inadequate understanding prevents determination of a so-called correct set of weights and thus leads to 
the need for the analysis of the impact of variations in the weights used in the aggregation equation.  

" It was unclear how the ranking criteria's influences should be combined. Unfortunately, the way in 

which ranking criteria interact defines the form of the aggregation function. Hence, the lack of 
understanding of this interaction mechanism impedes the construction of a so-called correct 
aggregation function. The only remedy to this obstacle was to explore alternate forms of the

3-22

Measures Definition



Chapter 3 Software Engineering Measures Ranking Methodology

aggregation function and determine whether the aggregated rate1 2 of a measure is sensitive to the form 
of the equation.  

Hence, sensitivity analysis is performed by varying: 1) the function used to transform a measure's 
alphanumerical ranking criteria levels into real numbers, 2) the weights used for aggregating ranking 

criteria levels into a single real number in [0, 1] used to rank the measure, and 3) the equations used for 
aggregating ranking criteria levels into a single real number in [0, 1] used to rank the measures.  

The result of the sensitivity analysis is an understanding of the specific impact of each of these elements on 
the ranking of the measures. The following paragraphs describe the different types of sensitivity analysis 
performed and provide the rationale for the selection of these particular schemes.  

The results of the sensitivity analysis show that little variation in the ranking of measures is observed and 
that for all practical purposes the additive aggregation formula with equal weights can be considered 

sufficient for the ranking of software engineering measures with respect to reliability.  

3.8.1 Sensitivity Analysis with Respect to Ranking Criteria Levels Quantification 

Sensitivity analysis was first done with respect to the conversion of the letter scale used for ranking criteria 
levels into real numbers. Five different transformations were selected. The five transformations are 
described in Appendix C.  

3.8.2 Sensitivity With Respect to the Weights Used in Aggregation Schemes 

Sensitivity was then done by varying the weights appearing in the reference aggregation scheme. Four 
weighting schemes were considered. Their description follows: 

Scheme 1 Each ranking criterion was assumed to have the same weight. This scheme modeled the 
case where no single ranking criterion is more important than any other.  

Scheme 2 Scheme 2 distinguished four groups of ranking criteria: fCost, Benefits}, fCredibility, 
Repeatability}, {Experience, Validation}, fRelevance to Reliability}.  

The motivation for considering scheme 2 in this way was as follows. The four groups 
each represent distinctly different aspects of a measure. The group {Cost, Benefits} is 
related to its financial impact. The group (Credibility, Repeatability} is related to the 
theoretical validity of a measure. The group {Experience, Validation} is related to the 

experimental validity of a measure. The group {Relevance to Reliability) evaluates the 
relationship between the measure and the goal of the study: reliability. Since apriori 

each of these aspects will contribute equally to the ranking, these four groups can be 
assigned equal weights. And, furthermore, equal weights can be given within each group 
if no further knowledge is available.  

In practice, since there are four distinct groups of ranking criteria, each group is assigned 
a weight of 1/4. Since each ranking criterion in a group receives the same weight, this 

translates for instance for the group {Cost, Benefits) into a weight of 1/8 for the Cost 
ranking criterion as well as for the Benefits ranking criterion. On the other hand, the 
group (Relevance to Reliability) has only one criterion, therefore the criterion 
Relevance to Reliability receives a weight of 1/4.  

12 An aggregated rate is a real value ranging from 0 to 1. It indicates the capability of the measure to predict software reliability. The 

higher aggregated rate value, the more capable the measure is of predicting software reliability.
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Scheme 3 Scheme 3 uses the same groups as scheme 2 but varies the contributions of each group.  

The weighting scheme for the groups is as follows: {Credibility, Repeatability} = 1/3, 

Relevance to Reliability = 1/3, and {Cost, Benefits} = 1/6, and {Experience, Validation} 
= 1/6. The weights are distributed equally between ranking criteria in a group. Scheme 3 

implies that factors such as theoretical validity and relevance to reliability contribute 

equally to the aggregated rates and are twice as important as {Experience, Validation} 

and financial considerations. This scheme reflects a weighting scheme that gives more 
value to the theoretical validity of a measure than to the practical aspects of applying the 

measure.  

Scheme 4 -5 Schemes I to 3 are based on reasonableness assumptions. Two weighting schemes were 

added to the set to allow for errors in the reasoning leading to schemes 1 to 3. These 

schemes were obtained by random selection of the weights with the constraint that the 

sum of all weights equals to 1.  

The reader should be reminded of the fact that the aim of the schemes is not to represent reality but to cover 

the space of possible weighting schemes.  

3.8.3 Sensitivity with Respect to the Aggregation Equation 

Finally, a sensitivity analysis was performed with respect to the aggregation equation. Two equations were 

considered. The first equation is a simple linear weighted sum which has already served as the reference 

equation for the analysis. The underlying concept for this equation is that every ranking criterion 

contributes to the aggregated rate of a measure independently, or in other words, ranking criteria are 

orthogonal or linearly independent. The second form is derived from the consideration that quality ranking 

criteria and relevance to reliability may interact with each other. The part of the equation that relates to 

quality ranking criteria and relevance to reliability is thus multiplicative [Keen76].  

R =I Wkvk Equation Form 1 
k 

where 

R: The rate of the measure.  

k: Ranking criterion index, k e {Cost, Benefits, Credibility, Repeatability, 

Experience, Validation, Relevance to Reliability}.  

Wk: The weight for the kth ranking criterion. Vk, wk = 1/7.  

Vk: The real-value-equivalent for kth 's ranking criterion level.  

R = wv + WcVc Equation Form 2 

where 

v,, = [rl-'(I + Kw,) - 1]
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K = fi (1+ Kw1)-1 

wý Weights for all ranking criteria except the cost/benefit ranking criteria.  

wc Weights for the cost set with wz + wc = 1 

l: Running index referencing one of the ranking criteria within the following set 

{Credibility, Repeatability, Experience, Validation, Relevance to Reliability} 

wl: Weight for the Ith ranking criterion. E w, is not required to be 1.  

Credibility Repeatability Experience Validation Relevance to K w- wC 
Reliability 

0.4 0.4 0.2 0.2 0.8 -0.9346 0.5 0.5 

Table 4 Weights used in Equation Form 2 

3.9 Possible Limitations of the Methodology 

The methodology proposed in this chapter is based on expert opinion elicitation. Consequently, the 

correctness and accuracy of the results depends heavily on the experts.  

Software engineering technology is continually evolving and concurrently measures are being developed to 

reflect these changes. In the volatile nature of software engineering lies a weakness of the study presented: 
the need to modify the set of measures as the technology evolves 

3.10 Summary and Conclusions 

This chapter presents the methodology used to rank software engineering measures. The methodology is 

based on the use of expert opinion elicitation to solicit the scores of software engineering measures. The 

scoring is performed with respect to seven ranking criteria: credibility, repeatability, cost, benefit, 

experience, validation and relevance to reliability. The scoring is performed in terms of letter grades. A 

letter-conversion scheme translates the letter values to real numbers between 0 and 1. These numbers are 

then aggregated using an aggregation equation and a weighting scheme for the seven ranking criteria. The 

aggregated number serves as the indicator of the "goodness" of the measure. A sensitivity analysis is 

further performed on all components of the analysis: letter-real conversion scheme, aggregation function 

form, weighting scheme. Since a priori one can not assess which aggregation scheme is correct, the 

purpose of such sensitivity analysis is to prove that the results obtained remain valid for a wide spectrum of 

aggregation schemes.  

The next chapter, Chapter 4, will provide the results obtained by application of this methodology to the 

initial set of measures. Chapter 5 will discuss the ranking of the missing measures.  
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Chapter 4 Results and Analysis

CHAPTER 4 RESULTS AND ANALYSIS 

Chapter 2 examined the problem of selecting software engineering measures to predict software reliability 
and designed a methodology which would help achieve this objective. The methodology is based on a 
rating and the consequent ranking of the measures. The rating of a measure is derived from the intrinsic and 
extrinsic characteristics of the measure. Chapter 3 outlined a full description of the rating process. Chapter 
4 provides the rates and ranks obtained when applying the rating methodology to the measures selected. As 
discussed in chapter 2, measures can be classified into categories named "families". Hence, results are also 
presented by family. Results of the sensitivity analysis on letter-real conversion schemes, aggregation 
weights, and aggregation functions are also provided. These allow an assessment of the stability of the 
rankings and rates under various ranking schemes. A systematic analysis of the importance of ranking 
criteria was also performed and is presented at the end of the chapter.  

4.1 Measures' Rates and Rankings 

Rates define the degree to which measures can be used to predict software reliability. These rates are real 
numbers ranging from 0 to 1. Rates of 1 indicate measures deemed crucial to the prediction of software 
reliability. Rates of 0 correspond to measures that definitely should not be used.  

The rate of a measure may vary from one development phase to another since relevance to reliability may 
vary between phases. Hence the methodology described in Chapter 2 and 3 aggregates the rates of 
measures phase by phase. Four development phases are of interest: Requirements, Design, 
Implementation, and Testing. Later phases are ruled out of the analysis since the software is already in 
operation. Table 4-1 lists the rates of the thirty measures in the four phases.  

The following sections (Section 4.1.1 to Section 4.1.4) will discuss in greater detail the rates and rankings 
of the measures phase by phase. The emphasis will be placed on noteworthy trends and results.
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Measure' Development Phase 
Requirement Design Implementation Testing 

Bugs per line of code (Gaffney estimate) 0.46 0.40 

Cause & effect graphing 0.45 0.43 0.40 0.44 

Code defect density 0.83 0.83 

Cohesion 0.42 0.36 0.36 

Completeness 0.42 0.36 0.36 0.36 

Cumulative failure profile 0.76 

Cyclomatic complexity 0.73 0.74 0.72 

Data flow complexity 0.62 0.59 0.59 

Design defect density 0.75 0.75 0.75 

Error distribution 0.68 0.68 0.65 0.66 

Failure rate 0.83 

Fault density 0.71 0.73 0.73 0.75 

Fault-days number 0.60 0.71 0.71 0.72 

Feature point analysis 0.46 0.50 0.50 0.45 

Function point analysis 0.51 0.54 0.55 0.50 

Functional test coverage 0.62 

Graph-theoretic static architecture complexity 0.52 0.46 0.46 

Man hours per major defect detected 0.63 0.61 0.63 

Mean time to failure 0.79 

Minimal unit test case determination 0.59 0.64 0.70 

Modular test coverage 0.70 

Mutation testing (error seeding) 0.50 

Number of faults remaining (error seeding) 0.46 0.46 0.47 0.51 

Requirements compliance 0.50 0.49 0.50 0.50 

Requirements specification change requests 0.70 0.69 0.69 0.69 

Requirements traceability 0.56 0.56 0.55 

Reviews, inspections and walkthroughs 0.61 0.61 0.61 0.61 

Software capability maturity model 0.60 0.60 0.60 0.60 

System design complexity 0.53 0.53 0.53 

Test coverage 0.68 

Table 4-1 Rates for the Different Software Engineering Measures Studied

I An empty cell in the table denotes that the corresponding measure is not applicable in the corresponding phase. For instance, the measure "Code defect density" is 

not available in the Requirements and Design phases. The same comment applies to all tables throughout the chapter
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4.1.1 Results in the Requirements Phase 

Table 4-2 lists rates and rankings for the twelve measures available in the requirements phase 2. The three 

top measures are "Fault density", "Requirements specification change requests", and "Error distribution". It 
implies that these measures are prime candidates as roots3 of a software reliability prediction system in the 
requirements phase.  

Other results worth commenting about are discussed below. The measure "Completeness" has the lowest 
ranking, a result due to the fact that the measure scores low in the Credibility criterion. This is because the 
measure attempts to assess completeness of the requirements, an objective that cannot theoretically be 
achieved. Furthermore the measure uses several primitives which are related to the design phase rather than 
to the requirements phase. This leads to confusion since the analyst is led to believe that the measure cannot 
be completely assessed during the requirements phase.  

The measures "Feature point analysis" and "Function point analysis" belong to a family of measures 
dedicated to the evaluation of system functional size. The measure "Feature point analysis" is a variant of 
"Function point analysis" dedicated to real-time embedded systems. One would thus expect that these two 
measures would score identically or even that feature point analysis would score higher than function point 
analysis since it is devoted to the objective of this particular study, i.e. embedded systems for safety critical 
applications. However, the results in Table 4-2 indicate otherwise. The inconsistency originates from the 
difference observed in the scores of the Experience criterion: there is less industrial experience with 
"Feature point analysis" than with "Function point analysis".  

Measure Rate Rank 
Fault density 0.71 1 
Requirements specification change requests 0.70 2 
Error distribution 0.68 3 
Reviews, inspections and walkthroughs 0.61 4 
Fault-days number 0.60 5 
Software capability maturity model 0.60 6 
Function point analysis 0.51 7 
Requirements compliance 0.50 8 
Feature point analysis 0.46 9 
Number of faults remaining (error seeding) 0.46 10 
Cause & effect graphing 0.45 11 
Completeness 0.42 12 

Table 4-2 Rates and Rankings in the Requirements Phase 

4.1.2 Results in the Design Phase 

Table 4-3 lists rates and rankings for the twenty measures available in the design phase. The top ranked 
measures are "Design defect density", "Fault density", and "Cyclomatic complexity". Two of these three 
measures were not available in the requirements phase and are therefore new. The three measures are prime 

candidates as roots3 of a software reliability prediction system in the design phase. But it should be noted 

2 For the list of measures available in a particular phase, the reader is referred to Table 3-2 in Chapter 3.  

3A root of a software reliability prediction system is a measure that constitutes the starting point of a system and should be 

supplemented by additional measures which will complete the system.
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that the number of measures above and close to the arbitrary threshold value of 0.74 has increased from 3 to 

6 (0.68 and 0.69 are very close to 0.70) if compared with the requirements phase. This means that the 

number of measures considered valid for reliability prediction has increased and that the size of the 

underlining reliability prediction system has increased except some of the measures are redundant. Another 

interesting fact is that the highest rate encountered has increased between requirements and design phase 

from 0.71 to 0.75. This trend is to be expected since measures reflect artifacts and process phases which are 

closer to the final code being delivered. Hence the general "quality" of the measures should improve.  

Measure Rate Rank 

Design defect density 0.75 1 

Fault density 0.73 2 

Cyclomatic complexity 0.73 3 

Fault-days number 0.71 4 

Requirements specification change requests 0.69 5 

Error distribution 0.68 6 

Man hours per major defect detected 0.63 7 

Data flow complexity 0.62 8 

Reviews, inspections and walkthroughs 0.61 9 

Software capability maturity model 0.60 10 

Minimal unit test case determination 0.59 11 

Requirements traceability 0.56 12 

Function point analysis 0.54 13 

System design complexity 0.53 14 

Graph-theoretic static architecture complexity 0.52 15 

Feature point analysis 0.50 16 

Requirements compliance 0.49 17 

Number of faults remaining (error seeding) 0.46 18 

Cause & effect graphing 0.43 19 

Cohesion 0.42 20 

Completeness 0.36 21

Table 4-3 Rates and Rankings in the Design Phase

4.1.3 Results during the Implementation Phase 

Table 4-4 lists rates and rankings for the 23 measures available in the implementation phase. The top 

ranked measures are "Code defect density", "Design defect density ", "Cyclomatic complexity", and "Fault 

density", respectively. The number of measures above (including one is very close to 0.70) the arbitrary 

level of 0.7 is still 6. The top ranked measure in this phase has a rating of 0.83 instead of 0.75 which was 

the value of the top-ranked measure in the design phase, reflecting once again a general improvement in the 

"quality" of the measures.  

The rankings obtained seem reasonable but for two exceptions: the fact that the measure "Code defect 

density" and "Cyclomatic complexity" rank higher than the measure "Fault density", and that the measure 

"Number of faults remaining (error seeding)" only ranks number 18.  

' This number is an arbitrary value selected by the University of Maryland. It is a threshold that allows to distinguish a "good" 

measure from a "bad" one.
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The relative ranking of "Code defect density" versus "Fault density" is due to differences in the criteria 
Repeatability, Experience, and Relevance to Reliability. These scores reveal that the measure "Fault 
density" is more difficult to reproduce consistently, and is less widely used in industry than "Code defect 
density". Moreover, the measure "Fault density" is less relevant to reliability prediction than the measure 
"Code defect density". This is puzzling since one would think that the measure "Code defect density" is a 
specific instance of the measure "Fault density" particular to the implementation phase. This quagmire can 
be avoided by remembering that reliability is not solely determined by the fault content, but also by how 
frequently the faults manifest themselves as failures. Manifestation as a failure is determined by the 
position of the faults as explained in the example below.  

Module M1 is characterized by fault density FD,, and a frequency of execution of p1 . Module M2 's fault 
density is FD2, and its frequency of execution is P2. If one assumes that FD1 is greater than FD2, and pj is 
much smaller than P2, then the statement " module M, impacts the reliability of the system more 
significantly than module Ml2" does not hold. In other words, the reliability of a system is determined not 
only by the number of faults residing in the system (or fault density), but also by the frequency at which 
these faults are encountered.  

As shown in Appendix A, the process involved in measuring "Fault density" is that of tracing back from 
failures observed to the faults that caused the failure. However, the faults counted in the measure "Code 
defect density" are observed directly through the code inspection and walkthrough process. Hence fault 
location information for "Code defect density" is more reliable than for "Fault density". Therefore the 
measure "Code defect density" was assessed more relevant to reliability than the measure "Fault density".  

The similar analysis can resolve the puzzle that the measure "Cyclomatic complexity" ranks higher than the 
measure "Fault density". Although the scores of ranking criteria Benefit, Credibility, and Relevance to 
Reliability of the measure "Fault density" are higher than those of the measure "Cyclomatic complexity" 
(0.23 against 0.15, 0.82 against 0.76, 0.62 against 0.46, respectively), the scores of ranking criteria Cost, 
Repeatability, Experience are lower (0.88 against 0.92, 0.68 against 0.90, 0.91 against 1.00, respectively).  
Therefore the aggregation results are 0.74 against 0.73.  

The second puzzling result is the low ranking achieved by the "Number of faults remaining", a result 
seemingly counterintuitive. The criteria Benefit, Experience, and Validation, were ranked low, i.e. the 
experts believe the application of the measure not to be practical. Relevance to Reliability received an 
equally low rate. This can be explained in the same manner as above, i.e. the measure does not provide 
location information on the faults that together with the number of faults remaining could be used for 
reliability estimation.
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Measure Rate Rank 

Code defect density 0.83 1 

Design defect density 0.75 2 

Cyclomatic complexity 0.74 3 

Fault density 0.73 4 

Fault-days number 0.71 5 

Requirements specification change requests 0.69 6 

Error distribution 0.65 7 

Minimal unit test case determination 0.64 8 

Reviews, inspections and walkthroughs 0.61 9 

Man hours per major defect detected 0.61 10 

Software capability maturity model 0.60 11 

Data flow complexity 0.59 12 

Requirements traceability 0.56 13 

Function point analysis 0.55 14 

System design complexity 0.53 15 

Requirements compliance 0.50 16 

Feature point analysis 0.50 17 

Number of faults remaining (error seeding) 0.47 18 

Bugs per line of code (Gaffney estimate) 0.46 19 

Graph-theoretic static architecture complexity 0.46 20 

Cause & effect graphing 0.40 21 

Cohesion 0.36 22 

Completeness - 0.36 23 

Table 4-4 Rates and Rankings in the Implementation Phase 

4.1.4 Results during the Testing Phase 

All thirty measures are applicable in this phase. The top ranked measures are "Failure rate", "Code defect 

density", and "Mean time to failure", respectively. The number of measures above the 0.7 threshold has 
increased to 10 as expected, and so has the rate of the top ranked measure, now equal to 0.83.  

Worthy of comment is the observed difference between "Failure rate" and "Mean time to failure", and the 

relative rating of "Mean time to failure" and "Code defect density". These are discussed in turn.  

Going back to the raw data provided by the experts, the difference in rankings between the measures 
"Failure rate" and "Mean time to failure" can be attributed to differences in the Experience criterion.  

Note also that one would typically expect measures such as "Failure rate", "Mean time to failure", and 

"Cumulative failure profile" which all relate to the notion of failure (a notion conceptually close to 
reliability since reliability is inherently the study of software failures) to be better rated than the measure 

"Code defect density" which conceptually relates to faults. However, the rate of "Code defect density" is 

higher than the rate of "Mean time to failure" and "Cumulative failure profile" and distinguished from the 

measure "Failure rate" only by the third digit after the point (0.828 against 0.833). This can be explained by 

differences in the rate given to the criterion Experience. There is indeed much more reported industrial 
experience with "Code defect density" than with the other two measures.
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Finally, differences between "Code defect density " and "Fault density", and the apparently surprising 
result of the low rates and rankings achieved by the "Number of faults remaining (error seeding)" in all 
four development phases can be explained in the same manner as in Section 4.1.3.  

Measure Rate Rank 
Failure rate 0.83 1 
Code defect density 0.83 2 
Mean time to failure 0.79 3 
Cumulative failure profile 0.76 4 
Fault density 0.75 5 
Design defect density 0.75 6 
Cyclomatic complexity 0.72 7 
Fault-days number 0.72 8 
Modular test coverage 0.70 9 
Minimal unit test case determination 0.70 10 
Requirements specification change requests 0.69 11 
Test coverage 0.68 12 
Error distribution 0.66 13 
Man hours per major defect detected 0.63 14 
Functional test coverage 0.62 15 
Reviews, inspections and walkthroughs 0.61 16 
Software capability matufty model 0.60 17 
Data flow complexity 0.59 18 
Requirements traceability 0.55 19 
System design complexity 0.53 20 
Number of faults remaining (error seeding) 0.51 21 
Requirements compliance 0.50 22 
Function point analysis 0.50 23 
Mutation testing (error seeding) 0.50 24 
Graph-theoretic static architecture complexity 0.46 25 
Feature point analysis 0.45 26 
Cause & effect graphing 0.44 27 
Bugs per line of code (Gaffney estimate) 0.40 28 
Cohesion 0.36 29 
Completeness 0.36 30 

Table 4-5 Rates and Rankings in the Testing Phase 

4.2 Aggregation Results by Family 

Section 4.1 provides rates by measure in each development phase. Section 4.2 provides rates per family of 
measures per phase. The concept of family has been explained in Chapter 2 as a grouping of measures 
which evaluates the same underlying concept. The thirty measures extracted from the LLNL study can be 
classified into eighteen families defined in Table 4-6.
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Family Measure 
Code defect density 

Fault detected per unit of size Design defect density 
Fault density 

Feature point analysis 

Functional size Function point analysis 
Mutation testing (error seeding) 

Estimate of faults remaining in code Mtto etn errseig 

Number of faults remaining (error seeding) 

Estimate of faults remaining per unit of size Bugs per line of code (Gaffney estimate) 
Cumulative failure profile 

Failure rate Failure rate 
Mean time to failure 
Data flow complexity 

System architectural complexity Graph-theoretic static architecture complexity 
System design complexity 

Module structural complexity Cyclomatic complexity 
Minimal unit test case determination 

Cohesion Cohesion 

Time taken to detect and remove faults Fault-days number 
Man hours per major defect detected 

Functional test coverage 

Test coverage Modular test coverage 
Test coverage 

Error distribution Error distribution 

Software development maturity Software capability maturity model 

Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs 

Cause & effect graphing Cause & effect graphing 

Requirements compliance Requirements compliance 

Requirements traceability Requirements traceability 

Requirements specification change requests Requirements specification change requests 
Completeness Completeness 

Table 4-6 The Definition of the Family 

The introduction of the concept of family results in the following benefits: 

1. Conceptual redundancies among measures are eliminated and hence the population of measures is 

dramatically reduced. Less effort is required to reach meaningful conclusions. One can finally "see 

the forest for the trees." In the specific case examined here the number of measures was brought 
from 30 down to 18, a considerable reduction.  

2. Families are more stable than measures. A distressing phenomenon plaguing the software 

measurement community is the continuous advent of new software engineering measures. Many 

of these measures constitute minute variations of known measures. Others originate from the 

advent of new development techniques. However, software as an artifact and software 

development in its wake is defined by a small number of fundamental characteristics. These 

characteristics are independent of a particular language, and are not likely to evolve in the very 

near future. Measures that relate to these particular characteristics are called families. Because all 

characteristics of software can be thoroughly identified and classified, so can families.
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3. The concept of family eliminates the possible noise in the expert's inputs and hence improves the 
robustness of the ranking of measures. For instance, the ranking of "Code defect density" in the 
testing phase is higher than the ranking of measures such as "Mean time to failure" and 
"Cumulative failure profile". This is contradictory to intuition as explained in Section 4.1.4.  
However, "Mean time to failure" and "Cumulative failure profile" belong to the family "Failure 
rate". By choosing to represent the family by its highest ranked member, here "Failure rate", one 
reestablishes the natural ordering of measures: the family "Failure rate" ranks higher than the 
family "Fault detected per unit of size".  

4. Each family reflects at least one software characteristic. Software reliability is ultimately 
determined by the interaction of such characteristics. Hence, the task of selecting measures to 
constitute a software reliability prediction system becomes tantamount to the task of picking one 
measure from each family.  

The data in this section is taken directly from the data in Section 4.1. The only difference comes from the 
fact that a family is a set of related measures, and the rates and rankings in Section 4.1 are replaced by the 
values of the minimum, median, and maximum statistics of the rate in a family. The maximum rate 
represents the family as a whole. It tells the analyst how good a family can be in practice. This value 
however is still different from the value that could be attained by the concept underlying the family since 
the physical implementation is a "degraded" version of the concept itself. The median value is the most 
likely observation of the concept. As for the minimum value, it represents the worst known (in this study) 
implementation of the concept.  

This section will examine the rates of the eighteen families in each development phase.  

4.2.1 Results during the Requirements Phase 

Family rates in the requirements phase are summarized in Table 4-7. The top ranked families are "Fault 
detected per unit of size", "Requirements specification change requests", and "Error distribution". The only 
difference between Table 4-7 and Table 4-2 is the fact that the twelve measures in Table 4-2 are regrouped 
into the eleven families in Table 4-7. All other comments in Section 4.1.1 are applicable to this section.  

Family Min Median Max 
Fault Detected per Unit of Size 0.71 0.71 _,_0.71_ 

Requirements specification change requests 0.70 0.70 0.70 
Error Distribution 0.68 0.68 0.68 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Time Taken to Detect and Remove Faults 0.60 0.60 0.60 

Software Development Maturity 0.60 0.60 0.60 

Functional Size 0.46 0.48 0.51 
Requirements compliance 0.50 0.50 0.50 

Estimate of Faults Remaining in Code 0.46 0.46 0.46 
Cause & effect graphing 0.45 0.45 0.45 
Completeness 0.42 0.42 0.42 

Table 4-7 Rates by Family in the Requirements Phase 

Graying is used to depict the rates of the families that have crossed the arbitrary 0.7 threshold.
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4.2.2 Results during the Design Phase
Family Min Median Max 

Fault Detected per Unit of Size 0.73 0.74 0.75 

Module Structural Complexity 0.59 0.66 0.73 

Time Taken to Detect and Remove Faults 0.63 0.67 0.71 

Requirements specification change requests" 0.69 0.69 0.69 

Error Distribution 0.68 0.68 0.68 

System Architectural Complexity 0.52 0.53 0.62 

Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Software Development Maturity 0.60 0.60 0.60 

Requirements traceability 0.56 0.56 0.56 

Functional Size 0.50 0.52 0.54 

Requirements compliance 0.49 0.49 0.49 

Estimate of Faults Remaining in Code 0.46 0.46 0.46 

Cause & effect graphing 0.43 0.43 0.43 

Cohesion 0.42 0.42 0.42 

Completeness 0.36 0.36 0.36 

Table 4-8 Rates by Family in the Design Phase

Table 4-8 lists family rates in the design phase. Families are ordered by their "Max" values. Therefore the 

ranking of the family "Requirements specification change requests" is lower than that of the family "Time 

taken to detect and remove faults". The potential measures for a software reliability prediction should be 

chosen from the families "Fault detected per unit of size", "Module structural complexity", and "Time 

taken to detect and remove faults". Families "Requirements specification change requests" and "Error 

distribution" should also be considered because their rates are close to the top ranking families.  

4.2.3 Results during the Implementation Phase 

Table 4-9 lists rates by family in the implementation phase. The top ranked families (top four) are identical 

to the top ranked families found in the design phase. This implies that no significant changes occur between 

design and implementation, due to the probable similarity between the phases (detailed design closely 

approximates coding).  

Family Min Median Max 

Fault Detected per Unit of Size 0.73 0.75 0.83 

Module Structural Complexity 0.64 0.69 0.74 

Time Taken to Detect and Remove Faults 0.61 0.66 0.71 

Requirements specification change requests 0.69 0.69 0.69 

Error Distribution 0.65 0.65 0.65 

Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Software Development Maturity 0.60 0.60 0.60 

System Architectural Complexity 0.46 0.53 0.59 

Requirements traceability 0.56 0.56 0.56 

Functional Size 0.50 0.53 0.55 

6 "Requirements specification change requests" and "Error distribution" are included in the set of top ranking families since they so 

closely follows "Time Taken to Detect and Remove Faults" in Table 4-8.
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Requirements compliance 0.50 0.50 0.50 

Estimate of Faults Remaining in Code 0.47 0.47 0.47 
Estimate of Faults Remaining per Unit of Size 0.46 0.46 0.46 

Cause & effect graphing 0.40 0.40 0.40 

Cohesion 0.36 0.36 0.36 

Completeness 0.36 0.36 0.36 

Table 4-9 Rates by Family in the Implementation Phase 

4.2.4 Results during the Testing Phase 

Table 4-10 lists rates by family in the testing phase. As expected, the family "Failure rate" is ranked as No.  
1. The family "Fault detected per unit of size" falls in the second position. The next 4 families are rated 
very closely and above or barely below the "good enough" threshold of 0.7. Therefore these families 
should all be candidates in the software reliability prediction system.  

Family Min Median Max 

Failure Rate 0.76 0.79 '0.83 
Fault Detected per Unit of Size 0.75 0.75 0.83 
Module Structural Complexity 0.70 0.71 0.72 
Time Taken to Detect and Remove Faults 0.63 0.67 0.72 
Test Coverage 0.62 0.68 0.70 
Requirements specification change requests 0.69 0.69 0.69 
Error Distribution 0.66 0.66 0.66 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 
Software Development Maturity 0.60 0.60 0.60 
System Architectural Complexity 0.46 0.53 0.59 
Requirements traceability 0.55 0.55 0.55 
Estimate of Faults Remaining in Code 0.50 0.50 0.51 

Requirements compliance 0.50 0.50 0.50 
Functional Size 0.45 0.47 0.50 

Cause & effect graphing 0.44 0.44 0.44 
Estimate of Faults Remaining per Unit of Size 0.40 0.40 0.40 

Cohesion 0.36 0.36 0.36 

Completeness 0.36 0.36 0.36 

Table 4-10 Rates by Family in the Testing Phase 

The reader may find interest in noting that the number of families above the arbitrary limit of 0.7 is almost 
constant reflecting the stability throughout the software development lifecycle of the software 
characteristics of importance. This number takes values "3", "5", "4" and "6" respectively.  

This section (Section 4.2) provides rates for all measures and families. These results are calculated based 
on a specific aggregation framework that includes a letter-real conversion scheme, an aggregation 
weighting scheme, and an aggregation function form. This specific aggregation framework needs to be 
validated by means of sensitivity analysis. Section 4.3 discusses this validation effort.
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4.3 Sensitivity Analysis

The analysis presented in this section examines whether the results obtained (rates and ranks of the 

measures studied) depend on the aggregation framework 7 or, whether or not the present aggregation 

framework is "good enough" to reproduce the ranking and rates that would be observed in the most likely 

situations one can encounter.  

In this section, the letter-real conversion scheme, the aggregation weighting scheme, and the aggregation 

function form are varied, and, one computes the new rates and rankings accordingly. The correlation 

coefficients between rates and rankings are then calculated.  

Correlation coefficients characterize the existence (or non-existence) of a "linear relationship" [Sinc92] 

between two random variables, namely yj and Y2. If Y2 increases as yi increases, and y2 decreases as yj 

decreases, then the relationship between Y2 and yi is "linear". The correlation coefficient between yi and Y2 

tends to be 1 ify2 increases as yj increases, and 0 ify 2 randomly increases or decreases as y, increases.  

The rates obtained under an aggregation framework denoted 1 can be considered as the random variable yl, 

and the rates obtained under an aggregation framework denoted 2 can be considered as the second random 

variable y2- If the correlation coefficient of yj and y2 equals 1, which means Y2 increases as y1 increases, and 

vice versa, then the rankings related to Y2 should be identical to the rankings related to yj. Hence, in the 

case of a high correlation coefficient between yj and Y2 one can conclude that the use of aggregation 

framework 2 instead of I will not impact the rankings. If one can prove that the correlation coefficient 

remains high when framework 2 varies to cover the entire valid aggregation framework space, then 

rankings are invariant for all valid frameworks in this valid framework space. The next three sub-sections 

(Section 4.3.1 to Section 4.3.3) discuss the correlation analysis for variations of the letter-real conversion 

scheme, the aggregation weighting scheme, and the aggregation function form, respectively.  

4.3.1 Sensitivity Analysis on the Letter-Real Conversion 

In this section, five letter-real conversion schemes are examined. Each scheme is fully described in 

Appendix C. The selection of these different conversion schemes is based on two considerations: complete 

coverage of all potential conversion-curve shapes and realism.  

For instance, Figure 4-1 displays five different conversion schemes. "Scheme 1" is characterized by a high 

density at the high end of the conversion scheme. This means that most letters transform into values close 

to 1. "Scheme 2" emphasizes the middle of the conversion-curve, that is, the levels B 8, C, D, and E are all 

converted to a value close to 0.5, the level F is converted into 0.0 and the level A is converted into 1.0.  

"Scheme 3" equally distributes the values along the [0,1] interval. "Scheme 4" is the opposite image of 

"Scheme 2", and puts emphasis at the each end of the conversion-curve. Levels B and C convert into values 

close to 1.0, however D and E convert into values close to 0.0. Level A is converted into 1.0 and level F is 

converted into 0.0. "Scheme 5" is characterized by a high density at the low end of the conversion-curve.  

This means that most letters transform into values close to zero. These five schemes cover the space of 

possible conversion schemes.  

An aggregation framework is defined as the set {aggregation equation, weights, a letter-real conversion scheme}.  

The letter levels are not constrained to the range from A to F Some criterion, like the Cost, utilizes letters T, Y, Q, M, and W which 

are equivalent to E, D, C, B, and A, respectively
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Figure 4-1 Letter-Real Conversion Schemes 

The correlation coefficients for the rates and rankings corresponding to the five conversion schemes are 
given below phase by phase in Table 4-11 to Table 4-14. "Rate 1" denotes the aggregated rate obtained 
using conversion "Scheme 1". "Rank 1" denotes the aggregated ranking obtained using conversion 
"Scheme 1". Similarly, "Rate 2" and "Rank 2" correspond to the "Scheme 2", and so forth and so on. These 
notations hold for any other labels found in the following four tables. At the intersection of two rates, e.g., 
Rate 1 and Rate 2, one finds the correlation coefficient P12. The same convention holds for the rankings.  

Rate I Rate 2 Rate 3 Rate 4 Rate 5 
Rate 1 1 
Rate 2 0.985 1 
Rate 3 0.939 0.928 1 
Rate 4 0.975 0.991 0.921 1 
Rate 5 0.950 0.936 0.968 0.951 1 

Table 4-11 Correlation Coefficients in the Requirements Phase 

Rate I Rate 2 Rate 3 Rate 4 Rate 5 
Rate 1 1 
Rate 2 0.990 1 
Rate 3 0.941 0.922 1 
Rate 4 0.953 0.971 0.844 1 
Rate 5 0.962 0.960 0.924 0.956 1 

Table 4-12 Correlation Coefficients in the Design Phase

Rate1 Rate2 Rate3 Rate4 Rate5 
Ratel 1 
Rate2 0.995 1 
Rate3 0.961 0.946 1 
Rate4 0.956 0.976 0.870 1 
Rate5 0.979 0.981 0.945 0.964 1 

Table 4-13 Correlation Coefficients in the Implementation Phase
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Rate1 Rate2 Rate3 Rate4 Rate5 

Ratel 1 
Rate2 0.992 1 
Rate3 0.955 0.939 1 
Rate4 0.947 0.966 0.843 1 
Rate5 0.984 0.98 0.939 0.959 1 

Table 4-14 Correlation Coefficients in the Testing Phase 

Observing the four tables above, one can reach the following conclusion: 

Correlation coefficients between scheme 3 and scheme 4 are much lower than other coefficients.  

Scheme 3 and scheme 4 represent two extremely opposite situations in the letter-real conversion 
schemes. Hence this difference, although not significant, shows that extreme cases do impact the final 

rates and rankings, but do not generate drastic changes.  

4.3.2 Sensitivity Analysis on Aggregation Weights 

Sensitivity analysis on aggregation weights is discussed in this section. The correlation coefficients, results 

of this analysis, are presented in Table 4-16 to Table 4-19. A discussion of the selection of weighting 

schemes can be found in Section 3.8 and the detailed weighting schemes are shown in Appendix C and 
Table 4-15.  

Cost Benefits Credibility Repeatability Experience Validation Relevance to Reliability 

Scheme 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

Scheme 2 0.13 0.13 0.13 0.13 0.13 0.13 0.25 

Scheme 3 0.08 0.08 0.17 0.17 0.08 0.08 0.33 
Scheme 4 0.245 0.045 0.088 0.036 0.130 0.239 0.216 

Scheme 5 0.20 0.03 0.10 0.17 0.16 0.14 0.20 

Scheme 6 0 0 0.25 0.25 0.25 0 0.25 

Table 4-15 Weighting Schemes used in the Sensitivity Analysis 

The first three weighting schemes are based on reasonableness considerations with respect to each 

criterion's contribution. Schemes 4 and 5 are obtained by random selection of the weight sets. The sixth 

scheme is an extreme case in which the criteria Cost, Benefit, and Validation are set to zero. In this scheme 

it is assumed that these criteria can be eliminated without critical impact on the final aggregation rates and 
rankings.  

In Table 4-16, only the correlation coefficients of Scheme 1 and Scheme 3, Scheme 3 and Scheme 5, 

Scheme 3 and Scheme 6, and Scheme 4 and Scheme 6, are below 0.959, while others are above 0.95. In 

Table 4-17, the same thing happens to the correlation coefficients of Scheme 1 and Scheme 3, and Scheme 
4 and Scheme 6. In Table 4-18 the phenomenon reoccurs with Scheme 4 and Scheme 6, and also in Table 

4-19 with Scheme 4 and Scheme 6. A more in-depth study of the weighting schemes shows that Scheme 4 

UMD classifies the correlation coefficients as follows: 

I. 0.95 - 1.0 characterizes a relationship between the two random variables labeled as "strongly linear".  

2. 0.9 - 0.95 characterizes a relationship between the two random variables labeled as "satisfyingly linear".  

3. 0.85 - 0.90 characterizes a relationship between the two random variables labeled as "acceptably linear".  

4. below 0.85 . This value is characteristic of a relationship between the two random variables labeled as "non linear".
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assigns strong weights to Cost, Validation, and Relevance to Reliability, while Scheme 6 assigns zero 
weights to Cost and Validation criteria.  

Results presented in this sub-section show that a high degree of correlation exists between the different 
weighting schemes. This justifies the use of the scheme with equal weights adopted in Sections 4.1 and 
4.2.

Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Rate 6 
Rate 1 1 
Rate 2 0.962 1 
Rate 3 0.908 0.983 1 
Rate 4 0.956 0.986 0.953 1 
Rate 5 0.984 0.978 0.939 0.984 1 
Rate 6 0.980 0.967 0.931 0.937 0.968 1 

Table 4-16 Correlation Coefficients in the Requirements Phase 

Rate I Rate 2 Rate 3 Rate 4 Rate 5 Rate 6 
Rate 1 1 
Rate 2 0.981 1 
Rate 3 0.947 0.988 1 
Rate 4 0.959 0.978 0.950 1 
Rate 5 0.988 0.987 0.963 0.978 1 
Rate 6 0.975 0.962 0.945 0.901 0.961 1 

Table 4-17 Correlation Coefficients in the Design Phase

Rate I Rate 2 Rate 3 Rate 4 Rate 5 Rate 6 
Rate 1 1 
Rate 2 0.991 1 
Rate 3 0.973 0.993 1 
Rate 4 0.975 0.981 0.960 1 
Rate 5 0.993 0.991 0.979 0.983 1 
Rate 6 0.979 0.976 0.972 0.927 0.972 1 

Table 4-18 Correlation Coefficients in the Implementation Phase 

Rate I Rate 2 Rate 3 Rate 4 Rate 5 Rate 6 
Rate 1 1 
Rate 2 0.992 1 
Rate 3 0.972 0.992 1 
Rate 4 0.984 0.983 0.959 1 
Rate 5 0.995 0.991 0.974 0.988 1 
Rate 6 0.984 0.984 0.978 0.948 0.979 1 

Table 4-19 Correlation Coefficients in the Testing Phase 

4.3.3 Sensitivity Analysis on the Functional Form of the Aggregation Equation 

In this study two forms of aggregation functions are examined. One is the simple additive function. This 
functional form characterizes situations where all criteria affect the aggregated result independently 
[Keen76]. It implies that one would be willing to give up a designated amount on criterion i to gain a
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designated amount on another criterion j regardless of the levels of the other criteria. For instance, one 

would give up 0.2 on criterion Credibility to gain 0.2 on the criterion Cost given equal weights, regardless 

at which levels any criterion, including Credibility and Cost, currently is.  

The second functional form hypothesizes a potential influence among criteria in the quality and relevance 

set. Such influence can be represented by a product function. The cost/benefit set is considered independent 

of the quality and relevance sets, and the two groups are thus combined using an additive function. In this 

case a different type of dependency holds: the amount one would be willing to give up on a criterion in the 

quality or relevance sets to gain a designated amount on criteria Cost and Benefit depends on the current 

level of the other criteria in the quality or relevance sets. For instance, if one considers the trade-off 

between criteria Credibility and Cost, the level of the other criteria such as Experience, Repeatability would 

impact the designated trade-off value. For instance, if the value of criterion Experience is 0.6, one will give 

up an amount of 0.2 on criterion Credibility to gain the amount of 0.4 on criterion Cost; on the other hand, 

if the value of criterion Experience is very high, namely, 0.9, which means that there exists a wide 

commercial use of the measure, one would give up more on the criterion Credibility to gain the same 

amount on the criterion Cost. In this case, the relationship between Credibility and Experience is 

characterized by the multiplicative form.  

The correlation coefficients between the two forms of aggregation functions shown in Table 4-20 to Table 

4-23 demonstrate that a linear relationship exists in the Implementation and Testing Phase. However, the 

correlation coefficients in the Requirements phase cannot reveal a readily linear relationship. The 

correlation coefficients in the design phase are higher than those in Requirements phase and can 

demonstrate an acceptable linear relationship.  

In contrast to the conversion scheme and weighting scheme, the aggregation function needs further study.  

The UMD research team believes that the criteria Credibility, Repeatability, Experience, Validation, and 

Relevance to Reliability interactively influence the rankings of a measure with respect to reliability 

prediction. A low level of any such criterion should impair the aggregated rankings drastically even if other 

criteria have relatively high levels. This dependency is better represented by a multiplicative function than 

by an additive function.  

Rate I Rate 2 

Rate 1 1 

Rate 2 0.826905 1 

Table 4-20: Correlation Coefficients in the Requirements Phase 

Rate I Rate 2 

Rate 1 1 
Rate 2 0.901893 1 

Table 4-21: Correlation Coefficients in the Design Phase 

Rate I Rate 2 

Rate 1 1 

Rate 2 0.930295 1 

Table 4-22: Correlation Coefficients in the Implementation Phase
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Rate I Rate 2 
Rate 1 1 
Rate 2 0.946141 1 

Table 4-23: Correlation Coefficients in the Testing Phase 

The introduction of the concept of family significantly improves the robustness of the rankings under 
various function forms. For instance, the correlation coefficient of the rates in the requirements phase is 

0.982 when rating is done per family against the 0.82 if the rating is done per measure. In the testing phase, 
the results are 0.952 and 0.94, respectively. Both cases display an improvement due to the use of families.  

4.4 Criteria Analysis 

An aggregation fi-amework has been defined as a set {aggregation equation, weights, letter-real conversion 
scheme}. This set is defined on a set of criteria which at this point have never been challenged. To 
conclude this chapter, an experiment is conducted to challenge the criteria themselves. As has been 
repeatedly noted throughout this entire study, the set of criteria may be incomplete, incorrect or too many 
criteria may be involved in the analysis.  

This section attempts to respond, to the latter concern. In other words, "Are all seven criteria presented in 
this report necessary in ranking measures with regard to software reliability prediction?" 

An experiment was subsequently carried out in which the weights of each criterion was varied according to 
the following procedure: 

1. Select one of the criteria and assign a 1.0 to its weight and Os to the weights of all remaining 
criteria. Repeat this step until each of the criteria has been given a weight of 1.0.  

2. Select two out of seven criteria and assign each of these two criteria a weight of 0.5. Assign a 
weight of 0 to all other criteria. Repeat this step, selecting a new set of two, until each of the 
possible combinations is examined.  

3. Select three out of seven criteria and assign each of these three criteria a weight of 0.33. Assign a 
weight of 0 to all other criteria. Repeat this step, selecting a new set of three, until each of the 
possible combinations is examined.  

4. Select four out of seven criteria and assign each of these four criteria a weight of 0.25. Assign a 
weight of 0 to all other criteria. Repeat this step, selecting a new set of four, until each of the 
possible combinations is examined.  

5. Select five out of seven criteria and assign each of these five criteria a weight of 0.2. Assign a 
weight of 0 to all other criteria. Repeat this step, selecting a new set of five, until each of the 
possible combinations is examined.  

6. Select six out of seven criteria and assign each of these six criteria a weight of 0.17. Assign a 
weight of 0 to the remaining criteria. Repeat this step, selecting a new set of six, until each of the 
possible combinations is examined.  

For each weighting scheme obtained by the above procedure, aggregate the rates and rankings for all 
measures. Perform a sensitivity analysis between this scheme and the 5 schemes described in Section
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4.3.2. The results of the above experiment were sorted using the concept of "virtual distance" defined in 

Equation 4-1.  

1 Equation 4-1 VDi =j (-POi,j) 

'5 

where 

The index of the weighting scheme under study. It ranges from 1 to 127 in this 

experiment.  

VD, The "Virtual Distance (VD)" of the ith weighting scheme. The concept of VD 

quantifies the strength of the linear relationship between the rates under the ith 

weighting scheme and the rates under the first five weighting schemes described 

in Section 4.3.2.  

j The index of the five weighting schemes described in Section 4.3.2.  

p,.j The correlation coefficient of the rates under the ith weighting scheme (I=1,127) 

and the rates under the jth reference weighting scheme (j= 1,5) described in 

Section 4.3.2.  

Results are presented in Appendix C. Observing the results, one can reach the following conclusions: 

1. The larger the number of criteria included in the aggregation, the stronger the linear relationship 

observed between the experiment's rates and the reference rates described in Section 4.3.2.  

Therefore "more is better" and if possible one should include as many criteria as possible in the 

analysis.  

2. All top-ranked weighting schemes contain the Relevance to Reliability criterion, implying that this 

criterion is significant in the determination of the rank of a measure.  

3. The three criteria combinations {Cost, Credibility, Experience, Relevance to Reliability}, 

{Credibility, Repeatability, Experience, Validation, Relevance to Reliability}, and {Cost, 

Credibility, Repeatability, Experience, Validation, Relevance to Reliability} are the best possible 

criteria combinations obtained by selecting four out of seven, five out of seven, and six out of 

seven criteria, respectively. Furthermore, these combinations lead to virtual distances that are so 

low that the ranking would remain unchanged if one were to only know the values of these 

criteria.  

4.5 Summary 

This chapter discussed the rates and rankings (with respect to software reliability prediction) obtained for 

the 30 measures selected at the beginning of the study. Some potential inconsistencies are examined and 

explained. Sensitivity analysis with respect to the weights, the functional form of the aggregation function 

and with the letter-real conversion was carried out.  

The top-ranked measures were aggregated by an additive function with equal weights. These measures 

constitute the possible roots of software reliability prediction systems.  

Similar results were found for various aggregation schemes and can be found in Appendix C.
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It was proven however that rates and ranks remain relatively stable for different aggregation schemes. The 
sole exception was the change in equation form that signals noticeable changes in the results. This indicates 
that a more detailed study of the form of the aggregation equation should be performed. Stability, however, 
is reestablished when one analyzes the results by families rather than by single measure.  

A final result of interest lies in the study of the impact of the ranking criteria. The study shows that optimal 
combinations of four, five and six criteria exist which generate a ranking that closely approximates the 
ranking obtained using seven criteria. This allows ranking under partial information.  

[Sinc92] Sincich, T., Statistics for Engineering and the Sciences, 3Td Edition, Dellen Publishing corp. New 
York, 1992.  

[Keen76] Keeney, R. L., Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs, 
John Wiley & Sons, New York, 1976.
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Chapter 5 Missing Measures

CHAPTER 5 MISSING MEASURES 

The research performed by Lawrence Livermore National Laboratory identified 78 measures as discussed 
in Chapter 3. University of Maryland refined them into the 30 measures which were evaluated by experts.  
The experts identified 11 missing measures witch needed to be included into the study.  

The missing measures presented in this chapter were recommended by experts who participated in the NRC 
workshop. The set of missing measures includes "Full function point" (FFP), which is an alternative for 

"Function point" for real-time systems, the "Coverage factor" to better represent fault-tolerant systems, the 
"Mutation score" to capture mutation testing techniques, and a bevy of measures for object-oriented (00) 
techniques. The experts also suggested the addition of the "Reliability Trend Indicator". However, this is 
actually a reliability analysis method. Therefore it should not be considered as a missing measure.  

The ranking methodology discussed in Chapter 3 was applied to the missing measures. Section 5.1 presents 
a brief description for each missing measure. Section 5.2 describes how the missing measures were rated.  
Section 5.3 presents classifications of all measures in terms of design and systems discussed in this study, 
and divides them into four groups. Separate family groups were identified to highlight the differences 
between non-00 and 00 families. Section 5.4 provides the ranking results, and analyzes the impact of 
these missing measures on the rankings of the pre-selected measures. The analysis is performed per 
measure and by family. Finally Section 5.5 summarizes the contents of this chapter. All the raw input data 
and aggregated results discussed in this chapter are provided in Appendix D.  

5.1 Introduction of the Missing Measures 

The missing measures proposed by experts try to cover functional size measurement for real-time control 
systems, the fault-tolerant computing environment, the mutation testing technique, and the new but widely 
spread object-oriented development technique. A brief description of each of the ten missing measures is 
given below.  

Full Function Point (FFP) is an adaptation of Function Point Analysis (FPA) for the counting of the real
time software's functional size [SELl. FFP measurement applies a set of rules and procedures to a given 
piece of software, as it is perceived from the perspective of its inherent functional user requirements. FFP, 
like FPA, measures functional size by evaluating transactional processes and logical groups of data.  

Coverage Factor is defined as the probability of a fault-tolerant system automatically recovering from the 
occurrence of a failure by the failure detection and recovery mechanism embedded in the system. The 
objective of this measure is to gauge the ability of the system to automatically recover from the occurrence 
of a failure during normal system operation [Arno73].  

Mutation Score is an indicator of the efficiency of a test data set. A mutation is a single-point, 
syntactically correct change, introduced in the program P to be tested. The mutation score, denoted ms, is 
the ratio of the non-equivalent mutants of P (i.e. those which are distinguishable from P under at least one 
data item from the input domain) which are killed (distinguished from P) by a specific test data set T to the 
number of the non-equivalent mutants of P. The mutation score is a number in the interval [0,1] [Voas98].  

The 00 measures selected characterize the different aspects of 00 design [Lore94]. The seven 00 
measures selected are described below: 

Class Coupling. Coupling was proposed and defined by Myers [Myer78] as the degree of interaction 
between two modules. Chidamber and Kemerer [Khid94] revised this notion for 00 systems as the 
dependability among classes. They also entitled it in [Khid94] "Coupling between Objects (CBO)".
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This measure examines how the class relates to other classes. In practice, the coupling of a class to others 

needs to be limited to assure a good design and class reuse.  

Class Hierarchy Nesting Level. Classes are organized for inheritance purposes hierarchically in a tree 

structure, with the base or the topmost class called the root. The number of levels from the root to a class is 

called its nesting level [Lore94].  

This measure sheds light on the quality of the design with respect to inheritance. It is commonly understood 

that the deeper a class is nested in the inheritance hierarchy, the more public and protected methods there 

are for the class, and the more chances for method overrides or extensions. This all results in greater 

difficulty in testing a class.  

Lack of Cohesion of Methods (LCOM). LCOM was introduced by Chidamber and Kemerer as a measure 

of the interaction among methods within a class [Khid94]. Module cohesion [Myer78] is defined as the 

degree of interaction within a module. LCOM, the 00 version of cohesion, was defined as the difference 

between the number of method pairs that share at least one instance variable (also called attribute in some 

other literature) and the number of method pairs that do not share an instance variable.  

The LCOM value provides a measure of the relatively disparate nature of methods in the class. The 
"relatively" here comes from the fact that although LCOM tries to quantify the strength of cohesion of a 

class, it does not arrive at an absolute value of the cohesion. Instead, it utilizes a value that can indirectly 

gauge the strength of the notion of cohesion. In other words, the value of LCOM grows as the strength of 

cohesion increases and vice versa. However, the potential relationship between LCOM and the absolute 

measure of cohesion (if it exists) is still not identified as yet.  

LCOM is intimately tied to the instance variables and methods of a class, and therefore is a measure of the 

attributes of an object class.  

Number of Children (NOC). NOC is defined as the number of immediate subclasses subordinated to a 

class in the class hierarchy [Khid94]. NOC measures how many subclasses are going to inherit the methods 

of the parent class. According to Chidamber and Kemerer, 1) the greater the number of children, the greater 

the inheritance and 2) the more children a parent class has, the greater the potential for improper abstraction 

of the parent class [Khid94]. NOC was introduced as a measure of complexity.  

NOC is used as an ordinal scale of psychological complexity (understandability) [Nea196]. In other words, 

the understandability of a class is closely related to the number of immediate subclasses.  

Number of Class Methods in a Class. Class methods are class services or behaviors. Methods are 

executed whenever an object receives a message. The number of methods available to the class affects the 

size of the class.  

Number of Key Classes. A key class is a class that is requisite to the construction of a system. For 

instance, the calling class, connection class, and switch class are key classes of a telephony system. The 

number of key classes reveals the amount of total work required to complete the software. They are 

typically identified early in the 00 analysis and design process. It is also an indication of the number of 

long-term reusable objects that will be developed as a part of the current effort.  

Weighted Method per Class (WMC). WMC was introduced by its authors as a measure of complexity 

[Khid94]. It is the sum of weighted methods in a class. Each method within the class is weighted by a 

certain complexity value and this weight is summed to arrive at WMC. In this study we adopt a complexity 

value1 defined by Lorenz and Kidd in [Lore94].  

SA 
detailed description can be found in Appendix A, Section A.40.
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This section provided brief descriptions of the missing measures. The next section will discuss the ratings 
of the measures.  

5.2 Rating the Missing Measures 

The rating process consists of applying the methodology described in Chapter 3 to the missing measures.  
The input of the rating process was provided by UMD. This section describes the approaches that UMD has 
taken to obtain the inputs for the 10 missing measures.  

5.2.1 Using Analogy 

The experts' inputs2 for the pre-selected 30 measures are available at this point of our study. Hence the 
level of a criterion for a missing measure can be determined by the level of the same criterion for a related 
measure among the pre-selected 30 measures. Two measures A and B are "related" if, for instance, the cost 
estimate of applying the measure A is one month effort, and the cost of applying the measure B is three 
times as much as that of the measure A. A and B are then "analogous" to each other. In the following, the 
determination of several of FFP inputs illustrates the analogy.  

FFP is a functional measure based on the standard function point analysis (FPA) technique. It was designed 
for both management information systems (MIS) and real-time software. Since FFP is an extension of the 
standard FPA, all rules of FPA are included in the FFP counting process. However, FPA rules dealing with 
control concepts have been expanded considerably. The analogy is explained as follows: 

1. Credibility. The goals of FFP and FPA are almost identical. Therefore levels of the criterion 
Credibility should be identical (D+ for FFP).  

2. The counting rules and processes are similar. Hence levels of the criterion Repeatability should be 
identical (C for FFP).  

3. FFP and FPA both measure the functional size of the system. Therefore FFP is as relevant to 
reliability as FPA. Consequently the levels of the criterion Relevance to Reliability for FFP are E
for the requirements phase, D- for the design phase, D- for the implementation phase, and F+ for 
the testing phase.  

5.2.2 Using the Scientific Literature and the Experts Opinion 

An alternative approach is to refer to the literature and/or elicit expert inputs to assess the levels of ranking 
criteria. The approach is demonstrated by the determination of the levels of criteria Cost, Benefit, 
Experience, and Validation for FFP.  

1. Regardless of the similarities between FFP and FPA, the difference between the levels of the 
criterion Cost cannot be determined by a simple analogy. FFP expands significantly the concepts 
and counting rules used in FPA. Therefore the use of FFP is more expensive than that of FPA.  
This is due to the increased effort and cost incurred in training and in the data collection process.  
However, the quantitative relationship between cost increase and the extension of rules is not 
simple and clear. Field expert inputs are required in this case. Unlike the approach taken during 
the workshop, UMD only selected a small number (less than three) of the field experts for the 
input of the specific criterion (or criteria) for the specific missing measures.  

2. The improvement of FFP on "Function point" is the fact that applying FFP can lead to a more 
conceptually correct functional size count. The potential benefit generated through this improved 

2 An "input" is the level of a ranking criterion for a software engineering measure.
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accuracy can only be evaluated through practical experience. Expert inputs are required to perform 

benefit assessment.  

3. The levels for criteria Validation and Experience were culled from the scientific literature. UMD 

scrutinized a number of papers and articles published in journals, conferences, and laboratory 
reports related to FFP. All the information related to the validation and application of FFP was 
extracted and used to support the determination of the levels.  

The methodology used for assessing the levels of the ranking criteria for the missing measure FFP is 
described in this section. Other missing measures were assessed using identical approaches. Table 5-1 
defines the approach used for each missing measure.  

Measure Criterion Assessed Criterion Assessed Using Criterion Assessed 

Using Analogy the Literature Using Experts' Inputs 

FFP Cr., Rep., Rel. Va., Ex. Co., Be.  

Mutation score Cr., Rep., Rel., Va., Ex. Co., Be.  

Coverage factor Cr., Rep., Rel., Va., Ex. Co., Be.  

Class coupling Cr., Rep., Rel., Va., Ex., 
Co., Be.  

Class hierarchy nesting level Cr., Rep., Rel., Va., Ex., 
Co., Be.  

Lack of cohesion in methods Cr., Rep., Rel., Va., Ex., 
Co., Be.  

Number of children Cr., Rep., Rel., Va., Ex., 
Co., Be.  

Number of class methods Cr., Rep., Rel., Va., Ex., 
Co., Be.  

Number of key classes Cr., Rep., Rel., Va., Ex., 
Co., Be.  

Weighted method per class Cr., Rep., Rel., Va., Ex., 

Co., Be.  

Table 5-1 Measures vs Criterion Assessment Method 

In Table 5-1, the abbreviations "Co.", "Be.., "Cr.", "Rep.", "Va.", "Ex.", and "Rel." stand for Cost, 
Benefit, Credibility, Repeatability, Validation, Experience, and Relevance to Reliability, respectively.

5-4



Chapter 5 Missing Measures

5.3 Revising Family Composition 

The introduction of new measures inevitably influences family composition. The introduction of FFP, 

"Coverage factor", "Mutation score" and the six 00 measures adds to the number of families and expands 
the sizes of some of the existing families defined in Chapter 4.  

Table 5-2 lists measures classified in terms of non-00 vs 00 design and fault-tolerant vs non-fault-tolerant 
systems.

Non-00

Non-fault-tolerant

Bugs per line of code (Gaffney estimate) 
Cause & effect graphing 
Code defect density 
Cohesion 
Completeness 
Cumulative failure profile 
Cyclomatic complexity 
Data flow complexity 
Design defect density 
Error distribution 
Failure rate 
Fault density 
Fault-days number 
Feature point analysis 
Full function point 
Function point analysis 
Functional test coverage 
Graph-theoretic static architecture complexity 
Man hours per major defect detected 
Mean time to failure 
Minimal unit test case determination 
Modular test coverage 
Mutation score 
Mutation testing (error seeding) 
Number of faults remaining (error seeding) 
Requirements compliance 
Requirements specification change requests 
Requirements traceability 
Reviews, inspections and walkthroughs 
Software capability maturity model 
System design complexity 
Test coverage

Fault-tolerant

Bugs per line of code (Gaffney estimate) 
Cause & effect graphing 
Code defect density 
Cohesion 
Completeness 
Coverage factor 
Cumulative failure profile 
Cyclomatic complexity 
Data flow complexity 
Design defect density 
Error distribution 
Failure rate 
Fault density 
Fault-days number 
Feature point analysis 
Full function point 
Function point analysis 
Functional test coverage 
Graph-theoretic static architecture complexity 
Man hours per major defect detected 
Mean time to failure 
Minimal unit test case determination 
Modular test coverage 
Mutation score 
Mutation testing (error seeding) 
Number of faults remaining (error seeding) 
Requirements compliance 
Requirements specification change requests 
Requirements traceability 
Reviews, inspections and walkthroughs 
Software capability maturity model 
System design complexity 
Test coverage

Cause & effect graphing Cause & effect graphing 
Class coupling Class coupling 
Class hierarchy nesting level Class hierarchy nesting level 
Code defect density Code defect density 

00 Completeness Completeness 
Cumulative failure profile Coverage factor 
Design defect density Cumulative failure profile 

I Error distribution Design defect density
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Failure rate 
Fault density 

Fault-days number 

Feature point analysis 

Full function point 

Function point analysis 

Functional test coverage 

Lack of cohesion in methods (LCOM) 

Man hours per major defect detected 

Mean time to failure 

Mutation score 

Mutation testing (error seeding) 

Number of children (NOC) 

Number of class methods 

Number of faults remaining (error seeding) 

Number of key classes 

Requirements compliance 

Requirements specification change requests 

Requirements traceability 
Reviews, inspections and walkthroughs 

Software capability maturity model 

Test coverage 

Weighted method per class (WMC)

Error distribution 
Failure rate 

Fault density 

Fault-days number 

Feature point analysis 

Full function point 

Function point analysis 

Functional test coverage 

Lack of cohesion in methods (LCOM) 

Man hours per major defect detected 

Mean time to failure 

Mutation score 

Mutation testing (error seeding) 

Number of children (NOC) 

Number of class methods 

Number of faults remaining (error seeding) 

Number of key classes 

Requirements compliance 

Requirements specification change requests 

Requirements traceability 

Reviews, inspections and walkthroughs 

Software capability maturity model 

Test coverage 

Weiehted method per class (WMC)

Table 5-2 Measure Classification in terms of Design and Systems 

Only the measure "Coverage factor" is fault-tolerant specific. Therefore the fault-tolerant category differs 

from the non-fault-tolerant category solely as indicated by this measure.  

The measures "Bugs per line of code (Gaffney estimate)", "Cohesion", "Cyclomatic complexity", "Data 

flow complexity", "Graph-theoretic static architecture complexity", "Minimum unit test case 

determination", "Modular test coverage", and "System design complexity" are not applicable to 00 

systems.  

The non-applicability of the measures is explained below.  

No research to date reveals whether the relationship in "Bugs per line of code (Gaffney estimate)" still 

holds true for 00 systems. The 00 environment has its own version of cohesion, specifically, "Lack of 

cohesion in methods". The traditional implementation of cohesion is not applicable to 00 systems.  

"Cyclomatic complexity" can not capture the structural complexity of a method. This is because the fact 

that the size of each method is limited to a small value (the LOC of a method is typically 6 to 8 for 

SmallTalk and 20 for C++. Please refer to [Lore94] for further discussion). "Weighted method per class" is 

an 00-specific implementation of complexity introduced to substitute for "Cyclomatic complexity". The 

measure "Minimum unit test case determination" is no longer applicable to 00 systems because of its 

consistently small value, which prevents it from acting as a quality discriminator as it does in non-GO 

environments.  

"Modular test coverage" was removed from the list of measures applicable to 00 systems because the 

concept "module" does not exist in 00 systems.  

Measures "Data flow complexity", "Graph-theoretic static architecture complexity", and "System design 

complexity" demonstrate the interaction between modules developed in sequential languages, such as
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Chapter 5 Missing Measures

FORTRAN and C. The execution of the system is driven by the data flow, namely, the state of the system.  
On the other hand, the 00 system is composed of loosely connected classes. Each class is autonomous, 
having its own state variables, and behavior methods. The execution of the 00 system is driven by events.  
The group of 00 measures selected in this study reflects these characteristics of an 00 system.  

Family Measure 
Cause & effect graphing Cause & effect graphing 

Cohesion Cohesion 
Completeness Completeness 

Error distribution Error distribution 
Mutation testing error seeding 

Estimate of faults remaining in code Mutation tsting (error seeding) 
Number of faults remaining (error seeding) 

Estimate of faults remaining per unit of size Bugs per line of code (Gaffney estimate) 
Cumulative failure profile 

Failure rate Failure rate 
Mean time to failure 
Code defect density 

Fault detected per unit of size Design defect density 
Fault density 

Fault-tolerant coverage factor Coverage factor 
Feature point analysis 

Functional size Function point analysis 
___________________________Full function point 

Module structural complexity Cyclomatic complexity 
Minimal unit test case determination 

Requirements compliance Requirements compliance 
Requirements specification change requests Requirements specification change requests 

Requirements traceability Requirements traceability 
Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs 

Software development maturity Software capability maturity model 
Data flow complexity 

System architectural complexity Graph-theoretic static architecture complexity 
System design complexity 

Test.adequacy Mutation Score .  
Functional test coverage 

Test coverage Modular test coverage 
Test coverage 

Time taken to detect and remove faults Fault-days number 
Man hours per major defect detected 

Table 5-3 non-OO Family Definitions 

Some families (or elements in families) were removed from the family list because the fact that they were 
not applicable to 00 systems. Some new families (or new elements) were introduced because the 
introduction of new 00 measures. Table 5-3 and Table 5-4 present the revised families in non-O0 and 00 
systems, respectively.  

Gray shadowing of a row is used to pinpoint missing measures, their rates, and the corresponding ranking.
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In Table 5-3 a new family called "Fault-tolerant coverage factor" is created to reflect the introduction of the 

"Coverage factor". FFP goes into the family "Functional size". "Mutation score" introduces a family titled 

"Test adequacy" because this measure tests the efficiency (or adequacy) of a set of test data.  

All changes in Table 5-3 also appear in Table 5-4. In addition, families titled "Class behavioral 

complexity", "Class inheritance breadth", "Class inheritance depth", "Class structural complexity", 

"Cohesion", and "Coupling" are introduced to accommodate the following new 00 measures: "Number of 

class methods", "Number of children (NOC)", "Class hierarchy nesting level", "Weighted method per 

class", "Lack of cohesion in methods", and "Class coupling", respectively.  

"Number of class methods" assesses the number of methods available to a class. It also indicates how many 

activities this class could perform. "Number of children" indicates the breadth of a class's immediate 

inheritance. Likewise, the "Class hierarchy nesting level" shows the depth of a class in its inheritance 

hierarchy. The original "Module structural complexity" is revised to "Class structural complexity" to 

accommodate the new measure "Weighted method per class (WMC)". "Lack of cohesion in methods 

(LCOM)" substitutes for the original "Cohesion" in the family "Cohesion" because the latter is not 

applicable to 00 systems. A new family "Coupling" is introduced by the introduction of the measure 

"Class coupling".  

"Number of key classes" goes into the family "Functional size" because this measure can indicate the 

functional size of an 00 system in terms of the concept of key classes. However, this measure is not as 

mature as "Function point". This immaturity can be illustrated by the following example.  

Let us assume that one measures the "Number of key classes" of two different 00 systems A and B. A is 

an airplane system in which the key classes should be the body, the jet and its support system, and the 

control system. B is a car system in which the key classes are the engine, the transmission, and the body. In 

this example the values of the "Number of key classes" of both systems are 3. However these values are not 

comparable in terms of the functional size of the system (the functional size of system A must be much 

larger than that of the system B). This inconsistency is unavoidable from the fact that a set of counting 

rules, like those used for "Function point", are not precisely defined.
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Family Measure 
Cause & effect graphing Cause & effect graphing 

Class behavioral complexity Number of class meMods 
Class inheritance breadth Number of children (NOC) 
Class inheritance depth Class hierarchy nesting level 

Class structural complexity Weighted method per class (WMC) 
Cohesion Lack of cohesion in methods (LCOM) 
Coupling Class coupling 

Completeness Completeness 
Error distribution Error distribution 

Estimate of faults remaining in code Mutation testing (errorseedng 
Number of faults remaining (error seeding) 

Cumulative failure profile 
Failure rate Failure rate 

Mean time to failure 
Code defect density 

Fault detected per unit of size Design defect density 
Fault density 

Fault-tolerbhtcoverage factor Coverage fator 
Feature point analysis 
Function point analysis 

Functional size function pnt 
Numnber of key classes 

Requirements compliance Requirements compliance 
Requirements specification change requests Requirements specification change requests 

Requirements traceability Requirements traceability 
Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs 

Software development maturity Software capability maturity model 

Test adequacy Mutatios score 

Test coverage Functional test coverage 
______________________________Test coverage 

Time taken to detect and remove faults Fault-days number 
Man hours per major defect detected

Table 5-4 00 Family Definitions 

5.4 Results Analysis and the Impact of the Missing Measures 

The rates of the missing measures were aggregated by applying the methodology described in Chapter 3.  
The aggregated values are provided in Table 5-6. Availability" information is provided in Table 5-5.  

SAvailability is where a measure specifically defined to capture the software's characteristics is available from the phase where it is 
introduced until the end of the software's life, and not just during that specific phase.
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Requirements Design Implementation Testing 

Full function point 1 1 1 1 

Coverage 0 0 0 1 

Mutation score 0 0 1 1 

Number of key classes 0 1 1 1 

Weighted measure per class 0 1 1 1 

Number of class methods 0 1 1 1 

Class hierarchy nesting level 0 1 1 1 

Class coupling 0 1 1 1 

Number of children 0 1 1 1 

Lack of cohesion in methods 0 1 1 1 

Table 5-5 Availability of Missing Measures 

Rates 
Requirements Design Implementation Testing 

Full function point 0.49 0.53 0.53 0.48 

Coverage 0.81 

Mutation score 0.71 0.71 

Number of key classes 0.53 0.53 0.51 

Weighted measure per class 0.67 0.67 0.65 

Number of class methods 0.69 0.69 0.66 

Class hierarchy nesting level 0.69 0.69 0.66 

Class coupling 0.69 0.69 0.66 

Number of children 0.69 0.69 0.66 
Lack of cohesion in methods 0.67 0.67 0.65 

Table 5-6 Rates of Missing Measures 

At this point it is appropriate to make a comment regarding the availability of the measure "Mutation 
Score". According to Offutt [Offu95], "mutation testing is a technique for unit testing..." But unit testing is 
performed during the implementation phase. Therefore it follows that the "Mutation Score" is applicable to 
the implementation phase.  

This section is composed of two subsections. The rankings of the 33 measures and 20 families applicable to 
non-OO systems are analyzed in Section 5.4.1. And the rankings of the 32 measures and 22 families 
applicable to 00 systems are discussed in Section 5.4.2.  

5.4.1 Measures Applicable to non-OO Systems 

5.4.1.1 Requirements Phase 

Only the new measure FFP is introduced in this phase. Table 5-7 lists all the measures, the corresponding 
rates and rankings for the requirements phase. The missing measure FFP plays a less important role than 

the measure "function point" but is of greater importance than the measure "feature point": the lack of 

experience with FFP diminishes its importance in predicting software reliability. However, the wider 
acceptance of FFP contributes to a higher ranking of FFP than "Feature point".
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FFP belongs to the family "Functional size". The introduction of FFP does not significantly change the 
statistics of this family but increases the median from 0.48 to 0.49. Table 5-8 shows the family rates after 
the introduction of FFP. The ranking of the family "Functional size" remains the same as with the 
introduction of the FFP.  

In summary, the introduction of the new measure FFP does not influence the rankings of families that are 
applicable during the requirements phase.

Measure Rate Ranking 

Fault density 0.71 1 
Requirements specification change requests 0.70 2 
Error distribution 0.68 3 
Reviews, inspections and walkthroughs 0.61 4 
Fault-days number 0.60 5 
Software capability maturity model 0.60 6 
Function point analysis 0.51 7 
Requirements compliance 0.50 8 

FuH functionine 0,49 9 
Feature point analysis 0.46 10 
Number of faults remaining (error seeding) 0.46 11 
Cause & effect graphing 0.45 12 
Completeness 0.42 13 

Table 5-7 Rates of non-OO Measures during the Requirements Phase

Family Rate 
Family Min Median Max 

Fault detected per unit of size 0.71 0.71 $71vi•7 
Requirements specification change requests 0.70 0.70 '\ ý.7'K 
Error distribution 0.68 0.68 0.68 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 
Time taken to detect and remove faults 0.60 0.60 0.60 
Software development maturity 0.60 0.60 0.60 
Functional sieý 46 0.4089 0.51 
Requirements compliance 0.50 0.50 0.50 
Estimate of faults remaining in code 0.46 0.46 0.46 
Cause & effect graphing 0.45 0.45 0.45 
Completeness 0.42 0.42 0.42 

Table 5-8 Rates of non-OO Families during the Requirements Phase 

5.4.1.2 Design Phase 

No missing measures were found for the design phase. Table 5-9 lists all measure rates and rankings in the 
design phase. Table 5-10 lists all family rates in the design phase.  

'Gray shadowing of a row is used to pinpoint missing measures, their rates, and the corresponding ranking.  

6 Right diagonal graying is used to depict the rates of families that have crossed the arbitrary 0.7 threshold.  

7 Bolding is used to pinpoint statistics modified by the introduction of missing measures.
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The rankings of FFP in this phase is higher than that in the requirements phase. Its higher degree of 

relevance to reliability contributes to this higher ranking. This is consistent with the experts' inputs. As a 

matter of fact, the level of the criterion Relevance to Reliability for FPA increases from the requirements 

phase to the implementation phase and reaches its apogee during the implementation phase. The 

corresponding FFP criterion follows the same trend.  

The discussion presented in Chapter 4 Sections 4.1.2 and 4.2.2 is also relevant to this section.

Measure Rate Ranking 

Design defect density 0.75 1 
Cyclomatic complexity 0.73 2 
Fault density 0.73 3 
Fault-days number 0.71 4 
Requirements specification change requests 0.69 5 
Error distribution 0.68 6 
Man hours per major defect detected 0.63 7 
Data flow complexity 0.62 8 
Reviews, inspections and walkthroughs 0.61 9 
Software capability maturity model 0.60 10 
Minimal unit test case determination 0.59 11 
Requirements traceability 0.56 12 
Function point analysis 0.54 13 

System design complexity 0.53 15 
Graph-theoretic static architecture complexity 0.52 16 
Feature point analysis 0.50 17 
Requirements compliance 0.49 18 
Number of faults remaining (error seeding) 0.46 19 
Cause & effect graphing 0.43 20 
Cohesion 0.42 21 
lCompleteness 0.36 22 

Table 5-9 Rates of non-OO Measures during the Design Phase
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Rate 
Family Min Median Max 

Fault detected per unit of size 0.73 0.74 ,.7& 
Module structural complexity 0.59 0.66 \\.7'37 \ 
Time taken to detect and remove faults 0.63 0.67 ",0\1 ý\ 
Requirements specification change requests 0.69 0.69 0.69 
Error distribution 0.68 0.68 0.68 
System architectural complexity 0.52 0.53 0.62 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 
Software development maturity 0.60 0.60 0.60 
Requirements traceability 0.56 0.56 0.56 
Functional size 0.50 0.53 0.54, 
Requirements compliance 0.49 0.49 0.49 
Estimate of faults remaining in code 0.46 0.46 0.46 
Cause & effect graphing 0.43 0.43 0.43 
Cohesion 0.42 0.42 0.42 
Completeness 0.36 0.36 0.36 

Table 5-10 Rates of non-OO Families during the Design Phase 

5.4.1.3 Implementation Phase 

The missing measure "Mutation score" emerged the implementation phase. "Mutation score" ranks 6th in 
this phase.  

"Mutation score" is a support measure that helps validate the completeness of the failure data. It is a 
percentage of the observed failures against potential failures. Therefore the use of this measure can reveal 
the number of potential failures residing in the code based upon the number of observed failures.  

Table 5-11 lists the measures and their corresponding rankings. Table 5-12 provides the families and their 
corresponding statistics during the implementation phase.  

Measure Rate Ranking 

Code defect density 0.83 1 
Design defect density 0.75 2 
Cyclomatic complexity 0.74 3 
Fault density 0.73 4 
Fault-days number 0.71 5 

Mutatio score0.716 
Requirements specification change requests 0.69 7 
Error distribution 0.65 8 
Minimal unit test case determination 0.64 9 
Man hours per major defect detected 0.61 10 
Reviews, inspections and walkthroughs 0.61 11 
Software capability maturity model 0.60 12 
Data flow complexity 0.59 13 
Requirements traceability 0.56 14 
Function point analysis 0.55 15
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System design complexity 0.53 16 

Feature point analysis 0.50 18 
Requirements compliance 0.50 19 

Number of faults remaining (error seeding) 0.47 20 

Bugs per line of code (Gaffney estimate) 0.46 21 

Graph-theoretic static architecture complexity 0.46 22 

Cause & effect graphing 0.40 23 

Cohesion 0.36 24 

,Completeness 0.36 25 

Table 5-11 Rates of non-OO Measures during the Implementation Phase 

Family Rate 
Family Min Median Max 

Fault detected per unit of size 0.73 0.75 , __,3,_ 

Module structural complexity 0.64 0.69 >0.4K> 

Test adequacy .0.71 0.71 ~ 1~ 
Time taken to detect and remove faults 0.61 0.66 x \0 

Requirements specification change requests 0.69 0.69 0.69 

Error distribution 0.65 0.65 0.65 

Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Software development maturity 0.60 0.60 0.60 

System architectural complexity 0.46 0.53 0.59 

Requirements traceability 0.56 0.56 0.56 

Functional size 0.50 0.53 0.55 
Requirements compliance 0.50 0.50 0.50 

Estimate of faults remaining in code 0.47 0.47 0.47 

Estimate of faults remaining per unit of size 0.46 0.46 0.46 

Cause & effect graphing 0.40 0.40 0.40 

Cohesion 0.36 0.36 0.36 

Completeness 0.36 0.36 0.36 

Table 5-12 Rates of non-OO Families during the Implementation Phase 

The family "Test adequacy" is applicable with the implementation phase because of the introduction of the 

measure "Mutation score". The introduction of FFP during this phase does not change the statistics of the 
family "Functional size", let alone the rankings of this family.  

5.4.1.4 Testing Phase 

The measure "Coverage factor" emerges in the testing phase. The measure "Mutation score" during this 

phase retains the same value from the previous (implementation) phase. The ranking of the measure 

"Coverage factor" follows immediately that of the measure "Failure rate". The ranking of "Mutation score" 

decreases from 6 to 10 while the rate remains the same. This change stems from the fact that other measure 

rates increase with this phase. The rates and rankings of all measures applicable during the testing phase are 
provided in Table 5-13.
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Measure Rate Ranking 

Failure rate 0.83 1 
Code defect density 0.83 2 
Cove.age fa.or'• 0.81 3 
Mean time to failure 0.79 4 
Cumulative failure profile 0.76 5 
Design defect density 0.75 6 
Fault density 0.75 7 
Cyclomatic complexity 0.72 8 
Fault-days number 0.72 9 
Mtitafionscoreý, 011, 1 
Minimal unit test case determination 0.70 11 
Modular test coverage 0.70 12 
Requirements specification change requests 0.69 13 
Test coverage 0.68 14 
Error distribution 0.66 15 
Man hours per major defect detected 0.63 16 
Functional test coverage 0.62 17 
Reviews, inspections and walkthroughs 0.61 18 
Software capability maturity model 0.60 19 
Data flow complexity 0.59 20 
Requirements traceability 0.55 21 
System design complexity 0.53 22 
Number of faults remaining (error seeding) 0.51 23 
Function point analysis 0.50 24 
Mutation testing (error seeding) 0.50 25 
Requirements compliance 0.50 26 

Ful fridipi pin ,0.48 27 
Graph-theoretic static architecture complexity 0.46 28 
Feature point analysis 0.45 29 
Cause & effect graphing 0.44 30 
Bugs per line of code (Gaffney estimate) 0.40 31 
Cohesion 0.36 32 
Completeness 0.36 33 

Table 5-13 Rates of non-OO Measures during the Testing Phase 

Table 5-14 provides the families and their corresponding rates. The introduction of the measure "Coverage 
factor" introduces a new family titled "Fault-tolerant coverage factor". As a support family of "Failure 
rate" in a fault-tolerant system, the family "Fault-tolerant coverage factor" ranks lower but very close to the 
family "Failure rate". All the families related to failure and fault information during the testing phase rank 
higher than other families. The only exception is the instance where the family "Module structural 
complexity" ranks higher than the family "Time Taken to Detect and remove Faults". This exception 
indicates the fact that the module structural complexity measures ("Cyclomatic complexity" and 
"Minimum unit test case determination") still play an important role in software reliability prediction even 
during the testing phase.
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Family Rate 
Family Min Median Max 

Failure Rate 0.76 0.79 083\ 
Fault Detected per Unit of Size 0.75 0.75 0.83 

Fault-tolerant Coverage Fa~ctor 0.81 0.181 \ .1 
Module Structural Complexity 0.70 0.71 0,72\ 

Time Taken to Detect and Remove Faults 0.63 0.67 0.72 

Test adequacy 0.71 0.71 \-,O 

Test Coverage 0.62 0.68 & .0 
Requirements specification change requests 0.69 0.69 0.69 

Error Distribution 0.66 0.66 0.66 

Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Software Development Maturity 0.60 0.60 0.60 

System Architectural Complexity 0.46 0.53 0.59 

Requirements traceability 0.55 0.55 0.55 

Estimate of Faults Remaining in Code 0.50 0.50 0.51 

Requirements compliance 0.50 0.50 0.50 

Fu~nctio-nal Size 0.45 0.48 0.50 
Cause & effect graphing 0.44 0.44 0.44 

Estimate of Faults Remaining per Unit of Size 0.40 0.40 0.40 

Cohesion 0.36 0.36 0.36 

Completeness 0.36 0.36 0.36 

Table 5-14 Rates of non-OO Families during the Testing Phase 

5.4.2 Measures Applicable to 00 Systems 

5.4.2.1 Requirements Phase 

The sets of measures applicable to non-OO and 00 systems are identical during the requirements phase.  

All rates and rankings are presented in Table 5-7 and Table 5-8.  

5.4.2.2 Design Phase 

Table 5-15 lists the rates and rankings of 00 measures which are applicable during the design phase. Table 

5-16 provides the statistical record of the rates for 00 families.  

00 measures are introduced in this phase. The three top-ranked measures are "Design defect density", 

"Fault density", and "Fault-days number". The 00 measures, which capture the design characteristics of 

00 systems, score lower than the top-ranked fault measures. This again supports the idea that fault data 

plays a more important role than system structural data in software reliability prediction.

Measure Rate Ranking 

Design defect density 0.75 1 

Fault density 0.73 2 

Fault-days number 0.71 3 

Class coupling 0.69 4 1
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Completeness 0.36 24
Table 5-15 Rates of 00 Measures during the Design Phase

Unlike other 00 measures, "Number of key classes" scores much lower. As a matter of fact, the lack of 
precisely defined counting rules for this measure drastically lowers the level of the criterion Repeatability, 
which leads to the lower rates of the measure.  

The addition of 00 measures significantly favors the family "Cohesion". The higher ranking of the family 
"Cohesion" is due mainly to the fact that the measure LCOM, which is the 00 alternative of cohesion, 
scores much higher than "Cohesion" does. On the other hand, the statistics of the family "Functional size" 
does not change with the introduction of the 00 measure "Number of key classes".  

Family Rate 
Family Min Median Max 

Fault detected per unit of size 0.73 0.74 >075 
Time taken to detect and remove faults 0.63 0.67 ,0.71!" 
Requirements specification change requests 0.69 0.69 0.69 
Class behavioral complexity 0.69 0.69 0.69 
Class inheritance breadth 0.69 0.69 0.69 
Class inheritance depth 0.69 0.69 0.69 
Coupling 0.69 0.69 0.69 
Error distribution 0.68 0.68 0.68 
Class structural complexity 0.67 0.67 0.67 
Cohesion. 0.67 0.67 0.67 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Software development maturity 0.60 0.60 0.60 
Requirements traceability 0.56 0.56 0.56 
Functional size 0.50 0.53 0.54 
Requirements compliance 0.49 0.49 0.49
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Class hierarchy nesting level 0.69 5 
Number of children (NOC) 0.69 6 
Number of class methods 0.69 7 
Requirements specification change requests 0.69 8 
Error distribution 0.68 9 
Lack of cohesion in methods (LCOM) 0.67 10 
Weighted method per class (WMC) 0.67 11 
Man hours per major defect detected 0.63 12 
Reviews, inspections and walkthroughs 0.61 13 
Software capability maturity model 0.60 14 
Requirements traceability 0.56 15 
Function point analysis 0.54 16 

villurt poit10-5 

Number of key classes 0.53, 18 
Feature point analysis 0.50 19 
Requirements compliance 0.49 20 
Number of faults remaining (error seeding) 0.46 21 
Cause & effect graphing 0.43 22 
Cohesion 0.42 23



Estimate of faults remaining in code 0.46 0.46 0.46 
Cause & effect graphing 0.43 0.43 0.43 
Completeness 0.36 0.36 0.36 

Table 5-16 Rates of 00 Families during the Design Phase 

5.4.2.3 Implementation Phase 

The three top-ranked 00 measures during the implementation phase are "Code defect density", "Design 
defect density", and "Fault density". Table 5-17 provides the rates and rankings of all 00 measures 
applicable in this phase.  

Measure Rate Ranking 

Code defect density 0.83 1 
Design defect density 0.75 2 
Fault density 0.73 3 
Fault-days number 0.71 4 

Class coupling ~0.69 6 
Class hierarchy nesting level 0.69 7 
Number of children (NOC) 0.69' 8 
Number of class methods . 0.69 9 
Requirements specification change requests 0.69 10 
Lack of cohesion in methods (LCOM) 0.67 11 
Weighted method per class (WMC) 0.67 12 
Error distribution 0.65 13 
Man hours per major defect detected 0.61 14 
Reviews, inspections and walkthroughs 0.61 15 
Software capability maturity model 0.60 16 
Requirements traceability 0.56 17 
Function point analysis 0.55 18 
ulF h<'dnPo 0~.53 19 2 

Number of key classes 0.53 20 
Feature point analysis 0.50 21 
Requirements compliance 0.50 22 
Number of faults remaining (error seeding) 0.47 23 
Cause & effect graphing 0.40 24 
Completeness 0.36 25 

Table 5-17 Rates of 00 Measures during the Implementation Phase 

Table 5-18 lists the family rates during the implementation phase. The three top-ranked families are "Fault 
detected per unit of size", "Test adequacy", and "Time taken to detect and remove faults". The high 
ranking of the new family is a strong indicator that the efficiency of the test data plays an important role in 
software reliability determination.
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_______ Rate ____ 

Family Min -Median Max 

Fault detected per unit of size 0.73 ''0.75 
Test adequacy 0.71. 0.71 >3> 
Time taken to detect and remove faults 0.61 0.66 \071 

Requirements specification change requests 0.69 0.69 0.69 

Class behavioral complexity 0.69 0.69 0.69 
Class inheritance breadth 0.69 0.69 0.69 
Class inheritance wfidth 0.69 .0.69 0.69 
Coupling 0.69 0.69 0.69 
Class structural comiplexity 0.67,06 .7 

Cohesion 0.67 -0.67. 0A67 
Error distribution 0.65 0.65 0.65 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 
Software development maturity 0.60 0.60 0.160 
Requirements traceability 0.56 0.56 0.56 
Functional[ size 0.50 0.53 0.55 
Requirements compliance 0.50 0.50 0.50 
Estimate of faults remaining in code 0.47 0.47 0.47 

Cause & effect graphing 0.40 0.40 0.40 

Completeness 0.36 0.36 0.36 

Table 5-18 Rates of 00 Families during the Implementation Phase 

5.4.2.4 Testing Phase 

Table 5-19 lists the rates of 00 measures during the testing phase. The three top-ranked measures are 

"Failure rate", "Code defect density", and "Coverage factor". It should be noted that the importance of the 

00 missing measures in software reliability prediction decreases significantly in this phase. The top-ranked 

measures are failure and fault measures. This fact indicates that the 00 design measures do not contribute 

much to software reliability prediction, even for 00 systems.

Error distribution 0.66

Measure Rate Ranking 

Failure rate 0.83 1 
Code defect density 0.83 2 
C-oicerage fbctor. 0.81 3 

Mean time to failure 0.79 1 4 
Cumulative failure profile 0.76 5 
Design defect density 0.75 6 
Fault density 0.75 7 
Fault-days number 0.72 8 

Requirements specification change requests 0.69 10 
Test coverage 0.68 11 
Class coupling 0.66 12 
Class hierarchy nesting level 0.66 13
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Number of children (NOC) 0.66 15 

Numb~er of class methods 0.66 16 
L o h n m d C0.65 17 

Weihted method er class MC 0.65 18 

Man hours per major defect detected 0.63 19 

Functional test coverage 0.62 20 

Reviews, inspections and walkthroughs 0.61 21 

Software capability maturity model 0.60 22 

Requirements traceability 0.55 23 

Number of faults remaining (error seeding) 0.51 24 

Number of key classes 0,51 25 

Function point analysis 0.50 26 

Mutation testing (error seeding) 0.50 27 

Requirements compliance 0.50 28 

17611fuixtiin-p~ht G.4. ½~O82 .f29> 
Feature point analysis 0.45 30 

Cause & effect graphing 0.44 31 

Completeness 0.36 32 

Table 5-19 Rates of 00 Measures during the Testing Phase

Table 5-20 provides the 00 family rates during the testing phase. The three top-ranked families are 

"Failure Rate", "Fault detected per unit of size", and "Fault-tolerant coverage factor". The measure 

"Coverage factor" introduces the family "Fault-tolerant coverage factor" during this phase. The rates and 

rankings in Table 5-20 indicate the fact that families related to failure ("Failure rate" and "Fault-tolerant 

coverage factor") play a more important role than families related to fault ("Fault detected per unit of size" 

and "Test adequacy"). These characteristics are also apparent from the extended structural representation in 

which failure measures are positioned closer to the indicator than the fault measures.  

Family_ Rate 
Family Min Median Max 

Failure rate 0.76 0.79 '0•83 

Fault detected per unit of size 0.75 0.75 0,83 

Fault-tolerant coverage factor 0.81, 0.81 081' 
Time taken to detect and remove faults 0.63 0.67 i" 022" 

Test adequacy _ 0.62 0.69 '>K0.71½ 

Requirements specification change requests 0.69 0.69 0.69 

Error distribution 0.66 0.66 0.66 

Class behavioral complexity 0.66 0.66 0.66 

Class inheritance breadth 0.66 0.66 0.66 
Class inheritance width 0.66 0.66 0.66 
Coupling 0.66 0.68 0.66 
Class structural complexity 0.65 0.65 0.65 
Cohesion 0.65 0.65 0.65 
Reviews, inspections and walkthroughs 0.61 0.61 0.61 

Software development maturity 0.60 0.60 0.60 

Requirements traceability 0.55 0.55 0.55 

Estimate of faults remaining in code 0.50 0.50 0.51 

Functional size 0.45 0.49 0.51 

Requirements compliance 0.50 0.50 0.50
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Cause & effect graphing 0.44 0.44 0.44 

Estimate of faults remaining per unit of size 0.40 0.40 0.40 

Completeness 0.36 0.36 0.36 

Table 5-20 Rates of 00 Families during the Testing Phase 

5.5 Summary 

The discussion provided in this chapter is designed to incorporate in this report new measures generated by 

advances of software engineering which have occurred since the LLNL study was performed.  

The missing measures discussed in this chapter were identified by experts. The measures covered the fault

tolerant computing environment, the mutation testing technique, the object-oriented development method, 

and one adaptation of "Function point". Eleven missing measures were initially identified. UMD eliminated 

the "Reliability trend indicator" because it is a reliability analysis approach rather than a missing measure.  

The ranking criteria levels were assessed by UMD research team members according to the rational 

comparison to the experts' inputs, the software engineering literature, and field experts' inputs. The 

aggregation rates were calculated by applying the aggregation theory discussed in Chapter3.  

The composition of families was revised to reflect the emergence of the missing measures. Two family 

groups corresponding to the non-00 technique and 00 technique were identified. The rates and rankings 

of measures and families were reported separately for the two groups.  

The impact analysis in this chapter shows that the introduction of the missing measures does not nullify 

everything described in Chapter 4. The "Coverage factor" is almost mandatory for the construction of any 

RPS for the real-time embedded systems. The "Mutation score" is highly recommended because it can 

reveal the percentage of failures that have not yet become manifest. It is a valuable support measure for the 

failure measures in the construction of RPSs.  

FFP is an extension of function point in the field of real-time control systems for the purpose of functional 

size counting. The rate and ranking of this measure are lower than their predecessor, function point, 

because of the lack of experience with FFP despite the higher credibility level of FFP.  

The 00 measures cannot substitute for the traditional fault and failure measures in software reliability 

prediction. They provide means to clearly demonstrate the 00-specific design characteristics, such as the 

level of data abstraction, the depth of inheritance, and the degree of data encapsulation, etc. The rankings of 

these measures show that constructing the RPS directly from these measures is an arduous task.  

As software engineering advances and new software engineering measures emerge, iterations of the study 

presented in this chapter should be performed to avoid obsolescence of the results presented in this chapter.  

[SEL] SELAM, Software Engineering in Applied Metrics. Web: http://www.lmagl.gc.ca 

[Arno73] Arnold, T. F., The Concept of Coverage and Its Effect on the Reliability Model of a Repairable 

System, IEEE Transaction on Computers, vol. c-22, no. 3, March 1973.  

[Voas98] Voas, J. M., McGraw, G., Software Fault Injection: Inoculating Programs Against Errors, John 

Wiley & Sons, Inc., New York, 1998 

8 Most real-time embedded control systems are fault-tolerant systems.
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[Myer78] Myers, G. J., Composite / Structural Design, Van Nostrand Reinhold, New York, 1978.  

[Khid94] Chidamber, S. R., Kemerer, F., A Metrics Suite for Object Oriented Design, IEEE Transaction on 

Software Engineering, Vol. 20, No. 6, June 1994 

[Nea196] Neal, Rt D., The Validation by Measurement Theory of Proposed Object-Oriented Metrics, 

Dissertation, Virginia Commonwealth University, Richmond, Va., 1996.  

[Offu95] Offut, J., A Practical System for Mutation Testing: Help for the Common Programmer, The 

Proceedings of the Twelfth International Conference on Testing Computer Software, pp. 99-109, 

Washington, DC, June 1995.
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Chapter 6 Summary and Conclusions

CHAPTER 6 SUMMARY AND FUTURE RESEARCH 

6.1 Summary 

Although the most important sources of information in predicting software reliability are known as 

software engineering measures, limited study systematically demonstrates how software engineering 

measures determine software reliability. The study in this report was a constructive attempt towards the 

establishment of a relationship between software engineering measures and software reliability.  

This study identified top-ranked software engineering measures in terms of their ability to predict software 

reliability. The top-ranked families were also identified in this study. A very strong indication of reliability 
might be obtained if the prediction is initiated from several compatible top-ranked families.  

Chapter 2 investigated the relationships between measures and reliability prediction. It introduced three 

axes of classification important to the analysis of the measures. These axes are structural, life-cycle based 

and semantic. Semantic classification lead to the introduction of the concept of Family. The axes and axes' 

definitions are provided from Table 6-1 to Table 6-4. A graphical method was described for the purpose of 

structural representation. The creation of this graphical representation was shown to be another valuable 
tool in the analysis of a software engineering measure.  

Axis Definition 

Estimate or evaluation that provides a basis for decision

Indicator making. In this particular study, reliability is deemed an 
appropriate indicator.  

Derived Measure Any intermediate value which is neither an indicator nor 
a primitive measure.  

Value resulting from the application of rules to a 
Primitive Measure software attribute'.  

Table 6-1 Structural Classification Axis 

Axis Definition 

Requirements Phase Contains [IEEE610] phases: Concept and Requirements 

Design Phase Contains [IEEE610] phase: Design 

Implementation Phase Contains [IEEE610] phase: Implementation 2 

Contains [IEEE610] phases: Test, Installation and Checkout 
Testing Phase Installation 

Contains [IEEE610] phases: Operation, Maintenance, and 
Operation Retirement 

Table 6-2 Life-Cycle Classification Axis 

The user is referred to Chapter 2 (Section 2.1.1) for the explanation of the terms rule and software attribute.  
This phase contains unit testing.
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Axis (Family) Definition 

Cause & effect graphing Cause & effect graphing 

Cohesion Cohesion 

Completeness Completeness 

Error distribution Error distribution 
Mutation testing (error seeding) 

Estimate of faults remaining in code 

Number offaults remaining (error seeding) 

Estimate of faults remaining per unit of size Bugs per line of code (Gaffney estimate) 

Cumulative failure profile 

Failure rate Failure rate 

Mean time to failure 

Code defect density 

Fault detected per unit of size Design defect density 

Fault density 

Fault-tolerant coverage factor Coverageffactor 

Feature point analysis 

Functional size Function point analysis 

Full functionpon 
Cyclomatic complexity 

Module structural complexity ylmtcopexy 

Minimal unit test case determination 

Requirements compliance Requirements compliance 

Requirements specification change requests Requirements specification change requests 

Requirements traceability Requirements traceability 

Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs 

Software development maturity Software capability maturity model 

Data flow complexity 

System architectural complexity Graph-theoretic static architecture complexity 

System design complexity 

Test adequacy Mutation Score 

Functional test coverage 

Test coverage Modular test coverage 

Test coverage 

Time taken to detect and remove faults Fault-days number 

Man hours per major defect detected

Table 6-3 Semantic Classification Axis for non-OO Systems 

Gray shadowing of a row is used to pinpoint missing measures, their rates, and the corresponding ranking.
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Axis (Family) Definition 

Cause & effect graphing Cause & effect graphing 

Class behavioral complexity Number of class methods 

Class inheritance breadth Nunber of children (NOC) 

Class inheritance depth Class hierarchy nesting level 

Class structural complexity Wfeighted method per class (WMC) 

Cohesion Lack of Cohesion in methods (LCOM) 

Coupling class coupling 

Completeness Completeness 

Error distribution Error distribution 
Mutation testing (error seeding) 

Estimate of faults remaining in code 

Number offaults remaining (error seeding) 

Cumulative failure profile 

Failure rate Failure rate 

Mean time to failure 

Code defect density 

Fault detected per unit of size Design defect density 

Fault density 

Fault-tolerant coverage factor Coverage.fa .t or 

Feature point analysis 

Function point analysis 
Functional size 

Fullfimclic'n point 

Number of key classes 

Requirements compliance Requirements compliance 

Requirements specification change requests Requirements specification change requests 

Requirements traceability Requirements traceability 

Reviews, inspections and walkthroughs Reviews, inspections and walkthroughs 

Software development maturity Software capability maturity model 

Test adequacy Mutation score 

Functional test coverage 
Test coverage Test coverage 

Fault-days number 

Time taken to detect and remove faults 

Man hours per major defect detected 

Table 6-4 Semantic Classification Axis for 00 Systems 

This chapter also defined the concept of a Software Reliability Prediction System (RPS), which is a 

complete set of measures by which software reliability can be predicted. The RPS is composed of a root 

measure and several support measures as shown in Figure 6-1. The issue of selecting a software reliability
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prediction system was examined and a possible selection process suggested through Equation 2-8 to 

Equation 2-11.

Figure 6-1 RPS

The point was made that the selection of a software reliability prediction system is a difficult task and that a 

simpler but related problem should be examined first: the problem of selecting single software engineering 

measures of high degree of validity which would be most relevant to reliability. The criteria for selection of 

the measures contain relevance, cost, benefit, validity, experience, credibility, and repeatability.  

This chapter also showed that measures and interrelationships between measures need to be well 

understood before they are used. One should avoid the use of redundant measures and one should make 

sure that the set of measures at hand is complete from a software reliability prediction stand-point. Finally, 

once measures have been ranked separately, they need to be reinterpreted in the context of other measures.  

Chapter 3 presented the methodology used to rank a pre-selected set of 30 software engineering measures 

(Table 6-5). The 30 measures were selected from the pool of measures identified in [LLNL98]. LLNL 

identified 78 software engineering measures related either directly or indirectly to software reliability and 

that might be appropriate to the study of digital I&C systems.

Bugs per line of code (Gaffhey estimate) 
Cause & effect graphing 
Code defect density 
Cohesion 
Completeness 
Cumulative failure profile 
Cyclomatic complexity 
Data flow complexity 
Design defect density 
Error distribution 
Failure rate 
Fault density 
Fault-days number 
Feature point analysis 
Function point analysis

Functional test coverage 
Graph-theoretic static architecture complexity 
Man hours per major defect detected 
Mean time to failure 
Minimal unit test case determination 
Modular test coverage 
Mutation testing (error seeding) 
Number of faults remaining (error seeding) 
Requirements compliance 
Requirements specification change requests 
Requirements traceability 
Reviews, inspections and walkthroughs 
Software capability maturity model 
System design complexity 
Test coverage

6-4



Chapter 6 Summary and Conclusions

Table 6-5 Pre-selected Software Engineering Measures 

The methodology was based on the use of expert opinion elicitation to solicit the scores of software 
engineering measures. The scoring was performed with respect to seven ranking criteria: Credibility, 
Repeatability, Cost, Benefit, Experience, Validation, and Relevance to Reliability. The criteria are given in 
Table 6-6. The scoring was performed in terms of letter grades. A letter-conversion scheme translated the 
letter values to real numbers between 0 and 1. These numbers were then aggregated using an aggregation 
equation and a weighting scheme for the seven ranking criteria. The aggregated number served as the 
indicator of the "goodness" of the measure. A sensitivity analysis was further performed on all components 
of the analysis: letter-real conversion scheme, aggregation function form, weighting scheme. Since a priori 
one can not assess which aggregation scheme is correct, the purpose of such sensitivity analysis was to 
prove that the results obtained remain valid for a wide spectrum of aggregation schemes. All results of 
aggregation rates, rankings, and sensitivity analysis for the thirty pre-selected measures were presented in 
Chapter 4.  

Set Criterion Definition 

Rates the measure in terms of its documented goals. A 
Credibility measure is considered to be credible if we judge it likely 

to support the specified goals.  

Experience Rates the commercial experience in using the measure.  

Quality Set A measure is considered repeatable if the repeated 
Repeatability application of the measure by the same or different 

people results in similar results.  

Determines how extensively the measure has been 
validated.  

Estimates the avoidance of costs that would be incurred 
if the measure was not used.  

Cost effectiveness 
Cost Estimates the effort required to implement and use the 

measure.  

Scores the level at which the measure is relevant to 
Relevance Relevance to Reliability software reliability prediction.  

Table 6-6 Ranking Criteria and Their Definitions 

Chapter 4 discussed the rates and rankings (with respect to software reliability prediction) obtained for the 
thirty measures selected at the beginning of the study. Some potential inconsistencies were examined and 
explained. The minimum, mean, and maximum rates for each family were calculated base on the rates of 
measures, composing the family.  

The top-ranked measures were aggregated by an additive function with equal weights. These measures 
constitute the possible roots of software reliability prediction systems. Table 6-7 provides the top 3 
measures, their semantic and structural classifications for each software development phase. Table 6-8 
displays the top 3 families and their rankings.
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Structural 

Phase Top-3 Measures Semantic Classification Ssifcat 
Classification 

Fault density Fault detected per unit Derived Measure 
of size 

Requirements Phase Requirements specification change Requirements 
requests specification change Derived Measure 

requests 

Error distribution Error distribution Derived Measure 

Design defect density Fault detected per unit Derived Measure 
of size 

Design Phase Fault density Fault detected per unit Derived Measure 
of size 

Cyclomatic complexity Module structural Derived Measure 
complexity 

Code defect density Fault detected per unit Derived Measure 
of size 

Implementation Design defect density Fault detected per unit Derived Measure 
Phase of size 

Cyclomatic complexity Module structural Derived Measure 
complexity 

Testing Phase Failure rate Failure rate Derived Measure 

Code defect density Fault detected per unit Derived Measure 
of size 

Mean time to failure Failure rate Derived Measure 

Table 6-7 Top-3 Measures Phase by Phase 

It was proven however that rates and ranks remain relatively stable for different aggregation schemes. The 

sole exception was the change in equation form that signals noticeable changes in the results. This indicates 

that a more detailed study of the form of the aggregation equation should be performed. Stability, however, 

is reestablished when one analyzes the results by families rather than by single measure. The ranges of the 

correlation coefficients of the aggregation schemes are provided in Table 6-9.

6-6



Chapter 6 Summary and Conclusions

Phase Top-3 Families Measures 

Fault detected per unit of size Fault density4 

Requirements Phase Requirements specification change Requirements specification change 
requests requests 

Error distribution Error distribution 

Fault detected per unit of size Design defect density 

Fault density 

Design Phase Module structural complexity "Cyclomatic complexity 

Minimal unit test case determination 

Time taken to detect and remove *Fault-days number 
faults Man hours per major defect detected 

"Code defect density 

Fault detected per unit of size Design defect density 

Fault density 

ImplementationModule structural complexity Cyclomatic complexity 

Minimal unit test case determination 

Time taken to detect and remove *Fauft-days number 
faults Man hours per major defect detected 

*Failure rate 

Failure rate Mean time to failure 

Cumulative failure profile 

""Code defect density Testing Phase 
Fault detected per unit of size Design defect density 

Fault density 

Module structural complexity Cyclomatic complexity 

Minimal unit test case determination 

Table 6-8 Top-3 Families Phase by Phase

4 It is important to note that other two elements of the family "Fault Detected Per Unit of Size", "Code defect density" and "Design 

defect density" are not applicable during the requirements phase.  
. Highest ranked measure in family.
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Correlation Coefficient Range Rate Count 

0-0.8 0 

0.8-0.9 4 

0.9 - 0.99 90 

0.99-1.0 11 

Table 6-9 Ranges of Correlation Coefficients 

A final result of interest lies in the study of the impact of the ranking criteria. The study shows that optimal 

combinations of four, five and six criteria exist which generate a ranking that closely approximates the 
ranking obtained using seven criteria. Table 6-10 provides the top 5 criteria combinations through which a 
satisfactory aggregation can be obtained.  

Rankings Criteria Combinations 

I {Co., Be., Cr., Re., Exp., Va., Rel.} 

2 (Co., Cr., Re., Exp., Va., Rel.} 

3 (Cr., Re., Exp., Va., Rel.} 

4 {Co., Be., Re., Exp., Va., Rel.} 

5 {Co., Be., Re., Va., Rel.} 

Table 6-10 Top-Ranked Criteria Combinations 

The discussion provided in Chapter 5 was designed to incorporate current measures generated by advances 
in software engineering.  

The missing measures discussed in this chapter were identified by experts. The measures covered the fault

tolerant computing environment, the mutation testing technique, the object-oriented development method, 

and one adaptation of "Function point". Eleven missing measures were initially identified. UMD eliminated 

the "Reliability trend indicator" because it is a reliability analysis approach rather than a missing measure.  
Table 6-11 lists 10 missing measures analyzed in this chapter.

FFP 

Mutation score 

Coverage factor 

Class coupling

Lack of cohesion in methods 

Number of children 

Number of class methods 

Number of key classes

Class hierarchy nesting level Weighted method per class 

Table 6-11 List of Missing Measures 

The abbreviations in this column "Co.", "Be.", "Cr.", "Re.", "Exp.", "Va.", and "Re." stand for "Cost", "Benefit", "Credibility", 
"Repeatability", "Experience", "Validation", and "Relevance to Reliability", respectively.
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The ranking criteria levels were assessed by UMD research team members using rational comparison with 
experts' input for analog measures, the software engineering literature, and field experts' input. The 
aggregation rates were calculated using the aggregation theory discussed in Chapter 3.  

The composition of families was revised to reflect the emergence of the missing measures. Two family 
groups corresponding to the non-00 technique and 00 technique were identified. The rates and rankings 
of measures and families were reported separately for the two groups. The top-3 measures and top-3 
families for non-OO systems and 00 systems are provided in Table 6-12 to Table 6-15.  

Structural 
Phase Top-3 Measures Semantic Classification Ssifcat 

Classification 

Fault density Fault detected per unit Derived Measure 
of size 

Requirements Phase Requirements specification change Requirements 
requests specification change Derived Measure 

requests 

Error distribution Error distribution Derived Measure 

Design defect density Fault detected per unit Derived Measure 
of size 

Design Phase Fault density Fault detected per unit Derived Measure 

of size 

Cyclomatic complexity Module structural Derived Measure 
complexity 

Code defect density Fault detected per unit Derived Measure 
of size 

Implementation Design defect density Fault detected per unit Derived Measure 
Phase of size 

Cyclomatic complexity Module structural Derived Measure 
complexity 

Failure rate Failure rate Derived Measure 

Code defect density Fault detected per unit Derived Measure 
Testing Phase of size 

Coverage factor Fault-tolerant coverage Derived Measure 
factor 

Table 6-12 Top-3 Measures Phase by Phase for non-OO Systems 

Structural 
Phase Top-3 Measures Semantic Classification Ssifcat 

Classification 

Fault density Fault detected per unit Derived Measure 
of size 

Requirements Phase Requirements specification change Requirements 
requests specification change Derived Measure 

requests 

Error distribution Error distribution Derived Measure
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Table 6-13 Top-3 Measures Phase by Phase for 00 Systems

Phase Top-3 Families 

Fault Detected per Unit of Size 

Requirements Phase Requirements specification change requests 

Error Distribution 

Fault Detected per Unit of Size 

Design Phase Module Structural Complexity 

Time Taken to Detect and Remove Faults 

Fault Detected per Unit of Size 

Implementation Phase Module Structural Complexity 

Test Adequacy 

Failure Rate 

Testing Phase Fault Detected per Unit of Size 

Fault-tolerant Coverage Factor 

Table 6-14 Top-3 Families Phase by Phase for non-OO Systems
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Phase Top-3 Families 

Fault Detected per Unit of Size 

Requirements Phase Requirements specification change requests 

Error Distribution 

Fault Detected per Unit of Size 

Design Phase Time Taken to Detect and Remove Faults 

Requirements specification change requests 

Fault Detected per Unit of Size 

Implementation Phase Test Adequacy 

Time Taken to Detect and Remove Faults 

Failure Rate 

Testing Phase Fault Detected per Unit of Size 

Fault-tolerant Coverage Factor

Table 6-15 Top-3 Families Phase by Phase for 00 Systems 

The analysis in this chapter shows that the introduction of the missing measures impacts the results 
obtained in Chapter 4 although not dramatically. It was established that the "Coverage factor" is almost 
mandatory for the construction of any RPS for the real-time embedded system 6. The "Mutation score" is 
highly recommended because it can reveal the percentage of failures that have not manifested yet. It is a 
valuable support measure for the failure measures in the construction of RPSs.  

FFP is an extension of function point in the field of real-time control systems for the purpose of functional 

size counting. The rate and ranking of this measure are lower than their predecessor, function point, 
because of the lack of experience with FFP despite its higher credibility level.  

The 00 measures provide means to clearly capture the 00-specific design characteristics, such as the level 
of data abstraction, the depth of inheritance, and the degree of data encapsulation, etc. The rankings of 
these measures show that constructing an RPS directly from these measures is an arduous task. They can 
not substitute for the traditional fault and failure measures.  

It is clear that applying the top-ranked measures and families to establishing an RPS will lead to a 
significant improvement in predicting software reliability. However, current knowledge prevents the 
quantitative estimation of such improvement. Further experiments are required to investigate the 
quantitative reliability as a function of the RPS measures.  

As software engineering advances and new software engineering measures emerge, iterations of the study 
presented in Chapter 5 should be performed to avert obsolescence of the results.  

6.2 Future Research 

The research presented in this report initiated a long-term study of the reliability prediction of software
based real-time digital systems. The following activities are recommended for future research.  

1. The report, its methodology and the results presented should be peer-reviewed.  

6 Most real-time embedded control systems are fault-tolerant systems.
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2. A larger set of expert opinion aggregation functions is recommended. UMD examined two forms 

of aggregation functions: additive and multiplicative. However, these only constitute a limited, 

though reasonable, set of aggregation functions typically in use for multiple objectives' 

aggregation [Keen76]. Further research on this topic is recommended.  

3. Top-ranked software reliability prediction systems (RPSs) need to be fully identified for each life

cycle phase. The roots of top RPS's have been identified. It is now necessary to identify their 

support measures.  

4. A reliability threshold under which an application is not acceptable needs to be determined for 

each phase. These thresholds are designed for the V&V process.  

5. The research presented in this report needs to be validated through experiments. Validation 

includes 1) identifying applications for which the top-ranked RPSs are either available or 

recoverable, 2) predicting their operational reliability based on the RPSs for each phase of the life

cycle, 3) assessing the actual operational reliability, 4) comparing estimation and prediction.  

Preliminary research needs to be carried out to determine how many applications are required to 

perform this validation.  

[IEEE6 10] IEEE Standard Glossary of Software Engineering Terminology, IEEE, 1990.  

[LLNL98] J. D. Lawrence, et al., Assessment of Software Reliability Measurement Methods for Use in 

Probabilistic Risk Assessment, Technical report UCRL-ID-136035, FESSP, Lawrence Livermore National 

Laboratory. 1998 

[Keen76] R. L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs, 

John Wiley & Sons, New York, 1976.

6-12



Appendix A Software Engineering Measures

APPENDIX A SOFTWARE ENGINEERING MEASURES 

This appendix contains brief descriptions of the measures used in this study (see Table A-l). The 

measures that were identified by LLNL but not considered in this study are listed in Table A-2. The 

measures are listed in alphabetic order. Table entries in bold-face type denote measures note described 

in the IEEE standard. Plain-text entries denote those measures described in the IEEE standard.

Bugs per line of code (Gaffney estimate) 
Cause & effect graphing 
Class coupling 
Class hierarchy nesting level 
Code defect density 
Cohesion 
Completeness 
Coverage factor 
Cumulative failure profile 
Cyclomatic complexity 
Data flow complexity 
Design defect density 
Error distribution 
Failure rate 
Fault density 
Fault-days number 
Feature point analysis 
Full function point 
Function point analysis 
Functional test coverage

Graph-theoretic static architecture complexity 
Lack of cohesion in methods 
Man hours per major defect detected 
Mean time to failure 
Minimal unit test case determination 
Modular test coverage 
Mutation score 
Mutation testing (error seeding) 
Number of children 
Number of class method in a class 
Number of faults remaining (error seeding) 
Number of key classes 
Requirements compliance 
Requirements specification change requests 
Requirements traceability 
Reviews, inspections and walkthroughs 
Software capability maturity model 
System design complexity 
Test coverage 
Weighted method per class 

A-1 Measures
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Bugs per line of code (Lipow estimate) 
Bugs per line of code (Stetter estimate) 
BVA model 
Cost 
Coupling 
Data structure metrics 

Defect indices 

Design structure 
Failure analysis using elapsed time 

Fault density 
Functional complexity 
Graph-theoretic dynamic architecture complexity 
Graph-theoretic generalized static architecture 
complexity 
Independent process reliability 
Input domain models (Brown-Lipow model) 
Input domain models (Miller model) 
Interface complexity 
K-out-of-n model 
Markov reliability model 
Mean time to discover next K faults 
Micro complexity 
Multiversion software 
Number of conflicting requirements 
Number of entries & exits per module 

Table A-2 Measures nq

Appendix A Software Engineering Measures 

Operation (functional) complexity 
Operator complexity 
Project initiation reliability prediction 
Reliability block diagrams 
Reliability growth function 

Reliability prediction as a function of development 
environment 
Reliability prediction as a function of software 
characteristics 
Reliability prediction during software testing 
Reliability prediction for the operational 
environment 
RELY-Required software reliability 
Residual fault count 
Run reliability 
Schedule 

Software documentation 
Software maturity index 
Software process capability determination (SPICE) 
Software purity level 
Software release readiness 
Software science reliability measure 
Source listings 
System operational availability 
System performance reliability 
Test accuracy (error seeding) 
Testability analysis 
Testing sufficiency 

ot Considered in This Study
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A.1 Bugs per Line of Code 

Categories

* Structural Level 

* Life-Cycle Coverage

derived

implementation' (artifact)

The goal of this measure is to give a crude estimate of the number of faults in a program module per 

line of code.  

Primitive

number of executable source statements

estimated number of faults in the ith module 

total number of faults in the complete program

Implementation 

Gaffney Model [1] 

Empirical formulas are derived, yielding slightly different estimates for assembly code and high-level 

language (Jovial, in this case) code. Since the differences in the coefficients are smaller than the 

estimated errors in the basic theory, only the latter is given here. It is 

F = 42 + 0.0015S 413 

The power (4/3) implies that this estimate should be used for modules, not a complete program. If there 

are N modules in the program, and F, is the estimated number of faults in the ith module, then the 

number of faults in the complete program can be estimated to be 

N 

i=1 

It is important to note that the measure is also applicable in the later stages. For instance, the measure Bugs per Line of Code is 

applicable from the implementation phase and remains applicable afterwards.

A-3
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Remarks 

These models are based on the Halstead measures, which are not considered particularly credible in 

this study, so should be used with considerable caution. In particular, the measures do not account for 

differences in the type of code (business data processing, scientific calculations, real time control, 

compilers, and so forth) or the degree of sophistication of the development organization (as measured, 

for example, by its CMM level).  

There are rough industry estimates that, ignoring all else, one should expect 5-30 faults per thousand 

executable lines of code. The measures given here may be an improvement on this, and may therefore 

be suitable as a starting point for deriving a more accurate estimate. It is difficult to see any other value 

to them.  

The measures are easy to calculate.  

The measures are simplistic and ignore many aspects of the software and its development, so are not 

likely to be very accurate.  

References 

1. John E. Gaffiey, "Estimating the number of faults in code," IEEE Trans. Soft. Eng. 10, 4 (July 

1984), 459-464.  

A.2 Cause & Effect Graphing 

Categories 

* Structural Level derived 

* Life-Cycle Coverage requirement (artifact) 

Application 

Cause and effect graphing aids in identifying requirements that are incomplete and ambiguous. This 

measure explores the inputs and expected outputs of a program and identifies the ambiguities. Once 

these ambiguities are eliminated, the specifications are considered complete and consistent.  

Cause and effect graphing can also be applied to generate test cases in any type of computing 

application where the specification is clearly stated (that is, no ambiguities) and combinations of input 

conditions can be identified. It is used in developing and designing test cases that have a high 

probability of detecting faults that exist in programs. It is not concerned with the internal structure or 

behavior of the program.  

Primitives 

List of causes

A-4



Appendix A Software Engineering Measures

List of effects 

Definitions 

List of causes distinct input conditions 

List of effects distinct output conditions or system transformations (effects are caused by 

changes in the state of the system) 

Accisting number of ambiguities in a program remaining to be eliminated 

Atot total number of ambiguities identified.  

Implementation 

A cause and effect graph is a formal translation of natural language specification into its input 

conditions and expected outputs. The graph depicts a combinatorial logic network.  

To begin, identify all requirements of the system and divide them into separate identifiable entities.  

Carefully analyze the requirements to identify all the causes and effects in the specification. After the 

analysis is completed, assign each cause and effect a unique identifier. For example, El for effect one 

or I1 for input one.  

To create the cause and effect graph, perform the following steps: 

I. Represent each cause and each effect by a node identified by its unique number.  

2. Interconnect the cause and effect nodes by analyzing the semantic content of the specification 

and transforming it into a Boolean graph. Each cause and effect can be in one of two states: 

true or false. Using Boolean logic, set the possible states of the causes and determine under 

what conditions each effect will be present.  

3. Annotate the graph with constraints describing combinations of causes and effects that are 

impossible because of semantic or environmental constraints.  

4. Identify as an ambiguity any cause that does not result in a corresponding effect, any effect 

that does not originate with a cause, and effects that are inconsistent with the requirements 

specification or impossible to achieve.  

The measure is computed as follows: 

CE(%/) = 100 X I -• A 

To derive test cases for the program, convert the graph into a limited entry decision table with "effects" 

as columns and "causes" as rows. For each effect, trace back through the graph to find all combinations 

of causes that will set the effect to be TRUE. Each such combination is represented as a column in the
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decision table. The state of all other effects should also be determined for each such combination. Each 

column in the table represents a test case.  

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Elmendorf, W. R. Cause-Effect Graphs on Functional Testing. Poughkeepsie: IBM Systems 

Development Division, TR-00.2487, 1973.  

3. Myers, Glenford J. The Art of Software Testing. New York, Wiley-Interscience, 1979 

4. Powell, B. P., ed. Validation, Verification, and Testing Technique and Tool Reference Guide.  

National Bureau of Standards Special Publication 500-93, 1982.  

A.3 Class Coupling 

Application 

Class Coupling [3], which is also called coupling between object classes (CBO) in [1], is designed to 

examine how one class relates to other classes.  

In practice, one wants to build systems that get their work done by requesting services from other 

objects. This means that one class can leverage the other classes' services. However, the level of this 

service availability should be limited to the level of complexity that one can handle. In other words, the 

amount of coupling should remain below a certain threshold.  

Definitions 

Class Coupling is defined as the sum total of other classes to which a class is coupled [I]. Intuitively, 

coupling refers to the degree of interdependence between parts of design. In ontological terms, "two 

objects are coupled if and only if at least one of them acts upon the other. X is said to act upon Y if the 

history of Y is affected by X, where history is defined as the chronologically ordered states that a thing 

traverses in time." [2, p 547] 

Class Coupling relates to the notion that an object is coupled to another object if one of them acts on 

the other, i.e., methods of one use methods or instance variables2 of another.  

Some empirical observations with regard to Class Coupling are listed as follows: 

1. Excessive coupling between object classes is detrimental to modular design and prevents 

reuse. The more independent a class is, the easier it is to reuse it in another application.  

2 A name that allows one object (instance) to refer to another one. The instance variables make up an object's state data. In some 

literature instance variable is also called attribute.
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2. In order to improve modularity and promote encapsulation, inter-object class couples should 

be kept to a minimum. The larger the number of couples, the higher the sensitivity to changes 

in other parts of the design, and therefore the maintenance is more difficult.  

3. A measure of coupling is useful to determine how complex the testing of various parts of a 

design is likely to be. The higher the inter-object class coupling, the more rigorous the testing 

needs to be.  

Implementation 

Chidamber and Kemerer [1] advocated a formal representation of an object X as 

X = <x, p(x)> 

where 

x the substantial individual, namely, the entity that object X represents.  

p(x) the finite collection of x's properties 

Thereafter, let X=<x, p(x)> and Y=<y, p(y)> be two objects, 

p(x) = {Mx} {Ix} 

p(y) = {My} {Iy} 

where 

(Mi) is the set of methods and (Ii) is the set of instance variables of object i.  

Using the above definition of coupling, any action by (Mx) on (My} or fly) constitutes coupling, as 

does any action by (My) on (Mx) or {Ix). Therefore, any evidence of a method of one object using 

methods or instance variables of another object constitutes coupling. Since objects of the same class 

have the same properties, two classes are coupled when methods declared in one class use methods or 

instance variables of the other class.  

Reflecting the definitions and principles described above, the potential steps for evaluating the "Class 

Coupling" of a class X are 

1. Extract the set of methods {Mx) and instance variables {Ix} of the class X.  

2. For each class Y in the system other than the class X, extract the set of methods (My) and 

instance variables {Iy).  

3. Examine the behavior of (Mx), if there is any action on (My) or {Iy), skip step 4.  

4. Examine the behavior of (My), if there is any action on (Mx) or (lx), go to step 5, otherwise, 

go to step 6.
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5. Class X and Y are coupled, increase the sum of the measure by 1. Then go to step 1.  

6. Class X and Y are not coupled. Go to step 1.  

Reference: 

1. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on 

Software Engineering, Vol. 20, No. 6, June 1994 

2. I. Vessey and R. Weber, Research on Structured Programming: An Empiricist's Evaluation, IEEE 

Transactions on Software Engineering, vol. SE- 10, 1984 

3. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc. New 

Jersey, 1994 

A.4 Class Hierarchy Nesting Level 

Application 

This measure assesses how many classes can potentially affect this class [1].  

Definition

Classes are organized for inheritance purposes hierarchically in a tree structure, with the base or the 

topmost class called the root. The nesting level is the distance3 in this hierarchy between the root and 

the class [21 [3]. For instance, in Figure A-I the hierarchy nesting level of class F is 2. In case of 

multiple inheritance, this measure is the maximum length from the node to the root of the tree. This 

measure was also defined by Chidamber and Kemerer as Depth of Inheritance Tree (DIT) [1].  

Large nesting numbers indicate a design problem, where developers are overly zealous in finding and 

creating objects. This will usually result in subclasses that are not specialization of all the superclasses.  

A subclass should ideally extend the fiuctionality of the superclasses.  

The distance is measured as the number of classes (circles in Figure A-1) between the root and the class being measured, which 

includes root but excludes current class.
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Implementation

Figure A-1 An Example of Class Hierarchy Diagram 

1. Construct the class hierarchy diagram of the class being counted (for example, Figure A-I is 

the class hierarchy diagram that is applicable to class C, D, E, and F).  

2. Count the number of ancestors of the class being counted. For example, if one tries to count 

the DIT value of class C, then the set of ancestors of class C is {P, A}. Therefore the DIT of 

class C is 2.  

After the above steps, we can count the nesting level from the top of the class hierarchy or the bottom 

of the firmework. Lorenz and Kidd suggested the threshold of this measure is 6. That is, if the value of 

this measure of a class is over 6, this class then needs to be reexamined or redesigned for over-design 

[2] [4].  

Reference: 

I. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on 

Software Engineering, Vol. 20, No. 6, June 1994 

2. B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity, Prentice Hall Inc. 1996.  

3. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc.  

New Jersey, 1994 

4. R. D. Neal, The Applicability of Proposed Object-Oriented metrics to Developer Feedback in 

Time to Impact Development, NASA/WVU Software IV&V Facility, Software Research 

Laboratory, Technical Report Series, NASA-IVV-96-004, NASA, 1996.
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A.5 Cohesion 

Categories 

• Structural Level 

0 Life-Cycle Coverage

derived

design (artifact)

Application

The goal of this measure is to indicate the "goodness" of a design.  

Cohesion was introduced by Myers [1] in 1978 to serve as an indication of "goodness" of a design.  

There is a widespread belief that high cohesion yields better software designs, which in turn should 

lead to fewer faults, and thus higher reliability.  

Cohesion falls in the category of "good design principles" and is widely believed to promote good 

software design. Determination of its values is frequently somewhat subjective. Additional discussion 

can be found in [3].  

Definitions 

Cohesion is defined to be "the degree of functional relatedness of processing elements within a single 

module." 

Implementation 

Decision tables that permit cohesion and coupling to be determined for a module are presented in Table 

A-3. This table is ordered from poorer forms of cohesion to preferred forms.  

Table A-3 Determination of Cohesion [11

Difficult to describe the module function 

Module performs more than one function 

Only one function performed per 

invocation 

Each function has an entry point

Module performs related class of functions -

Functions are related to problem procedure -

Y IN

X
Coincidental cohesion 

Logical cohesion

- IN

N IN IN

Y IY lY

Y IN IN

N IY lY I-

X

N 

Y 

N

N 

Y 

Y

Y I-

N IY IY I-

- IN IY IY

- � .1 .1 - J - J - - -
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Classical cohesion 

Procedural cohesion X 

Communicational cohesion X 

Informational cohesion X 

Functional cohesion 
X 

Remarks 

Ref. 4 provides a theoretically more precise measure of functional cohesion. This was not included here 

because of doubts as to its practicality.  

References 

1. J. Myers, Reliable Software through Composite Design, Petrocelli (1975).  

2. Han S. Son and Poong H. Seong, "Quantitative evaluation of safety-critical software at the 

early development stage: an interposing logic system software example." 

3. Edward Yourdon and Larry L. Constantine, Structured Design: Fundamentals of a Discipline 

of Computer Program and Systems Design, Prentice-Hall (1979).Rel. Eng. And System Safety 

50, 3 (1995), 261-269.  

4. James M. Bieman and Linda M. Ott, "Measuring functional cohesion," IEEE Trans. Soft. Eng.  

20, 8 (August 1994), 644-657.  

5. James M. Bieman and Byung-Kyoo Kang, "Measuring design-level cohesion," IEEE Trans.  

Soft. Eng. 24, 2 (February 1998), 111-124.  

A.6 Completeness 

Categories 

* Structural Level derived 

* Life-Cycle Coverage requirement (artifact) 

Application 

This measure determines the completeness of the software specification during the requirements phase.  

Also, the values determined for the primitives associated with the completeness measure can be used to 

identify problem areas within the software specification.
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Primitives 

The completeness measure consists of the following primitives: 

B, = number of functions not satisfactorily defined 

B2 = number of functions 

B 3 = number of data references not having an origin 

B4 = number of data references 

B5 = number of defined functions not used 

B6 = number of defined functions 

B 7 = number of referenced finctions not defined 

B& = number of referenced functions 

B9 = number of decision points not using all conditions, or options or both.  

B10 = number of decision points 

BII = number of condition options without processing 

B12 = number of condition options 

B13 = number of calling routines with parameters not agreeing with defined parameters 

B 14 = number of calling routines 

B15 = number of condition options not set 

B 16 = number of set condition options having no processing 

B17 = number of set condition options 

B]8 = number of data references having no destination 

Implementation 

The completeness measure (CM) is the weighted sum often derivatives expressed as 

10 
CM = w, D 

where for each i = 1, ... , 10, each weight wi has a value between 0 and 1, the sum of the weights is 

equal to 1, and each Di is a derived measure with a value between I and 0.
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To calculate the completeness measure 

1. The definitions of the primitives for the particular application must be determined.  

2. The priority associated with the derived measure must also be determined. This prioritization 

would affect the weights used to calculate the completeness measure.  

Each primitive value would then be determined by the number of occurrences related to the definition 

of the primitive.  

Each derived measure is determined as follows: 

D= (B2 - B1)/B2 = functions satisfactorily defined 

D2 = (B4 - B3)/B4 = data references having an origin 

D3 = (B6 - BS)/B 6 = defined functions used 

D4 = (B8 - B7)/Bg = referenced functions used 

5= (Bjo- B9)/Bjo = all condition options at decision points 

D6= (B 12 - B 1 )/B12 = all condition options with processing at decision points are used 

D7= (B 14 - Bl 3)/B[ 4 = calling routine parameters agree with the called routine's defined 

parameters 

Ds= (B12 - B15)/B12 = all condition options that are set 

D9 = (B17 - BI 6)/B17 =processing follows set condition options 

Dlo= (B4 - B18)/B4 = data references have a destination 

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Murine, g. e. On Validating Software Quality Metrics. 4" Annual IEEE Conference on 

Software Quality, Phoenix, Arizona, Mar. 1985.  

3. San Antonio, R, and Jackson, K. Application of Software Metrics During Early Program 

Phase. Proceedings of the National Conference on Software Test and Evaluation, Feb. 1982.
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A.7 Coverage Factor 

Application 

This measure reflects the ability of the system to automatically recover from the occurrence of a failure 

during normal system operation.  

Definitions 

Coverage = Probability [system recovers I failure occurs], which means the probability that the system 

can recover from a failure. [1] [2] 

Implementation 

Several different models for predicting coverage in a fault-tolerant system are listed here. They include 

models for permanent, intermittent, and transient errors4 . These models are described below: 

A.7.1 Discrete time Markov chain 

A high-level abstraction of a typical error-handling model may divide the process into sequential 

phases, forming a discrete time Markov chain (DTMC) [2]. According to [3], the matrix of eventual 

exit probabilities given an entry state is given by ( [ I - P I -J R), where P = [py] denotes the transition 

probability matrix, and pj is the probability that the next state will be an error handling statej given that 

the current state is the error handling state i. R = ] r, ] where r,1 is the probability of reaching an exit 

statej from an error handling state i.  

The terminology in this description is borrowed from [6]: 

Afailure occurs when the delivered service deviates from the specified service.  

An error is that part of the system state which is liable to lead to failure.  

The cause of an error is afault.  

Upon occurrence, a fault creates a latent error, which becomes effective when it is activated.  

If an error, once activated, remains effective for a long time (relative to the time needed to detect and handle it), it may be 

considered permanent. If the error cycles relatively quickly between the active and latent states, it is considered intermittent. If 

the error, once activated, becomes latent, and remains latent for a long time, it is considered a transient error.
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Figure A-2. Three phases of error handling from a permanent effective error 

A three-phase error-handling model of detection, location, and recovery is presented in Figure A-2 

(cited from [21) with the assumption that errors are permanently effective, which means that once 

errors has been activated, they remain effective. Thus system coverage c is given by: 

C = Cd XCt XCr 

where Cd, c,, c, are the probabilities that the system reaches the "Locate" state from the "Detect" state, 

the "Recover" state from the "Locate" state, the "Coverage Success" state from the "Recover" state, 

respectively.  

Some models, like the one proposed by the designer of CAST [41, combined the concept of transient 

restoration with a permanent recovery model (like the one in Figure A-2) into a single model shown in 

Figure A-3 (cited from [2]).  

"+, IU 

1 -is 
4; Al r Detection 

-- 
Failure 

I L, i - u 

Transient , Permanent 1,P,_ ~ N 

Recovery -- Recoveri 

Figure A-3. CAST recovery model 

In this CAST model, errors are activated at a total rate of X (permanent rate) + c(transient rate); they 

are detected with a probability ofu,. Failure to detect the error is conservatively assumed to "pollute" 

the system with more errors resulting in a system failure. After detection, transient recovery is 

attempted; it is successful (if the error is transient) with probability I- 1,, where 1n is the transient
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leakage. Unsuccessful transient recovery leads to permanent recovery where the cause of the error (the 

fault) is located with a probability of v. and the system recovers with a probability of w,, 5.  

A.7.2 Continuous time Markov chain (CTMC) 

The only difference between CTMC and DTMC stems from the fact that the labels on the arcs of a 

CTMC model represent the rate at which the state changes occur, rather than simply probabilities as in 

the DTMC models.  

An example of CTMC model is shown in Figure A-4 (cited from [2]). In this model, state A is entered 

on activation of the error. In this state A, the effective error begins to pollute the system with more 

errors (at rate p to state P). The effective error may be detected (state D) at the rate 8 before affecting 

delivered service. The error may become latent (state B) before producing more errors or being 

detected. Global error detection mechanisms may detect an error (at rate C with probability q) before 

the delivered service is affected [2].  

The model shown in Figure A-4 can be used to represent either permanent or intermittent errors.  

Parameters a and 13 represent the rates at which an effective error becomes latent and vice versa. Thus 

if a and 13 are set to 0, this model represents permanent errors.  

The coverage factor, that is, the probability of going from state A to state D is given by: 

C 5 qp 
I = S+p S+p

I The parameters with the subscript n represent the parameters of the nth module.
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Figure A-4 A CTMC model

A.7.3 ESPN Models 

ESPN (Extended stochastic Petri net) models combine both local and global timing in the same model.  

Please refer to [5] for a more detailed explanation. Figure A-5 (cited from [2]) represents a coverage 

model for a system that combines hardware and software error detection techniques. Errors that are not 

detected by hardware checking may be detected by a diagnostic program that is run periodically. The 

diagnostic unit is periodically executed even if there is no indication of an error in the unit, so as to 

detect latent errors in the system.  

When a latent error is activated, a token is deposited in the place labeled effective error, enabling 

transition T1. Transition T1 fires immediately, and deposits a token in the place labeled perm, with 

probability p, or in place inter A (active intermittent) with probability i, or place trans with probability 

t. If the effective error is permanent, its representative token remains in the corresponding place, just as 

a permanent error remains in the system. If the error is intermittent, the token will circulate between the 

inter A and inter B places. If the error is transient, its representative token will eventually move to the 

trans gone place. While the error is not benign, transitions 72 or T3 may be enabled. (An arc with a 

small circle signifies an inhibitor6 arc.) 

There is also a set of two places and transitions that represent the state of the running process: norm 

(normal operation), or diag (diagnostics). Initially, a token is present in the norm place, and cycles 

around through these two places. When the token is in the norm place, the effective error propagates 

within the system. The error may be detected by local (hardware) error detection mechanisms with 

probability s (transition 72); if not detected, the system is polluted. These additional errors may be 

detected by some global error detection mechanisms (transition T4) with probability q. When the 

system is undergoing diagnostics, transition T3 is enabled and the error may be detected with 

6 An inhibitor arc is analogous with the negative gate in logic theory.
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probability c. Each of the probabilities c, q, and s are conditional, and are conditioned in the event that 

an error exists.

Figure A-5 An ESPN coverage model

Once an error is detected, the recovery processes may begin. The counter place counts the number of 

times an error is detected. The first k times it is detected, the system attempts some recovery, denoted 

by the place labeled start T.R., after which the system undergoes diagnosis. If the transient error 

disappears in the meantime, the transient restoration (trans rest) exit is taken. If an error is detected 

more than k times, permanent recovery is commenced.  

The methodology used solving an ESPN model depends upon the distributions chosen for the transition 

firing times. If all the firing times are assumed to be exponentially distributed, then the ESPN can be 

converted to a Markov chain for solution [5]. Under certain conditions, the net may be solved as a 

semi-Markov process or it may be simulated for solution.  

Reference 

1. T. F. Arnold, "The Concept of Coverage and Its Effect on the Reliability Model of a Repairable 

System", IEEE Transactions on Computers, vol. c-22, no. 3, March 1973
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A.8 Cumulative Failure Profile 

Categories 

* Structural Level derived 

• Life-Cycle Coverage implementation(process) 

Applications 

The goal of this measure is to 

1. Predicate reliability through the use of failure profiles; 

2. Estimate additional testing time to reach an acceptability reliable system; 

3. Identify modules and subsystems that require additional testing.  

Primitives 

fi total number of failures of a given severity level in a given time interval, i 

=1,..  

Implementation 

Plot cumulative failures versus a suitable time base. The curve can be derived for the system as a 

whole, subsystems, or modules.  

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.
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3. Musa, J. D., lannino, A., and Okumoto, K., Software Reliability: Measurements, Prediction, 

Application, New York, McGraw-Hill, 1987.  

4. Shooman, M. L., Software Engineering DesignrReliability/Management, New York, McGraw 

Hill, 1983, pp 329-335.  

5. Trachtenberg, M., Discovering How to Ensure Software Reliability, RCA Engineer, vol 27, no 

1, Jan/Feb 1982, pp 53-57.  

A.9 Cyclomatic Complexity 

Categories

* Structural Level 

* Life-Cyde Coverage

derived

design(artifact)

This measure determines the structure complexity of a coded module. The use of this measure is 

designed to limit the complexity of a module, thereby promoting understandability of the module and 

the number of minimum logical testing path.  

Definitions & primittves 

N = number of nodes (sequential groups of program statements) 

E = number of edges (program flows between nodes) 

SN = number of splitting nodes (nodes with more than one edge emanating from it) 

RG = number of regions (areas bounded by edges with no edges crossing) 

Implementation 

Using regions, or nodes and edges, a strongly connected graph of the module is required. A strongly 

connected graph is one in which a node is reachable from any other node: this is accomplished by 

adding an edge between the exit node and the entry node. Once the graph is constructed, the measure is 

computes as follows: 

C=E-N+ I 

The cyclomatic complexity is also equivalent to the umber of regions (RG) or the number of splitting 

nodes plus one (SN + 1). If a program contains an N-way predicate, such as a CASE statement with N 

cases, the N-way predicate contributes N-I to the count of SN.
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References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 
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A.10 Data or Information Flow Complexity 

Categories 

* Structural Level derived 

* Life-Cycle Coverage design(artifact) 

Application 

The measures Data or Information Flow Complexity are designed to measure the structural complexity 

or procedural complexity of a system.  

This measure can be used to evaluate: 

1. The information flow structure of large scale systems 

2. The procedure and module information flow structure 

3. The complexity of the interconnections between modules 

Moreover, this measure can also be used to indicate the degree of simplicity of relationships between 

subsystems and to correlate total observed failures and software reliability with data complexity.  

Primitives 

Ufi = local flows into a procedure 

datain = number of data structures from which the procedure retrieves data 

1fo = local flows from a procedure 

dataout = number of data structures that the procedure updates 

length = number of source statements in a procedure ( excludes comments in a procedure)
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implementationow 

Determine the flow of information between modules or subsystems or both by automated data flow 

techniques, HIPO charts, etc.  

A local flow from module A to B exists if one of the following holds true: 

(1) A calls B, 

(2) B calls A and A returns a value to B that is used by B, or 

(3) Both A and B are called by another module that passes a value from A to B.  

Values of primitives are obtained by counting the data flow paths directly into and out of the modules.  

The two intermediate derived measures fanin and fanout are defined as: 

fanin = Ifi + datain 

faout = fo + dataout 

The information flow complexity (IFC) is IFC = (fanin *fanout)
2 

Weighted IFC- length * (fanin * fanout)
2 
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A.11 Defect Density 

Categories 

Structural Level derived
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Life-Cycle Coverage design(process) 

Application 

This measure indicates whether the inspection process is effective.  

The defect density measure can be used after design and code inspections of new development or large 

block modifications. If the defect density is outside the norm after several inspections, it is an 

indication that the inspection process requires further scrutiny.  

Primitives 

Establish severity levels for defect designation.  

Di = total number of unique defects detected during the ith design or code inspection process.  

I = total number of inspections.  

KLSOD = in the design phase, the number of source lines of design statements in thousands.  

KSLOC = in the implementation phase, the number of source lines of executable code and non

executable data declarations in thousands.  

Inplementatlon 

Establish a classification scheme for severity and class of defect. For each inspection, record the 

product size, and the total number of unique defects.  

For example, in the design phase, calculate the ratio.  
I 

ZDi 
i=1 

DD = 
KSLOD 

This measure assumes that a structured design language is used. However, if some other design 

methodology is used, then some other unit of defect density has to be developed to conform to the 

methodology in which the design is expressed.  
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4. Fagan, Michael, E., Design and Code Inspection to Reduce Errors in Program Development.  

IBM Systems Journal, vol 15, no 3, Jul. 1976, pp 102-211.  

A.12 Error Distribution 

Categories

* StructuralLevel 

* Life-Cycle Coverage

derived

requirements (artifact)

This measure is designed to rank the failure modes. The search for the causes of software faults and 

failures involves the analysis of the defect data collected during each phase of the software 

development. Distribution of the errors allows ranking of the predominant failure modes.  

Primitives 

Error description notes the following points:

1. Associated faults 

2. Types 

3. Severity 

4. Phase introduced

5. Preventive measure 

6. Discovery mechanism, including reasons for earlier non-detection of associated faults.  

Implementation 

The primitives for each error are recorded and the errors are counted according to the criteria adopted 

for each classification. The number of errors is then plotted for each class. Examples of such 

distribution plots are shown in Figure A-6. In the three examples of Figure A-6, the errors are classified 

and counted by phase, by the cause, and by the cause for deferred fault detection. Other similar 

classification could be used such as the type of steps suggested to prevent the reoccurrence of similar 

errors or the type of steps suggested for earlier detection of the corresponding faults.
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Figure A-6 Error Analysis 
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A.13 Failure Rate 

Categories 

* Structural Level 

* Life-Cycle Coverage

derived

testing (artifact)

Application

This measure is used to indicate the growth in the software reliability as a function of test time.  

Primitives 

observed times between failure ( for example, execution time) for a given severity level, i = 1, 

fi= number of failures of a given severity level in the ith time interval 

Implementation 

The failure rate X(t) at any point in time can be estimated from the reliability function, R(t), which in 

turn can be obtained from the cumulative probability distribution, F(t), of the time until the next failure 

using any of the software reliability growth models such as the non-homogeneous Poisson process 

I F [dR(t)] 
) L dt J 

(NHPP) or a Bayesian type model. The failure rate is 

where 

R(t) = I - F(t) 
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A.14 Fault Density 

Categories

* Structural Level 

* Life-Cycle Coverage

derived

requirements (artifact)

This measure indicates the fault density of a specific program for the given severity levels. In particular 

this measure can be used to perform the following functions: 

1. Predicate remaining faults by comparison with expected fault density.  

2. Determine if sufficient testing has been completed based on predetermined goals for severity 

class.  

3. Establish standard fault densities for comparison and prediction.  

Primitfives 

Establish the severity levels for failure designation.  

F = total number of unique faults found in a given time interval resulting in failures of a specified 

severity level 

KSLOC = number of source lines of executable code and non-executable data declarations in 

thousands.  

Implementation 

Establish severity, failure types and fault types.  

I. Failure types might include 110 (input, output, or both) and user. Fault types might result from 

design, coding, documentation, and initialization.  

2. Observe and log each failure.  

3. Determine the program fault(s) that caused the failure. Classify the faults by type. Additional 

failures may be found resulting in total faults being greater than the number of failures 

observed, or one fault may manifest itself by several failures. Thus, faults and failure density 

may both be measured.

A-27

Application



Appendix A Software Engineering Measures 

4. Determine total lines of executable and non-executable data declaration source code 

(KLSOC).  

5. Calculate the fault density for a given severity levels as Fd = F/KLSOC.  

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Bowen, J. B., A Survey of Standards and Proposed Metrics for Software Quality Metrics, 

Computer, 1979, 12 (8), pp 3741.  

3. Shooman, M. L., Software Engineering Design/Reliability/Management, New York, McGraw 

Hill, 1983, pp 325-329.  

A.15 Fault-Days Number 

Categories 

* Structural Level derived 

* Life-Cycle Coverage testing (process) 

Application 

This measure represents the number of days that faults spend in the software system from their creation 

to their removal.  

Primitives 

Phase when the fault was introduced in the system.  

Date when the fault was introduced in the system.  

Phase, date and time when the fault is removed.  

FDi = fault days for the ith fault.  

Note: For more meaningful measures, the time unit can be made relative to test time to operational 

time.  

Implementation 

For each fault detected and removed, during any phase, the number of days from its creation to its 

removal is determined (fault-days).
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The fault-days are then summed for all faults detected and removed, to get the fault-days number at 

system level, including all faults detected/removed up to the delivery date. In cases when the creation 

date for the fault is not known, the fault is assumed to have been created at the middle of the phase in 

which it was introduced.  

In Figure A-7 the fault-days for the design fault for module A can be accurately calculated because the 

design approval date for the detailed design of module A is known. The fault introduced during the 

requirements phase is assumed to have been created at the middle of the requirement phase because the 

exact knowledge of when the corresponding piece of requirement was specified, is not known.  

FAULT- DAYS 2

r-- AULT? 

4- FAULT-DAYS 1  

, . -', 

CONCEPT REOrE- oeSI. I PMLFME1- TEST INST 
MENTS TAT0N AND IILIATION OPERAT1ON 

HECKOUT MAOVCTM'ANCE

The measure is calculated as shown is Figure A-7.

Figure A-7 Calculation of Fault-Days 
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A.16 Feature Point Analysis 

Categories

* Structural Level 

* Life-Cycle Coverage

derived

requirements (artifact)
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Application 

This measure is designed to determine the functional size of software, especially for real-time or 

embedded software applications.  

This measure can be used starting in the requirements specification phase and throughout the remainder 

of the software life cycle as a basis to assess software quality, costs, documentation and productivity.  

Feature Points are gaining acceptance as a measure of software size, especially for real-time or 

embedded software applications. Feature Points measure the size of an entire application as well as that 

of software enhancements, regardless of the technology used for its development and / or maintenance.  

Primitives 

ILF, EIF, EI, EO, EQ, Algorithms; 

The 14 software characteristics: Data Communications, distributed data processing, performance 

application, heavily used configuration, transaction rate, on-line data entry, end-user efficiency, 

complex processing, reusability, installation ease, operational ease, multiple sites, facilitate change; 

The value adjustment factor 

Implementation 

Feature Point Analysis measures software size by counting six distinct software attributes. Two of 

these address the software program data requirements of an end user and are referred to as Data 

Functions (items I and 2 below). The remaining four address the user's need to access data and are 

referred to as Transactional Functions (items 3, 4, 5 and 6 below).  

1. Internal Logical Files (ILF) (logical groups of data maintained in an application) 

2. External Interface Files (EIF) (logical groups of data used by one application but maintained 

by another application) 

3. External Inputs (EI) (which maintain internal logical files) 

4. External Outputs (EO) (reports and data leaving the application) 

5. External Inquiries (EQ) (combination of a data request and data retrieval) 

6. Algorithms (bounded computational problems that are included within a software component) 

These six attributes are rated using a single weight as shown in Table A-4.  

Table A-4 Computing Feature Point Measure 

Measurement Parameters Count Weight Weighted Value 
(Count x Weight) 

Number of Internal Logical 7
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Thus, an Unadjusted Feature Point is defined as follows:

Unadjusted Feature Point = (External Inputs X Weight) +

(External Outputs X Weight) + 

(Logical Internal Files X Weight) + 

(Logical Interface Files X Weight) + 

(Inquiries X Weight) + 

(Algorithms X Weight) 

The Unadjusted Feature Point Count is modified by a Value Adjustment Factor that assesses the design 

characteristics of the software under consideration. The Unadjusted Feature Point count is multiplied 

by the Value Adjustment Factor that considers the system's technical and operational characteristics 

and is calculated by answering questions about the following 14 software characteristics: 

1. Data Communications. The data and control information used in the application are sent or 

received over communication facilities.  

2. Distributed Data Processing. Distributed data or processing functions are a characteristic of 

the application within the application boundary.  

3. Performance Application. performance objectives, stated or approved by the user, in either 

response or throughput, influence (or will influence) the design, development, installation and 

support of the application.  

4. Heavily Used Configuration. A heavily used operational configuration, requiring special 

design considerations, is a characteristic of the application.
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5. Transaction Rate. The transaction rate is high and influences the design, development, 

installation and support.  

6. On-Line Data Entry. On-line data entry and control information functions are provided in 

the application.  

7. End-User Efficiency. The on-line functions provided emphasize a design for end-user 

efficiency.  

8. On-Line Update. The application provides on-line update for the internal logical files.  

9. Complex Processing. Complex processing is a characteristic of the application.  

10. Reusability. The application and the code in the application have been specifically designed, 

developed and supported to be usable in other applications.  

11. Installation Ease. Conversion and installation ease are characteristics of the application. A 

conversion and installation plan and/or conversion tools were provided and tested during the 

system test phase.  

12. Operational Ease. Operational ease is a characteristic of the application. Effective start-up, 

backup and recovery procedures were provided and tested during the system test phase.  

13. Multiple Sites. The application has been specifically designed, developed and supported to be 

installed at multiple sites for multiple organizations.  

14. Facilitate Change. The application has been specifically designed, developed and supported 

to facilitate change.  

The Function Point Counting Practices Manual gives specific guidelines for determining the "Degree 

of Influence" from 0 to 5 for each of fourteen "general system characteristics." These are also 

suggested for use in computing the Value Adjustment Factor for Feature Points. This calculation 

provides us with the Adjusted Feature Point count.  

The following formula converts the total of the Degrees of Influence assigned above to the Value 

Adjustment Factor: 

Value Adjustment Factor = Total Degree of Influence X .01 + .65 

The Value Adjustment Factor measures software design characteristics and changes significantly only 

when design changes are made to the software.  

Since such design changes occur infrequently, the Value Adjustment Factor is the most stable part of 

the Feature Point count. The Value Adjustment Factor is then applied to the Unadjusted Feature Points 

(the total of the weighted counts) to establish the Adjusted Feature Point Count. This represents the size 

of the application and can be used to compute several measures as discussed in the Interpretation 

section of this document.
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Adjusted Feature Points = (Unadjusted Feature Points) X 

(Value Adjustment Factor) 

This is referred to as the Feature Point Count, denoted by Feature Point, in the following.  

The measure of interest is that of software quality, defined by 

Software Quality = 1 - [(Number of defects found) / Feature Point] 

Each of the functional components of a software system is analyzed in this way and each component's 

Feature Point score is added to the total to derive a total Feature Point Count for the application.  

Once the Feature Point Count has been calculated, it can be used as a measure of software quality as 

defined above. The software quality measure can be computed during each phase of the software life 

cycle. The software quality measure is judged to be better as the value computed for the measure 

approaches the value 1.  

Remarks 

The software quality measure based on Feature Point Analysis allows the software production process 

to be quantified in terms of the quality of the software produced and it is easily measured.  

Organizations that have adopted Feature Point Analysis as a software measure claim to realize many 

benefits, including improved quality, improved project estimating, better understanding of project and 

maintenance productivity, more disciplined management of changing project requirements, and user 

requirements.  

Feature Points were originally an extension to the Function Point measure and have similar 

disadvantages to Function Points. To use Feature Points effectively, training in the calculation of 

Feature Points is required.  

Feature Point Analysis has proven to be an accurate technique for sizing, documenting, and 

communicating a system's capabilities. It has been successfully used to evaluate the functions of real

time and embedded code systems, such as robot-based warehouses and avionics, as well as traditional 

data processing. As computing environments become increasingly complex, it can potentially prove to 

be a valuable tool that helps to measure the software quality.  

The measure is easy to understand throughout the software life cycle phases, even where direct 

measurement of reliability is not possible. Even when more direct measures of software quality and 

reliability are available, the software quality measure provides an additional perspective as to the 

effectiveness of the design and implementation processes and thus, has the potential of adding 

credibility to the product.  
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A.17 Full Function Point 

Application 

Full Function Point (FFP) was proposed with the aim of offering a functional size measure specifically 

adapted to real-time software. [1] [2] 

Definiton 

FFP is a functional measure based on the standard function point analysis (FPA) technique. It was 

designed for both management information system (MIS) and real-time software. Since FFP is an 

extension of the standard FPA, all rules of FPA are included in the FFP counting process. However, a 

small number of subsets of FPA rules dealing with control concepts have been expanded considerably.  

The control aspect of real-time control software is addressed by new function types.  

FFP introduces two new Control Data Function Types named Updated Control Group (UCG) and 

Read-only Control Group (RCG). A UCG is a group of control data updated by the application. The 

control data live for more than one transaction. A RCG is a group of control data used, but not updated, 

by the application being counted. The control data live for more than one transaction, too.  

The following four new Control Process Function Types address the sub-processes of real-time 

software.  

1. External Control Entry ECE: processes control data coming from outside the application's 

boundary 7.  

2. External Control Exit ECX: An ECX is a unique sub-process. It is identified from a functional 

perspective. The ECX process control data goes outside the application's boundary.  

3. Internal Control Read ICR. An ICR is a unique sub-process. It is identified from a functional 

perspective. The ICR reads control data.  

4. Internal Control Write ICW: is a unique sub-process. The ICW writes control data.  

The Control Data Function Types, which contribute to the overall size, fall into two categories.  

' The boundary of a piece of software is the conceptual frontier between this piece and the environment in which it operates, as it 

is perceived externally from the perspective of its users. The boundary allows the measurer to distinguish, without ambiguity, 

what is included inside the measured software from what is part of the measured software's operating environment.
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I. Multiple occurrences Control Data Function Types, which can be either updated or read only by 

the process. These are similar to the Internal Logical files and External Interface files counted for 

FPA.  

2. Single occurrence Control Data Function Types. These data groups may be maintained by the 

processes (Updated Control Group-UCG) or only read by the processes (Read only Control Group

RCG). The single occurrence data groups contain all instances of single control values used by the 

processes. There may be only one instance of a UCG or RCG per application.  

Implementation 

The FFP involves applying a set of rules and procedures to a given piece of software, as it is perceived 

from the perspective of its inherent functional user requirements [1] [2]. An overview of the counting 

by FFP is summarized in Figure A-8 [3]. After identifying the counting boundary, FFP analysis 

includes the following steps:

Figure A-8 Overview of Full Function Point Counting

I. Counting Management Function Types. For the Management Function Types, namely, ILF, 

EIF, EI, EO, and EQ, the counting procedure and point assignment rules are unchanged in 

FFP. This step covers the counting of Management Data and Management Process shown in 

Figure A-8.  

2. Counting Control Data Function Types. Control Data Function Types, include UCG and RCG, 

are classified into single occurrence groups of data and multiple occurrence groups of data

The point of these kinds of data groups is determined by the number of Data Element Types 

(DETs) and Record Elements Types (RETs) and the corresponding complexity matrix (please 

refer to the description of FPA in this appendix and [4] for more detailed explanation). The 

point of single occurrence Control Data Function Types depends only on the number of DETs.
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3. Counting Control Process Function Types. The number of points assigned to Control Process 

Functions Types, namely, ECE, ECX, ICW, and ICR, depends on the number of DETs. Once 

the number of DETs is determined, the number of points is determined by the matrix in [5], 

pp. 14.  

4. Determine the unadjusted FFP and the adjust factor. The determination of the unadjusted FFP 

count and the technical complexity factor is the same as that of FPA.  
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A.18 Function Point Analysis 

Categories 

* StructuralLevel derived 

* Life-Cycle Coverage requirements (artifact) 

Application 

This measure is designed to determine the functional size of software.  

This measure can be used starting in the requirements specification phase and throughout the remainder 

of the software life cycle as a basis to assess software quality, costs, documentation and productivity.  

Function points have gained acceptance as a primary measure of software size. Function points 

accurately measure the size of an entire application as well as that of software enhancements, 

regardless of the technology used for its development and/or maintenance.
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Primitives 

ILF, EIF, EI, EO, EQ; 

The 14 software characteristics: Data Communications, distributed data processing, performance 

application, heavily used configuration, transaction rate, on-line data entry, end-user efficiency, 

complex processing, reusability, installation ease, operational ease, multiple sites, facilitate change; 

The value adjustment factor 

Implementation 

Function Point Analysis measures software size by counting five distinct software attributes. Two of 

these address the software program data requirements of an end user and are referred to as Data 

Functions (items I and 2 below). The remaining three address the user's need to access data and are 

referred to as Transactional Functions (items 3, 4, and 5 below).  

1. Internal Logical Files (logical groups of data maintained in an application) 

2. External Interface Files (logical groups of data used by one application but maintained by 

another application) 

3. External Inputs (which maintain internal logical files) 

4. External Outputs (reports and data leaving the application) 

5. External Inquiries (combination of a data request and data retrieval) 

These five attributes are rated as having low, average, or high importance in the analysis. The 

rating matrix for inputs is shown in the table and illustrates the rating process. The importance of 

each component is then weighted according to Table A-5.  

Table A-5 Computing Function Point Measure 

Measurement Count Low Average High Weighted Value 
Parameters I I (Count x Weight) 

Number of Internal 7 10 15 
Logical Files 

Number of External 5 7 10 
Interface Files 

Number of External 3 4 6 
Inputs 

Number of External 4 5 7 
Outputs
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The total Function Point count is based upon an Unadjusted Function Point Count that is defined as 

follows: 

Unadjusted Function Points = (Internal Logical Files X Weight) + 

(External Interface Files X Weight) + 

(External Inputs X Weight) + 

(External Outputs X Weight) + 

(External Inquiries X Weight) 

The Unadjusted Function Point Count is modified by a Value Adjustment Factor that assesses the 

design characteristics of the software. The Unadjusted Function Point count is multiplied by the Value 

Adjustment Factor. This factor considers the system's technical and operational characteristics and is 

calculated by answering questions about the following 14 software characteristics: 

I. Data Communications. The data and control information used in the application are sent or 

received over communication facilities.  

2. Distributed Data Processing. Distributed data or processing functions are a characteristic of 

the application within the application boundary.  

3. Performance Application. performance objectives, stated or approved by the user, in either 

response or throughput, influence (or will influence) the design, development, installation and 

support of the application.  

4. Heavily Used Configuration. A heavily used operational configuration, requiring special 

design considerations, is a characteristic of the application.  

5. Transaction Rate. The transaction rate is high and influences the design, development, 

installation and support.  

6. On-Line Data Entry. On-line data entry and control information functions are provided in 

the application.  

7. End-User Efficiency. The on-line functions provided emphasize a design for end-user 

efficiency.
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8. On-Line Update. The application provides on-line update for the internal logical files.  

9. Complex Processing. Complex processing is a characteristic of the application.  

10. Reusability. The application and the code in the application have been specifically designed, 

developed, and supported to be usable in other applications.  

11. Installation Ease. Conversion and installation ease are characteristics of the application. A 

conversion and installation plan and/or conversion tools were provided and tested during the 

system test phase.  

12. Operational Ease. Operational ease is a characteristic of the application. Effective start-up, 

backup, and recovery procedures were provided and tested during the system test phase.  

13. Multiple Sites. The application has been specifically designed, developed, and supported to 

be installed at multiple sites for multiple organizations.  

14. Facilitate Change. The application has been specifically designed, developed and supported 

to facilitate change.  

The Function Point Counting Practices Manual gives specific guidelines for determining the "Degree 

of Influence" from 0 to 5 for each of fourteen "general system characteristics." Each of these factors is 

scored based on their influence on the system being counted. The resulting score will increase or 

decrease the Unadjusted Function Point count by 35%. This calculation provides us with the Adjusted 

Function Point count.  

The following formula converts the total of the Degrees of Influence assigned above to the Value 

Adjustment Factor: 

Value Adjustment Factor = Total Degree of Influence X .01 + .65 

The Value Adjustment Factor measures software design characteristics and changes significantly only 

when design changes are made to the software.  

Since such design changes occur infrequently, the Value Adjustment Factor is the most stable part of 

the Function Point count. The Value Adjustment Factor is then applied to the Unadjusted Function 

Points (the total of the weighted counts) to establish the Adjusted Function Point Count. This 

represents the size of the application and can be used to compute several measures as discussed in the 

Interpretation section of this document.  

Adjusted Function Points = (Unadjusted Function Points) X 

(Value Adjustment Factor) 

This is referred to as the Function Point Count, denoted by FP, in the following. The measure of 

interest is that of software quality, defined by 

Software Quality = 1 - [(Number of defects found) / FP]
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Each of the functional components of a software system is analyzed in this way and each component's 

FP score is added to the total to derive a total Function Point count for the application.  

Once the Function Point Count, FP, has been calculated, it can be used as a measure of software 

quality as defined above. The software quality measure can be computed during each phase of the 

software life cycle. The software quality measure is judged to be better as the value computed for the 

measure approaches the value 1.  

Remarks 

The software quality measure based on Function Point Analysis allows the software production process 

to be quantified in terms of the quality of the software produced and it is easily measured.  

Organizations that have adopted Function Point Analysis as a software measure claim to realize many 

benefits including improved: project estimating; understanding of project and maintenance activity 

productivity, management of changing project requirements and user requirements. Function Points can 

be converted to an equivalent size in terms of lines of source code (LOC).  

The following table, adapted from Ref. 4, provides a rough estimate of the average number of lines of 

code required to build one Function Point (FP) using various types of computer programming 

languages:

Additional information on the conversion of Function Points to lines of code can be found in Ref. 2.  

Function Points were originally designed to be applied to business information processing type 

applications. Capers Jones proposed extensions to the Function Point measure that may enable the 

concept to be applied to scientific and real-time application software. To use Function Points 

effectively, training in the calculation of Function Points is required.
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Assembly Language 300 

COBOL 100 

FORTRAN 100 

Pascal 90 

Ada 70 

Object-Oriented Languages 30 

Fourth Generation Languages 20 

Code Generators 15



Appendix A Software Engineering Measures

Function Point Analysis has proven to be an accurate technique for sizing, documenting and 

communicating a system's capabilities. It has been successfully used to evaluate the functions of real

time and embedded code systems, such as robot based warehouses and avionics, as well as traditional 

data processing. As computing environments become increasingly complex, it is proving to be a 

valuable tool that accurately reflects the systems we deliver and maintain.  

The measure is easy to understand throughout the software life cycle phases, even where direct 

measurement of reliability is not possible. Even when more direct measures of software quality and 

reliability are available, the software quality measure provides an additional perspective as to the 

effectiveness of the design and implementation processes and thus, has the potential of adding 

credibility to the product.  
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A.19 Function Test Coverage 

Readers are referred to the Section A.26 for the description of this measure.  

A.20 Graph-Theoretic Complexity for Architecture 

Categories 

* Structural Level derived 

* Life-Cycle Coverage design (artifact) 

Application 

Complexity measures can be applied early in the product cycle for development trade-offs as well as to 

assure system and module comprehensibility adequate for correct and efficient maintenance. Many 

system faults are introduced in the operational phase by modifications to systems that are reliable but 

difficult to understand. In time, a system's entropy increase making a fault insertion more likely with 

each new change. Through complexity measures the developer plans ahead for correct change by 

establishing initial order and thereby improves the continuing reliability of the system throughout its 

operational life.
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There are three graph-theoretic complexity measures for software architecture: 

(1) Static complexity - A measure of software architecture, as represented by a network of 

modules, useful for design tradeoff analyses. Network complexity is a function based on 

the countable properties of the modules (nodes) and network.  

(2) Generalized static complexity -- a measure of software architecture, as represented by a 

network of modules and the resources used. Since resources are acquired or released when 

program are invoked in other modules, it is desirable to measure the complexity associated 

with allocation of those resources in addition to the basic (static) network complexity.  

(3) Dynamic complexity - A measure of software architecture, as represented by a network of 

modules during execution, rather than at rest, as is the case for the static measures. For 

example, modules may execute at different frequencies.  

Prifmtives 

K = number of resources, index by k = 1, .... K 

E = number of edges, indexed by i = 1. E 

N = number of nodes, indexed byj = 1. N 

cj = complexity for program invocation and return along each edge ej as determined by the user ( 

such as operating system complexity) 

Resource status array R(kE) 

{I if kth resource is required for the ith edge (el) 
rid 0 otherwise 

dk = complexity for allocation of resource k as determined by the user ( for example, complexity 

associated with a procedure used to gain exclusive access to common data) 

Implementation 

Using nodes and edges, a strongly connected graph of the network is required. a strongly connected 

graph is one in which a node is reachable from any other node. This is accomplished by adding an edge 

between the exit node and the entry node. Each node represents a module that may or may not be 

executed concurrently with another module. Each edge represents program invocation and return 

between modules. In this case the edges are called single paths.  

1. Static Complexity - Once a strongly connected graph is constructed, with modules as nodes, 

and transfer of control as edges, the static complexity is calculated as C = E - N + 1 

2. Generalized Static complexity - Resources (storage, time, logic complexity, or other 

measurable factors) are allocated when programs are invoked in other modules. Given a
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network and resources to be controlled in the network, the generalized static complexity 

E K 

associated with allocation of these resources is C = I (c, + L (dk -r,)) 
i=1 k=1 

3. Dynamic Complexity - A change in the number of edges may result from module interruption 

due to invocations and returns. An average dynamic network complexity can be derived over a 

given time period to account for the execution of modules at different frequencies and also for 

module interruption during execution. Dynamic complexity is calculated using the formula for 

static complexity at various points in time. The behavior of the measure is then used to 

indicate the evolution of the complexity of the software.  

References 
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A.21 Information Flow Complexity 

Readers can be referred to the Section A. 10 for the description of the measure Information Flow 

Complexity.  

A.22 Lack of Cohesion in Methods (LCOM) 

Application 

This measure is a relative indicator of cohesion of a class. The "relative" originates from the fact that 

this measure is the subtraction of the number of related method pairs from the number of unrelated 

method pairs within the class under measurement [1]. Therefore the value of LCOM is a comparison 

between the number of correlated methods and the number of irrelevant methods from a design 

perspective (because whether two methods are correlated is determined by whether there is any 

instance variable shared by both of them. This criterion is based on the design perspective).
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Definition 

Consider a class C1 with n methods Mi, M2 ... , M.. Let {!j} be the set of instance variables used by 

method Mi. Then there are n such sets {(1}, {(}, ... , {I,}. Let P = {({I,, !j) I Ii nI/j = 0} and Q ={(, 

Ij) I Ii r 12 # •0}. If all n sets {11}, {}... ) I}are 0 then let P = 0 .  

The LCOM is defined as [1]: 

LCOM = P1 - IQI, if JP1 > 1Q18 

or 

LCOM = 0, otherwise 

LCOM is the sum total of the number of method pairs whose similarity9 is 0 minus the number of 

method pairs whose similarity is not zero. The larger the number of similar methods10 , the more 

cohesive the class, which is consistent with traditional notions of cohesion that measure the inter

relatedness between portions of a program [2].  

The LCOM value provides a measure of the relative disparate nature of methods in the class. A smaller 

number of disjoint pairs (elements of set P) implies greater similarity of methods. LCOM is intimately 

tied to the instance variables and methods of a class, and therefore is a measure of the attributes of an 

object class.  

The following are observations that relate to the value of this measure: 

I. Cohesiveness of methods within a class is desirable, since it promotes encapsulation.  

2. Lack of cohesion signals classes should probably be split into two or more subclasses.  

3. Any measure of disparateness of methods helps identify flaws in the design of classes.  

4. Low cohesion increases complexity, thereby increasing the likelihood of errors during the 

development process.  

Implementation 

1. Identify the n methods MI, A,, ..., M, in the class under measurement.  

2. Identify the n sets of {l}, {IŽ}..{I).  

3. Identify P and Q.  

s JP1 is defined as the number of elements contained in the set P.  

9The degree of similarity between two methods MI and M2 in class C, is given by: o = {J}) r) (12} where {11} and (12} are the 

sets of instance variables used by MI and M2.  

"10 Similar methods are also called correlated methods in this description. They are methods that share at least one instance 

variables.
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4. Calculate the LCOM.  

References 
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Boston, 1993.  

A.23 Man Hours per Major Defect Detected 

Categories

* Structural Level 

* Life-Cycle Coverage

derived

design (process)

This measure is created to supply a quantitative figure that can be used to evaluate the efficiency of the 

design and code inspection process.  

The design and code inspection processes are two of the most effective defect removal processes 

available. The early removal of defects at the design and implementation phases, if done effectively 

and efficiently, significantly improves the reliability of the developed product and allows a more 

controlled test environment.  

Primitives 

T, = time expended by the inspection team in preparation for design or code inspection meeting.  

"T2 = time expended by the inspection team in conduct of a design or code inspection meeting.  

Si = number of major (nontrivial) defects detected during the ith inspection.  

I = total number of inspections to date.  

Implementation 

At each inspection meeting, record the total preparation time expended by the inspection team. Also, 

record the total time expended in conducting the inspection meeting. All defects are recorded and 

grouped into major/minor categories. (A major defect is one which must be corrected for the product to 

function within specified requirements.)
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The inspection time is summarized and the defects are cumulatively added. The computation should be 

performed during design and code. If the design is not written in a structural design language, then this 

measure can be only applied during the implementation phase.  

The man hours per major defect detected is 
I 

S(T1 + o 

si= 

This computation should be initiated after approximately 8000 lines of detailed design or code have 

been inspected.  
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A.24 Mean Time to Failure 

Categories 

* Structural Level derived 

• Life-Cycle Coverage testing (process) 

Application 

The goal of this measure is for hypothesis testing a specified MTTF requirement.  

Primitive 

Mean time to failure is the basic parameter required by most software reliability models. Computation 

is dependent on accurate recording of failure time (ti), where t, is the elapsed time between the ith and 

the (i-1)st failure. Time units used should be as precise as feasible. CPU execution time provides more 

resolution than wall-clock time. Thus CPU cycles would be more appropriate for a software 

development environment. For an operational environment that might require less resolution, an 

estimate based on wall-clock time could be used.  

Implementation 

Detailed record keeping of failure occurrences that accurately track the time (calendar or execution) at 

which the faults manifest themselves is essential. If weighting or organizing the failures by complexity,
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severity, or the reinsertion rate is desired, detailed failure analysis must be performed to determine the 

severity and complexity. Prior failure experience or model fitting analysis (for example, goodness-of

fit-test) can be used to select a model representative of a failure process, and to determine a reinsertion 

rate of faults.  
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A.25 Minimal Unit Test Case Determination 

Categories

• Structural Level 

• Life-Cycle Coverage

derived

design (artifact)

This measure determines the number of independent paths through a module so that a minimal number 

of covering test cases can be generated for unit test.  

Primitives 

N = number of nodes; a sequential group of program statements

E = number of edges; program flow between nodes
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SN = number of splitting nodes; a node with more than I edge emanating from it 

RG = number of regions; in a graph with no edges crossing, an area bounded by edges 

Implementation 

The cyclomatic complexity is first computed using the cyclomatic complexity measure described in 6.  

The complexity of the module establishes the number of distinct paths. The user constructs test cases 

along each path so all edges of the graph are traversed. This set of test cases forms a minimal set of 

cases that covers all paths through the module.  

References 

I. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Conte, S. D., Dunsmore, H. E., Shen, V. Y., Software Engineering Metrics and Models, 

Menlo Park: Benjamin/Cummings Publishing Co, 1986.  
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A.26 Modular Test Coverage 

Categories 

* Structural Level derived 

* Life-Cycle Coverage testing (process) 

Application 

This measure quantifies a software test coverage index for a software delivery.  

The primitives counted may be either functions or modules. The operational user is most familiar with 

the system and will report system problems in terms of functional requirements rather than module test 

requirements. It is the task of the evaluator to obtain or develop the functional requirements an 

associated module cross-reference table.  

Primitives 

FE = number of the software functional (modular) requirements for which all test cases have been 

satisfactorily completed.
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FT = total number of software functional (modular) requirements.  

Implementation 

The test coverage index is expressed as a ratio of the number of software functions (modules) tested to 

the total number of software functions (modules) that make up the users' (developers') requirements.  

This ratio is expressed as 

FE 
Functional (modular) test coverage index = 

FT 
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A.27 Mutation Testing 

Categories 

"* Structural Level derived 

"• Life-Cycle Coverage testing (process) 

Application 

The goal of this measure is to examine the ability of the test data to differentiate between a correct 

program and an incorrect one.  

Several known error types are inserted into the program and the program is executed with the specified 

test cases and in the testing environment. This allows the estimation of the number of errors remaining 

in the program.
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Primitives 

Number of seeded errors found 

Total number of seeded errors 

Number of real errors found 

Implementation 

This measure, denoted by MTR, is based on the assumption that the ratio of the seeded errors found to 

the total number of seeded errors is approximately equal to the ratio of the number of real errors found 

to the number of real errors. Thus, MTR is defined as follows: 

AMTR Number of seeded errors found - Number of real errors found 
Total number of seeded errors Total number of real errors 

The equation that defined MTR allows one to solve for any of the variables given knowledge of the 

other three. In particular, one can estimate the total number of real errors remaining and the associated 

testing effort. If all seeded errors were found, this is an indication that either the test cases are adequate, 

the inserted mutations (seeded errors) do not represent the distribution of real errors or the seeded 

errors were too easy to find.  

Remarks 

The measure is easy to calculate and provides an indication that the test cases are adequate to locate 

software errors. This measure is applicable to algorithmic solution and generally results in good 

estimates of operational reliability.  

The generation of mutations may be labor intensive. The error types and seeded errors must be a 

statistical distribution of real errors in the program for this method to be of value. Even for a small 

program the number of mutants can be quite large.  

A mutation of a correct program is another program that exhibits differences from the correct one 

(these are referred to as "seeded errors" even though they are intentionally inserted into the program).  

These errors are inserted one at a time and reflect those errors that may be made by a "competent 

programmer." An example of such of such an error is replacing "<" by">" in a conditional. See Refs.  

1, 2, and 3 for additional detail on the mutation testing measure.  

References 

1. Peng, W. and Wallace, D., Software Error Analysis, NIST Special Publication 500-209, 1993.  

2. Myers, G., The Art of Software Testing," John Wiley & Sons, 1979.  

3. Royer, T., Software Testing Management: Life on the Critical Path," Prentice-Hall, Inc., 
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A.28 Number of Children (NOC) 

Application 

NOC is the count of the immediate subclasses of the class being measured. NOC was presented by 

Chidamber and Kemerer as a measure of complexity [1] [2].  

Definition 

NOC is defined as the number of immediate subclasses subordinated to a class in the class hierarchy.  

This measurement has the following viewpoints [I]: 

I. The greater the number of children, the greater the reuse, since inheritance is a form of reuse.  

2. The greater the number of children, the greater the likelihood of improper abstraction of the parent 

class. If a class has a large number of children, it may be a case of misuse of subclassing.  

3. The number of children gives an idea of the potential influence a class has on the design. If a class 

has a large number of children, it may require more testing of the methods in that class.  

Implementation 

1. Construct the class hierarchy diagram (see Figure A-1).  

2. Identify the immediate subclasses of the class under measurement. For instance, if the class P in 

Figure A-I is under measurement, then the immediate subclasses of class P are class C and class 

D.  

3. Sum up the number of such subclasses. For instance, that number is 2 in the previous example. The 

number is NOC.  

References 
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A.29 Number of Class Methods in a Class 

Application 

This measure assesses software size in terms of the number of methods in a class [I].
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The number of class methods can indicate the amount of commonalty being handled for all instances. It 

can also indicate poor design if the services handled by individual instances1" are handled by the class 

itself.  

Definition 

Methods are the behaviors that a class can exhibit. Generally they are activated by a message sent to 

the class. The number of methods available to the class affects the size of the class.  

Implementation 

1. Identify all the methods within the class under measurement. These methods include the 

overridden methods.  

2. Count the number of the methods retrieved by step 1.  

3. This number is the value of the measure number of class methods in a class.  

References 
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Jersey, 1994

A.30 Number of Faults Remaining (Error Seeding) 

Categories

"* Structural Level 

"* Life-Cycle Coverage

derived

requirements (artifact)

Application 

This measure estimates the faults remaining in a program. The estimated number of faults remaining in 

a program is related to the reliability of the program. There are many sampling techniques that estimate 

this number. This section describes a simple form of seeding that assumes a homogeneous distribution 

of a representative class of faults.  

This measure can be applied to any phase of the software life cycle. The search for faults continues for 

a determined period of time that may be less than that required to find all seeded faults. The measure is 

not computed unless some non-seeded faults are found.  

" The instance means the subclass in this context.
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Primitives 

N, = number of seeded faults 

n,= number of seeded faults found 

nF= number of faults found that were not intentionally seeded 

Implementation 

A monitor is responsible for error seeding. The monitor inserts (seeds) N, faults representative of the 

expected indigenous faults. The test team reports to the monitor the faults found during a test period of 

predetermined length.  

Before seeding, a fault analysis is needed to determine the types of faults and their relative frequency 

of occurrences expected under a particular set of software development conditions. Although an 

estimate of the number of faults remaining can be made on the basis of very few inserted faults, the 

accuracy of the estimate (and hence the confidence in it) increases as the number of seeded faults 

increases.  

Faults should be inserted randomly throughout the software. Personnel inserting the faults should be 

different and independent of those persons later searching for the faults. The process of searching for 

the faults should be carried out without knowledge of the inserted faults. The search should be 

performed for a previously determined period of time (or effort) and each fault reported to the central 

monitor.  

Each report fault should be reviewed to determine if it is in the class of faults being studied and, if so, if 

it is a seeded or an indigenous fault. The maximum likelihood estimate of the number of indigenous 

(unseeded) faults in the specified class is 

NF = nN 

ns 

where NF is truncated to the integer value. The estimate of the remaining number of faults is then 

NFm = NF - nF 

The probability of finding nF of NF indigenous faults and nF of N, seeded faults, given that there are (nh 

+ n5) faults found in the program is C(NS, n,) C(NF nF) / C(NF +N,. nF + n,), where the function C(x, y) 

= x!/(x-y)!y! is the combination of"x" things taken at "y" at a time. Using this relation one can 

calculate confidence intervals.

A-53



Appendix A Software Engineering Measures

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Thayer, T. A., Kipow, M., Nelson, E. C., Software Reliability: A Study of Large Project 

Reality, New York: North Holland Publishing Co, 1978.  

3. Basin, S. L, Estimation of Software Error Rates Via Capture-Recapture Sampling, Palo Alto: 

Science Applications Inc, Sept 1973.  

4. Basin, S. L., Measuring the Error Content of Software, Palo Alto: Science Applications Inc, 

Sept 1974.  

5. Bowen, J. B., Saib, S. H., Association of Software Errors, Classifications to AED language 

Elements, Prepared under Contract Number NAS 2-10550 by Hughes Aircraft Company, Ful

lerton, and General Research Corporation, Santa Barbara, California, Nov 1980.  

6. Bowen, J. B., Saib, S. H., Error Seeding Technique Specification, Prepared under Contract 

Number NAS 2-10550 by Hughes Air-craft Company, Fullerton, and General Research 

Corporation, Santa Barbara, California, Dec 1980.  

7. DACS, Rudner Model, Seeding/Tagging, Quantitative Software Models, DACS, SSR- 1, Mar 

1979, pp 8-56 to 3-58.  

8. Duran, J. W., Wjorkowski, J. J., Capture-Recapture Sampling for Estimating Software Error 

Content, IEEE Transactions on Software Engineering, vol SE-7, Jan. 1981.  

9. Feller, W., An Introduction to Probability Theory and Its Applications, New York: John Wiley 

and Sons, Inc, 1957, p 43.  

10. System Specification for Flexible Inter-connect Specification Number SS078779400, May 

15,1980.  

11. Lipow, M., Estimation of Software Package Residual Errors, TRW Software Series SS-72-09, 

Redondo Beach: TRW E&D, 1972.  

12. McCabe, T. J., Structural Testing, Columbia, Maryland: McCabe & Associates, Inc, 1984.  

13. Mills, H. D., On the Statistical Validation of Computer Programs, FSC-72-6015, Gaithers

burg, Maryland: Federal Systems Division, Inter-national Business Machines Corporation, 

1972.  

14. Ohba, M., et al. S-shape Reliability Control Curve: How Good Is It? Proceedings COMP

SACS2, IEEE Computer Society, 1982, pp 38-44.  

15. Rudner, B., Seeding/Tagging Estimation of Software Errors: Models and Estimates. RADC

TR-15, 1977.

A-54



Appendix A Software Engineering Measures

16. Seber, G. A. F., Estimation ofAnimalAbundance and Related Parameters, 2nd ed, New York: 

McMillan Publishing Co, 1982.  

A.31 Number of Key Classes 

Application 

This measure estimates the number of key classes in a system. The value of this measure is an indicator 

of effort required to develop the system.  

Definitions 

Key classes are central to the business domain being developed. Key classes are also the central points 

of reuse on future projects, since they are highly likely to be needed in other domains in the business 

[1]. The number of key classes is an indication of the volume of work needed in order to develop an 

application. It is also one indication of the amount of long-term reusable objects that will be developed 

as a part of this effort for applications dealing with the same or similar problem domain.  

Implementation 

Usually, we can determine if a class is key by asking questions such as, 

I. Could I easily develop applications in this domain without this class? 

2. Would a customer consider this object important? 

3. Do many scenarios involve this class? 

Answers to these questions will segregate classes into categories of key and support. In general, project 

experiences have shown that you can expect 20-40 percent of your classes being categorized as key 

domain classes, with the rest being support classes. Low numbers of key classes may indicate that you 

need to explore more of your business domain to discover important abstractions to simulate your 

business.  

Reference 

1. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc.  

New Jersey, 1994

A.32 Requirement Compliance 

Categories

. Structural Level derived
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Life-Cycle Coverage requirements (artifact) 

Application 

The goal of this measure is to verify requirements' compliance by using system verification diagram 

(SVDs).  

SVD is a logical interconnection of stimulus response elements (for example, stimulus and response) 

which detect inconsistencies, incompleteness, and misinterpretations.  

Primitives 

Des = decomposition elements: 

Stimulus - external input 

Function - defined input/output process 

Response - result of the function 

Label - numerical DE identifier 

Reference - specification paragraph number 

Requirement errors detected using SVDs: 

N1 = number due to inconsistencies 

N2 = number due to incompleteness 

N3 = number due to misinterpretation 

Implementation 

The implementation of an SVD is composed of the following phases: 

(1) The decomposition phase is initiated by mapping the system requirement specifications into 

stimulus/response elements (Des). That is, all keywords, phases, functional and/or 

performance requirements and expected outputs are documented on decomposition forms.  

(2) The graph phase uses the Des from the decomposition phase and logically connects them to 

form the SVD graph.  

(3) The analysis phase examines the SVD from the graph by using connectivity and 

reachability metrics. The various requirements error types are determined by examining the 

system verification diagram and identifying errors as follows: 

a) Inconsistencies --- Decomposition elements that do not accurately reflect the system 

requirement specification.

A-56



Appendix A Software Engineering Measures

b) Incompleteness --- Decomposition elements that do not completely reflect the system 

requirement specification.  

c) Misinterpretation -- Decomposition element that do not correctly reflect the system 

requirement specification. This error may occur during translation of the requirements 

into decomposition elements, constructing the connectivity and reachability matrices.  

An analysis is also made of the percentages for the various requirement error types for the respective 

categories' inconsistencies, incompleteness, and misinterpretation.  

Inconsistencies (%) = (N]/(NI+N 2+N3)) * 100 

Incompleteness (%) = (N2/(N1+N2+N3)) * 100 

Misinterpretation (%) = (N3/(N1+N2+N3)) * 100 

This analysis can aid also in future software development efforts.  

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Fischer, K. F., Walker, M. G., Improved Software Reliability Through Requirement 

Verification, IEEE Transactions on Reliability, vol R-28, no 3, Aug. 1979, pp 233-239.  

A.33 Requirements Specification Change Requests 

Categories

* StructuralLevel 

* Life-Cycle Coverage

derived

requirement (artifact)

This measure indicates the stability of the functional requirements.  

The requirements phase of the software life cycle has the greatest potential for improving the quality of 

the resulting system and helping to control the software development cost. It has been observed that a 

significant cause of project failure and poor quality in software systems is frequent changes to the 

requirements.  

Primitives 

Requested changes to the requirements specification
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Implementation 

The requirements specification change request measure, denoted by RSCR, is defined as the number of 

change requests that are made to the requirements specification. The requested changes are counted 

from the time of the first release of the requirements specification document to the time when the 

product begins it operational life. Thus, RSCR is defined as: 

RSCR = E.(requested changes to the requirements specification), 

where the summation is taken over all requirement change requests initiated during the software 

development life cycle.  

RSCR is an indication of the quality of the resulting software system. Evidence suggests that the 

system quality decreases as the size of RSCR increases.  

Remarks 

The RSCR is easy to compute and clearly shows the stability and/or growth of functional requirements 

throughout the software life cycle, by life cycle phase.  

The use of this measure in conjunction with Function Points or Feature Point counts can be used to 

show status and trends in requirements growth.  

The measure is easy to understand throughout the software life cycle phases, even where direct 

measurement of reliability is possible. Even when more direct measures of reliability are available, 

RSCR measure provides an additional view of the effectiveness of the finctional specification process 

used and has the potential of adding credibility to the product.  

References 

1. Moller, K. and Paulish, D., Software Metrics, A Practitioner's Guide to Improved Product 

Development, Chapman and Hall Computing, 1993.  

2. Jones, C., Applied Software Measurement, McGraw-Hill, Inc., 1991.  

A.34 Requirements Traceability 

Categories 

* Structural Level derived 

* Life-Cycle Coverage design (artifact) 

Application 

This measure aids in identifying requirements that are either missing from, or in addition to, the 

original requirements.
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Primitives 

RI = number of requirements met by the architecture.  

R2 = number of original requirements.  

Implementation 

A set of mappings from the requirements in the software architecture to the original requirements is 

created. Count each requirement met by the architecture (RI) and count each of the original 

requirements (R2). Compute the traceability measure (TM): 

TM = R1 xl100% 
R2 

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Henninger, K., Specifying Software Requirements for Complex Systems, New Techniques 

and Their Application, IEEE Transaction on Software Engineering, vol SE-6, no 1, Jan. 1980, 

pp I - 14.  

3. Perriens, M. P., Software Requirements Definition and Analysis with PSL and QBE, IBM 

Technical Report FSD 80-0003, Bethesda, IBM Federal Systems Division, Oct. 1980.  

4. Yeh, R., Zave, P., et al, Software Requirements: A Report on the State of the Art, Computer 

Science Technical Report Series TR-949, College Park, Maryland, University of Maryland, 

Oct. 1980.  

A.35 Reviews, Inspections and Walkthroughs 

Categories 

* Structural Level derived 

* Life-Cycle Coverage requirements (process) 

Application 

This measure identifies the number of satisfied checklist items for each product.  

Performing technical reviews, walkthroughs and/or inspections may affect the overall quality of the 

software development work products (e.g., software requirements specification, test plan, design 

description, code, etc.) This measure uses various checklists and captures the number of checklist items 

satisfied for each specific work product of interest.
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Primitives 

NC, = the number of checklist items satisfied for that work product 

N= the total number of checklist items applicable to that work product.  

Implementation 

Several checklists exist that can be used to evaluate a particular work product to the software 

development process; e.g., a checklist for system testing (see Ref. 2, pages 371-374). Other checklists 

are found in references (TBD).  

This type of measure is defined as follows: 

For a specific work product and selected checklist, the figure of merit, denoted by FOM, be defined as: 

FOM= [(X (NC))/ N] * 100, 

where 

NCi = the number of checklist items satisfied for that work product 

N= the total number of checklist items applicable to that work product.  

FOM is only an indication of the quality of the resulting software system. Confidence in the specific 

work product increases non-linearly as the FOM approaches 100%.  

Remarks 

The measure is easy to calculate and provides a quality check for each work product at each life cycle 

phase of the software development effort.  

The measure is easy to understand throughout the software life cycle phases, even where direct 

measurement of reliability is possible. Even when more direct measures of reliability are available, this 

measure provides an additional view of the effectiveness of development process used and has the 

potential of adding credibility to the product.  

References 

I. Moller, K. and Paulish, D., Software Metrics, A Practitioner's Guide to Improved Product 

Development, Chapman and Hall Computing, 1993.  

2. Freedman, D. and Weinberg, G., Handbook of Walkthroughs, Inspections and Technical 

Reviews: Evaluating Programs, Projects, and Products, Dorset House Publishing Company, 

1990.  

3. Redmill, F., Dependability of Critical Computer Systems 1, Elsevier Applied Science, 1988.
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A.36 Software Capability Maturity Model (CMM) 

Categories 

* Structural Level primitive 

• Life-Cycle Coverage requirements (process) 

Application 

The goal of this measure is to describe the principles and practices underlying software process 

maturity and is intended to help software organizations improve the maturity of their software 

processes.  

The SW-CMM is a framework that describes the key elements of an effective software process. It 

covers practices for planning, engineering, and managing software development and maintenance.  

When followed, these key practices improve the ability of organizations to meet goals for cost, 

schedule, functionality, and product quality.  

Primitives 

This measure, denoted by Li, where i = 1, 2, 3, 4, 5, is based on the assumption that the predictability, 

effectiveness, and control of a project's or an organization's software processes-and hence the 

production of higher-quality software-are believed to improve as the organization moves up these five 

levels. While not rigorous, empirical evidence to date supports this belief.  

Li is defined as follows: Li represents the project's or organization's software process maturity as 

measured using one of the Software Engineering Institute's CMM-based appraisal instruments.  

The CMM-based appraisal methods rate an organization's software process maturity and classifies it as 

one of the following levels: 

1. Initial. The software process is characterized as ad hoc, and occasionally even chaotic. Few 

processes are defined, and success depends on individual effort and heroics.  

2. Repeatable. Basic project management processes are established to track cost, schedule, and 

functionality. The necessary process discipline is in place to repeat earlier successes on 

projects with similar applications.  

3. Defined. The software process for both management and engineering activities is 

documented, standardized, and integrated into a standard software process for the 

organization. All projects use an approved, tailored version of the organization's standard 

software process for developing and maintaining software.
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4. Managed. Detailed measures of the software process and product quality are collected. Both 

the software process and products are quantitatively understood and controlled.  

5. Optimizing. Continuous process improvement is enabled by quantitative feedback from the 

process and from piloting innovative ideas and technologies.  

Remarks 

The measure is easy to calculate and provides an of software process maturity. This can be used to infer 

the quality of the resulting software products that are developed by each maturity level process.  

This is not a direct measure of the reliability of the software developed by an Li process.  

Except for Level 1, each maturity level is decomposed into several key process areas that indicate the 

areas an organization should focus on to improve its software process.  

The key process areas at Level 2 focus on the software project's concerns related to establishing basic 

project management controls. They are requirements management, software project planning, software 

project tracking and oversight, software subcontract management, software quality assurance, and 

software configuration management.  

The key process areas at Level 3 address both project and organizational issues, as the organization 

establishes an infrastructure that institutionalizes effective software engineering and management 

processes across all projects. They are organization process focus, organization process definition, 

training program, integrated software management, software product engineering, intergroup 

coordination, and peer reviews.  

The key process areas at Level 4 focus on establishing a quantitative understanding of both the 

software process and the software work products being built. They are quantitative process 

management and software quality management.  

The key process areas at Level 5 cover the issues that both the organization and the projects must 

address to implement continual, measurable software process improvement. They are defect 

prevention, technology change management, and process change management.  

Each key process area is described in terms of the key practices that contribute to satisfying its goals.  

The key practices describe the infrastructure and activities that contribute most to the effective 

implementation and institutionalization of the key process area. The intention in setting down the key 

practices is not to require or espouse a specific model of the software life cycle, a specific 

organizational structure, a specific separation of responsibilities, or a specific management and 

technical approach to development. The intention, rather, is to provide a description of the essential 

elements of an effective software process.  

The key practices are intended to communicate principles that apply to a wide variety of projects and 

organizations, that are valid across a range of typical software applications, and that will remain valid 

over time. Therefore, the approach is to describe the principles and leave their implementation up to 

each organization, according to its culture and the experiences of its managers and technical staff.
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A.37 System Design Complexity 

Categories

* Structural Level 

* Life-Cycle Coverage

derived

design (artifact)

The goal of this measure is to identify the system complexity.  

Systems with high complexity are more likely to contain faults than systems with lower complexity.  

One measure of system complexity that has some experimental validation is system design complexity.  

An expected fault rate can be derived from the design complexity.  

Primitives 

Let

n = number of modules in the system

(i) = fanout of the it" module 

v(i) = number of 1/0 variables in the th module 

Derived quantities are: 

S(i) = structural complexity of the ?' module 

D(i) data complexity of the ith module 

St = program structural complexity
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Dt = program data complexity 

C = program design complexity 

Fr = fault rate, in terms of expected faults per KLOC 

Here, "fanout" is defined, for a module, to be the number of other modules called (found by counting 

the number of "call" statements in the module). 1/0 variables are distinct arguments exchanged 

between the module and the rest of the program, and includes distinct arguments in a calling sequence 

and referenced global variables.  

Module design complexity is a combination of structural complexity and data complexity, and system 

design complexity is a function of the average complexity of the various module. The following 

equations are used: 

S(i) = f 2 (i) 

D(i) = v) 
f(i) + 1 

St= Zf 2 (i) 
i=1 

Dt = __ v(i) 

n j=1 f(i) + 1 

C = St + Dt 

Fr = 0.4 x C-5.2 

Implementation 

The fault rate is given in terms of delivered lines of code, and is derived from experimental data. Only 

a limited number of cases were used to fit the curve, and the parameters may need to adjusted for other 

organizations.  

Remarks 

This measure does consider more than one aspect of complexity, which is better than most complexity 

measures.  

This appears a useful technique for predicting faults in code, once the detailed design or code is 

available.  

References 

1. David N. Card and Robert L. Glass, Measuring Software Design Quality, Prentice-Hall 

(1990).
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A.38 Test coverage 

Categories 

• Structural Level derived 

• Life-Cycle Coverage testing (process) 

Application 

The goal of this measure is to identify the completeness of the testing process from both a developer 

and a user perspective.  

The measure relates directly to the development, integration and operational test stages of product 

development, in particular, unit, functional, system and acceptance tests. Developers, using the 

program class of primitives, can apply the measure in unit test to obtain a measure of thoroughness of 

structural tests. System tester can apply the measure in two ways: First, by focusing on requirements 

primitive, the system tester can gain o user-view of the thoroughness of functional tests. Second, by 

focusing on the program class of primitives, the system tester can determine the amount of 

implementation in the operational environment.  

Primitives 

The primitives for test coverage are in two classes, program and requirements. For program, there are 

two type: functional and data. The program functional primitives are either modules, segments, 

statements, branches (nodes), or paths. Program data primitives are equivalence classes of data.  

Requirements primitives are either test cases or functional capabilities.  

Implementation 

Test coverage (TC) is the percentage of requirement primitives implemented times the percentage of 

primitives executed during a set of tests. A simple interpretation of test coverage can be expressed by 

the following formula: 

TC(%) = (implemented capabilities) × (program primitives tested) ×100 

(required capabilities) (total program primitives) 

References 

1. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable 

Software, IEEE, 1988.  

2. Demillo, R. A., Martin, r. J., Software Test and Evaluation: Current Defense Practices 

Overview, Georgia Institute of Technology, Jun. 1983.  

3. McCabe, T., Tutorial Text: Structured Testing, IEEE Computer Society Press, 1981.
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4. Miller, E., Tutorial: Program Testing Techniques, IEEE Computer Society Press, 1977.  

A.39 Test Mutation Score 

Application 

This measure is designed initially for the purpose of providing a measure of the efficiency of a testing 

data set T. A high score indicates that T is very efficient for the program P with respect to mutation 

fault exposure.  

Definitions 

A mutation is a single-point, syntactically correct change, introduced in the program P to be tested. The 

mutation score, denoted ms, is the ratio of the non-equivalent mutants of P (i.e. those which are 

distinguishable from P for at least one data point of the input domain) which are killed by a specific test 

data set T [1].  

A mutant is the code after a syntactical modification. A mutant is killed by a test case that causes the 

mutant program to produce "altered" output. Equivalent mutants are mutant programs that are 

functionally equivalent to the original program and therefore cannot be killed by any test case. The goal 

of mutation is to find test cases that kill all nonequivalent mutants. [21 

Implementation 

A set of mutants of P consists of a set of programs which differ from P in containing one mutation from 

a given list of faults representative of the most likely faults introduced by programmers using the 

language of P. A mutant is killed (i.e. distinguished from P) by a test set T if its output history differs 

from that of the original program P.  

For instance, one of the possible mutants of the following FORTRAN procedure 

SUBROUTINE MI(X, MAG) 

MAG= I 

DO1I =I,N 

I MAG = MAG + X(I)**2 

MAG = SQRT(MAG) 

RETURN 

END 

is to change the target of the loop, which is the labeled "1" statement, to another labeled target, which 

is the labeled "1" statement below.  

SUBROUTINE M I (X, MAG) 

MAG=1 

DO 1 I=1,N
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MAG = MAG + X(I)**2 

I MAG = SQRT(MAG) 

RETURN 

END 

Mutation analysis has already been used in experiments conducted on FORTRAN, COBOL and C 

programs. A specific mutant generator is required for each programming language, in order to produce 

syntactically correct changes that should be representative of the programmers' faults.  

It is debatable whether a mutation score is a convincing measure of the actual fault revealing power of 

a test set. Nevertheless, let us note that (1) mutations are faults related to the program structure, and (2) 

by essence, structural testing should aim at tracking down faults related to implementation (while 

functional testing should focus on other fault types). Thus mutations representative of the likely faults 

committed by the programmer form a fault set consistent with structural testing; and the mutation score 

is a meaningful measure at least for assessing the relative efficiency of different structural testing 

methods. In any case, a high mutation score indicates that the test set strongly probes the program 

structure (thus, has a high fault revealing power), while a low score reveals inadequacies. Moreover, 

despite the fact that mutations are simple changes, they can produce errors that are representative of the 

subtle errors caused by real faults.  

References 

I. P. Thevenod-Fosse, C. Mazuet, Y. Crouzet, "On Statistical Structural Testing of Synchronous Data 

Flow Programs," Proceedings of 1Pf European Dependable Computing Conference (EDCC-1), 

Berlin, Germany, LNCS, Springer Verlag, 1994, pp. 250-267.  

2. J. M. Voas, G. McGraw, Software Fault Injection: Inoculating Programs Against Errors, John 

Wiley & Sons, Inc., New York, 1998 

A.40 Weighted Method per Class (WMC) 

Application 

WMC is the sum of weighted methods in a class. Each method within the class is weighted by some 

sort of complexity metric and this weight is summed up so as to arrive at WMC [2][3]. WMC was 

presented by Chidamber and Kemerer as a measure of complexity [3].  

Definitions 

Consider a class C, with methods M,, ... M. defined in C. Let c1, c_, ... c. be the complexity of the 

methods respectively. Then WMC is defined [3]: 

Equation A-1 

WMC=ZcJ 
J~l
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The following assigned weights are used to compute method complexity [I]:

API calls 

Assignments 

Binary expressions or arithmetic operator 

Keyword messages or messages with parameters 

Nested expressions 

Parameters 

Primitive calls 

Temporary variables 

Unary expression or messages without parameters

5.0 

0.5 

2.0 

3.0 

0.5 

0.3 

7.0 

0.5 

1.0

Implementation

1. Inspect the method i of the class C and identify the complexity of each statement in this method 

according to the mapping of weights described in the previous table.  

2. The complexity of method i (c,) is defined as the sum of the results obtained in step 1.  

3. Calculate WMC according to the Equation A-1.  

References 

1. M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide, Prentice Hall, Inc. New 

Jersey, 1994.  

2. R. D. Neal, The Applicability of Proposed Object-Oriented metrics to Developer Feedback in 

Time to Impact Development, NASA/WVU Software IV&V Facility, Software Research 

Laboratory, Technical Report Series, NASA-IVV-96-004, NASA, 1996.  

3. S. R. Chidamber, F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Transactions on 

Software Engineering, Vol. 20, No. 6, June 1994.
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APPENDIX B SOFTWARE ENGINEERING MEASURES 
QUESTIONNAIRE 

Please read the report, then answer questions (1) to (10). Use tables from Table B-iE to Table B-10E as 
examples for answering the questions.  

THIS QUESTIONNAIRE IS TO BE ANSWERED BY EXPERTS ONLY 

QUESTIONS: 

1. Please print your name: 

2. Please print your title: 

3. For each software engineering measure listed in Table B-I check if: 

(i) you were an inventor of the measure or closely associated with the invention of the 
measure.  

(u) you were a user of this measure on projects or experiments. Then 

Specify the number of projects 

Specify the size of these projects (KLOCs or FPs). Give minimum, 
maximum and average size.  

Specify the context of applications, e.g. safety critical, aerospace, 
nuclear, etc. This column in Table B-1 contains only an index list of 
applications related to this measure. The detailed context is described in 
Table B-2.  

(1) your knowledge of the measure is obtained from the reading of published 
materials (books, papers, reports) 

(w) your knowledge of the measure is the result of your attendance to workshops and/or 
conferences (specify the duration of these events in number of 8-hours days).  

(o) No experience.  

Please fill Table B-I and Table B-2.  

4. Rate the measures given according to the ranking criteria specified in section 3 by filling the 
"rate" columns in Table B-3 and B-4. In Table B-3 rate all criteria except the two relevance 
criteria. The two relevance criteria are software life cycle phase dependent. In Tables B-4 
rate the relevance criteria for the requirements, design, implementation and testing phases.  

(Note: Please do not rate measures for which you are not qualified).  

5. For each measure in the list, associate a degree of confidence (a number between 0 and 1) to 
your rating of the measure. This degree of confidence reflects your knowledge and 
experience in the measure. A degree of confidence of "0" means that you are absolutely
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unsure of your rating (and consequently you should not have rated the measure)! A degree of 

confidence "1" means that you are absolutely sure of your rating.  

If necessary, you can specify a degree of confidence for individual ranking criteria. For instance, you 

could be absolutely certain of your evaluation of the rate of ranking criteria X for measure A, but 
absolutely unsure of your evaluation of the rate of ranking criteria Y (for this same measure.) This 
would translate into the following degrees of confidence: 

Deg. of confidence (XIA) = 1 
Deg. of confidence (YIA) = 0 

Please fill the confidence columns in Table B-3 and B-4.  

6. Identify measures highly correlated with the measure currently being rated. Highly correlated 

signifies that the current measure can replace the correlated measure, i.e. the information 

provided by each measure is almost identical. For example, consider "failure rate" and "mean 

time to failure", these two measures are highly correlated since one can be derived from the 
other and vice versa.  

Please fill Table B-5 by specifying names of highly correlated measures.  

7. Identify possibly missing measures that will help us in realizing the aims of the projects.  

8. Define the "missing measures" to a level understandable to any of your colleagues. Append 

these descriptions to this questionnaire. The description should include facts that would help 

others make an assessment of the ranking criteria's rate for the particular measure identified.  

Please fill Table B-8. If you have more than one "missing measure", there should exist more 

than one Table B-8s. Please caption them as Table B-8-1, Table B-8-2, ... , etc.  

9. Perform steps (3), (4), (5) and (6) for all "missing measures" identified and complete Table 

B-6, Table B-7, Table B-9 and Table B-10 respectively.  

10. Add to your report any comments you might have on the ranking criteria.
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Table B-1 Sources of Knowledge

(u) 
.0 

size of projects i4 

Measure (i) 0- € () (W) (0) 

00 E2 

Bugs per line of code 
(Gaffney estimate) 

Cause & effect graphing 
Code defect density 

Cohesion 

Completeness 

Cumulative failure profile 

Cyclomnatic complexity 
Data flow complexity 

Design defect density 

Error distribution 

Failure rate 

Fault density 

Fault-days number 

Feature point analysis 

Function point analysis 

Functional test coverage 

Graph-theoretic static 
architecture complexity 

Man hours per major 
defect detected 

Mean time to failure 

Minimal unit test case 
determination 

Modular test coverage 

Mutation testing (error 
seeding).  

Number of faults 
remaining (error seeding) 

Requirements compliance

B-3

SThis contains an index list of applications' description. The detailed description of applications is in Table B-2.
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(u) 

size of projects 

Measure (i) (W) () 
o E = • 

4. 0 

0 E E V I 
A- E 

Eo 

~C 
0 

Requirements 
specification change 

requests_ 

Requirements traceability 

Reviews, inspections and 

walkthroughs I 

Software capability 
maturity model 

System design complexity 

Test coverage 

Table B-2 Software Reliability Engineering Measures Related Applications' Descriptions 

Application's Index Description 

I 

2 

3 

4 

5 

6
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Table B-1E Example of Table B-1 Sources of Knowledge

(u) 

size of projects 
0

Measure (i) . - (I) (w) (o) 

E 
.2 5 

0 

Failure rate x 

Function Point Analysis 150 FP 450 FP 300 FP 1,2

Table B-2E Example of Table B-2 Software Reliability Engineering Measures Related Applications' 
Descriptions 

Application's Index Description 

1 PACS system reliability evaluation. PACS is a real-time gate security control system.  

GWRPS system safety evaluation. GWRPS is a safety critical, real-time nuclear plant 
2 protection system.

1 This contains an index list of applications' description. The detailed description of applications is in Table B-2E.
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Table B-3 Evaluation of Measures by Criteria (except relevance criteria)

Time- Cost Benefits Credibility Repeat- Experience Validation 

liness ability 

Measure c
0 0 0 0 0 0 0 

~ 0

CD CD 0 CD CD 

Bugs per line of code (Gaffney estimate) 

Cause & effect graphing 

Code defect density 

Cohesion 

Completeness 

Cumulative failure profile 

Cyclomatic complexity 

Data flow complexity 

Design defect density 

Error distribution 

Failure rate 

Fault density 

Fault-days number 

Feature point analysis 

Function point analysis 

Functional test coverage 

Graph-theoretic static architecture complexity 

Man hours per major defect detected
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Time- RepeatTimes Cost Benefits Credibility Repat Experience Validation liness ability 

Measure 
0 0 0 0 0 0 0 

C D, ! C , ! a! (!, C! C!, C (!, C, ! 

0 oD 0 0 C0 0 (D 

Mean time to failure 

Minimal unit test case determination 

Modular test coverage 

Mutation testing (error seeding) 

Number of faults remaining (error seeding) 

Requirements compliance 

Requirements specification change requests 

Requirements traceability 

Reviews, inspections and walkthroughs 

Software capability maturity model 

System design complexity 

Test coverage
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Table B-4 Phase-Based Relevance to Reliability/Review

1 r

TestingImplementationDesignRequirement

-' D0C CD~ 

.D .................. T -
n 
0

____________________________________ I-I-4-l-I-+-4-�-I-t t-t--t-T-l-r-

I-_______________________ A l-i I-- -i i i ~ -i r- -r- -i

Data1 flow comIIp exLyI 

Design defect density 

Error distribution 

Failure rate______ __ - -

Fault density __
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Measure

C., 
0 

0
CD

C., 0 

0
CD 

0 
CD

CD

n0
0 

CD 
0

0 

C0 

"0

CD

0 

0.
0 0 

CD 

0 
CD

Bugs per ne v 1. f A 'Gaffne estimatel
100- h ; Cause m e CL grap ng

U : Co es on i I

Completeness

r, 1.*; . fol.r,- rofile

%,,YC 01"at v vv"'F '- V I I

•au•u • •ll•t •,t•pntut•

L/a[a llLiW uUiill)lUAit.y 

Design defect density 

Error 
distribution 

Failure 

rate 

Fault 

density
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Measure

Fault-days number 

Feature point analysis 

Function point analysis 

Functional test coverage 

Graph-theoretic static architecture 
complexity 

Man hours per major defect detected 

Mean time to failure 

Minimal unit test case determination 

Modular test coverage 

Mutation testing (error seeding) 

Number of faults remaining (error seeding) 

Requirements compliance 

Requirements specification change requests 

Requirements traceability 

Reviews, inspections and walkthroughs

Requirement

C) C C)C)lb C CS

n 

0~ 
0 

tn

CO

n 
0 

0.  

0

0 

0.

Design

CD

0 
0

CO e0

Implementation

CD

0 

0

D CDh
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1 1 r r

Measure

TestingImplementation
DesignRequirement

I I � 
ID ED __.jJrL�jLIiArL�it1 in n 

1 �1
C-) C-)

0 

0
:z

C) 0 

0

C) 
CD

CD

C) 0 

0
CD

0 :3 

CD

0 

0

CD

CD

0 

CD

CO

0)
0 

0

CD 
CD

0 

0
CD 
0 

CD

LflfltYV�E ......

System design complexity 

Test coverage 

Table B-3E Example of Table B-3 Evaluation of Measures by Criteria (except relevance criteria) 

Time- Cost Benefits Credibility Repeat- Experience Validation 
liness ability 

Measure 0 C) o 0 0 0 0 0 0 

nDC D C CD aD CD 1; 0 D CD CD CD 

0D 0D C CD CD DC 

Bugs per line of code (Gaffney estimate) 0.5 0. 0.5 0. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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Table B-4E Example of Table B-4 Phase-Based Relevance to Reliability/Review

Measure

Implementation

3� � 
ft ft ft I ft ft 1 
- - - ft 

c-I1= I �.-. � I � I �

0 

0 

0 
CD

0 

0

0
0

n 

003
0 

0-

0 

0-
F;

0 
0~ 

0L 
CD

0

0 

0( 

0 
0

F*

n) 
0 

CD 
0 
0D

Bugs per line of code (Gaffney estimate) 0.5 10.51 0.5 1 0.5 10.5 [ 0.5 [ 0.5 0.5 0.5 0.5 0.5 10.5 0.5 0.5 0.5 0.5

B-1I
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Table B-5 Correlation Between Measures'

Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated 
Measure Measure I Measure 2 Measure 3 Measure 4 Measure 5 Measure 6 Measure 7 Measure 8 Measure 9 Measure 10 

Bugs per line of code 
(Gaffney estimate) 

Cause & effect graphing 

Code defect density 

Cohesion 

Completeness 

Cumulative failure profile 

Cyclomatic complexity 

Data flow complexity 

Design defect density 

Error distribution 

Failure rate 

Fault density 

Fault-days number 

Feature point analysis 

Function point analysis 

Functional test coverage

. If you have more than 10 highly correlated measures in one row please attach a copy of this form.

B-12



Appendix B Software Engineering Measures Questionnaire

Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Measure I Measure 2 Measure 3 Measure 4 Measure 5 Measure 6 Measure 7 Measure 8 Measure 9 Measure 10 

Graph-theoretic static 
architecture complexity 
Man hours per major 

defect detected 

Mean time to failure 

Minimal unit test case 
determination 

Modular test coverage 

Mutation testing (error 
seeding) 

Number of faults 
remaining (error seeding) 

Requirements compliance 

Requirements 
specification change 
requests 

Requirements traceability 

Reviews, inspections and 
walkthroughs 

Software capability 
maturity model 

System design complexity 

Test coverage
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Table B-5E Example of Table B-5 Correlation Between Measures

Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated Correlated 
Measure Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 Measure 6 Measure 7 Measure 8 Measure 9 Measure 10 

Measure A Measure B Measure C Measure D 

Measure B Measure A Measure E Measure F Measure G
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Table B-6 Sources of Knowledge (Missing Measures)

This contains an index list of applications' description. The detailed description of applications is in Table B-7.

B-15

(u) 

0 
M r size of projects Measure(I) (w) (o) 
0 

oC 
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Table B-7 Software Reliability Engineering Measures Related Applications' Descriptions 

Application's Index Description 

1 

2 

3 

4 

Table B-6E Example of Table B-6 Sources of Knowledge (Missing Measures) 

(u) 
0 0 

0 size of projects 

Measure (i) (I) (w) (o) 
0 

Measure A 2
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Table B-7E Example of Table B-7 Software Reliability Engineering Measures Related Applications' Descriptions

Apphication's Index Description 

2 

TableB-8 Description of Missing Measures 

Name: 

Author(s): 

Reference: 

Description:

B-17
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Table B-8E Example of Table B-8 Description of Missing Measures

Name: Coupling 

Author(s): Myers 

Reference: Xxx 

Description: 
Coupling is an indication of "goodness" of a design. There is a widespread 
belief that low coupling yield better software designs.  

TABLE B-9 Evaluation of Measures by Criteria (missing Measures) (except relevance criteria) 

Time- Cost Benefits Credibility Repeat- Experience Validation liness ability 

Measure r) n n n () 
o 00 0 0 0 0 

0 00 0 0 0 0 C6 ta r D O 
g CL 0 O.
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Table B-9E Example of Table B-9 Evaluation of Measures by Criteria (except relevance criteria) (Missing Measures) 

Time- Repeatliness Cost Benefits Credibility ability Experience Validation 

Measure 
0 0 0 0 0 0 0 

ab CD CD CD CD (0 CD CD (b Cb CD ( 

0 0 0 0D D 0D 

Metric A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Table B-10 Phase-Based Relevance to Reliability/Review (Missing Measures)
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Appendix C Sensitivity Analysis Data And Results

APPENDIX C SENSITIVITY ANALYSIS: SCHEMES AND RESULTS 

C.1 Sensitivity Analysis on Criteria Levels 

C.1.1 Variations on Criteria Levels 

Table C-i Criteria Levels for Scheme 1 

Cost Experience Benefits Credibility Repeatability Validation Relevance to 
W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00 

M 0.90 M 0.55 B 0.90 0.90 0.85 0.85 0.90 
Q 0.75 L 0.20 C 0.60 0.70 0.45 0.40 0.80 
Y 0.30 E 0.15 D 0.30 0.60 0.25 0.25 0.75 
T 0.00 N 0.00 E 0.10 0.35 0.00 0.00 0.20 

F 0.00 0.00 0.00 

Table C-2 Criteria Levels for Scheme 2 

Cost Experience Benefits Credibility Repeatability Validation Relevance to 
Reliability W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00 

M 0.75 M 0.75 B 0.80 0.80 0.75 0.75 0.80 
Q 0.50 L 0.50 C 0.60 0.60 0.50 0.50 0.60 
Y 0.25 E 0.25 D 0.40 0.40 0.25 0.25 0.40 
T 0.00 N 0.00 E 0.20 0.20 0.00 0.00 0.20 

F 0.00 0.00 0.00
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Table C-3 Criteria Levels for Scheme 3 
Relevance to 

Cost Experience Benefits Credibility Repeatability Validation Releabclity 
Reliability 

W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00 

M 0.90 M 0.90 B 0.90 0.90 0.90 0.90 0.90 

Q 0.80 L 0.80 C 0.80 0.80 0.80 0.80 0.80 

Y 0.70 E 0.70 D 0.70 0.70 0.70 0.70 0.70 

T 0.00 N 0.00 E 0.60 0.60 0.00 0.00 0.60 

F 0.00 0.00 0.00 

Table C-4 Criteria Levels for Scheme 4 

Relevance to 
Cost Experience Benefits Credibility Repeatability Validation Reliability 

Reliability 

W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00 M 0.30 M 0.30 B 0.40 0.40 0.30 0.30 0.40 

Q 0.20 L 0.20 C 0.30 0.30 0.20 0.20 0.30 

Y 0.10 E 0.10 D 0.20 0.20 0.10 0.10 0.20 T 0.00 N 0.00 E 0.10 0.10 0.00 0.00 0.10 

I IF 0.00 0.00 0.00
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Table C-5 Criteria Levels for Scheme 5 

Relevance to 
Cost Experience Benefits Credibility Repeatability Validation Releabclity 

Reliability 

W 1.00 W 1.00 A 1.00 1.00 1.00 1.00 1.00 
M 0.90 M 0.30 B 0.90 0.40 0.90 0.30 0.90 
Q 0.80 L 0.20 C 0.80 0.30 0.80 0.20 0.80 
Y 0.70 E 0.10 D 0.70 0.20 0.70 0.10 0.70 
T 0.00 N 0.00 E 0.60 0.10 0.00 0.00 0.60 

F 0.00 0.00 0.00
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C.1.2 Rates Corresponding to Criteria Level Variations

Table C-6 Rates for the Requirements Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

Cause & effect graphing .45 .41 .66 .19 .44 

Error distribution .70 .65 .78 .51 .70 

Fault density .73 .69 .81 .59 .78 

Fault number days .63 .62 .70 .44 .53 

Feature point analysis .44 .44 .65 .21 .44 

Function point analysis .51 .49 .67 .30 .54 

Number of faults remaining (error .45 .43 .62 .18 .38 

seeding) 
Requirements compliance .52 .50 .69 .28 .49 

Requirements specification change .71 .68 .79 .55 .72 
requests 
Reviews, inspections and walkthroughs .62 .61 .71 .48 .60 

Software capability maturity model .62 .57 .70 .43 .61 

Table C-7 Rates for the Design Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

Cause & effect graphing .43 .40 .64 .19 .42 

Cohesion .45 .45 .61 .26 .41 

Completeness .33 .36 .56 .20 .35 

Cyclomatic complexity .74 .69 .75 .60 .71 

Data flow complexity .63 .62 .73 .42 .57 

Design defect density .77 .73 .83 .60 .76 

Error distribution .70 .65 .78 .51 .70 

Fault density .76 .72 .82 .60 .79 

Fault number days .73 .67 .80 .47 .63 

Feature point analysis .47 .46 .69 .22 .48 

Function point analysis .54 .51 .71 .31 .57 

Graph-theoretic static architecture .52 .48 .70 .30 .49 

complexity 
Man hours per major defect detected .65 .63 .71 .51 .65 

Mean time to failure 

Minimal unit test case determination .60 .58 .70 .44 .56 

Number of faults remaining (error seeding) .45 .43 .62 .18 .38 

Requirements compliance .50 .50 .68 .28 .48 

Requirements specification change .71 .68 .78 .55 .70 

requests 
Requirements traceability .58 .57 .71 .40 .56 

Reviews, inspections and walkthroughs .61 .60 .71 .48 .59 

Software capability maturity model .62 .58 .70 .44 .61 

System design complexity .56 .55 .72 .34 .51
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Table C-8 Rates for the Implementation Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
Bugs per line of code (Gaffney estimate) .44 .45 .58 .28 .40 
Cause & effect graphing .40 .38 .61 .18 .40 
Code defect density .83 .77 .85 .65 .82 
Cohesion .37 .38 .53 .22 .33 
Completeness .33 .36 .56 .20 .35 
Cyclomatic complexity .77 .72 .80 .61 .75 
Data flow complexity .60 .57 .69 .40 .53 
Design defect density .77 .73 .83 .60 .76 
Error distribution .69 .66 .77 .51 .69 
Fault density .77 .72 .82 .60 .79 
Fault number days .73 .67 .80 .47 .63 
Feature point analysis .47 .46 .67 .21 .45 
Function point analysis .55 .51 .69 .31 .55 
Graph-theoretic static architecture .45 .44 .64 .28 .43 
complexity 
Man hours per major defect detected .63 .62 .69 .51 .63 
Minimal unit test case determination .65 .63 .75 .46 .61 
Modular test coverage 
Mutation testing (error seeding) 
Number of faults remaining (error seeding) .47 .44 .67 .19 .43 
Requirements compliance .51 .49 .68 .28 .49 
Requirements specification change .71 .68 .78 .55 .70 
requests 
Requirements traceability .57 .57 .71 .40 .56 
Reviews, inspections and walkthroughs .61 .60 .71 .48 .60 
Software capability maturity model .61 .58 .70 .44 .61 
System design complexity .55 .53 .71 .33 .50
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Table C-9 Rates for the Testing Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
Bugs per line of code (Gaffney estimate) .37 .38 .50 .25 .32 

Cause & effect graphing .45 .41 .66 .19 .44 
Code defect density .83 .78 .85 .65 .82 
Cohesion .37 .38 .53 .22 .33 
Completeness .33 .36 .56 .20 .35 

Cumulative failure profile .80 .76 .83 .64 .78 
Cyclomatic complexity .74 .69 .78 .60 .73 
Data flow complexity .6 .57 .69 .40 .53 
Design defect density .76 .71 .82 .59 .75 
Error distribution .69 .67 .77 .51 .69 
Failure rate .87 .85 .88 .76 .86 
Fault density .77 .72 .82 .60 .79 

Fault number days .75 .71 .82 .49 .64 
Feature point analysis .43 .43 .62 .20 .41 
Function point analysis .50 .48 .65 .30 .51 

Functional test coverage .61 .57 .76 .29 .56 

Graph-theoretic static architecture .45 .44 .64 .28 .43 
complexity 
Man hours per major defect detected .65 .63 .71 .53 .65 
Mean time to failure .81 .81 .87 .64 .78 
Minimal unit test case determination .71 .64 .80 .47 .66 
Modular test coverage .70 .70 .83 .53 .67 

Mutation testing (error seeding) .47 .44 .67 .19 .42 
Number of faults remaining (error seeding) .50 .46 .71 .20 .47 

Requirements compliance .50 .48 .68 .27 .48 
Requirements specification change .70 .67 .78 .55 .70 
requests 
Requirements traceability .57 .56 .71 .40 .56 
Reviews, inspections and walkthroughs .62 .61 .70 .49 .59 

Software capability maturity model .61 .58 .70 .44 .61 
System design complexity .55 .53 .71 .33 .50 
Test coverage .70 .67 .82 .55 .73 

C.1.3 Rankings Corresponding to Criteria Level Variations 

Table C-10 Rankings for the Requirements Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

Cause & effect graphing 10 11 9 10 9 
Error distribution 3 3 3 3 3 
Fault density 1 1 1 1 1 

Fault number days 4 4 5 5 7 
Feature point analysis 11 9 10 9 10 

Function point analysis 8 8 8 7 6 

Number of faults remaining (error 9 10 11 11 11 
seeding) I I
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Requirements compliance 7 7 7 8 8 
Requirements specification change 2 2 2 2 2 
requests 
Requirements traceability 
Reviews, inspections and walkthroughs 6 5 4 4 5 
Software capability maturity model 5 6 6 6 4 

Table C-1I Rankings for the Design Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
Cause & effect graphing 20 20 18 20 18 
Cohesion 18 18 20 17 19 
Completeness 21 21 21 19 21 
Cyclomatic complexity 3 3 6 3 3 
Data flow complexity 8 8 7 11 11 
Design defect density 1 1 1 2 2 
Error distribution 6 6 4 6 5 
Fault density 2 2 2 1 1 
Fault number days 4 5 3 8 7 
Feature point analysis 17 17 16 18 17 
Function point analysis 14 14 10 14 10 
Graph-theoretic static architecture 15 16 14 15 15 
complexity 
Man hours per major defect detected 7 7 11 5 6 
Minimal unit test case determination 11 11 13 10 13 
Number of faults remaining (error seeding) 19 19 19 21 20 
Requirements compliance 16 15 17 16 16 
Requirements specification change 5 4 5 4 4 
requests 

Requirements traceability 12 12 9 12 12 
Reviews, inspections and walkthroughs 10 9 12 7 9 
Software capability maturity model 9 10 15 9 8 
System design complexity 13 13 8 13 14 

Table C-12 Rankings for the Implementation Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
Bugs per line of code (Gaffney estimate) 20 18 21 16 21 
Cause & effect graphing 21 21 20 23 20 
Code defect density 1 1 1 1 1 
Cohesion 22 22 23 19 23 
Completeness 23 23 22 21 22 
Cyclomatic complexity 4 4 5 2 4 
Data flow complexity 12 12 13 13 14 
Design defect density 3 2 2 4 3 
Error distribution 7 7 7 6 6 
Fault density 2 3 3 3 2 
Fault number days 5 6 4 9 8 
Feature point analysis 17 17 18 20 17 
Function point analysis 15 15 14 15 13
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Graph-theoretic static architecture 19 20 19 17 18 
complexity 
Man hours per major defect detected 9 9 15 7 7 
Minimal unit test case determination 8 8 8 10 9 
Number of faults remaining (error seeding) 18 19 17 22 19 

Requirements compliance 16 16 16 18 16 
Requirements specification change 6 5 6 5 5 
requests 
Requirements traceability 13 13 9 12 12 
Reviews, inspections and walkthroughs 11 10 11 8 11 

Software capability maturity model 10 11 12 11 10 

System design complexity 14 14 10 14 15 

Table C-13 Rankings for the Testing Phase 

Measure Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

Bugs per line of code (Gaffney estimate) 29 29 30 24 30 
Cause & effect graphing 26 27 24 29 24 
Code defect density 2 3 3 2 2 

Cohesion 28 28 29 25 29 
Completeness 30 30 28 26 28 

Cumulative failure profile 4 4 4 4 4 
Cyclomatic complexity 8 9 11 6 7 
Data flow complexity 18 17 21 18 19 

Design -defect density 6 6 7 7 6 
Error distribution 13 12 13 12 10 
Failure rate 1 1 1 1 1 

Fault density 5 5 6 5 3 
Fault number days 7 7 8 14 14 
Feature point analysis 27 26 27 27 27 
Function point analysis 22 21 25 20 20 
Functional test coverage 17 18 14 21 17 
Graph-theoretic static architecture 25 24 26 22 25 
complexity 
Man hours per major defect detected 14 14 18 10 13 
Mean time to failure 3 2 2 3 5 
Minimal unit test case determination 9 13 10 15 12 

Modular test coverage 12 8 5 11 11 
Mutation testing (error seeding) 24 25 23 30 26 
Number of faults remaining (error seeding) 23 23 15 28 23 

Requirements compliance 21 22 22 23 22 
Requirements specification change 10 11 12 9 9 
requests 
Requirements traceability 19 19 17 17 18 

Reviews, inspections and walkthroughs 15 15 19 13 16 

Software capability maturity model 16 16 20 16 15 

System design complexity 20 20 16 19 21 
Test coverage 11 10 9 8 8
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C.2 Sensitivity Analysis on Weight Sets 

C.2.1 Variations on Weight Sets 

Table C-14 Weights Used in Weight Sensitivity Analysis 

Cost Benefits Credibility Repeatability Experience Validation Relevance to Reliability 
Weight 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
Weight 2 0.13 0.13 0.13 0.13 0.13 0.13 0.25 
Weight 3 0.08 0.08 0.17 0.17 0.08 0.08 0.33 
Weight 4 0.245 0.045 0.088 0.036 0.130 0.239 0.216 
Weight 5 0.20 0.03 0.10 0.17 0.16 0.14 0.20.  
Weight 6 0 0 0.25 0.25 0.25 0 0.25

C.2.2 Rates Corresponding to Variations on Weight Sets

Table C-15 Rates for the Requirements Phase 

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 
Cause & effect graphing 0.45 0.44 0.46 0.47 0.50 0.48 
Completeness 0.41 0.44 0.46 0.52 0.49 0.39 
Error distribution 0.70 0.71 0.73 0.79 0.75 0.73 
Fault density 0.73 0.69 0.66 0.79 0.78 0.75 
Fault number days 0.63 0.55 0.52 0.63 0.66 0.63 
Feature point analysis 0.44 0.39 0.36 0.47 0.46 0.38 
Function point analysis 0.51 0.46 0.40 0.54 0.54 0.49 
Number of faults remaining (error seeding) 0.45 0.40 0.39 0.42 0.46 0.43 
Requirements compliance 0.52 0.53 0.53 0.59 0.57 0.53 
Requirements specification change requests 0.71 0.71 0.70 0.81 0.77 0.70 
Reviews, inspections and walkthroughs 0.62 0.60 0.59 0.64 0.62 0.64 
Software capability maturity model 0.62 0.61 0.60 0.67 0.65 0.67 

Table C-16 Rates for the Design Phase 

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 
Cause & effect graphing 0.43 0.40 0.41 0.44 0.47 0.45 
Cohesion 0.45 0.47 0.47 0.60 0.53 0.38 
Completeness 0.33 0.29 0.26 0.39 0.37 0.24 
Cyclomatic complexity 0.74 0.69 0.66 0.78 0.80 0.77 
Data flow complexity 0.63 0.62 0.63 0.72 0.70 0.61 
Design defect density 0.77 0.78 0.79 0.87 0.84 0.80 
Error distribution 0.70 0.71 0.73 0.79 0.75 0.73 
Fault density 0.76 0.74 0.73 0.83 0.82 0.80 
Fault number days 0.73 0.73 0.77 0.79 0.81 0.81 
Feature point analysis 0.47 0.44 0.43 0.51 0.51 0.43 
Function point analysis 0.54 0.51 0.47 0.59 0.58 0.54 
Graph-theoretic static architecture complexity 0.52 0.51 0.53 0.53 0.57 0.58 
Man hours per major defect detected 0.65 0.64 0.63 0.76 0.73 0.65
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Minimal unit test case determination 0.60 0.52 0.47 0.63 0.63 0.56 

Number of faults remaining (error seeding) 0.45 0.40 0.39 0.42 0.46 0.43 

Requirements compliance 0.50 0.51 0.51 0.57 0.55 0.51 

Requirements specification change requests 0.71 0.71 0.71 0.81 0.77 0.71 

Requirements traceability 0.58 0.57 0.57 0.67 0.63 0.55 

Reviews, inspections and walkthroughs 0.61 0.59 0.58 0.64 0.62 0.63 

Software capability maturity model 0.62 0.61 0.60 0.67 0.65 0.67 

System design complexity 0.56 0.60 0.64 0.67 0.65 0.56 

Table C-17 Rates for the Implementation Phase 

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 

Bugs per line of code (Gaffney estimate) 0.44 0.45 0.49 0.50 0.52 0.47 

Cause & effect graphing 0.40 0.35 0.34 0.39 0.43 0.39 

Code defect density 0.83 0.83 0.84 0.89 0.90 0.91 

Cohesion 0.37 0.33 0.28 0.48 0.41 0.24 

Completeness 0.33 0.29 0.26 0.39 0.37 0.24 

Cyclomatic complexity 0.77 0.74 0.72 0.82 0.84 0.82 

Data flow complexity 0.60 0.56 0.55 0.67 0.65 0.55 

Design defect density 0.77 0.78 0.78 0.87 0.84 0.79 

Error distribution 0.69 0.68 0.68 0.76 0.73 0.70 

Fault density 0.77 0.75 0.74 0.84 0.83 0.81 

Fault number days 0.73 0.73 0.77 0.79 0.81 0.81 

Feature point analysis 0.47 0.45 0.44 0.52 0.51 0.44 

Function point analysis 0.55 0.52 0.49 0.60 0.59 0.55 

Graph-theoretic static architecture complexity 0.45 0.40 0.39 0.43 0.49 0.47 

Man hours per major defect detected 0.63 0.60 0.58 0.73 0.70 0.62 

Minimal unit test case determination 0.65 0.61 0.59 0.71 0.70 0.65 

Number of faults remaining (error seeding) 0.47 0.43 0.43 0.45 0.48 0.45 

Requirements compliance 0.51 0.52 0.52 0.58 0.56 0.52 

Requirements specification change requests 0.71 0.71 0.71 0.81 0.77 0.71 

Requirements traceability 0.57 0.57 0.56 0.67 0.62 0.54 

Reviews, inspections and walkthroughs 0.61 0.59 0.59 0.64 0.62 0.64 

Software capability maturity model 0.61 0.61 0.59 0.67 0.65 0.67 

System design complexity 0.55 0.58 0.62 0.65 0.63 0.54 

Table C-18 Rates for the Testing Phase 

Measure Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 

Bugs per line of code (Gaffney estimate) 0.37 0.32 0.31 0.39 0.41 0.34 

Cause & effect graphing 0.45 0.44 0.46 0.47 0.50 0.48 

Code defect density 0.83 0.83 0.84 0.89 0.90 0.91.  

Cohesion 0.37 0.33 0.28 0.48 0.41 0.24 

Completeness 0.33 0.29 0.26 0.39 0.37 0.24 

Cumulative failure profile 0.80 0.81 0.84 0.89 0.87 0.86 

Cyclomatic complexity 0.74 0.69 0.66 0.78 0.80 0.77 

Data flow complexity 0.60 0.56 0.55 0.67 0.65 0.55 

Design defect density 0.76 0.76 0.76 0.86 0.83 0.78 

Error distribution 0.69 0.68 0.68 0.76 0.73 0.70 

Failure rate 0.87 0.88 0.91 0.92 0.93 0.95
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Fault density 0.77 0.75 0.74 0.84 0.83 0.82 
Fault number days 0.75 0.76 0.80 0.81 0.83 0.84 
Feature point analysis 0.43 0.37 0.34 0.46 0.45 0.36 
Function point analysis 0.50 0.44 0.38 0.53 0.53 0.47 
Functional test coverage 0.61 0.63 0.68 0.66 0.67 0.66 
Graph-theoretic static architecture complexity 0.45 0.40 0.39 0.43 0.49 0.47 
Man hours per major defect detected 0.65 0.63 0.62 0.75 0.73 0.65 
Mean time to failure 0.81 0.83 0.87 0.87 0.87 0.86 
Minimal unit test case determination 0.71 0.71 0.72 0.79 0.77 0.74 
Modular test coverage 0.70 0.72 0.78 0.76 0.77 0.77 
Mutation testing (error seeding) 0.47 0.46 0.48 0.51 0.49 0.45 
Number of faults remaining (error seeding) 0.50 0.48 0.51 0.50 0.53 0.51 
Requirements compliance 0.50 0.51 0.51 0.57 0.55 0.51 
Requirements specification change requests 0.70 0.70 0.70 0.81 0.77 0.70 
Requirements traceability 0.57 0.56 0.55 0.66 0.62 0.54 
Reviews, inspections and walkthroughs 0.62 0.60 0.60 0.65 0.63 0.65 
Software capability maturity model 0.61 0.61 0.59 0.67 0.65 0.67 
System design complexity 0.55 0.58 0.62 0.65 0.63 0.54 
Test coverage 0.70 0.72 0.75 0.78 0.78 0.79

C.2.3 Rankings Corresponding to Variations on Weight Sets

Table C-19 Rankings for the Requirements Phase 

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 
Cause & effect graphing 10 9 8 11 9 9 
Completeness 12 10 9 9 10 11 
Error distribution 3 1 1 2 3 2 
Fault density 1 3 3 3 1 1 
Fault number days 4 6 7 6 4 6 
Feature point analysis 11 12 12 10 11 12 
Function point analysis 8 8 10 8 8 8 
Number of faults remaining (error seeding) 9 11 11 12 12 10 
Requirements compliance 7 7 6 7 7 7 
Requirements specification change requests 2 2 2 1 2 3 
Reviews, inspections and walkthroughs 6 5 5 5 6 5 
Software capability maturity model 5 4 4 4 5 4 

Table C-20 Rankings for the Design Phase 

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 
Cause & effect graphing 20 19 19 19 19 17 
Cohesion 18 17 17 14 17 20 
Completeness 21 21 21 21 21 21 
Cyclomatic complexity 3 6 6 6 4 4 
Data flow complexity 8 8 8 8 8 10 
Design defect density 1 1 1 1 1 3 
Error distribution 6 5 4 5 6 5 
Fault density 2 2 3 2 2 2
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Fault number days 4 3 2 4 3 1 

Feature point analysis 17 18 18 18 18 18 

Function point analysis 14 15 15 15 14 15 

Graph-theoretic static architecture complexity 15 16 13 17 15 11 

Man hours per major defect detected 7 7 9 7 7 8 

Minimal unit test case determination 11 13 16 13 12 13 

Number of faults remaining (error seeding) 19 20 20 20 20 19 

Requirements compliance 16 14 14 16 16 16 

Requirements specification change requests 5 4 5 3 5 6 

Requirements traceability 12 12 12 10 11 14 

Reviews, inspections and walkthroughs 10 11 11 12 13 9 

Software capability maturity model 9 9 10 9 9 7 

System design complexity 13 10 7 11 10 12 

Table C-21 Rankings for the Implementation Phase 

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

Bugs per line of code (Gaffney estimate) 20 18 16 18 17 17 

Cause & effect graphing 21 21 21 23 21 21 

Code defect density 1 1 1 1 1 1 

Cohesion 22 22 22 19 22 23 

Completeness 23 23 23 22 23 22 

Cyclomatic complexity 4 4 5 4 2 2 

Data flow complexity 12 14 14 12 10 13 

Design defect density 3 2 2 2 3 5 

Error distribution 7 7 7 7 7 7 

Fault density 2 3 4 3 4 4 

Fault number days 5 5 3 6 5 3 

Feature point analysis 17 17 18 17 18 20 

Function point analysis 15 16 17 15 15 12 

Graph-theoretic static architecture complexity 19 20 20 21 19 18 

Man hours per major defect detected 9 10 12 8 8 11 

Minimal unit test case determination 8 8 9 9 9 9 

Number of faults remaining (error seeding) 18 19 19 20 20 19 

Requirements compliance 16 15 15 16 16 16 

Requirements specification change requests 6 6 6 5 6 6 

Requirements traceability 13 13 13 11 13 15 

Reviews, inspections and walkthroughs 11 11 11 14 14 10 

Software capability maturity model 10 9 10 10 11 8 

System design complexity 14 12 8 13 12 14 

Table C-22 Rankings for the Testing Phase 

Measure Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

Bugs per line of code (Gaffney estimate) 29 29 28 30 29 28 

Cause & effect graphing 26 25 24 26 24 23 

Code defect density 2 2 3 2 2 2 

Cohesion 28 28 29 25 28 30 

Completeness 30 30 30 29 30 29 

Cumulative failure profile 4 4 4 3 3 3
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Cyclomatic complexity 8 12 14 11 8 10 
Data flow complexity 18 19 20 16 16 18 
Design defect density 6 5 7 5 7 8 
Error distribution 13 13 12 12 13 13 
Failure rate 1 1 1 1 1 1 
Fault density 5 7 9 6 5 6 
Fault number days 7 6 5 7 6 5 
Feature point analysis 27 27 27 27 27 27 
Function point analysis 22 24 26 22 23 25 
Functional test coverage 17 15 13 17 15 15 
Graph-theoretic static architecture complexity 25 26 25 28 26 24 
Man hours per major defect detected 14 14 15 14 14 16 
Mean time to failure 3 3 2 4 4 4 
Minimal unit test case determination 9 10 10 9 10 11 
Modular test coverage 12 8 6 13 11 9 
Mutation testing (error seeding) 24 23 23 23 25 26 
Number of faults remaining (error seeding) 23 22 21 24 22 21 
Requirements compliance 21 21 22 21 21 22 
Requirements specification change requests 10 11 11 8 12 12 
Requirements traceability 19 20 19 18 20 20 
Reviews, inspections and walkthroughs 15 17 17 20 19 17 
Software capability maturity model 16 16 18 15 17 14 
System design complexity 20 18 16 19 18 19 
Test coverage 11 9 8 10 9 7 

C.3 Sensitivity Analysis on Equations 

C.3.1 Variations on Aggregation Functions 

Users can refer to Chapter 3 Section 3.8.3 for a detailed discussion on aggregation functions.  

C.3.2 Rates Corresponding to Variations on Aggregation Functions 

Table C-23 Rates for the Requirements Phase 

Measure Equation 1 Equation 2 
Cause & effect graphing 0.45 0.57 
Completeness 0.41 0.59 
Error distribution 0.70 0.70 
Fault density 0.73 0.70 
Fault number days 0.63 0.62 
Feature point analysis 0.44 0.51 
Function point analysis 0.51 0.54 
Number of faults remaining (error seeding) 0.45 0.53 
Requirements compliance 0.52 0.65 
Requirements specification change requests 0.71 0.72 
Reviews, inspections and walkthroughs 0.62 0.60 
Software capability maturity model 0.62 0.59

C-13



Appendix D Sensitivity Analysis Data And Results

Table C-24 Rates for the Design Phase 

Measure Equation 1 Equation 2 

Cause & effect graphing 0.43 0.54 
Cohesion 0.45 0.58 

Completeness 0.33 0.43 
Cyclomatic complexity 0.74 0.69 
Data flow complexity 0.63 0.68 
Design defect density 0.77 0.76 
Error distribution 0.70 0.70 
Fault density 0.76 0.72 
Fault number days 0.73 0.72 
Feature point analysis 0.47 0.56 
Function point analysis 0.54 0.58 
Graph-theoretic static architecture complexity 0.52 0.61 
Man hours per major defect detected 0.65 0.64 
Minimal unit test case determination 0.60 0.59 
Number of faults remaining (error seeding) 0.45 0.53 
Requirements compliance 0.50 0.63 
Requirements specification change requests 0.71 0.72 
Requirements traceability 0.58 0.64 
Reviews, inspections and walkthroughs 0.61 0.60 
Software capability maturity model 0.62 0.59 
System design complexity 0.56 0.69 

Table C-25 Rates for the Implementation Phase 

Measure Equation 1 Equation 2 
Bugs per line of code (Gaffney estimate) 0.44 0.59 
Cause & effect graphing 0.40 0.49 
Code defect density 0.83 0.76 
Cohesion 0.37 0.44 
Completeness 0.33 0.43 
Cyclomatic complexity 0.77 0.71 
Data flow complexity 0.60 0.64 
Design defect density 0.77 0.76 
Error distribution 0.69 0.68 
Fault density 0.77 0.73 
Fault number days 0.73 0.72 
Feature point analysis 0.47 0.57 
Function point analysis 0.55 0.59 
Graph-theoretic static architecture complexity 0.45 0.54 
Man hours per major defect detected 0.63 0.62 
Minimal unit test case determination 0.65 0.65 
Number of faults remaining (error seeding) 0.47 0.55 
Requirements compliance 0.51 0.64 
Requirements specification change requests 0.71 0.72 
Requirements traceability 0.57 0.64 
Reviews, inspections and walkthroughs 0.61 0.60 

Software capability maturity model 0.61 0.58 
System design complexity 0.55 0.68
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Table C-26 Rates for the Testing Phase 

Measure Equation 1 Equation 2 
Bugs per line of code (Gaffney estimate) 0.37 0.47 
Cause & effect graphing 0.45 0.57 
Code defect density 0.83 0.76 
Cohesion 0.37 0.44 
Completeness 0.33 0.43 
Cumulative failure profile 0.80 0.76 
Cyclomatic complexity 0.74 0.69 
Data flow complexity 0.60 0.64 
Design defect density 0.76 0.75 
Error distribution 0.69 0.68 
Failure rate 0.87 0.81 
Fault density 0.77 0.73 
Fault number days 0.75 0.73 
Feature point analysis 0.43 0.50 
Function point analysis 0.50 0.53 
Functional test coverage 0.61 0.71 
Graph-theoretic static architecture complexity 0.45 0.54 
Man hours per major defect detected 0.65 0.64 
Mean time to failure 0.81 0.80 
Minimal unit test case determination 0.71 0.71 
Modular test coverage 0.70 0.74 
Mutation testing (error seeding) 0.47 0.57 
Number of faults remaining (error seeding) 0.50 0.59 
Requirements compliance 0.50 0.63 
Requirements specification change requests 0.70 0.72 
Requirements traceability 0.57 0.63 
Reviews, inspections and walkthroughs 0.62 0.61 
Software capability maturity model 0.61 0.58 
System design complexity 0.55 0.68 
Test coverage 0.70 0.66 

C.3.3 Rates Corresponding to Variations on Aggregation Functions 

Table C-27 Rankings for the Requirements Phase 

Measure Equation 1 Equation 2 
Cause & effect graphing 10 9 
Completeness 12 7 
Error distribution 3 2 
Fault density 1 3 
Fault number days 4 5 
Feature point analysis 11 12 
Function point analysis 8 10 
Number of faults remaining (error seeding) 9 11 
Requirements compliance 7 4 
Requirements specification change requests 2 1 
Reviews, inspections and walkthroughs 6 6 
Software capability maturity model 5 8
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Table C-28 Rankings for the Design Phase 

Measure Equation 1 Equation 2 

Cause & effect graphing 20 19 

Cohesion 18 17 

Completeness 21 21 

Cyclomatic complexity 3 7 

Data flow complexity 8 8 

Design defect density 1 1 

Error distribution 6 5 

Fault density 2 2 

Fault number days. 4 4 

Feature point analysis 17 18 

Function point analysis 14 16 

Graph-theoretic static architecture complexity 15 12 

Man hours per major defect detected 7 9 

Minimal unit test case determination 11 14 

Number of faults remaining (error seeding) 19 20 

Requirements compliance 16 11 

Requirements specification change requests 5 3 

Requirements traceability 12 10 

Reviews, inspections and walkthroughs 10 13 

Software capability maturity model 9 15 

System design complexity 13 6 

Table C-29 Rankings for the Implementation Phase 

Measure Equation 1 Equation 2 

Bugs per line of code (Gaffney estimate) 20 16 

Cause & effect graphing 21 21 

Code defect density 1 2 

Cohesion 22 22 

Completeness 23 23 

Cyclomatic complexity 4 6 

Data flow complexity 12 10 

Design defect density 3 1 

Error distribution 7 7 

Fault density 2 3 

Fault number days 5 5 

Feature point analysis 17 18 

Function point analysis 15 15 

Graph-theoretic static architecture complexity 19 20 

Man hours per major defect detected 9 13 

Minimal unit test case determination 8 9 

Number of faults remaining (error seeding) 18 19 

Requirements compliance 16 11 

Requirements specification change requests 6 4 

Requirements traceability 13 12 

Reviews, inspections and walkthroughs 11 14 

Software capability maturity model 10 17 

System design complexity 14 8
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Table C-30 Rankings for the Testing Phase 

Measure Equation 1 Equation 2 
Bugs per line of code (Gaffney estimate) 29 28 
Cause & effect graphing 26 24 
Code defect density 2 4 
Cohesion 28 29 
Completeness 30 30 
Cumulative failure profile 4 3 
Cyclomatic complexity 8 12 
Data flow complexity 18 17 
Design defect density 6 5 
Error distribution 13 13 
Failure rate 1 1 
Fault density 5 7 
Fault number days 7 8 
Feature point analysis 27 27 
Function point analysis 22 26 
Functional test coverage 17 10 
Graph-theoretic static architecture complexity 25 25 
Man hours per major defect detected 14 16 
Mean time to failure 3 2 
Minimal unit test case determination 9 11 
Modular test coverage 12 6 
Mutation testing (error seeding) 24 23 
Number of faults remaining (error seeding) 23 21 
Requirements compliance 21 19 
Requirements specification change requests 10 9 
Requirements traceability 19 18 
Reviews, inspections and walkthroughs 15 20 
Software capability maturity model 16 22 
System design complexity 20 14 
Test coverage 11 15
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C.4 Ranking Criteria Validation Experiment 

This experiment attempts to validate the ranking criteria chosen in the study. This is done by varying the weights of the different ranking criteria. Table C-31 
provides the static weight sets (explained below) used in this experiment. Table C-32 provides the variations on the weight sets, the correlation coefficients, and 
the virtual distances, which indicate how close a variation is to the pre-selected 5 static weight sets.  

The rates of thirty pre-selected measures are computed for each candidate weight set and we adopt the following notations: 

Rate, The rate set corresponding to weight set I in Table C-31 

Rate2  The rate set corresponding to weight set 2 in Table C-31 

Rate3  The rate set corresponding to weight set 3 in Table C-31 

Rate4  The rate set corresponding to weight set 4 in Table C-31 

Rate 5  The rate set corresponding to weight set 5 in Table C-31 

Rate( i) The rate set corresponding to the ith variation on weight set in Table C-32 

PI The correlation coefficient of Rate, and Rate( i ) 

P2 The correlation coefficient of Rate2 and Rate( i ) 

P3  The correlation coefficient of Rate3 and Rate( i ) 

P4  The correlation coefficient of Rate4 and Rate( i ) 

P5  The correlation coefficient of Rate5 and Rate( i ) 

The virtual distance VD for each variation in Table C-32 is defined as
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5 VD= : (1 _Pj)2 
j=I 

VD is sorted in ascending order in Table C-32.

Table C-31 Static Weight Sets 

Weight Set Cost Benefits Credibility Repeatability Experience Validation Relevance to Reliability 

1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

2 0.13 0.13 0.13 0.13 0.13 0.13 0.25 

3 0.08 0.08 0.17 0.17 0.08 0.08 0.33 

4 0.245 0.045 0.088 0.036 0.130 0.239 0.216 

5 0.20 0.03 0.10 0.17 0.16 0.14 0.20

Table C-32 Variations on Weight Set, Correlation Coefficients, and Virtual Distances

Relevance to 
Cost Benefits Credibility Repeatability Experience Validation PIlihiiti P1 P2 P3 P4 P5 VD

0.17 0.17 0.17 0.17 0.17 0.17 0.9970 0.9883 0.9680 0.9865 0.9983 0.001352 

0.20 0.20 0.20 0.20 0.20 0,9941 0.9876 0.9683 0.9758 0.9874 0.001941 

0.17 0.17 0.17 0.17 0.17 0.17 0.9954 0.9866 0.9598 0.9883 0.9936 0.001991 

0.20 0.20 0.20 0.20 0.20 0.9749 0.9845 0.9823 0.9730 0.9804 0.002294 

0.17 0.17 0.17 0.17 0.17 0.17 0.9902 0.9851 0.9571 0.9899 0.9831 0.002542 

0.17 0.17 0.17 0.17 0.17 0.17 0.9930 0.9871 0.9680 0.9691 0.9806 0.00257 

0.25 0.25 0.25 0.25 0.9800 0.9823 0.9663 0.9752 0.9849 0.002688 

0.20 0.20 0.20 0.20 0.20 0.9880 0.9822 0.9537 0.9954 0.9877 0.002777 

0.20 0.20 0.20 0.20 0.20 0.9895 0.9798 0.9527. 0.9898 0.9947 0.00289 

0.17 0.17 0.17 0.17 0.17 0.17 0.9762 0.9839 0.9861 0.9620 0.9769 0.002993 

0.17 0.17 0.17 0.17 0.17 0.17 0.9867 0.9846 0.9764 0.9549 0.9849 0.003232 

0.20 0.20 0.20 0.20 0.20 0.9812 0.9839 0.9678 0.9672 0.9769 0.003255 

0.20 0.20 0.20 0.20 0.20 0.9688 0.9832 0.9795 0.9756 0.9675 0.003327 

0.20 0.20 0.20 0.20 0.20 0.9828 0.9801 0.9725 0.9576 0.9887 0.003375 

0.20 0.20 0.20 0.20 0.20 0.9837 0.9816 0.9671 0.9611 0.9862 0.00339
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Cost Benefits Credibility Repeatability Experience Validation Relevance to 
Reliability PI P2 P3 P4 Ps VD

0.25 0.25 0.25 0.25 0.9867 0.9796 0.9535 0.9782 0.9828 0.003526 
0.33 0.33 0.33 0.9683 0.9816 0.9824 0.9649 0.9717 0.00368 

0.20 0.20 0.20 0.20 0.20 0.9873 0.9810 0.9554 0.9719 0.9768 0.003841 
0.20 0.20 0.20 0.20 0.20 0.9684 0.9760 0.9793 0.9617 0.9768 0.004014 

0.25 0.25 0.25 0.25 0.9719 0.9849 0.9844 0.9592 0.9663 0.004057 
0.25 0.25 0.25 0.25 0.9617 0.9764 0.9737 0.9789 0.9696 0.004086 

0.25 0.25 0.25 0.25 0.9836 0.9837 0.9776 0.9481 0.9795 0.004146 

0.25 0.25 0.25 0.25 0.9715 0.9821 0.9871 0.9551 0.9701 0.004211 
0.25 0.25 0.25 0.25 0.9616 0.9712 0.9701 0.9696 0.9767 0.004664 

0.33 0.33 0.33 0.9787 0.9794 0.9668 0.9526 0.9789 0.004676 

0.25 0.25 0.25 0.25 0.9755 0.9726 0.9584 0.9615 0.9876 0.004722 
0.25 0.25 0.25 0.25 0.9803 0.9771 0.9497 0.9788 0.9707 0.004744 
0.33 0.33 0.33 0.9748 0.9807 0.9664 0.9580 0.9674 0.004965 

0.20 0.20 0.20 0.20 0.20 0.9727 0.9832 0.9868 0.9493 0.9640 0.005072 
0.33 0.33 0.33 0.9602 0.9787 0.9779 0.9661 0.9562 0.005601 

0.20 0.20 0.20 0.20 0.20 0.9807 0.9813 0.9746 0.9394 0.9694 0.005979 
0.20 0.20 0.20 0.20 0.20 0.9777 0.9751 0.9484 0.9690 0.9619 0.006203 
0.25 0.25 0.25 0.25 0.9772 0.9783 0.9654 0.9433 0.9684 0.006396 

0.25 0.25 0.25 0.25 0.9529 0.9709 0.9607 0.9796 0.9570 0.006871 
0.20 0.20 0.20 0.20 0.20 0.9734 0.9679 0.9314 0.9866 0.9694 0.00756 

0.25 0.25 0.25 0.25 0.9585 0.9762 0.9742 0.9545 0.9460 0.007939 
0.25 0.25 0.25 0.25 0.9620 0.9658 0.9403 0.9636 0.9624 0.00891 

0.25 0.25 0.25 0.25 0.9671 0.9731 0.9587 0.9421 0.9514 0.009218 
0.25 0.25 0.25 0.25 0.9665 0.9602 0.9225 0.9895 0.9706 0.00969 

0.33 0.33 0.33 0.9534 0.9568 0.9307 0.9678 0.9656 0.011067 
0.33 0.33 0.33 0.9368 0.9555 0.9460 0.9779 0.9527 0.011615 

0.50 0.50 0.9371 0.9606 0.9532 0.9648 0.9384 0.012728 
0.33 0.33 0.33 0.9573 0.9540 0.9177 0.9702 0.9507 0.014034 

0.33 0.33 0.33 0.9401 0.9622 0.9540 0.9539 0.9306 0.014068 
0.25 0.25 0.25 0.25 0.9580 0.9554 0.9203 0.9616 0.9440 0.014706 

0.50 0.50 0.9479 0.9558 0.9316 0.9480 0.9452 0.015046
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Relevance to 
Cost Benefits Credibility Repeatability Experience Validation Reliability PI P2 P3 P4 P5 VD 

0.17 0.17 0.17 0.17 0.17 0.17 0.9769 0.9422 0.9021 0.9484 0.9652 0.017337 

0.20 0.20 0.20 0.20 0.20 0.9585 0.9370 0.9222 0.9286 0.9523 0.019122 

0.33 0.33 0.33 0.9437 0.9515 0.9280 0.9320 0.9303 0.020191 

0.25 0.25 0.25 0.25 0.9592 0.9412 0.9282 0.9151 0.9388 0.021238 

0.25 0.25 0.25 0.25 0.9525 0.9324 0.9025 0.9517 0.9408 0.022182 

0.20 0.20 0.20 0.20 0.20 0.9668 0.9296 0.8883 0.9457 0.9628 0.022861 

0.20 0.20 0.20 0.20 0.20 0.9686 0.9365 0.8976 0.9301 0.9467 0.02323 

0.33 0.33 0.33 0.9528 0.9324 0.9199 0.9176 0.9426 0.023307 

0.25 0.25 0.25 0.25 0.9657 0.9310 0.8907 0.9339 0.9509 0.024663 

0.33 0.33 0.33 0.9528 0.9297 0.9047 0.9197 0.9337 0.027095 

0.20 0.20 0.20 0.20 0.20 0.9231 0.9427 0.9670 0.8906 0.9292 0.027268 

0.25 0.25 0.25 0.25 0.9465 0.9191 0.8922 0.9318 0.9459 0.028609 

0.25 0.25 0.25 0.25 0.9109 0.9431 0.9656 0.9018 0.9158 0.029098 

0.25 0.25 0.25 0.25 0.9120 0.9375 0.9617 0.8914 0.9261 0.030363 

0.33 0.33 0.33 0.9188 0.9437 0.9740 0,8813 0.9227 0.030506 

0.50 0.50 0.9409 0.9227 0.8935 0.9375 0.9228 0.030684 

0.25 0.25 0.25 0.25 0.9236 0.9472 0.9739 0.8787 0.9177 0,030779 

0.33 0.33 0.33 0.9168 0.9476 0.9751 0.8806 0.9158 0.031621 

0.25 0.25 0.25 0.25 0.9365 0.9128 0.8985 0.9169 0.9414 0.032288 

0.20 0.20 0.20 0.20 0.20 0.9554 0.9194 0.8647 0.9470 0.9391 0.033298 

0.50 0.50 0.9038 0.9448 0.9751 0.8915 0.9058 0.033555 

0.50 0.50 0.9069 0.9401 0.9723 0.8814 0.9193 0.033577 

0.33 0.33 0.33 0.9400 0,9248 0.8972 0.9213 0.9095 0.034208 

0.20 0.20 0.20 0.20 0.20 0.9558 0.9151 0.8624 0.9383 0.9470 0.034715 

0.25 0.25 0.25 0.25 0.9068 0.9272 0.9544 0.8829 0.9233 0.03564 

0.33 0.33 0.33 0.8940 0.9285 0.9549 0.8983 0.9125 0.036393 

0.50 0.50 0.9356 0.9089 0.8831 0.9162 0.9305 0.037956 

0.33 0.33 0.33 0.9269 0.9038 0.8729 0.9430 0.9297 0.038948 

0.20 0.20 0.20 0.20 0.20 0.9482 0.9125 0.8828 0.8933 0.9384 0.039258 

0.33 0.33 0.33 0.9027 0.9400 0.9654 0.8786 0.8922 0.040621 

0.25 0.25 0.25 0.25 0.9436 0.9045 0.8472 0.9456 0.9363 0.042688
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Cost Benefits Credibility Repeatability Experience Validation Relevancebto P P2 P3 P4 P5 VD 
Reliability P 2 P 4V 

0.25 0.25 0.25 0.25 0.9459 0.9082 0.8569 0.9165 0.9249 0.044455 
0.25 0.25 0.25 0.25 0.9429 0.9105 0.8825 0.8736 0.9191 0.04759 

0.33 0.33 0.33 0.9401 0.9038 0.8747 0.8770 0.9259 0.049185 
0.33 0.33 0.33 0.8832 0.9098 0.9377 0.8747 0.9110 0.049282 

0.25 0.25 0.25 0.25 0.9371 0.9046 0.8516 0.9172 0.9088 0.050252 
0.25 0.25 0.25 0.25 0.9362 0.8924 0.8378 0.9284 0.9368 0.051068 
0.33 0.33 0.33 0.8728 0.9166 0.9380 0.8884 0.8878 0.052021 

0.33 0.33 0.33 0.9344 0.8985 0.8425 0.9238 0.9139 0,052607 
0.33 0.33 0.33 0.9362 0.8951 0.8413 0.9157 0.9239 0.053158 

0.25 0.25 0.25 0.25 0.9307 0.8915 0.8611 0.8840 0.9317 0.053987 
0.25 0.25 0.25 0.25 0.9286 0.8900 0.8409 0.8947 0.9122 0.0613 

1.00 0.8552 0.9137 0.9458 0.8712 0.8682 0,065319 
0.33 0.33 0.33 0.9023 0.8719 0.8449 0.9028 0.9168 0.06636 

0.50 0.50 0.8639 0.9151 0,9404 0.8598 0.8585 0.068943 
0.25 0.25 0.25 0.25 0.9152 0.8702 0.8249 0.8688 0.9100 0.080004 
0.33 0.33 0.33 0.8936 0.8666 0.8142 0.9268 0.8878 0.081589 
0.33 0.33 0.33 0.9091 0.8651 0,8127 0.8882 0.9065 0.082756 
0.50 0.50 0.8318 0.8796 0.9058 0.8684 0.8664 0.086819 

0.50 0.50 0.9094 0.8698 0.8186 0.8679 0.8862 0.088454 
0.33 0.33 0.33 0.9103 0.8692 0.8255 0.8454 0.8871 0.092251 
0.33 0.33 0.33 0.9064 0.8726 0.8260 0.8548 0.8718 0.092812 

0.25 0.25 0.25 0.25 0.9012 0.8586 0.7867 0.9108 0.8877 0.095858 
0.50 0.50 0.8765 0.8562 0.8064 0.8857 0.8447 0.11058 

0.50 0.50 0.8947 0.8478 0.8010 0.8391 0.8844 0.11309 
0.33 0.33 0.33 0.8765 0.8267 0.7796 0.8421 0.8856 0.131905 

0.33 0.33 0.33 0.8772 0.8388 0.7692 0.8730 0.8493 0.133197 
0.33 0.33 0.33 0.8721 0.8256 0.7500 0.8956 0.8698 0.137166 

0.33 0.33 0.33 0.8604 0.8508 0.8694 0.7691 0.8391 0.137975 
1.00 0.8476 0.8221 0.7664 0.8846 0.8341 0.150322 

0.25 0.25 0.25 0.25 0.8440 0.8293 0.8437 0.7770 0.8437 0.152062 
1.00 0.8376 0.8358 0.8569 0.7705 0.8170 0.159983
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Relevance to Cost Benefits Credibility Repeatability Experience ValidationRlibit
Pi P2 P3 P4 P5 VD

0.50 0.50 0.8600 0.8173 0.7430 0.8687 0.8420 0.16123 

0.50 0.50 0.8348 0.8227 0.8465 0,7508 0.8294 0.173497 
0.50 0.50 0.8179 0.7866 0.7315 0.8785 0.8336 0.193284 

0.33 0.33 0.33 0.8147 0,8056 0.8110 0.7738 0.8079 0.195882 

0.50 0.50 0.8241 0.8244 0.8359 0.7455 0.7812 0.201355 

0.50 0.50 0.8168 0.8025 0.8181 0.7149 0.7965 0.228317 

0.33 0.33 0.33 0.8264 0.7761 0.7010 0.8137 0.8146 0.238778 
0.33 0.33 0.33 0.7858 0.7687 0.7867 0.7311 0.8024 0.256267 
0.33 0.33 0.33 0.7657 0.7445 0.7535 0.7052 0.7778 0.317251 

0.50 0.50 0.7929 0.7491 0.6772 0.7572 0,7572 0.327914 
1.00 0,7403 0.7209 0.7443 0.6512 0.7483 0.395721 

0.50 0.50 0.7578 0.7005 0.6196 0.7661 0.7655 0.402775 
0.50 0.50 0.7149 0.7025 0.7128 0.6997 0.7371 0.411589 

1.00 0.7567 0.7040 0.6227 0.7385 0.7369 0.426784 

0.50 0.50 0.6251 0.6008 0.6138 0.5873 0.6634 0.732723 
1.00 0.5366 0.5406 0.5315 0.4629 0.4682 1.216517 

0.50 0.50 0.4997 0.4843 0.4675 0.5070 0.5131 1.27997 

1.00 0.1064 0.0880 0.0779 0.1679 0.1702 3.861543

C-24



Appendix D Inputs for Missing Measures

APPENDIX D DATA COLLECTED FOR THE MISSING MEASURES 

This appendix contains the levels assessed by the University of Maryland team for each of the missing 
measures.  

Table D-1 Ranking Criteria Levels for the Missing Measures 

Measure Cost Benefits Credibility Repeatability Experience Validation 
Class coupling W F+ C A M A 
Class hierarchy nesting level W F+ C A M A 
Coverage Q D A B M+ A 
Full Function Point Q E+ D+ C M C+ 
Lack of Cohesion in Methods W F+ D A M A 
Mutation Score Q C C A E A 
Number of Children W F+ C A M A 
Number of Class methods W F+ C A M A 
Number of Key Classes W F+ D E M A 
Weighted Method Complexity W F+ D A M A 

Table D-2 Level for the Relevance to Reliability Criterion (Per Phase) 

Measure Requirements Design Implementation Testing 
Class coupling D - D - E + 
Class hierarchy nesting level D - D - E + 
Coverage B 
Full Function Point E - D - D - F + 
Lack of Cohesion in Methods D - D - E + 

Mutation Score D D 
Number of Children D - D - E + 
Number of Class methods D - D - E + 
Number of Key Classes D - D - E + 
Weighted Method Complexity' D - D - E +
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APPENDIX E GLOSSARY 

Aggregation framework 

An aggregation framework (also called aggregation scheme) is defined as the set 

{aggregation equation, weights, a letter-real conversion scheme}.  

Aggregated rate 

An aggregated rate (also called measure's rate, or rate) is a real value ranging from 0 to 

1. The rate is an indicator of the measure's capability to predict software reliability. The 

higher the aggregated rate value, the more capable the measure is of predicting software 

reliability.  

Aggregation scheme 
See the entry for "Aggregation framework".  

Algorithm 

An algorithm is a straightforward procedure for combining two or more measures. The 

output of the algorithm represents one or more characteristics of the software product 

under study.  

Architectural model 

A model that puts emphasis on the architecture of the software and derives reliability 

estimates by combining estimates obtained for the different modules of the software.  

Attribute (object-oriented) 

Some data (state information) for which each object in a class has its own value.  

Availability 
Term used to define whether or not a measure is available in a particular software 

development phase.  

Class (object-oriented) 
A group or set of objects sharing common attributes.  

Cohesion 
The manner and degree to which the tasks performed by a single software module are 

related to one another.  

Coupling 
The manner and degree of interdependence between software modules.  

Derived measure
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An intermediate value which is neither an indicator nor a primitive measure.  

Early prediction model 

A model that uses the analyst's knowledge of the software development process to 

predict reliability early in the software development process, i.e., during the design or 

coding phase.  

Extrinsic characteristics 
The extrinsic validity of the measure is defined by its degree of relevance to reliability.  

Family 
Two measures are said to belong to the same family if, and only if, they measure the 

same quantity (or more precisely, concept) using alternate means of evaluation.  

Fault-tolerant system 
A system that is able to continue normal operation despite the presence of faults.  

Indicator 

Estimates or evaluations that provide a basis for decision-making. In this particular 

study, reliability is deemed an appropriate indicator for decision making.  

Input domain model 

A model that uses the properties of the input domain of the software to derive a 

correctness probability estimate from test cases that executed properly.  

Intrinsic validity 
The intrinsic validity of a measure depends on how well it performs with respect to 

quality ranking criteria (defined later) and cost effectiveness ranking criteria.  

Method (object-oriented) 

A function or behavior of an object.  

Model 

A procedure for combining measures to produce an estimate or evaluation based on a 

series of assumptions. Each assumption is an idealization of reality. The procedure is 

logically deduced from the assumptions.  

Mutation testing 
A testing methodology in which two or more program mutations are executed using the 

same test cases to evaluate the ability of the test cases to detect differences in the 

mutations.  

Object-oriented development
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A software development technique in which a system or component is expressed in terms 

of objects and connections between those objects.  

Primitive measure 
Primitive measures are values resulting from the application of rules to software 

attributes.  

Ranking criterion 

Used to assess the reliability prediction potential of a software engineering measure.  

Ranking criteria level 
Each ranking criterion is quantified into levels. These levels provide a qualitative 

estimate of the "goodness" of a measure with respect to the criterion.  

Reliability growth model 

A model that characterizes the improvement in reliability that results from correction of 

faults. This category of models uses failure data information and trends observed in the 

failure data to derive reliability predictions.  

Root of RPS 

A root of a software reliability prediction system is a measure that constitutes the starting 

point of the system and should be supplemented by additional measures which will 

complete the system.  

Reliability Prediction System (RPS) 

A complete set of software engineering measures from which software reliability can be 

predicted.  

Rule 

A rule is a mapping of the software attribute to a subset of the field of real or integer 

numbers.  

Software Attribute 

Software attributes are properties of the software, such as the functional size, structural 

complexity, etc.  

Software development phase 

The period of time that begins when a software product is conceived and ends when the 

software is no longer available for use. The software development phase typically 

includes a concept phase, requirements phase, design phase, implementation phase, test 

phase, installation and checkout phase, operation and maintenance phase, and, retirement 

phase. In this study the above phases are grouped into four phases:
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"* the requirements phase, which includes the concept and requirements phases, 

"* the design phase, which includes the design phase, 

"* the implementation phase, which includes the implementation and unit testing 

phases, 

"* the test phase, which includes the test phases.  

Software Engineering 

1. The application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software; that is, the application of 

engineering to software.  

2. The study of approaches as in 1.  

Software Engineering Measure 

A measure of the degree to which a software system, component, or process possesses a 

given software attribute.  

Software error 

A human action that produces an incorrect result.  

Software failure 

The inability of a system or component to perform its required functions within specified 

performance requirements.  

Software fault 
An incorrect step, process, or data definition in a computer program.  

Software Reliability 

Software reliability is defined here as the probability of successfully performing the 

safety function on demand with no unintended functions that might affect safety.  

Software-based safety critical digital I&C system 

A computer-based sub-system that controls and monitors the safe execution of a process 

plant or airborne system etc. This computer-based system performs the following 

functions: 

(1) measurement of process variables such as temperature, flow rate, and pressure, (2) 

execution of a control strategy, (3) actuation of such devices as valves and switches that 

enable the process to implement the control strategy, and (4) generation of reports to 

engineers and management indicating equipment status and performance.  

Structural level 

A structural level is any of the following: software attribute, primitive measure, derived 

measure or indicator.
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Support measure 
Measure used to supplement the rootof a RPS.
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